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Abstract:  
A new approach for due date assignment in dynamic job shops with priority scheduling is presented. 
The future temporal development of the production system, eventually determining the flow-time of a 
job, is governed by both the processing of the jobs already present in the system as well as the 
processing of future arriving jobs. We combine a simulation-like approach for the already known jobs 
with a stochastic model describing the influence of future arriving jobs. The resulting model is a hybrid 
system dynamics model that can be solved numerically, leading to estimates for the flow-time of all 
available jobs. 

In a simulation study, we compare the new approach with other popular methods known in literature. 
Our results indicate that the new method significantly outperforms all other studied methods in terms of 
accuracy of the estimates, in most cases by at least a factor of two. Furthermore, the effect of priority 
scheduling can be modelled correctly, yielding good estimates for jobs of different priorities. 
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1. INTRODUCTION 
We consider a dynamic job shop environment with local priority scheduling, where the 
priority can either be static (e.g. a property of the job) or dynamic, such as for due-date 
related scheduling rules. Our goal is to estimate a flow-time for each job at the time instant 
of its arrival, under the assumption that the job properties (including the due date) are known 
at this time.  

The completion time of a given job depends on how this particular job is processed, how the 
other jobs already present in the system are processed, and how jobs that are not yet known 
but will arrive during the processing of the considered job do interfere. This is a rather 
complex problem, and different attempts have been made to reduce this complexity and to 
identify a set of key information numbers that is sufficient for a good estimate. Prior 
investigations have shown that there are at least three main determinants for the completion 
time [7], [12]: the properties of the job itself (type, processing time, priority, route 
information), the general state of the production system (load balance, congestion) as well 
as the loading of the stations on the job’s route. Most methods in literature are based on 
regression models that combine several of these indicator variables to estimate a flow-time.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/154369279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


MITIP 2008, 12-14 November, Prague 

156

2. DYNAMICAL MODEL

2.1. Basic idea 
Basically, our model is a forward-simulation which explicitely models and includes future 
arriving jobs. Our approach contains both a deterministic and a stochastic element, which 
are defined as follows: the deterministic element consists of all the jobs which are present at 
simulation start. All information of these jobs (in the following called real jobs) are known, 
and every simulation yields a completion time for each of them. The stochastic part of our 
approach is modelled by the so-called virtual work, which continuously arrives at and flows 
through the system. These two types of work compete against each other for the same 
ressources. As a result, the completion times of the real jobs will be delayed by the virtual 
work. 

2.2. Considered system and modelling approach 
We consider a production system consisting of several working stations 1,...,j M , each 
station having only one server (no parallel processing capabilities) with a processing rate 

i
.

Jobs arrive randomly as a Poisson process with rate 
j
 at station j, the overall arrival rate 

being 
1

M
jj
. An arriving job i has a random sequence of stations, described by 

routing probabilities 
ijp  . The processing times at each station j are random with an average 

of 
j
.

Each job has a priority p and scheduling is done according to the priority. Jobs arriving from 
outside have a random priority p which is described by a function g(p), where g(p) is the 
probability that the arriving job has a priority higher than p. Throughout the paper we 
assume non-preemptive schemes, i.e. jobs that are currently processed are finalized even if 
a job with a higher p-value arrives. 

2.3. Modelling of virtual work 
At each working station, real jobs as well as virtual work are present. The waiting virtual 
work at any time instant t is described by the function G(p, t), which is defined as follows: 
G(p,t) is the amount of queued virtual processing time with priority larger than p, where the 
priority is allowed to take arbitrary values between  and . The value G( ,t)
corresponds to the total virtual work amount in the queue at time t. Furthermore, we always 
have G( ,t)=0. For the processing, we assume that the virtual work can be split into 
arbitrarily small portions. This, of course, is an approximation to the real discrete dynamics, 
and additional mechanisms are introduced to make sure that basic queuing properties are 
correctly reproduced. 

The processing of real jobs and virtual work at a server follows the following rules: 

•  Virtual work arrives at and flows through the system constantly. Thus, the virtual work 
behaves like a fluid, using ressources and delaying real jobs. 

•  The servers may process either real jobs or virtual work. 

•  If the server processes a real job, the server is busy until the job is fully completed (non-
preemptive scheme). Virtual work in contrast is processed in arbitrary small portions 
(flow approximation) and the processing can be interrupted at any time. 
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•  If a server processes virtual work and a real job with priority p  is present in the queue, 
no virtual work with priority lower than p  is processed. This reflects the fact that virtual 
and real work are treated identically with respect to the scheduling process.  

2.4. Job arrivals at queue 
We assume that virtual work arrives continually in small work packages ( )G p , where The 
function G(p) describes the priority distribution as defined above . Thus, ( )G  equals the 
total amount of arrived virtual work in the considered time increment t .. The dynamics of 
G(p, t) due to arrival of virtual work is given by 

( , ) ( , ) ( )G p t t G p t G p  (1) 

For virtual work that arrives from another station of the job shop, ( )G p  is given by the 
processing of the upstream station and the routing (see 2.5 and 2.6). For the arrival of a 
virtual job from outside of the system, we follow the approach in [8]: let   be the arrival rate 
of the jobs at the considered station,  the average processing time, and g(p) the probability 
that the priority of an arriving job is larger than p. Then we get: 

( ) ( )G p t g p  (2) 

Here, t  is the expected number of arriving jobs, and t  is the expected total 
amount of arriving work during any time interval t .

2.5. Processing 
Every time a server is either idle or processing virtual work, a decision has to be made what 
kind of work has to be processed next. Let’s define the priority p’ as the highest priotiy of all 
jobs waiting in the queue. We have to distinguish between the following cases: 

1. There is no virtual work available with priority higher than p’

2. There is virtual work available with priority higher than p’

3. There is no real job in the queue 

For case 1, the server starts to process the real job with the highest priority. Al the virtual 
work remains in the container and G(p,t) is unchanged. 

For case 2, the server will start to process virtual work. While for all priorities > p’ a uniform 
processing with respect to the priority is assumed, no virtual work with a smaller priority than 
p’ is being processed. The effect on the virtual work container of the server’s queue can be 
formulated as follows: 

( , ) , '
( , ) ( , )( , ) , '

( ', )

G p t t p p
G p t t G p tG p t t p p

G p t

 (3) 

For case 3, only virtual work is present, which in particular will be the case for t . In 
order to yield a consistent model, we require ( )t , and ( )q qW t W , where 

is the average utilization of the server and 
qW  is the average waiting time for a job at this 

station. This consistency can only be achieved by introducing a dynamic utilization ( )t . For 
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this purpose, we start with the well known M/M/1 queuing model relationship (see e.g. [3]) 
1q qW W  which establishes a relationship between the mean utilization , the 

mean queuing time 
qW and the processing rate . This relationship is only valid for long 

term observations. We nevertheless can use it as an approximation when we’re dealing with 
virtual work, as virtual work is an expected mean value itself. As the M/M/1 assumption isn’t 
valid in an arbitrary system, we simply expand the above relationship by a scalar, which is 
set such as the initially mentioned consistency for t  is reached. This results in: 

1

( ) 1
( )

q

q

W
t

W t

 (4) 

where ( )t : current utilization, ( )qW t : current waiting time at the server and : mean 

processing rate at the server. With the same heuristics as above for case 2, ( , )G p t t can
be expressed for all p as ( , ) ( , )G p t G p t with ( )t  according to (4) and: 

( , )( , ) ( )
( , )

G p tG p t t t
G t

The virtual work outflow from server i at any time t is denoted by   
, ( , )out iG p t . As no virtual 

work wil be processed in case 1., no virtual work will leave the server and thus 
, ( , ) 0out iG p t . For cases 2. and 3., the outflow of virtual work exactly matches the amount 

of virtual work which is being processed: 
, ( , ) ( , )out i iG p t G p t . This is consistent with the 

fluid approximation for the virtual work. 

2.6. Routing 
The flow of virtual work from station i to station j depends not only on the above discussed 
outflow, but also on the routing probability pij and the average processing times at the 
sending and receiving stations: 

, ( , )
( , ) out i

j ij j
i

G p t
G p t  (6) 

where pij: routing probability from station i to j (similar to Jackson Networks [3]), , ( , )out i

i

G p t :

dimensionless outflow, representing a fraction of an average job, 
j
: processing time of an 

average job at station j

3. ESTIMATION OF FLOW-TIME 
Flow-times are estimated using a time discrete forward simulation. Each run is initialized 
with the current system state, and time is incremented in steps of t . At each simulation 
step, the virtual work containers and real jobs are updated according to the method 
described in 2. This procedure continues as long as real jobs remain in the system. At the 
end of the simulation, a completion time will be assigned to each job. 
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4. SIMULATION 
Simulations are made in a Descrete-Event (DE) simulation environment. Each time a new 
job enters the system, its flow-time is estimated according to the method described in 3. This 
estimation is stored and compared with the job’s real duration of stay  in the system. 
Statistics then are made with the difference between the estimates and the real values. 

The investigations are made on a traditional job shop system as used in [12] with five 
workstations. The new flow-time estimation method (VWS: virtual work simulation) is tested 
and compared to 12 other popular methods, including: 

OBE [12], ADRES and LDP [2], DTWK and DPPW [4], TWK [13], NOP [5], SLK [1],  PPW 
[9], JIQ [6],  WIQ and JIS [11].  All methods are tested under different loads using both FIFO 
and SSTF policy. 

The performances are measured in respect of different standard performance measures: 
mean lateness (ML), mean absolute lateness (MAL), mean tardiness (MT), mean squared 
lateness (MSL) and mean semi quadratic lateness (MSQL). 

5. RESULTS 
Similar to some methods proposed in literature, our method is slightly biased, which is 
reflected in a ML value unequal to 0. This bias is a result of the fluid characteristics of the 
virtual work which doesn’t match correctly the behaviour of real future jobs.  

In terms of accuracy (MAL criterion), the VWS method outperforms each other studied 
method as shown in table 1: in case of SSTF policy and 85% utilization, VWS yields a MAL 
value of 3.626. The next best method OBE generates a value of 10.6302 and thus is three 
times less accurate than VWS. This difference is not that large but still statistically relevant 
for FIFO policy (benefit: 28%) and lower utilization (65% utilization leads to a superiority of 
100% (SSTF) and 25% (FIFO)) 

Table 9: Performance measures at 85% load, mean flow-time ~= 50 
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6. CONCLUSIONS 
In this study we present a new approach for assigning due dates in a dynamic job shop. The 
proposed method differs from other popular due date assignment methods in several 
aspects: First, it explicitly models the processing capabilities of the system as a network of 
workstations, leading to a much more detailed model of the production system. Second, it is 
based on the full information on the present status of the production system. Third, the effect 
of future arriving jobs is taken into account by explicit modelling them as a flow of virtual 
work with statistical properties including priorities. 

This new method is compared with the most popular and best performing methods known in 
the literature of flow-time estimation according to several performance measures. It is shown 
that the VWS method outperforms every other method in respect of the estimate’s accuracy.  
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