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Abstract 

Electrospun nanofiber membranes are frequently used in adsorption processes thanks to their 

high specific surface area, tailored surface functionality, and fiber uniformity. However, they 

are still facing challenges such as low mechanical stability and unfavorable mass transport 

properties. In this study, an ultra-light and robust 3D nanofiber aerogel (NFA) or nanofiber 

sponge with tunable porosity and flexibility was synthesized from short pullulan/polyvinyl 

alcohol/polyacrylic acid nanofibers using a freeze casting process followed by thermal 

crosslinking. We demonstrate time the application of such NFAs in batch and continuous 

adsorption systems and compare their performance with flat nanofiber membranes (NFM). 

The NFAs proved to be promising adsorbents for cationic dyes due to their high adsorption 

capacity (383 mg/g) and their reusability. Langmuir isotherm was a suitable model for 

describing the adsorption process. The endothermic system followed a pseudo second order 

kinetic model and intra-fiber adsorption is found to be involved in the adsorption process. 

Dye adsorption by 3D NFAs was four times faster than for the respective flat NFMs and 

when used in a continuous process as a deep-bed filter, the pressure drop through the NFA 

was reduced by a factor of 40 while maintaining equal adsorption performance as for the 

NFM. 
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Highlights 

 Nanofiber aerogels (NFAs) were synthesized from electrospun nanofibers 

 Adsorption capacity of the electrospun nanofiber membrane (NFM) was retained 

 The open porous structure of the NFA significantly facilitates mass transport of fluids 

 Pressure drop within the NFA is reduced by a factor of 40 compared to the NFM 

 

  



 

 

1. Introduction 

Dyeing processes are an integral part of huge industries including paper, textile and paint, 

resulting in high amounts of water soluble dyes in wastewaters. This introduces 

environmental challenges due to the negative effects of dyes on aqueous ecosystems by their 

intrinsic toxicity and their sunlight inhibiting properties. Therefore, removal of dyes from 

wastewater is an important subject all over the world [1-5]. 

Adsorption is one of the most promising and environmentally friendly separation methods for 

removing dyes. Adsorption is free of toxic by-product, cost efficient, flexible and technically 

simple [6]. Previous research on different effective adsorbents such as activated carbon[7, 8], 

agricultural solid wastes [9-11], industrial by-products [6, 12], and inorganic materials [13] 

prove the outstanding effect of high surface area per volume on the adsorption process; 

therefore powdery adsorbents are a good choice for dye adsorption. Regarding secondary 

challenges including powder removal after finishing the process for regeneration or disposal, 

electrospun nanofiber membranes are an effective alternative [14-20]. 

Recently, nanofiber aerogels (NFAs) or nanofiber sponges were introduced as a new class of 

ultra-light highly porous materials [21]. In contrast to classical aerogels which are obtained 

through a sol-gel process, preformed nanofibers are used as their building blocks [22]. 

Porosity and pore architecture of nanofiber aerogels can be fine-tuned during the integral 

cryogenic solidification step [23, 24]. This allows combining the filtration challenges of high 

surface area per volume and efficient adsorbent removal. Moreover, the broad range of 

materials and surface chemistry available for nanofibers can be exploited for NFAs as well 

[25-27]. Nanofiber aerogels have also promising mechanical properties as compared to 

hydrogels employed for water purification [28]. 



 

Tuning the microstructure of NFAs is also essential for the macroscopic mass transport 

properties during dye adsorption: this was also shown for classical aerogels, where 

controllable porosity was achieved through a freeze-casting-based process [29, 30], allowing 

for instance the construction of the most effective natural hydrogel for removal of Cr(VI) 

[31]. 

Despite promising achievements of the previous studies, there has been no attempt on 

developing biocompatible spongy aerogel structures from nanofibers suitable for dye 

removal. Recently, a three-dimensional nanofiber aerogel was introduced by our research 

group using pullulan as a natural, edible, tasteless and water soluble polysaccharide [24, 32]. 

The objective of this study was to assess the efficiency of pullulan-based NFAs in the 

adsorption of methylene blue (MB) as a cationic dye operated in batch and continuous 

processes. Adsorption capacity, dynamic properties, and reusability of the NFA were 

investigated and their performance was compared with the respective nanofiber membranes 

(NFMs). 

2. Materials and Methods 

Chemicals. 1,4-Dioxane (ACS reagent, >99 %), PVA (polyvinyl alcohol) (Mw = 89000–

98000 Da, DH = 99 %), PAA (polyacrylic acid sodium salt) (Mw = 5100), NaOH (sodium 

hydroxide), HCl (hydrochloride acid, ACS reagent, 37 %) were all purchased from Sigma 

Aldrich, Germany. Methylene blue (MB) was obtained from Honeywell Riedel de Haën, 

USA and pullulan (food grade) was provided by Hayashibara Co. Ltd, Japan. 

Nanofiber aerogel preparation. 3-D nanofiber aerogels were prepared following the process 

introduced in our previous work [24]. Briefly, according to Fig. 1, nanofibers were obtained 

by electrospinning an aqueous polymer solution with 14.5 % mass fraction of 

pullulan/PVA/PAA (ratio 3:2:2). Then, they were dispersion cut into short fragments in 1,4-

dioxane (10 mg ml-1) using a high speed homogenizer (IKA T25, S25N-25F, IKA GmbH). 



 

The dispersion was then unidirectionally frozen and crystals of dioxane grow from the 

bottom of container to the top. The short nanofibers were entrapped between the growing 

crystals. In the next step, the solidified solvent was removed by sublimation and the green 

body of the porous nanofiber aerogel was obtained. Thermal crosslinking rendered the stable 

and water insoluble 3D nanofiber aerogel used for the dye removing processes. By 

controlling the crosslinking temperature and time, we were able to obtain water insoluble 

nanofiber aerogels without the necessity of adding any new chemicals. For detailed 

information see our previous work [24]. 

Filtration and regeneration procedures. Batch experiments were carried out by stirring dye 

solutions with known initial concentration using defined amounts of nanofiber aerogel as 

adsorbent. The cationic dye MB was used as a water soluble model substance due to different 

applications of this dye in chemistry and biology [33]. Continuous adsorption properties of 

nanofiber aerogels were investigated by pumping dyed solutions through columns containing 

fitted with a piece of nanofiber aerogel as the adsorbent. Regeneration of the adsorbent was 

possible by washing the nanofiber aerogels at acidic conditions of pH 3. In order to compare 

the operability and efficiency of 3D NFAs with flat NFMs, batch and continuous experiments 

were done for NFM at the same conditions. The detailed information regarding filtration 

parameters and conditions is provided in the supporting information. 

 

3. Results and discussion 

Morphology and structure of the NFA. The synthesized NFA was a 3D body with a density 

of only 24.5 ± 2.3 mg l . Fig. 2A shows a piece of the aerogel on the top of a dandelion 

illustrating its light character. The porosity  of the NFA was 98.2 ± 0.2 %based on Equation 

1 [24]. 

 p ∙ 100	% 	 ∙ 100	%        (1) 



 

Where  is the porosity, V is the total bulk volume of the aerogel, Vp is the pore volume, m is 

the mass and ρ is the density of the polymeric material.  

The hierarchical pore architecture of the NFA is illustrated in SEM images of cross sections 

of the material, Fig 2B and 2C. The larger cellular pores have a diameter between 20-40 µm 

(Supporting information), which is in contrast to the flat NFM with small pores between 2-5 

µm. The open porous structure of the NFA allows rapid water uptake and they show a high 

liquid holding capacity [24]. 

The nanofiber aerogel becomes stable and water insoluble after thermal crosslinking, where 

ether bonds are formed as confirmed by FT-IR as well as contact angle measurements (Fig 

S5). The degree of crosslinking and thus hydrophobicity can be tuned by adapting the thermal 

crossliniking conditions according to our previous work ]24[ . 

Batch dye adsorption. To investigate the adsorption properties of the nanofiber aerogel, 

different parameters such as pH, concentration, temperature and amount of adsorbent were 

assessed.  

The equilibrium adsorption capacity  can be determined from Equation 2 [6]. 

           (2) 

Where  and  are the initial and equilibrium mass concentrations of the dye, V is volume 

of solution and m is the mass of nanofiber aerogel adsorbent. 

The adsorption efficiency ϕ of MB was calculated according to 3. 

 100	%         (3) 

Effects of initial dye concentration. Fig. 3A shows the effect of dye concentration on the 

adsorption capacity of the NFA. Increasing amount of adsorbed dye per unit mass of NFA 

with increasing dye concentration in the solution was observed. 



 

Increasing equilibrium adsorption capacity for higher concentrated solutions indicates the 

presence of free adsorption sites within the aerogel. So the “less accessible sites” are 

available at higher concentration [6]. 

Effect of adsorbent dose. The effect of NFA amount in adsorption is presented in Fig. 3B. 

The removal efficiency is increasing from 18.7 % to 99 % with increasing the adsorbent 

amount from 30 to 300 mg. On the other hand, the time required for reaching the equilibrium 

decreases with higher dose of aerogel. This is caused by increasing mass transport due to the 

raise in aerogel surface. This graph shows that dye adsorption can be a very fast process. For 

instance, when 200 mg of aerogel are used, around 55 % of dye is removed during 2.5 

minutes of adsorption. 

Effect of pH. According to Fig. 3C, increased pH provides a suitable environment for the 

adsorption process while adsorption efficiency at acidic conditions is very low. 

MB is normally a cationic dye with the form of	MB . On the other hand, basic environment 

increases the amount of deprotonated hydroxy functional groups located at the surface of the 

pullulan/PVA/PAA nanofibers. This is necessary for complex formation through an 

electrostatic interaction between MB and	O . However, in acidic conditions deprotonated 

hydroxy groups are no longer available. Therefore, the adsorption capacity dramatically 

decreases. 

Effect of temperature. Fig. 3D clearly indicates the positive effect of higher temperature on 

adsorption velocity.  

From the temperature effects, the thermodynamic constants standard adsorption enthalpy 

(∆ , standard adsorption entropy (∆  and standard Gibbs energy of adsorption (∆  are 

calculated using Equations 4 and 5 [34]. 

 ln	 ∆ ∆
                    (4) 



 

 ∆ ∆ ∆                (5) 

Where R is the molar gas constant, T is the absolute temperature in Kelvin and  is the 

distribution coefficient of dye (l g-1) which follows from Equation 6: 

                   (6) 

The calculated thermodynamic parameters are reported in Table 1. The positive value of 

∆ 	 shows that the dye adsorption process is endothermic and that adsorption is driven by 

the positive adsorption entropy. Therefore, the degree of adsorption increases with higher 

temperature as can be observed in Fig. 3D as well. 

Effects of ionic strength, ionic radius and charges on adsorption. Since presence of salts 

in wastewaters containing dyes is inevitable, investigating effects of ions in all the treatment 

strategies is crucial. 

Different concentration of NaCl solutions (from 0.0 to 0.2 M) were used for showing the 

effects of ion strength on adsorption since NaCl is often used as stimulator in dyeing 

processes [35]. Fig. 4A demonstrates that increasing the amount of ions has a negative effect 

on the adsorption efficiency, especially when the ion concentration is higher than 0.05 M. 

It is clear that adding salts affects adsorption by screening (damping) the electrostatic force 

between the MB molecules and the pullulan/PVA/AA aerogel which significantly decreases 

the adsorption efficiency [36]. 

Since the presence of ions is a very critical parameter, the effect of ionic radius and different 

charges was investigated using	Li , Na , and K  as model ions with same charges and 

different radii and Mg with higher charge. According to Fig. 4b, larger radii increase the 

screening effect, while decrease the adsorption capacity. However, comparison between 

Na 	and Mg 	indicates that not only the radius but also the charge of ions has a very 

significant effect on the adsorption process. However, according to previous reports [37], the 



 

favourable complex formation between Mg2+ and hydroxyl groups in the nanofiber aerogel 

due to a chelating effect is anticipated to compete with MB for free adsorption. 

Effects of different externally induced strains. As mentioned before, the 

pullulan/PVA/PAA aerogel has a highly porous structure with interconnected pores. 

Therefore, effects of induced pressure on the aerogel or stirring in comparison with no 

external forces during the adsorption process were investigated as presented in Fig. 5A-C. 

Inducing compression and release cycles on the NFA increases the velocity of dye adsorption 

due to the enforced mass transport of the dye solution through the pores of the NFA (Fig. 

5A). Stirring the dye solution increases adsorption velocity (Fig. 5B) compared to the 

situation without any external force. Then dye adsorption becomes slow and the adsorption 

equilibrium will settle only after 24 hours (Fig. 5C) representing diffusion without any 

external force. 

The batch adsorption experiments clearly demonstrate the favourable architecture of NFAs 

for dye adsorption: (I) the large specific surface area due to the application of nanofibers and 

(II) the open porous architecture of the aerogel enabling favourable mass transport of the dye 

solution to the surface of the nanofibers. 

Continuous adsorption system. Although the batch system investigation is essential for 

each adsorption process to understand and describe intrinsic characteristics of the adsorbent, 

continuous flow systems are much more useful for the industrial scale where large volumes 

of wastewater are generated. 

Therefore, NFAs were packed as a depth filter into a column and the dye solution was 

pumped at constant rate through the NFA. As illustrated in Fig 6A, 100 mm of aerogel (0.78 

cm3) in a continuous flow (4.5 ml min-1) of 10 ppm concentrated solution retained the dye for 

almost 40 min. At this breakthrough point, dye found the first path through the aerogel. A 

second path was observed at around 100 min and the mass concentration of dye in the filtrate 



 

was increasing until the aerogel was completely saturated with the dye. The inserts show 

photographs of NFAs that had been removed at representative stages of such continuous 

adsorption experiments. Fig 6B is representing a comparison between the performance and 

breakthrough point of 8 mg of stacked NFM sheets and the same amount of NFA (40 mm) in 

continuous experiments. It is obvious that the flat NFMs are reaching the breakthrough point 

later than the NFA. However, the very high pressure difference between them (5.5 bar instead 

of 0.14 bar for the NFM and the NFA, respectively) leaves the applicability of NFMs very 

limited and introduces the NFA as a suitable adsorbent for continuous processes. Comparing 

Fig 6A and 6B can also indicates that adsorption of MB is highly dependent on the bed depth, 

which represents the quantity of adsorbent in the column. Increasing the bed depth enhances 

the breakthrough time: E.g. The breakthrough point changes from 30 sec to 40 min for 40 

mm (8 mg) and 100 mm (30 mg) aerogel length respectively. These experiments demonstrate 

the potential of NFAs in continuous water purification processes due to their highly porous 

architecture and large internal surface with hydroxy functional groups. 

Equilibrium isotherm models. Optimization of dye adsorption process is possible when the 

adsorption isotherms are known. Equilibrium isotherms can describe adsorption mechanisms 

as well as surface properties to make a reliable prediction of how pollutants interact with the 

NFA. Among several different isotherm models, Langmuir and Freundlich are commonly 

used for describing experimental dye adsorption data [6, 38, 39]. 

Langmuir isotherm. The Langmuir isotherm is one of the most successfully applied 

isotherms in many different adsorption processes. The model is based on three assumptions 

of first a homogeneous surface, second a localized adsorption, and third that each active site 

can accommodate only one molecule. The linearized Langmuir equation is presented as 

Equation 7: 

         (7) 



 

Where 	is the dye equilibrium adsorption capacity (mg	g ,  is the maximum 

dye adsorption capacity (mg	g ,  is the equilibrium mass concentrations of the dye in 

the liquid phase (mg	l , and  is the Langmuir constant (l	mg .  

However, the essential factor in Langmuir isotherm is expressed by the dimensionless 

separation factor or equilibrium parameter ( ) which is defined as follows [40]: 

γ
          (8) 

Where  is the initial mass concentration of the dye (mg	l . This value differentiates 

between irreversible ( 0 , favorable (0 1 , linear ( 1 , or unfavorable 

( 1  adsorption processes [6]. 

Freundlich isotherm. The empirical Freundlich equation is more suitable for non-ideal 

processes with rough and heterogeneous surfaces where the energy term changes as a 

function of surface coverage (Equation 9). 

 lg	 lg	         (9) 

Where  is the Freundlich constant representing the dye adsorption capacity (l	g ) and 

n is an empirical parameter representing the heterogeneity of the adsorption sites [41]. 

Table 2 summarized the parameters and constants of the investigated isotherms. The relevant 

fitted curves are also displayed in Fig S6. According to calculated  values, the adsorption 

process obeys the Langmuir monolayer isotherm having the better fit than the Freundlich 

model. Based on electrostatic attractions, surface hydroxy groups of the NFA are occupied by 

cationic dye and no more adsorption is possible on those sites. Forming a monolayer of dye 

during batch experiments on the surface of adsorbent was proved by some other studies [42]. 

Moreover, the calculated maximum capacity of the NFA using Langmuir model was 370.37 

mg	g  which is close to the experimental results (383.43 mg	g , confirming that the 



 

Langmuir isotherm is suitable to explain the adsorption process. Furthermore, the calculated 

 = 0.0018, which is between 0 and 1, shows a favourable adsorption process between the 

NFA and MB (Table 2). 

Adsorption kinetics. Some essential information about sorption procedure and the solute 

uptake rate is provided by studying the adsorption kinetics. Since it is essential for evaluating 

the effectiveness of adsorbent, kinetics are used for designing a proper adsorption system. To 

investigate the mechanisms of adsorption, different kinetic models such as pseudo first and 

second order or intra particle diffusion have been reported: 

Pseudo first order or Lagergren’s equation. One of the most widely used equations is 

Lagergren’s model which is represented as: 

 ln ln                 (11) 

Where k1 is the rate constant of pseudo first order adsorption (min-1) and  (mg/g) is the dye 

adsorption capacity at time t (min).  

Pseudo second order equation. The linear form of the pseudo second order model is 

illustrated as: 

                   (12) 

Where  is the rate constant of pseudo second order adsorption (g (mg min)-1). 

Intra-particle diffusion model (Weber and Morris model). The possibility of intra-particle 

or intra-fiber diffusion during the adsorption process is investigated using the intra-particle 

diffusion model as: 

 /                   (13) 

Where 	(mg	g 	min /  is the diffusion rate constant and I (mg	g ) is a constant related 

to boundary layer thickness: the larger the value of I is, the greater the boundary layer effect 



 

will be. The “bl” and “if” indices in Table 3 represent the boundary layer and intra-fiber 

diffusions, respectively [43]. 

The kinetic parameters for MB adsorption by NFAs and NFMs according to the different 

kinetic models are given in Table 3. The pseudo second order kinetic is more suited for 

modelling the MB adsorption process by the NFA or the NFM as indicated by the 

coefficients of determination ( 0.99) and by the better agreement with the experimental 

equilibrium capacities of 263 and 262 mg g-1. The adsorption rate constant k2 for the 3D NFA 

is by a factor of 4 higher than for the flat NFM. 

However, the pseudo second order kinetic model cannot identify the diffusion mechanism. 

So, the intra-particle diffusion model was used as shown in Fig. 7 and listed in Table 3. The 

multi-linear plots indicate that intra-particle diffusion is involved in the adsorption process 

but it is not the only rate limiting step. The adsorption of MB on the NFA and NFM is a two-

step process, involving a very fast adsorption on the external surface of the nanofibers (kbl) 

and slow diffusion into the fibers (kif) afterwards with a transition period in between. 

Comparing the kinetics of adsorption by NFA and NFM, a fast surface adsorption is observed 

for the aerogel in the first step due to the higher surface availability of the 3D structure 

following with almost the same amount of intra-fiber diffusion for both the flat NFM and the 

3D NFA due to the same surface chemistry and equal fiber diameter. 

NFA regeneration. Regeneration of adsorbents is important from the economic and 

environmental perspective. Reusing the NFA reduces the need for fresh adsorbent, it provides 

the possibility of recovering dyes, and it solves the disposal problems of used adsorbents. 

Easy and cost effective method are preferred among different regeneration methods like 

solvent washing, chemical, electrochemical, and thermal processes [44]. 

The desorbed percentage of dye (D) was calculated using Equation 14. 



 

100	%                   (14) 

Where  and  are the mass of dye desorbed and adsorbed respectively. Fig. 8A shows 

the effect of different pH on desorption efficiency and indicates that removal of dye from 

used NFA is possible with changing the pH of the solution. In other words, desorption is 

possible using water with the acidic pH, while the adsorption process is preferably done 

under basic conditions (pH = 11) as mentioned previously. 

Fig.8B illustrates the dye adsorption efficiency of the NFA after regeneration cycles. It is 

clearly shown that even after 20 cycles around 80 % of dye are adsorbed by the NFA, which 

demonstrates the reusability of the NFA. Thus it is possible to use a cost effective pH 

conditioning process to reuse the NFA. However, after 20 regeneration cycles corresponding 

to 90 hours of experiment in the stirred batch reactor, the NFA lost its physical integrity due 

to mechanical stress. 

4. Conclusions 

The field of applications for nanofibers as adsorbent material is significantly extended when 

switching from the flat NFM to the 3D NFA, since the NFA has a stable and tuneable 

hierarchical pore architecture. Surface chemistry and specific surface area of nanofibers are 

maintained, but the open porous structure of the NFA is favourable for the mass transport of 

the dye solution to the surface of the nanofibers. This is of advantage for batch operations, 

where adsorption velocity was enhanced by a factor of 4 when switching to the 3D NFA, but 

it also allowed the incorporation of the NFA into a continuously operated depth filtration 

process, where the pressure drop was by a factor of 40 lower than for the comparable NFM. 

Regenerability and promising stability of the synthesized NFAs makes them very suitable for 

industrial applications. 
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Table 1. Thermodynamic parameters a 

 

a Conditions: V(MB solution) = 150 ml, γ0(MB) = 100 ppm, m(adsorbent) = 100 mg, t = 3 hours. 

  

 

ppm  

∆  

kJ	mol  

∆  

kJ mol K  

∆ kJ mol  

25 C 35 C 50 C 

100 13.980 0.1297 -24.6 -25.9 -27.9 



 

Table 2. Equilibrium isotherm models according to Langmuir, with calculated and experimental 

maximum amount of dye covering the monolayer, , . and , ., Langmuir constant, , 

separation factor, , Freundlich, with Freundlich constant, , and indicator n. 

Isotherm Parameter Quantity 

Langmuir 

, . mg gaerogel
1   383 

, . mg gaerogel
1   370 

(l mg  0.42 

  0.0018 

R2 0.99 

Freundlich 

l gaerogel
1  89.3 

  4.32 

R2 0.67 

 

  



 

Table 3. Kinetic parameters for MB adsorption according to pseudo first order, pseudo 

second order, and intra particle diffusion model for the 3D NFA and the flat NFM. 

 

   
Model Parameter 

Quantity 

NFA NFM 

Mass 
concentration 

γ0 (ppm) 200 200 

Experimental 
equilibrium 

capacity 
Qe, exp (mg g-1) 263 262 

Pseudo first 
order 

Qe, 1st (mg g-1) 155 223 

k1 × 10-4 (min-1) 212 167 

 0.96 0.99 

Pseudo second 
order 

Qe, 2nd (mg g-1) 270 294 

k2 × 10-4 (g mg-1 min-1) 4.37 1.14 

 0.99 0.99 

Intra-particle 
diffusion 

mg g min  50.6 24.8 

 (mg g min  4.84 4.49 

 mg g  195 194 

 0.97 0.91 



 

 

Fig. 1. Schematic illustration of nanofiber aerogel synthesis 

  



 

 

Fig. 2. Morphology and structure of the nanofiber aerogel (NFA) and membrane (NFM). (A) 

Ultralight NFA on a dandelion, (B) and (C) SEM images of NFA cross sections illustrating the pore 

architecture, (D) crosslinked 3D NFA and 2D NFM with equivalent mass, (E) and (F) SEM images of 

NFM contrasting the pore architecture of NFAs. 



 

 

Fig. 3. (A) Effect of concentration on adsorbent equilibrium capacity Qe, (B) effect of adsorbent 

amount, (C) pH, and (D) temperature on adsorption efficiency. Conditions: 150 ml dye solution, γ0 = 

200 ppm, m(NFA) = 200 mg, pH = 11, T = 25 oC with one condition changing in each experiment. 
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Fig. 4. Effect of ion strength (A) and ion radius and charge (B) on the adsorption efficiency of the 

nanofiber aerogel, γ0 = 200 ppm.  
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Fig. 5. UV spectra showing the effect of external mechanical forces on the adsorption of a γ0 = 100 

ppm dye solution: (a) with compression and release cycles (~ 60 %) on the nanofiber aerogel every 

20 seconds, (b) stirring the solution with 300 rpm and (c) without stirring and compression cycles. 
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Fig. 6. Continuous adsorption of MB with (A) 100 mm NFA filter column and (B)40 mm NFA filter 

column (blue) and equivalent mass of nanofiber membrane, NFM, red, with an increased pressure 

drop by a factor of 40 from 0.14 bar to 5.5 bar (γ0 = 25 ppm, flowrate = 4.5 ml min-1, pH = 11). The 

insets in (A) are photographs of representative NFAs at the respective part of the experiment. 

  



 

 

Fig. 7. Dye adsorption kinetics according to the intra-particle diffusion model for the nanofiber 

aerogel (NFA) and the nanofiber membrane (NFM) with boundary layer (bl) and intra-fiber (if) 

adsorption regimes; m(adsorbent) = 100 mg, stirring speed = 500 rpm, pH = 11. Values with empty 

marks were excluded from the fits. 
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Fig. 8. (A) effect of pH on desorption efficiency of 200  mg of NFA in 200 ppm concentrated dye 

solution and (B) adsorption / desorption cycles for a 200 mg piece of NFA using pH = 11 in the 

adsorption and pH = 3 in the desorption. 
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