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Abstract 

In this paper, we investigate the dynamical behaviour of cyclic production lines under the presence of stochasticity  
An approach is presented which allows the modeling of a large part of the production line as a single “module” 
which is characterized by a holistic description covering the effective dynamical behaviour by means of a system 
dynamics approach. To this aim, a module is viewed as a system which is described by two binary random variables 
describing the module’s behaviour at its beginning and its end. These random variables are controlled by a state 
variable N(t) which denotes the mean number of items in the module.  

The dynamics of the module is then given by a system dynamics approach where the change of stock equals the 
difference of incoming and outgoing flow. It is shown by a simulation study that this simple approximate model is 
able to reproduce correctly typical dynamical features of the filling-up process of a production line. 
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1 Introduction 

In the age of globalization the demands on production lines with respect to productivity, cost 
efficiency, quality of output and flexibility are ever increasing. Many markets require 
competitors to offer a broad product range with shorter and shorter innovation cycles in order to 
secure an adequate market share and a profitable business strategy. Together with a more volatile 
customer demand this implies significant increases in the number of variants and in the model 
mix as well as markedly reduced product life cycles leading. Managing the complexity of highly 
dynamic production lines under these circumstances will be the key to sustainable profitability 
and success in the market place. Simulation has become more and more important in recent years 
as a tool to show the implications of decisions and the interdependency of different processes 
during both planning and operational phase of a production line. However, in order to be useful 
as a management decision support tool a simulation model needs to be simple and intuitive 
representing only the main interactions rather than the every detail of the actual system while still 
maintaining a high degree of accuracy.  

Traditionally, manufacturing systems are modelled as a topologic structure of stations and 
buffers, handling items and being controlled by internal rules. However, often it is difficult to 
understand and interpret the system’s dynamics due to the complex interactions between items, 
stations and buffers. The larger the system, the less this “atomic” bottom-up approach helps to 
understand the dynamical behaviour of the system. This paper presents a hierarchical modelling 
approach in which single stations or complete sections of production lines as well as the line 
itself can be described as modules that have a well determined dynamical behaviour. 

Thus, the model is derived from a different perspective to manufacturing systems which is not 
based on an individual item view but rather involves some “macroscopic” or global concepts. In 
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the field of queueing networks, such new approaches have been developed based on a concept of 
fluid dynamics ( [Chen and Yao 1992], [Chen and Mandelbaum,1994] , [Glynn 1990]). These 
concepts, too, are an attempt to replace the item focused description to more global quantities. 

Often, a macroscopic description can be attained by stochastic models where stochastic elements 
are used for approximatively replacing complex processes and interactions by some sort of 
“noise”. Thus, the model must be viewed as an approximation. Even though, however, such an 
approximation may be sufficient for solving an optimization task. In [Heitz 2003], a model for a 
cyclic production line has been described which is able to explain the stationary behaviour of an 
arbitrary large production line by means of a characteristic function which is a macroscopic 
description of the internal structure. It has been shown that, for realistic failure probabilities of 
the working stations, the results of the approximative model are very close to the ones for a full 
simulation model.  

In the present contribution, the model is extended for the non-stationary case.  

2 The model 

We consider a part of a cyclic production line, consisting of a sequence of working stations and 
buffers which is called a module. A complete production line is assumed to consist of one or 
more coupled modules. The stations are modeled as Markovian elements: Each station may fail 
to perform its work on the item in a given production cycle with given failure probability. In this 
case, the item is processed in the next production cycle again. Thus, an item may stay at a work 
station for two or more subsequent periods. 

In each production cycle, a module may receive an item from the upstream module, and may 
deliver an item to the downstream module. The dynamical behaviour of a module is assumed to 
be described by two binary stochastic variables Xin and Xout. Xin describes the ability of the 
module to accept an item, and Xout describes the ability of the module to deliver an item. For a 
sequence of production cycles t=0,1,2,…, a module is described by a sequence Xin(t) and Xout(t) 
which, as an approximation, is assumed to be an iid sequence [Heitz 2003]. In this framework, 
for each production cycle t, the module is described by the probability of being able to deliver 
(delivery probability) p(t) and the probability of being able to accept (acceptance probability) 
q(t) which are defined by 

 [ ]1)()( == tXPtp out     and    [ ]1)()( == tXPtq in       (1) 

When coupling different modules together, the delivery and acceptance probabilities pi and qi, 
respectively, of a considered module i depend on the delivery probability pi-1 of the upstream 
module and the acceptance probability qi+1 of the downstream module. Thus, the probabilities of 
neighbouring modules are coupled, leading to characteristic functions pi(pi-1,qi+1) and qi(pi-1,qi+1), 
respectively. It has been shown in [Heitz 2003] that, for realistic failure probabilities of the 
working stations, this simple model can be used for calculating production rates with a high 
accuracy.  

For extending the approach of [Heitz 2003] to instationary conditions, the time dependence of pi 
and qi has to be taken into account. For this, a generalized system dynamics approach is used. In 
system dynamics, a system is described by stocks and flows where the stocks represent the 
internal state of the system, and the flows are the generators which change this internal state 
[Sterman 2000]. Usually, a change of the stock is accomplished by the difference between input 
flow and output flow. The dynamics is determined by the laws which generate the input and 
output flows in dependence of the internal state of the system and the interactions to connecting 
systems.  

For a production system, the stochasticity of the item flow has to be taken into account. Thus, the 
dynamical laws are described on a stochastic process level as follows: The input and the output 



flows are described by the expected input and output item flows which are given by pi-1⋅qi, and 
pi⋅qi+1, respectively. Analogously, the internal state is characterized by the stock variable Ni(t) 
which denotes the expected number of items in the system at cycle t. Note that this description of 
the internal state by means of a single number is a strong simplification which, for example, does 
not account for the distribution of the items within the module.  

The dynamics of the system in this simplified framework is given by  
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where dNi(t) denotes the change of Ni(t) between time step t and t+1:  

)()1()( tNtNtdN iii −+= .       (3) 

The quantities pi-1(t) and qi+1(t) denote the external boundary conditions of the considered 
module i, while the quantities qi(t) and pi(t) describe the behaviour of the module itself.  

We assume that qi(t) and pi(t) are functions of the boundary conditions and the state Ni(t):  
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where the time index on the right-hand side is suppressed for the sake of simplicity.  

The dynamics of the system is generated as follows: According to the current values of pi-1, qi+1 
and Ni, the acceptance and the delivery probabilities are set according to Eqs. (4) and (5). With 
these values, the change dN can be calculated according to Eq. (2), leading to an updated state 
parameter for time t+1.  

There are two open questions:  

1. Is this simple model able to reproduce the dynamical behaviour correctly? 

2. What are the functional relationships Eqs. (4) and (5)? 

For the first question, we focused on the case of filling up of an initially empty production line. 
To this aim, we compared the dynamical model as formulated above with a full simulation 
model.  

The second question was solved partially by analyzing simulation results and interpolating them. 
In the present phase, no attempt was made to derive the functional relationship from the 
structural properties of the module.   

3 Simulations 

Numerous simulations of a production module consisting of three stations and three buffers were 
made [Engeler 2003]. The sequence of the elements is: buffer-station-buffer-station-buffer-
station. The failure probability of the stations is set to a value of 0.1 or 0.2. All buffers have a 
size of 10. This leads to a maximum number Nmax=33 items in the system (30 items in the 
buffers, and 3 items in the stations).  

For the upstream boundary condition, the values pi-1=1, 0.95, 0.9, 0.85 are used. The downstream 
boundary conditions are changed between qi+1=0.1 and 0.8 in steps of 0.1. Each combination of 
pi-1 and qi+1 was simulated, leading to 4⋅8 =32 simulation experiments. For each simulation, the 
boundary conditions are chosen to be time-independent. Additionally, the structure module itself 
was the same for all simulation experiments.  

Since the buffers are rather large, a good decoupling of the stations is achieved, leading to a 
maximum production rate of the module (under perfect boundary conditions pi-1=1 and qi+1=1) of 
 nearly 0.8, or 0.9, respectively, parts per cycle. Thus, the largest value qi+1=0.8 of the 
downstream module corresponds to a following production system with roughly the same 



performance as the considered module. Lower values of qi+1
 correspond to a following 

bottleneck, leading to a filling-up of the module to a value near Nmax. 

For each simulation, the initial condition is an empty module. 500 time steps were simulated 
which, in each case, was sufficient to reach the stationarity. For each simulation experiment, 
many independent simulation runs were performed. From these, the number Ni(t) was estimated 
for each t=1,..,500 by averaging the observed number of items over all simulation runs. 
Analogously, the acceptance probability qi(t) and the delivery probability pi(t) are measured for 
given time t by averaging over all simulation runs.  

As an example, in Fig. 1 (left) the estimated curve N(t) together with some typical trajectories of 
N(t). Note that although the number of items in the system is an integer number for a single 
trajectory, the expectation value N(t) is a real number. This leads to a smooth N(t)-curve.  
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Figure 1: Left: Typical trajectories of the number of items for 7 independent simulation runs. Thick line: 
Average number of items N(t). Right: dN(t) for the same simulations. Simulation parameters: pi-1=0.8, 

qi+1=0.6, failure probability = 0.1. 

The dynamics can be seen more clearly if the change of N(t) is regarded (see Fig.1 right). 

In most simulations, four typical phases are observed: First, the mean number of items N(t) 
increases very rapidly (large dN) for few cycles. This corresponds to the initial transport of 
items: qi is 1 because the first buffer is still empty, but pi is zero because no items have reached 
the last station.  

In the second phase, the number increases linearly (constant dN). This corresponds to an 
acceptance probability qi of near 1 (first buffer not full in most simulation runs) and a constant 
delivery probability of the last station. Since the boundary conditions are constant, this leads to a 
constant dN and a filling up of the module.  

In phase 3, the probability of the first buffer being full increases, leading to a reduced acceptance 
probability. This reduces the incoming flow dN until a value of dN=0 (phase 4), corresponding 
to the stationary condition: input flow equals output flow. Even if the theoretical dN must be 
exactly zero, the estimated dN from the simulation runs fluctuate around zero due to random 
errors.  

4 Results for specified boundary conditions 

In a first step, the approach was tested for fixed pi-1=0.8, qi+1=0.6, and failure probability of 0.1. 
In each time step, the quantities Ni(t), pi(t) and qi(t) were estimated from the independent 
simulation runs.  

Since, in Eqs. (4) and (5), all parameters of the functions qi(pi-1,qi+1,Ni) and pi(pi-1,qi+1,Ni) are 
constant except of Ni(t), one may plot the values qi(t) and pi(t) against Ni(t), leading to a single 
characteristic function qi(N) and pi(N), respectively, which describes the dynamical behaviour of 



the module for all time steps. In Fig 2, each point corresponds to a pair (Ni(t), qi(t)) and (Ni(t), 
pi(t)), respectively. The time ordering of these points plays no role. 

It can be seen that all points scatter around a line which can be identified with the desired 
functional relationships ),,()( 11 iiiii Nqpptp +−=  and ),,()( 11 iiiii Nqpqtq +−= , respectively. The 

thick lines in Fig. 2 are polynomial interpolations of the simulation data. In the right picture, the 
used polynomials lead to oscillations which are fictitious and do not describe a real feature of the 
data.  
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Figure  2: Characteristic function pi(N) and qi(N) of the module for fixed boundary conditions pi+1=0.8 and 
qi+1=0.6 

These polynomial interpolations can be used for evaluating the dynamical equation (2) with the 
initial condition N(0)=0. This leads to a N(t)-behaviour as displayed in Fig. 3.  
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Figure 3: Reconstruction of dN(t) (left) and N(t) (right) from the basic dynamical equation (2) with 
interpolated characteristic function according to Fig. 3. Thick line: Calculation according Eq. (2). Thin 

line: Original data from simulation.  

For this example, the system dynamics can be reconstructed correctly by means of the 
characteristic functions. This function is valid for all time points and for all four phases of the 
filling-up procedure and thus represents an integral description of the module. 

Note, however, that the boundary condition was not changed. For each set of boundary 
conditions pi+1 and qi+1, different functions pi(N) and qi(N) are obtained.  

5 Results for arbitrary boundary conditions 

In this section we investigate the approach for different values of boundary conditions as 
specified in Section 3. The aim is to find the characteristic functions which are valid for all 



boundary conditions and all times. The failure probability of the stations was set to 0.2 for these 
simulations. 

In Fig. 4, pi and qi are plotted against N for all parameter settings. The whole time range 
t=0,..,500 is used but not all data is displayed for the sake of readability. The different symbols 
indicate the downstream boundary: ⋅, x, o, + correspond to qi+1=0.8/0.7, 0.6/0.5, 0.4/0.3, 0.2/0.1. 
Thus, each symbol denotes two different downstream conditions. The different upstream 
boundary conditions (pi-1=1,0.95,0.9, and 0.85) are not distinguished in the plots and plotted with 
the same symbol.  

The delivery probability pi is nearly independent on N for N>5 but depends both on pi-1 and qi+1. 
(the dependence on pi-1 cannot be seen in the figure). As an approximation, we set  
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ignoring the dependence on N for N≥5. The values of pi for the different parameter settings      
(pi-1,qi+1) are obtained from the stationary behaviour t→∞, similar as in [Heitz 2003]. 
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Figure 4: Dependence of pi and qi on N for all parameter settings. Left: pi(N), Right: qi(N). The symbols 
indicate the downstream boundary: ⋅, x, o, + correspond to qi+1=0.8/0.7, 0.6/0.5, 0.4/0.3, 0.2/0.1. The 

different upstream boundaries cannot be distinguished.  

In contrast to pi, the acceptance probability qi is mainly determined by N. It is independent on the 
boundary conditions for N<15 and N>30. The influence of the boundary conditions is visible in 
the range of N=15…30.  

For N<15, we have qi≈1. For determining the qi-behaviour for N→Nmax, in Fig. 5, qi is plotted as 
a function of ∆=Nmax-N. A logarithmic law can be verified for small ∆. The thick line is a linear 
regression to the semilogarithmic data where the data of all simulations have been used. This 
leads to the regression formula 

0.6376N)-log(N0.1266 max +⋅=iq       (7) 

Since qi cannot be larger than 1, we set qi=1 it the above formula gives a value larger than 1.  

In Fig. 6 and Fig. 7, calculations of N(t) and dN(t), respectively, for two different parameter 
settings are shown. It can be seen that the dynamical behaviour of the module during the filling 
process is reproduced quite well. The four different dynamical phases are reproduced 
quantitatively.  
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Figure 5: Plot of qi against ∆=Nmax-N. All simulated data is plotted. The thick line is a linear interpolation 
of the semilogarithmic data according to Eq. (7). 

     

Figure 6: Reconstruction of N(t) (left) and dN(t) (right) for pi-1=0.95, qi+1=0.6. Thin line: Estimation from 
simulation. Thick line: Integration of dynamical model according Eqs. (2) to (5).  

   

Figure 7: Reconstruction of N(t) (left) and dN(t) (right) for pi-1=0.95, qi+1=0.8. Thin line: Estimation from 
simulation. Thick dashed line: Integration of dynamical model according Eqs. (2) to (5). 
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6 Conclusion 

We have investigated a simple stochastic model for cyclic production lines for the description of 
the dynamical behaviour of a module consisting of several working stations and buffers which is 
coupled to an upstream module with delivery probability pi-1 and an downstream module with 
acceptance probability qi+1. The model is based on a generalized system dynamics approach with 
a stock variable N(t) denoting the expected number of items in the module at time t. The 
temporal change of N(t) is generated by the difference between expected incoming and outgoing 
flow which results from the boundary conditions and the probabilities pi and qi of the considered 
module.  

For a given module with three stations and three buffers, it could be shown for a wide range of 
boundary conditions that the main dynamical features of the filling process of the module can be 
reproduced by characteristic functions pi(pi-1,qi+1,N) and qi(pi-1,qi+1,N). The different phases of 
the filling process are well reproduced by the integration of the basic dynamical equation. It must 
be noted, however, that the results still are preliminary. The approach has to be tested in a larger 
range for external boundary conditions as well as for instationary boundary conditions.  
Furthermore, the functional dependence of the characteristic functions on the parameters pi-1, qi+1 
and N is not yet clarified.  

However, it seems that the above developed framework for describing the dynamical behaviour 
of production lines by means of characteristic functions is able to capture the main dynamical 
features, thus giving a possibility for interpreting and understanding the dynamical behaviour in 
a macroscopic view.  
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