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Abstract 

Within quantitative marketing, churn prediction on a single customer level has become a major issue. An 

extensive body of literature shows that, today, churn prediction is mainly based on structured CRM data. 

However, in the past years, more and more digitized customer text data has become available, originating 

from emails, surveys or scripts of phone calls. To date, this data source remains vastly untapped for churn 

prediction, and corresponding methods are rarely described in literature. 

Filling this gap, we present a method for estimating churn probabilities directly from text data, by adopt-

ing classical text mining methods and combining them with state-of-the-art statistical prediction model-

ling. We transform every customer text document into a vector in a high-dimensional word space, after 

applying text mining pre-processing steps such as removal of stop words, stemming and word selection. 

The churn probability is then estimated by statistical modelling, using random forest models. We applied 

these methods to customer text data of a major Swiss telecommunication provider, with data originating 

from transcripts of phone calls between customers and call-centre agents. 

In addition to the analysis of the text data, a similar churn prediction was performed for the same custom-

ers, based on structured CRM data. This second approach serves as a benchmark for the text data churn 

prediction, and is performed by using random forest on the structured CRM data which contains more 

than 300 variables. 

Comparing the churn prediction based on text data to classical churn prediction based on structured CRM 

data, we found that the churn prediction based on text data performs as well as the prediction using struc-

tured CRM data. Furthermore we found that by combining both structured and text data, the prediction 

accuracy can be increased up to 8%. 

These results show clearly that text data contains valuable information and should be considered for churn 

estimation. 
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1 Introduction 

In the context of analytical marketing, customer churn prediction becomes a major issue 

for firms. As it is known that retaining customers is far more profitable than acquiring 

new ones, there is considerable focus on retention campaigns (Henning-Thurau & 

Hansen, 2010). If the churn probabilities on a single customer level are known, market-

ing can focus its retention programs on the customers with high churn probability, thus 

increasing the efficiency of those programs.  

Personalized customer data can be divided into two major different data types. One is 

the structured data, which covers information about the customer typically stored in 

CRM data bases. The other type is text data, also referred to as unstructured data. Text 

data may originate from emails or transcripts of phone calls with call centres, or other 

customer contacts over digitised channels. 

For churn prediction, the analysis of structured data is the classical approach. Structured 

data has been the primary information hub for the past decades (Ngai, Xiu, & Chau, 

2009). As more and more customer text data is becoming available, one might argue 

that using this data for churn prediction could improve the churn models. Methods for 

analysing text data are available from a rich body of literature in the field of computer 

science. Covering machine-based analysis of texts and different approaches of extract-

ing information, have been developed (Feldman & Sanger, 2006). 

As in the past mainly structured data was used for churn prediction, the goal of this pa-

per is to investigate how customer text data can be used for churn prediction, and 

whether using text data in addition to structured data can influence the churn prediction 

accuracy. To analyse this problem, we use a test data set with anonymized customer 

data from a major Swiss telecommunication provider. The data set contains both struc-

tured and unstructured (text) data for more than 20’000 randomly selected customers. 

First we analysed the structured and unstructured customer data separately and com-

pared the results. Second we combined the two data sources to investigate whether the 

combination leads to an increase in the churn prediction accuracy. 

The structured data is taken from the provider’s operative systems, such as CRM or 

ticketing systems. This data has been used previously for churn prediction by the firm. 

The text data consists of anonymized emails and transcripts of phone calls between cus-

tomers and call centre agents for matters of questions, complaints and administrative 

reasons. This data has not yet been used for churn prediction. 

After the introduction, this paper provides an overview over the related literature, fol-

lowed by a description of the theoretical methodology used for the churn prediction. 

Then a description of the available customer data is given, complemented by the appli-

cation and the results of the methodology on the data. A final conclusion sums up the 

paper. 

 



 

2 Related literature 

In recent years, a large number of machine learning and knowledge discovery tech-

niques have been proposed and applied to the problem of customer retention in the do-

main of CRM (Berson, Smith, & Thearling, 2000). Originally introduced in the finance 

sector, customer retention has found its path into other fields, such as telecommunica-

tion. Within customer retention, the task of identifying the customers most likely to 

churn is of crucial importance (Keaveney & Parthasarathy, 2001) 

With CRM becoming a critical success factor in today's business environment, academ-

ic research produced a vast number of articles covering all areas of CRM. Especially 

applying data mining methods in order to gain customer knowledge is well-covered in 

literature. (Ngai, Xiu, & Chau, 2009) present an extensive literature study for data min-

ing techniques in CRM. They revise more than 80 papers, published between 2000 and 

2007, many of them covering the domain of customer churn prediction.  

Most papers concerning customer churn, as collected by (Ngai, Xiu, & Chau, 2009) 

focus on structured data and various data mining techniques such as decision trees (Xie, 

Li, Ngai, & Ying, 2009), logistic regression, support vector machine (Yu, Guo, Guo, & 

Huang, 2011), artificial neural networks, etc. Most of those methods are based on su-

pervised learning and use a single prediction model. In the past years, those single mod-

el approaches have been replaced by hybrid classification models with the goal of in-

creasing the prediction accuracy ((Huang & Kechadi, 2013); (Khashei, Hamadani, & 

Bijari, 2012); (Tsai & Lu, 2009); (Lee & Lee, 2006); (Coussement, Benoit, & Van den 

Poel, 2010); (De Bock & Van den Poel, 2011); (De Bock & Van den Poel, 2012)). 

Parallel to churn prediction using structured data, approaches of integrating the Voice of 

Customers (VOI) to CRM have been developed. The data for VOI analytics is gained 

through direct or indirect questioning, with data being either structured data from sur-

veys or unstructured (text) data from emails, transcripts or free text answers in surveys 

((Aguwa & Monplaisir, 2012); (Chang, Lin, & Wang, 2009)). 

Labour-intensive manual text mining approaches first surfaced in the mid-1980's, but 

during the past two decades this field has advanced drastically, accompanied by techno-

logical advances, especially in computer science. Through these advances, text mining 

has gained vast attention throughout science and business. Several methods have been 

developed to classify texts and analyse content for unsupervised mapping of texts (Kao 

& Poteet, 2006). 

Despite the extension of text mining, it has rarely been applied in CRM. Text mining 

methods for customer churn prediction are mostly non-existent in literature. One exam-

ple of text mining applied to churn prediction was published by (Coussement & Van 

den Poel, 2008). They combine text mining with the analysis of structured data. Their 

research showed that the churn prediction accuracy can be improved by combining the 

two data sources. With a follow up paper, (Coussement & Van den Poel, 2009) integrate 

the emotions from client/company interaction emails, in order to improve customer at-



 

trition. In this paper the focus is on improving the churn prediction accuracy by combin-

ing structured and unstructured data. Our method follows the same approach but uses a 

different statistical prediction method and a different feature selection. 

3 Methodology 

In this section, the methods used for getting from the original customer data to the final 

churn prediction are presented. The methods are described on a theoretical basis, and 

their application on the real data will then be described in section 0. 

Figure 1 shows the complete process from the data sources to the final churn prediction. 

The first step is to collect the data from the data bases. After having established the data 

basis, several pre-processing steps are necessary in order to structure the original data, so 

that it can be used in a prediction model. The last step is to apply a suitable statistical 

model on the pre-processed data to estimate the churn probabilities for each customer. 

The methods underlying the steps are described in detail in the following paragraphs. 

 

 

Figure 1: Process model of churn predicting process, which includes structured and unstructured data 

 

3.1 Structured and unstructured Data 

Structured data is defined as data that resides in fixed fields within a record or file. Re-

lational databases and spreadsheets are examples of structured data (Enterprise, 2014). 

Structured customer data is usually stored CRM systems and typically includes personal 

information, subscribed services and/or products and sociodemographic information. In 

contrast, unstructured data refers to information that does not reside in traditional row-

column database structures. Unstructured data files include text and multimedia content. 



 

Examples are emails, text documents and further forms of texts (Enterprise, 2014). In 

unstructured data the information content is not stored within a specific field, but is hid-

den in the content of the text itself. Gaining information from texts requires extensive 

pre-processing steps in order to reveal its information content. 

For training statistical prediction models with supervised learning, the training data has 

to be labelled. For the case of churn prediction, each customer is assigned to either the 

class churn or the class no-churn, based on the observed behaviour in the past. 

3.2 Pre-Processing 

Pre-processing of the structured data includes checking of consistency and relevance of 

the variables. The relevance of each data field is to be checked due to the usually large 

quantity of data available in the CRM system, and a variable selection has to be made. 

Furthermore there might be the need to combine and convert the raw data into new vari-

ables with more valuable information content. 

The pre-processing of unstructured data is necessary for structuring the text data in a 

way that allows the included information content to be analysed by a certain method. 

According to (Hippner & Rentzmann, 2006), text pre-processing can be split into three 

main categories. The approach referred to as Morphologic Approach is likely to be the 

most widely spread approach in text mining because of its low complexity, high quality 

of the results and computational cheapness. The two other approaches called Syntactic 

Analysis and Semantic Analysis are of a much higher complexity. The morphologic ap-

proach focuses on simply counting the words occurring in a text, whereas the syntactic 

approach analyses the relationship between words within sentences, with the focus on 

extracting information on certain syntactic units. The semantic analysis tries to under-

stand the text, comparable to what humans do while reading. 

For our investigation, the morphologic approach was chosen because of its simplicity, 

computational effectiveness and the kind of texts we have. The texts for this project are 

mainly transcripts of phone calls and emails. While the writing quality of the emails is 

decent, the transcripts usually consist of many abbreviations, key words and incomplete 

sentences. Therefore a syntactic or semantic approach would be difficult. 

Before applying any pre-processing steps, the texts of the same customer are aggregat-

ed. As some customers can have several texts these are merged into one document. Each 

customer can thus have only one document, but in one document there can be multiple 

texts. Creating a document is done by simply attaching one text to another. We choose 

to do so, as the churn prediction is on a customer level rather than on a text level, and 

therefore each customer should only have one document. 

Applying the morphologic approach, all semantic information is neglected. Each docu-

ment is converted into a high-dimensional vector of weighted frequencies of the occur-

ring words. Thus each document is of the length n, with n being the number of different 

words occurring in a specific document. The so called Bag of Words (BOW) is a repre-

sentation of all distinct words occurring in all documents and is of size N. 



 

Having disjoined the documents, they are pooled in a Term Document Matrix (TDM). 

In this matrix, each document is represented as a line, and each column corresponds to 

one word of the bag of words. Each cell of the matrix represents the count of the one 

specific word in one document. So the TDM is of size     with D being the number of 

documents and N the size of the BOW. 

 

 

Figure 2: Example of conversion from text to Term Document Matrix, where Doc stands for document 

 

As a transformation of the raw documents to a TDM typically leads to a very large and 

only hardly manageable size, several raw text cleaning steps are crucial. The aim is to 

reduce the number of words as much as possible in order to keep the size of the BOW 

small. Thereafter, further steps of selecting only the relevant words are performed in 

order to further reduce the size of the TDM. 

In the first step of cleaning the documents, special characters and punctuation are re-

moved, followed by the replacement of the acronyms with their radicals, by using a ref-

erence list. Next, all the words are replaced with their stem, e.g. complain is the stem for 

complained, complaint, complaining, etc., by using Porters algorithm (Porter, 2006). 

Stemming drastically reduces the number of words and increases the information re-

trieval performance (Kraaij & Pohlmann, 1996). 

After the stemming process, all stop words are removed. Stop words contain either very 

little or no information content, e.g. are, the, at, from, etc. The removal is done by using 

a pre-defined list of standard stop words extended with application-specific terms. 

The remaining words build the basis for the creation of the TDM. In the process of 

building the TDM, all the words with very low occurrences, e.g. less than three, are re-

moved as these usually contain clerical errors or are artificial words, not recognized by 

the stemmer or the stop word list. Having cleaned the texts and represented them in the 

TDM, the next step is to further reduce the number of words by an appropriate feature 

selection. 

3.3 Feature selection 

(Do, Hui, & Fong, 2006) state that feature selection aims on removing irrelevant and 

noisy information from the data, by focusing on relevant and informative features only. 

Applied to text mining, the goal is to reduce the number of words in the TDM for fur-

ther statistical modelling, as the words of the TDM can be understood as features. For 



 

churn prediction, only those words having significant information content with respect 

to the churn probability should be selected. 

We use labelled data (churn or no-churn) as training data. This can be taken advantage 

of by using a supervised method for the feature selection process. One approach to as-

sess the relevance of the features is to measure their distinguishing ability between the 

two classes churn and no-churn. We chose the Discriminating Power Measure (DPM) 

(Chen, Lee, & Chang, 2009), a supervised method which focuses on discriminating 

words in the context of classification problems. 

The DPM score is established by using the following notations. Let w be any word, its 

presence or absence in class i is defined as follows: 

   number of documents with word w and belonging to class i 

   number of documents with word w and not belonging to class i 

   number of documents without word w and belonging to class i 

   number of documents without word w and not belonging to class i 

The total number of documents is              , the total number of docu-

ments in class i is          and the total number of classes is denoted by m. With 

these notations, the DPM score for word w is defined as follows (Chen, Lee, & Chang, 

2009): 

   ( )  ∑|
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The fraction     ⁄  can be interpreted as the probability of word w occurring in a docu-

ment of class i, where   (    )⁄  is the probability of the same word occurring in a 

document not belonging to class i. The DPM is the absolute difference of these two 

probabilities, summed up over all classes. The higher the DPM score for a given word w, 

the more discriminate power is contained in it.  

Based on the DPM, the words can be ranked according to their discriminative power. For 

the text analysis, we only use the first k words of this list, thus reducing the BOW to one 

with a higher selectivity. 

The issue remains to define the number k of features to be selected. In order to find the 

optimal number of words for the TDM, a graphical approach is chosen. The words are 

ordered according to their DPM score and then plotted against their rank. From left to 

right the graph is typically rapidly decreasing, ending in a long flat tail which is cut off.  

3.4 Modelling 

The goal of the statistical model is to assign each customer a churn probability, based on 

the available data. Several methods can solve this problem, such as Naive Bayes, logistic 

regression, support vector machines etc. We decided to use random forest (Breiman, 

2001) because of its easy application and ability to handle big data sets. Despite not be-



 

ing widespread in text mining, random forest has become an often-applied method in 

data mining. It is also suitable for handling a TDM because it can deal with big numbers 

of variables. 

The random forest model is trained with labelled test data. For the training, we used a 

five-fold cross-validation: The training data is split into five parts. The model is then 

fitted on four parts, and the fifth part is used for evaluation of the prediction accuracy. 

This is repeated five times, so that each data point is predicted once (Hastie, Tibshirani, 

& Friedmann, 2001).  

3.5 Evaluation criteria 

Validating the performance of our model is a critical step. We decided to use the lift 

chart, as is an excellent way to show the performance of models. The lift is a measure of 

the effectiveness of the predictive model. It is calculated as the ratio between the results 

obtained with and without the predictive model. The lift chart shows the likelihood of 

responses from customers based on the predictive model and randomly chosen list of 

customers. The model is performing well if the response within the target segment is 

much better than the average for the population as a whole ((Jaffery & Liu, 2009); 

(Wikipedia , 2014)). 

As an example, let’s assume that the data has an average churn rate of 25%, and the 

model has identified a customer segment with an average churn rate of 75%. Then the 

lift of that segment is 3. 

In the lift chart, the customers are ordered decreasingly according to their predicted 

churn probability. From that, the lift is estimated continuously over all the customers. 

The lift is represented by the y-axes and the deciles of the ordered customers are on the 

x-axis. 

4 Empirical case study 

4.1 Empirical data 

In our study, we used anonymized data, obtained from a major Swiss telecommunica-

tion provider. Its product portfolio includes internet, digital TV and digital phone. The 

customers can choose between several product combinations and sub-products with 

different pricing models. Customers pay a monthly fee, depending on the subscribed 

products. The customers are in a contractual setting with the firm and can only end their 

contract with a two month cancellation period after the first 12 months. When an ordi-

nary customer cancels the contract the services by the firm and the payments by the 

customer continue until the defined cancelation date. 

The company has a structured CRM data base where contract related data is stored to-

gether with customer data, sociodemographic data, and usage data. Furthermore, all 

customer care related emails and transcripts of phone calls to the call centre are stored 



 

in a separate database. A customer becomes a churner when the provider receives a con-

tract cancellation letter or phone call and it is clear that the customer cannot be held by 

any taken retention action.  

Anonymized customer data of a six month observation period was selected at six corre-

sponding snapshot dates. At each snapshot date, the customer data up to six months pri-

or to the snapshot date was extracted, and a 30 days survey period after the snapshot 

date was used to define whether a customer is a churner, thus providing the labelling. 

Figure 2 illustrates this data selection method. 

 

 

Fig. 2: Data selection process 

 

As the number of churning customers at each snapshot date is small compared to the 

non-churning customers, an oversampling of the churning customers was applied 

(Nisbet, Elder, & Miner, 2009). More specifically, all churning customers for each sur-

vey period were selected and then complemented with a random sample of non-

churning customers, selected at the same snapshot date. This leads to a customer sample 

on each snapshot date with approximately three times as many non-churning customers. 

So, the oversampled average churn rate is about 25%.  

In order to show the beneficial effect of including unstructured data into the churn pre-

diction model, only customers with existing text data were considered for this case 

study. Table 1 summarizes the data characteristics. 

 

# of customers 20191 

# of churners 5356 (27%) 

# of structured variables 305 

# of words in TDM 12105 

Table 1: Data details 

 

4.2 Data processing 

The structured data mainly contains anonymized information about the customer, socio-

demographic information, part of usage information, etc. As the provider has used the 

structured data for churn prediction before, we used the pre-processing and feature se-

lection that has been already done by the provider for building the prediction models. 



 

The unstructured customer data, which consists of anonymized emails and transcripts of 

phone calls, was pre-processed as described in Section 0. The first step is the raw text 

cleaning where all punctuation and special characters are removed, followed by the re-

placement of the acronyms with their radicals. Next the words are reduced to their stem 

and then the removal of the stop words is done. Following these pre-processing steps, 

the resulting TDM had 20191 rows (documents) and 12105 columns (words). 

Based on the TDM, the DPM score for each word is estimated as a basis for the feature 

selection. As described in section 0, the determination of the number of features was 

done by a graphical approach. The DPM score is calculated for each word of the TDM. 

Then the words are ordered in decreasing order, according to their DPM value, and plot-

ted against their index, where the index is equal to the rank in the order. Figure 3 shows 

the results for our data set; the x-axis is the rank of the words and the y-axis represents 

the calculated DPM score. For better readability, the graph is restricted to the 1000 fea-

tures with the highest DPM value. 

 

 

Figure 3: DPM score of the 1000 words with highest DPM value, plotted in decreasing order. The 

vertical dashed line marks the 400th word and the horizontal dashed lines marks the DPM 

value at the 400th word. 

 

Figure 3 shows that the most discriminating features have a DPM score of about 0.27 

wherefrom the score decreases rapidly. For the features from 1000 to 12000 (not shown 

in the figure), the drop of the DPM score is less than 0.01. In contrast, the drop for the 

first 1000 features exceeds 0.25. By using only the first 400 features, 95% of the total 

DPM range is covered. Based on these considerations, the number of features used for 

the TDM was set to 400. To further verify this selection, the prediction model was run 

with several numbers of features and the lift was compared. It turned out that more than 

400 features did not increase the lift, while going below 400 features affected the per-

formance negatively. 



 

4.3 Churn prediction 

For the churn prediction, two different cases are built. The first case is a comparison of 

the churn prediction on structured and unstructured data, respectively. The churn predic-

tion on structured data serves as the benchmark as it represents the way churn prediction 

has been applied to date. The churn prediction on unstructured data illustrates the in-

formation content of the text data with respect to predicting churn. The second case is 

the combination of both structured and unstructured data for churn prediction. All pre-

dictions are done by using random forest as a predicting model, using five-fold cross-

validation for the performance evaluation. 

4.3.1 Churn prediction with structured and unstructured data 

Figure 5 shows the lift, using structured and unstructured data separately on the predic-

tion model. The structured data contains 305 variables and the TDM has 400 features, 

selected by the DPM criteria. 

 

 

Figure 5:  Lift chart of structured and unstructured data, respectively, using random forest. The x-axis 

shows the cumulative ratio of the ordered model scores and the y-axis shows the lift. The 

bold line represents the estimated lift of the structured data; the dashed line shows the esti-

mated lift of the unstructured data. 

 

The lift of the structured data starts on a very high level, before decreasing. At the first 

decile, the average lift is around 2.7, which corresponds to around 70% of correctly 

classified customers. This means that within the 10% of the customers with the highest 

predicted churn probability, about 70% actually churn. This lift serves as the bench-

mark. 



 

The lift of the unstructured data starts high as well, despite not quite reaching the 

benchmark. At the 10% mark, the lifts become identical, before the unstructured lift 

loses after the 20% mark compared to the benchmark. 

Despite these differences, it can be stated that the amount of information about the 

churning behaviour is similar in both data sets. Additionally and more generally, it can 

be stated that the unstructured data clearly holds significant information on the churning 

behaviour.  

4.3.2 Churn prediction, combination of data 

Having analysed the two data sources separately, the remaining question is whether the 

combination of both data sources is able to outperform the benchmark. The combination 

of the two data sources is straightforward, by adding the two data sets together, creating 

a new data set, now containing 705 variables (305 structured, 400 words), and applying 

the same random forest approach to this extended data. 

Figure 6 shows the lift of the model, using both data sources, and the lift of the bench-

mark. 

 

 

Figure 6:  Lift chart of structured data, using random forest. The x-axis shows the cumulative ratio of 

the ordered model scores and the y-axis shows the lift. The bold line represents the bench-

mark; the dashed line shows the estimated lift of the combined (structured and unstructured) 

data. The red lines show the increase of the lift at the first decile 

 

Figure 6 shows clearly that the combined approach exceeds the benchmark significant-

ly. At the 10% level, the combined approach shows an improvement of about 7.5% for 

the classification precision with respect to the benchmark. This improvement can be 

attributed to the additional information of the added text data. 



 

5 Conclusions 

The main goal of this paper was to investigate whether the combination of structured 

and unstructured customer data can increase the customer churn prediction precision, 

compared to using structured data only. We were able to show that the combination of 

the two data sources does increase the prediction precision of up to 8%. Furthermore we 

found that the unstructured data itself holds significant information on the churn proba-

bility. The information content of the text data is nearly as high as the information con-

tent of the structured data. 

Based on these results, it can be stated that customer text data does hold information 

which complements the structured data. Thus, retention marketing campaigns can be 

directed more exactly by using text data in the churn prediction models, increasing both 

the efficiency and the effectiveness of the campaigns. 
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