v

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by ZHAW digitalcollection

Dynamical behaviour of cyclic production lines
under instationary conditions with a system
dynamics approach

Meinrad Engelér Christoph Heitz Helmut Zaglauér
'Zurich University of Applied Sciences, Winterthur, Switzerland,christoph.heitz@zhwin.ch
“DaimlerChrysler Research and Technology, Friedrichshafen, Germany

Abstract

In this paper, we investigate the dynamical behavad cyclic production lines under the presencstothasticity
An approach is presented which allows the modetihg large part of the production line as a sirigledule”

which is characterized by a holistic descriptionaring the effective dynamical behaviour by meaha eystem
dynamics approach. To this aim, a module is vieagd system which is described by two binary randamables
describing the module’s behaviour at its beginrang its end. These random variables are contrbled state
variable N(t) which denotes the mean number ofstenthe module.

The dynamics of the module is then given by a sysignamics approach where the change of stock £dual
difference of incoming and outgoing flow. It is sloby a simulation study that this simple approxenaodel is
able to reproduce correctly typical dynamical fezgiof the filling-up process of a production line.
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1 Introduction

In the age of globalization the demands on prodaodines with respect to productivity, cost
efficiency, quality of output and flexibility arever increasing. Many markets require
competitors to offer a broad product range withrand shorter innovation cycles in order to
secure an adequate market share and a profitatileelba strategy. Together with a more volatile
customer demand this implies significant increasebe number of variants and in the model
mix as well as markedly reduced product life cyddegling. Managing the complexity of highly
dynamic production lines under these circumstamgt$e the key to sustainable profitability
and success in the market place. Simulation has@more and more important in recent years
as a tool to show the implications of decisions thelinterdependency of different processes
during both planning and operational phase of duyxtion line. However, in order to be useful
as a management decision support tool a simulatiodel needs to be simple and intuitive
representing only the main interactions rather tharevery detail of the actual system while still
maintaining a high degree of accuracy.

Traditionally, manufacturing systems are modelladaatopologic structure of stations and
buffers, handling items and being controlled byrnal rules. However, often it is difficult to
understand and interpret the system’s dynamicdaltiee complex interactions between items,
stations and buffers. The larger the system, tbe tleis “atomic” bottom-up approach helps to
understand the dynamical behaviour of the systdns. Japer presents a hierarchical modelling
approach in which single stations or complete ssstiof production lines as well as the line
itself can be described as modules that have ade&imined dynamical behaviour.

Thus, the model is derived from a different peripedo manufacturing systems which is not
based on an individual item view but rather invelgeme “macroscopic” or global concepts. In
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the field of queueing networks, such new approabhee been developed based on a concept of
fluid dynamics ( [Chen and Yao 1992], [Chen and tdbaum,1994] , [Glynn 1990]). These
concepts, too, are an attempt to replace the beoséd description to more global quantities.

Often, a macroscopic description can be attainestdishastic models where stochastic elements
are used for approximatively replacing complex psses and interactions by some sort of
“noise”. Thus, the model must be viewed as an aqymation. Even though, however, such an
approximation may be sufficient for solving an apaation task. In [Heitz 2003], a model for a
cyclic production line has been described whichbie to explain the stationary behaviour of an
arbitrary large production line by means of a ctiamstic function which is a macroscopic
description of the internal structure. It has bskawn that, for realistic failure probabilities of
the working stations, the results of the approxivmeatodel are very close to the ones for a full
simulation model.

In the present contribution, the model is exterfdethe non-stationary case.

2 The model

We consider a part of a cyclic production line, sisting of a sequence of working stations and
buffers which is called anodule. A complete production line is assumed to consisine or
more coupled modules. The stations are modeledaskdvian elements: Each station may fail
to perform its work on the item in a given prodaotcycle with given failure probability. In this
case, the item is processed in the next productiole again. Thus, an item may stay at a work
station for two or more subsequent periods.

In each production cycle, a module may receivetem ifrom the upstream module, and may
deliver an item to the downstream module. The dyocanbehaviour of a module is assumed to
be described by two binary stochastic variablgsadd X.. Xin describes the ability of the
module to accept an item, and,ydescribes the ability of the module to deliveritam. For a
seqguence of production cycles t=0,1,2,..., a modutescribed by a sequencg( and Xu(t)
which, as an approximation, is assumed to be aseitpience [Heitz 2003]. In this framework,
for each production cycle t, the module is desdribg the probability of being able to deliver
(delivery probability) p(t) and the probability of being able to accegc€ptance probability)

q(t) which are defined by

p(t) = P[Xo () =1 and q(t) = P[X,, (1) =1] @)

When coupling different modules together, the @glivand acceptance probabilitigsandg;,
respectively, of a considered moduldepend on the delivery probability; of the upstream
module and the acceptance probabdjty of the downstream module. Thus, the probabiliies
neighbouring modules are coupled, leading to cleniatic functiongi(pi-1,Gi+1) anddi(pi-1,Gi+1),
respectively. It has been shown in [Heitz 2003}, tler realistic failure probabilities of the
working stations, this simple model can be usedctdculating production rates with a high
accuracy.

For extending the approach of [Heitz 2003] to itisteary conditions, the time dependence;of p
and g has to be taken into account. For this, a gezexhlkystem dynamics approach is used. In
system dynamics, a system is described by stoditsflaws where the stocks represent the
internal state of the system, and the flows aregdémerators which change this internal state
[Sterman 2000]. Usually, a change of the stockct®mplished by the difference between input
flow and output flow. The dynamics is determinedtbg laws which generate the input and
output flows in dependence of the internal statthefsystem and the interactions to connecting
systems.

For a production system, the stochasticity of theniflow has to be taken into account. Thus, the
dynamical laws are described on a stochastic pgdegsl as follows: The input and the output



flows are described by thexpected input and output item flows which are given hy(@, and
pilGi+1, respectively. Analogously, the internal stateharacterized by the stock variablgtN
which denotes thexpected number of items in the system at cycle t. Note tiatdescription of
the internal state by means of a single numbesisoag simplification which, for example, does
not account for the distribution of the items witkine module.

The dynamics of the system in this simplified framek is given by

dN; (t) = pi (t) [8; (t) — p; (1) [y, (1) (2)
where dN\(t) denotes the change of(f)between time step t and t+1.:
dN, () =N, (t+1) = N, (t)- 3)

The quantities jp(t) and @1(t) denote the external boundary conditions of toasidered
modulei, while the quantities;(f) and p(t) describe the behaviour of the module itself.

We assume that(t) and p(t) are functions of the boundary conditions arestate Nt):
P () = P (i Giars Ny) (4)

ai (t) = 0 (Pi—1s Gisar Ny) (5)

where the time index on the right-hand side is segged for the sake of simplicity.

The dynamics of the system is generated as foll&wsording to the current values of pg+1
and N, the acceptance and the delivery probabilitiessateaccording to Eqgs. (4) and (5). With
these values, the change dN can be calculateddimgdo Eq. (2), leading to an updated state
parameter for time t+1.

There are two open questions:
1. Is this simple model able to reproduce the dynaiehaviour correctly?
2. What are the functional relationships Egs. (4) @)d

For the first question, we focused on the casdlioigf up of an initially empty production line.
To this aim, we compared the dynamical model asdtated above with a full simulation
model.

The second question was solved partially by anadyzimulation results and interpolating them.
In the present phase, no attempt was made to d#wavdunctional relationship from the
structural properties of the module.

3 Simulations

Numerous simulations of a production module coimgjstf three stations and three buffers were
made [Engeler 2003]. The sequence of the elementbuiffer-station-buffer-station-buffer-
station. The failure probability of the stationsset to a value of 0.1 or 0.2. All buffers have a
size of 10. This leads to a maximum numbegp&33 items in the system (30 items in the
buffers, and 3 items in the stations).

For the upstream boundary condition, the valygslp 0.95, 0.9, 0.85 are used. The downstream
boundary conditions are changed betwegr@.1 and 0.8 in steps of 0.1. Each combination of
p.1 and g, was simulated, leading ta84=32 simulation experiments. For each simulatibe,
boundary conditions are chosen to be time-independeditionally, the structure module itself
was the same for all simulation experiments.

Since the buffers are rather large, a good decuyimf the stations is achieved, leading to a
maximum production rate of the module (under peéffeandary conditionsip=1 and ¢,=1) of
nearly 0.8, or 0.9, respectively, parts per cydlbus, the largest value.0.8 of the
downstream module corresponds to a following prodncsystem with roughly the same



performance as the considered module. Lower vabfesj.; correspond to a following
bottleneck, leading to a filling-up of the modubest value near N

For each simulation, the initial condition is anpgynmodule. 500 time steps were simulated
which, in each case, was sufficient to reach th&ostarity. For each simulation experiment,
many independent simulation runs were performeainRhese, the number(y was estimated
for each t=1,..,.500 by averaging the observed nunalbeitems over all simulation runs.
Analogously, the acceptance probabilitft)oand the delivery probability;(t) are measured for
given time t by averaging over all simulation runs.

As an example, in Fig. 1 (left) the estimated cuyyg together with some typical trajectories of
N(t). Note that although the number of items in flystem is an integer number for a single
trajectory, the expectation value N(t) is a reahbar. This leads to a smooth N(t)-curve.
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Figure 1: Left: Typical trajectories of the numloéitems for 7 independent simulation runs. Thiok!
Average number of items N(t). Right: dN(t) for #ame simulations. Simulation parameters:=@.8,
(+1=0.6, failure probability = 0.1.

The dynamics can be seen more clearly if the chahbyét) is regarded (see Fig.1 right).

In most simulations, four typical phases are olesbrirst, the mean number of items N(t)
increases very rapidly (large dN) for few cyclesisTcorresponds to the initial transport of
items: qis 1 because the first buffer is still empty, puis zero because no items have reached
the last station.

In the second phase, the number increases lingawlystant dN). This corresponds to an
acceptance probability of near 1 (first buffer not full in most simulatiouns) and a constant
delivery probability of the last station. Since t®indary conditions are constant, this leads to a
constant dN and a filling up of the module.

In phase 3, the probability of the first bufferrmgiull increases, leading to a reduced acceptance
probability. This reduces the incoming flow dN umativalue of dN=0 (phase 4), corresponding
to the stationary condition: input flow equals autfiow. Even if the theoretical dN must be
exactly zero, the estimated dN from the simulations fluctuate around zero due to random
errors.

4 Results for specified boundary conditions

In a first step, the approach was tested for fpxgd0.8, ¢1=0.6, and failure probability of 0.1.
In each time step, the quantities(t\ p(t) and ¢t) were estimated from the independent
simulation runs.

Since, in Egs. (4) and (5), all parameters of thections ¢(pi-1,G+1,Ni)) and p(pi.1,G+1,N;) are

constant except of i{4), one may plot the valueg®y and p(t) against Nt), leading to a single
characteristic function;@N) and p(N), respectively, which describes the dynamicalav@ur of



the module for all time steps. In Fig 2, each pomtesponds to a pair (Y, g(t)) and (N(t),
pi(t)), respectively. The time ordering of these poplays no role.

It can be seen that all points scatter around e Which can be identified with the desired
functional relationshipsp, (t) = p, (P4, %, N, Bnd g, (t) =g, (p;_;, %4, N; ), respectively. The
thick lines in Fig. 2 are polynomial interpolatiooisthe simulation data. In the right picture, the

used polynomials lead to oscillations which arstiozis and do not describe a real feature of the
data.
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Figure 2: Characteristic functior(ld) and g(N) of the module for fixed boundary conditiong#0.8 and
0+1=0.6

These polynomial interpolations can be used foluatiag the dynamical equation (2) with the
initial condition N(0)=0. This leads to a N(t)-befwur as displayed in Fig. 3.
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Figure 3: Reconstruction of dN(t) (left) and N¢ight) from the basic dynamical equation (2) with
interpolated characteristic function accordingitp B. Thick line: Calculation according Eq. (2hiit
line: Original data from simulation.

For this example, the system dynamics can be racoted correctly by means of the
characteristic functions. This function is valid @l time points and for all four phases of the
filling-up procedure and thus represents an intetgscription of the module.

Note, however, that the boundary condition was ciwinged. For each set of boundary
conditions p; and @, different functions jN) and ¢g(N) are obtained.

5 Results for arbitrary boundary conditions

In this section we investigate the approach fofetbht values of boundary conditions as
specified in Section 3. The aim is to find the eleteristic functions which are valid for all



boundary conditions and all times. The failure pimlity of the stations was set to 0.2 for these
simulations.

In Fig. 4, p and @ are plotted against N for all parameter settingge whole time range
t=0,..,500 is used but not all data is displayadtie sake of readability. The different symbols
indicate the downstream boundakyx, o, + correspond tq.g=0.8/0.7, 0.6/0.5, 0.4/0.3, 0.2/0.1.
Thus, each symbol denotes two different downstreamditions. The different upstream
boundary conditions (jp=1,0.95,0.9, and 0.85) are not distinguished impthts and plotted with
the same symbol.

The delivery probability jgs nearly independent on N for N>5 but dependh batp; and ;.
(the dependence onjrannot be seen in the figure). As an approximatenset

0, N<5
pi :{ (6)
P (P4 Gs), NZ=5

ignoring the dependence on N foe™ The values of jpfor the different parameter settings
(pi-1,G+1) are obtained from the stationary behaviouled, similar as in [Heitz 2003)].
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Figure 4: Dependence ofgnd gon N for all parameter settings. Lef{{Ny, Right: g(N). The symbols
indicate the downstream bounddrix, o, + correspond tq.g=0.8/0.7, 0.6/0.5, 0.4/0.3, 0.2/0.1. The
different upstream boundaries cannot be distingdish

In contrast to pthe acceptance probabilityisg mainly determined by N. It is independent om th
boundary conditions for N<15 and N>30. The influiof the boundary conditions is visible in
the range of N=15...30.

For N<15, we havegl. For determining the-tpehaviour for N> Nmay in Fig. 5, gis plotted as

a function ofA=NmaxN. A logarithmic law can be verified for smal The thick line is a linear
regression to the semilogarithmic data where thia dhall simulations have been used. This
leads to the regression formula

g =0.1266dog(N, ., - N) +0.6376 (7)

max

Since gcannot be larger than 1, we sgtlgit the above formula gives a value larger than 1

In Fig. 6 and Fig. 7, calculations of N(t) and gN¢espectively, for two different parameter
settings are shown. It can be seen that the dyahimhaviour of the module during the filling
process is reproduced quite well. The four differelynamical phases are reproduced
quantitatively.



Figure 5: Plot of gagainstd=N.-N. All simulated data is plotted. The thick lirged linear interpolation
of the semilogarithmic data according to Eq. (7).
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Figure 6: Reconstruction of N(t) (left) and dN¢ipkt) for p,=0.95, ¢,=0.6. Thin line: Estimation from
simulation. Thick line: Integration of dynamical de according Egs. (2) to (5).
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Figure 7: Reconstruction of N(t) (left) and dN¢ipht) for p,=0.95, ¢,=0.8. Thin line: Estimation from
simulation. Thick dashed line: Integration of dymeethmodel according Egs. (2) to (5).



6 Conclusion

We have investigated a simple stochastic modadyfoic production lines for the description of
the dynamical behaviour of a module consistingesksal working stations and buffers which is
coupled to an upstream module with delivery prdiigitp;.; and an downstream module with
acceptance probability.g. The model is based on a generalized system dgsapproach with

a stock variable N(t) denoting the expected nundfeitems in the module at time t. The
temporal change of N(t) is generated by the diffeecbetween expected incoming and outgoing
flow which results from the boundary conditions &nel probabilities jpand g of the considered
module.

For a given module with three stations and thrdéets) it could be shown for a wide range of
boundary conditions that the main dynamical featoifethe filling process of the module can be
reproduced by characteristic functionfp,g+1,N) and &pi-1,5+1,N). The different phases of
the filling process are well reproduced by thegrdgion of the basic dynamical equation. It must
be noted, however, that the results still are iiakry. The approach has to be tested in a larger
range for external boundary conditions as well as ihstationary boundary conditions.
Furthermore, the functional dependence of the clexatic functions on the parameters, |o}+1

and N is not yet clarified.

However, it seems that the above developed frantefeordescribing the dynamical behaviour
of production lines by means of characteristic fioms is able to capture the main dynamical
features, thus giving a possibility for interpretiand understanding the dynamical behaviour in
a macroscopic view.
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