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Abstract  
Asset Management is about realizing value from physical assets. To do this, money has to be invested in 
physical assets (purchase, maintenance, consumables, etc.) thus producing a specific technical performance for 
each asset over its lifecycle. The technical performance then allows to realize value for the owner. This can be 
either a monetary value (e.g. for a production firm that can sell products) or a non-monetary value (e.g. for a 
utility that can provide a reliable electricity supply).  
 
We examine the nature of physical assets as investment objects and derive some conclusions on optimal 
investment strategies. We develop a general model for physical assets as investment objects, simultaneously 
describing both the life cycle cost structure and the value realization under different operational policies. We 
show that physical assets are investments that have properties which distinguish them from classical financial 
investments such as bonds, stocks, or the like. In particular, the non-proportional relation of investment and 
value creation has important implications for the derivation of optimal investment strategies.  
 
We apply the framework to the problem of budget allocation in a portfolio of physical assets. The model allows 
the calculation of the optimal allocation such that the total value creation is maximized. It turns out that the 
solution is similar to the well-known Equimarginal Principle. We also re-examine a classical optimization 
problem from the maintenance literature and show that the classical solution may lead to wrong results because 
assets are regarded in isolation instead as part of a larger system of investment options.  
 
Since our approach combines both the cost and the value generation aspect of physical assets, and includes 
operational lifecycle policy decisions, it could form the conceptual basis for a new approach to asset 
management. 
 
Keywords: Physical asset management, investment strategy, asset portfolio, value creation. 
 
1. Introduction 
 
In recent years, we observe a shift from maintenance management to what is now called 
(Physical) Asset Management. More and more researchers and practitioners are getting 
interested in the relatively new field of asset management. Historically, physical asset 
management has its roots in maintenance management. However, in many cases the term 
physical asset management is used to emphasize a wider perspective on the management of 
technical assets during their lifecycle, starting with the decision to purchase the asset, and 
including all activities along the lifecycle (see for example Amadi-Echendu 2010, Lloyd 2010, 
Campball and Jardine 2011, and references therein).  
 
A major issue concerning an optimal life-cycle management of physical assets is the question 
how to invest in physical assets such that the benefit for the asset owner is maximal. Most of 
the classical approaches solve this problem by minimizing the life cycle costs for the 
management of each individual asset (Lloyd 2010, Hastings 2010). Moreover, the decisions 
are usually optimized irrespective of other investment options (i.e investments in other than 
physical assets) that could possibly yield profit for the owner. This approach of naïve single 
asset cost minimization may lead to erroneous conclusions and sub-optimal decisions 
regarding the management of physical assets 
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In this paper, we focus on physical assets under a general investment perspective: Assets are 
seen as objects that require financial investments, and, in return, deliver some value for the 
firm. We examine the nature of physical assets as investment objects and derive some 
conclusions on optimal investment strategies. In contrast to the classical literature, we 
explicitly consider the investment in physical assets in a context of multiple investment 
options. A firm always has different options of investing its money – investing in physical 
assets is only one of these options. Even if the total investment in assets is given, the 
allocation among different physical assets has still to be determined. So, the question has to be 
answered how much has to be invested in physical assets as opposed to the other investment 
options, and how the total investment in physical assets should be allocated to the different 
assets of a portfolio.  
 
The decision on an optimal investment level is crucial. As we will show, this decision 
determines:  

(a) a specific life cycle operation policy 
(b) a specific level of the average cost rate 
(c) a specific level of the average value creation rate 

In other words, the decision on the investment level provides the basis for the optimization of 
the entire life cycle asset management. 
 
The paper is structured as follows: In Section 2, we develop a general model of physical 
assets as objects that require financial investment and deliver some value. In Section 3, we re-
examine the investment process itself. In Section 4, some conclusions on optimal investment 
strategies are derived. In Section 5 and 6, we show two applications of the theory. We show 
the difference of our proposed approach and the classical maintenance theory, and we show 
that the derived principles of investment can be used for managing asset portfolios.  
 
2. General model of physical assets as investment objects 
 
In this section, we derive a general model of physical assets as investment objects. We start 
with the basic question: What is a physical asset? Technically speaking, an asset is a system 
with some well-defined technical properties, for example a production machine, or an 
electrical transformer. However, in the framework of physical asset management, an asset is 
basically an object that creates some costs, and at the same time generates value for the owner 
by its usage in a specific business environment. More precisely, it is the technical 
performance of the asset, embedded in a business process, that generates the value for the 
owner. Any model of a physical asset should include both the cost generation and the value 
creation of the asset.  
 
The value and cost generation do not only depend on the nature of the asset itself, but also on 
the policy with which the asset owner chooses to manage the assets (e.g how much to invest 
in maintenance, how long to use the asset). 
 
Below we first define the meaning of cost and value in the present context, and then relate 
these two aspects of asset management to the third important aspect: the operation policy.  
 
2.1 Value and Costs 
 
There is some risk of confusion with the term “value”. Often, when speaking of the value of a 
technical asset, this term denotes the book accounting value, which is derived from the 
purchase price minus the write-offs. However, this book value is quite different from the 
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business value. In the context of the current paper, the term value is used for denoting the 
business value, i.e. the reason why the asset has been purchased and installed in the first place. 
This value may be the ability of generate revenues in the case of a production machine, or the 
ability of transport electrical energy in the case on an electrical power line.  
 
Also, the notion of value as used in this paper has nothing to do with “At which price can we 
sell the piece of equipment on the market?”, which is another frequently used definition of 
value. In many cases, physical assets cannot be sold after the installation, or only at prices that 
are much lower than the purchase price. This is especially true for infrastructures: A buried 
water pipe cannot be dug out and sold, and an electrical power line has nearly no material 
value. So while there might be no market value of the asset itself, it still can have a large 
value for the business.  
 
The actual meaning and definition of “value” depends on the context and the business strategy 
of the asset owner. In a dynamic manufacturing environment, for instance, the value of a 
machine may be an increased production rate. It also might be added flexibility. For a public 
infrastructure, the value of an asset might be defined as the ability to deliver a specific supply 
quality. In all cases, however, the value is created during the usage of the asset during its life 
cycle, so essentially we have a value stream or value creation rate.  
 
The value itself may be monetary (e.g. an increased production rate has a monetary value for 
the firm) or non-monetary. Our model will be formulated for the general case and does not 
require the value to be monetary. We assume that a definition of value is given, and the 
relation between the technical performance of an asset and its value generation is known.  In 
practice, this is a mathematical function that may include many different aspects, including 
technical ones. In Heitz and Sigrist (2013), some examples are given.  
 
Note that the business value depends not only on the asset itself, but also on the technical and 
business environment of the asset. A production machine, for example, can have a high value 
if the items that are produced with this machine can be sold with a high profit. The same 
machine has no value at all when the market collapses and the produced items cannot be sold 
any more. In the following, we assume that the technical and business environment are given.  
 
The cost side is typically easier to assess. The costs include all costs elements during the 
lifecycle, beginning with  the acquisition and installation costs, continuing with maintenance 
and other life-cycle costs such as energy costs, failure costs, and so on, and ending with the 
costs for disposing the asset, or reselling it.  
 
Note that both cost and value generation rates may change over time. For example, we 
typically have a cost peak at the beginning of the lifetime when the initial investment costs 
have to be made. Failure costs appear in late stages of the life cycle. As for the value 
generation, typically the value generation decreases over time due to aging. Also, changes in 
the general business environment may have drastic effects on the value generation, for 
example in the case where the technical performance of the asset has no longer a market value.  
 
In the framework of this paper, we take a lifecycle perspective, and consequently average 
over the entire lifetime when considering costs and value generation. We denote the average 
costs rate with c, and average value creation rate with v. Note that the unit of c is “money per 
time unit” (e.g. $/year), while the unit of v is “created value per time unit” which may be 
expressed in non-monetary units.  
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2.2 Cost/Value generation and Operations Policy 
 
It is important to note that both costs and value creation are not a property of the asset itself 
but depend on the operations policy. Different operation policies lead to quite different cost 
and value rates. An important part of the operation policy is the usage time. A longer usage 
time reduces the annual capital costs, while the average failure rate increases, thus reducing 
the average value creation rate simultaneously. Thus, both costs and value generation are 
affected by changes of usage time. This also applies to different ways of performing 
maintenance activities during the life cycle of the asset, or any other operational decisions.  
 
This is a rather important insight because since the owner has many options of how to operate 
an asset, we cannot assign cost and value to the asset itself, but rather to the asset under a 
specific operation policy. This means that an asset should be seen as an object possessing 
different cost/value pairs, where the owner has to choose one of them. This leads to our model 
that describes an asset as a set of cost-value pairs. Figure 1 provides a schematic description 
of a single asset within this model, where each operation policy is shown as a point in a two-
dimensional cost-value space. Note that there may be a continuum of operation policies (e.g. 
usage times can be choosen continuusly), but for the sake of clarity we use discrete policies 
here.  Each policy i generates a specific average value creation rate vi and leads to an average 
cost rate ci.  
 
The fact that both costs and value creation of physical assets depend on the way of how the 
asset is operated is in contrast to many classical financial assets. For example, the return of a 
bond or a stock does not depend on activities of the owner during the time he possesses the 
bond.  
 

 
Figure 1. Model of a physical asset as set of different cost/value combinations. Each possible 
operation policy is denoted by a point in the two-dimensional cost-value space. For example, 

the policy A leads to average annual costs cA and average annual value creation vA.   
 
As an example, we consider an asset that costs 1 M$ for purchase and installation, and has a 
maximal lifetime of 22 years, if no maintenance is made. Alternatively, a maintenance 
program can be carried out which reduces the decay of the value generation rate and thus 
leads to a longer lifetime. This maintenance policy generates cost of 60 k$/yr. The value 
generation rates of both policies are displayed in Fig. 2. In this example, the value generation 
rate is normalized, assigning a value rate of 1 for a new asset.  
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Figure 2.Value creation rate v(t) over the lifetime. Solid line: without maintenance. Dashed 

line: with maintenance.   
 
In addition to the maintenance policy, the usage time has to be specified as well. In fact, the 
choice of the usage time of an asset is one important parameter of the operation policy. In Fig. 
3, the resulting plot of v (average value creation rate) against c (average cost rate) is shown 
for different usage times. Each point corresponds to a specific usage time, while the marker 
distinguishes between the two maintenance policies.  

         
Figure 3. Display of different operation policies in the c-v space. Circles correspond to the 
case without maintenance, while x correspond to the case with maintenance. Each marker 

corresponds to a specific combination of usage time and maintenance policy 
 
The cost-value plot shows the performance of the asset in terms of cost and value creation: 
high cost rates c correspond to a high value creation rate, because a high c means a short 
lifecycle, and vice versa. It can furthermore be seen that the two operation policies behave 
quite differently. There is a region where more value is being created with the maintenance 
program (for average annual costs higher than roughly 0.1 M$/year), where there is another 
region where the maintenance program essentially leads to an inferior investment 
performance. For example, if one would like to spend only 0.09 M$/yr on the asset, then the 
maintenance program does not make any sense. This budget constraint would lead to a usage 
time of roughly 33 yrs, and an average value creation of 0.8, while in the case of skipping the 
maintenance program altogether, the same budget would lead to an average annual value 
creation of 0.91, with a usage time of about 11 years.  
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2.3 Modelling a physical asset 
 
As explained in the last subsection, we model a physical asset as a set of different operation 
policies, where each policy corresponds to an average cost rate c and an average value 
creation rate v. Such a description is helpful for describing the properties of an asset in the 
context of asset management. It shows both costs and value creation of the asset, but does not 
require an a-priori decision about the operation policy (which, conceptually, is not a property 
of the asset itself, but rather a degree of freedom for the owner). All feasible operation 
policies may be and should be included in the cost-value plot in order to give a full overview 
on the options of using the asset in the given context. 
 
For example, when we are faced with the task of comparing two different assets for the sake 
of deciding which one to purchase, the cost-value-plot is a convenient and appropriate way of 
showing the properties of the assets in an exhaustive way.  
 
We argue that, indeed, this way of representing or modelling an asset is the most compact 
form possible for asset management, because it is clear that we need both costs and value 
creation of an asset for assessing it in the context of physical asset management. Since it is 
also obvious that both costs and value creation are a function of the operation policy, each 
asset must have different options and thus different cost-value combinations. Displaying them 
all together leads to a complete picture of what the nature of the asset is.  
 
3. Investing in physical assets 
 
In this section, we want to investigate in a more thorough way what it means to invest in a 
physical asset. As we have seen in the last section, an asset in a specific business environment 
is an object that can be described as a set of different operation policy options, each one 
characterized by an average cost rate c, and an average value creation rate v.  
 
Asset management as an investment decision problem consists of choosing one of these 
options. Obviously, there are options which do not make sense. For example, policy B in 
Figure 1 is more expensive than policy A, but results in a lower value generation. So, when 
faced with the decision problem of which policy to choose, we can sort out all policies that do 
not lie on the Pareto frontier (for an introduction in multi-criteria optimization and Pareto 
optimality, see e.g. Censor (1977) or Da Cunha and Polak (1967)). In Figure 4(a), the Pareto 
frontier of the schematic asset of Figure 1 is shown. Each policy on the Pareto frontier is 
Pareto-optimal: There is no other policy in the whole set of policies that generates more value 
with lower costs. In Figure 4(b), the Pareto frontier of the example asset of Figure 3 is shown.  
 
Only policies on the Pareto frontier qualify as a possible choice for the investment. Choosing 
a policy on the Pareto frontier makes sure that, for the budget c of this policy, there is no other 
policy that generates more value. In this sense, the policies of the Pareto front are all optimal.  
 
Choosing an investment option means deciding on a specific policy, that leads to a specific 
investment c. We may decompose this investment into a sequence of partial investments: We 
start with the leftmost policy (i.e. the policy with minimum annual costs), and increase the 
investment stepwise by adding annual budget. 
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Figure 4. (a) The Pareto frontier of the asset of Figure 1: The dominating policies are 

denoted by surrounding squares. (b) Pareto frontier of the asset of Figure 3, denoted by black 
filled circles.  

 
In Figure 5 (a), we start with policy A, with corresponds to an initial investment. Note that 
policy A may be the origin (c,v)=(0,0) if it is an option not to have the asset at all. The second 
partial investment might, in principle, lead from A to B, to C, or to any other policy. In order 
to get the maximum return for this second investment, one should choose the partial 
investment that generates the maximum added value per invested dollar. This requirement 
leads to the selection of the partial investment leading to policy B. The third partial 
investment leads to policy D, after which it is policy F that is chosen (see Figure 5 (b)). 
 
So, if there is no budget restriction, the requirement to invest the money such that the 
maximal return is generated for each partial investment leads to a subset of policies on the 
Pareto frontier, which we call the optimal-investment frontier. The stepwise investment leads 
to a sequence of partial investments investments ∆ci (i=1,2,…) which each generate an added 
value contribution ∆vi.  
 
 

                     
Figure 5. An investment in a physical asset may decomposed in a sequence of partial 

investments.  (a) After the initial investment for policy A, the second investment step may lead 
to any other policy. However, policy B yields the maximal added value per invested dollar. (b) 

Sequence of optimum partial investments with decreasing returns. 
 
We call the ratio of added value and partial investment the Marginal Cost Effectiveness MCE 
(cmp. e.g., Uddin et al, 2013).  
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Note that, in general, MCE is not a dimensionless quantity such as the return-on-investment 
(ROI). It has a physical dimension which is value unit/cost unit. For example, in the case of 
supply infrastructure, the value may be measured in terms of supply quality. Here, MCE has 
the unit SupplyQuality/$. More specifically, the MCE of a partial investment denotes the 
added supply quality per additionally invested dollar.  
 
Note that the sequence of partial investments has strictly decreasing MCEs. So, when 
interpreting a physical asset as an investment object, we may conclude: 
 

A physical asset is an investment object that can be modelled as an object with a 
minimum investment, followed by a sequence of partial investments with decreasing 
MCEs. Investing in a physical asset can be regarded as a process of sequentially 
allocating more and more money to the asset up to a specific level. The final 
investment level determines 
(a) a specific operation policy 
(b) a specific annual cost level, c, and 
(c) a specific level of value creation v 

 
This perspective on physical assets as investment objects lead to two important observations.  
 
The first observation is that there is a second fundamental difference of an investment in 
physical assets and investment in classical financial assets. Financial assets such as saving 
accounts, bonds, stocks, futures, etc., all have a linear return characteristic: Doubling the 
investment sum means doubling the return, and the return is always proportional to the 
investment height. This is no longer valid for physical assets. Here, the  higher the investment 
level, the lower the return-on-additional-investment, assuming that we always choose 
optimal-investment policies. This means that, in contrast to classical financial assets, the 
absolute height of the investment has to be taken into account, and the return on investment in 
terms of value generation is a function of the investment level. Describing the investment 
object with simply a relative ROI (such as ROI=5%) is not appropriate. This is a very far-
reaching property of investment in assets, which will become clearer in the application 
examples of the next sections.  
 
The second observation is that an asset still has different possible levels of investment, from 
which one has to be chosen. The asset itself does not predetermine the investment level – it is 
a decision made by the asset manager how high the (annual) investment will be. The 
investment level is mainly determined by the decision on the usage time, but other decisions 
on the operation policy may be important as well (see Figure 4). In general it holds that the 
higher the investment, the higher is the generated value. Let’s consider again the case of 
public supply infrastructure. Here, the higher the annual investment, the higher the value 
which is created for the citizens in terms of supply quality (provided, of course, that for each 
investment level the optimal operational policy is chosen). However, the higher the 
investment, the smaller is the added value per additionally invested dollar.  
 
Note that there may exist a policy with a maximal value generation. In this case, there is a 
maximal investment level that should not be exceeded since this would lead to a lower value 
generation. However, such a policy does not always exist. In many practical cases, there is an 
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infinite number of policies with ever increasing value, though often limited. The asset 
displayed in Figure 3 is an example.  
 
Using this model of a physical asset as investment object, different important problems in 
physical asset management can be solved. In the next two sections, we discuss two important 
applications.  
 
4. Application: Optimal allocation of an annual budget in a portfolio of physical 

assets 
 
In the first application example we demonstrate that our model provides the basis for a novel 
method for the solution of budget allocation problems that are central to asset management. 
  
We consider a firm with a portfolio of physical assets. We assume that the firm has a given 
annual budget B that can be used for financing the asset portfolio. Assets are replaced by 
identical assets after their usage time, where the usage time of each single asset as well as 
other operational policy decisions are control parameters. Furthermore, we assume stationary 
business conditions.  The goal is to maximize the value generation of the asset portfolio.  
 
Such a case is typical for public infrastructures such as water or electricity supply. Often, the 
annual budget has been determined in a political process, and has to be considered as a fixed 
quantity. The task of the asset manager is to invest this budget in an optimal way such that the 
most value is generated. The value is typically measured by some sort of measure of supply 
quality, for example with KPIs such as SAIFI (system average interruption frequency index), 
SAIDI (system average interruption duration index), or the like.  
 
We assume for simplicity that the total value generation consists of the sum of individual 
value contributions, one for each asset. The total costs are assumed to be the sum of 
individual asset costs:   
 

tot i
i

tot i
i

v v

c c

=

=

∑

∑
 

 
(2) 

Each asset i has an investment characteristic as explained above, with a set of policies 
defining the optimal-investment frontier, and each asset has a minimum investment level mi. 
We assume that 

i
i

B m>∑        . (3) 

 
The goal is to find the optimal allocation of the total budget to the different assets, such that 
the total generated value is maximized, given the boundary condition 
 

totc B≤        . (4) 
 
This is a classical integer optimization problem. It can be shown that a near-optimal solution 
can be obtained by the following sequential procedure:  
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1. Allocate the minimum investment level mi to each asset i. Reduce the available budget 
by i

i
m∑   

2. For each asset: calculate the MCE for the partial investment leading to the next 
investment level on the optimal-investment frontier.  

3. Find the asset with the highest MCE. Say this is asset j.  
4. If the available budget is greater than the necessary amount for the partial investment 

of asset j, then  
a. Increase the investment in asset j by this partial investment 
b. Reduce the available budget by this amount 
c. Go to Step 2.  
If the remaining budget is smaller than the necessary amount for the partial investment 
of asset j, take the asset with the next smaller MCE and go to start of step 4.  
If there is no partial investment that can be done with the available budget, then stop.  

 
For the case of a continuous optimum-investment frontier, the optimum solution is given by 
the Equimarginal Principle, also known as Gossen’s Law (Gossen 1983). The Equimarginal 

Principle states that the optimum allocation is characterized by the fact the derivative dv
dc

 is 

equal for each asset.   
 
Note that the problem of optimal allocation is an investment problem, but it cannot be solved 
by optimizing each asset individually. The central issue is not to find an individually defined 
optimal investment level for each asset. In contrast, the optimal investment levels are found 
by comparing different partial investment options (for the different assets) and choosing the 
best one. The basic property which is used is the concavity of the optimal-investment frontier, 
i.e. the fact that returns are decreasing with increasing investment.  
 
The allocation problem is one of the central problems of physical asset management, and the 
current asset management literature seems to have limited solutions for it (Uddin et al. 2013, 
Colin at al. 2010). However, with our modelling approach, this problem can be solved easily.  
 
The authors have performed several case studies with public infrastructure operators in the 
last years. It could be shown that large improvements can be realized by optimally allocating 
the budget according to the described method, compared with classical asset management 
strategies. 
 
It should be noted that the simplifying assumption on the additive structure of the value 
function can be relaxed. However, it is beyond the scope of this paper to describe the 
approach in this more complex case.  
 
5. Application: Optimal usage time for ageing assets 
 
 
In another application of our framework, we re-examine a classical problem of maintenance 
management and show that the well-known classical solution can yield a sub-optimal result. 
 
 We consider a manufacturing machine generating an annual profit of p under the assumption 
of no failures. Due to ageing, however, the machine shows an increasing failure rate over time, 
which gradually reduces the profit due to the associated failure costs. The task is to determine 
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the optimal lifetime T of the machine. A too short lifetime is associated with high capital costs, 
where a too long lifetime is associated with high failure costs. The optimal lifetime is in 
between these extremes.  
 
The classical approach is to calculate the average total costs per time unit as a sum of capital 
costs and failure costs. This cost rate c(T) is a function of the usage time T:  
 

0
0

1( ) ( )
T

fc T C C h t dt
T
 

= + 
 

∫  
 

(5) 

(C0 denote the purchase and installation costs, Cf the costs per failure, and h(t) the failure rate), 
and to minimize this total cost rate c with respect to T:  
 

( ) min .c T =  (6) 
 
Obviously, using the optimal T leads to the highest total profit per time unit, which is given 
by the difference of p-c(T). In Fig. 6, the classical cost minimization approach is shown for an 
example with C0=10, Cf=1, and a linearly increasing failure rate of h(t)=0.1∙t/yr2. It can be 
seen that the minimum of the total costs is obtained at a usage time of 14.1 yr. With this usage 
time, a cost rate of 1.42/yr is obtained, consisting of capital costs of 0.71/yr and failure costs 
of 0.71/yr. 

 
 

Figure 6. Classical cost minimization for an ageing manufacturing machine  
 
We now reformulate this classical problem in our framework of cost and value. The value of 
the manufacturing machine for the owner is the actually made profit, which is the theoretical 
production profit p minus the failure costs. As for the costs, we use the capital costs.  
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(7) 

We assume that p=1.5/yr. 
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In Fig. 7, a part of the cost-value function is shown. Note that since T is a continuous variable, 
we do not have discrete operation policies but rather a continuous cost-value function. The 
solution of Eq. (6) is characterized by  

1dv
dc

=  
 

(8) 
as can be shown easily. And, indeed, the derivative at the point with 0.71c =  is equal to one 
(see Fig. 7). We thus see that  in a cost-value framework, choosing the derivative equal to 1 
leads to the classical solution.  
 

 
 

Figure 7. Cost-value plot for the manufacturing machine. The point with the minimum cost 
rate according to Eq. (4) is at ( ) ( ), v 0.71,0.79c = . The derivative is 1 at this point. 

 
We might ask if this specific operation mode, determined by setting the derivative to a value 
of 1, is really the optimal point in a holistic perspective. Common intuition would suggest this 
is true. However, a closer look reveals that this is not the case.  

The operation mode with 1dv
dc

=  is characterized by the fact that the investment of the last 

dollar of capital costs (the last partial investment) leads to exactly one dollar additional net 
profit for the company. This means that, in terms of financial investments, the investment of 
this last dollar is a bad investment, because the MCE is exactly one, meaning a ROI of zero! 
As a financial investor, one would not invest this dollar in the manufacturing machine but 
rather in another investment object, let’s say a bank account, where one would get back more 
than $1 at the end of the year. 
 
We see that although a lifetime with associated capital costs of 0.71/yr leads to the highest net 
profit for the company, this is only true if the investment in the physical asset is the only 
investment option that is available. In practice, other investment options than the considered 
physical assets are always available. Thus, it would be in fact more profitable for the company 
to invest less money in the machine, and use the saved money for either other machines, or 
other productive resources in the company, or even in classical financial investments! 
Accordingly, the company should in fact run the machine longer than calculated in the 
classical cost-minimization approach.  
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For example, let us assume that there is a competing investment option characterized by 
MCE=1.1, corresponding to a ROI of 10%. Then, the investment in the investigated 

production machine would stop when the derivative approaches the value 1.1dv
dc

= . This 

would lead to c =0.67 instead of c=0.71, which means that the investment in the production 
machine is decreased by about 6%! The saved money would be invested in the alternative 
investment option, thus generating more value.  
 
Even if the difference in this simple example does not seem that big, this result is of high 
theoretical importance. It means that using the classical and established approaches of the 
maintenance literature may indeed lead to basically wrong conclusions on operation policies 
and sub-optimal investment decisions. The reason for this surprising and somewhat counter-
intuitive result is the combination of the non-linear behaviour of the return-on-investment for 
physical assets, and the fact that other investment options are available.  
 
It is beyond the scope of this paper to explore the implications of this observation in detail. 
However, the presented example suggests that much of the existing literature of maintenance 
optimization has to be revisited in the context of a broader perspective of investment theory of 
physical assets.  
 
6. Conclusions 
 
We have presented a general framework for modelling physical assets as a set of operation 
policies in a two-dimensional cost-value space. This reflects the basic nature of physical 
assets as investment objects which are meant to generate value for the owner. Our model can 
be seen as a straight-forward operationalization of the general idea of physical asset 
management. We have shown that this representation is useful for understanding the nature of 
an asset as investment object, which is defined by the relation between costs and value 
generation for the different feasible policies. This understanding is in turn essential for the 
attempt to optimize the life cycle management of physical assets. The model is formulated in 
general terms, allowing both monetary and non-monetary value definitions.  
 
From our description of an asset we can directly derive optimal investment strategies that 
directly lead to optimum life cycle management policies. By combining standard methods of 
multi-dimensional optimization theory and classical investment optimization approaches, we 
can identify a subset of the operational policies which create the optimal investment frontier. 
Only policies on this frontier need to be considered as candidates for optimal policies. For a 
given investment level, the optimal operation policy can be determined.  
 
An investment in physical assets in terms of covering the lifecycle costs can be 
conceptualized as a sequence of partial investments with decreasing returns. The non-linear 
behaviour of the return is a basic property of physical assets as investment objects, and 
distinguishes them from all classical financial investments.  
 
When deciding on the level of investment, the marginal return, or marginal cost-effectiveness, 
is the decisive quantity. We showed that optimal investment strategies are governed by 
choosing between investment alternatives. The alternatives can be either inside an asset 
portfolio, or between physical assets on one hand, and other investment options of the firm on 
the other hand. Based on applicative examples, we demonstrated that the classical single-
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machine perspective of maintenance optimization literature may lead to suboptimal results, as 
this neglects these coupling effects.   
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