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Summary

Freshwater and marine environments are hotspots of methane cycling. Vast
amounts of methane, a potent greenhouse gas, are produced predominantly in the
sediments of these environments but very little eventually escapes to the atmosphere
due to the activity of methane-oxidizing microorganisms. These microorganisms are
pivotal in regulating methane emissions from the oceans and freshwater systems and
their study therefore transcends scientific curiosity and is of global relevance to society
as a whole. Despite their importance, the knowledge about these microorganisms is
restricted to cultured isolates and little is known about the physiology of
environmentally-relevant uncultured species. The aim of this study was to use culture-
independent functional metagenomics in combination with other physiological
experiments to study the individual metabolic potential and activity that underlie the
ecophysiology of several uncultured methane-oxidizing microorganisms.

The first study (Chapter 2) shows that uncultivated gamma-proteobacteria
related to Crenothrix are major methane consumers in two stratified Swiss lakes (Lake
Zug and Rotsee). Although Crenothrix bacteria have been infamous for infestation of
drinking water supplies for more than a century, little was known about their role in
methane cycling in the environment. This study provides first insights into the
metabolic potential and activity of Crenothrix and demonstrates their methane-
dependent growth under aerobic as well as under oxygen-deficient and denitrifying
conditions. Reconstruction of Crenothrix genomes allowed us to clarify the phylogenetic
assignment of their methane monooxygenase, an important classification marker for
methanotrophs, and revealed the metabolic potential for nitrate respiration to nitric or
even nitrous oxide. Overall these results suggest that Crenothrix can act as relevant
biological sink for methane in stratified lakes.

Chapter 3 focuses on methanotrophs of the candidate phylum NC10 in Lake Zug.
These bacteria form a relevant link between the methane and nitrogen cycle but
generally constitute only a minor part of the methanotrophic communities. We show
that NC10 bacteria, which couple methane oxidation to a unique O,-producing
denitrification pathway, dominated the microbial community in the anoxic hypolimnion
of Lake Zug, comprising almost a third of the total bacterial population. This is the

hitherto highest reported abundance from any environment. We describe the



physiology and the habitat of this new species of the genus “Candidatus
Methylomirabilis”. The reconstructed genome of “Ca. Methylomirabilis limnetica”
confirmed its methane-oxidizing, denitrifying potential and revealed features, such as
formation of gas vesicles, previously not described for this genus. We could show that
“Ca. M. limnetica” was transcriptionally highly active in situ but the full biogeochemical
impact of NC10 bacteria has yet to be quantified.

In Chapters 4 and 5, the physiology and metabolic potential of an archaeal-
bacterial consortium involved in the sulfate-dependent anaerobic oxidation of methane
(S-AOM) was investigated using a highly active S-AOM enrichment culture. In contrast
to freshwater environments, this strictly anaerobic process is the dominant methane
sink in marine systems and controls the flux of methane to the atmosphere.

In Chapter 4 unravels the individual metabolic potential and activity of ANME-2c
archaea and SEEP-SRB1 bacteria using functional metagenomics in order to elucidate
the division of labor and interactions between these intertwined microorganisms. The
reconstructed genomes in conjunction with transcriptomic and proteomic data were
used to gather support for current hypotheses concerning the physiology of the two
microorganisms. We confirmed that ANME-2c encode, transcribe and express a
complete reverse methanogenesis pathway for methane oxidation and propose several
transcribed candidate genes, in particular two sulfite reductases, which might be
involved in a previously proposed archaeal dissimilatory sulfate reduction pathway.
Moreover we highlight the possibility of flavin-based electron bifurcation by soluble
heterodisulfide reductase as an important but overlooked aspect in the electron
transport chain of ANME. We confirm that SEEP-SRB1 express a complete canonical
sulfate reduction pathway, which arguably could also be involved in sulfur
disproportionation, and we also investigate the genomic potential for electron transfer
between ANME-2c and SEEP-SRBI.

Finally, Chapter 5 investigates a potential involvement of an S-AOM-associated
archaeal-bacterial consortium in the cycling of inorganic phosphate. We demonstrate
that the S-AOM microorganisms appear to utilize phosphate beyond assimilatory
uptake and observed an enigmatic shuffling of phosphate between soluble and
particulate fractions that was only active when methane was oxidized. These laboratory
results highlight an intriguing yet unresolved involvement of phosphate in S-AOM that

remains to be verified in situ.



Zusammenfassung

Susswassersysteme und Ozeane sind durch intensive Methanzyklen gepragt.
Obwohl grosse Mengen an Methan in den Sedimenten produziert werden, entweicht
jedoch nur sehr wenig von diesem potenten Treibhausgas in die Atmosphare.
Hauptverantwortlich dafiir sind Methan-oxidierende Mikroorganismen, welche eine
entscheidende Rolle in der Regulierung von Methanemissionen spielen. Die Studie
dieser Mikroorganismen erstreckt sich somit (iber die wissenschaftliche Neugier hinaus
und ist fur die Gesellschaft von grosser Bedeutung. Trotz ihrer Wichtigkeit ist das Wissen
Uber diese Mikroorganismen auf kultivierte Isolate beschrankt und es ist wenig tGber die
Physiologie von unkultivierten aber umweltrelevanten Spezies bekannt. Ziel dieser
Studie war es, das individuelle Stoffwechselpotential und die Aktivitat dieser
unkultivierten ~ Mikroorganismen  mittels  kulturunabhangiger,  funktioneller
Metagenomik in Kombination mit physiologischen Experimenten zu untersuchen.

In der ersten Studie (Kapitel 2) wird gezeigt, dass unkultivierte Crenothrix-
Bakterien, welche den Gamma-Proteobakterien angehdren, zu den wichtigsten Methan-
Konsumenten in zwei geschichteten Schweizer Seen (Zug und Rotsee) zahlen. Obwohl
Crenothrix-Bakterien seit mehr als einem Jahrhundert fir den Befall von
Trinkwasserversorgungssystemen bekannt sind, ist ihre Rolle im 6kologischen
Methanzyklus weitestgehend nicht verstanden. Diese Studie liefert auch erste Einblicke
in das metabolische Potenzial und die Aktivitat von Crenothrix und hebt ihr
methanabhangiges Wachstum unter aeroben sowie unter sauerstoffarmen und
denitrifizierenden Bedingungen hervor. Die Rekonstruktion von Crenothrix-Genomen
ermoglichte es erstmals, die phylogenetische Zuordnung der Methanmonooxygenase,
einem wichtigen phylogenetischen Marker fiir methanotrophe Bakterien, aufzuklaren
und zeigte das metabolische Potenzial fiir Nitratatmung zu Stickstoffmonoxid oder
Distickstoffmonoxid auf. Insgesamt deuten diese Ergebnisse darauf hin, dass Crenothrix-
Bakterien als wichtige biologische Senke fuir Methan in geschichteten Seen fungieren.

In Kapitel 3 wurden Bakterien des Kandidaten-Phylum NC10 im Zugersee
untersucht. Diese Bakterien sind aufgrund ihrer Fahigkeit, Methan- und Stickstoffzyklen
zu verkniipfen, von Bedeutung, jedoch bilden NC10-Bakterien in der Regel nur einen
kleinen Teil der methanotrophen Gemeinschaft. Wir zeigen, dass NC10-Bakterien,
welche Methan-Oxidation mit einem einzigartigen O»-produzierenden Denitrifikations-
Stoffwechselweg verbinden, die mikrobielle Gemeinschaft im anoxischen Hypolimnion
des Zugersees dominierten und fast ein Drittel der gesamten Bakterienpopulation
umfassten. Dies ist die bislang héchste Abundanz von NC10-Bakterien, die je in der
Umwelt beschrieben wurde und erlaubte die erste Charakterisierung der Physiologie

und dem Habitat dieser neuen Spezies der Gattung "Candidatus Methylomirabilis". Das



rekonstruierte Genom von "Ca. Methylomirabilis limnetica" bestatigte das Potential zur
Methanoxidation und Denitrifikation und zeigte fiir diese Gattung neuartige Merkmale,
wie zum Beispiel Gasvesikelgene, welche wahrscheinlich eine Adaption an das
planktonische Habitat darstellen. Obwohl die hohe in situ Aktivitat von "Ca. M.
limnetica" transkriptionell nachgewiesen werden konnte, muss die biogeochemische
Bedeutung der NC10-Bakterien erst noch quantifiziert werden.

In den Kapiteln 4 und 5 wurde das physiologische und metabolische Potential
eines Archaeen-Bakterien-Konsortiums in einer hochaktiven Anreicherungskultur
untersucht, welches an der sulfatabhangigen anaeroben Oxidation von Methan (S-
AOM) beteiligt ist. Im Gegensatz zu Susswassersystemen ist dieser streng anaerobe
Prozess die dominierende Methan-Senke in marinen Systemen und kontrolliert den
Fluss von Methan in die Atmosphare.

In Kapitel 4 entschliisseln wir das individuelle metabolische Potential und die
Aktivitat von ANME-2c-Archaeen und SEEP-SRB1-Bakterien mit funktionellen
metagenomischen Methoden, um die metabolische Arbeitsteilung und die
Wechselwirkung  zwischen diesen  Mikroorganismen zu untersuchen. Die
rekonstruierten Genome und transkriptomischen sowie proteomischen Daten wurden
verwendet, um aktuelle Hypothesen Uber die Physiologie der beiden Mikroorganismen
zu bestatigten. Unsere Untersuchungen zeigten, dass ANME-2c einen vollstandigen
Reverse-Methanogenese-Stoffwechselweg zur Methanoxidation exprimierten. Zudem
wurden mehrere transkribierte Kandidatengene identifiziert, insbesondere zwei Sulfit-
Reduktasen, die an dem zuvor vorgeschlagenen archaealen, dissimilatorischen
Stoffwechselweg zur Sulfatreduktion beteiligt sein kdnnten. Darlber hinaus stellen wir
die Moglichkeit einer Flavin-basierten Elektronen-Bifurkation durch 16sliche
Heterodisulfid-Reduktase als wichtiger und zuvor (bersehener Aspekt in der
Elektronentransportkette von ANME heraus. Wir zeigen, dass SEEP-SRB1-Bakterien einen
vollstandigen Stoffwechselweg zur Sulfatreduktion exprimieren, der auch an Schwefel-
Disproportionierung beteiligt sein kénnte. Darlber hinaus wurde das genomische
Potential fiir den Elektronentransfer zwischen ANME-2c und SEEP-SRB1 untersucht.

SchlieBlich wurde in Kapitel 5 eine mdgliche Beteiligung eines S-AOM-
assoziierten Konsortiums am Zyklus von anorganischem Phosphat betrachtet. Die S-
AOM-Mikroorganismen scheinen Phosphat jenseits des assimilatorischen Bedarfs zu
nutzen, da eine ratselhafte Umschichtung von Phosphate zwischen l6slicher und
partikularer Phase beobachtet wurde. Diese Umschichtungen waren nur aktiv, wenn
Methan oxidiert wurde. Diese Laborergebnisse zeigen eine faszinierende, aber noch
ungeldste Beteiligung von Phosphat am S-AOM-Prozess, die aber in situ noch verifiziert

werden muss.
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Chapter 1 - Introduction

Chapter 1

Introduction

“[...]1 life is driven by nothing else but electrons, by the energy given off by these
electrons while cascading down from the high level to which they have been boosted up by
photons.”

- Albert Szent-Gyorgyi

Anthropogenic greenhouse gases such as carbon dioxide (CO,), methane (CH,)
and nitrous oxide (N,O) are recognized to be the main drivers of global warming
observed since the beginning of the industrial Era (Ciais et al, 2014). The
Intergovernmental Panel on Climate Change (IPCC) 5" Assessment Report predicts a
grim future: without additional mitigation efforts, such as substantial reduction in
anthropogenic greenhouse gas emission, “warming by the end of the 21 century will
lead to high to very high risk of severe, widespread and irreversible impacts globally”
(Pachauri et al, 2014). Methane, a very potent greenhouse gas, is present in earth’s
atmosphere in trace amounts (<2 parts per million). Albeit its low atmospheric
concentration, methane is the second most impactful anthropogenic greenhouse gas
and atmospheric methane concentrations have steadily increased since the mid-20®
century (Pachauri et al, 2014). Emission and consumption of methane are tightly linked
to the activity of microorganisms. They are not only the main producers but also
consumers of methane in the environment. By studying these microorganisms we are
able to better understand the methane cycle and the factors controlling it - a

prerequisite to mitigate methane emissions in the future.

1 The aquatic methane cycle - sources and sinks

It is estimated that around 70% of the global methane production (~550 Tg CH,4
year' (Kirschke et al, 2013)) is produced by methanogenic microorganisms (Conrad,
2009), which makes them the largest source of methane globally. Non-biological
sources of methane (i.e. thermogenic or pyrogenic origin) constitute around 30% of the
global methane production (Ciais et al, 2014; Neef et al, 2010).

Biologically, methane is formed under anaerobic conditions from organic matter

(OM) by a consortium of fermentative primary degraders and methanogenic archaea.
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Among other anaerobic environments, aquatic sediments are hotspots of
methanogenesis as they provide an oxygen-free environment continuously supplied
with OM. Primary producers fix carbon into OM by harnessing the sun’s energy near the
surface. As the OM sinks through the water column it is degraded by heterotrophic
microorganisms and some of it reaches the bottom where it enters the sediment. In the
sediment, oxygen is quickly depleted by microbial respiration and mineralization of the
OM continues under anoxic conditions with alternative electron acceptors (i.e. nitrate or
sulfate). Additionally, OM is degraded by fermentative primary degraders to simple
molecules (e.g. acetate, CO,, H,) in deeper layers of the sediment. Here, methane is
finally produced by methanogenic archaea that feed off the fermentation products.
Important environments acting as methane sources generally receive high fluxes of
organic matter (e.g. wetlands, swamps or sediments), but environments heavily
controlled by human activities such as rice paddies, ruminant animals, landfills or
anaerobic digestion plants are also major sources of methane (Conrad, 2009).

Methane that reaches the atmosphere is relatively short-lived and undergoes
photochemical oxidation by OH radicals, which accounts for >80% of all atmospheric
sinks (Ciais et al, 2014; Conrad, 2009). However, more than half of the globally produced
methane never reaches the atmosphere. It is consumed close to the source by
microorganisms which are the single most important process stopping methane from
reaching the atmosphere (Reeburgh, 2003). Consumption before emission is especially
pronounced in marine environments; oceans contribute relatively little to the global
methane budget despite significant gross methane production (Reeburgh, 2007).

In marine sediments, the vast majority of methane is readily oxidized under
anaerobic conditions by the microbially-mediated process of anaerobic oxidation of
methane (AOM) with sulfate as electron acceptor (S-AOM, (Hinrichs & Boetius, 2002;
Reeburgh, 2007)). Quantitatively, sulfate-dependent AOM is the main sink of methane
produced in the ocean and is responsible for removing an equivalent of 7 - 25% of the
globally produced methane (Knittel & Boetius, 2009). Methane that escapes the
sediment (mainly at cold seeps or hydrothermal vents) is oxidized by aerobic
methanotrophs which further reduce the amount of methane that eventually reaches

the atmosphere (Boetius & Wenzhofer, 2013; Valentine, 2011).
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In contrast to marine environments, microbially-mediated aerobic oxidation of
methane is the primary route of methane removal (30 - 99% of produced methane) in
most freshwater systems (Bastviken et al, 2008). Anaerobic oxidation of methane also
plays a significant role in selected lakes (Crowe et al, 2011; Schubert et al, 2011), but its
contribution to total methane oxidation in freshwater systems is currently poorly

constrained (Borrel et al, 2011).

2 Microbial methane oxidation

Methane oxidation is performed by specialized microorganisms, so-called
methanotrophs, which make a living off redox processes involving the oxidation of
methane. Methanotrophs are ubiquitous in many oxic and anoxic environments where
methane is present, ranging from subseafloor sediments to acidic hotsprings or
hypersaline soda lakes. Methanotrophs can be broadly classified into two groups:
aerobic methanotrophs that rely on oxygen for methane oxidation and anaerobic
methanotrophs that use a range of alternative electron acceptors (e.g. sulfate or nitrate)

to oxidize methane.

2.1 Aerobic methane oxidation

Major habitats of aerobic methanotrophs are freshwater systems (i.e. lakes, rivers
or wetlands). In these environments, the highest oxidation rates and abundance of
aerobic methanotrophs can generally be found at interfaces of anoxic and oxic zones
such as the sediment surface or at the oxycline in stratified lakes (Hanson & Hanson,
1996).

In marine ecosystems, aerobic methanotrophs are abundant at the surface
sediments characterized by high methane fluxes - such as methane seeps, gas hydrates
or hydrothermal vent areas — but have also been detected in open ocean waters
(Bowman, 2014). The habitat of aerobic methanotrophs also extends to extreme
environments such as alkaline or acidic ecosystems and hot springs (Bodrossy et al,
1997; Pol et al, 2007; Sorokin et al, 2000). Most methanotrophic strains can grow over a
range of oxygen concentrations, including microaerophilic conditions, and can readily

survive under anoxic conditions for prolonged durations (Roslev & King, 1995).
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2.1.1 Aerobic Methanotrophs

A common feature shared by aerobic methane-oxidizing microorganisms
described to date is that they rely on molecular oxygen for methane oxidation and that
they belong to the domain Bacteria. They are a subgroup of methylotrophs and
specialize in the utilization of methane (and sometimes methanol) for anabolism and
catabolism.

Historically, aerobic methane-oxidizing bacteria (MOB) have been classified into
type | and type Il methanotrophs based on cellular morphology, ultrastructure,
phylogeny and biochemical traits (Hanson & Hanson, 1996; Whittenbury & Dalton,
1981). However, it has become clear in recent years that this broad classification scheme
could not accommodate newly discovered MOB without introducing various
exceptions. The scheme is still used to describe gamma (type I)- and
alphaproteobacterial (type 1) MOB but has been mostly replaced by taxonomic
classification based on 16S ribosomal RNA (rRNA) sequence (Knief, 2015; Op den Camp
et al, 2009). Most known MOB belong to Alpha- and Gammaproteobacteria, more
specifically alpha-proteobacterial families Methylocystaceae and Beijerinckiaceae as well
as gamma-proteobacterial families Methylococcaceae and Methylothermaceae (Bowman,
2014; Hirayama et al, 2014). Recently, MOB have also been discovered in the phylum
Verrucomicrobia (Dunfield et al, 2007; Islam et al, 2008; Pol et al, 2007).

Most methanotrophs exhibit coccoid or rod-like morphology - a peculiar
exception are uncultivated filamentous microorganisms which belong to genera
Crenothrix and Clonothrix (Cohn, 1870; Roze, 1896). Despite being known to infest and
block drinking water systems for decades, it was only recently that their ability to
perform methane oxidation was only recently discovered (Stoecker et al, 2006; Vigliotta
et al, 2007). Both genera form long sheathed filaments and apparently feature distinct
complex life cycles involving propagation through septation and release of individual
coccoid cells (Bowman, 2014; Volker et al, 1977). Besides their morphology and
methane-oxidizing capacity, little is known about the ecology and physiology of these

uncultivated methanotrophs.

2.1.2 Methane oxidation, C1 metabolism and respiratory chain
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Aerobic methanotrophs employ a specialized enzyme machinery to oxidize
methane gradually to methanol, formaldehyde, formate and finally to CO, (Figure 1).
The first step of this pathway, the oxidation of methane to methanol, is catalyzed by two
separate methane monooxygenases (MMO) that are hallmark enzymes of aerobic
methanotrophy and are present in all aerobic MOB described so far (Hanson & Hanson,
1996; Trotsenko & Murrell, 2008). Two distinct forms of MMO have been described:
soluble MMO (sMMO) and particulate MMO (pMMO) (Anthony, 1986; Hakemian &
Rosenzweig, 2007). The particulate, membrane-bound form is found in nearly all MOB
(except genus Methylocella) while the cytoplasmic, soluble form is only found in a
subset of MOB (Bowman, 2014; Dumont & Murrell, 2005). Particulate MMO are related to
ammonia monooxygenases (AMO) which oxidize ammonia as their primary substrate
but are also capable of oxidizing methane (Holmes et al, 1995; Hyman et al, 1988).
Intriguingly, the filamentous gammaproteobacterial MOB Crenothrix polyspora has been
reported to possess an ‘unusual’ pMMO closely related to AMO (Stoecker et al, 2006).
However, these findings have recently been questioned. Studies suggested that the
‘unusual’ Crenothrix pMMO was likely misassigned and represented a phylogenetically
divergent AMO of ammonia-oxidizing Nitrospira bacteria instead (Daims et al, 2015; van
Kessel et al, 2015).

Methanol from methane oxidation by MMOs is further oxidized to formaldehyde
by methanol dehydrogenase (MDH). Two MDH homologs have been described for
MOB: calcium-dependent MxaF-type MDHs (Anthony, 2004) and lanthanide-dependent
XoxF MDHs (Keltjens et al, 2014). Traditionally, MxaF-type MDHs were assumed to be
the major functional MDHs in MOB. Though, XoxF homologs are encoded by many MOB
and are likely the predominant MDHs in the environment. (Chistoserdova, 2016; Pol et
al, 2014). The product of methanol oxidation, formaldehyde, is oxidized to formate via
tetrahydromethanopterin (HsMPT)- or tetrahydrofolate (H4F)-linked C1 transfer pathway
(Chistoserdova et al, 2009). Finally, formate is converted to CO, by formate
dehydrogenases, which conclude the aerobic methane oxidation pathway (Hanson &

Hanson, 1996).
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RuMP-pathway
(type | methanotrophs)

A

H,MPT-/
H,F-linked pathway
CH4+0|._ CH,OH CH,0 —— > HCOOH CO2
i +HO

Y

Serine cycle
(type Il methanotrophs)

Figure 1. Enzymatic pathways of aerobic methane oxidation and carbon assimilation of
proteobacterial methanotrophs (adapted from Hanson and Hanson, 1996). Initial oxidation
of methane to methanol is carried out by particulate or soluble methane monooxygenase
(pMMO, sMMO) followed by methanol oxidation to formaldehyde by methanol dehydrogenase
(MDH). Further oxidation of formaldehyde is mediated by enzymes of the
tetrahydromethanopterin (HsMPT) or tetrahydrofolate (H.F)-linked C1 transfer pathway to
formate, which is oxidized to the final product, CO,, by formate dehydrogenase (FDH). Carbon
for biomass is classically derived from formaldehyde via Ribulose monophosphate (RuMP)
pathway in type | methanotrophs or Serine cycle in type Il methanotrophs.

Most MOB derive carbon for biomass formation from methane oxidation (Figure
1). Gammaproteobacterial (type 1) MOB use formaldehyde, which is transiently formed
during methane oxidation, as the sole carbon source for assimilation via the ribulose
monophosphate  (RuMP)  cycle (Anthony, 1982;  Chistoserdova, 2011).
Alphaproteobacterial type Il MOB use the serine cycle for carbon assimilation that
combines carbon from CO, and formaldehyde for biomass formation (Anthony, 1982;
Chistoserdova, 2011). A third, purely autotrophic carbon fixation pathway (Calvin-
Benson-Bassham cycle; CBB cycle) is used by verrucomicrobial methanotrophs (Op den
Camp et al, 2009).

Aerobic MOB couple methane oxidation to the reduction of molecular oxygen.
The electron donor for methane oxidation to methanol, which is an energy-dependent
reaction, is thought to be either NADH (sMMO) or a membrane-integral quinol (pMMO)
(DiSpirito et al, 2004). Periplasmic methanol oxidation by MDH is coupled to c-type
cytochromes while cytosolic oxidation of formate and formaldehyde generates NADH.
Subsequently, reducing equivalents from NADH are transferred to periplasmic
cytochrome ¢ via membrane-bound enzymes of the respiratory chain (NADH
dehydrogenase, cytochrome bc; complex). Finally, cytochrome ¢ serves as electron
donor for terminal cytochrome ¢ oxidases that reduce O..

Methane oxidation via MMO by aerobic MOB directly relies directly on molecular

oxygen (Murrell et al, 2000), which is either provided externally or produced internally
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by NC10 bacteria via NO dismutation (Ettwig et al, 2012). However, aerobic MOB can be
abundant and active in oxygen-deficient environments (e.g. (Oswald et al, 2016;
Tavormina et al, 2013)). Genomic studies have revealed that many gamma-
proteobacterial “aerobic” methanotrophs encode partial denitrification pathways (often
terminating N.O) potentially enabling survival under oxygen-limited conditions
(Kalyuzhnaya et al, 2015; Kits et al, 2015a; Stein & Klotz, 2011). Furthermore, it has been
shown that the gamma-proteobacterial methanotroph Methylomonas denitrificans is
capable of coupling denitrification to methane oxidation under hypoxic conditions (Kits
et al, 2015b). “Aerobic” MOB might be able to utilize both oxygen and nitrogen oxides
as terminal electron acceptors (Chen & Strous, 2013), which could allow these
microorganisms to conserve O, (for methane oxidation by MMO) under oxygen-
deficient conditions. However, the physiology and activity of these denitrifying
“aerobic” MOB is still poorly characterized but might be important in environmental

methane and nitrogen cycling.
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3 Anaerobic oxidation of methane

Anaerobic oxidation of methane (AOM) is a microbially-mediated process that
couples methane oxidation to the reduction of electron acceptors other than oxygen.
Known electron acceptors for anaerobic oxidation of methane include nitrate, nitrite,

metal ions (i.e. iron or manganese) and sulfate.

3.1 Sulfate-dependent anaerobic oxidation of methane

First indications for sulfate-dependent AOM arose from geochemical studies of
marine sediments that showed a concurrent decrease of sulfate and methane in anoxic,
distinct sediment layers, so-called sulfate-methane transition zone (SMTZ) (Barnes &
Goldberg, 1976; Martens & Berner, 1974; Reeburgh, 1976). Subsequent studies indicated
that the methane oxidation and sulfate reduction in sediments was stoichiometrically

coupled (Eq. 1) (Iversen & Jgrgensen, 1985).

CH4+ 5044 —HCO;+ HS"+H.O0  AG°'=-16.6 kJ mol~' (Eq. 1)

Based on radiotracer and inhibition experiments it was suggested that S-AOM
could be mediated by methanogenic archaea and sulfate-reducing bacteria despite the
low Gibbs free energy change of the reaction (Alperin & Reeburgh, 1985; Hoehler et al,
1994; Zehnder & Brock, 1979). Indirect evidence for the involvement of anaerobic
methanotrophic archaea (ANME) came from archaeal lipid biomarkers that were
imprinted with the isotopic "*C signature of methane and 16S rRNA gene sequences of a
novel archaeal group related to methanogens (Hinrichs et al, 1999). Using fluorescence
in situ hybridization (FISH), tightly packed consortia of ANME and SRB could be
visualized (Boetius et al, 2000) and were subsequently discovered to be highly
abundant in various methane-rich anoxic sediments and other environments such as
the Black Sea (Michaelis et al, 2002), mud volcanoes (Losekann et al, 2007) as well as
cold and hot seepage sites (Holler et al, 2011; Omoregie et al, 2009).

In marine sediments, the most widespread niche of S-AOM is the sulfate-
methane transition zone (SMTZ) that is typically located from one to several meters
below the sediment surface (Jorgensen & Kasten, 2006). The products of S-AOM,

bicarbonate and hydrogen sulfide, can reach high concentrations within and around
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the SMTZ leading to the formation of authigenic mineral phases (i.e. Mg- and Ca-
carbonates) and alter redox chemistry of the sediment (Moore et al, 2004). For example,
particulate Fe(lll) oxo-hydroxides readily undergo reductive dissolution together with
hydrogen sulfide within the SMTZ and release inorganic phosphate which was
adsorbed to Fe(lll) oxo-hydroxides. This mechanism can lead to increased porewater
concentrations of soluble Fe(ll) and phosphate in the SMTZ and likely controls
authigenesis of phosphate minerals such as vivianite present in and below the SMTZ of

anoxic basins and deep-sea fans (Jilbert & Slomp, 2013; Marz et al, 2008).

3.1.1 Microorganisms involved in S-AOM

The microorganisms that mediate S-AOM are related to anaerobic
methanotrophic archaea (ANME) and associated Deltaproteobacteria, which often form
tightly clustered aggregates (Figure 2). ANME are strict anaerobes and are
phylogenetically related to methanogenic archaea of the orders Methanosarcinales and
Methanomicrobiales. Based on 16S rRNA sequence analysis, anaerobic methanotrophic
archaea (ANME) are phylogenetically subdivided into three main polyphyletic groups
(ANME-1, ANME-2 and ANME-3). These groups are separated by considerably large
phylogenetic distances which suggest that they belong to different families or even
orders (Knittel & Boetius, 2009). The ANME-1 group is distantly related to
Methanomicrobiales while ANME-2 and ANME-3 represent lineages within
Methanosarcinales (Hinrichs et al, 1999; Knittel et al, 2005; Niemann et al, 2006). The co-
occurring bacterial partners are related to delta-proteobacterial
Desulfococcus/Desulfosarcina cluster (DSS) or Desulfobulbus (DBB). ANME-1 and ANME-2
groups are frequently associated with SEEP-SRB1 and SEEP-SRB2 subgroups of the DSS
cluster whereas ANME-3 are often found together with Desulfobulbus (DBB) (Kleindienst
et al, 2012; Knittel et al, 2003; Knittel et al, 2005; Niemann et al, 2006). Thermophilic
members of ANME-1 associate with bacteria of the delta-proteobacterial HotSeep-1
cluster which form a separate group unrelated to DSS or DBB (Holler et al, 2011;
Krukenberg et al, 2016). Additionally, ANME-1 are also consistently found as single cells
or as monospecific aggregates which are apparently not associated with a bacterial

partner (Knittel et al, 2005; Orphan et al, 2002).
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Figure 2. Confocal laser scanning micrograph of an S-AOM consortium visualized by
fluorescence in situ hybridization (from Boetius et al., 2000). DSS bacteria, targeted by
probe 55658, are shown in green. ANME archaea are shown in red (labeled by EelMS932

probe)

3.1.2 Mechanisms underlying the S-AOM process

The co-occurrence of ANME with bacterial partner suggests that S-AOM is
achieved by the combined metabolic activity of the partners. Microbial syntrophy, an
interaction for the common good, is indeed a widespread phenomenon in nature,
especially in anoxic environments (Morris et al, 2013; Stams et al, 2006). Several
fundamentally different syntrophic and non-syntrophic S-AOM models have been
proposed and extensively tested — yet, an unequivocal mechanism for S-AOM is still
missing.

A common denominator shared between all S-AOM models is that ANME are
responsible for methane oxidation. Two syntrophic S-AOM models have been proposed
that assume bacterial sulfate reduction: methane-derived organic intermediates or
reducing equivalents produced by ANME serve as substrate for the bacterial partner
(Figure 3a); or indirect or direct electron transfer via redox active carriers or nanowires
(Figure 3b). Alternatively, two non-syntrophic interaction models assume dissimilatory
sulfate reduction by ANME: zero-valent sulfur compounds produced by sulfate-reducing
ANME serve as intermediates, which are disproportionated by the bacterial partner to
sulfide and sulfate (Milucka et al, 2012) (Figure 4a); or ANME perform complete sulfate
reduction and excrete reduced metabolic by-products that are scavenged by the
sulfate-reducing bacterial microorganism (Thauer & Shima, 2008; Widdel et al, 2007)
(Figure 4b).

S-AOM models that predict sulfate reduction by the bacterial partner inherently

must have a mechanism that couple the two redox processes. Acetate, formate,
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hydrogen and methanol are classic intermediates that are exchanged in syntrophic
partnerships and their role was also investigated in S-AOM. Addition of these
intermediate would lead to a stimulation of the SRB partner as well as inhibition of S-
AOM activity — however, sulfate reduction rates under S-AOM conditions were on par
(or lower) upon the addition of acetate, formate, hydrogen or methanol (Nauhaus et al,
2002; Nauhaus et al, 2005); likewise, no repression of S-AOM activity was observed
(Meulepas et al, 2010).

a Co, b

50.% Co, SO*
Carrier_/H’
CH HS CH Carrier /H, HS-

e

org

Figure 3. Schematic illustration of syntrophic S-AOM hypotheses that assume sulfate
reduction by the bacterial partner. (a) Methane-derived carbon is transferred from ANME to
DSS that oxidize the organic carbon intermediates coupled to sulfate reduction. (b) Electrons
from methane oxidation are transferred to sulfate-reducing DSS either directly or via redox-
active carriers.

Consistent with these results, exchange of carbon intermediates between the
partners was not supported by '*C isotopic labeling studies showing autotrophic
growth of S-AOM-associated SRB (Kellermann et al, 2012a; Wegener et al, 2008). More
recently, the bacterial partner of a thermophilic S-AOM consortium, consisting of ANME-
1 and HotSeep-1 bacteria, has been shown to be capable of hydrogen oxidation;
however, it was suggested that hydrogen was not provided by ANME-1 as an
intermediate (Krukenberg et al, 2016; Wegener et al, 2015). Two other potential
intermediates, carbon monoxide and methanethiol, were tested but appeared to be not
involved in S-AOM (Meulepas et al, 2010; Moran et al, 2008; Nauhaus et al, 2002;
Nauhaus et al, 2005).

Besides methane-derived intermediates, electron transfer mediated via electron
carriers, direct cell-cell contacts or conductive structures have been investigated as
coupling mechanism in S-AOM. Several electron carrier systems such as the humic acid,
anthraquinone-2,6-disulfonate (AQDS) or phenazines were tested but no decoupling of
methane oxidation by ANME could be observed (Nauhaus et al, 2005). These findings

were recently challenged by a study which demonstrated that methane oxidation by
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ANME-2 could be decoupled from sulfate reduction upon the addition of humic acid,
AQDS and iron(lll) complexes (Scheller et al, 2016).

Type IV pili, extracellular cytochromes ¢ of the bacterial partner and S-layer
containing multi-heme cytochromes ¢ of ANME were also hypothesized to be involved
in direct interspecies electron transfer (DIET) (McGlynn et al, 2015; Wegener et al, 2015).
However, physical cell-cell contacts necessary for DIET (Reguera et al, 2005; Stams et al,
2006) were not observed in some cases (e.g. microbial AOM mats, monospecific ANME
aggregates or single, free-living cells) (Durisch-Kaiser et al, 2005; Orphan et al, 2002;
Treude et al, 2007) suggesting alternative mechanism(s) mediating S-AOM.

A fundamentally different S-AOM mechanism has been proposed by Milucka and
colleagues (2012), which attributes sulfate reduction to ANME archaea (Milucka et al,
2012). In this model, ANME-2 archaea couple methane oxidation to sulfate reduction,
producing zero-valent sulfur (or sulfide) that was shown to accumulate intracellularly.
Zero-valent sulfur could exit the archaea and subsequently react extracellularly with
sulfide, forming polysulfides, which could be disproportionated to sulfate and sulfide by
the DSS. Accordingly, S-AOM might not be an obligate syntrophic process, which also
could explain the occurrence of active single ANME-2 cells found in vitro (House et al,
2011) and in marine environments (Orphan et al, 2002; Treude et al, 2007). While this
model has been corroborated using ANME-2/DSS consortia, the underlying biochemical
pathway of archaeal sulfate reduction and bacterial polysulfide disproportionation

remain largely unresolved.

a b
5042_ SO * SO
4
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Figure 4. Schematic illustration of AOM hypotheses that include sulfate reduction by
ANME. (a) ANME perform methane oxidation coupled to sulfate reduction. Polysulfides (likely
disulfide) are disproportionated by DSS bacteria to sulfate and sulfide. (b) ANME oxidize
methane and perform complete sulfate reduction while excreting organic by-products that are
substrates for DSS that perform sulfate reduction.
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In the same vein, a commensalistic relationship has been proposed that suggests
methane oxidation and sulfate reduction by ANME archaea. But the sulfate-reducing
partner would feed off of unknown carbon intermediates or products excreted by
ANME instead of zero-valent sulfur (Thauer & Shima, 2008; Widdel et al, 2007). Thus far,
experimental evidence for this model is mostly circumstantial (i.e. reports of
monospecific archaeal aggregates) and is not supported by *C isotopic labeling studies

(Kellermann et al, 2012a; Wegener et al, 2008).

3.1.3 Physiology of S-AOM-associated microorganisms

S-AOM-associated microorganisms are often considered to be living at the
thermodynamic limit of life which is estimated to be —15 kJ mol' (Caldwell et al, 2008).
Indeed, the Gibbs free energy change, which apparently has to be shared by two
separate microorganisms, is estimated to yield only -22 to -35 kJ (mol CH4)" under in
situ conditions (-16.6. kJ mol under standard conditions) (Caldwell et al, 2008). Due to
the low energy vyield, the growth of AOM consortia is extremely slow with estimated
doubling times of 2 to 6 months (Holler et al, 2011; Milucka et al, 2012; Nauhaus et al,
2007). Owing to the slow growth, enrichment of AOM consortia take years (and have
been ongoing since more than a decade) and so far no axenic culture of an S-AOM
consortium has been obtained. Physiological studies of S-AOM are also hindered by the
fact that, with the exception of the bacterial TAOM partner “Ca. Desulfofervidus auxilii”,

no S-AOM microbe could be successfully separated.

3.1.3.1 Methane oxidation and carbon metabolism

Labeling studies using *C methane with methanogenic archaea suggested that
the enzymatic pathway of methanogenesis in principle is reversible, albeit only
marginally (Harder, 1997; Moran et al, 2005; Zehnder & Brock, 1979). Consequently it
was proposed that ANME oxidize methane by reverse methanogenesis and indeed,
genes encoding for most or all enzymes of the methanogenesis pathway are present
and expressed in all methane-oxidizing ANME species investigated thus far (Arshad et
al, 2015; Hallam et al, 2004; Haroon et al, 2013; Meyerdierks et al, 2010; Wang et al,
2014). Much knowledge of this pathway and its reversibility has been drawn from
previous extensive biochemical studies of methanogenesis (Thauer, 1998; Thauer,

2011).
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Reverse methanogenesis is a multistep enzymatic pathway during which
methane is completely oxidized to CO, (Figure 5). The first step in this process is
catalyzed by methyl-coenzyme M reductase (Mcr) - a hallmark enzyme of anaerobic
methanotrophs, similar to MMO of aerobic methanotrophs. In S-AOM-active microbial
mats from the Black Sea, Mcr accounted for up to 7% of total extractable protein (Krliger
et al, 2003). Methane is activated by Mcr and bound as methyl group to coenzyme M
(CoM-SH) forming methyl-S-CoM; this reaction is coupled to the reduction of the
disulfide of coenzyme M and coenzyme B (CoB-SS-CoM). The methyl group of methyl-S-
CoM is subsequently transferred to tetrahydromethanopterin (H:MPT) by the
membrane-bound methyl-HsMPT:CoM methyltransferase (Mtr). CoM-SH produced
during this step is oxidized with CoB-SH by heterodisulfide reductase (Hdr) forming
CoB-SS-CoM, which again can be used by Mcr. Methyl-HsMPT is subsequently oxidized
gradually to methylene-, methenyl-, and formyl-HsMPT by enzymes methylene-H,MPT
reductase (Mer), methylene-HsMPT dehydrogenase (Mtd) and methenyl-H:MPT
cyclohydrolase (Mch), respectively. Following the transfer of the formyl group from
H:MPT to methanofuran (MFR) by formyl-MFR: HsMPT formyltransferase (Ftr), CO, is
released in the last step of reverse methanogenesis from formyl-MFR by the formyl-MFR
dehydrogenase (Fmd). Reducing equivalents derived from the oxidation of methane
during reverse methanogenesis (equivalent to 8 e”) are transferred to three different
electron carriers (coenzyme F420, CoM-SH/CoB-SH and ferredoxin; Figure 5). With the
exception of ANME-1 (Meyerdierks et al, 2010), which apparently lacks a Mer homolog,
genomes of all ANME members sequenced to date encode the full reverse

methanogenesis pathway.
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Figure 5. Schematic illustration of the archaeal reverse methanogenesis pathway of
ANME. Methane is gradually oxidized to CO, by the seven core enzymes (black boxes) of the
reverse methanogenesis pathway. Reducing equivalents exit the pathway through the electron
carriers coenzyme F420, CoB-SH/CoM-SH and ferredoxin (Fd). Abbreviations of enzymes and
cofactors are listed in text.

It appears that ANME-1 do not assimilate methane (only CO,) while other
members of cold seep-related ANME have been reported to incorporate methane and
CO; in a 1:1 ratio (Kellermann et al, 2012b; Wegener et al, 2008). In any case, genomic
studies indicate that all members of ANME use the Wood-Ljungdahl pathway for carbon
assimilation (Arshad et al, 2015; Haroon et al, 2013; Meyerdierks et al, 2010; Wang et al,
2014). The bacterial partners of S-AOM are also autotrophs as they apparently derive all
of their carbon from CO; likely via the Wood-Ljungdahl pathway (Wegener et al, 2016;
Wegener et al, 2008). HotSeep-1 bacteria, which are phylogenetically unrelated to DSS,
apparently utilize the reductive tricarboxylic citric acid cycle for carbon fixation

(Krukenberg et al, 2016).

3.1.3.2 Sulfur metabolism

Sulfate reduction plays a central role in S-AOM depending on the proposed
mechanism, it is either attributed to ANME or the bacterial partner. Classically, sulfate
reduction is thought to be performed by the bacterial partner via a dissimilatory sulfate
reduction (SR) pathway (Figure 6).

In the first step of this pathway, sulfate is activated together with ATP by sulfate

adenylyltransferase (Sat) forming adenosine 5'-phosphosulfate (APS), which is
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subsequently reduced to sulfite by APS reductase (AprAB). Recent evidence has shown
that reduction of sulfite to sulfide is a two-step process (Santos et al, 2015). First, sulfite
is reduced and bound as trisulfide to the small sulfur carrier protein, DsrC, by
dissimilatory sulfite reductase (DsrAB). In the second step, sulfide is released from the
DsrC trisulfide by reduction by the DsrMKJOP complex. Electrons for the cytosolic
sulfate reduction are mainly derived from the membrane-bound quinone pool via
membrane-bound and/or cytoplasmic enzyme complexes (i.e. DsrMKJOP or QmoABC)

(Grein et al, 2013; Pereira et al, 2011).

Sulfate
Sulfate adenylyl- ATP
transferase PP,
(Sat)
Adenosine 5'-
ATP Adenylyl sulfate
phosphosulfate (APS) e Kinase
3'-Phosphoadenosine 5'-
APS reductase AMP phosphosulfate (PAPS)
(AprAB)
Sulfite PAPS reductase
Dissimilatory DsiC,., Sulfite
sulfite reductase Negirmiat
(DSFAB) ssimiatory
Ds rCM-S sulfite reductase
DsrMKJOP l;. e Suinde
complex o
Sulfide Cysteine
Dissimilatory pathway Assimilatory pathway

Figure 6. Schematic illustration of the prokaryotic dissimilatory and assimilatory sulfate
reduction pathway (adapted from Grein et al, 2013). Sulfate reduction can either serve
assimilatory or dissimilatory function. The purpose of the assimilatory pathway is to produce
small quantities of sulfide from sulfate. Sulfide is converted to cysteine which serves as universal
sulfur donor for various sulfur-containing biological molecules. If available, exogenous sulfide
can also be used for assimilatory purposes. The dissimilatory sulfate reduction pathway uses
sulfate as electron acceptor for respiration; hence, electrons are supplied by dedicated
membrane-bound respiratory chain complexes, which is not the case for the assimilatory
pathway.

Enzymes of the dissimilatory SR pathway are abundant in S-AOM-active
microbial mats from the Black Sea (up to 2% of total soluble protein) and
immunolabeling studies have that shown these enzymes are exclusively found in DSS
bacteria (Basen et al, 2011; Milucka et al, 2013). Another S-AOM hypothesis suggests

that DSS bacteria perform sulfur disproportionation rather than sulfate reduction
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(Milucka et al, 2012). Disproportionation of intermediate oxidation state sulfur
compounds (i.e. elemental sulfur, polysulfides, sulfite or thiosulfate) is performed by
members of Desulfocapsa, Desulfobulbus, Desulfovibrio and Desulfofustis that belong to
Deltaproteobacteria (Finster, 2008). It has been shown for Desulfocapsa sulfexigens that
disproportionation of intermediate sulfur compounds is apparently mediated by the
same enzymes that mediate the canonical SR pathway (Finster et al, 2013; Frederiksen &
Finster, 2003). Apr and Sat are thought to operate in reverse and produce sulfate by
reverse electron flow to Dsr that reduces sulfite to sulfide. Hence it is equally plausible
that the SR enzymes detected in DSS cells are involved in sulfur disproportionation as
opposed to sulfate reduction (Milucka et al, 2012). Yet, little is known how the various
intermediate oxidation state sulfur compounds are disproportionated by enzymes of
the SR pathway but it has been shown that sulfite plays a crucial intermediate
(Frederiksen & Finster, 2003). Molybdopterin oxidoreductases and rhodanese-related
sulfurtransferases have also been suggested as potential candidates for
disproportionation of thiosulfate and elemental sulfur (Finster et al, 2013).

There is currently no evidence that ANME possess enzymes or genes of the
canonical dissimilatory SR pathway (Milucka et al, 2013; Wang et al, 2014). Archaeal
sulfate reduction so far has only been observed in few genera of sulfate-reducing
thermophilic archaea that use the canonical SR pathway which was likely obtained from
an ancient bacterial donor (Klein et al, 2001; Klenk et al, 1997). However, a nearly
complete gene set encoding for assimilatory sulfate reduction has been identified in an
ANME-1 draft genome (Meyerdierks et al, 2010). A dissimilatory role of this pathway
cannot be excluded, especially since ANME likely rely on sulfide as sulfur source.
Additionally, genes encoding for a F4-dependent sulfite reductase (Fsr) were identified
on a metagenomic contig assigned to ANME (Hallam et al, 2004). Fsr is found in many
genomes of methanogens where it was shown to be involved in sulfite detoxification
and sulfur assimilation from sulfite (Johnson & Mukhopadhyay, 2005; Johnson &
Mukhopadhyay, 2008). Moreover, Meyerdierks and colleagues (2005, 2010) identified
several expressed, non-canonical heterodisulfide reductase (Hdr) gene clusters missing
CoM-SH/CoB-SH-interacting subunits with potential relevance to sulfate reduction in

ANME.

3.1.3.3 C-type cytochromes
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Cytochromes ¢ are heme-containing electron transfer proteins and important
enzymes involved in microbial sulfur and nitrogen transformations (de Almeida et al,
2011; Lovley, 2017; Simon et al, 2011). Large outer-membrane cytochromes c in
particular have been shown to be involved in extracellular electron transfer by
Geobacter sulfurreducens (reviewed in (Lovley, 2012)). Among archaea, genes encoding
cytochromes c are especially abundant in genomes of metal-reducing species, such as
Ferroglobus placidus or “Ca. Methanoperedens nitroreducens”, but other ANME archaea
also appear to harbor a large diversity of multi-heme cytochromes ¢ (Kletzin et al, 2015;
McGlynn et al, 2015).

The pinkish color of microbial mats from the Black Sea (Figure 7) has been
attributed to cytochromes, presumably of ANME-1 archaea (Michaelis et al, 2002;
Pimenov et al, 1997). McGlynn and colleagues (2015) suggested that large multi-heme
cytochromes (MHC; sometimes with fused S-layer domains) encoded by ANME-2
genomes might be involved in short-range extracellular electron transfer. It is also
conceivable that MHCs increase the metabolic flexibility of ANME by coupling methane
oxidation to electron acceptors other than sulfate, such as iron or manganese (Beal et al,
2009; Ettwig et al, 2016). Furthermore, genomic and transcriptomic studies of the
bacterial TAOM partner, HotSeep-1, have provided evidence that bacterial extracellular
multiheme cytochromes ¢ (possibly in combination with type IV pili) could also be

involved in direct electron transfer between HotSeep-1 to ANME-1.

Figure 7. Fractured chimney-like microbial AOM mat from a Black Sea microbial reef (from
(Michaelis et al, 2002)). The inner part of the structure consists of porous carbonate populated
by a thick microbial mat. The mat is grey-black on the outside; the interior is pinkish in color.
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3.2 Anaerobic oxidation of methane coupled to denitrification

Anaerobic methane oxidation coupled to denitrification is carried out by two
metabolically distinct groups of microorganisms: “Ca. Methylomirabilis oxyfera” of the
NC10 candidate phylum and “Ca. Methanoperedens nitroreducens” of the ANME group.

Nitrite-dependent AOM is carried out by bacteria of the candidate phylum NC10
(Raghoebarsing et al, 2006). The main habitat of NC10 bacteria appears to be anoxic
freshwater systems (Deutzmann & Schink, 2011; He et al, 2016; Kojima et al, 2012)
although NC10 have also been identified in marine oxygen minimum zones (Padilla et
al, 2016). The first described member of NC10, “Ca. Methylomirabilis oxyfera”, has been
shown to utilize a typical aerobic methane oxidation pathway for methane oxidation
that includes the oxygen-dependent MMO enzyme (Ettwig et al, 2010a). In contrast
most MOB, NC10 bacteria related to “Ca. Methylomirabilis oxyfera” are autotrophs. They
do not derive biomass carbon from methane and fix CO, via the autotrophic Calvin-
Benson-Bassham cycle (Ettwig et al, 2010a). “Ca. M. oxyfera” has been shown to couple
methane oxidation to nitrite reduction (to N, gas) via a unique O,-producing
denitrification pathway. It is believed that molecular oxygen is formed by NO
dismutation to N, and O,, which is apparently catalyzed by an unusual membrane-
bound nitric oxide reductase that is speculated to work as NO dismutase (Ettwig et al,
2010b; Ettwig et al, 2012). Intracellular oxygen production via denitrification is believed
to be the defining feature of NC10 that allows these bacteria to perform methane
oxidation by pMMO under anaerobic conditions.

Nitrate-dependent AOM is carried out by the archaeon “Ca. Methanoperedens
nitroreducens” (sometimes referred to as ANME-2d), which belongs to the lineage of
ANME-2 that also harbors S-AOM-associated ANME groups (Haroon et al, 2013). “Ca. M.
nitroreducens” is similar to S-AOM-associated ANME as it also utilized the reverse
methanogenesis pathway for methane oxidation. However, “Ca. M. nitroreducens”
performs AOM coupled to nitrate reduction (to nitrite) by itself as it possesses a nitrate
reductase (Arshad et al, 2015; Haroon et al, 2013). Moreover, it has been recently shown
that “Ca. M. nitroreducens” is also capable of metal ion-dependent AOM (i.e. Fe3**, Mn*")

(Ettwig et al, 2016).
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In addition to these microorganisms, denitrification by aerobic MOB is an
emerging topic in methanotroph research and has been introduced in the respective
section that covers aerobic methanotrophs. Methane oxidation by MMO in these
microorganisms apparently still relies on exogenous molecular oxygen, which makes

them distinctly different from NC10 and “Ca. Methanoperedens nitroreducens”.
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Aims and Outline

The importance of methane-oxidizing microorganisms in limiting emissions of
methane, a potent greenhouse gas, from aquatic environments cannot be overstated.
One could even argue that it is hard to imagine how different Earth’s climate and
ecosystems would be without these methane-devouring microorganisms. Despite their
importance, relatively little is known about their individual physiology since many
methane-oxidizing microorganisms are not available for study in pure culture. The aim
of this thesis was to gain a better understanding of the physiology and ecology of
several groups of methane-oxidizing microorganisms found in freshwater and marine
systems. Throughout this thesis, genome-centric functional metagenomics was the
main tool used to study these microorganisms, which allowed us to infer and in some
cases unravel their physiology in the absence of pure cultures. Furthermore, we
combined this approach with a variety of other analytical and experimental techniques
to learn more about their habitat and ecophysiology. The results and data generated
during this thesis will also serve as foundation for future research to expand and build
upon. This will allow us to better understand and predict the role methane-oxidizing
microorganisms play in a changing environment increasingly affected by human
activity.

In Chapters 2 and 3 of this thesis, we investigate the methanotrophic community
in two Swiss stratified lakes (Lake Zug and Rotsee). These eutrophied lakes are
seasonally or permanently stratified and harbor a diverse community of proteobacterial
aerobic methanotrophs (Oswald et al, 2016). The role of Crenothrix bacteria in the
methane cycle in these freshwater lakes is explored in Chapter 2. These filamentous
bacteria have been known as contaminants of drinking water supplies for more than a
century; however, their ecological relevance has remained unclear. Using stable-isotope
labeling incubations in combination with bulk and single-cell imaging mass
spectrometry as well as metagenomics, we highlight several aspects pertaining to their
physiology and their role in the environment. In Chapter 3, we returned to Lake Zug in a
different year to investigate the methanotrophic community and discovered highly
abundant methane-oxidizing bacteria of the candidate phylum NC10. These

methanotrophic bacteria, which were not detected in previous years ((Oswald et al,
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2016), Chapter 2), have been described as widespread but rare members of the
methanotrophic bacterial community in lakes. We highlight their metabolic and
functional activity using metagenomics and metatranscriptomic techniques and
suggest a niche for NC10 in the lacustrine methane and nitrogen cycle.

In contrast to freshwater environments, sulfate-dependent anaerobic oxidation
of methane (S-AOM) is the predominant process in marine environments that controls
the flux of methane from sediments. This microbial process is mediated by a consortium
of methanotrophic archaea and associated bacteria. Despite several decades of
research, the individual physiology and relationship between these two different
microorganisms has only been partially elucidated. In Chapter 4, we describe an
genome-centric functional metagenomics approach to obtain the genomic blueprint of
S-AOM-associated microorganisms from an enrichment culture. By using gene
transcription profiles and detection of enzymes by metaproteomics, we reconstructed
important metabolic pathways of both microorganisms that underlie their functional
activity. Based on this, we evaluated different hypotheses regarding the physiology and
interaction of microorganisms involved in S-AOM.

Previous research has suggested that S-AOM-associated microorganisms not
only play a role in sedimentary biogeochemical cycles of carbon and sulfur, but that
their influence might also extends to the cycles of phosphorus and iron. In Chapter 5,
we trace the fate of inorganic phosphate in a highly active AOM enrichment culture
incubated with radiolabeled, inorganic phosphate (**P-phosphate). Additionally, we
used scanning transmission electron microscopy coupled to energy dispersive x-ray
analysis (STEM-EDX) to visualize and analyze electron-dense particles within AOM-
associated bacteria and use the combined results to speculate on the underlying

mechanism that might cause the observed cycling of inorganic phosphate.
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Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth’s natural
protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a
substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria
related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of
drinking water supplies since 1870, but their role in the environmental methane removal has remained
unclear. While oxidizing methane, these organisms were assigned an ‘unusual’ methane mono-
oxygenase (MMO), which was only distantly related to ‘classical’ MMO of gamma-proteobacterial
methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-
proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass
spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as
under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of
oxygen as well as for the reduction of nitrate to N,O. The observed abundance and planktonic growth
of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in

stratified lakes and should be considered in the context of environmental removal of methane.
The ISME Journal (2017) 11, 2124-2140; doi:10.1038/ismej.2017.77; published online 6 June 2017

Introduction

Freshwater lakes represent large natural sources of
methane and contribute more to methane emissions
than the oceans despite their comparably smaller
area (Bastviken et al, 2004). Highest rates of
methane removal are usually measured at the
oxyclines, either in the water column or in the
sediment. Lake Rotsee and Lake Zug in Central
Switzerland are typical examples of temperate lake
systems with methane fluxes across the oxycline of
13+3 mmol and 10+3 mmol m~2d~", respectively
(Oswald et al., 2015, 2016). Both lakes are stratified,
with methane-rich hypolimnia, but whereas the
shallow Lake Rotsee overturns annually, the deep
Lake Zug remains stratified throughout the year.
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In both lakes, the vast majority of the upward-
diffusing methane is removed at the base of the
oxycline at in situ oxygen concentrations in the low
micromolar range (Oswald et al, 2015, 2016).
Methane oxidation at the oxycline was shown to be
coupled to the reduction of residual or in situ-
produced oxygen, but there were also indications for
methane-oxidizing activity under oxygen-deficient
conditions (Oswald et al., 2015, 2016).

Abundant gamma-proteobacterial methane-oxidiz-
ing bacteria (gamma-MOB) were shown to be
involved in methane removal in both lakes (Oswald
et al., 2015, 2016). Gamma-MOB are considered
aerobes requiring oxygen for methane activation,
even though some cultured representatives can
perform methane oxidation under denitrifying con-
ditions (Kits et al., 2015a,b). Environmentally
relevant representatives of gamma-MOB in lakes
and other freshwater habitats belong to the ‘classical’
genera of Methylobacter, Methylomonas, Methylo-
sarcina and Methylomicrobium (Boschker et al.,
1998; Bodelier et al., 2013; Oshkin et al., 2015),
and all possess particulate methane monooxygenase


http://dx.doi.org/10.1038/ismej.2017.77
mailto:jmilucka@mpi-bremen.de
http://www.nature.com/ismej

(pMMO) as the key methane-oxidizing enzyme
(Bowman, 2005). In Lake Rotsee and Lake Zug,
unicellular gamma-MOB represented a stable com-
munity at the oxycline. The bacteria showed rapid
growth on methane as evidenced by the increase in
cell abundances and the uptake of "*C-methane into
their biomass (Oswald et al., 2015, 2016).

In these studies, gamma-MOB were identified by
fluorescence in situ hybridization using the 16S
rRNA-targeted oligonucleotide probes Mgamma84
+705. Interestingly however, these probes do not
bind to members of a potentially important subgroup
of gamma-proteobacterial MOB, the putative
family Crenothrichaceae. Contrary to ‘classical’
MOB, these gamma-MOB are multicellular and
filamentous. So far, only two of these bacteria
have been documented in literature, Crenothrix
polyspora and Clonothrix fusca, and both were
retrieved from groundwater (Stoecker et al., 2006;
Vigliotta et al., 2007). Sporadically, environ-
mental occurrence of Crenothrix is reported in
literature based on retrieved 16S rRNA or pmoA
sequences (Dorr et al., 2010; Drewniak et al.,
2012), but its role in methane cycling has remained
unclear.

The metabolism of Crenothrix has been a matter of
debate since its first description as ‘Brunnenfaden’
(‘a well thread’; Cohn, 1870). Initially, Crenothrix/
Clonothrix filaments were considered to belong to
the ‘iron bacteria’ due to the presence of metal
particles in their sheaths (Roze, 1896; Jackson, 1902;
Molisch, 1910). This belief was challenged by
studies that failed to observe iron encrustation in
Crenothrix/Clonothrix filaments (Kolk, 1938; Wolfe,
1960), and the later discovery of membrane invagi-
nations has prompted suggestions for a methano-
trophic lifestyle (Volker et al., 1977). Eventually, the
capacity to oxidize methane was experimentally
confirmed on filaments retrieved from man-
made habitats (Stoecker et al., 2006; Vigliotta et al.,
2007). Interestingly, C. polyspora was reported to
possess an ‘unusual’ pMMO, which was only
distantly related to ‘classical’ MMO of gamma-
proteobacterial methanotrophs (Stoecker et al.,
2006), and has now been recognized to cluster
together with the ammonium monooxygenases of
completely nitrifying ‘comammox’ bacteria (Daims
et al., 2015; van Kessel et al., 2015).

Here we investigated the occurrence and involve-
ment of these filamentous bacteria in methane
oxidation at and below the oxyclines of Lake Rotsee
and Lake Zug. We performed stable isotope labeling
experiments followed by single-cell imaging to
explore the role of these microorganisms in environ-
mental methane cycling, and metagenomic analyses
to investigate their metabolic potential with respect
to aerobic and anaerobic respiration. For compar-
ison, we also performed metagenomic analysis
of a sample from Wolfenbiittel waterworks sand
filter reportedly containing high proportions of
C. polyspora.
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Materials and methods

Geochemical profiling in Lake Rotsee

Profiling was done in October 2014 at the deepest
point (16 m depth, 47°04.259'N, 8°18.989°E).
A multi-parameter probe was used to measure
photosynthetically active radiation (PAR; LI-193
Spherical Underwater Quantum Sensor, LI-COR,
Lincoln, NE, USA) along with conductivity, turbid-
ity, depth (pressure), temperature and pH (XRX 620,
RBR, Ottawa, ON, Canada). Dissolved oxygen was
simultaneously monitored online with normal and
trace micro-optodes (types PSt1 and TOS7, Presens,
Regensburg, Germany) with detection limits of 125
and 20nwm, respectively, and a response time of 7 s
(Kirf et al., 2014).

Water samples for dissolved methane analysis
were retrieved from distinct depths with a Niskin
bottle. Serum bottles (120 ml) were filled completely
without bubbles or headspace through a gas-tight
outlet tubing allowing water to overflow. Solid
copper chloride [Cu(I)Cl] was immediately added
in excess to the water samples and the bottles were
crimped. Before analysis, a 30 ml headspace was set
with N, and after overnight equilibration methane
concentrations were measured in the headspace with
a gas chromatograph (GC; Agilent 6890 N, Agilent
Technologies, Santa Clara, CA, USA) equipped with
a Carboxen 1010 column (30 m x 0.53 mm, Supelco,
Bellefonte, PA, USA) and a flame ionization detector.
Methane concentrations in the water phase were
back-calculated according to (Wiesenburg and
Guinasso, 1979). Stable carbon isotopes of methane
were determined in the same headspace by isotope
ratio mass spectrometry with a trace gas instrument
(T/GAS PRE CON, Micromass UK Ltd., Wilmslow,
UK) coupled to a mass spectrometer (GV Instru-
ments, Manchester, UK; Isoprime, Stockport, UK).
Isotopic ratios are given in 8-notation relative to the
Vienna Pee Dee Belemnite reference standard.

Oxygen, PAR, methane concentration and methane
isotope profiles for the sampling campaign in October
2014 are shown in Supplementary Figure 1. Geo-
chemical profiles from other Lake Rotsee campaigns
are reported in Oswald et al. (2015).

Lake Rotsee methane oxidation rates

Methane oxidation rates were measured in incuba-
tions set up in October 2014, with water from the 7 m
depth (oxycline), and from 8m depth (with no
detectable oxygen). Water was collected with a
Niskin bottle and filled into sterile 11 Schott bottles
without a headspace, closed with butyl stoppers and
kept cold and dark until further handling. In the
laboratory, 120 ml was distributed into 160 ml serum
bottles in an anoxic (N,-containing) glove box
(Iner Tec, Grenchen, Switzerland), closed with butyl
stoppers and crimped. Each incubation was supple-
mented with **C-labeled methane (99 at%, Campro
Scientific, Berlin, Germany) and '*C-methane to

2125

The ISME Journal



Crenothrix in lakes
K Oswald et al

2126

reach 2 bar overpressure, resulting in ~ 1.8 mmol 1"
CH, in the water phase and 50 at% 'C labeling
percentage. For comparison, in situ methane con-
centrations at 7 and 8 m depth were ca. 15 and
35umoll~" (Supplementary Figure 1). Duplicate
bottles were incubated at 6 °C under dark and light
conditions along with a control (sterile filtered lake
water). Methane oxidation was monitored during an
incubation period of 7 days as production of **CO..
Anoxically withdrawn water samples (2 ml) were
transferred into 6 ml Exetainers (Labco, Lampeter,
UK), fixed with 200 pl zinc chloride (50% w/v) and
acidified with concentrated H;PO, (100 pl). Isotopic
ratios of CO, were determined in the headspace with
a preparation system (MultiFlow, Isoprime) coupled
to an isotope ratio mass spectrometry (Micromass,
Isoprime). Subsequently, methane oxidation rates
were calculated as described previously (Oswald
etal.,, 2015). These rates are shown in Supplementary
Figure 1. As these incubations were unamended
(apart from methane addition), aerobic methane
oxidation in these incubations was presumably sus-
tained solely by oxygenic photosynthesis (Milucka
et al., 2015; Oswald et al., 2015). At selected time
points, sub-samples were also taken for catalyzed
reporter deposition fluorescence in situ hybridiza-
tion (CARD-FISH) analysis. These data are shown in
Supplementary Figure 3. Nanometer-scale secondary
ion mass spectrometry (NanoSIMS) and metagenome
analyses reported for Lake Rotsee (shown in Figure 1
and Supplementary Figure 2) were performed on
samples collected on a previous sampling campaign
in August 2013 (rates and other data from this
campaign are reported in Oswald et al. (2015)).

Lake Zug nitrate addition experiment

The sampling campaign was carried out in October
2013. Water samples from the anoxic 160m depth
were collected with a Niskin bottle, filled into sterile
Schott bottles, closed with a stopper and stored as
described above. The water was distributed into sterile
160 ml serum bottles (a 120ml) in an N, glove box
(Mecaplex, Grenchen, Switzerland) as described in
detail in Oswald et al. (2016). **C-labeled methane (99
at%, Campro Scientific) was supplied at a ~20%
labeling percentage. A 2 bar methane overpressure
was set using "*C-methane. One set of duplicate bottles
received no further addition and served as a control
and one set of duplicate bottles was amended with
NO; (from a sterile anoxic 100mmoll~* stock
solution) to a final concentration of 50 pmol 1. Bottles
were incubated in the dark under in situ temperatures
(~5°C) for 16 days. At regular intervals, bottles were
subsampled for '*CO, measurements in order to
determine methane oxidation rates. For this, anoxically
withdrawn water samples (2 ml) were transferred into
6 ml Exetainers, fixed with zinc chloride and acidified
with concentrated H;PO,. Isotopic ratios of CO, were
determined in the headspace using a Finnigan Gas-
Bench II attached to an isotope ratio mass spectrometer
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(IRMS; Finnigan Delta Plus, Thermo Fisher Scientific,
Waltham, MA, USA). Subsequently, methane oxida-
tion rates were calculated as described previously
(Oswald et al., 2015). At selected time points, sub-
samples were also taken for CARD-FISH and nano-
SIMS analyses. An early time point (T'= 2d) was
analyzed by nanoSIMS to obtain data for the calcula-
tion of methane uptake rates reported in Table 1. FISH
and nanoSIMS images from Lake Zug nitrate incuba-
tion (Figure 1; Supplementary Figure 6) originate from
the last time point of the incubation (T'=16 d). The
sample for metagenome analysis (sample Z3) was also
taken at this time point. Additionally, an in situ water
sample from 160m was also used for metagenome
analysis (sample Z1). During this sampling campaign,
no incubations with added oxygen were performed.

O,-supplemented incubations referred to in this
manuscript were only performed during a sampling
campaign in June 2014 and are described in detail in
Oswald et al. (2016), where also the corresponding
geochemical profiles and methane oxidation rates
from relevant depths and incubations are reported.
Briefly, O,-supplemented incubations were set up as
described above, with the difference that instead of
nitrate, sterile air was injected to the incubations to
reach final O, concentrations of ca. 80 pmol 1~ (‘low
0,’) and ca. 200 pmol1~" (‘high O,’), respectively.
Incubations were subsampled at regular intervals for
methane oxidation rates, CARD-FISH and nanoSIMS
analyses. The CARD-FISH and nanoSIMS analyses
shown in Figure 1 were performed on samples taken
from 160 m incubation after T=2 d. The sample for
metagenome analysis was taken at the last time point
of the ‘low O,’ 160 m incubation (T=11 d).

Catalyzed reporter deposition fluorescence in situ
hybridization

Formaldehyde- (2% (v/v) final concentration) fixed
water samples were incubated for 30min at room
temperature before being filtered onto polycarbonate
GTTP filters (0.2pm pore size; Merck Millipore,
Darmstadt, Germany). For nanoSIMS analysis, samples
were filtered onto Au or Au/Pd-coated GTTP filters
(0.2um pore size). Permeabilization with lysozyme,
peroxidase inactivation, hybridization with specific
oligonucleotide probes labeled with horseradish per-
oxidase in combination with tyramide signal amplifi-
cation (Oregon Green 488) and DAPI counter staining
was performed as described previously (Pernthaler
et al., 2002). An overview of probes used (Biomers,
Ulm, Germany) is included in Supplementary Table 2.
For cell counts and biovolume determinations, one
filter was analyzed for each sample. Hybridized
filaments (using probe Mgamma669) were enumerated
in randomly selected fields of view with a confocal
laser scanning microscope (SP5 DMI 6000, Leica,
Wetzlar, Germany). For biovolume calculations, length
and width of >15 filaments in > 10 fields of view were
then measured directly in confocal micrographs using
LAS AF Lite software (Leica). Values for the cell counts
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Figure 1 Methane-dependent growth of Crenothrix in Lake Rotsee and Lake Zug. (a) Crenothrix in the Lake Rotsee oxic incubation
visualized by CARD-FISH (green; counterstained by DAPI in blue) with a specific probe Creno445 (Stoecker et al., 2006). A small coccoid
cell targeted by the probe (marked by the asterisk) might represent a gonidial cell, which Crenothrix is reportedly capable of producing
(Volker et al., 1977). (b) The corresponding '*C/**C nanoSIMS image shows homogeneous **C enrichment throughout the cell filament.
The small coccoid cell is also significantly enriched, albeit less. (¢) The corresponding **S/**C nanoSIMS image showing distribution of
organic material on the filter. (d) Putative Crenothrix filaments in the Lake Zug oxic incubation visualized by DAPI (blue) and CARD-FISH
(green) with probe Mgamma669. (e) Corresponding '*C/**C and (f) **S/**C nanoSIMS images. Note the fragmented nature of the Crenothrix
filaments and the attached small (unidentified) bacteria. (g) Putative Crenothrix filaments in the Lake Zug anoxic incubation visualized by
DAPI (blue) and CARD-FISH (green) with probe Mgamma669. (h) Corresponding "*C/**C and (i) **S/**C nanoSIMS images.

and methane uptake rates of unicellular gamma-MOB
cells were taken from Oswald et al. (2015) and Oswald
et al. (2016).

Nanometer-scale secondary ion mass spectrometry

Areas of interest containing positive CARD-FISH
hybridization signals were marked with a laser
micro-dissection microscope (DM 6000, Leica Micro-
systems, Mannheim, Germany). Laser-marked areas
were analyzed by nanoSIMS (NanoSIMS 50 1, Cameca,
Paris, France) at the MPI Bremen as described
previously. For Lake Rotsee (light incubation, 9m
depth), 12 and 26 filaments were analyzed in five
fields of view after 2 and 7 days of incubation,

respectively. For the Lake Zug low and high O,
addition experiments, 19 and 13 filaments were
measured in 9 and 7 fields of view, respectively, after
2 days of incubation. For the Lake Zug nitrate addition
incubation, 6 filaments were measured in 5 fields of
view after 2 days of incubation and 7 filaments were
measured in 5 fields of view after 16 days of
incubation. Obtained secondary ion images were drift
corrected, accumulated and processed with Look@Na-
noSIMS (Polerecky et al., 2012).

Biovolume and carbon assimilation rates
The biovolume of individual Crenothrix filaments
was calculated from their measured length and width
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by assuming a cylindrical shape. The length and the
width of filaments were determined from the CARD-
FISH images that were used for cell counting. Due to
the varying length of filaments, an average biovolume
of Crenothrix was calculated and is reported in
Table 1. The ‘average biovolume determined from
CARD FISH’ was calculated as an average of
biovolumes of individual filaments hybridized with
a Crenothrix-targeting probe (Mgamma669 or
Creno445) at the start of the respective incubation
and is reported with the s.d. ‘Total’ Crenothrix
biovolume reported in Table 1 and Supplementary
Figure 4 was obtained by multiplying the average
filament biovolume by the number of filaments per ml
of water. For comparison, the biovolume of unicel-
lular gamma-MOB cells was calculated from total cell
counts and by assuming an average spherical cellular
diameter of 2 pm.

Cellular "*C at % were calculated from 'C/**C
values of individual ROIs (regions of interest).
Regions of interests were drawn to outline single
Crenothrix cells (for example, Figures 1h and i),
whole filaments (Figures 1e and f) or parts of
filaments (Figures 1b and c). Both the background
(cell-free polycarbonate filter in the same field of
view) and the **C enrichment of all cells in every field
of view was evaluated and compared for all measure-
ments. Rates of methane carbon uptake (fmol
C cello;d™") of Crenothrix and unicellular gamma-
MOB were calculated from the '*C excess of the
measured cells using a conversion factor of 6.4 fmol
C pm~? reported in Musat et al. (2008). These uptake
rates were corrected for the labeling percentage and
the incubation time. The methane uptake rates were
calculated only for filamentous cells, which were
stained with the Creno445 or Mgamma669 probe.
Hybridized single cells (such as in Figures 1a—c) were
not considered in the calculation.

DNA extraction, 16S rRNA gene amplicon sequencing
and analysis
Two in situ water samples from Lake Rotsee were used
for 16S rRNA gene amplicon sequencing. One was
collected from the oxycline (9m depth) during a
campaign in August 2013 and the other from anoxic
water (8 m depth) during a campaign in October 2014
(Supplementary Table 4). Volumes of ca. 250 ml were
filtered onto polycarbonate Nuclepore Track-Etched
Membrane filters (0.2 pm pore size; Whatman, Maid-
stone, UK). Filters were stored at —80°C until DNA
was extracted with the UltraClean Soil DNA Isolation
Kit (MoBio Laboratories, Carlsbad, CA, USA). Extrac-
tion procedure was performed according to manufac-
turer’s instructions with the following adjustment:
vortexing with the Bead Solution was reduced to 30s
with subsequent incubation on ice (30 s), and this cycle
was repeated four times.

The V3-V4 regions of the 16S rRNA gene were
targeted with primer pair 341F (5'-CCTACGGGNG
GCWGCAG-3’) and 805 R (5'-GACTACCAGGGTATC
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TAATC-3’). The forward primers contained unique
identifier sequences at the 5’-end for each sample to
allow for multiplex sequencing. Ten separate PCR
reactions (25 pl volume) were set up for each sample
including both forward and reverse primers (500 nm
each), deoxyribose nucleotide triphosphates (ANTPs;
800 M), 1 x Taq reaction buffer, Tag DNA polymer-
ase (0.25U) and DNA extracts of the respective
samples (0.5—1pl). The reactions proceeded as
follows: initial denaturation (3 min at 95°C), 25
cycles of denaturation (30s at 95°C), annealing
(30s at 54°C) and elongation (90s at 72°C); and
final elongation (10 min at 72 °C). Parallel reactions
were combined and purified with the QIA quick PCR
Purification Kit (Qiagen, Hilden, Germany) following
manufacturer’s instructions, with a final elution in
1 x TE buffer (30 pl; 10 mm Tris-HCI (pH 8.0)+1 mm
EDTA). The DNA was further purified with a gel
using SYBR Green I Nucleic Acid Gel Stain (Invitro-
gen, Carlsbad, CA, USA) followed by gel extraction
with QIAquick Gel Extraction Kit (Qiagen) according
to the manufacturer’s protocol. Extract concentra-
tions were measured fluorometrically using the
Qubit dsDNA HS Assay Kit and the Qubit 2.0
Fluorometer (Invitrogen). Illumina sequencing was
performed on the amplicons at the Max Planck-
Genome Centre (Cologne, Germany).

16S rRNA gene amplicon paired-end reads were
trimmed (right end only, trim quality threshold =10)
and merged (20 bases minimum overlap) using BBmap
software version 35.43 (sourceforge.net/projects/
bbmap). Reads were then separated by barcode and
trimmed (minimum length =300, maximum homo-
polymer length =8, maximum number of ambiguous
bases =0, minimum average quality score allowed over
50bp window=20) using mothur v.1.36.1 (Schloss
et al., 2009). The separated reads were processed using
SILVAngs and standard parameters (Quast et al., 2013).

Lake metagenome sequencing and assembly

Two in situ water samples (Lake Rotsee, 9m depth,
August 2013 (sample R1) and Lake Zug, 160 m depth,
October 2013 (sample Z1)) and four end time points of
incubations (Lake Rotsee, O,-supplemented (sample
R2), Lake Rotsee, light (sample R3), Lake Zug, low O,-
supplemented (sample Z2), Lake Zug, anoxic, nitrate-
supplemented (sample Z3); see Supplementary Tables 3
and 4 for additional sample information) were analyzed
by [lumina sequencing. The following water volumes
were filtered onto polycarbonate Nucleopore Tracked-
Etched membrane filters (0.2 pm pore size; Whatman)
and stored at —80 °C: 250 ml for in situ samples (R1 and
71), 50 ml for Lake Rotsee incubations (R2 and R3) and
40ml for Lake Zug incubations (Z2 and Z3). DNA was
extracted from cut-up filters using the PowerSoil DNA
isolation kit according to manufacturer’s instructions
(MoBio Laboratories). DNA from lake Zug was frag-
mented by sonication (MiSeq: 600—700 bp; HiSeq2500:
300 bp) using a Covaris S2 sonicator (Covaris, Woburn,
MA, USA). The library was prepared using Ovation
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Ultra Low Library Systems V1 (for MiSeq) or V2 (for
HiSeq2500) kits (NuGEN Technologies, San Carlos, CA,
USA) and paired-end sequencing (2 x 300 or 2 x 150 bp)
was performed using the Ilumina MiSeq (2 x 300 bp)
or HiSeq2500 (2x150bp) platform (Ilumina Inc.,
San Diego, CA, USA). DNA from Lake Rotsee was
fragmented by sonication (350bp) using a Covaris S2
sonicator (Covaris), the library was prepared using
NEBNext Ultra DNA Library Prep Kit for Illumina
(New England Biolabs, Ipswich, MA, USA) and paired-
end sequencing (2 x 150 or 2 x 100 bp) was performed
using the Illumina HiSeq2500 or 3000 platform
(Ilumina Inc.). Both MiSeq and HiSeq sequencing
was performed by the Max Planck-Genome-centre,
Cologne, Germany (http://mpgc.mpipz.mpg.de/home/;
Supplementary Table 3).

Sequences were quality checked using FastQC
(Andrews, 2010) and trimming, as well as adapter
removal was done using Trimmomatic 0.32 and
parameters MINLEN:20 ILLUMINACLIP:TruSeq3-
PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEN:50 (Bolger et al., 2014).
Metagenome assembly of sequences from the Lake
Zug incubation (anoxic, nitrate-supplemented (Z3;
Supplementary Tables 3, 4)) was performed using
SPAdes 3.5.0 (Bankevich et al., 2012) with mismatch
corrector enabled and default parameters.

Sand filter Crenothrix metagenome sequencing and
assembly
Samples containing high proportions of C. polyspora
filaments were taken from the backwash water of
rapid sand filters of the Wolfenbiittel waterworks
(Germany), which treats a mixture of oxic and anoxic
groundwater. During sampling, Crenothrix filaments
were retained from 600 to 850 liters of backwash
water by either sedimentation or filtration through a
fine-mesh sieve (200 or 400 pm). One sample was
collected in 2004 (on 21 June; sample C) and was
incubated with 500 pmol1~" ammonium for 212 h.
The second sample was collected in 2005 (10
October, sample B) and was incubated at different
methane concentrations for 24 h. It should also be
noted that earlier we deposited one additional partial
and unpublished Crenothrix genome from a sand
filter sample from the Wolfenbiittel waterworks at
IMG (genome ID 3300005627). We did not analyze
that older genome sequence in the course of the
present study, because it originated from the same
site but had been sequenced less deeply than the two
sand filter Crenothrix genomes described here.
After the incubations, samples B and C were
frozen at —20°C and DNA was extracted in 2016
using a phenol chloroform protocol (Zhou et al,
1996) including two bead-beating steps. Paired-end
sample libraries were prepared using Illumina
Nextera DNA Library Preparation Kit (Illumina
Inc.) and sequenced at Aalborg University (Denmark)
using an Illumina MiSeq with MiSeq Reagent Kit v3
(2x301bp; Supplementary Table 3). Paired-end
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reads were imported to CLC Genomics Workbench
v. 8.0 (CLCBio, Aarhus, Denmark) and trimmed
using a minimum phred score of 20, a mini-
mum length of 50bp, allowing no ambiguous
nucleotides and trimming off Illumina sequencing
adaptors if found. All trimmed paired-end metagen-
ome reads were assembled using CLC’s de novo
assembly algorithm, using a kmer of 63 and a
minimum scaffold length of 1 kbp.

Metagenome binning, reassembly and annotation
Binning of contigs of the Lake Zug metagenomic
assembly (sample Z3, Supplementary Table 3) was
performed by exploiting differential contig coverage
from three sequenced metagenomic data sets: Z1 (Lake
Zug, in situ), Z2 (Lake Zug, O,-supplemented incuba-
tion) and Z3 (Lake Zug, anoxic, nitrate-supplemented
incubation) as described previously (Albertsen et al.,
2013) and implemented in the mmgenome R package
(http://madsalbertsen.github.io/mmgenome/; Karst et al.,
2016). Only contigs longer than 500 bp were used and
the average coverage of each contig was computed
directly using BBmap 35.43 (http://sourceforge.net/
projects/bbmap/) with default parameters. Prodigal
2.60 (Hyatt et al., 2010) in metagenomic mode (-p meta)
and standard parameters was used to predict open
reading frames, which were translated to amino-acid
sequences and subsequently searched for using HMMER
3.1b (Eddy et al, 2013) against a set of 107 hidden
markov models of essential single-copy genes (Dupont
et al, 2012) using default settings and trusted cutoff
(-cut_tc) enabled. Protein sequences coding for essential
single copy genes were searched against NCBI non-
redundant database (retrieved in August 2015) using
BLASTP (Camacho et al., 2009) and an e-value cutoff of
10~°. The taxonomy (class level) of each essential single-
copy gene was assigned using MEGAN5 (Huson et al.,
2011; with the previously generated BLASTP xml file as
input) and the mmgenome script ‘hmm.majority.vote.pl’.
Bowtie2 (Langmead and Salzberg, 2012) with standard
settings was used to map reads to contigs and the
number of paired-end connections between separate
contigs was calculated from the SAM file using the
mmgenome script ‘network.pl’.

Differential coverage of contigs between the two
sand filter Crenothrix metagenomes (Supplementary
Figure 8) and between the Lake Zug metagenomes
(Supplementary Figure 7), as well as paired-end
connections between separate contigs were used to
extract genomic bins from the metagenome using the
mmgenome R package (http://madsalbertsen.github.
io/mmgenome/; Karst et al., 2016). Reads used for
the initial assembly were mapped to the binned
contigs using BBmap of the BBmap package 35.43
(http://sourceforge.net/projects/bbmap/) using strin-
gent settings (approximate minimum identity = 0.98)
or CLC (sand filter Crenothrix). Mapped reads were
reassembled (only for the lacustrine Crenothrix)
using SPAdes 3.5.0 (Bankevich et al., 2012) with
mismatch corrector enabled and default parameters.
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Quality of the reassembled bins was assessed using
CheckM 1.05 running the lineage-specific workflow
(Parks et al., 2015). Annotation of the Crenothrix D3
draft genome was performed using RAST (Aziz et al.,
2008). CDS prediction and automated pre-annotation
of the two Wolfenbiittel sand filter Crenothrix
genome sequence bins were performed using the
PROKKA pipeline (Seemann, 2014) with an in-house
extended protein reference database. The annotation
of key metabolic pathways was manually refined.

The Whole Genome Shotgun project of lacustrine
Crenothrix sp. D3 has been deposited at DDBJ/ENA/
GenBank under the accession MBQZ00000000.
The version described in this paper is version
MBQZ01000000. Reads (Lake Zug and Lake Rotsee)
have been deposited at the Sequence Read Archive
under BioProject PRINA325574. The two sand filter
Crenothrix metagenomic assemblies are available in
the European Nucleotide Archive (ENA) under the
study accession number PRJEB19189.

Phylogenetic analyses

Full-length amino-acid sequences of bacterial PmoA
and AmoA protein sequences were retrieved from
the Integrated Microbial Genomes database (IMG-ER;
Markowitz et al., 2009) using Pfam family PF02461.
Previously published protein sequences of ‘unusual’
PmoA of C. polyspora (accession ABC59822—
ABC59827; Stoecker et al., 2006), partial PmoA of
C. fusca (accession ABL64049; Vigliotta et al., 2007)
AmoA sequences belonging to Candidatus Nitrospira
nitrosa, (accession CUS31358; van Kessel et al.,
2015) as well as Candidatus Nitrospira inopinata
(accession CUQ66826; Daims et al., 2015) were
added to the reference set. After removing duplicate
sequences, protein sequences were aligned using
Clustal Omega 1.2.0 (Sievers et al., 2011) and default
parameters. A phylogenetic tree (135 taxa) was
calculated using RAXML 8.2.6 (Stamatakis, 2014)
and parameters: -f a -k -x 48020621 -p 6809427 -N
100 -T 8 -m PROTGAMMAWAG.

Partial Crenothrix 16S rRNA gene sequences were
retrieved from the Crenothrix draft genomes using
RNAmmer 1.2 (Lagesen et al., 2007), aligned using the
SILVA incremental aligner (SINA) 1.2.11 (Pruesse et al.,
2012) and imported to the SILVA SSU NR99 123
database (Quast et al., 2013) using ARB 6.1 (Ludwig
et al., 2004). Phylogenetic trees of the 16S rRNA gene
sequences were calculated using RAXML 7.7.2 inte-
grated in ARB with the GAMMA model of rate
heterogeneity and the GTR substitution model with
100 bootstraps.

Results and discussion

Crenothrix in Lake Rotsee and Lake Zug

To investigate the potential occurrence of filamen-
tous Crenothrix bacteria in two stratified lakes and
their involvement in the lacustrine methane cycle,
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we first recorded geochemical evidence for methane
oxidation in situ. Concentration profiles recorded in
Lake Rotsee and Lake Zug over the course of 3 years
suggested a zone of methane consumption that
persistently coincided with the oxycline (profiles
from Lake Rotsee 2013 are shown in Oswald et al.
(2015), from 2014 in Supplementary Figure 1;
profiles from Lake Zug 2012, 2013 and 2014 are
shown in Oswald et al, 2016). Concurrently,
incubations with "*CH, confirmed high rates of
methane oxidation at the oxycline (Oswald et al.,
2015, 2016; Supplementary Figure 1). These incuba-
tions were set up under both oxic and anoxic
conditions. In Lake Rotsee, oxic incubation condi-
tions were obtained either by addition of air or solely
by incubation of anoxic water in the light. In the
latter case, aerobic methane oxidation was presum-
ably sustained by oxygenic photosynthesis (Milucka
et al., 2015; Oswald et al., 2015). In Lake Zug, oxic
incubations were solely supplemented with air and
incubated in the dark. These different incubation set
ups reflected the different nature of the two lakes,
Lake Rotsee has a shallow, sun-lit oxycline, whereas
the oxycline of Lake Zug is very deep and dark.
Additionally, anoxic Lake Zug incubations supple-
mented with nitrate were also set up as Lake Zug
had the appropriate environment to test for
methane-dependent denitrification (Supplementary
Table 4).

We then analyzed the microbial community at the
Lake Rotsee oxycline by 16S rRNA gene amplicon
sequencing in 2 consecutive years (2013 and 2014;
Supplementary Figure 2). Along with gamma-
proteobacterial Methylococcaceae (Methylobacter,
Methylocaldum, Methylomonas and Methyloglobu-
lus species), CABC2E06 (an uncultured Methylococ-
cales clone; Wang et al., 2012; Quaiser et al., 2014),
and the marine methylotrophic group, also
sequences belonging to Crenothrix were retrieved.
On the basis of the number of recovered sequences,
Crenothrix-related organisms were 2-5-fold less
abundant than Methylococcaceae and comprised
0.06—0.1% of the total bacterial sequences in situ.
However, it is possible that the true abundance of
Crenothrix in situ was higher than what the 16S
rRNA gene abundances suggest, as, for example,
DNA extraction biases might strongly select against
these thickly sheathed microorganisms.

We could additionally confirm the presence of
Crenothrix in both lakes by CARD-FISH with two
oligonucleotide probes reported to target Crenothrix,
Mgamma669 and Creno445 (Eller et al, 2001;
Stoecker et al., 2006). The more specific oligonucleo-
tide probe Creno445 bound only sporadically, when
the hybridization stringency was strongly reduced
(Supplementary Figure 3). On the other hand, the
Mgamma669 probe hybridized most of the conspic-
uous filaments in all analyzed samples from both
lakes (in situ water as well as incubations, Figure 1;
Supplementary Figure 3) even though some fila-
ments did not hybridize even with this more general
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probe (for example, Supplementary Figures 3a, b).
With both probes, we observed two hybridized cell
morphotypes—filaments and single round cells
(Figure 1; Supplementary Figure 3). Both morpho-
types have been observed for Crenothrix spp.
previously and it has been proposed that the smaller
round cells represent reproductive cells that bud
from the ends of vegetative cell filaments (Cohn,
1870; Volker et al., 1977). However, given the
compromised specificity of the Creno445 probe at
low stringency and the broad specificity of the
Mgamma669 probe, it is also possible that the
hybridized single cells represented other gamma-
MOB, reportedly targeted by the Mgamma669 probe
(for example, Methylobacter or Methylomonas; Eller
et al., 2001). Therefore, the here-reported Crenothrix
cell counts and biovolumes are solely based on
counts of Creno445- or Mgamma669-hybridized
filaments and thus represent conservative estimates.
Overall, in all analyzed incubations from both lakes
total Crenothix biovolumes increased over time
(Supplementary Figure 4b). This confirms that
Crenothrix was growing under both oxic and anoxic
conditions.

Whereas unicellular gamma-MOB had consis-
tently cell sizes of ca. 2 pm, the individual cells in
Crenothrix-like filaments reached an average length
of ca. 5um (Figure 1; Supplementary Figures 3a
and 5a). The average length and width of Lake Rotsee
Crenothrix filaments was ca. 45 and ca. 1.5 pm,
respectively, with individual filaments reaching
>100pm length (Supplementary Figure 3). Fila-
ments were often intertwined and bunched together,
as observed previously (Cohn, 1870; Volker et al.,
1977). In Lake Rotsee, the biovolume of Crenothrix
was about eight-fold higher than that of unicellular
gamma-MOB at depths corresponding to the highest
observed methane oxidation rates (in 2012 and 2013;
Supplementary Figure 4a). Only in 2014 unicellular
gamma-MOB biomass contribution was higher
than that of Crenothrix (Supplementary Figure 4).
We speculate that these differences might be con-
nected to the complex life cycle of Crenothrix
(Supplementary Discussion). In Lake Zug, the fila-
ments were shorter but more consistent in terms of
length, reaching an average length and width of ca.
28 and 1.4 pm (in 2013) and ca. 20 and ca. 1.4 pm (in
2014), respectively.

Methanotrophic growth of Crenothrix

To confirm that the observed cell growth (that is,
increase in cell numbers and biovolume over time;
Supplementary Figure 4b) was methane-derived,
samples from the "*CH,-supplemented incubations
were further analyzed by nanoSIMS. Filamentous
bacteria hybridized with the Mgamma669 probe
consistently constituted the highest "*C-enriched
population in all three investigated incubations
(Lake Rotsee oxic, Lake Zug oxic and Lake Zug
anoxic; Figure 1; Supplementary Figure 5). The **C
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enrichment confirmed that *CH, was assimilated
into cell biomass, such as is common for gamma-
proteobacterial methanotrophs (Trotsenko and
Murrell, 2008). In some of the images, fragmentation
of filaments into single vegetative cells was apparent,
even though the uptake of '*C appeared homoge-
nously spread throughout the whole filament. In
both lakes, Crenothrix filaments appeared to be
colonized by other non-identified bacteria, which
did not show comparably strong enrichment in **C
and might thus represent heterotrophic epibionts
(Figure 1). In contrast, the single round -cells
(hybridized with Mgamma669 probe) were similarly
enriched in "C as the Crenothrix filaments
(Figures 1a—c), supporting the speculation that these
cells belong to methanotrophic bacteria and might
potentially represent reproductive Crenothrix cells.

In the Lake Rotsee oxic incubation, the uptake of
methane-derived carbon by Crenothrix filaments was
comparable to that of ‘classical’ unicellular gamma-
MOB (**C enrichment of 22 +4.8 at % and 29+4.1 at
%, respectively; Table 1; Figure 1; Supplementary
Figure 2). However, due to its larger biovolume
Crenothrix assimilated ca. 4-6-fold more methane
than the ‘classical’ gamma-MOB in the same incuba-
tion (1.73 or 1.18 pmol methane 17'd~' and
0.27 pmol methane 17" d~", respectively; Table 1).
These numbers are based on average filament
biovolumes and cell counts determined by CARD-
FISH at the beginning of the incubation and do not
take into account any increase in cell numbers over
time, as the incubation conditions might have
differently affected the growth of the different
MOB. However, even if we take into account the
increase of cell numbers over time, overall contribu-
tion of Crenothrix to methane uptake in Lake Rotsee
was still higher than that of the unicellular gamma-
MOB, even though the difference was not so
pronounced (ca. 1.4 higher based on T, cell
counts).

Crenothrix filaments in Lake Zug oxic incubations
were also active and assimilated methane at rates
of ca. 0.04pmol methane 1°'d-' (Table 1;
Figures 1d—f). This is much lower than the overall
contribution of Crenothrix in Lake Rotsee, which is
largely due to their lower abundance (1.1E+03
cellsper ml) and smaller average biovolume (ca.
30 pm®).

Additionally, Crenothrix was also active in our
anoxic denitrifying incubations where not enough
oxygen was present to account for measured
methane oxidation rates (2.7pmol 17'd~' ™CO,
produced in "NOs-supplemented incubation, a ca.
10-fold increase compared to control incubation
without any added electron acceptor (0.234 pmol
I=*d~* "CO, produced)). The methane-dependent
growth under oxygen-deficient conditions was evi-
denced as cell biomass enrichment in both **C (from
¥C-CH,; Figures 1g—i) and "N (from '°N-nitrate;
Supplementary Figure 6), even though the methane
uptake rates were somewhat lower (0.03 pmol



methane 17" d~") than those in incubations supple-
mented with oxygen (Table 1).

Metagenomic analyses of Lake Rotsee and Lake Zug
Due to the strong dominance of eukaryotic sequences
in Lake Rotsee, we were not able to assemble a
genomic bin of Crenothrix from any of the sequenced
samples (Supplementary Table 1a).

On the other hand, in the Lake Zug metagenomes
eukaryotic sequences were almost completely absent
and the relative abundance of Crenothrix-related
sequences was considerably higher (Supplementary
Table 1a). Therefore, a metagenome from a Lake Zug
anoxic incubation (sample Z3, Supplementary
Table 4) was used for the assembly of a Crenothrix
genome.

The Crenothrix D3 draft genome was binned by
exploiting the differential coverage of contigs in
metagenomes obtained from the in situ metagenome
of Lake Zug and two different incubations (an
oxygen-supplemented and an anoxic, nitrate-supple-
mented; Supplementary Figure 7a; see also Materials
and Methods section and Supplementary Table 4 for
sample details). We retrieved several bins represent-
ing gamma-MOB from the Lake Zug assembly (data
not shown). The metagenomic sequences within
these two bins were also present in our Lake Rotsee
metagenomes, as indicated by their respective cover-
age (Supplementary Figure 7b). 16S rRNA gene
retrieved from one of these bins putatively belonged
to a Methylobacter (Figure 2a). The other bin
contained a partial 16S rRNA gene (909bp) that
clustered closely with C. polyspora (Figure 2a), even
though the level of similarity (95% identity) suggests
that the Lake Zug Crenothrix is a different species.
Most closely related environmental sequences were
retrieved from groundwater and habitats highlighted
primarily for iron richness (Bruun et al., 2010), yet
apparently containing methane (Kojima et al., 2009;
Kato et al., 2013).

Retrieval of the Crenothrix D3 16S rRNA gene
sequence from the Lake Zug metagenome allowed us
to also investigate the reasons behind the poor
performance of the Creno445 probe. The comparison
of the probe binding region on the 16S rRNA gene
sequence revealed that the Creno445 FISH probe
(length: 18 nt) had five mismatches with the partial
16S rRNA gene from our metagenomic Crenothrix D3
bin (Supplementary Table 2). Interestingly, out of 47
16S rRNA gene sequences in the SILVA database
(NR99, release 123) that were assigned to Crenothrix/
Crenothrichaceae, only seven sequences (including
four C. polyspora sequences published by Stoecker
et al. (2006)) contained less than five mismatches.
Thus it seems that while the Creno445 probe is very
specific to C. polyspora, it might not be suitable for
environmental detection of other Crenothrix strains
and species. In comparison, the lacustrine Creno-
thrix 16S rRNA gene had only a single mismatch
with the Mgamma669 probe, which explains the
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comparably better performance of this (not Creno-
thrix-specific) probe on our samples.

Interestingly, the clade CABC2E06, which forms
an apparent sister group to Crenothrix based on the
16S rRNA tree (Figure 2a), had an identical number
of mismatches to both probes. As the 16S rRNA gene
sequences assigned to this group were retrieved from
both Lake Rotsee (Supplementary Figure 2) and Lake
Zug (data not shown), it is feasible that the
CABC2E06 bacteria in these samples were also
hybridized by the Mgamma669 probe. Additionally,
if the CABC2E06 bacteria were filamentous, they
may have been included in the here-reported cell
and biovolume counts.

Genome-inferred C1 metabolism of lacustrine
Crenothrix D3

In the Crenothrix D3 draft genome from Lake Zug
(Supplementary Table 1b), we searched for pMMO
genes. We found all genes encoding for pMMO,
which were organized in the arrangement pmoCAB,
such as is common for gamma-proteobacterial type I
MOB (Trotsenko and Murrell, 2008). The phyloge-
netic analysis of the PmoA amino-acid sequence
showed that the sequence fell within the PmoA
group of other known gamma-MOB, including the
PmoA sequence of the other described filamentous
methane oxidizer, C. fusca (Figure 2b). However, the
presence of conventional gamma-proteobacterial
pmoA in the lacustrine Crenothrix strain was
inconsistent with the findings of ‘unusual’ pmoA
previously reported for C. polyspora based on PCR
and quantitative PCR (Stoecker et al., 2006). Our
Crenothrix D3 draft genome did not contain any
‘unusual’ pmoA; in fact, no ‘unusual’ pmoA or amoA
has been retrieved in any of the other gamma-MOB-
assigned bins either.

We thus decided to address this discrepancy by
obtaining metagenomic data from the original
samples used in the Stoecker et al. (2006) study.
Two samples obtained in 2004 from the rapid sand
filters of the Wolfenbiittel waterworks (Germany)
were analyzed and, after differential coverage
binning, genomic information of two Crenothrix
strains was obtained (Supplementary Figure 8). A
partial 16S rRNA sequence retrieved from one sand
filter Crenothrix bin (bin 1; 817 bp) was 98%
identical to the C. polyspora 16S rRNA sequence.
As the sample reportedly contained high propor-
tions of C. polyspora, it is feasible that (at least one
of) the sand filter Crenothrix was in fact C.
polyspora. However, throughout this manuscript
we refer to these organisms as sand filter Creno-
thrix, without a species name. The sand filter and
the lacustrine Crenothrix likely represented differ-
ent species as indicated by the average sequence
identities of their shared genes (Supplementary
Discussion).

Both genomes of the sand filter Crenothrix species
contained a pmoCAB operon (gene similarities
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encoded by the genes from the pmoCAB operon
clustered together with other gamma-proteobacterial
PmoA sequences (Figure 2b) and the affiliation of the
pxmABC operon with the sequence-divergent pxm
cluster was confirmed by a phylogenetic analysis of
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Gammaproteobacteria

Sand filter Crenothrix bin 1 and 2
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>

PxmA

Betaproteobacterial AmoA

Comammox AmoA /
‘unusual’ PmoA

Verrucomicrobial PmoA

% ®>95%
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pxmA (Tavormina et al., 2011; Figure 2b). PxmA has
been suggested to play a role in methane oxidation
under hypoxic and denitrifying conditions by
Methylomonas denitrificans and Methylomicrobium
album (Kits et al., 2015a, b). It thus appears that
Crenothrix might be another denitrifying methano-
troph containing both pmoCAB and pxmABC
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Figure 2 Phylogenetic tree of Crenothrix 16S TRNA gene and PmoA amino-acid sequences retrieved from Lake Zug and sand filters of the
Wolfenbiittel waterworks. (a) Phylogenetic tree of partial 16S rRNA gene sequence retrieved from the lacustrine Crenothrix (909 bp) and
from one sand filter Crenothrix (817 bp, bin 1) draft genomes. Note that the 16S rRNA gene sequence of Lake Zug ‘lacustrine’ Crenothrix
(but not of the sand filter Crenothrix) is monophyletic with clade CABC2E06. The tree was calculated with the RAXML maximum
likelihood program implemented in the ARB package without constraining the alignment by a filter or weighting mask. Bootstrap values
> 70 (out of 100 resamplings) are shown in front of each node. The taxonomic affiliations indicated by the colored boxes are based on the
SILVA SSU reference database (release 123; (Pruesse et al., 2007)). Fourteen type strains spread among gamma-proteobacteria were used as
an outgroup. Nucleotide accession numbers are listed in brackets. The bar shows an estimated nucleotide sequence divergence of 10%.
(b) Maximum likelihood phylogenetic tree of bacterial PmoA/AmoA amino-acid sequences (135 taxa) showing affiliation of PmoA
sequences recovered from the Lake Zug Crenothrix bin (red arrow) as well as of the two sand filter Crenothrix genome bins (green arrows).
All three Crenothrix PmoA sequences clustered within the ‘classical’ gamma-proteobacterial PmoA branch. Bootstrap support of total 100
bootstraps are shown in black (>95%), gray (>90%) and white (>70%) circles. Scale bar indicates substitutions per site.
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Figure 3 Genome-inferred metabolic potential of Crenothrix for respiration and methane oxidation. Predicted metabolic potential of the
lacustrine Crenothrix as well as of the two sand filter Crenothrix species with respect to its CH, and N metabolism inferred from the three
draft genomes. Indicated are the methane oxidation pathway (gray boxes), the aerobic respiratory chain (orange boxes) and the pathway for
nitrate respiration (blue boxes). Genes that were found in the respective Crenothrix genomes (square: lacustrine Crenothrix D3; triangle:
sand filter Crenothrix bin 1; circle: sand filter Crenothrix bin 2) are depicted in red, not found in white. Cyt. bc1 complex, cytochrome bc1
complex; Cyt. bd complex, cytochrome bd complex (cydABCD); cyt c., cytochrome c¢; CytS, cytochrome c’-beta; FDH, formate
dehydrogenase; H,F, tetrahydrofolate; H{MPT, tetrahydromethanopterin; HCO, heme copper oxygen reductase (COXI-III); Hcp, hybrid
cluster protein; Her, NADH-dependent Hcp reductase; MDH, methanol dehydrogenase (xoxF); Nar, nitrate reductase (narGHI); NarK,
nitrate/nitrite antiporter (narK); NirS, copper-containing nitrite reductase (nirS); Nqr, sodium-translocating NADH:quinone oxidor-
eductase; pMMO, particulate methane monooxygenase (pmoCAB); Q, ubiquinone; RuMP, ribulose monophosphate; sMMO, soluble
methane monooxygenase (smmoXYBZDC).

operons. Importantly, no ‘unusual’ pmoA could be
detected in the sand filter Crenothrix bins. However,
the ‘unusual’ pmoA sequence previously assigned to
C. polyspora was detected in a different bin, clearly
belonging to the completely nitrifying Nitrospira,
apparently co-occurring with C. polyspora in the
sample (Daims et al., 2015; van Kessel et al., 2015;
Pinto et al., 2016). This finding is discussed in more
detail in the Supplementary Discussion. It is inter-
esting to note that whereas all three Crenothrix
PmoA sequences fell within the ‘classical’ gamma-
proteobacterial PmoA branch, the lacustrine Creno-
thrix PmoA clustered separate from the sand filter
Crenothrix bins 1 and 2 and C. fusca (Figure 2b).
Comparison of the 16S rRNA gene and PmoA amino-

acid trees suggested that the PmoA of the lacustrine
Crenothrix might have been obtained laterally from
another gamma-proteobacterial methanotroph. This
is supported by the fact that transposase genes were
located immediately up- and downstream of the
lacustrine Crenothrix pmoCAB operon on the respec-
tive contig (data not shown).

In addition to the gene cluster encoding for
pPMMO, we also retrieved a full gene cluster for
soluble methane monooxygenase (sSMMO; smmoX-
YBZDC) in the lacustrine Crenothrix and in one sand
filter Crenothrix bin. This enzyme is relatively rare in
gamma-proteobacterial ~methanotrophs  (Murrell,
2010) and was not found in C. polyspora previously
(Stoecker et al., 2006), presumably due to the
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mismatches between the applied PCR primers and the
respective target regions in the mmoX gene.
We cannot conclusively prove involvement of sMMO
in methane oxidation by Crenothrix; however, as the
substrate range of SsMMO seems much broader than
that of pMMO (Dalton, 2005; Semrau et al., 2011), it is
feasible that Crenothrix might have the capacity to
utilize other C-compounds as suggested previously
(Stoecker et al., 2006). This could explain the
reported occurrence of Crenothrix in, for example,
natural bitumen deposits (Saidi-Mehrabad et al.,
2013). All three retrieved genomes (two sand filter
Crenothrix genomes as well as the lacustrine Creno-
thrix D3 genome) further contained all necessary
genes for complete oxidation of methane to CO,
(Supplementary Discussion; Figure 3).

Like many other type I methanotrophs
(Chistoserdova and Lidstrom, 2013), Crenothrix
might use the RuMP pathway for C1 assimilation
from formaldehyde, as genes for all necessary
enzymes were found in all three draft genomes
(Figure 3). On the other hand, the serine cycle
apparently missed genes encoding for hydroxypyr-
uvate reductase and malate thiokinase. Crenothrix
had the genomic potential for mixed acid fermenta-
tion to succinate and potentially acetate (gene
encoding for phosphate acetyltransferase was miss-
ing in lacustrine Crenothrix D3 genome and one sand
filter Crenothrix, but was putatively present in the
other sand filter Crenothrix bin) and hydrogen
production (via NAD-reducing hydrogenase, hox-
FUYH; only present in the lacustrine Crenothrix).
Pyruvate, which serves as the starting point for
fermentation, could be generated from formaldehyde
via enzymes of the RuMP and pyrophosphate-
mediated glycolytic pathway that was encoded
in all three Crenothrix genomes. Mixed acid fermen-
tation and H, production via these pathways has
been shown to be a major route of methane-derived
carbon respiration in methanotrophs growing under
oxygen limitation (Kalyuzhnaya et al., 2013).

Aerobic and anaerobic respiration by Crenothrix

In agreement with the demonstrated cell growth and
activity in our oxic incubations, all three Crenothrix
genomes encoded a multitude of aerobic respiratory
chain complexes, such as a sodium-pumping NADH:
ubiquinone oxidoreductase (Na*-NQR), the M and L
subunits of the NADH:quinone oxidoreductase, the
bc1 complex, an Al-type heme copper cytochrome ¢
oxidase, a type B heme copper cytochrome c oxidase
(only the sand filter Crenothrix) and a cytochrome bd
oxidase that might potentially act as a high-affinity
terminal oxidase (Figure 3).

Additionally, the draft genome of the lacustrine
Crenothrix D3 as well as one of the sand filter
Crenothrix strains also contained a partial pathway
for the respiration of nitrate. We retrieved genes
encoding for a membrane-bound respiratory nitrate
reductase (narGHI), a nitrite/nitrate antiporter (narK) as
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well as a periplasmic multi-copper nitrite reductase
(nirK). Genes encoding for nitric oxide (NO) and
nitrous oxide (N,O) reductases (norBC and g-type
nor, and nosZ, respectively) were not found in any of
the three bins. Yet, interestingly, all three Crenothrix
genomes encoded proteins for alternative pathways of
NO detoxification to N,O. In the genome of Crenothrix
D3, a gene cluster containing hcp and hcr genes was
found. The hcp gene encodes for a unique hybrid
cluster protein (Hcp), which has recently been shown
to act as a high-affinity NO reductase in Escherichia
coli, producing N,O as the end product (Wang et al.,
2016). The Hep sequence retrieved from the Crenothrix
D3 genome contained the six highly conserved
residues involved in 4Fe-2S-20 cluster coordination
(Aragao et al., 2008) as well as a glutamic acid residue
(E492 of E. coli Hep) essential for NO reductase activity
(Wang et al., 2016). Overall, the Crenothrix D3 Hcp
shared 49% amino-acid identity with the NO-reducing
Hcp of E. coli. The her gene, located immediately
downstream from hcp, encodes for the Her protein and
acts as a NADH-dependent Hcp reductase (van den
Berg et al., 2000), while simultaneously protecting Hcp
from nitrosylation by its substrate, NO (Wang et al.,
2016). The hcp/hcr genes in Crenothrix D3 genome
were preceded by norR, a transcriptional regulator of
three different enzymes (NO reductase, flavorubre-
doxin and flavohaemoglobin) that all utilize NO as a
substrate (Rodionov et al., 2005). We thus speculate
that, despite being routinely annotated as a hydro-
xylamine reductase, the Hcp/Hcer system in Crenothrix
could in fact act as a NO reductase and substitute Nor-
type NO reductases under denitrifying conditions. In
the two sand filter Crenothrix genome bins no
homologs of Hcp were found. However, both bins
(but not the lacustrine Crenothrix genome bin)
contained a homolog of cytochrome c'-beta, a member
of the cytochrome P460 family found in, for example,
gamma-proteobacterial methane oxidizers (Zahn et al.,
1996; Campbell et al, 2011) and gamma- and beta-
proteobacterial ammonia oxidizers (Bergmann and
Hooper, 2003; Klotz et al., 2006). Cytochrome c-beta
can reduce NO to N,O (Elmore et al., 2007). Interest-
ingly, in one of the bins this gene (cytS) was located
directly downstream of the haoA and haoB genes
encoding for hydroxylamine dehydrogenase. As both
the Hcp and the cytochrome c’-beta are predicted to be
cytoplasmic proteins and NO is produced in the
periplasm (by NirK), it is feasible that their activities
are not coupled and (some) NO might escape out of the
cell (Figure 3).

The experimentally demonstrated and genome
analysis-supported metabolic potential for methane-
dependent growth under nitrate-reducing conditions
cannot serve as a final proof of nitrate reduction by
Crenothrix in Lake Zug. However, it is interesting to
speculate that such metabolic versatility might
expand the habitat of these facultative anaerobic
bacteria, potentially enabling them to survive
periods of oxygen starvation by switching to using
nitrate as an electron acceptor for methane



oxidation. Denitrification is an emerging feature of
gamma-MOB, which has been supported by geno-
mics and was also experimentally demonstrated
(Hoefman et al., 2014; Kalyuzhnaya et al., 2015;
Skennerton et al., 2015; Kits et al., 2015a, 2015b). It
has been proposed that respiration of nitrate might
enable aerobic gamma-MOB to colonize anoxic
waters (Chistoserdova, 2015; Knief, 2015). In Lake
Rotsee and Lake Zug, Crenothrix was indeed found
in the anoxic waters below the oxycline in at least 2
consecutive years. Its abundance in anoxic lake
waters suggests that it might successfully compete
with more obligate anaerobic methane oxidizers,
such as archaeal methanotrophs (Haroon et al., 2013)
or ‘Candidatus Methylomirabilis oxyfera’ (Ettwig
et al., 2010).

Conclusions

Members of the genus Crenothrix are rare methane
oxidizers, which are not available in pure or
enrichment cultures and will not be readily picked
up in environmental samples by the currently
available specific FISH probe (Creno445). The
ambiguity surrounding their pmoA has further
complicated the in situ detection using molecular
methods. In the past, this has hampered our under-
standing of these peculiar organisms and possibly
led us to underestimate their role in the biogeo-
chemical nutrient and element cycles.

In our study, we could unambiguously demon-
strate a key role for these organisms in the mitigation
of methane emissions from two stratified lakes. In
Lake Rotsee, Crenothrix even contributed more to
methane uptake than the ‘classical’ unicellular
gamma-MOB. In up to 3 consecutive years Creno-
thrix was recurrently found throughout the stratifica-
tion period of Lake Rotsee and Lake Zug, and thus
appears to be a stable part of the indigenous
microbial community. Our data are also the first to
demonstrate that Crenothrix is capable of growing as
a planktonic species in the lake water column. Given
the capacity of Crenothrix to rapidly grow up into
large biomass, its participation in methane cycling
also in other relevant habitats should be considered.
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Supplementary Information File

Supplementary Discussion

Life cycle of Crenothrix and lake turnover

In Lake Rotsee, the proportion of small gonidial to large filamentous cells varied
between sampling years. In 2012 and 2013 we observed many long intact filaments
(Supplementary Figure 3), whereas in 2014 we only detected short Crenothrix fragments
and gonidial cells seemed to be more numerous. In 2012 and 2013 our sampling was
conducted in August, when stratification was stable and methane fluxes had probably
reached their maximum (13+3 mmol m2 d'; (Oswald et al, 2015) whereas in 2014 the
sampling campaign was conducted in late October and though the lake still showed
stable stratification below 7 m depth, the methane fluxes were somewhat lower (8+2
mmol m? d7; Supplementary Figure 1). It is possible that filaments may have
propagated just before the lake overturn which increased the ratio of comparably small
gonidial cells to long vegetative cells. These changes in their life cycle could explain the

comparably lower Crenothrix biovolume contribution in 2014.

Average nucleotide and amino acid identities of lacustrine and sand filter Crenothrix

The average nuceotide identities (ANI; (Richter & Rossell6-Mora, 2009) between
Crenothrix strain D3 and the two sand filter Crenothrix genomes were 72.9 - 73% and
80.5 % between the latter two genomes, respectively. These values are far below
proposed species delineation boundaries of 95 - 97% (Goris et al, 2007; Varghese et al,
2015). The average amino acid identity (AAl, (Konstantinidis & Tiedje, 2005) between
Crenothrix strain D3 and the two sand filter Crenothrix species is 66.1 — 66.4 % and the
AAl between the two latter genomes is 77.4%. These AAl values are above the proposed
genus delineation boundary of 60% (Luo et al, 2014) suggesting that all three Crenothrix
species indeed belong to the same genus. It should be noted that also other members
of the Methylococcaceae (such as Methyloglobulus morosus; (Deutzmann et al, 2014)
have AAl values with the three Crenothrix genomes that suggest affiliation to the same
genus (data not shown), and therefore the taxonomy of this order might need to be

revised.
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Extended genome description of sand filter Crenothrix species and the lacustrine
Crenothrix D3
Downstream oxidation of methanol

All Crenothrix genomes contained a XoxF homolog encoding for the large
subunit of the pyrroloquinoline quinone- and cerium-dependent methanol
dehydrogenase (MDH), an enzyme catalyzing downstream oxidation of methanol to
formaldehyde or formate. Interestingly, mxa genes encoding for the calcium-
dependent MDH and its accessory proteins were not found in the lacustrine Crenothrix
D3 draft genome and sand filter Crenothrix bin 2 but were found in sand filter Crenothrix
bin 1. Absence of mxa-type MDHs in genomes containing xoxF-type MDHs have so far
been described for several methylotrophs (Chistoserdova, 2011; Giovannoni et al, 2008;
Kalyuhznaya et al, 2009; Wilson et al, 2008) as well as verrucomicrobial methanotrophs
(Khadem et al, 2012; Op den Camp et al, 2009; Pol et al, 2014). Genes encoding for
enzymes catalyzing a four-step C1 interconversion of formaldehyde to formate via the
methenyl-tetrahydromethanopterin pathway (fae, mtdB, mch, fhc) were all present, in
both the lacustrine and the sand filter Crenothrix genomes. The alternative
tetrahydrofolate (H4F)-linked pathway was missing FolD, the bifunctional enzyme acting
as methylene-H,F dehydrogenase and methenyl-HiF cyclohydrolase. However, in the
case of Crenothrix, this enzyme might be substituted by Fch and Mtd, such as has been
shown for other methylotrophs (Chistoserdova, 2011). These genes (fch, mtdB, and
several mtd homologues) were found in the Crenothrix genomes. In the last step,
formate can further be oxidized to CO, by a NAD-dependent formate dehydrogenase,

which was encoded in all three Crenothrix draft genomes.

Carbohydrate metabolism (only annotated for the lacustrine Crenothrix)
All genes encoding for core enzymes involved in the pentose phosphate
pathway, tricarboxylic acid cycle, Entner-Doudoroff pathway as well as Embden-

Meyerhof-Parnas pathway were present in the lacustrine Crenothrix D3 draft genome.
Nitrogen assimilation (only annotated for the lacustrine Crenothrix)

Genes encoding for assimilatory nitrate and NAD(P)H-dependent nitrite

reductase were retrieved from the lacustrine Crenothrix D3 draft genome. Downstream
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assimilation of ammonium can proceed via the GS/GOGAT-pathway by glutamine

synthetase and glutamate synthase which genes are both present in the genome.

Nitrogen fixation

Lacustrine Crenothrix might also have the potential to fix dinitrogen gas since
the genome contains key genes encoding for nitrogenase as well as a suite of its
accessory proteins (i.e. nifkDHWENX). Nitrogenase genes were absent from both sand

filter Crenothrix draft genomes, with the exception of nifK in bin 1.

Discussion of the canonical gamma-proteobacterial and ‘unusual’ pmoA sequence in
the sand filter Crenothrix

Stoecker et al. (2006) have retrieved ‘unusual’ pmoA from a sample strongly
dominated by filaments that were identified by morphology as C. polyspora. C. polyspora
abundance was observed by FISH using a Crenothrix-specific probe as well as Bacteria-
and Archaea- and Eukarya-specific FISH probes and was independently confirmed by
gPCR using two general and two C. polyspora-specific 16S rRNA gene targeting primer
sets [Figure 3 of the Stoecker et al. (2006) paper]. By using additional qPCR assays for the
‘unusual’ pmoA (two assays) and canonical gamma-proteobacterial pmoA (two assays) a
much higher abundance of the ‘unusual’ than the canonical pmoA was observed and
thus it was concluded that C. polyspora very likely encodes the ‘unusual” pmoA gene.
This conclusion was further supported by the fact that transcription of the ‘unusual’
pmoA was strongly induced by methane addition [Figure 7 in the Stoecker et al. (2006)
paper]. Surprisingly, we and others recently demonstrated that completely nitrifying
Nitrospira species (comammox) encode amoA genes that are highly similar to the

|Il

‘unusual” pmoA genes assigned to C. polyspora (Daims et al, 2015; Palomo et al, 2016;
Pinto et al, 2016; van Kessel et al, 2015).

To address this issue, we obtained frozen material from the sample used in the
Stoecker et al. 2006 paper (this sample material had been used for unpublished
incubation experiments before freezing) and reconstructed two draft C. polyspora
genomes by metagenomic sequencing. Interestingly, these genomes had ANI values
that demonstrated that they represent two different Crenothrix species to which we

thus refer to as sand filter Crenothrix species in this manuscript. In both genome bins the
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canonical gamma-proteobacterial methane monooxygenase (in addition to another
gamma-proteobacterial pmoABC operon; see main text) was encoded, while the
‘unusual’ pmoA could not be detected. However, the ‘unusual’ pmoA previously
assigned to C. polyspora was detected in the metagenome from this sample in one of
the two comammox Nitrospira bins (see Supplementary Figure 8; the other comammox
Nitrospira bin contains another ‘unusual’ amoA). We thus conclude from these data that
in the sample used by Stoecker et al. 2006 comammox Nitrospira thrived, which encode
the ‘unusual’ pmoA (and use it as amoA), and that the two C. polyspora strains encode
the canonical gamma-proteobacterial pmoA [which was also retrieved in the Stoecker et
al. (2006) study but assigned to another gamma-MOB in the sample, Methylomicrobium
album]. We do not have a conclusive explanation for the gPCR data shown in Figure 3 in
the Stoecker et al. (2006). The strongly increased transcription of the ‘unusual’ pmoA
gene after addition of methane to the C. polyspora-dominated sample as described by
Stoecker et al. could either be explained by the existence of a low abundant methane-
oxidizing Crenothrix strain possessing this gene (as speculated below) or by methane-
induced secretion of metabolites by C. polyspora that stimulated the comammox
Nitrospira in the sample. In the Stoecker et al. (2006) study DNA for the gPCR assays was
extracted using the FastDNA kit (QBiogene, Irvine, CA) while the much harsher phenol
chloroform bead beating protocol was used in our metagenome analysis of the same
sample. One could thus speculate that the FastDNA kit did not lyse the dominant
populations of Crenothrix strains (with canonical gamma-proteobacterial pmoA) and
only DNA from a low abundant Crenothrix strain (not binned in the metagenome) was
obtained, whose canonical pmoA has been replaced by the comammox amoA. The
existence of comammox Nitrospira that are very closely related to purely nitrite-
oxidizing Nitrospira strains, which do not possess the ‘unusual’ pmoA/amoA gene,
indicate lateral gene transfer events of the genes necessary for ammonia oxidation, and

suggest a complex evolutionary history of these genes (Daims et al, 2015).
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Supplementary Figures
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Supplementary Figure 1. Hydrochemical conditions and methane oxidation rates in Lake
Rotsee in October 2014. a, Depth profiles of oxygen (black line) and photosynthetically active
radiation (PAR) (grey line). The inset shows the exact location of the oxycline at 7.1 m measured
with the trace oxygen optode. Note the logarithmic scale for PAR and that light penetrated
below the oxycline (dashed line). b, Methane concentrations (black diamonds) and
corresponding stable carbon isotopes of methane (grey circles). The isotopic signature of
methane became substantially heavier at and above the oxycline, indicative of biological
methane oxidation. The sharp peak in the methane isotopic ratio profile at ca. 5.5 m depth is
indicative of a local source supplying methane at this depth (by in situ production or by lateral
transport from littoral sediments). ¢, methane oxidation rates under dark and light conditions
with water from the oxycline (7 m) and the anoxic waters below (8 m). No methane oxidation
was detected in a sterile-filtered control.
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Supplementary Figure 2. Taxonomic assignment of 16S rRNA amplicon sequences
recovered from the Lake Rotsee oxycline in August 2013 and October 2014 assigned to
the Methylococcales order (Bowman, 2005). In this order, unicellular Methylococcaceae,
CABC2E06 and Crenothrix 16S rRNA sequences comprised 31%, 52% and 15% (2013) and 56%,
33% and 10% (2014), respectively. Retrieved Crenothrix 16S rRNA sequences (n=66 and n= 270
for 2013 and 2014, respectively) comprised between 0.06-0.1% of all retrieved 16S rRNA
bacterial sequences.
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20 pm

Supplementary Figure 3. Crenothrix in Lake Rotsee. DAPI (blue) and CARD-FISH (green)
signals of Crenothrix a, in situ samples from 8 m depth in 2014 (probe Mgamma669); b,
filaments at the beginning of the incubation experiment with water from 9 m depth in 2013
(probe Creno445). Red arrows indicate possible gonidial cells. ¢, Filaments after 11 days of oxic
incubation under light conditions (probe Creno445; 2013).
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Supplementary Figure 4. Overview of Crenothrix biovolume in situ and in incubations. a,
biovolume of Crenothrix filaments and unicellular gamma-MOB at and below the oxycline of
Lake Rotsee. Crenothrix biovolume refers to an average biovolume determined for Mgamma669
and Creno445-hybridized filaments and gamma-MOB refers to an average biovolume
determined for cells targeted by the Mgamma84+705 probes. Biovolume was calculated in
depths that displayed the highest methane oxidation rates. In 2012 and 2014 this was below
the oxycline (at 7 m depth) and in 2013 directly at the oxycline (at 9 m depth). Error bars
represent a cumulative standard error of the mean between measured filaments and counted
fields of view (n=20). b, increase of Crenothrix filament biovolumes in oxic and anoxic
incubation from Lake Rotsee and Lake Zug over time. Crenothrix in Lake Rotsee were detected
using either Mgamma669 or Creno445 probe, Crenothrix in Lake Zug was detected using only
Mgamma669 probe. Biovolume was determined for incubations from the oxycline [9 m depth
in Lake Rotsee (2013) and 160 m in Lake Zug (2013, 2014)]. Tenq refers to 11 days for Lake Rotsee
incubation, 16 days for Lake Zug anoxic incubation and 11 days for Lake Zug oxic incubations.
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Supplementary Figure 5. Methane-dependent growth of Crenothrix in Lake Rotsee. 3,
DAPI (blue) and CARD-FISH (green) fluorescent signals of gamma-MOB (green arrows, probes
Mgamma84+705) and an unhybridized filamentous bacterium (red arrow) from Lake Rotsee
oxic incubation. b, The corresponding *C/'*C nanoSIMS image shows uptake of *CH, by the
coccoid gamma MOB as well the filamentous bacterium. Note that the *C enrichment in the
filamentous organism is comparable to that of the coccoid gamma-MOB. ¢, The corresponding
325/"2C nanoSIMS images show distribution of organic material in the analyzed fields of view.
The higher S/C ratio of the unicellular gamma-MOB compared to Crenothrix cells might be due
to a presence of the carbon-rich polysaccharide sheath surrounding the filaments.
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Supplementary Figure 6. A '2C'*N/'2C'*N nanoSIMS image corresponding to the field of
view displayed in Figure 1g-i. Due to the long incubation time (16 days) it is not possible to
conclude that the "N in the cell biomass was taken up in the form of *NO; which was added
into the incubation. Therefore, the cellular >N uptake is only used as an indicator for growth
under incubation conditions.
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Coverage (Lake Zug, anoxic, nitrate-supplemented)
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50

'S
=)

w
o

(]
(=]

-
w

100

Contig length (Kbp) @ . @

o 20 z -gn i -
I L]
O so § B 281 % B .
O 100 . 990 le ! >
‘ PR i .

Ozon © 524 1 .

= ' i

oL i

gg ".‘

QE l\ {l

8 201 v

5 10 20 40 80 160
Coverage (Lake Zug, dark, O,-supplemented)

-0.1 0.0 0.1
PC2

@® Gammaproteobacteria
@ Betaproteobacteria

1 2 3 4 5 @ Bacteroidetes
Coverage (Lake Zug, in situ)

@ Gammaproteobacteria

@ Betaproteobacteria °®
@ Actinobacteria
@ Bacteroidetes [
Unclassified bacteria .
3 .ﬁGa mma-MOB-1

R 4
2 * ?."a ‘! ’a;f.‘:'@; - w‘,g:‘i

\ -§ -
E L ] i
T, ° & % ®

0.1 10.0
Coverage (Lake Rotsee, dark, O_-supplemented)

Supplementary Figure 7. Differential coverage overview of the different bins retrieved
from Lake Zug and their classification based on marker genes and 16S rRNA genes. a,
Lacustrine Crenothrix D3 bin (outlined by dotted line) was extracted from metagenomic contigs
of the Lake Zug assembly (metagenome data set Z3: Lake Zug, anoxic, nitrate-supplemented
incubation) by exploiting differential coverage binning. Each contig is represented by a circle
and the circles size reflects contig length (in Kbp). Colored circles show taxonomic assignment
of essential single copy genes present on the contig. A preliminary bin was obtained by
differential coverage of the Lake Zug in situ sample (data set: Z1) and the Lake Zug anoxic,
nitrate-supplemented incubation (data set Z3; plot 1). This bin was further refined by
differential coverage of the Lake Zug anoxic, nitrate-supplemented incubation (data set: Z1)
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and Lake Zug dark, O,-supplemented (data set: Z2, plot 2). Tetranucleotide frequencies of the
final Crenothrix D3 bin are shown in plot 3. b, Differential coverage plot of the same Lake Zug
assembly. Contigs are plotted with their respective average coverage of two sequenced
samples: Lake Zug, anoxic, nitrate-supplemented incubation (data set: Z3; y-axis) as well as Lake
Rotsee, dark, O,-supplemented incubation (data set: R2; x-axis). Lacustrine Crenothrix D3 bin
(dark red circles) as well as another gamma-proteobacterial bin (Gamma-MOB-1) is shown.
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Supplementary Figure 8: Differential coverage plot for the C. polyspora metagenomes.
Differential coverage plot of the Wolfenbiittel waterworks sand filter (sieved Crenothrix
biomass) assembly. Contigs are plotted with their respective average coverage of two
sequenced samples: sample B, collected in 2005 and incubated at different methane
concentrations for 24 hours (x-axis) as well as sample C, collected in 2004 and incubated with
500 pmol I ammonium for 212 hours (y-axis). Each contig is represented by a circle and the
circles size reflects contig length (in Kbp). Colored circles show taxonomic assignment of
essential single copy genes present on the contig. Clusters of similarly colored circles represent
potential genome bins. The two Crenothrix bins (light blue), two comammox Nitrospira bins
(dark blue), and bins representing various other organisms (other colors) are shown.
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Summary

Methanotrophic bacteria represent an important biological filter regulating
methane emissions into the atmosphere. Planktonic methanotrophic communities in
freshwater lakes are typically dominated by aerobic gamma-proteobacteria, with some
contribution from alpha-proteobacterial methanotrophs, and the NC10 bacteria. These
uncultured methanotrophs, related to “Candidatus Methylomirabilis oxyfera”, oxidize
methane using a unique pathway of denitrification, which produces N, and O, from
nitric oxide (NO). Here we describe a new species, “Ca. Methylomirabilis limnetica”,
which dominated the planktonic methanotrophic community in the anoxic depths of
the stratified Lake Zug, comprising 27 % of the total bacterial population. Gene
transcripts assigned to “Ca. M. limnetica” constituted approximately one third of all
metatranscriptomic sequences retrieved in situ. The reconstructed genome encoded a
complete pathway for methane oxidation, and an incomplete denitrification pathway,
including two non-canonical NO reductases that presumably function as O,-producing
NO dismutases. In contrast to “Ca. M. oxyfera”, the genome of “Ca. M. limnetica”
appeared to lack some key metabolic genes, such as membrane-bound nitrate
reductase, hydroxylamine oxidoreductase, the cytochrome bc;-complex and two heme-
copper oxidases. We speculate that “Ca. M. limnetica” temporarily bloomed in the lake
during non-steady-state conditions suggesting a niche for NC10 in the lacustrine

methane and nitrogen cycle.

59



Chapter 3 - Bloom of NC10 in Lake Zug

Introduction

Temperate lakes are environments with intense methane cycling. Methane, a
potent greenhouse gas, is abundantly produced in lake sediments from buried organic
matter. Due to the comparably low sulfate concentrations, sulfate-dependent anaerobic
methane oxidation often fails to completely consume the upward methane flux, in
contrast to marine sediments. Therefore, large amounts of methane tend to enter the
bottom waters of lakes. Lakes with oxic water columns, in which aerobic methane
oxidation is constrained to a thin layer at the sediment surface, significantly contribute
to atmospheric methane emissions (Bastviken et al, 2004). In contrast, in lakes that
develop hypoxic and anoxic bottom waters, methane is often completely consumed at
the lake oxycline by aerobic methane oxidation.

Aerobic methane-oxidizing bacteria have long been recognized to play an
important role in the regulation of methane emissions to the atmosphere (Reeburgh,
2003). Major taxa of gamma-MOB in lakes and other aquatic habitats include
Methylomonas, Methylobacter, Methylosoma and Methylosarcina (Bowman, 2014). It has
emerged recently that some of these organisms also possess the capacity to thrive in
apparently anoxic waters and sediments, where their activity and growth can be
sustained by oxygen production and transport (Blees et al, 2014; Milucka et al, 2015;
Oswald et al, 2016a), fermentation (Kalyuzhnaya et al, 2013) or denitrification (Kits et al,
2015a; Kits et al, 2015b; Oswald et al, 2017; Padilla et al, 2017). Interestingly, dedicated
anaerobic methane oxidizers belonging or related to the ANME archaea (Ettwig et al,
2016; Haroon et al, 2013; Knittel & Boetius, 2009) seem to be constrained to lake
sediments (Schubert et al, 2011; Weber et al, 2017) and play a comparably minor role in
methane removal even in fully anoxic water columns.

A group of methanotrophs, whose role in the environmental methane cycle is
yet to be fully assessed, are the bacteria of the NC10 phylum (Raghoebarsing et al,
2006). These organisms oxidize methane using nitrite as an electron acceptor. The first
described representative of this clade, “Candidatus Methylomirabilis oxyfera” has been
proposed to have a unique capacity to disproportionate nitrogen oxide(s) intracellularly
and produce molecular oxygen, which is used for methane oxidation (Ettwig et al,
2010b; Ettwig et al, 2012). This unique pathway allows NC10 to thrive in hypoxic

habitats, despite the obligate need for oxygen to activate and oxidize methane (He et al,
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2016; Lopez-Archilla et al, 2007; Padilla et al, 2016; Raghoebarsing et al, 2006; Shen et al,
2016; Zhu et al, 2012). Recent studies have demonstrated that NC10-related
methanotrophs are present in the anoxic water column of a freshwater reservoir and
sediments of deep freshwater lakes (i.e. Lake Constance (Deutzmann & Schink, 2011;
Deutzmann et al, 2014) and Lake Biwa (Kojima et al, 2012)), and they were proposed to
significantly contribute to methane removal in these lakes. However, direct activity of
NC10 in situ has not been demonstrated to date. Despite the increasing number of
environmental reports, “Ca. M. oxyfera” rarely appears to dominate bacterial, or
specifically methanotrophic, communities, particularly in planktonic habitats.

So far, bacteria of the NC10 phylum have not been found in Lake Zug (Oswald et
al, 2016a) or the other well-studied temperate lakes of Switzerland. Here, we report an
incidental finding of a “Ca. M. oxyfera”-related bacterium that dominated the bacterial
community in the deep anoxic methane-rich hypolimnion. We report a morphological
and genomic description of this new putative species “Candidatus Methylomirabilis
limnetica”, infer its in situ activity from metatranscriptomics, and describe the
biogeochemical conditions during the sampling period that presumably led to the

bloom of this bacterium.

Results and Discussion
Biogeochemistry of Lake Zug

Lake Zug is a deep eutrophic freshwater lake located in Central Switzerland. The
lake is permanently stratified and has reportedly not turned over since 1950 (Mdiller,
1993). During the sampling campaign in September 2016, several interesting features in
the chemical profiles were noted (Figure 1a,b).

The oxycline was located at about 106 m depth, well above the usual depth (140
- 150 m) that was measured in 2012, 2013 and 2014 (Oswald et al, 2016b). No oxygen
was detected with the trace optode (TOS7, Presens, Regensburg, Germany; detection
limit approximately 20 nmol I") below this depth on two consecutive sampling days.
Methane concentrations at the given depths were ca. 2-fold higher than the years
before and methane was depleted ca. 10 m below and not at the oxycline. During the
current sampling campaign in 2016, the flux of oxygen and methane across their

respective zones of consumption was 7.8 and 2.2 mmol m™ d, respectively, and thus

61



Chapter 3 - Bloom of NC10 in Lake Zug

lower than the years before. Concentration profiles of NOx (nitrate + nitrite) was
concave, decreasing from ca. 22 pumol I at the oxycline to a minimum of ca. 6 umol | at
150 m depth and then increased again to a maximum of ca. 45 umol I at 180 m depth,
as opposed to decreasing towards the sediment (Oswald et al, 2016b). Ammonium
concentrations in the bottom waters were ca. 3-fold higher than in previous years and
ammonium was consumed at ca. 115 m, the same depth where methane disappeared.
The flux of ammonium into this zone was 1.8 mmol m? d’'. Both methane and
ammonium indicated an additional zone of consumption between 150 and 160 m. The

flux of CHs and NH, in the deeper depths was 2.6 and 4.9 mmol m2d”, respectively.
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Figure 1. Physico-chemical parameters and abundance of NC10 bacteria in Lake Zug in
September 2016. (a) Depth concentration profiles of oxygen and methane throughout the
water column (100-180 m). The inset shows oxygen and methane concentration profiles near
the oxycline. (b) Concentration profiles of NO (nitrate+nitrite) and ammonium. The grey bars at
120 m and 160 m show absolute cell counts of NC10 bacteria identified by CARD-FISH (probe
DBACT-0193). (c) Fluorescent image of water from 120 m and 160 m showing NC10 bacteria (in
green; counterstained with DAPI in blue) after CARD-FISH using a specific oligonucleotide probe
DBACT-0193 (Supplementary Table S1; (Raghoebarsing et al, 2006)). Scale bar represents 2.5 pm.

In the Lake Zug region, temperatures in late summer of 2016 were well above
average, it is thus possible that higher rates of primary productivity resulted in an
upward shift of the oxycline and presumably higher deposition rates of organic matter
into the hypolimnion. This might have resulted in increased fluxes of methane and
ammonium out of the sediment. The most parsimonious explanation for the obviously
non-steady state NOx profile is that vertical mixing or hyperpycnal flow resulted in a

one-off event of oxygen intrusion into the bottom waters which in turn led to the
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oxidation of ammonium and production of nitrogen oxides. This event most likely

occurred before our sampling campaign.

NC10 bacteria were abundant in the profundal anoxic waters of Lake Zug

In the previous years, a large portion of upwards-diffusing methane was shown
to be oxidized near the oxycline by abundant gamma-proteobacterial methane-
oxidizing bacteria (Oswald et al, 2016a). Additionally, it was shown that filamentous
gamma-proteobacterial Crenothrix bacteria were major methane consumers in Lake
Zug (Oswald et al, 2017).

To obtain a quantitative overview of the methane-oxidizing community in Lake
Zug in 2016, we first classified and quantified 16S rRNA gene sequences in the
unassembled metagenomic sequences from all three depths; near the oxycline (110 m),
below it (120 m) and in middle of the anoxic hypolimnion (160 m; Figure 1a). For all
three depths, a metagenome (lllumina HiSeq2500 2x250 bp; Supplementary Table S2)
and a metatranscriptome (lllumina HiSeq3000 1x150 bp; Supplementary Table S2) was
generated.

Methylococcales were stable members of the microbial community at all three
investigated depths. Up to 10% of all 165 rRNA gene sequences were classified as
Methylococcales; the majority of these belonged to genera Methylobacter, Crenothrix,
Methylomicrobium and the CABC2EO06 clade. Sequences classified as verrucomicrobial
methanotrophs (mainly “Ca. Methylacidiphilum sp.”) were also detected, albeit at low
abundance (0.1-0.3%). However, this assignment might require verification as these
verrucomicrobial methanotrophs are known to thrive under conditions not found in
Lake Zug (i.e. pH 1-5 and temperature above 50°C; (Op den Camp et al, 2009)). Known
alphaproteobacterial methanotrophs (e.g. Methylocystaceae and Beijerinckiaceae) were
not detected. This is consistent with the methanotrophic community analyzed in this
lake previously by CARD-FISH (Oswald et al, 2017; Oswald et al, 2016a).

Interestingly, we found conspicuously high abundances of 16S rRNA gene
sequences putatively assigned to the NC10 phylum in the metagenomic sequences
from 120 m and 160 m depth. In these metagenomes, NC10-related sequences
constituted approximately 10% and 19% of all classified metagenomic 16S rRNA gene

sequences, respectively, and thus were two-fold more abundant than the’classical’

63



Chapter 3 - Bloom of NC10 in Lake Zug

gamma-proteobacterial methanotrophs. At 110 m depth, which was nearest to the
oxycline, only 0.7% of all classified 16S rRNA gene sequences were assigned to NC10.

The high abundance of NC10 bacteria was confirmed by catalyzed reporter
deposition fluorescence in situ hybridization (CARD-FISH; Fig 1c). Water samples
obtained from 120 m and 160 m were stained with an oligonucleotide CARD-FISH probe
specific for NC10 bacteria (DBACT-0193; Figure 1¢) and contained 1.1 and 2.8 x 10° cells
ml”, accounting for 10.0% (120 m) and 26.8% (160 m) of all DAPI-stained cells. This
probe has 1 nucleotide mismatch to the 16S rRNA gene sequence belonging to NC10
retrieved from Lake Zug (Supplementary Table S1). A similarly high proportion of cells
was hybridized with the DBACT-1027 probe (0 mismatches), whereas no hybridized cells
were found with the DBACT-447 probe (5 mismatches; data not shown).

These results showed that in September 2016 planktonic NC10 bacteria were the
dominant methanotrophic microorganisms in the profundal, anoxic waters of Lake Zug.
To our knowledge, this is the highest relative abundance of NC10 that has been so far
reported from any environment. The highest previous report was from the Feitsui
reservoir where up to 16 % of all cells were identified as NC10 using CARD-FISH (DBACT-
1027 probe; (Kojima et al, 2014)). Interestingly, apart from being eutrophic, Lake Zug
and Feitsui reservoir share few similarities. Whereas Lake Zug is a deep and permanently
stratified temperate lake, Feitsui reservoir is a comparably shallow (mean depth of 40 m)
and monomictic subtropical reservoir. It is thus not immediately obvious which habitat
might favor the growth of NC10 to such high abundances. It is possible that during the
non-steady-state conditions during the sampling campaign in September 2016 a
unique combination of factors contributed to the observed bloom of NC10 bacteria,

possibly including microoxic conditions and/or high organic matter content.

Genome reconstruction and phylogenetic assignment of “Ca. M. limnetica”

The high abundance of NC10 bacteria in the sample enabled us to assemble a
putative NC10 genomic bin. The binning process was based on guanine-cytosine
content as well as average contig coverage of the 160 m metagenome and a putative
NC10 genomic bin was obtained from a co-assembly of all three depths. The contigs
within this bin had the highest average coverage in the metagenomes from 120 m and
160 m (average contig coverage 451-fold and 851-fold) but only comparatively low

coverage (30-fold) in the 110 m metagenome. The average contig coverage of the
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metagenomic bin matched well with the abundance of NC10 bacteria previously
estimated in our 16S rRNA read survey and CARD-FISH analysis. Summary statistics of
the genomic bin (after targeted re-assembly) and comparison to the closed genome of
“Ca. M. oxyfera” is shown in Table 1. Analysis by CheckM (Parks et al, 2015) suggested
that the genomic bin was of high quality with similar estimates of completeness (96.2%)
and contamination (1.7%) as the closed genome of “Ca. M. oxyfera” (accession

FP565575.1, Table 1).

Table 1. Overview of genome statistics for “Ca. M. limnetica” and comparison to “Ca. M.
oxyfera”. The complete genome of “Ca. M. oxyfera” was retrieved from GenBank (accession
number FP565575.1). Coding sequences, rRNAs and tRNAs were predicted using Prodigal (Hyatt
et al, 2010), Aragorn (Laslett & Canback, 2004) and RNAmmer (Lagesen et al, 2007) implemented
in the Prokka annotation pipeline (Seemann, 2014b). Genome quality metrics were computed
using CheckM (Parks et al, 2015) running the lineage specific workflow.

“Ca. M. limnetica” “Ca. M. oxyfera”
Contigs 40 1
Genome size (bases) 2,554,766 2,752,854
GC content (%) 58.4 58.6
Coding sequences 2530 2707
rRNAs / tRNAs 16S-235-55/52 165-23S-55 /48
Completeness / Contamination / | 96.2/1.7 /0.0 96.3/2.6/0.0
Strain heterogeneity (%) (marker sets: 117) (marker sets: 117)

Next we used the assembled full-length 16S rRNA gene sequence (1549 bp)
retrieved from the NC10 genomic bin for taxonomic classification. Comparative analysis
of the 16S rRNA gene sequence showed 95.1% identity to “Ca. M. sinica” (He et al, 2016)
and 96.3% identity to “Ca. M. oxyfera” (Ettwig et al, 2010a; Raghoebarsing et al, 2006).
These values are higher than the threshold for genus definition (95%) but are below the
species cutoff value (98.6%; (Konstantinidis et al, 2017; Yarza et al, 2014)). A whole
genome analysis further showed that the pairwise average nucleotide identity (ANI)
between our retrieved NC10 genome and the genome of “Ca. M. oxyfera” was 81.8%.
This is well below the accepted ANI species boundary (95-96%; (Goris et al, 2007;
Richter & Rossell6-Mora, 2009)). Taken together these data suggest that the NC10
population present in Lake Zug likely represented a new species within the genus “Ca.

Methylomirabilis”, which we here name “Ca. Methylomirabilis limnetica”.
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Figure 2. Phylogenetic trees of “Ca. M. limnetica” full-length 16S rRNA gene (a) and PmoA
amino-acid sequence (b). (a) Maximum likelihood phylogenetic tree of 16S rRNA gene
sequence without constraining the alignment by a weighting mask or filter. Bootstrap values >
70% (out of 1000 resamplings) are shown in front of respective nodes. Three sequences of
Nitrospiraceae were chosen as outgroup [Leptospirillum ferriphilum (AF356829), Leptospirillum
ferrooxidans (X86776), Nitrospira moscoviensis (X82558)]. Scale bar indicates substitutions per
site. (b) Maximum likelihood phylogenetic tree of PmoA amino-acid sequence of “Ca. M.
limnetica”. Bootstrap support (> 70%) of total 500 resamplings are shown. Four PmoA/AmoA
amino-acid sequences belonging to Proteobacteria and Verrucomicrobia served as outgroup
(accession numbers BAE86885.1, AAG60667.1, CCJ08278.1, CCG92750.1). Scale bar indicates

substitutions per site.
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Phylogenetic analysis of the 16S rRNA gene sequences showed that the
sequence “Ca. M. limnetica” clustered within a subgroup of NC10 (Figure 2a). The
sequences within this subgroup were nearly identical (>99% sequence identity) and
likely represented the same species. Interestingly, the sequences were retrieved from
geographically distant freshwater lakes (Lake Constance (Germany) and Lake Biwa
(Japan), a freshwater reservoir (Feitsui, Taiwan) (Deutzmann & Schink, 2011; Kojima et al,
2014; Kojima et al, 2012) and a minerotrophic peatland (Brunssummerheide, The
Netherlands (Zhu et al, 2012)). Both currently described species of the genus “Ca.
Methylomirabilis”, “Ca. M. oxyfera” and “Ca. M. sinica”, clustered in a different, more
divergent branch of the 16S rRNA gene tree (Figure 2a).

Phylogenetic analysis of the “Ca. M. limnetica” PmoA (Figure 2b) showed that the
sequence clustered together with partial PmoA sequences assigned to NC10 which
were retrieved from Lake Constance (Deutzmann & Schink, 2011). The Lake Constance
sequences were almost identical to the PmoA sequence of “Ca. M. limnetica” (98.2-
99.3%; 61-69% coverage). Partial PmoA sequences retrieved from Brunssummerheide
(Zhu et al, 2012), Lake Biwa (Kojima et al, 2012) and Feitsui reservoir (Kojima et al, 2014)
formed a separate but closely related sister clade (approximately 96-97% identity). A
third, more distantly related polyphyletic cluster mainly constituted PmoA sequences
retrieved from a waste water treatment plant (Lieshout) (Luesken et al, 2011), a river
sediment (Bhattacharjee et al, 2016) as well as “Ca. M. oxyfera” and “Ca. M. sinica”. The
sequences in this cluster were more distantly related to “Ca. M. limnetica” PmoA

sequence (91-96% identity).

Genome-inferred central C1 and energy metabolism

The high-quality genome of “Ca. M. limnetica” allowed for a reconstruction of
pathways involved in carbon and energy metabolism (Figure 3). “Ca. M. limnetica”
encoded the pathway for complete aerobic oxidation of methane (Table 3), including
particulate methane monooxygenase (pPMMO; pmoCAB) and one Xox-type methanol
dehydrogenase (MDH; xoxFJG). Genes encoding for soluble methane monooxygenase
(sMMO) and MxaF-type methanol dehydrogenase, which was found in “Ca. M. oxyfera”
previously (Ettwig et al., 2010?), were not encoded in “Ca. M. limnetica” genome.
Downstream conversion of formaldehyde to formate could either proceed via

tetrahydromethanopterin (HsMPT)-dependent or tetrahydrofolate (HsF)-dependent C;
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transfer pathway. Formate dehydrogenase (fdhA), catalyzing the oxidation of formate to

CO,, was likewise encoded in the genome of “Ca. M. limnetica”.
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Figure 3. Genome-inferred metabolic potential of “Ca. M. limnetica”. Predicted metabolic
potential of “Ca. M. limnetica” with respect to carbon, nitrogen and respiratory pathways are
shown. Indicated are the pathways for methane oxidation (grey), denitrification (blue) and
(aerobic) respiratory chain (orange). Abbreviations: pMMO, particulate methane
monooxygenase; MDH, methanol dehydrogenase; FDH, formate dehydrogenase; CBB, Calvin-
Benson-Bassham cycle; NapAB, periplasmic nitrate reductase; NirS, cytochrome cd; nitrite
reductase; gNOR, quinol-dependent nitric oxide reductase; NOD, NO dismutase; cyt. bc-like,
cytochrome bc-like complex; NDH, NADH dehydrogenase; AOX, alternative oxidase; HCO, heme-
copper oxidase.

“Ca. M. limnetica” appears to derive its biomass carbon solely from carbon
dioxide and not from methane, which has also been reported for “Ca. M. oxyfera”
(Rasigraf et al, 2014). The genome encoded a complete Calvin-Benson-Bassham (CBB)
cycle for autotrophic carbon fixation including ribulose-1,5-bisphosphate
carboxylase/oxygenase (RubisCO; cbbLS) and phosphoribulokinase (prk), which are
exclusive to the CBB cycle (Hugler & Sievert, 2010). Both the serine and ribulose
monophosphate (RuMP) pathways of “Ca. M. limnetica”, which allow for methane-
derived carbon assimilation, were incomplete. The RUMP pathway was missing both key
genes hexulosephosphate synthase (hps) and hexulosephosphate isomerase (hpi). The
serine pathway was missing hydroxypyruvate reductase (hpr), glycerate 2-kinase (gck),

malate thiokinase (mtk) and malyl-coenzyme A lyase (mcl).
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Respiratory complexes of “Ca. M. limnetica”

It has been proposed that NC10 bacteria, specifically “Ca. M. oxyfera”, produce O,
from nitrogen oxides by a unique intra-aerobic denitrification pathway involving a
nitrite reductase and a putative NO dismutase (Ettwig et al, 2010a; Ettwig et al, 2012; Wu
et al, 2011b). The genome of “Ca. M. limnetica” also encoded for a partial denitrification
pathway (Figure 3; Table 2a) including periplasmic nitrate reductase (napAB), cd:-type
nitrite reductase (nirS) and three genes encoding for quinone-interacting nitric oxide
reductase (QNOR; norB). Membrane-bound nitrate reductase (narGHI) and nitrous oxide
reductase (nosZ) were not found in the “Ca. M. limnetica” genome. The amino-acid
sequences of two nitric oxide reductases of “Ca. M. limnetica” (encoded by tandem
genes MEZU 00035-26) featured nearly all modified residues of the quinol-binding and
catalytic site that have been identified in two divergent gNORs of “Ca. M. oxyfera” and
marine NC10 bacteria (Figure 4, (Ettwig et al, 2012; Padilla et al, 2016)). These gNOR
enzymes have been speculated to function as NO dismutase (NOD) that
disproportionates two molecules of NO into N, and O, thus allowing NC10 bacteria to
oxidize methane using pMMO in the absence of exogenous O, (Ettwig et al, 2010a;
Ettwig et al, 2012). Like “Ca. M. oxyfera”, “Ca. M. limnetica” also encoded for a third, most
likely genuine NO-reducing gNOR that contained the same conserved residues of
canonical gNORs of “Ca. M. oxyfera” and other microorganisms (Figure 4).

In addition to nitrogen oxides, “Ca. M. limnetica” also has the genomic potential
to use O, as terminal electron acceptor. We identified genes encoding for two types of
terminal oxidases (Table 2b); a heme copper oxidase (A1-type HCO; (Pereira et al, 2001))
and an alternative oxidase (AOX) that belongs to the di-iron carboxylate group of
proteins (Berthold & Stenmark, 2003). Although NC10 bacteria grow anaerobically, it has
been speculated that O, from NO dismutation could be respired by these terminal
oxidases (Wu et al, 2011a). The genome of “Ca. M. oxyfera” also encoded for two
additional heme-copper terminal oxidases (bo- and ba;s-type; labeled HCO 2 and 3 (Wu
et al, 2011a)) which were however not found in the genome of “Ca. M. limnetica”.
Alignment of Lake Zug metagenomic reads (160 m) to the genome of “Ca. M. oxyfera”
further confirmed that these HCOs were encoded in genomic regions not present in our

metagenomic dataset (Supplementary Figure 2).
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3?1 ?TS Sl‘i)}‘ 5?8 SISO
G. stearothermophilus MFGALLAHBYYTEPDSEFG P IHLWVEG GHHY LBV
N. gonorrhoeae LLGGLTAHYTVEGQGEYG PBL VHLWVEG LHHL LEV
“Ca. M. oxyfera” (DAMO 1889) IVGAAVAHYRAEPGKEYG GRBA VHLWVEG GH MEV
gNOR| “Ca. M. limnetica” (MEZU 00990) MVGAVVAHYRADPGKEYG GBA VHLWVEG GH MEV
Synechocystis sp. LMGMVTARYAV EGEYG GDL VHLWVEG LHHL LEV
HdN1 NorZ1 FIGGFTAHRYTVEGQTEYG GBV VHLWVEG FHHL LEV
S. aureus LLGELLAHYYVEN-KIEFG WwWBI VHLWVEG GHHY LEV
“Ca. M. oxyfera” (DAMO 2434) LAGILSAEDFVEGGPESA GBEA IHMWVEV SHNF MABVv
“Ca. M. oxyfera” (DAMO 2437) LAGILGAEDFVEGGGPGEA GGV IHMWVEVY SHNF MQV
NoD | “Ca. M. limnetica” (MEZU 00035) LAG | ISAEDF IGGGPMDA GGA IHMWVEV SHNF MQV
“Ca. M. limnetica” (MEZU 00036) LAG ILSAEDFVEGGGPGSF GGA IHMWVEVY SHNF MQV
M. ruestringensis SSGFVTINEFVBYLGE - - GAC VHMWVEA SHNF LQF
HdN1 NorZ2 FAGIAAAWDFVKP - - GIEA VHMWVEV SHNF LQV
quinol-binding site catalytic site

Figure 4. Multiple alignment of nitric oxide reductase (QNOR) and putative nitric oxide
dismutase (NOD). Quinol-binding site and catalytic site are shown for gNOR (red) and NOD
(blue) following the previous alignment by (Ettwig et al, 2012); the numbering is according to
the residue number of G. stearothermophilus. Accession numbers: Geobacillus
stearothermophilus 3AYF_A, Neisseria gonorrhoeae ZP_04723508.1, Synechocystis sp. PCC 6803
BAA18795.1, gamma proteobacterium HAN1 NorZ1 (CBL45628.1) NorZ2 (YP_003809511.1),
Staphylococcus aureus EGL94648.1, Muricauda ruestringensis G2PJH®6.

Intriguingly, the cytochrome bci complex, a key component of the respiratory
electron transfer present in “Ca. M. oxyfera” (Ettwig et al, 2010b; Wu et al, 2011a), was
not found in the genome of “Ca. M. limnetica”. Instead we identified genes encoding for
two cytochrome bc-like complexes, homologs of which were also encoded in the
genome of “Ca. M. oxyfera” (Table 2). Both cytochrome bc-like complexes featured
tandem genes encoding for a cytochrome b and a Rieske iron-sulfur protein in addition
to multi-heme cytochromes ¢ (Supplementary Figure 3). The cytochromes b were either
encoded as single, long gene (MEZU_00164) or as two separate, shorter genes
(MEZU_00213-14) that appeared to constitute two different, evolutionary-related
subfamilies of cytochromes b (Dibrova et al, 2013; Dibrova et al, 2017). Since “Ca. M.
limnetica” did not encode for a canonical cytochrome bc; complex, we suggest that
either one or both cytochrome bc-like complexes, which were well transcribed (Table 2),
act as a quinol:cytochrome c oxidoreductase.

In addition to the cytochrome bc, complex several other key metabolic genes
encoding for nitrogen metabolism and the respiratory chain of “Ca. M. oxyfera”
appeared to be absent from the genome of “Ca. M. limnetica” (Table 4). These were
genes encoding for membrane-bound nitrate reductase (Nar), two heme copper
oxidases (previously assigned HCO2 and HCO3 (Wu et al, 2011a)), MxaF-type as well as

one additional XoxF-type methanol dehydrogenase, and hydroxylamine
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oxidoreductase (Hao). The absence of hao genes from the “Ca. M. limnetica” genome is
intriguing as Hao has been suggested to play a role in the detoxification of
hydroxylamine in methanotrophs (Campbell et al, 2011; Nyerges & Stein, 2009).
Hydroxylamine is formed via the co-metabolism of ammonium by methane
monooxygenase — a process that is likely also relevant in Lake Zug as methane and
ammonium were present in almost equimolar concentrations in situ (Figure 1a,1b).
Other genes encoding for enzymes known to be involved in hydroxylamine
detoxification, such as cytochrome P460 (cytL) (Bergmann et al, 1998), were also absent
from the “Ca. M. limnetica” genome thus raising the question of how “Ca. M. limnetica”
disposes of this toxic intermediate. To confirm that these genes were indeed absent
from the genome of “Ca. M. limnetica” we searched the whole metagenomic assembly
for genes encoding the aforementioned enzymes but could not identify highly covered
contigs encoding for close homologs. Additionally, by mapping the sequences of the
160 m metagenome to the genome of “Ca. M. oxyfera” we saw that whereas genomic
regions with gene homologs shared between both species were well covered (per-base
coverage > 100), the average coverage was close to zero for all genomic regions
containing aforementioned genes exclusive to “Ca. M. oxyfera” (Supplementary Figure

2).

In situ gene expression of “Ca. M. limnetica”

To investigate whether “Ca. M. limnetica” was transcriptionally active in situ, we
aligned the metatranscriptomic reads obtained from 110 m, 120 m and 160 m depth to
the “Ca. M. limnetica” genome. We found that nearly one third of all non-rRNA
metatranscriptomic sequences from 120 m and 160 m (28.4% and 32%, respectively)
aligned to the genome of “Ca. M. limnetica”. The overall alignment rate of the
metatranscriptome from 110 m (2.8%) was much lower, in line with the much lower
abundance of “Ca. M. limnetica” at this depth.

A comparison of the 100 most transcribed genes of “Ca. M. limnetica” showed a
clear difference between metatranscriptomes originating from near the oxycline (110
m) and from below (120 m & 160 m). We found that 94 out of the top 100 transcribed
genes were shared between the two deeper metatranscriptomes from 120 m and 160 m
depth. This was not the case for the 110 m metatranscriptome where only about half of

the top 100 transcribed genes were shared with the metatranscriptomes from 120 m
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and 160 m. We found several genes encoding for toxin-antitoxin systems and proteases
exclusively transcribed among the top 100 genes by “Ca. M. limnetica” at 110 m. Toxin-
antitoxin systems appear to have an important role in bacterial stress physiology and
growth control (Blower et al, 2011; Buts et al, 2005; Hayes & Low, 2009). Hence, the
increased transcription of these genes might reflect a response of “Ca. M. limnetica” to
hypoxic conditions close to the oxycline.

Transcription of functional genes involved in methane oxidation and
denitrification was in accord with the proposed anaerobic, methanotrophic and
denitrifying lifestyle of NC10 bacteria. Among the 100 most transcribed genes of “Ca. M.
limnetica” shared in all three metatranscriptomes were the genes encoding for methane
oxidation and denitrification (Table 3); in particular genes encoding for particulate
methane monooxygenase, nitrite reductase and one gene copy of the putative NO
dismutase (MEZU 0035; Table 2a). At 120 m and 160 m, transcription of the second gene
copy (MEZU 0036) was three orders of magnitude lower (Table 2). Interestingly, at 110 m
both putative NO reductase genes were highly transcribed (Table 2a). This observation
is in line with the suggestion of Luesken et al (2012) who proposed that “Ca. M. oxyfera”
might only transcribe both copies of NO reductase when exposed to oxygen.
Transcription of the “canonical” qNOR was detected at all depths, implying that “Ca. M.
limnetica” might also reduce NO to N,O in situ. However, the transcription levels of the
‘canonical’ gNOR were significantly lower than those of the predominantly transcribed
putative NOD (84 to 146-fold). “Ca. M. limnetica” also encoded a periplasmic nitrate
reductase (NapAB) but its transcription was much lower than that of e.g. the nitrite
reductase (NirS; Table 2). It thus remains unclear, whether M. limnetica can use nitrate as
an electron acceptor in situ. “Ca. M. oxyfera”, which also possesses NapAB, was incapable

of using nitrate as electron acceptor (Ettwig et al, 2010a).
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Table 2. In situ transcription of selected functional respiratory genes of “Ca. M. limnetica”.
Listed are functional genes encoding for dissimilatory nitrogen metabolism and respiratory
complexes of “Ca. M. limnetica” and their respective transcription. Transcription was quantified
as RPKM (reads per 1 kb gene length and per million mapped transcripts) in metatranscriptomes
obtained from 110 m, 120 m and 160 m depth. Gene homologs of “Ca. M. oxyfera” have been
identified using amino-acid sequences BLASTP; only the top hit (by e-value or % sequence

identity) is shown (alignment coverage >94%; except NapA 83%).

Homolog in “Ca.

Transcription (RPKM)

Protein Gene Locus tag M. oxyfera” 110 m 120 m 160 m
Periplasmic nitrate reductase napA MEZU_02571 DAMO_2411 435 6,096 6,668
napB MEZU_02570 DAMO_2410 746 8,539 9,888
Nitrite reductase nirS MEZU_02574 DAMO_2415 7485 231,857 267,063
Nitric oxide reductase norZ1 MEZU_00990 DAMO_1889 478 3,560 3,748
norZ2 MEZU_00036 DAMO_2434 12,188 1,215 1,472
norZ3 MEZU_00035 DAMO_2437 40,540 468,670 549,730
Cytochrome c oxidase, A1-type coxllll MEZU_00432 DAMO_1162 116 3,901 3,804
coxlll MEZU_00433 DAMO_1164 109 2,927 3,027
coxl MEZU_00434 DAMO_1165 113 1,912 2,135
coxll MEZU_00435 DAMO_1166 159 2,247 2,332
Alternative oxidase aox MEZU_01093 DAMO_2910 62 1,694 1,653
Cytochrome bc-like complex qcrA MEZU_00163  DAMO_0820 229 6,660 7,053
qcrB MEZU_00164 DAMO_0821 217 5,212 5,884
- MEZU_00165 DAMO_0822 191 4,840 5,400
Cytochrome bc-like complex qcrA MEZU_00213 DAMO_1672 431 4,460 4,270
qcrB MEZU_00214 DAMO_1671 402 4,461 4,949
- MEZU_00215 DAMO_1670 237 2,739 2,934
- MEZU_00216  DAMO_1669 311 4,786 5,246
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Table 3. In situ transcription of functional genes of “Ca. M. limnetica” involved in methane
oxidation. Listed are functional genes encoding for the complete methane oxidation pathway
in “Ca. M. limnetica” and their respective transcription. Transcription was quantified as RPKM
(reads per 1 kb gene length and per million mapped transcripts) in metatranscriptomes
obtained from 110 m, 120 m and 160 m depth. Gene homologs of “Ca. M. oxyfera” were
identified using amino-acid sequences BLASTP; only the top hit (by e-value or % sequence
identity) is shown (alignment coverage >93%).

Homolog in “Ca. Transcription (RPKM)

Protein Gene Locus tag M. oxyfera” 110 m 120 m 160 m
Particulate methane
pmoC MEZU_00022 DAMO_2451 20,096 294,363 345,326
monooxygenase
pmoA MEZU_00023 DAMO_2450 11,744 245,506 291,305
pmoB MEZU_00024 DAMO_2448 11,669 237,046 273,803
Methanol dehydrogenase XoxXG MEZU_01075 DAMO_0138 736 17,397 17,994
xoxJ MEZU_01076 DAMO_0136 777 20,638 22,392
xoxF MEZU_01077 DAMO_0134 4,206 97,097 110,208
Formaldehyde activating enzyme  fae MEZU_01323 DAMO_0454 4,534 123,653 122,288
Methylene HsMPT dehydrogenase  mtd MEZU_01324 DAMO_0455 1,298 39,926 43,705
Formyltransferase/hydrolase
complex fhcB MEZU_01326 DAMO_0457 776 23,016 25,528
fhcA MEZU_01327 DAMO_0458 567 15,587 16,861
fhcD MEZU_01328 DAMO_0459 580 18,222 19,083
fhcC MEZU_01329 DAMO_0460 777 22,242 23,125
Bifunctional methylene HaF
dehydrogenase / methenyl HdMPT  folD MEZU_00798 DAMO_1852 322 5,799 5,560
cyclohydrolase
Formyl HsF deformylase purU MEZU_02250 DAMO_2586 69 855 1,076
Formate dehydrogenase fdhA MEZU_00184 DAMO_0853 130 2,869 3,429

Table 4. Overview of genes encoding for enzymes involved in nitrogen oxide and oxygen
respiration of “Ca. M. limnetica” and “Ca. M. oxyfera”. The nomenclature of heme-copper
oxidase 1-3 of “Ca. M. oxyfera” is listed according to (Wu et al, 2011a).

Nar Nap NirS gNor Nos Hao HCO1 HCO2 HCO3 AOX cytochrome

(cox) (cyo) (cba) bci complex
“Ca. M. limnetica” - + + + - - + - - + )
“Ca. M. oxyfera” + + + + - + + + + + +

Besides genes involved in methane oxidation and dissimilatory nitrogen
metabolism, many genes encoding for proteins involved in transcription and translation
(i.,e. RNA polymerase, translation initiation factor) as well as numerous ribosomal
proteins were among the highest transcribed genes at all depths. Furthermore, we

identified a well transcribed gene cluster encoding for several gas vesicle-related
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proteins including the main structural gas vesicle protein (GvpA) and associated
proteins (GvpL/F, GvpN and GvpK). In fact, gvpA was among the highest transcribed
genes at all depths (~500,000 RPKM at 120 and 160 m). The presence and expression of
genes encoding for gas vesicles suggests that “Ca. M. limnetica” might be capable of
adjusting or maintaining its position in the water column. Interestingly, “Ca. M. oxyfera”,
which was isolated from freshwater sediment, appears not to encode homologs of
these Gvp-associated proteins.

The large proportion of highly transcribed genes in all three in situ
transcriptomes suggests that at the time of sampling the “Ca. M. limnetica” population
was still transcriptionally active, even though it is not clear whether this activity was

accompanied by methane oxidation.
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Experimental Procedures

Geochemical profiling and sample collection

Sampling was carried out in September 2016 at a single station located in the
deep, southern lake basin of Lake Zug (~200 m water depth; 47°06'00.8" N, 8°29'35.0" E).
A multi-parameter probe was used to measure conductivity, turbidity, depth (pressure),
temperature and pH (XRX 620, RBR, Ottawa, ON, Canada). Dissolved oxygen was
monitored online with normal and trace micro-optodes (types PSt1 and TOS7, Presens,
Regensburg, Germany) with detection limits of 125 and 20 nM, respectively, and a
response time of 7 s (Kirf et al, 2014). Water samples for measurements of methane and
nitrous oxide concentrations were retrieved from distinct depths with a syringe
sampler. Water from individual 50 ml syringes was filled through a gas-tight rubber
tubing into serum bottles (120 ml), allowing water to overflow. Solid copper chloride
(CuCly) was immediately added in excess to the water samples and the bottles were
closed with a butyl rubber stopper (head-space free) and crimped. Before analysis, a
30ml headspace was set with N2 and after overnight equilibration methane and nitrous
oxide concentrations were measured in the headspace with a gas chromatograph (GC;
Agilent 6890 N, Agilent Technologies, Santa Clara, CA, USA) equipped with a Carboxen
1010 column (30mx 0.53 mm, Supelco, Bellefonte, PA, USA) and a flame ionization
detector. Methane concentrations in the water phase were back-calculated according to
(Wiesenburg & Guinasso Jr, 1979).

Concomitantly with dissolved gases, water samples for ammonium and NOy
measurements were collected from the same depths using the same syringe sampler.
40 ml of water was directly injected into a 50-ml Falcon tube containing 10 ml of OPA
reagent for fluorometric ammonium quantification according to (Holmes et al, 1999).
For NO, quantification, 1.5 ml of water was added to an eppendorf cup prefilled with 15
pl HgCl, and combined nitrate and nitrite concentration was determined by commercial
chemiluminescence NOy analyzer after reduction to NO with acidic Vanadium (Il)
chloride (Braman & Hendrix, 1989). After reduction to NO, nitrite was determined with
acidic potassium iodide and nitrate was then calculated as the difference between NOy
and nitrite.

From each depth, 3 ml of water were sampled into a 15 ml Falcon tube

containing formaldehyde for subsequent FISH analyses.
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Water for DNA/RNA analyses were collected with a Niskin bottle from 110m,
120m and 160m water depth. For each depth, 2 x 1 L water was immediately filtered
onboard (0.2 um GTTP filter; Merck Millipore, Darmstadt, Germany); filters for DNA
extraction were air dried and filters for RNA extraction were immediately immersed in
RNAlater preservation solution (Life Technologies, Carlsbad, CA, USA). DNA and RNA

filters were stored at — 20°C until further processing.

Diffusive flux calculation

Diffusive fluxes (J) of O, NHs and CH. across the hypolimnion-epilimnion
interface were calculated assuming steady state by using the maximum concentration
change (6C) over a specific depth range (6x; that is, m) applying Fick’s first law:

B D6C
J= ox

A turbulent diffusion coefficient (that is, Eddy diffusivity D) of 2.7 X 10> m?s™’
was used. Diffusive fluxes were calculated over depth intervals where gradients of the
respective solutes were highest. For O,, the depth interval was 60 and 106 m. For CH,
and NH,, the depth interval was 120 and 117.5 m. CH, and NH,flux in deeper depths was

calculated over a depth interval of 150 and 180 m and 170 and 180 m, respectively.

Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-
FISH)

Waters samples (3 ml) were fixed with formaldehyde (final concentration 2%
[w/v]) for 1.5 h at room temperature before being filtered onto polycarbonate GTTP
filters (0.2 um pore size, effective filter diameter = 20 mm; Merck Millipore, Darmstadt,
Germany). Permeabilization with lysozyme, peroxidase inactivation, hybridization with
specific oligonucleotide probes labeled with horseradish peroxidase (for details see
Supplementary Table S1; Biomers, Ulm, Germany), tyramide reporter deposition
(Oregon Green 488) and 4'6-diamidino-2-phenylindole (DAPI) counter staining was
performed according to (Pernthaler et al, 2002). Filters were embedded in a mix of
Citifluor/Vectashield (4:1) and mounted onto glass slides. Cell counting was performed
with Nikon Eclipse Ci microscope (Axioskop 2, Zeiss, Germany) in randomly selected

fields of view until ~1000 DAPI-stained cells were counted.
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Nucleic acid extraction and metagenome and metatranscriptome
sequencing

DNA was extracted from cut-up filters using Powersoil DNA isolation kit. For RNA
extraction, filters were briefly rinsed with nuclease-free water and RNA was extracted
from cut-up filters using PowerWater RNA isolation kit (including removal of genomic
DNA by DNase | digestion). Both nucleic acid extraction kits (MoBio Laboratories,
Carlsbad, CA, USA) were used according to manufacturer’s instructions. DNA and RNA
were quantified using the Qubit dsDNA HS or RNA HS Assay kits and the Qubit 2.0
Fluorometer (Invitrogen, Carlsbad, CA, USA).

For metagenomic sequencing, DNA was fragmented by sonication (500 nt) using
a Covaris S2 sonicator (Covaris, Woburn, MA, USA) and library preparation was done
according to manufacturer’s instructions using NEBNext Ultra Il DNA Library Prep Kit for
lllumina (New England Biolabs, Ipswich, MA, USA). Paired-end sequencing (2x250 bp)
was performed using the lllumina HiSeq2500 platform (lllumina Inc., San Diego, CA,
USA) in rapid mode with SBS chemistry v2. For metatranscriptomic sequencing, total
RNA was first concentrated using the RNA Clean & Concentrator kit (Zymo Research
Corp., Irvine, CA, USA) according to manufacturer’s instructions. Depletion of rRNAs was
done with the Ribo-Zero rRNA Removal Kit (Bacteria) for Illumina (Epicentre, Madison,
WI, USA) with a protocol adaptation for low input amounts. cDNA library preparation
was done with the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New
England Biolabs) according to protocol and sequencing (1x150 bp) was performed
using the Illumina HiSeq3000 platform (lllumina Inc.) with SBS chemistry. Library
preparation and sequencing was performed by the Max Planck-Genome-centre
Cologne, Germany (http://mpgc.mpipz.mpg.de/home/). Detailed information for each
metagenomic and metatranscriptomic dataset can be found in Supplementary Table

S2.

Metagenomic assembly, binning and genome analysis

Paired-end Illumina reads were trimmed using Trimmomatic 0.32 (Bolger et al,
2014) and parameters MINLEN:20 ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:50. Trimmed Illumina reads from all three
metagenomes were co-assembled using metaSPAdes assembler 3.9.1 (Nurk et al, 2016)

and k-mer lengths of 21,33,55,77,99,127. lllumina reads of each metagenome were
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mapped to the assembled contigs using BBmap 35.43 (Bushnell, 2016) with
approximate minimum identity of 95% (minid=0.95) and default parameters. Open
reading frames were predicted using Prodigal 2.60 (Hyatt et al, 2010) running in
metagenomic mode (-p meta) and standard parameters. Translated amino-acid
sequences were subsequently searched for using HMMER3 (http://hmmer.org/) against
a set of 107 hidden markov models of essential single-copy genes (Dupont et al, 2012)
using trusted cutoff values (-cut_tc) and default settings. Protein sequences coding for
essential single copy genes were searched against NCBI non-redundant database
(retrieved August 2015) using DIAMOND 0.8.34 blastp (Buchfink et al, 2015) and an e-
value cutoff of 107°. The taxonomy (class level) of each essential single-copy gene was
assigned using MEGAN5 and the mmgenome script ‘hmm.majority.vote.pl’
(http://madsalbertsen.github.io/mmgenome/). Binning of “Ca. M. limnetica” contigs
from the co-assembly was based on differential contig coverage in metagenomes from
160 m and 120 m (Supplementary Figure 1) and was performed using the mmgenome R
package (http://madsalbertsen.github.io/mmgenome/; (Karst et al, 2016)). Trimmed
[llumina reads of the 160 m metagenome were mapped to the binned contigs using
BBmap and stringent mapping settings (approximate minimum identity = 0.95). 10% of
the mapped reads were selected at random and re-assembled using SPAdes 3.50
(Bankevich et al, 2012) with mismatch corrector enabled (-careful). The re-assembly was
further refined by removing short and low-coverage contigs (length < 500, average
coverage < 10-fold). The quality of the re-assembled genome was assessed using
CheckM 1.05 (Parks et al, 2015) running the lineage-specific workflow and genome
annotation was performed using Prokka 1.12 (Seemann, 2014a) in metagenomic mode
(-metagenome) and the RAST online annotation server (Aziz et al, 2008). The annotation
of key metabolic pathways was manually inspected and refined.

The Whole Genome Shotgun project of “Ca. Methylomirabilis limnetica” has
been deposited at DDBJ/ENA/GenBank under the accession NVQC00000000 and
BioProject PRINA401219. The version described in this paper is version NVQC01000000.

For microbial community analysis from metagenomic Illumina reads, trimmed
paired-end reads matching the 16S rRNA gene sequence were identified using
SortMeRNA 2.1 (Kopylova et al, 2012) and supplied archaeal and bacterial 165 rRNA
databases (silva-arc-16S-id95, silva-bac-16S-id90). Paired-end rRNA gene sequences
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were then merged using BBmerge (Bushnell, 2016) with a minimum overlap of 20 bases.
The merged reads (~8,700 - 11,400 sequences for each metagenome) were submitted
to the SILVAngs web service (Quast et al, 2013) for taxonomic classification.

Pairwise average nucleotide identity (ANI) values between the genomes of “Ca.
M. limnetica” and “Ca. M. oxyfera” were calculated using BLAST (ANIb) and the
JSpeciesWS online service (Richter et al, 2015). Relative genome sequence coverage of
“Ca. M. oxyfera” (Supplementary Figure 2) was calculated by mapping trimmed
metagenomic sequences from Lake Zug (160 m) to the genome of “Ca. M, oxyfera”
(retrieved from GenBank; accession FP565575) using BBmap 35.43 (Bushnell, 2016) and
standard settings. Average genome coverage (500 bp interval) was calculated and
visualized using BLAST Ring Image Generator (Alikhan et al, 2011). Gene coordinates of
selected genes were imported from GenBank and Refs. (Luesken et al, 2012; Wu et al,
2011a). Homologs shared between “Ca. M. limnetica” and “Ca. M. oxyfera” were
identified by using BLASTP (Camacho et al, 2009) with protein-coding CDS of “Ca. M.
limnetica” as queries and all protein-coding CDS of “Ca. M. limnetica” as subject
database. The homologs reported in Tables 2 and 3 represent the top BLASTP hit (by e-
value and % sequence identity) and were manually inspected to assure that the
alignment coverage was sufficient (typically > 90%)

Multiple sequence alignment of amino-acid sequences of nitric oxide reductase
was done following the previous alignment by (Ettwig et al, 2012). Sequences were
retrieved from GenBank, imported into JalView 2.10.1 (Waterhouse et al, 2009) and
aligned using ClustalOmega 1.0.2 (Sievers et al, 2011) web service implemented in

JalView.

Metatranscriptome data analysis

lllumina reads were trimmed using Trimmomatic 0.32 (Bolger et al, 2014)
performing removal of Illumina adapters (ILLUMINACLIP:TruSeq3-SE.fa:2:30:10),
adaptive trimming (MAXINFO:100:0.2) and retaining reads with a minimum length of 75
bp (MINLEN:75). Ribosomal RNA (rRNA) reads were removed from the trimmed reads
using SortMeRNA 2.1 (Kopylova et al, 2012) and the prepackaged 8 rRNA databases
(silva-bac-16s-id90, silva-arc-id95, silva-euk-18s-id95, silva-bac-23s-id98, silva-arc-23s-
id98, silva-euk-28s-id98, rfam-5s-id98, rfam-5.8s-id98). The non-rRNA reads were

mapped to the genome of “Ca. M. limnetica” using Bowtie2 2.1.0 (Langmead & Salzberg,
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2012) and standard parameters. Indexed BAM files were generated using samtools
0.1.19 (Li et al, 2009) and the count of alignment to genomic features (based on the
indexed BAM file as well as GFF file generated by Prokka) was performed using bedtools
2.23.0 multicov tool (Quinlan & Hall, 2010). Normalized gene transcription was
quantified as “reads per kilobase and million” (RPKM) (Mortazavi et al, 2008) which was
calculated by counting the number of mapping reads per gene divided by gene length

(in kilobases) and sum of reads mapping to all genes (in millions).

Phylogenetic analyses

Full length 16S rRNA gene sequence was retrieved from the genome of “Ca. M.
limnetica” using RNAmmer 1.2 (Lagesen et al, 2007), aligned using the SILVA
incremental aligner (SINA) (Pruesse et al, 2012) and imported to the SILVA SSU NR99
database (release 123; (Quast et al, 2013)) using ARB 6.1 (Ludwig et al, 2004). Additional
NC10 16S rRNA gene sequences originating from Lake Constance (Deutzmann & Schink,
2011), Brunssummerheide (Zhu et al, 2012) and the Eastern Tropical North Pacific
(Padilla et al, 2016) were also added to this dataset. Maximum likelihood phylogenetic
trees of 16S rRNA gene sequences were calculated using RAXML 7.7.2 (Stamatakis, 2006)
integrated in ARB with the GAMMA model of rate heterogeneity and the GTR
substitution model with 500 bootstraps.

NC10 PmoA amino-acid sequences were identified and retrieved from NCBI
GenBank using blastp against the NCBI non-redundant protein database with the PmoA
amino-acid sequence of “Ca. M limnetica” as query. As an outgroup, methane and
ammonium monooxygenase subunit A sequences of Methylomicrobium japanense
(PmoA, BAE86885.1), Methylocystis sp. SC2 (PmoA, CCJ08278.1), Methylacidiphilum
fumariolicum SolV (PmoA1, CCG92750.1) and Nitrosomonas cryotolerans (AmoA,
AAG60667.1) were added to the dataset. Maximum likelihood phylogenetic trees of
were calculated using RAXML 8.2.6 (Stamatakis, 2014) using the GAMMA model of rate
heterogeneity and the substitution matrix and base frequency of the WAG model with
100 bootstraps (parameters -f a -k -N -m PROTGAMMAWAG). Phylogenetic trees were

visualized using the Interactive Tree of life (iTOL v3) webservice (Letunic & Bork, 2016).
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Etymology

“Candidatus Methylomirabilis limnetica” [lim.ne'ti.ca. N.L. fem. adj. limnetica

pertaining to lakes]
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Supplementary Figure 1. Differential coverage plot of the co-assembled metagenomes
from Lake Zug. “Ca. M. limnetica” genomic bin (outlined) was extracted from the metagenomic
contigs of the Lake Zug co-assembly by exploiting differential coverage binning. Each contig is
represented by a circle and the circle size reflects contig length (in Kbp). Colored circles show
taxonomic assignment of essential single copy genes; “Ca. M. limnetica” contigs were classified
as unclassified bacteria.
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Supplementary Figure 2. “Ca. Methylomirabilis oxyfera” genome coverage by
metagenomic sequences of the Lake Zug 160 m metagenome. Shown is the circular genome
of “Ca. M. oxyfera”; the middle ring shows average-fold genome coverage in blue (0 - 1000x, in
500bp intervals) by sequences of the metagenome from 160m depth. Genomic localization of
selected functional genes of “Ca. M. oxyfera” involved in oxygen and nitrogen respiration as well
as carbon metabolism are shown on the outer and inner ring as black intervals. Locus tags of the
respective genes of are shown in brackets; gene names in bold typeface were not identified in
the genome of “Ca. M. limnetica”.
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Supplementary Figure 3. Organization of two gene clusters encoding for cytochromes bc-
like complexes of “Ca. M. limnetica”. Position of domains/motifs and gene product length are
drawn to scale (aa: amino acids) and motifs are specified in the Figure. Protein domains were
identified using NCBI conserved domains database (Marchler-Bauer et al, 2016) or manually (for
hemes c; using CxxCH motif); transmembrane helices were identified using the TMHMM Server
2.0 (http://www.cbs.dtu.dk/servicessTMHMM/; (Krogh et al, 2001)) Abbreviations: TMH,
transmembrane helix; 2Fe2S, Rieske 2Fe2S iron-sulfur cluster.

Supplementary Table S1. Overview of used oligonucleotide probes specific to NC10
bacteria. Listed are target group, 5-3’ sequence, % [v/v] formamide in the hybridization buffer
and respective reference.

Target Probe sequence % (v/v) Mismatch
Probe group (5- 3 Formamide (nt)* Reference
DBACT-0193 CGCTCGCCCCCTTTGGTC 50 1
DBACT-0447 |  NC10 CGC CGC CAA GTC ATT CGT 50 5 (Raghoebarsing
bacteria et al, 2006)
DBACT-1027 TCT CCACGCTCC CTT GCG 40 0

*Mismatch of respective probe to assembled “Ca. M. limnetica” 16S rRNA gene sequence.
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Summary

Sulfate-dependent anaerobic oxidation of methane (S-AOM) is mediated by a
consortium of anaerobic methanotrophic archaea (ANME) and associated
Deltaproteobacteria. This strictly anaerobic process is the dominant sink of methane in
marine sediments and controls the flux of methane, a potent greenhouse gas, to the
atmosphere. However, the absence of pure cultures of S-AOM microorganisms has
hampered our understanding of their physiology and interactions. Here, we studied the
metabolic potential and activity of S-AOM-associated microorganisms in a highly active
S-AOM enrichment culture using a functional metagenomics approach, including
metagenomic, metatranscriptomic and metaproteomic techniques. We reconstructed
genomes of ANME-2c archaea and SEEP-SRB1 bacteria, which represent the first
genomes of their respective genus or even family. We confirmed that ANME-2c archaea
expressed a complete reverse methanogenesis pathway for methane oxidation and
proposed several candidate genes, specifically two sulfite reductases, which might be
involved in a previously proposed archaeal dissimilatory sulfate reduction pathway.
Furthermore we raised the possibility of flavin-based electron bifurcation by soluble
heterodisulfide reductase as an important but overlooked aspect in the electron
transport chain of ANME. Our data also confirmed that SEEP-SRB1 expressed a complete
sulfate reduction pathway and associated membrane-bound complexes, which
arguably could also be involved in sulfur disproportionation. Moreover, we investigated
the potential for electron transfer via multiheme cytochromes c and pili between ANME-

2c and SEEP-SRBI1.
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Introduction

Marine sediments are hotspots of methane cycling. Methane, a potent
greenhouse gas, is copious in anaerobic marine sediments where it originates
predominantly from microbial degradation but also thermal breakdown of buried
organic matter (Reeburgh, 2007). However, very little methane escapes the sediments
mainly due to the activity of anaerobic methane-oxidizing microorganisms. These
specialized microorganisms dine on methane in the complete absence of molecular
oxygen but instead use sulfate, which is abundantly present in the marine environment,
as electron acceptor for the anaerobic oxidation of methane (AOM). This biological
process is termed sulfate-dependent anaerobic oxidation of methane (S-AOM, Eqg. 1)
and plays a pivotal role in regulating the flux of methane from marine sediments

(Boetius & Wenzhofer, 2013; Reeburgh, 2007).
(Eg. 1) CH4 + SO — HCOs™ + HS + H,0

The microorganisms that mediate S-AOM have puzzled researchers ever since
the discovery of the S-AOM process in the mid-seventies (Barnes & Goldberg, 1976;
Martens & Berner, 1974). The idea that S-AOM was the result of cooperation between
two different microorganisms already emerged early on (Hoehler et al, 1994; Zehnder &
Brock, 1979) and has been a central theme of S-AOM research ever since. Numerous
studies have provided evidence that S-AOM is mediated by anaerobic methanotrophic
archaea (ANME) and bacteria related to sulfate-reducing Deltaproteobacteria (Boetius et
al, 2000; Hinrichs et al, 1999; Michaelis et al, 2002; Orphan et al, 2002). In situ but also in
vitro studies have shown that ANME and the associated bacteria co-occur (or co-enrich)
and often form tight aggregates further fueling the discussion about a commensalistic
or even mutualistic relationship between the two microorganisms (Boetius et al, 2000;
Knittel et al, 2005; Nauhaus et al, 2007; Nauhaus et al, 2002; Orphan et al, 2002).

Phylogenetically, methane-oxidizing ANME archaea form distinct groups related
to methanogenic archaea within the phylum Euryarchaeota (Knittel & Boetius, 2009).
The three main groups discovered thus far are related to the methanogenic orders of
Methanomicrobiales (ANME-1) and Methanosarcinales (ANME-2 and -3) (Boetius et al,
2000; Hinrichs et al, 1999; Niemann et al, 2006). The ANME groups are separated by

large phylogenetic distances and belong to different orders or families (Knittel &
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Boetius, 2009; Knittel et al, 2005) - even the diversity within the ANME groups is
considerable. For example, the polyphyletic ANME-2 group is subdivided into several
subgroups (ANME-2a/b,c,d) (Martinez et al, 2006; Mills et al, 2005) that exhibit strikingly
different physiology. Whereas ANME-2a/b and -2c appear to be associated with sulfate-
dependent AOM (Knittel et al, 2005), “Ca. Methanoperedens nitroreducens” (ANME-2d)
has not been observed in consortia and uses nitrate, iron or manganese instead of
sulfate as electron acceptor (Arshad et al, 2015; Ettwig et al, 2016; Haroon et al, 2013a).
The S-AOM associated Deltaproteobacteria are similarly diverse and are either related to
the Desulfosarcina/Desulfococcus clade (DSS), Desulfobulbus (DBB) or “Ca.
Desulfofervidus” (HotSeep1 cluster) (Holler et al, 2011; Krukenberg et al, 2016; Losekann
et al, 2007; Schreiber et al, 2010). DSS- and DBB-related members are further divided
into four SEEP-SRB clades (Kleindienst et al, 2012). Thus far, all ANME groups have been
shown to live in consortia — ANME-2 archaea are mostly associated with DSS and ANME-
3 with DBB (Knittel & Boetius, 2009). However, ANME also have been consistently found
without a partner (in particular ANME-1) or a partner unrelated to SEEP-SRB (Knittel et al,
2005; Losekann et al, 2007; Orphan et al, 2002; Pernthaler et al, 2008; Schreiber et al,
2010).

The interplay between ANME and associated Deltaproteobacteria has been
investigated in great detail but the mechanism is still not fully understood. Several lines
of evidence have unambiguously established that all known groups of ANME archaea
are capable of anaerobic oxidation of methane (Hallam et al, 2004; Hinrichs et al, 1999;
Scheller et al, 2010). However, there still exists conflicting evidence about the role of the
co-occurring and putatively sulfate-reducing bacteria associated with S-AOM. The
phylogenetic association of DSS with other sulfate-reducing bacteria has led to the
hypothesis of a syntrophic relationship between methane-oxidizing ANME and sulfate-
reducing bacteria. Such a syntrophic relationship would however necessitate an
electronic coupling between the partners for which several mechanisms have been
proposed (see reviews by (Knittel & Boetius, 2009; Widdel et al, 2007)): 1) direct
interspecies electron transfer, ll) diffusible redox-active mediators or Ill) reduced carbon
compounds. Recent studies of ANME-1 and -2 have provided evidence in favor of direct
interspecies electron transfer (McGlynn et al, 2015; Scheller et al, 2016; Skennerton et al,

2017; Wegener et al, 2015) whereas the latter mechanism involving transfer of reduced
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carbon compounds but also H, has been extensively tested on different ANME groups
but could not be confirmed (Nauhaus et al, 2005; Wegener et al, 2015; Wegener et al,
2008). Similarly, redox-active mediators such as humic acids, AQDS or phenazines did
not appear to be suitable electron acceptors for methane oxidation by ANME-1 and -2
communities (Nauhaus et al, 2005). However, this observation was recently challenged
by a study showing decoupling of archaeal methane oxidation by ANME-2 via diffusible
electron acceptors (i.e. AQDS isomers) (Scheller et al, 2016). Yet a different S-AOM model
has suggested that ANME-2 can couple methane oxidation to sulfate reduction
independently of DSS, thus challenging the longstanding paradigm of a syntrophic
relationship between S-AOM microorganisms (Milucka et al, 2012). According to the
model, ANME-2 archaea perform both methane oxidation and sulfate reduction. Zero-
valent sulfur formed by archaeal sulfate reduction could react abiotically under sulfidic
conditions forming polysulfides which are subsequently disproportionated to sulfate
and sulfide by the DSS.

Despite the surge of metagenomic studies, surprisingly few genomes of ANME
and associated bacteria have been published. So far, genomes representing ANME
subgroups ANME-1, -2a and -2d have been published (Arshad et al, 2015; Haroon et al,
2013a; Meyerdierks et al, 2010; Wang et al, 2014). Hence, our knowledge of the
metabolic potential of the phylogenetically diverse ANME groups and subgroups is still
incomplete. For example, no genome of ANME-2c group has been published yet, even
though members of this subgroup are globally distributed and found in many marine
sediments (Knittel & Boetius, 2009; Ruff et al, 2015). Likewise, we know very little about
the metabolic potential of the S-AOM-associated bacteria for which only recently
several genomes have become available (Krukenberg et al, 2016; Skennerton et al,
2017)

Here, we used an functional metagenomics approach to study the metabolic
potential and activity of ANME-2c archaea and associated DSS bacteria present in an S-
AOM enrichment culture. In particular we focused on metabolic pathways involved in
methane and sulfur transformation. In addition, we evaluate different hypotheses
surrounding the S-AOM mechanism using our genomic, transcriptomic and proteomic

data.

98



Chapter 4 - Physiology of S-AOM

Methods
Cultivation and maintenance of S-AOM enrichment culture

The S-AOM enrichment culture derived from a culture that has been enriched
over 10 years from a sediment sample collected on a cruise of RV L'Atlante in September
2003 in the eastern Mediterranean Sea (Milucka et al, 2012). The ISIS culture was
incubated in artificial SRB seaweater medium (salts: 0.76 mmol ' KBr, 8.05 mmol ' KCl,
10 mmol I'' CaCl, * 2 H,0, 27.9 mmol I MgCl, * 6 H,0, 27.6 mmol I MgSO. * 7 H,0, 451
mmol I NaCl, 4.67 mmol I NH4Cl, 1.47 mmol I" KH,PO,, 30 mmol I" NaHCO; vitamins
and trace elements: according to (Widdel & Bak, 1992); redox indicator: 1 mg I
Resazurin; reducing agent: 0.5 mmol I'' H,S pH 7.5) anaerobically in serum bottles sealed
with butyl rubber stoppers. Serum bottles having a N,:CO, (90:10) headspace were
pressurized with methane (Air Liquide) to 3 bar overpressure and incubated on a shaker
(40 rotations min™.) at room temperature. Medium was regularly exchanged with fresh
artificial seaweater medium when sulfide concentrations reached ~ 20 mmol I in an
anaerobic glove box (Mecaplex) under N,:CO, (90:10) atmosphere.

Sulfide was determined spectrophotometrically at 670nm using the methylene
blue method (Cline, 1969). Prior to sulfide determination, samples were filtered (0.45
pm) and immediately fixed with 5% ZnCl, (0.5x sample volume). For sulfate
determination, samples fixed with ZnCl, (same as sulfide samples), filtered through a
syringe filter (0.45 um) and analyzed on a 761 Compact ion chromatograph (Methrom)
equipped with CO, suppressor module, Zn trap (Metrosep A Trap 1-100/4.0) and a
Metrosep A SUPP5 column. Carbonate buffer (3.2 mmol I' Na,COs, 1 mmol I" NaHCO;)
served as an eluent.

A sulfur amended S-AOM culture, which was sequenced and used for differential
coverage binning, was obtained by transferring biomass of 15 ml S-AOM enrichment
culture anaerobically to an equal amount of sulfate-free artificial SRB seawater medium
(same as S-AOM enrichment culture, except: 55.5 mmol I MgCl, * 6 H,O, 0.0 mmol |
MgSO, * 7 H,0, 423 mmol I" NaCl; trace element solution did not contain FeSO,4 * 7 H,0)
in a 50 ml serum bottle which was subsequently pressurized with 1 bar N.. To this
culture, colloidal sulfur stock solution (~30 mmol S I" suspended in sulfate-free artificial
SRB seawater medium) was added to a final sulfur concentration of ~ 3.5 mmol I.

Colloidal sulfur was prepared as described by (Steudel et al, 1988) except that the sulfur
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pellet was suspended in sulfate-free SRB medium instead of H,O after 9 rounds of
peptization. The sulfur amended S-AOM culture was maintained by exchanging the
medium roughly every 2 month with fresh sulfate-free artificial SRB seawater medium

amended with colloidal sulfur stock solution (final sulfur concentration of ~3.5 mmol I").

Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH)

Aliquots of the S-AOM enrichment culture were fixed in 2% formaldehyde in 50
mM phosphate buffer (pH 7.4) at room temperature for 1Th and filtered onto
polycarbonate GTTP filters (0.2 um pore size; Millipore). CARD-FISH was performed on
filter pieces according to (Pernthaler et al, 2002). In brief, cells were permeabilized with
lysozyme solution (10 mg ml"' lysozyme in 0.1 M Tris buffer containing 0.05 M EDTA) for
1 h at 37°C followed by sodium dodecyl sulfate (0.5% [m/m]) for 10 min. at room
temperature. Endogenous peroxidases were bleached with 0.01 M hydrochloric acid.
Hybridization was performed using specific oligonucleotide probes linked to horse
radish peroxidase (Biomers, Germany) for ANME (ANME2-538) and DSS (DSS-658).
Hybridization was performed for 3 h at 46°C at 40% (ANME2-538) or 50% (DSS-658)
formamide concentration. Amplification was performed using tyramide Alexa 488 (1 pl
ml’; for DSS-658) or Alexa 594 (1 pl ml'; for ANME2-538) for 20 min. at room
temperature. For double-labeled CARD-FISH, this process was repeated (without
permeabilization) after additional peroxidase inactivation with 0.5% H,0, followed by
ethanol wash. Filter pieces were then stained with 4',6-diamidino-2-phenylindole (DAPI,
1 ug ml7) for 20 min. at room temperature, embedded in a mounting solution (4:1 v/v
Citifluor:Vectashield), mounted on glass slides and visualized by epifluorescence

microscopy (Axioskop 2, Zeiss)

Total RNA and DNA extraction

S-AOM biomass was harvested by centrifugation (5 min at 5000 x g) from ~10ml
S-AOM enrichment culture. Total RNA and genomic DNA was extracted from the cell
pellet using Powersoil Total RNA isolation kit followed by DNA Elution Accessory Kit
(both MoBio Laboratories) as per manufacturer’s instructions. Additionally, genomic
DNA was isolated from the same S-AOM enrichment culture using DNeasy Blood

&Tissue kit (Qiagen) according to manufacturer’s instructions. DNA from 5 ml sulfur-
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amended S-AOM culture was harvested after 5 month of incubation as described above

using the Powersoil Total RNA isolation kit followed by DNA Elution Accessory Kit.

Whole metagenomic and metatranscriptomic shotgun sequencing

Genomic DNA extracted from the S-AOM enrichment culture (“Powersoil” and
“Blood&Tissue” DNA extraction) was fragmented by sonication (600 - 700bp) using a
Covaris S2 sonicator (Covaris, USA), libraries were prepared using NEBNext Ultra DNA
Library Prep Kit for Illumina (New England Biolabs) and paired-end sequencing (2 x
250bp) was performed using the lllumina MiSeq platform with Illumina Chemistry v3
(lumina). Library preparation and MiSeq sequencing was performed by the Max
Planck-Genome-center Cologne, Germany (http://mpgc.mpipz.mpg.de/home/).

Genomic DNA obtained from the sulfur-amended S-AOM culture was sheared
for 6 minutes using the lon Xpress™ Plus Fragment Library Kit following the
manufacturer’s instructions. Further library preparation was performed using the lon
Plus Fragment Library Kit following manufacturer’s instructions. Size selection of the
library was performed using an E-gel 2% agarose gel. Emulsion PCR was performed
using the lon PGM™ Template OT2 400 kit and sequencing was performed on an
lonTorrent PGM using the lon PGM™ sequencing 400 kit and an lon 318v2 chip. All kits
used in this section were obtained from Life technologies.

Total RNA extracted from the S-AOM enrichment culture was enriched for
messenger RNA by partial removal of ribosomal RNA using the MICROBExpress™
Bacterial mRNA Enrichment Kit (Ambion) following manufacturer’s instructions. Further
library preparation was performed using the lon Total RNA-Seq Kit v2 following
manufacturer’s instructions, with 10 min fragmentation. Size selection of the library was
performed using an E-gel 2% agarose gel. Emulsion PCR was performed using the lon
PGM™ Template OT2 200 kit and sequencing was performed on an lonTorrent PGM
using the lon PGM™ sequencing 200 kit and an lon 318v2 chip, resulting in resulting 4.5
million reads with an average length of 116 bp. All kits used for metatranscriptomic

shotgun sequencing were obtained from Life technologies.

Metagenome assembly and genome binning

Reads obtained from Illlumina MiSeq sequencing were quality checked using

FastQC (Andrews, 2010) and trimming as well as adapter removal was done using
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Trimmomatic 032 (Bolger et al, 2014) and parameters MINLEN:20
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:50.

To remove low abundance reads and facilitate de-novo assembly, trimmed reads
were binned by kmer depth using BBnorm of the BBmap package (Bushnell, 2016b)
prior to assembly (S-AOM “Powersoil”: 30 — 550 kmer depth; S-AOM “Blood&Tissue”: 50 -
1000 kmer depth). The filtered reads of the two samples were then assembled
separately using SPAdes v3.1.0 (Bankevich et al, 2012) with mismatch corrector option
enabled (--careful) and k-mer sizes of 21, 33, 55, 77,99 and 127.

Binning of metagenomic contigs was performed using a combination of
differential coverage and tetranucleotide frequency binning implemented in the
mmgenome 0.6.3 workflow (Albertsen et al, 2013; Karst et al, 2016). The ANME-2c
genome was obtained from the “Blood&Tissue” assembly by differential coverage
binning between “Blood&Tissue” and “Powersoil” datasets. The preliminary genomic bin
of ANME-2c was further refined using tetranucleotide frequency (Supplementary Figure
3). Using the same principles, a preliminary genome of SEEP-SRB1 was obtained from
the “Powersoil” assembly. The preliminary SEEP-SRB1 genomic bin was further refined
by differential coverage using metagenomic reads of the sulfur-amended S-AOM
culture and “Blood&Tissue” datasets (Supplementary Figure 4).

For binning of both genomes, only contigs longer than 500 bp were used and
the average coverage of each contig was computed directly using BBmap 35.43
(Bushnell, 2016a) with default parameters. Prodigal 2.60 (Hyatt et al, 2010) in
metagenomic mode was used to predict open reading frames which were subsequently
searched using HMMER 3.1b (Sean R. Eddy, 2015) against a set of 107 hidden markov
models of essential single copy genes using default settings and trusted cutoff (-cut_tc)
enabled. Protein sequences coding for essential single copy genes were searched
against NCBI non-redundant database using BLASTP (Camacho et al, 2009) and a
maximum e-value cutoff of 1e®. The taxonomy (class level) of each essential single copy
gene was assigned using MEGANS5 (Huson et al, 2007) (with the previously generated
BLASTP xml file as input) and the mmgenome script “hmm.majority.vote.pl”.

For genome re-assembly, reads used for the initial assembly (ANME-2c:

“Blood&Tissue”, SEEP-SRB1: “Powersoil”) were mapped to the binned contigs
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representing the genomes ANME-2c and SEEP-SRB1 using BBmap (Bushnell, 2016b) and
stringent settings (approximate minimum identity = 0.98). Mapped reads were
reassembled using SPAdes 3.5.0 (Bankevich et al, 2012) with mismatch corrector
enabled (--careful), read coverage cutoff (--cov-cutoff 10) and default parameters. Small
and low coverage contigs (<500bp; <10x coverage) were removed and quality of the
reassembled bins was assessed using CheckM 1.05 (Parks et al, 2015) running the
lineage-specific workflow. The two obtained genomes were annotated using Prokka
1.11 in metagenomic mode (Seemann, 2014) and RAST annotation server (Aziz et al,

2008).

Phylogenetic analyses

Full length 16S rRNA gene sequences were retrieved from the ANME-2c and
SEEP-SRB1 genomes using RNAmmer 1.2 (Lagesen et al, 2007), aligned using the SILVA
incremental aligner (SINA) 1.2.11 (Pruesse et al, 2012) and imported to the SILVA SSU
NR99_123 database (Quast et al, 2013) using ARB 6.1 (Ludwig et al, 2004). Maximum
likelihood phylogenetic trees of 16S rRNA gene sequences were calculated using RAXML
7.7.2 integrated in ARB with the GAMMA model of rate heterogeneity and the GTR
substitution model with 100 bootstraps.

For microbial community analysis from metagenomic lllumina reads (only
Blood&Tissue DNA extraction), trimmed paired-end reads matching the 16S rRNA gene
were identified using SortMeRNA 2.1 (Kopylova et al, 2012) and supplied archaeal and
bacterial 16S rRNA databases (silva-arc-16S-id95, silva-bac-16S-id90). Paired-end rRNA
gene sequences were then merged using BBmerge (Bushnell, 2016b) with a minimum
overlap of 20 bases. Merged reads were submitted to the SILVAngs web service (Quast
et al, 2013) for taxonomic classification.

Pairwise average amino acid identity (AAl) values were calculated using the web
AAl calculator web service of the enveomics collection (http://enve-
omics.ce.gatech.edu/aai/, (Rodriguez-R & Konstantinidis, 2016)). Protein sequences of
following reference genomes were retrieved: ANME-1, FP565147.1, (Meyerdierks et al,
2010); ANME-2a, IMG 2565956544, (Wang et al, 2014); “Ca. M. nitroreducens”, IMG
2515154041, (Haroon et al, 2013a) and SEEP-SRB1 genomes of BioProject identifiers
PRINA326769 and PRINA290197 (Skennerton et al, 2017).
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Transcriptomic data analyses

Metatranscriptomic reads (4,386,143 sequences) were filtered by length (30bp
cut-off), the surviving reads (4,1824,727) were processed using SortMeRNA 2.1
(Kopylova et al, 2012) and the prepackaged 8 rRNA databases (silva-bac-16s-id90, silva-
arc-id95, silva-euk-18s-id95, silva-bac-23s-id98, silva-arc-23s-id98, silva-euk-28s-id98,
rfam-5s-id98, rfam-5.8s-id98). The remaining non-rRNA reads (499,588) were mapped to
the ANME-2c and SEEP-SRB1 genomes using Bowtie2 and standard parameters
(Langmead & Salzberg, 2012). For each gene, normalized gene expression was
quantified as “reads per kilobase and million” (RPKM) which is calculated by counting
the number of mapping reads per gene divided by gene length (in kilobases) and total
amount of mapped reads (in million). Mapped reads were quantified using bedtools
multicov v2.23.0 (Quinlan & Hall, 2010) and normalized gene expression for each gene
(in RPKM) was quantified using the Bioconductor package edgeR 3.6.8 (Robinson et al,
2010).

Metaproteomics

15 ml S-AOM enrichment culture was harvested by centrifugation (5 min. at 5000
x g) and the resulting biomass pellet was flash frozen in liquid nitrogen and stored at -
80°C until further processing. The pellet was thawed and total protein was extracted
and solubilized using RapiGest reagent (Waters). In-solution protein digested was
performed as described previously (Wessels et al, 2010). Briefly, proteins were reduced
by incubating the sample for 20 minutes in 10 mM DTT at room temperature.
Subsequently, reduced cysteine residues were alkylated by incubating the sample with
50 mM chloroacetamide for 20 minutes at room temperature in the dark. Subsequently,
proteins were pre-digested using 0.5ug LysC enzyme (cuts C-terminal to Lys) for 3 hours
at 37 degrees Celsius. Next, the sample was diluted 3 times with 50 mM ammonium
bicarbonate and Trypsin was added (0.5 ug) for overnight digestion at 37 degrees
Celsius. The resulting peptide mixture was desalted and concentrated using C18
reversed phase solid phase extraction tips (Agilent Technologies C18 Omix tips).

Proteomic analysis using LC-MS/MS was performed as described previously
(Wessels et al, 2010). Measurements were performed using a nano-Advance nanoflow

liquid chromatography system (Bruker Daltonics) coupled via electron spray ionization
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captive sprayer to a maXis Plus UHR Qg-ToF mass spectrometer. Chromatographic
separation was performed using a Acclaim PepMap 100 trapping column (75um x 2 cm
packed with nanoViper, 3um 100A C18 particles; Thermo Scientific) and Acclaim
PepMap RSLC analytical column (40 °C; 75um x 15 cm, nanoViper, 2um 100A C18
particles; Thermo Scientific). 3 pg tryptic digest peptide mixture was loaded on to the
trapping column at 7 pl/min and eluted during a 240 min linear gradient of 3 — 35%
acetonitrile in 0.1% formic acid at a flow rate of 500 nl/min. The mass spectrometer was
operated in positive ion mode (AutoMSn; data dependent MS/MS): 3 sec duty cycle,
mass range 200-3200 m/z, 2Hz full MS spectra rate, precursor intensity scaled MS/MS
acquisition rate (3Hz @ 2000 cts - 20Hz @ 100.000 cts), preferred chargestate range z=2-
4+, only precursors within range of 400-1400 m/z, exclude singly charged precursors,
0.5min dynamic exclusion enabled, reconsider precursor if current intensity/previous
intensity >4, exclude after 1 spectrum). Fragmentation experiments were performed
using collision induced dissociation.

Raw MS/MS data were processed using MaxQuant software v.1.5.0.0 (Cox &
Mann, 2008). The following settings were used for peptide and protein identification:
carbamidomethyl (Cys) as fixed modification, oxidation (Met), and deamidation (NQ) as
variable modifications, predefined MS and MS/MS settings for Bruker Qg-TOF
instruments, minimal peptide length six amino acids and a maximum allowed false
discovery rate of 1% at both the peptide and protein level. Translated coding DNA
sequences were obtained from the Prokka annotation and were used as protein
sequence database for searches of the MS/MS data. Protein abundance values were
calculated as intensity based absolute quantification (iBAQ) values (Schwanhausser et

al, 2011).
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Results
Activity and CARD-FISH of S-AOM enrichment culture

In this study we used a highly enriched S-AOM culture obtained through
continuous cultivation of batch cultures from sediments of the Mediterranean mud
volcano Isis. The sediment was collected in September 2003 on a cruise of the R/V
L’Atalante and has been maintained and sub-cultured on artificial seawater medium
amended with methane ever since. The sediment-free enrichment culture was highly
active — with methane as the sole electron donor, this culture reduced sulfate nearly
stoichiometrically to sulfide at high rates (~0.5 mmol I'' d') (Figure 1a). In the absence of
methane, no significant sulfate reduction or sulfide production was observed. Using
specific CARD-FISH probes for DSS (DSS-658) and ANME-2 (ANME-2-538) we found that
the majority of DAPI-stained cells in the enrichment culture were stained by either DSS
or ANME-2 probe (Figure 1b, 1¢; for details on used probes, see Supplementary Table 2).
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Figure 1. Microbial activity and CARD-FISH of the S-AOM enrichment culture. a, Sulfate
consumption and sulfide production of S-AOM enrichment culture during 200 h incubation
with methane as sole electron donor. b, Double hybridization CARD-FISH image of S-AOM
aggregate labeled with probes DSS-658 (green, using Alexa488) and ANME-2-538 (red, using
Alexa594). ¢, Same field of view as (b) stained with DAPI. Scale bar represents 5 um.

Genome reconstruction and phylogenetic assignment of the dominant S-AOM-
associated microorganisms

To obtain the genomic blueprint of the S-AOM-associated microorganisms in the
S-AOM enrichment culture, DNA was extracted from the enrichment culture and
subjected to next-generation sequencing. First, we retrieved and classified the 16S rRNA

gene reads from the metagenomic dataset (Blood&Tissue DNA extraction) to acquire an

initial overview of the microbial community. Based on this analysis we estimated that
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ANME-2 or SEEP-SRB constituted the majority of the microbial population in the
enrichment culture. 16S rRNA gene sequences phylogenetically assigned to ANME-2 or
SEEP-SRB groups accounted together for approximately 57% of all classified sequences.
31% of all 16S rRNA gene sequences were classified as ANME-2 of which the majority
was ANME-2c (~65% of ANME-2) and the rest ANME-2a/b (~35% of ANME-2). The S-
AOM-associated SEEP-SRB1 and 2 clades constituted 19% and 7% of all sequences,
respectively.

Next, the metagenomic reads were preprocessed, assembled and binned,
resulting in two metagenomic bins that represented the genomic sequences of the two
most abundant microbial populations (Supplementary Figure 3 and 4). The bins were
preliminarily assigned to Deltaproteobacteria or Euryarchaeota based on taxonomic
analysis of single copy genes. After reassembling, the genome quality was estimated
with CheckM (Parks et al, 2015), which indicated that the genomes were almost
complete (>95%) and contained little contamination (<6%). The analysis also revealed
that both genomes exhibited significant strain heterogeneity (~50%; Table 1) and
therefore likely represented population genomes of closely related strains. Using the
same analysis, considerable strain heterogeneity was also observed for other published
genomes of ANME-2a and ANME-1 (27% and 80%, respectively; (Meyerdierks et al, 2010;
Wang et al, 2014)) but not for “Ca. Methanoperedens nitroreducens”. The general
features of the ANME-2c and SEEP-SRB1 genomes that were obtained in this study are

summarized in Table 1.

Table 1. Overview of genome statistics of SEEP-SRB1 and ANME-2c. Coding sequences,
rRNAs and coding sequences were predicted using Prodigal (Hyatt et al, 2010) and RNAmmer
(Lagesen et al, 2007) implemented in Prokka (Seemann, 2014). Genome quality metrics were
computed using CheckM (Parks et al, 2015) running the lineage specific workflow.

SEEP-SRB1 ANME-2c
Contigs 250 206
Genome size (bases) 3,765,937 2,834,694
GC content (%) 41.6 49,9
Coding sequences 3,469 2,909
rRNAs 16S5-23S-5S 235/16S
Completeness / Contamination / Strain 98.1/1.3/50.0 95.6/5.5/41.7
heterogeneity (%) (marker sets: 156) (marker sets:154)
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The assembled full-length 16S rRNA gene sequence present in each genomic bin
was then used for a more detailed taxonomic classification. We were able to assign the
two genomes, which were putatively assigned to Euryarchaeota and
Deltaproteobacteria, to the dominant ANME-2c and SEEP-SRB1 population present in
the enrichment culture(Supplementary Figure 1 and 2). Closely related 16S rRNA gene
sequences (>98% identity) of the ANME-2c and SEEP-SRB1 genome have been retrieved
from methane-rich sediments, particularly methane seeps, from around the globe such
as Mediterranean mud volcanoes Kazan and Amsterdam, Hydrate Ridge, Santa Monica
Basin and also near the island Elba (Meyerdierks et al, 2005; Pachiadaki et al, 2010;
Scheller et al, 2016; Wegener et al, 2016). Comparative 16S rRNA gene sequence and
average amino acid identity (AAIl) analysis with published genomes of ANME and SEEP-
SRB suggested that two genomes described here are the first of their respective genus
or even family. For both ANME-2c and SEEP-SRB1, AAI and 16S rRNA gene identity
values to published genomes of the respective groups clearly exceeded the proposed
category thresholds for new genera (<95% 16S rRNA gene identity; <65% AAl;
(Konstantinidis et al, 2017)). We found that our ANME-2c genome was most closely
related to a genome of ANME-2a (Wang et al, 2014) to which it shared 89.1% 16S rRNA
gene identity and 54.9% AAI. For the SEEP-SRB1 genome we found that it shared 52.2-
58.0% AAIl with several recently published genomes assigned to SEEP-SRB1 (Skennerton
etal, 2017).

Metatranscriptomic and metaproteomic data analysis

To quantify transcription of functional genes of SEEP-SRB1 and ANME-2¢c we
extracted total RNA from the S-AOM enrichment culture incubated for one week in fresh
medium. Total RNA was subjected to rRNA depletion followed by whole
metatranscriptome shotgun sequencing and in silico removal of rRNA reads. The
remaining non-rRNA reads (499,588) were then mapped to the SEEP-SRB1 and ANME-2c
genomes. In total, 47.7% of all non-rRNA reads mapped to the two genomes (ANME-2c
34.2%; SEEP-SRB1 13.5%). Gene transcription was quantified for each coding sequence
as RPKM (reads per Kb of gene per million of mapped reads, (Mortazavi et al, 2008)). For
the metaproteome, whole-cell protein including cytosolic and membrane fraction were
extracted from several mg biomass of the enrichment culture harvested after 1 week of

incubation in fresh medium. 3ug protein was tryptically digested and analyzed by liquid
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chromatography-mass spectrometry resulting in 43946 MS/MS spectra. Translated
predicted coding sequences of SEEP-SRB1 and ANME-2c genomes were used as custom
database for analysis in MaxQuant (Cox & Mann, 2008) to which 8.5% (3755) MS/MS
spectra matched. In total 1763 peptides or 198 unique proteins (128 ANME proteins, 70
SEEP-SRB1 proteins) were identified using 1% false discovery rate as
validation/assessment criteria. Protein abundance was estimated using the intensity

based absolute quantification method (iBAQ, (Schwanhausser et al, 2011)).

Methane oxidation pathway and electron transport chain of ANME-2c

Within the ANME-2c genome we identified all genes encoding for a full reverse
methanogenesis pathway (Figure 2; Extended Data Table 1), including N5,N10-
methylene-tetrahydromethanopterin reductase (mer), which previously wasn’t detected
in ANME-1 metagenomes (Hallam et al, 2004; Meyerdierks et al, 2010). Several genes
encoding for subunits of enzymes of the reverse methanogenesis pathway such as
tetrahydromethanopterin (HsMPT) S-methyltransferase (mtr), N5,N10-methylene-HsMPT
reductase (mer), methenyl-HsMPT cyclohydrolase (mch) and formylmethanofuran
dehydrogenase (fmd) were present multiple times in the ANME-2c genome (Extended
Data Table 1). The amino-acid sequence identity between duplicate sequences was 30-
40% for Mtr and 43-48% in case of Mer and Mch. All genes encoding for the seven core
enzymes of the reverse methanogenesis pathway were highly transcribed, in particular
methyl-coenzyme M reductase (mcrABG; RPKM = 43,000-70,000). In case of duplicate
genes we found that only one copy was predominantly transcribed (>10-fold higher
RPKM). Gene transcription of reverse methanogenesis genes gradually decreased in
oxidative direction throughout the pathway from approximately 70,000 RPKM (mcr) to
<1,000 RPKM (fmd). Consistent with our transcriptomic results, we identified at least one
or more subunits of all seven core enzymes involved reverse methanogenesis in the
metaproteome thus confirming that ANME-2c expresses the full reverse
methanogenesis pathway (Extended Data Table 1). Proteins of the reverse
methanogenesis pathway (in particular Mcr and Mtd, iBAQ score 0.1-6.3 x 10° were
among the most abundant proteins of ANME-2c identified in the metaproteome

(Supplementary Figure 5).
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Figure 2. Metabolic scheme of ANME-2c and SEEP-SRB1 with emphasis on dissimilatory
pathways and membrane-bound respiratory complexes. Predicted metabolic potential of
ANME-2c (red outline) and SEEP-SRB1 (green outline) in respect to dissimilatory carbon and
sulfur metabolism and associated respiratory and energy generating complexes. Key genes are
shown in boxes and expression (in RPKM; if multiple subunits the average RPKM was used) is
depicted by the respective outline. Expressed genes that were identified in the metaproteome
are shown in blue. Abbreviations (unless noted in text): codh/acs, CO dehydrogenase/acetyl-
CoA synthase; ntp, V-type ATP synthase; fpo, H,F.0 dehydrogenase; rnf, rhodobacter nitrogen
fixation complex; sulP, sulfate permease; atp, ATP-synthase.

Next we searched for genes of the membrane-bound electron transport chain of ANME-
2c that that could potentially accept reducing equivalents originating from the reverse
methanogenesis pathway. We identified well transcribed genes of a membrane-bound
heterodisulfide reductase (hdrDE), H,F420 dehydrogenase (fpoABCDHIJKLMNF) as well
as Rnf complex (rnfABCDEG; Figure 2; Extended Data Table 1). The oxidation of
coenzyme M and B coupled to the reduction of methanophenazine could proceed via
transcribed HdrDE (RPKM = 1,444-2,187) of which HdrD was identified in the
metaproteome (iBAQ = 17.5 x 103). Furthermore, oxidation of reduced coenzyme F420
and ferredoxin could be coupled to the reduction of membrane-soluble
methanophenazine via membrane-bound H,F420 dehydrogenase (Fpo, average RPKM
= 1,685) and Rnf complex (average RPKM = 950), respectively. Within the metaproteome
we were able to detect six subunits of Fpo (FpoACDIMF, iBAQ = 2.0-282.3 x 10°) and one
subunit of Rnf (RnfG, iBAQ = 62.2 x 10°). In addition to membrane-bound Hdr, ANME-2c
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encoded three gene clusters related to soluble heterodisulfide reductases that could be
involved in electron transfer reactions (Supplementary Table 5). Hdr gene cluster |
encoded for a poorly transcribed heterodisulfide reductase (hdrABC, RPKM = 21-44) that
was not identified in the metaproteome. In contrast, Hdr cluster Il (ANME_02102-06)
encoded for a HdrD-like protein, HdrABC and &-subunit of methylviologen-reducing
hydrogenase (MvhD), which were comparably much higher transcribed (RPKM = 743-
1,748). A third Hdr gene cluster (lll), which was also well transcribed (RPKM = 855-
1,365), was composed of genes encoding for HdrA, MvhD as well as two proteins with
similarity to B-subunit of coenzyme F420 hydrogenase/dehydrogenase and a-subunit of
formate dehydrogenase (FdhA), respectively. In contrast to Hdr cluster I, prominent
expression of almost all genes of the well transcribed Hdr clusters Il and Il was
confirmed by our metaproteomic analysis (iBAQ =2.0 x 10*-6.1 x 10°; Supplementary

Figure 5).

ANME-2c encodes several well transcribed multi-heme cytochromes ¢

Within the ANME-2c genome we identified eleven genes encoding for multi-
heme cytochromes ¢ (MHGC; Supplementary Table 3), which encoded for proteins that
contained two or more heme-binding motifs (>2 CxxCH). Of these 11 MHC genes, three
genes (ANME_02168, 01594, 02604) were substantially transcribed (>1,000 RPKM) and
encoded for MHCs with 13 and 11 heme-binding motifs. Distant homologs of these well
transcribed MHCs were identified in “Ca. Methanoperedens nitroreducens” and
Geoalkalibacter subterraneus annotated as hypothetical proteins (39% and 28% amino-
acid sequence identity, respectively; Supplementary Table 3). Despite their high
transcription, expression of these MHCs could not be detected.The only MHC of ANME-
2c identified in the metaproteome (ANME_01820) contained 31 heme-binding motifs
and was apparently low in abundance (iBAQ = 263) and weakly transcribed (RPKM = 48).

Two adjacent MHC genes of ANME-2c (ANME_02055-56) encoded for proteins
with 16 and 17 heme binding motifs, respectively, one of which contained two putative
S-layer domains (ANME_02055). Transcription of both genes was low (RPKM < 170) and
the encoded proteins were not detected in the metaproteome. Combined together,
these two genes were similar to a single gene encoding for a MHC/S-layer fusion protein
of in ANME-2a, which has been previously described (IMG-MER identifier 2566125052,
(McGlynn et al, 2015)). It appears that ANME_02055 represented the N-terminus
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(residue 1-1395; 38% amino acid identity) and ANME_02056 the C-terminus (residue
1419-2108; 41% amino acid identity) of the S-layer MHC homolog of ANME-2a. Other
genes encoding for MHCs with S-layer domains were not detected in the ANME-2c

genome.

Genome-inferred metabolic capacity for dissimilatory sulfur metabolism of ANME-
2c

No genes encoding for the canonical dissimilatory sulfate reduction pathway
(Sat, Apr, Dsr) were detected in the ANME-2c genome, which is consistent with previous
genomic and immunological labeling studies of S-AOM-associated ANME archaea
(Hallam et al, 2004; Meyerdierks et al, 2010; Milucka et al, 2013; Wang et al, 2014).
However, within the ANME-2c genome we identified a putative sulfate permease of the
sulP family (ANME_02902, RPKM = 12) as well as three genes that could potentially be
involved in dissimilatory sulfur metabolism. These three genes were located in close
genomic proximity to each other and encoded for a F420-dependent sulfite reductase
(Fsr, ANME_01246), a small siroheme sulfite reductase-like protein (Dsr-LP,
ANME_01242) and an octaheme cytochrome c similar to tetrathionate reductase (OTR,
ANME_01244). The latter protein sequence shared only low similarity with OTR of
Shewanella oneidensis MR-1 (30% amino acid sequence identity; 83% coverage) but
retained most of the conserved residues of the active site and substrate binding pocket
found in OTR from Shewanella oneidensis MR-1 (Supplementary Figure 7, (Mowat et al,
2004)). We found that ANME-2c transcribed the genes encoding for Fsr, Dsr-LP as well as
OTR-like protein (RPKM = 207-464) and expression of Fsr (iBAQ = 42.8 x 10%) was

confirmed by our metaproteomic data.

Dissimilatory sulfur metabolism, electron transport and type IV pili of SEEP-SRB1

Within the SEEP-SRB1 genome we identified all genes encoding for the canonical
sulfate reduction pathway (Figure 2) including ATP sulfurylase (Sat), APS reductase
(AprAB), dissimilatory sulfite reductase (DsrAB) and DsrC protein. All these genes were
well transcribed (RPKM = 7,425 — 26,401) and expression was also confirmed by our
metaproteomic data (Extended Data Table 2). Moreover, Sat, AprAB and DsrAB were
among the most abundant SEEP-SRB1 proteins identified in the metaproteome (iBAQ
158.0 — 516.5 x103% Supplementary Figure 5b). Well transcribed genes encoding for

112



Chapter 4 - Physiology of S-AOM

soluble DsrC protein (RPKM = 14,340) as well as membrane-bound complexes
DsrMKJOP and QmoABC (average RPKM = 1,685-2,049) were also encoded in the SEEP-
SRB1 genome (Figure 2). With the exception of DsrC, at least one subunit of all these
complexes was also detected in the metaproteome (iBAQ = 13.5-118.4 x 10°; Extended
Data Table 2).

Next, we searched for membrane-bound complexes involved in electron
transport such as quinone-reducing complex (Qrc) or tetraheme cytochrome
membrane complex (Tmc), which are often present in bacteria that also contain
enzymes for sulfate reduction (Grein et al, 2013; Rabus et al, 2015). Within the SEEP-
SRB1 genome we identified well transcribed genes encoding for the membrane-bound
respiratory quinone-reducing complex (QrcABCD, RPKM = 1068 - 2102) and partial
tetraheme cytochrome membrane complex (TmcBCD, RPKM = 359 — 829). In agreement
with the prominent transcription of both complexes, we could confirm expression of
QrcC (iBAQ = 19.9 x 10%) and TmcBC (iBAQ = 28.0 — 187.0 x 10° ; Extended Data Table 2).
Periplasmic hydrogenases or formate dehydrogenases, which have been shown to
donate electrons via tetraheme cytochromes ¢ to Qrc and Tmc (Grein et al, 2013), were

not encoded in the genome of SEEP-SRB1.

Cytochromes c and type IV pili of SEEP-SRB1

In the SEEP-SRB1 genome we identified total of 25 genes encoding for multi-
heme cytochromes ¢ with up to 26 heme-binding sites (Supplementary Table 4). The
majority of these MHC genes were transcribed and encoded for proteins with 4-12
heme binding motifs. The highest transcription was observed for genes encoding for
three tetraheme cytochromes ¢ (RPKM = 938-20111; DSS_00053, DSS_2785 and
DSS_03053) and genes associated with heme-containing, respiratory enzymes (i.e. QrcA
and DsrJ; RPKM = 986-2,102). Despite the observed transcription of most MHC genes,
we only identified a single MHC protein (DSS_03494, iBAQ = 8.8 x 10°) in the
metaproteome, of which no transcripts were identified in the metatranscriptome.

The SEEP-SRB1 genome encoded several genes encoding for type IV pili
(Extended Data Table 2) including genes encoding for the inner membrane alignment
complex (pilMNOP), the outer membrane secretin pore (pilQ) and two pre-pilins (pilA).

Transcription of these genes was comparatively low (RPKM = 44-144) except for one
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pilA gene (RPKM = 402) and no pili-associated proteins could be detected in the

metaproteome.

Discussion
Reverse methanogenesis pathway and electron transport chain of ANME-2c

To date, almost all genomes of ANME archaea have been found to encode a
complete reverse methanogenesis pathway for methane oxidation (Arshad et al, 2015;
Hallam et al, 2004; Haroon et al, 2013b; Meyerdierks et al, 2010; Meyerdierks et al, 2005;
Wang et al, 2014). While most genomic studies focusing on ANME found a complete
pathway, it was suggested that ANME-1 archaea might encode an incomplete reverse
methanogenesis pathway that was missing Mer (Meyerdierks et al, 2010). Here we show
that ANME-2c archaea in the S-AOM enrichment culture encode a “conventional” full
reverse methanogenesis pathway. Furthermore, we were able to confirm that ANME-2c
transcribed and, for the first time, expressed the full reverse methanogenesis pathway.
Interestingly, the ANME-2c genome encoded for multiple, sequence-divergent copies of
several genes of the reverse methanogenesis pathway of which only one copy was
predominantly transcribed and expressed. Redundancy and sequence divergence of
reverse methanogenesis genes in ANME-2 genomes appear to be not unusual and has
also been observed for ANME-2a (Wang et al, 2014) and “Ca. Methanoperedens
nitroreducens” (Haroon et al, 2013a).

From the methanogenesis pathway, which has been systematically studied in
methanogenic archaea (for review see (Thauer, 1998; Thauer et al, 2008)), reducing
equivalents for methanogenesis are supplied by three electron carriers: coenzyme M
and B, coenzyme F420 (twice) and ferredoxin. Since the same pathway, albeit in reverse,
catalyzes anaerobic oxidation of methane, it is reasonable to assume that these electron
carriers serve as direct electron acceptors in the reverse methanogenesis pathway
(Thauer, 2011). Oxidation of CoM-SH/CoB-SH in ANME-2c might proceed via soluble and
membrane-bound Hdr. Membrane-bound Hdr could couple the oxidation of CoM-
SH/CoB-SH to the reduction of membrane-integral methanophenazine but would likely
have to be driven by scalar translocation of protons to the cytoplasm (Abken et al, 1998;

Deppenmeier & Miiller, 2007; Welte & Deppenmeier, 2011).
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Since the ANME-2c did not encode catalytic subunits of hydrogenases, it is
unlikely that CoM-SH/CoB-SH oxidation is coupled to H, production (with H* as electron
acceptor) via Hdr-hydrogenase complex known from hydrogenotrophic methanogens
(Kaster et al, 2011).

Oxidation of reduced coenzyme F420 and ferredoxin could be coupled to the
reduction of methanophenazine by F420 dehydrogenase and Rnf complex, respectively.
Both complexes were encoded in the ANME-2c genome and have also been identified
in ANME-2a (Wang et al, 2014). These two complexes are likely part of an energy
conserving electron transport system known from methanogenic archaea (Baumer et al,
2000; Deppenmeier, 2004; Kumagai et al, 1997; Li et al, 2006; Schlegel et al, 2012). We
found that membrane-bound Hdr, F420 dehydrogenase and Rnf complex were well
transcribed and expressed in ANME-2¢; hence our data further corroborates a redox
coupling of reverse methanogenesis with membrane-integral methanophenazine that
has been previously proposed for ANME-2a (McGlynn et al, 2015). However, this redox
coupling might be more complex and intertwined through interconversion of redox
carriers by soluble Hdrs. Two well transcribed and expressed soluble Hdr gene clusters
of ANME-2c (Supplementary Table 5), which are also present in other ANME-2 genomes
(Figure 3), would be well suited to conduct such a mechanism.
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Figure 3. Genomic neighborhood of genes encoding for soluble heterdisulfide reductase
of ANME and methanogenic archaea. Genomic neighborhood of ANME-2c heterodisulfide
gene clusters Il and Il (top) in comparison to similarly arranged Hdr gene clusters found in other
ANME genomes as well as methanogenic archaea (Methanosarcina mazei, Methanolobus
psychrophilus). Genes are colored by their respective annotation (see legend) and the GenBank
or IMG-ER accession numbers are shown to the right of each sequence. Abbreviations: HdrABC,
heterodisulfide reductase subunits ABC; MvhD, methylviologen-reducing hydrogenase subunit
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D; FrhB/FdhB, coenzyme F420-reducing hydrogenase/formate dehydrogenase subunit B; FdhA-
like, formate dehydrogenase subunit A-like.

These Hdrs, which include the electron-bifurcating HdrA subunit, could in
principle allow for flavin-based electron bifurcation-mediated interconversion of
reducing equivalents between the redox carriers. Electron bifurcation by Hdr, which are
widespread enzymes in anaerobic bacteria and archaea (Buckel & Thauer, 2013), might
be an additional mechanism by ANME-2c to conserve energy. Similar to the reduction of
ferredoxin in methanogens (Kaster et al, 2011), flavin-based electron bifurcation could
also generate low redox potential electrons. These electrons could in principle enable
ANME-2c to catalyze reduction reactions, such as sulfate to sulfite, with a very low redox

potential.

Possible routes and sinks for electrons originating from the reverse
methanogenesis pathway

Although ANME-2c encodes all enzymes necessary to couple methane oxidation
to the reduction of the membrane-integral methanophenazine, it is unclear where the
electrons go from there. Two routes have been proposed: 1) archaeal sulfate reduction
(Milucka et al, 2012) or Il) transfer to an extracellular electron acceptor (either sulfate-
reducing bacteria or metal ions) (McGlynn et al, 2015; Scheller et al, 2016; Wegener et al,
2015). For the latter route it was suggested that reducing equivalents from
methanophenazine could be transferred via a membrane-bound cytochrome b and
extracellular cytochromes ¢ (possibly containing S-layer domains) to an extracellular
electron acceptor (McGlynn et al, 2015). Although we identified a well transcribed and
expressed membrane-bound cytochrome b (ANME_00241, RPKM = 1,246, iBAQ = 17.4 x
103), the physiological function of this cytochrome b still needs to be clarified.
Moreover, we found that transcription of the S-layer MHC gene by ANME-2c was low
(RPKM = 65) and the corresponding protein could also not be detected in the
metaproteome. Since very little is known about the function of MHCs in archaea (Kletzin
et al, 2015), it remains unknown whether other well transcribed MHC of ANME-2c are
indeed involved in electron transfer or fulfill a different physiological function.

Alternatively, archaeal sulfate reduction, which was previously proposed by
(Milucka et al, 2012), might be supplied by reducing equivalents from the

methanophenazine pool. Direct reduction of sulfate to sulfite with methanophenazine
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as electron donor is thermodynamically problematic as the redox potential E* of
methanophenazine/dihydromethanophenazine redox couple (-165 mV) is well above
the redox potential of the SO,*/HSO;™ couple (-512 mV) (Thauer et al, 2007; Tietze et al,
2003). It is currently unclear how sulfate reduction to sulfite in ANME-2c might proceed;
however, it was previously speculated that sulfate reduction could be coupled
(potentially via ferredoxin) to Formyl-MFR/CO, + MFR redox couple which operates at a
sufficiently low potential (E°' between -500 mV and -530 mV, (Thauer, 1998)) (Milucka et
al, 2012; Thauer, 2011). Alternatively, we hypothesize that electrons with a sufficiently
low redox potential could be generated via electron bifurcation by soluble
heterodisulfide reductase of ANME-2c.

Sulfite, which might be an intermediate of archaeal sulfate reduction, could in
principle be reduced directly to sulfide with methanophenazine. This reaction would be
thermodynamically not a problem as the redox potential of HSOs~ /HS™ couple is
sufficiently high (=120 mV; (Thauer et al, 2007)) to allow reduction by
methanophenazine (-165 mV). Reducing equivalents from methanophenazine could be
transferred for example via membrane-bound cytochrome b directly or indirectly (e.g.
cytochrome ¢) to the small sulfite reductase-like protein (Dsr-LP) encoded within the
genome of ANME-2c. Alternatively, sulfite reduction could also proceed in a presumably
non-energy conserving manner via F420-dependent sulfite reductase using reduced
coenzyme F420 as electron donor. In any case, intracellular sulfite levels would have to
be tightly controlled since sulfite is an inhibitor of methanogenesis and is therefore also
expected to inhibit reverse methanogenesis (Johnson & Mukhopadhyay, 2008b).

It is also possible that these sulfite reductases have physiological functions
unrelated to dissimilatory S metabolism (such as sulfite detoxification, which was shown
for Fsr (Johnson & Mukhopadhyay, 2005; Johnson & Mukhopadhyay, 2008a)); yet it is
intriguing that the sulfite reductase genes, which were identified in other ANME
genomes (Supplementary Figure 6), were transcribed and Fsr could even be detected in

the metaproteome although sulfite was never added to the S-AOM enrichment culture.

Role of SEEP-SRB1 bacteria in S-AOM

In this study we showed that SEEP-SRB1 bacteria encoded all enzymes of the
canonical sulfate reduction pathway (Sat, AprAB, DsrAB, DsrC) as well as membrane-

bound QMoABC and DsrMKJOP complexes. Genes encoding for these proteins were
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among the highest transcribed genes of SEEP-SRB1 and with the exception of DsrC,
expression of all proteins was detected in the metaproteome. However, studies of sulfur
disproportionating bacteria (i.e. Desulfocapsa or Desulfobulbus) also have shown that the
same enzymes catalyze sulfur disproportionation (Finster, 2008; Finster et al, 2013;
Frederiksen & Finster, 2003). It is therefore difficult to ascertain from our data and
without physiological experiments whether SEEP-SRB1 perform sulfate reduction or
sulfur disproportionation. However, considering that a physiological study by Milucka et
al. (2012) has shown that DSS bacteria in the enrichment culture are capable of sulfur
disproportionation, it is plausible that these well transcribed and expressed enzymes
are involved in disproportionation. Sulfur disproportionation is still poorly understood
process but it was suggested that sulfite is a central intermediate (Bottcher et al, 2005;
Finster, 2008; Frederiksen & Finster, 2003). In particular it is unknown how polysulfides,
which seem to be the disproportionated by DSS (Milucka et al, 2012), could be
converted to sulfite. Conspicuous membrane-bound molybdopterin oxidoreductases or
polysulfide reductases, which have been implicated in sulfur species interconversion in
disproportionating bacteria (Finster et al, 2013; Mardanov et al, 2016), were not present
in the SEEP-SRB1 genome.

Within the SEEP-SRB1 genome we identified well transcribed and expressed
electron-accepting, membrane-bound complexes Qrc and Tmc. These complexes are
commonly found in sulfate-reducing bacteria and have been shown to accept electrons,
which are ultimately funneled into sulfate reduction, from periplasmic enzymes (e.g.
hydrogenase, formate dehydrogenase) via periplasmic tetraheme cytochromes ¢; (Grein
et al, 2013). The prominent transcription of Qrc, Tmc as well as of several genes
encoding for tetraheme cytochrome ¢; (RPKM = 938 -20,112) leave little doubt that
these enzymes are important modules in the electron transport chain of SEEP-SRBI1.
Intriguingly, periplasmic hydrogenases or formate dehydrogenases were absent from
the SEEP-SRB1 genome, which suggests an alternative periplasmic source of reducing
power. Skennerton et al. (2017) and Krukenberg et al. (2016) argued that, based on a
syntrophic S-AOM model, electrons transferred from ANME archaea might be fed
through tetraheme cytochromes ¢; into the electron transport chain of the sulfate-
reducing bacterial partner. Alternatively we suggest that Qrc and Tmc might be

electron-accepting complexes (via tetraheme cytochromes ¢;) of a yet to be identified,
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periplasmic enzyme involved sulfur disproportionation; for example, this putative
enzyme could be involved in the initial interconversion of polysulfide to sulfite. In any
case, further physiological experiments are needed to substantiate these hypotheses.

Experiments with syntrophic co-cultures of Geobacter have suggested that multi-
heme cytochromes ¢ and pili might be involved in direct exchange of electrons
between microorganisms (Summers et al, 2010). Similarly it was suggested that direct
interspecies transfer in thermophilic S-AOM might be facilitated through nanowire-like
structures formed by type IV pili (Wegener et al, 2015), which however has been
questioned recently (Walker et al, 2017). Although SEEP-SRB1 also encoded a complete
set of genes for type IV pili, we did not observe high transcription of pili genes. In
contrast to “Ca. Desulfofervidus auxilii”, which transcribed pilA at similar levels to dsrA
under syntrophic conditions (Wegener et al, 2015), we found that transcription by SEEP-
SRB1of pilA (PRKM = 402) was orders of magnitudes lower than dsrA (RPKM = 16,402).
Furthermore, we could not detect expression of type IV pili proteins in the
metaproteome. Nevertheless it might still be possible that SEEP-SRB1 utilizes pili to
mediate cellular functions such as cell adhesion or microcolony formation (Craig et al,
2004).

Electron transfer mediated by multi-heme cytochromes ¢ of the S-AOM-
associated bacterial partner (and ANME) has been proposed as mode of electron
transfer that might not necessarily rely on conductive pili but rather on a cytochrome c-
mediated conductive extracellular matrix (McGlynn et al, 2015; Skennerton et al, 2017).
We found that SEEP-SRB1 encoded and transcribed several multi-heme cytochromes ¢
that could be indeed involved in electron transfer. With one exception, none of these
sometimes well transcribed multi-heme cytochromes ¢ were detected in the
metaproteome. It is unclear if these proteins were not expressed or if they were not
detected for unknown, technical reasons related to the metaproteomic analyses. In any
case, several aspects of cytochrome-mediated electron transfer in S-AOM consortia are
still unresolved (reviewed by (Lovley, 2016)) and the physiological function of the multi-

heme cytochromes c has yet to be directly demonstrated.
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Supplementary Figure 1. Maximum likelihood phylogenetic tree (60 taxa) showing the
phylogenetic affiliation of 16S rRNA gene retrieved from the ANME-2c genome. Tree
calculation was performed using RAXML8 implemented in the ARB software package without
constraining the alignment with a filter or weighting mask. Bootstrap values > 60 (out of 100)
are shown in front of each node. The taxonomic affiliations indicated by the grouped taxa are
based on the SILVA SSU reference database (release 123, (Pruesse et al, 2007)). 6 type strains
diversely spread among Crenarchaeota were used as outgroup. Nucleotide accession numbers
are listed in brackets. The bar depicts an estimated nucleotide sequence divergence of 10%.
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Supplementary Figure 2. Maximum likelihood phylogenetic tree (66 taxa) showing the
phylogenetic affiliation of 16S rRNA gene retrieved from the SEEP-SRB1 genome. Tree
calculation was performed using RAXML8 implemented in the ARB software package without
constraining the alignment with a filter or weighting mask. Bootstrap values > 60 (out of 100)
are shown in front of each node. The taxonomic affiliations indicated by the grouped taxa are
based on the SILVA SSU reference database (release 123, (Pruesse et al, 2007)). Nine type strains
diversely spread among Gammaproteobacteria were used as outgroup. Nucleotide accession
numbers are listed in brackets. The bar depicts an estimated nucleotide sequence divergence of
10%.
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Supplementary Figure 3. Metagenomic binning of ANME-2c genome. Metagenomic contigs
obtained from the “Powersoil” assembly were binned in a first step using differential coverage
between sequencing datasets “Powersoil” and “Blood&Tissue”. This preliminary bin was refined
based on tetranucleotide frequency and GC content (small plot). In total 198 contigs were
extracted (filled green circles). Each circle represents a contig with size proportional to contig
length and color indicates taxonomic contig classification (based on single copy genes).
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Supplementary Figure 4. Metagenomic binning of SEEP-SRB1 genome. Metagenomic
contigs of the “Blood&Tissue” assembly were binned based on differential coverage in
sequencing datasets “Powersoil” and “Blood&Tissue”. The preliminary bin was refined using
contig coverage from metagenomic reads obtained from a sulfur-amended S-AOM culture and
the “Blood&Tissue” dataset (small plot). In total 246 contigs were extracted (filled green circles).
Each circle represents a contig with size proportional to contig length and color indicates
taxonomic contig classification (based on single copy genes).
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Supplementary Figure 5. Metaproteome-inferred protein abundance levels (by iBAQ
score) of ANME-2c and SEEP-SRB1. a, Displayed are the 100 most abundant proteins of ANME-
2c inferred from their intensity based absolute quantification (iBAQ) values identified in the
metaproteome. Indicated in red are proteins involved in reverse methanogenesis and proteins
found in Hdr-associated gene clusters (see Supplementary Table 5). Inline figure shows the
same data with full-scale y-axis. b, 60 most abundant proteins of SEEP-SRB1 identified in the
metaproteome. In red, proteins involved in dissimilatory sulfur metabolism and associated
electron donating complexes are shown.
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amino-acid sequence to respective genes of ANME-2c (in %, shown within gene arrows).
Expressed genes of ANME-2c are indicated by a red star.
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Supplementary Figure 7. Pairwise alignment of octaheme tetrathionate reductase (OTR)
of Shewanella oneidensis MR-1 and OTR-like protein of ANME-2c. Amino-acid sequences of
Shewanella oneidensis MR-1 OTR (PDB accession 1SP3) and OTR-like protein of ANME-2c
(ANME_01244) were pairwise aligned using JalView (Waterhouse et al, 2009). Heme-binding
motifs are indicated with roman numerals (I-VIll) and residues of the active site of Shewanella
OTR (according to (Mowat et al, 2004)) are shown in blue.
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Supplementary Tables

Supplementary Table 1. Summary of sequencing datasets used in this study.
Sequencing dataset Sequencing technology No. of (paired-end) reads
AOM Powersoil MiSeq, 2x250 bp 7,594,147

AOM Blood&Tissue MiSeq, 2x250 bp 5,895,760

AOM, sulfur-amended lonTorrent PGM, 318v2 chip 5,300,000

AOM transcriptome lonTorrent PGM, 318v2 chip 4,386,143

Supplementary Table 2. Overview of used oligonucleotide probes. Listed are target groups,
probe sequence, formamide concentration in the hybridization buffer and references.

Probe sequence Formamide
Probe Target group (5- 3 % [v/v] Reference
DSS-658 Desulfosarcina/ TCCACT TCCCTCTCC 50 (Manz et al, 1998)
Desulfococcus group CAT
GGCTACCACTCG
ANME-2-538 ANME-2 GGC CGC 50 (Treude et al, 2005)
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Chapter 4 - Physiology of S-AOM

Extended Data Tables

Extended Data Table 1. Gene transcription (in RPKM) and expression (iBAQ score values)
of selected ANME-2c genes.

Locus Tag Product Gene RPKM (iBAQ
score

Reverse methanogenesis

ANME_01255 Methyl-coenzyme M reductase subunit alpha mcrA 69751 108730
ANME_01254 Methyl-coenzyme M reductase subunit gamma mcrG 62611 8498500
ANME_01252 Methyl-coenzyme M reductase Il operon protein D mcrD 57482 0
ANME_01253 Methyl-coenzyme M reductase | operon protein C mcrC 47278 -
ANME_01251 Methyl-coenzyme M reductase subunit beta mcrB 43094 6279000
ANME_00191 Tetrahydromethanopterin S-methyltransferase subunit A 1 mtrA1_1 5356 -
ANME_02416 Tetrahydromethanopterin S-methyltransferase subunit A 1 mtrA1_2 82 -
ANME_00192 Tetrahydromethanopterin S-methyltransferase subunit B mtrB_1 4541 -
ANME_02415 Tetrahydromethanopterin S-methyltransferase subunit B mtrB_2 116 -
ANME_00193 Tetrahydromethanopterin S-methyltransferase subunit C mtrC_1 4496 142920
ANME_02414 Tetrahydromethanopterin S-methyltransferase subunit C mtrC_2 85 -
ANME_00194 Tetrahydromethanopterin S-methyltransferase subunit D mtrD_1 3789 -
ANME_02413 Tetrahydromethanopterin S-methyltransferase subunit D mtrD_2 76 -
ANME_00195 Tetrahydromethanopterin S-methyltransferase subunit E mtrE_1 3494 -
ANME_02412 Tetrahydromethanopterin S-methyltransferase subunit E mtrE_2 82 -
ANME_00190 Tetrahydromethanopterin S-methyltransferase subunit F mtrF_1 3460 -
ANME_02417 Tetrahydromethanopterin S-methyltransferase subunit F mtrF_2 263 -
ANME_00189 Tetrahydromethanopterin S-methyltransferase subunit G mtrG_1 5554 192810
ANME_02418 Tetrahydromethanopterin S-methyltransferase subunit G mtrG_2 42 -
ANME_00188 Tetrahydromethanopterin S-methyltransferase subunit H mtrH_1 4404 358820
ANME_02419 Tetrahydromethanopterin S-methyltransferase subunit H mtrH_2 123 -
ANME_01600 5,10-methylenetetrahydromethanopterin reductase mer_1 7815 461460
ANME_02420 5,10-methylenetetrahydromethanopterin reductase mer_2 78 -
ANME_02010 Zii(;—(;j;gzr;:izt methylenetetrahydromethanopterin Mtd 2687 2097600
ANME_00995 Methenyltetrahydromethanopterin cyclohydrolase mch_2 1922 152900
ANME_00210 Methenyltetrahydromethanopterin cyclohydrolase mch_1 243 -
ANME 00875 1f:))rr;\;]Itrrr;itsf}’::1aosfeuran——tetlrahydromethanopterin fir 1459 348430
ANME_00035 (f;/leor:?/zgs;:r:zsdee;endent formylmethanofuran FrndF 2070 45492
ANME_00036 (!;/leor:))//léfoeg:r:r;ieé)endent formylmethanofuran FrdE 648 )
ANME_00038 Z/leor:);z;ijg:gscéegendent formylmethanofuran FrmdD 74 )
ANME_00039 Z/leor:zzs:;:r:zscieé)endent formylmethanofuran FrdB 137 )
ANME._00040 Z/leorgzg:g:r:gsciel_r\)endent formylmethanofuran FmdA 65 .
ANME_00041 Tungsten dependent formylmethanofuran dehydrogenase C FwdC 110 -
ANME_02722 Formylmethanofuran dehydrogenase operon gene G FmdG 112 -
ANME_02723 Formylmethanofuran dehydrogenase B FmdB 105 -
ANME_02724 Formylmethanofuran dehydrogenase D FmdD 50 -
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Locus Tag Product Gene RPKM (iBAQ
score

F420:H2 dehydrogenase
ANME_01599 F(420)H(2) dehydrogenase subunit F FpoF 2236 57780
ANME_01773 F(420)H(2) dehydrogenase subunit L FpoL_1 22 -
ANME_01775 F(420)H(2) dehydrogenase subunit L FpolL_2 23 -
ANME_01776 F(420)H(2) dehydrogenase subunit N FpoN_1 23 -
ANME_02463 F(420)H(2) dehydrogenase subunit A FpoA 580 20160
ANME_02464 F(420)H(2) dehydrogenase subunit B FpoB 1514 -
ANME_02465 F(420)H(2) dehydrogenase subunit C FpoC 2176 282960
ANME_02466 F(420)H(2) dehydrogenase subunit D FpoD 1991 209950
ANME_02467 F(420)H(2) dehydrogenase subunit H FpoH 803 -
ANME_02468 F(420)H(2) dehydrogenase subunit | Fpol 2395 266070
ANME_02469 F(420)H(2) dehydrogenase subunit J FpoJ_1 753 -
ANME_02470 F(420)H(2) dehydrogenase subunit J FpoJ_2 1502 -
ANME_02471 F(420)H(2) dehydrogenase subunit K FpoK 1874 -
ANME_02472 F(420)H(2) dehydrogenase subunit L FpolL_3 1503 -
ANME_02473 F(420)H(2) dehydrogenase subunit M FpoM 1660 91267
ANME_02474 F(420)H(2) dehydrogenase subunit N FpoN_2 1998 -
V-type ATP synthase
ANME_01521 V-type ATP synthase alpha chain ntpA 631 -
ANME_01522 V-type ATP synthase beta chain ntpB 559 -
ANME_00655 V-type ATP synthase subunit C ntpC 254 -
ANME_00478 V-type ATP synthase subunit D ntpD 125 -
ANME_02026 V-type ATP synthase subunit E ntpE 652 0
ANME_01520 V-type ATP synthase subunit F ntpF 212 55864
ANME_02029 V-type ATP synthase subunit H ntpH 305 -
ANME_02028 V-type ATP synthase subunit | ntpl 362 -
ANME_02027 V-type ATP synthase subunit K ntpK 457 -
Electron transport complex Rnf
ANME_02108 Electron transport complex protein RnfB RnfB 2415 -
ANME_02109 Electron transport complex protein RnfA RnfA 805 -
ANME_02110 Electron transport complex protein RnfE RnfE 554 -
ANME_02111 Electron transport complex protein RnfG RnfG 813 62234
ANME_02112 Electron transport complex protein RnfD RnfD 229 -
ANME_02113 Electron transport complex protein RnfC RnfC 882 -
Heterodisulfide reductase
ANME_01561 CoB--CoM heterodisulfide reductase iron-sulfur subunit A hdrA 21 -
ANME_01562 CoB--CoM heterodisulfide reductase subunit B hdrB 43 -
ANME_01563 CoB--CoM heterodisulfide reductase iron-sulfur subunit C hdrC 13 -
ANME_02102 CoB--CoM heterodisulfide reductase iron-sulfur subunit D hdrD 826 -
ANME_02103 CoB--CoM heterodisulfide reductase iron-sulfur subunit C hdrC 743 134980
ANME_02104 CoB--CoM heterodisulfide reductase subunit B hdrB 895 -
ANME_02105 CoB--CoM heterodisulfide reductase iron-sulfur subunit A hdrA 1183 10238
ANME_02106 F420-non-reducing hydrogenase iron-sulfur subunit D mvhD 1748 51224
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Locus Tag Product Gene RPKM (iBAQ
score

ANME_02618 CoB--CoM heterodisulfide reductase iron-sulfur subunit A hdrA 854 24461
ANME_02619 F420-non-reducing hydrogenase mvh iron-sulfur subunit D mvhD 1005 6410470
ANME_02620 Formate dehydrogenase subunit beta fdhB 874 278500
ANME_02621 Formate dehydrogenase subunit alpha like protein fdhA 1365 77228
ANME_02238 CoB--CoM heterodisulfide reductase iron-sulfur subunit D hdrD 2187 17449
ANME_02239 CoB--CoM heterodisulfide reductase subunit E hdrE 1444 -
ANME_01629 CoB--CoM heterodisulfide reductase iron-sulfur subunit A hdrA 81 -
ANME_01884 CoB--CoM heterodisulfide reductase iron-sulfur subunit C hdrC 28 -
Sulfite reductase
ANME_01242 Sulfite reductase, dissimilatory-type subunit alpha dsr-LP 207 -
ANME_01246 Coenzyme F420 sulfite reductase fsr 465 42845
CO dehydrogenase/acetyl-CoA synthase
ANME_01530 CO dehydrogenase/acetyl-CoA synthase subunit alpha codh/acsA 368 7758
ANME_01195 CO dehydrogenase/acetyl-CoA synthase subunit beta codh/acsC 538 14867
ANME_00895 CO dehydrogenase/acetyl-CoA synthase subunit delta codh/acsD 430 -
ANME_01529 Co dehydrogenase/acetyl-CoA synthase subunit epsilon codh/acsB 206 -
ANME_00917 CO dehydrogenase/acetyl-CoA synthase subunit gamma codh/acsE 432 -
Acetyl-CoA synthase
ANME_01542 Acetyl-CoA synthetase acs 31 -
ANME_01678 Acetyl-CoA synthetase acs 44 -
Multiheme cytochromes ¢
ANME_01820 Doubled CXXCH motif (Paired_CXXCH_1) - 48 263
ANME_02055 Immune inhibitor A peptidase M6 - 65 -
ANME_02056 Doubled CXXCH motif (Paired_CXXCH_1) - 172 -
ANME_02168 hypothetical protein - 117 -
ANME_02775 hypothetical protein - 3249 -
ANME_01594 Class Ill cytochrome C family protein - 3323 -
ANME_02604 hypothetical protein - 1124 -
ANME_00931 Doubled CXXCH motif (Paired_CXXCH_1) - 39 -
ANME_01244 Cytochrome ¢ - 277 -
ANME_02229 hypothetical protein - 274 -
ANME_02742 hypothetical protein - 61 -
ANME_02743 hypothetical protein - 32 -
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Extended Data Table 2. Gene transcription (in RPKM) and expression (iBAQ score values)
of selected SEEP-SRB1 genes.

Locus Tag Product Gene RPKM ::I:
Sulfate reduction
DSS_01055 Sulfate adenylyltransferase sat 9431 483820
DSS_01059 Adenylylsulfate reductase subunit alpha aprA 16402 158030
DSS_01060 Adenylylsulfate reductase subunit beta aprB 11025 -
DSS_03055 Dissimilatory sulfite reductase, subunit D dsrD 3217 161890
DSS_03056 Dissimilatory sulfite reductase, subunit B dsrB 8401 252000
DSS_03057 Dissimilatory sulfite reductase, subunit A dsrA 7425 516530
DSS_02004 Dissimilatory sulfite reductase, subunit C dsrC 14340 -
Membrane-bound respiratory complexes
DSS_ 01056 Suutizz;ec—interacting membrane-bound oxidoreductase QmoC 1613 13492
DSS_01057 Suutl):(r)]:le;nteractmg membrane-bound oxidoreductase QmoB 2360 118360
DSS_01058 Suublz:irle;nteractmg membrane-bound oxidoreductase QmoA 2175 47615
DSS_03202 Sulfite reduction-associated complex DsrMKJOP protein DsrP DsrP 1800 -
DSS_03203 Sulfite reduction-associated complex DsrMKJOP protein DsrO DsrO 2697 -
DSS_03204 Sulfite reduction-associated complex DsrMKJOP protein DsrJ DsrJ 986 -
DSS_03205 Sulfite reduction-associated complex DsrMKJOP protein DsrK DsrK 1890 55069
DSS_03206 Sulfite reduction-associated complex DsrMKJOP protein DsrM DsrM 1669 -
DSS_00347 Transmembrane complex subunit B TmcB 829 28078
DSS_00348 Transmembrane complex subunit C TmcC 391
DSS_00349 Transmembrane complex subunit D TmcD 359 187050
ATP synthase
DSS_03414 ATP synthase FO sector subunit b - 833 -
DSS_03415 ATP synthase FO sector subunit b atpF 3310 30352
DSS_03416 ATP synthase subunit delta atpH 5140 -
DSS_03417 ATP synthase subunit alpha atpA 2804 158070
DSS_03418 ATP synthase gamma chain atpG 1020
DSS_03419 ATP synthase subunit beta atpD 3399 187420
DSS_03420 ATP synthase epsilon chain atpC 4860 21110
DSS_00164 ATP synthase protein | atpl 1111 -
DSS_00165 ATP synthase protein 12 atpl2 786 -
DSS_00166 ATP synthase FO sector subunit a atpB 1028 -
DSS_00167 ATP synthase FO sector subunit ¢ atpE 37122 -
CO dehydrogenase/acetyl-CoA synthase
DSS_00568 CO dehydrogenase/acetyl-CoA synthase subunit alpha codh/acsA 258 -
DSS_00577 CO dehydrogenase/acetyl-CoA synthase subunit delta codh/acsD 429 -
DSS_00578 CO dehydrogenase/acetyl-CoA synthase subunit beta codh/acsB 529 -
DSS_00579 CO dehydrogenase/acetyl-CoA synthase subunit gamma codh/acsC 225 5855
DSS_00580 CO dehydrogenase/acetyl-CoA synthase subunit epsilon codh/acsE 744 -

Acetyl-CoA synthetase

DSS_01221 Acetyl-coenzyme A synthetase acs 363 -
DSS_02306 Acetyl-coenzyme A synthetase acs 157 -
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Locus Tag Product Gene RPKM ::r(:
Cytochromes ¢
DSS_03053 Class Ill cytochrome C family protein - 20112
DSS_02785 Acidic cytochrome c3 precursor - 1064
DSS_00053 Acidic cytochrome ¢3 precursor - 938
DSS_03485 Doubled CXXCH motif (Paired_CXXCH_1) - 646
DSS_02871 Doubled CXXCH motif (Paired_CXXCH_1) - 555
Type IV pili
DSS_01738 Type IV pilus biogenesis protein pilQ pilQ 45
DSS_01739 Type IV pilus biogenesis protein pilP pilP 77
DSS_01740 Type IV pilus biogenesis protein pilO pilO 81
DSS_01741 Type IV pilus biogenesis protein pilN pilN 88
DSS_01742 Type IV pilus biogenesis protein pilM pilM 144
DSS_03230 type IV pilus assembly protein pilY pilY 318
DSS_03234 type IV pilus modification protein PilV pilv 134
DSS_02280 type IV pilin pilA pilA 124
DSS_00514 type IV pilin pilA pilA_2 402
Heterodisulfide reductase
DSS_00569 heterodisulfide reductase, subunit A hdrA 251
DSS_00570 heterodisulfide reductase, subunit B hdrB 127
DSS_00571 heterodisulfide reductase, subunit C hdrC 354
DSS_00038 Heterodisulfide reductase subunit A HdrA 100
DSS_00039 Heterodisulfide reductase subunit F1' HdrF1' 293
DSS_00040 Heterodisulfide reductase subunit F1 HdrF1 86
DSS_03353 CoB--CoM heterodisulfide reductase subunit C hdrC 0
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Summary

Studies suggest that microbes associated with the sulfate-dependent anaerobic
oxidation of methane (S-AOM) may directly influence sedimentary P cycling. Unusual
authigenesis of iron (Fe) and phosphorus (P)-bearing minerals within S-AOM dominated
sediment horizons have been observed (Jilbert & Slomp, 2013) and Fe- and P-rich
particles have been found within S-AOM-associated microbes (Milucka et al, 2012). To
investigate inorganic phosphorus (P) cycling associated with S-AOM, we performed
trace radioactive *P; experiments on an S-AOM enrichment culture incubated under
low (~ 4 pmol I'") and high (~0.5 mmol I'') phosphate concentrations. S-AOM biomass
cultivated at high phosphate contained 9.1 dry-wt% HCl-extractable phosphate, which
was Mg-bound, while the biomass cultivated at low phosphate concentration contained
<0.1 dry-wt% phosphate. The particulate phosphate phase was likely located
extracellularly. Phosphorus-rich inclusions in the enrichment culture biomass were not
detected by scanning transmission electron microscopy (STEM) coupled with energy
dispersive X-ray analysis (EDX). In the radiotracer experiments, **P; was removed from
the aqueous phase and into a Pi-bearing particulate phase located in the S-AOM
biomass flocs only under S- S-AOM conditions. In the absence of methane, and S-AOM,
3P; uptake from solution ceased. Bulk dissolved P; concentrations, however, remained
constant under both S-AOM and control conditions. These results suggest that
organisms within the enrichment culture induce P; exchange processes when active (i.e.
in the presence of methane). Exchange rates inferred from the radiotracer were
substantial since the turnover time of soluble phosphate was estimated in the range of
3 - 9 days in the cultures. Epicellular phosphate may help to ameliorate eventual
carbonate encrustation e.g. through the complexation of Ca** and Mg?*" ions or by

creation of Pi-rich microenvironments surrounding the S-AOM aggregates.
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Introduction

Sulfate-dependent anaerobic oxidation of methane (S-AOM) has a major role in
coupling biogeochemical cycles of sulfur and carbon in sediments. S-AOM was
discovered nearly 35 years ago from sediment porewater profiles showing concurrent
disappearance of both methane and sulfate at the so-called sulfate-methane transition
zones (SMTZ), where upward diffusing methane was consumed by downward diffusing
sulfate (Barnes & Goldberg, 1976; Martens & Berner, 1974; Reeburgh, 1976).

Subsequent studies demonstrated that sulfate-coupled AOM is mediated by
anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria belonging to
the Desulfosarcina/Desulfococcus clade (DSS) (Boetius et al, 2000; Hinrichs et al, 2000;
Hoehler et al, 1994; Nauhaus et al, 2002). Despite the low free energy change associated
with sulfate-dependent AOM, estimates indicate that S-AOM consumes > 90 % of
methane produced in marine sediments. Therefore, S-AOM plays an important part in
regulating greenhouse gas emission from the ocean seafloor (Reeburgh, 2007).

The influence of S-AOM on biogeochemical cycles extends beyond the cycling of
carbon and sulfur to phosphorus (P) and iron (Fe). The sedimentary Fe and P cycles are
tightly linked due to the efficient scavenging of dissolved inorganic phosphate (P;) by
particulate Fe(lll) oxo-hydroxides. Once deposited, P; can be released within deeper,
sulfidic sediment layers by reductive dissolution of the Fe(lll) oxo-hydroxides. This
mechanism, along with organic matter degradation, is a major cause for elevated P;
concentrations characteristically found in sulfidic sediment horizons such as the SMTZ
(e.g. (McManus et al, 1997; Sundby et al, 1992)). Therefore, the SMTZ can act as a source
of P; that either diffuses upwards and downwards where it can further react to form
authigenic P-bearing phase, e.g. carbonate fluoroapatite (Ruttenberg & Berner, 1993,
both above and below the SMTZ (Marz et al, 2008).

Authigenic Fe(ll) phosphates (e.g. vivianite) have been identified as the main P
burial phase in Fe-rich large river fan sediments and brackish marginal-sea sediments,
where authigenesis of Fe(ll) phosphates below the SMTZ is most likely driven by high
free Fe(ll) concentrations (Burns, 1997; Marz et al, 2008; Slomp et al, 2013). In sediments
of the Baltic and the Black Sea, authigenesis of Fe(ll) phosphate was also observed to
occur within sulfidic, S-AOM-associated sediment layers (Dijkstra et al, 2014; Egger et al,

2015; Jilbert & Slomp, 2013). The formation of vivianite in these latter cases did not
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appear to be driven by supersaturation of the pore water with respect to vivianite. The
authors of these studies suggest that the Fe(ll) phosphates forming in these sulfidic
environments may be strongly influenced by the S-AOM process itself.

Intriguingly, distinct Fe- and P-rich inclusions have been identified within the
cytoplasm of DSS cells associated with S-AOM mats found in the sulfidic zone of the
Black Sea (Milucka et al, 2012). Furthermore, in the same study bacterial DSS cells could
be distinguished from the ANME cells by their relatively greater P:C contents. These
observations are consistent with the hypothesis that S-AOM associated cells may be
directly involved in the inorganic P enrichment or P mineral authigenesis, but the
hypothesis has not been directly tested.

Therefore, we investigated the influence of S-AOM activity on P distributions and
cycling in a similar enrichment culture. Here we report on the elemental composition
and geochemistry of the of the S-AOM biomass in the enrichment culture — both at the
bulk and on the single-cell level. We then use *P radiotracer at low and high phosphate

concentrations to investigate the microbial control of P uptake associated with S-AOM.
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Methods
Culture origin and cultivation

The S-AOM enrichment culture derived from a culture that has been enriched
over 10 years from a sediment sample collected on a cruise of RV L'Atlante in September
2003 in the eastern Mediterranean Sea (Milucka et al, 2012). The ISIS culture was
incubated in artificial SRB seaweater medium (salts: 0.76 mmol ' KBr, 8.05 mmol ' KClI,
10 mmol I' CaCl, * 2 H,0, 27.9 mmol I MgCl, * 6 H,0, 27.6 mmol I MgSO. * 7 H,0, 451
mmol I NaCl, 4.67 mmol I NH4Cl, 1.47 mmol I" KH,PO,, 30 mmol I' NaHCO; vitamins
and trace elements: according to (Widdel & Bak, 1992); redox indicator: 1 mg I
Resazurin; reducing agent: 0.5 mmol I'' H,S pH 7.5) anaerobically in serum bottles sealed
with butyl rubber stoppers. Serum bottles having a N,:CO, (90:10) headspace were
pressurized with methane (Air Liquide, Germany) to 3 bar overpressure and incubated
on a shaker (40 rotations min'.) at room temperature. Medium was regularly exchanged
with fresh artificial seaweater medium when sulfide concentrations reached ~ 20 mmol
I in an anaerobic glove box (Mecaplex, Switzerland) under N»:CO, (90:10) atmosphere.
Growth (doubling times) are estimated to be several month (Milucka et al, 2012).The
low phosphate enrichment culture was derived from the high phosphate culture by
incubation for 2 months (with occasional medium exchanges) in medium containing 10
pmol |7 phosphate. After each medium exchange, free P; concentration gradually
increased over several days. The medium exchanges were repeated until no increase of

P; concentration could be observed.

Chemical analysis

Total dissolved sulfide was determined spectrophotometrically at 670nm using
the methylene blue method (Cline, 1969) and was adapted for small volumes. Prior to
sulfide determination, samples were filtered through a 0.45 pum syringe filter and
immediately fixed with 5% ZnCl; (0.5x sample volume).

Sulfate was determined on samples filtered through a 0.45 um syringe filter,
immediately fixed with ZnCl, (same as sulfide samples), and centrifuged at 12000
relative centrifugal force (RCF, in g) for 5 min. Sulfate in the supernatant was determined

on a 761 Compact ion chromatograph (Methrom AG, Switzerland) equipped with CO;
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suppressor module, Zn trap (Metrosep A Trap 1-100/4.0) and a Metrosep A SUPP5
column. Carbonate buffer (3.2 mmol I Na,COs;, T mmol I NaHCO:s) served as an eluent.
Inorganic phosphate was determined spectrophotometrically by molybdenum
blue method at 820nm (Murphy & Riley, 1958). Prior to the analysis, samples were
filtered through a 0.45 um syringe filter and stored for several days at 4°C until

interfering sulfide was oxidized by oxygen.

STEM-EDX

Biomass was fixed with 4% formaldehyde (FA) in 0.1TM 3-(N-
morpholino)propanesulfonic acid (MOPS) buffer (pH 7.4). To 1ml biomass in medium an
equal volume of fixative was added and the cells were incubated with head-over-head
rotation for 15 min. at 21°C. Biomass was pelleted by centrifugation for 2 min. at 800
RCF (21°C), supernatant was decanted and replaced with fresh fixative, followed by 2h
fixation with head-over-head rotation at 21°C. Subsequently cells were washed 5x with
0.1 M MOPS buffer (pH7.4) by pelleting the biomass at 800 RCF (1 min., 21°C) decanting
the supernatant and replacing it with fresh buffer. After the last wash, buffer was
replaced for 12% gelatin in 0.1 M PHEM (60 mM piperazine-N,N'-bis(2-ethanesulfonic
acid), 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 10 mM ethylene
glycol tetraacetic acid, 2 mM MgCl,, pH 6.9) at 37°C and the fixed biomass was
incubated for 5 min. at 37°C with intermitted resuspension. Next the biomass was
pelleted at 1600 RCF for 3 min. at 37°C and the sample was solidified on ice for 15 min.
Samples were removed from the microtubes, excess gelatin was trimmed off using a
razorblade and the pellet was diced in blocks of 1-2 mm?3. Sample blocks were infiltrated
overnight at 4°C with 2.3 M sucrose in PHEM buffer and the next day mounted on
specimen pins and frozen in liquid nitrogen. Samples were cryosectioned (75 nm
sections) using a cryo-ultramicrotome UC7/FC7 (Leica Microsystems, Austria).
Cryosections were picked up with a drop of 1% methyl cellulose and 1.15 M sucrose in
PHEM buffer and transferred to formvar-carbon-coated copper hexagonal 100 mesh
grids.

STEM imaging was performed on a Quanta FEG 250 (FEI, Netherlands) equipped
with and Everhart-Thornley detector for transmission electron imaging (14 regions)

under high vacuum mode at 20 kV. EDX was done using a dual detector system XFlash
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6|30 (energy resolution Mn K, < 123 eV, detector area = 30 mm? BrukerNano, Germany)

at a working distance of 10 mm.

Elemental analysis by ICP-OES

Biomass was filtered onto weighed 0.22 um GTTP filters (dried in desiccator for
24h; Millipore, Germany) and washed very briefly with 0.5M NaCl solution followed by
MQ water. Filters were dried at 80°C overnight and dry mass was determined (~1 mg)
before incubation in TM HCl for 1h at 55°C. The filter and loose biomass was collected
by centrifugation (12000 RCF, 10 min.) and washed twice with 1M HCl. The washings
and the extract were combined and Ca, Mg, Fe, P, S, Ni and Co were determined by
inductively coupled plasma-optical emission spectrometer (ICP-OES) that was equipped

with an ultrasonic nebulizer (PerklinElmer Optima 3300 R).

3P radiotracer incubation experiments

15 ml aliquots of the S-AOM enrichment culture were transferred into 30 ml
serum bottles sealed with butyl rubber stoppers. The medium was exchanged twice
(incubation time: 6h) with modified SRB seawater medium (modifications: 10 mmol |
MgSQO, * 7 H,0, 45.5 mmol I'' MgCl, * 6 H,O, 0.5 or 0.005 mmol |'' KH,PO4, 15 mmol I
NaHCO) before carrier-free **P-phosphate radiotracer (Hartmann Analytics, Germany)
and 1.5 mmol I NaH™COs; (Sigma-Aldrich, USA) was added. Serum bottles were
pressurized with 2 bar methane or N,:CO, (90:10). Samples were taken regularly for
liquid scintillation counting, sulfate, sulfide and phosphate determination. Samples for
scintillation counting were filtered through a 0.22 um GTTP filter (Millipore, Germany).
The filter was briefly washed once with modified SRB medium and twice with TM HCI.
3P activity in the filtrate (medium) and on the filter was determined by liquid
scintillation counting (liquid scintillation counter: 2900TR LSA, Packard, USA;
scintillation fluid: IrgaSafe, PerkinElmer, USA).
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Results

Ultrastructure as well as single-cell and bulk elemental characterization of S-AOM
biomass

Scanning transmission electron microscopy (STEM) of thin sections of the S-AOM
biomass showed a well-mixed community of ANME and DSS that formed defined, big
clusters several hundred micrometers in diameter. ANME and DSS cells were
distinguished based on morphology and presence or absence of the double membrane

that enclosed the gram-negative DSS cells.
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o
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Figure 1. Ultrastructure and intracellular particles off DSS bacteria. a, Brightfield STEM
picture of the high phosphate culture featuring DSS cell containing intracellular particle (black
arrow). Spectra show EDX spot measurements of intracellular particle (black EDX spectrum) and
cellular background indicated by a gray star (grey EDX spectrum). Vertical lines depict K, lines of
the respective elements (for U, My and Mg line is shown). Al, Si and U signals originate from the
STEM detector or staining. Spectra were smoothed using simple moving average (window size =
0.01 keV). b, Brightfield STEM picture of a DSS cell of the high phosphate culture. Visible is the
double membrane including invaginations and intracellular particle.

We observed particles within the cytoplasm of a small fraction of the DSS
population in both low and high phosphate cultures (Fig. 1b). The intracellular particles
exhibited high angle electron scattering, were 20 — 100 nm in diameter and rarely more
than one per DSS cell was observed. Subsequent EDX analysis of several of these
particles (n=9) revealed Fe enrichment relative to cellular background in almost all cases

(n=7); however, no other major elements could be detected by EDX in the particles (Fig.
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1a). Peaks of uranium (U), copper (Cu), aluminum (Al) and silicon (Si) are system peaks
originating from staining (U), copper mounting grid (Cu) or detector (Al and Si).

The S-AOM flocs formed in the enrichment culture differed in appearance and
geochemical characteristics depending on the ambient phosphate concentration.
Elemental analysis by ICP-OES of HCl extracts highlighted major differences in the
elemental composition of low and high P; biomass flocs. We found 9.1 dry-wt% HCI-
extractable P; in the high and only small amounts (< 0.1 dry-wt %) in low phosphate
biomass flocs (Table 1). Piand Mg were present in approximately equimolar amounts in
the HCl extracts of low and high phosphate biomass. Calcium content was only 1.6% for
the high phosphate enrichments, but 22.4 %wt for the low phosphate treatments. In the
latter case, the Ca was most likely bound as calcium carbonate, which was visible by eye
as a white precipitate encrusting the black biomass flocs, and distinct needle-shaped
carbonate crystals observed under higher magnification (see Supplementary Fig. S3).
Other elements determined in the acidic extracts such as Fe, Mn, Ni and Co constituted

< 1 %wt of the dry mass of both cultures (Table 1 and Supplementary Table S2).

Table 1. Elemental composition of biomass determined by ICP-OES in HCl extracts of low
and high phosphate incubations.

Incubation Ca Mg Fe PO
%wt dry mass %wt dry mass %wt dry mass %wt dry mass
mmol (g dry pmol (g dry pmol (g dry pmol (g dry

mass)’ mass)”’ mass)’ mass)”’

Low 22.35 0.01 0.04 0.05
phosphate 5.577 4 7 5

High 1.62 3.35 0.42 9.08
phosphate 0.404 1370 75 956

33p radiotracer incubations

Phosphate cycling in low and high phosphate S-AOM enrichment cultures was
investigated using *P radiotracer. Rates are summarized in Table 2. In the presence of
methane, sustained sulfate reduction took place as indicated by the linearly increasing
sulfide and decreasing sulfate concentrations (Fig. 2a and b). The sulfate reduction rate
(SRR) calculated from the sulfate concentrations was 16.2 and 53.8 umol I h™ in low and
high P; incubations, respectively. In both low and high P; incubations, the SRR was

typically 1.6-times greater than the sulfide production rate. When methane was
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omitted, sulfate reduction ceased as indicated by the constant sulfate and sulfide

concentrations over time.
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Figure 2. **P radiotracer experiments of high and low phosphate incubations. Sulfate and
sulfide concentration (a and b), phosphate concentration (c and d) and *P activity in the
medium and washed biomass flocs (e and f) are shown for high phosphate (left panels; a,c,e)
and low phosphate radiotracer incubations (right panels; b,d,f). Filled glyphs represent
experiments amended with methane, open glyphs were control experiments not amended with
methane.

In the high P; incubation phosphate concentration increased within the first 24h
from 0.15 mmol I to 0.5 (with methane) and 0.6 mmol I (without methane) and

remained approximately constant thereafter (Fig. 2c). Such an increase was not
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observed in the low P; incubations; there the P; concentration fluctuated without
significant trend between 2 and 6 pmol I in both the control and methane amended
incubations (Fig. 2d). In contrast to the bulk P; concentrations, **P activity in the medium
(**Pm) exhibited a decrease in all incubations where S-AOM was occurring, i.e., where
methane was present and sulfate was being consumed. For the high P; incubation, the
3P, decrease was approximately linear throughout the experiment from 146 to 65 MBq
(-0.62 MBq I'" h"; Fig. 2e). **Pn, of the low P; incubation decreased initially over the first
70 hours from 414 to106 MBq I (-4.4 MBq I h'; 0 - 70h; Fig. 2f) and then remained
approximately constant thereafter (70-185h). In the absence of methane, and therefore
no AOM activity, **Pn, activity remained constant in the high P; incubation or decreased

only slightly in the presence of low concentrations of P; (Fig. 2e and f).

Table 2. Sulfate reduction rate and rates of **P change obtained from radiotracer
experiments of low and high phosphate experiment amended with methane.

Low phosphate experiment High phosphate

experiment
Sulfate reduction rate 16.2 53.8
(pmol I h) (’=0.93) (r*=0.98)
Average phosphate concentration 4.1 414.7
(pmol I")
AP activity in medium 437 0.62
(MBq I h") (?=0.99; 0 - 70h) (r’=0.97)
3P derived P cycling rate 0.053 (0-70h) 1.86
(pmol I" h™)
A*3P activity washed biomass 0.561 (r?=0.72; 0 - 42h) 0.030
(MBq ' h™) 0.355 (*=0.52; 0 - 185h) (r’=0.72)

S-AOM enrichment culture flocs washed with 1M HCI of both high P; and low P;
S-AOM active incubations were distinctly more enriched in radiotracer when compared
to the control incubations without methane (Fig. 2e and f). The recovered *P activity in
the washed biomass at the end of the methane amended incubation was ~ 6 and 17 %
of 3P, lost from the medium for high and low P; incubation, respectively. 3P activity in
the wash fraction was confirmed by scintillation counting but was not systematically
quantified.

To test whether the P; cycling is an indirect effect caused by of chemical changes
occurring within the medium during S-AOM (e.g. co-precipitation due to increased
alkalinity), we performed a control experiment where the changes were replicated in

the absence of methane (Fig. 3). In brief, we incubated radiotracer-free S-AOM
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enrichment culture for ~2 weeks with methane, exchanged the medium with fresh
medium containing radiotracer and added the old medium stepwise in the absence of
methane. The old medium contained 8.7 mmol I sulfide, 2.4 mmol I sulfate and at
least 23 mmol I DIC (based on the sum of the added DIC and methane derived DIC).
The addition of old medium increased sulfide concentration from 0.3 to 7.5 mmol |"' and
lowered sulfate concentration from 11 to 5 mmol I'" in our control experiment. The DIC
concentration was estimated to have increased from 15 mmol I to ~ 26 mmol I''. These
changing conditions had very little effect on the dilution-corrected *P activity which
remained approximately constant. Small changes at the time points of amendment
were attributed to the propagation of dilution effects resulting from sampling and the

addition of old medium.
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Figure 3. Abiotic control experiment without methane to which old medium was added.
Samples were taken just before and after each of the three old medium additions (indicated by
arrows). After each addition the system was left to equilibrate (gray shaded areas) for > 20h. On
x-axis, the time between sampling timepoints is denoted. **P activity was corrected for the
dilution effect introduced by the addition of old medium.
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Discussion
Pi cycling under S-AOM conditions

The experiments with 3P demonstrate that there is indeed a link between the
activity of S-AOM microorganisms and inorganic phosphate cycling. **P was removed
from solution when methane was present in both the low and high phosphate
experiments (Fig. 2a and b). Without methane, *P,, activity remained unchanged (high
Pi incubation) or slowly decreased (low P; incubation). Because bulk net distributions of
P: did not change over time in the experiments, the decrease in *P activity indicates that
P exchanges between the solution and solid, biomass-containing phases. This exchange
occurs only when S-AOM occurs.

One possibility is that the 3*P,, removal from solution simply reflects a side-effect
cause by the changing medium chemistry during the course of the experiment. P;
adsorption and co-precipitation with carbonate minerals has been previously reported
(de Kanel & Morse, 1978; Otsuki & Wetzel, 1972) and might indirectly influence P cycling
in our culture due to the increased carbonate alkalinity generated by the S-AOM
process. Nevertheless, our experiments with adding old medium to replicate changes in
the extent of the S-AOM reaction, i.e., decreasing sulfate, and corresponding increases
in sulfide and carbonate alkalinity, had no effect on total dissolved *P activity (Fig. 4).
Moreover, the decline in P, during the methane amended conditions was immediate,
when changes in the medium chemistry associated with would be minimal. In the
absence of methane and S-AOM, we could not induce *P, uptake; therefore we
propose an active and direct involvement of the S-AOM-associated microbes in this
process.

One possibility is that S-AOM microorganisms store excess P. Microbial P; uptake
for biomass formation or storage, however, is unlikely the main driving mechanism
behind the observed radiotracer behavior in our cultures. In case of uptake or storage,
one would expect that the radiotracer and P; show similar behavior. Our results did not
exhibit such behavior since the *P, activity substantially decreased even while P;
concentration remained approximately constant. Furthermore, apparent rates of P;
removal (based on the change of *P activity and the mean phosphate concentration) of
1.86 (high P; exp.) and 0.053 pumol I h' (low P; exp.) are substantial; they yield turnover
times for dissolved P; of 9 days (high P; exp.) and 3 days (low P; exp.) respectively. The
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rates are nearly two orders of magnitude larger than the estimated assimilatory P;
uptake rates (few nmols I'" h'1; Supplementary Table S1). Furthermore, only a small
fraction of *P lost from the medium was retained in the biomass after brief washing
with TM HCI. Extraction of organic P or a common P storage product, e.g.
polyphosphate, has been reported to require prolonged exposure (hours) to 1M HCI
and high temperatures (Eixler et al, 2005; Ruttenberg, 1992), but exposure to 1M HCl in
our experiments was brief (minutes).

Rather than uptake and storage within the biomass, exchange of free P; with a
particulate P; pool appears to be a more likely mechanism. To provide some level of
insight into the nature of the solid phase P; pool, we determined bulk elemental
composition in acidic HCl extracts (analyzed by ICP-OES) of biomass flocs. When
switching the medium of the high phosphate culture to lower phosphate
concentrations we observed a gradual increase of free phosphate (visible in Fig. 2f),
independent of S-AOM activity, and indicating dissolution of a P mineral. This was
confirmed by our bulk elemental analysis where we found 9.1 dry-wt% HCl-extractable
Piin the high and only small amounts (< 0.1 dry-wt %) in low phosphate biomass flocs.
Our results indicated almost equimolar concentrations of Mg and P; in high (1.44 mol
Mg (mol P)") and low P; biomass (0.78 mol Mg (mol P)?"). Therefore P; seems to be
bound in an Mg containing P mineral, which is consistent with reports of P; precipitating
as Mg-Ca phosphate under similar abiotic conditions (Golubev et al, 1999).

The bulk P; extraction method also does not distinguish between extra- and
intracellular P;, but the application of STEM-EDX revealed intracellular particles only
within the DSS cells of both low and high phosphate cultures. Similar Fe-rich particles
have been found in DSS from S-AOM-active bacterial mats from the Black Sea that were
also enriched in P (Milucka et al, 2012) or S (Reitner et al, 2005b; Reitner et al, 2005a).
While EDX analysis of several of our particles (n=9) also showed almost always Fe
enrichment in contrast to cellular background, neither P, Mg nor S could be detected. As
a result we suggest that the Mg-bearing phosphate mineral involved in P; cycling is
located extracellularly. In our experiments we found no evidence of significant
authigenesis of Fe-bearing phosphate minerals that was recently reported to occur

within the SMTZ (Dijkstra et al, 2014; Jilbert & Slomp, 2013), but free ferrous iron

159



Chapter 5 - P cycling associated with S-AOM

concentrations are not expected to be significant in our cultures (e.g. Fe is added only
as a trace element).

Interestingly, throughout both the high and low P; experiments, bulk P;
concentrations remained constant. These apparently contradictory results are readily
resolved if we consider that the bulk P; rapidly achieves a steady-state concentration
between the solid phase (including biomass) and the solution phase, whereas, the *P;
added to the solution phase is initially not in steady-state. During P cycling, free P; and
radiotracer transition into a particulate P; pool at the same rate as P; (and subsequently
3P) is released again. Over time, *P. activity will decrease and radiotracer will
accumulate in the particulate pool. The system eventually settles in a steady state in
respect to 3P after which 3P activity in both pools will remain constant despite ongoing
Pi exchange. We hypothesize that steady state was reached in the low phosphate
radiotracer incubation visible by constant *P, activity from 70h onwards despite
ongoing S-AOM activity (inferred by sulfate and sulfide concentrations). Thus, a
biologically induced exchange process between P; and extracellular, inorganic P

minerals is the most likely explanation for the observed *P radiotracer behavior.

Possible mechanism and function of P; exchange

In marine environments, microbe P-mineral interactions are well studied. For
example, microbes have been identified as important players due to their ability to
release P; from organic matter (Baturin & Bezrukov, 1979) and their involvement in
deposition of P-bearing minerals (Diaz et al, 2008; Schulz & Schulz, 2005). Nonetheless,
we could not find reports in the literature which have specifically implicated microbes in
the exchange of free P; with P-minerals as described in our study. This might be related
to the fact that the P cycling described in this study is a cryptic process (no net-change
of P; concentration) that reveals itself through the application of P isotopes. So far very
few studies have used P radioisotopes to investigate sedimentary P cycling processes
and therefore microbe P-mineral exchange might be an overlooked aspect. It remains
to be shown if our observations also hold true for in-situ conditions and that they are a
unique feature of S-AOM-associated microbes.

It is unclear how P cycling could benefit S-AOM-associated microbes. We note
that the S-AOM enrichment culture, which was kept for several months at low

phosphate concentrations (< 10 pmol I"') showed gradually decreasing S-AOM rates
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(inferred by sulfide production; data not shown) and simultaneous, creeping
carbonatization of the biomass. Carbonate mineral formation was likely facilitated by
low phosphate concentrations since phosphate has been shown to inhibit calcite and
aragonite precipitation (Berner et al, 1978; Plant & House, 2002). Carbonate encrusting
the biomass could have had a disruptive effect on the S-AOM microbes through e.g.
diffusive barrier formation or mechanical stress that led to decreased S-AOM rates. We
hypothesize that by continuously liberating P; from e.g. a slow forming Pi-bearing
mineral phase, S-AOM microbes could potentially increase local P; concentration to
protect themselves from carbonatization. Such a microbial driven process could have
interesting implications for sedimentary processes through creation of Pi-rich

microenvironments.

Conclusions

Our results show that S-AOM-associated microbes cycle P; between soluble P;
and particulate P;, latter is likely located extracellularly and Mg-bound. Cycling appears
to be actively performed by the microbes and was only observed when cultures were
“energized” by methane. P; cycling rates were significant since the time of turnover of
free P; was estimated to be 3 - 9 days (depending on P; concentration). We speculate
that P; cycling act as a protection mechanism against excessive carbonatization of the

biomass.
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Supplementary Information
Supplementary Tables and Figures

Supplementary Table S1. Estimation of assimilatory phosphate uptake rates. Sulfate
reduction rate (SRR) was calculated by linear regression of the sulfate concentration. DIC uptake
was estimated from the SRR assuming 1% uptake efficiency related to SRR for a similar S-AOM
enrichment culture (personal communication G. Wegener). DIC uptake rate was converted into
DIP uptake rate using Redfield ratio 106C:1P.

Experiment Sulfate reduction rate DIC uptake assuming 1% DIP uptake assuming
(SRR) (umol I h™) efficiency (umol I h™") Redfield ratio (nmol I' h")

Low phosphate 16.2 0.16 1.5

High phosphate 53.8 0.54 5.1

Supplementary Table S2. Elemental analysis of major trace elements by ICP-OES of low
and high phosphate S-AOM biomass extracted by 1M HClI [in mg (g dry mass)™'].

Ca Mg Fe P S Mn Ni Co
Low phosphate 22.35 0.16 0.45 0.16 1.38 0.16 0.07 0.08
High phosphate 16.22 33.53 4.24 29.29 4.81 1.69 0.51 0.62

HV vac mode det | mode | mag B .:z.p-:nt. R P ——T, 10 R—

1.00 kV | High vacuum | ETD | Custom | 2 X | 20 | 10.0 mm | 82.9 ym ISIS 2BF

Supplementary Figure S3. Crystalline mineral of low phosphate S-AOM incubation. Shown
is a scanning electron microscope image (2500x magnification, 1.00 kV) of crystalline structures,
presumably a carbonate-mineral, present in the low phosphate incubation.
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Chapter 6

Conclusions and Outlook

This thesis provides a deeper understanding on microbial methane oxidation in
freshwater and marine systems by studying several groups of microorganisms that drive
this process in the environment. The study of these microorganisms is important
because they play a key role in controlling emissions of the greenhouse gas methane to
the atmosphere. The novel insights gained into the metabolic potential and activity of
these microorganisms allows us to better understand their role and contribution

towards the biogeochemical cycling of methane and other intersecting element cycles.

Methane oxidation in lakes - physiology and ecology of two contrasting
microbial groups

The majority of methane oxidation occurring in freshwater lakes is commonly
thought to be performed by aerobic methanotrophs, yet little is known about the
importance and physiology of individual groups that mediate this process. In this thesis
we investigated the methane-oxidizing community in Swiss temperate lakes, which are
typical examples of eutrophic stratified lakes found in many temperate regions. We
looked into the ecology, activity and physiology of two contrasting methane-oxidizing
groups with hitherto poorly characterized environmental relevance: the filamentous
Crenothrix bacteria (Chapter 2) and the wondrous NC10 bacteria (Chapter 3).

Thus far, Crenothrix bacteria were infamous for infesting and clogging drinking
water supplies but little was known about their physiology and role in the environment
besides their methanotrophic lifestyle (Stoecker et al, 2006b). In Chapter 2 we show that
Crenothrix bacteria are important players in the methane cycle of freshwater lakes. At
first, this finding was unexpected since Crenothrix bacteria only constituted a minor
fraction of the indigenous methane-oxidizing microbial community, which was mainly
composed of gamma-proteobacterial methane oxidizing bacteria (gamma-MOB). By
measuring the activity of single Crenothrix filaments using nanometer-scale secondary
ion mass spectrometry (nanoSIMS), we showed that the large Crenothrix bacteria overall
oxidized as much methane as the more abundant but smaller gamma-MOB. This

highlights that comparatively rare microorganisms can have a large ecological impact
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on their environment and that abundance is not always a good indicator for
importance.

Using next-generation sequencing and genome binning techniques, we then
reconstructed three Crenothrix genomes (from Lake Zug and a water treatment plant) to
gain a better insight into the metabolic potential of these uncultivated methanotrophs.
Phylogenetic analyses of these genomes showed that the genus Crenothrix appears to
be polyphyletic, harboring several species, and might be more diverse and therefore
more widely distributed than previously assumed. Furthermore we show that Crenothrix

|II

do not possess an “unusual” particulate methane monooxygenase (pMMO, (Stoecker et
al, 2006a)) but rather possess a “classical” gamma-proteobacterial pMMO. This is
important since “unusual” PmoA previously assigned to Crenothrix, which has been
shown to be an ammonium monooxygenase of Nitrospira bacteria (Daims et al, 2015;
van Kessel et al, 2015), serves as an important marker for the detection of these
physiologically different microorganisms in the environment. Additionally, we found
that PmoA of Crenothrix might be affected by lateral gene transfer, which should be
considered in studies that rely on PmoA as marker for Crenothrix.

Although methane oxidation and abundance of gamma-MOB was generally
highest at the oxycline, our study demonstrated that Crenothrix bacteria, which we also
identified in anoxic waters of Lake Zug and Rotsee, were apparently also capable of
methane oxidation under both oxic as well as anoxic and denitrifying conditions.
Genomic analysis further supported that Crenothrix appear to be well adapted to
oxygen-limited conditions as the genome encoded a partial respiratory denitrification
pathway and genes for mixed acid fermentation. Both systems are emerging features of
“aerobic” methanotrophs that might allow these microorganisms to thrive even under
oxygen-limiting conditions (Chistoserdova, 2015; Kalyuzhnaya et al, 2013; Kits et al,
2015; Knief, 2015). However, the role and contribution of denitrifying aerobic
methanotrophs towards N cycling in these systems, which are often eutrophied and
receive high inputs of N, is still poorly understood. Although further studies are needed
to assess and quantify methane-dependent growth of Crenothrix (and other gamma-
MOB) under nitrate-reducing conditions, our data suggests these microorganisms
might be important links between the biogeochemical cycles of methane and nitrogen

in freshwater lakes. Furthermore, it is also important to consider the end-product of
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denitrification as ours and other genomic studies have shown that gamma-MOB
consistently lack nitrous oxide reductase (Dam et al, 2013; Stein & Klotz, 2011), which
might suggest N,O (and possibly other nitrogen oxides) as an end product. N,O has a
substantially higher global warming potential than methane, therefore the role
Crenothrix and other denitrifying gamma-MOB should also be considered in the
environmental control of climate-relevant greenhouse gases other than methane.

In Chapter 3, we returned to Lake Zug in September 2016 to investigate the
methanotrophic community, which was in the previous years mainly composed of
gamma-MOB (Chapter 2, (Oswald et al, 2016a)). To our surprise we found that
planktonic NC10 bacteria, which we did not detect in the previous years, dominated the
microbial community in the deep, anoxic hypolimnion of Lake Zug where NC10
constituted up to 27% of the total microbial community. This was only the second
report of abundant planktonic NC10 in the environment (Kojima et al, 2014). Previously,
NC10 bacteria have been known to be widespread but rare members of the microbial
community and their contribution to methane and nitrogen cycling in freshwater lakes
remained poorly characterized.

The reconstructed genome of the dominant NC10 population represented a
novel species of the genus “Candidatus Methylomirabilis”, which we named “Ca.
Methylomirabilis limnetica”. This name was chosen to emphasize its lacustrine affiliation
since closely related 16S rRNA gene sequences of “Ca. M. limnetica” have been retrieved
from several freshwater lakes and reservoirs across the globe. The genome of “Ca. M.
limnetica” contained all necessary genes for complete methane oxidation (via pMMO)
and incomplete denitrification, including two non-canonical NO reductases that
presumably function as O,-producing nitric oxide dismutases. In comparison to “Ca.
Methylomirabilis oxyfera”, which was isolated from a Dutch ditch sediment
(Raghoebarsing et al, 2006), we found that the genome of “Ca. M. limnetica” showed
evidence possibly related to genome streamlining and adaptation to its planktonic
habitat. A major difference was that “Ca. M. limnetica” encoded genes for gas vesicle
formation as well as less homologs or variants of enzymes with apparently redundant
function (i.e. heme-copper oxidases, cytochrome bc; complexes, methanol
dehydrogenases), which might contribute to a more specialized and possibly

opportunistic lifestyle of “Ca. M. limnetica”. Our transcriptomic data provided further
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evidence that “Ca. M. limnetica” was transcriptionally highly active in situ since up to a
third of all mRNA transcripts from the metatranscriptome of the deeper depths could be
assigned to “Ca. M. limnetica”. Furthermore we found that genes involved in
transcription and translation were well expressed by “Ca. M. limnetica”, which
suggested that the apparent bloom of “Ca. M. limnetica” was still ongoing. Transcription
of functional genes related to methane oxidation and denitrification was in accord with
the proposed lifestyle of NC10 bacteria; in particular our transcriptomic data confirmed
that the presumably O,-producing NO dismutase, which was highly transcribed in situ,
appears to play a key role in the metabolism of by “Ca. M. limnetica”.

Our findings highlight yet another unrecognized major player in methane
cycling of freshwater lakes. In contrast to Crenothrix, which was identified in successive
years, NC10 appears to favor certain but yet unknown conditions that may trigger a
bloom. We speculate that non-steady-state conditions in September 2016 could have
opened a niche for NC10, in particular we noticed that the oxycline was located at about
106 m depth, which was well above the usual depth (140-150 m) that was measured in
previous years (Chapter 2, (Oswald et al, 2016b)). Although the high abundance and
transcriptional activity of “Ca. M. limnetica” suggests that this microorganism could be a
major player in methane and nitrogen cycling, further studies are needed to confirm
and quantify its denitrifying and methane-oxidizing activity in situ. In this context it
would also be important to elucidate the factors that trigger a bloom, which would aid
to predict, measure and quantify their role in the environment. It might very well be
that NC10 bacteria, which produce N, gas (Ettwig et al, 2010; Raghoebarsing et al, 2006),
could temporarily become the main contributors of N-loss and methane oxidation in

aquatic systems.

Marine S-AOM: Unraveling intertwined microorganisms

In Chapters 4 and 5 we continued on the topic of microbial methane oxidation
with a focus on marine anaerobic oxidation of methane coupled to sulfate reduction (S-
AOM). This microbially mediated process is widespread in marine sediments and is a
major factor controlling the flux of methane from sediments to the ocean and
eventually to the atmosphere.

In Chapter 4, the metabolic potential and activity of anaerobic methanotrophic

archaea (ANME) and associated Deltaproteobacteria that mediate S-AOM was
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investigated using a highly active S-AOM enrichment culture. A major goal was to
untangle the physiology and metabolic activity of the individual microorganisms and
use the generated metabolic model as a basis for the discussion an S-AOM mechanism
previously proposed by Milucka et al. (2012). We focused on this particular model
because the same S-AOM enrichment culture was used in both studies. This was an
important aspect of our study since it is unknown if a single S-AOM mechanism is
applicable to all ANME and DSS groups that mediate S-AOM.

First, we successfully reconstructed two genomes of ANME-2c and SEEP-SRB1,
which to our knowledge represent the first genomes of their respective genus or even
family. Our data confirmed that ANME-2c oxidize methane through a full reverse
methanogenesis pathway. We also showed that ANME-2c encode and express a
membrane-bound electron transport chain likely coupled to the methanogenesis
pathway, as proposed previously (McGlynn et al, 2015). However, the role of soluble
heterodisulfide reductases (Hdr) should be considered in this context. Although soluble
Hdr of ANME have been discussed before (Arshad et al, 2015; Hallam et al, 2004;
Meyerdierks et al, 2010; Meyerdierks et al, 2005), our study highlights that soluble Hdr,
which were well transcribed and also expressed, are likely important puzzle pieces of
the electron flow in ANME archaea and might be a key to understanding the
mechanism of S-AOM. In particular, the possibility of flavin-based electron bifurcation is
an intriguing aspect of soluble Hdr that thus far has been largely excluded from
metabolic models of ANME. In any case, further biochemical studies are needed to
confirm physiological role and activity of soluble Hdr in ANME-2c.

Another open question is the role of sulfur metabolism-associated genes - two
sulfite reductases in particular — of ANME-2c. An assimilatory or detoxifying role, which
has been described for the F420-dependent sulfite reductase in methanogens (Johnson
& Mukhopadhyay, 2005) (Johnson & Mukhopadhyay, 2008), does not appear directly
obvious. Like methanogens, ANME-2c likely directly assimilate sulfide as source of sulfur.
Furthermore, formation of substantial amounts of sulfite, which was not added to the
enrichment culture, seems unlikely. Hence we speculate that these sulfite reductases,
which were transcribed, might be involved in a putative archaeal sulfate reduction
pathway of ANME-2 that was proposed previously (Milucka et al, 2012). However,

several open questions still remain: What could the end product of this putative
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archaeal sulfate reduction pathway be? In relation to this, would these sulfite reductases
be directly involved in dissimilatory reduction or would they fulfill auxiliary roles (e.g.
removal of by-products)? And, finally, how and by what enzyme is sulfate reduced in the
first place? Here, we speculate that electrons with sufficiently low redox potential could
in principle be generated via flavin-based electron bifurcation. Although our functional
genomics approach laid a solid foundation for future investigations, many of the
aforementioned questions are difficult to answer without additional confirmation by
physiological experiments.

Another aspect we investigated through our functional genomics study was the
metabolic potential and activity S-AOM-associated SEEP-SRB1 bacteria. A major finding
was that SEEP-SRB1 encoded, transcribed and expressed all genes of the canonical
sulfate reduction pathway in addition to associated, membrane-bound complexes.
However, this finding by itself was not necessarily indicative that SEEP-SRB1 have a
sulfate-reducing, syntrophic life style. The same enzymes have also been suggested to
mediate sulfur disproportionation and even sulfide oxidation in other
Deltaproteobacteria (Finster, 2008; Frederiksen & Finster, 2003; Thorup et al, 2017);
furthermore, physiological experiments by Milucka et al. (2012) have shown that DSS
are capable of polysulfide (mostly likely disulfide) disproportionation. Although this
suggests that SEEP-SRB1 use these enzymes for disproportionation, sulfate reduction by
SEEP-SRB1 cannot be excluded based on our data. Also, it is still unclear how polysulfide
would be initially converted to sulfite, which has been shown to be a crucial
intermediate in other disproportionating bacteria (Finster, 2008). A key protein in this
process could be the highly transcribed sulfur carrier protein DsrC, which has been
shown to form a trisulfide bridge that includes a zero-valent sulfur atom bound to two
cysteine residues and has been shown to be a key intermediate in reduction of sulfite to
sulfide (Santos et al, 2015). In this respect it would be interesting to investigate the
possibility of an interaction of DsrC (and the associated DsrMKJOP complex) with
polysulfides, which might represent an entry mechanism of zero-valent sulfur during
sulfur disproportionation (Thorup et al, 2017).

In the recent years, several studies have suggested direct interspecies electron
transfer (DIET) as an alternative S-AOM mechanism to the one proposed by Milucka et

al. (2012). Although electron transfer via conductive pili has been suggested to occur in

172



Chapter 6 - Conclusions and Outlook

thermophilic S-AOM consortia (Wegener et al, 2015), our functional genomics data did
not support transcription and expression of pili genes by SEEP-SRB1. Conversely, multi-
heme cytochromes ¢ (MHC) of ANME-2c and SEEP-SRB1, some of which we found to be
well transcribed, might be more suitable candidates and have been previously
proposed to mediate electron transfer in S-AOM consortia (McGlynn et al, 2015;
Skennerton et al, 2017). However, a major challenge regarding the involvement of
MHCs in electron transfer is that they are a diverse group of proteins and are often
functionally poorly characterized (Kletzin et al, 2015). Therefore, presence of MHC genes
in our and other S-AOM-associated microorganisms might serve as indirect evidence for
DIET, but further studies are needed to directly prove conductance of electrons. This
could be tested for example by directly measuring the conductance of individual S-
AOM aggregates or by establishing an artificial consortia that mediate electron transfer
solely via MHCs, which then could be modified and tested in various ways (e.g.
differential gene transcription or heterologous gene expression).

Another important puzzle piece to understand the physiology and possible
interaction between the two partners could be the membrane-bound complexes Qrc
and Tmc of SEEP-SRB1. Those complexes, which were well transcribed and expressed,
have been shown to serve as entry points for electrons derived from periplasmic
reactions (classically periplasmic hydrogenases or formate dehydrogenases, (Grein et al,
2013)) and would therefore be candidates to accept exogenous electrons (possibly
transferred via DIET from ANME). However, an involvement in polysulfide
disproportionation might also be possible (as discussed in Chapter 4) and further
studies are needed to clarify the source of electrons accepted by these complexes. An
approach to further test and verify different hypotheses surrounding the S-AOM
mechanism could involve analysis of differentially transcribed genes of both
microorganisms in incubations grown under standard S-AOM and under
disproportionating conditions without methane. Also, obtaining an ANME-free culture
of SEEP-SRB1 (e.g. through incubation with polysulfide and without methane) would be
immensely useful for further physiological and biochemical characterization. The
opposite (i.e. enriching for ANME) might also be possible by using an artificial electron

acceptors, which has been shown to decouple methane oxidation from sulfate
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reduction in S-AOM microcosm experiments (Scheller et al, 2016), although it first has to
be tested if this is also possible in our S-AOM enrichment culture.

In Chapter 5 we investigated a direct involvement of S-AOM-mediating
microorganisms in the sedimentary phosphorus (P) cycle, which was hinted towards in
two studies: Milucka et al. (2012) reported Fe- and P-rich particles in DSS bacteria of an
S-AOM enrichment culture and ii) the discovery of unusual authigenesis of iron (Fe) and
P-bearing minerals within S-AOM dominated sediment horizons (Jilbert & Slomp, 2013).
Prompted by these findings we investigated whether S-AOM-mediating
microorganisms may directly influence the P cycle in an S-AOM enrichment culture by
combining *P radioactive tracer incubations, single cell imaging and elemental analysis
of the S-AOM biomass. Interestingly, we found that the S-AOM-associated
microorganisms actively shuffled P; between a soluble and a particulate pool, which was
likely an epicellular magnesium-bound phosphate mineral. In incubations at lower P;
concentrations, we observed the same effect but additionally observed substantial
carbonatization of the S-AOM biomass, which coincided with decreased S-AOM activity.
These findings demonstrate that S-AOM-associated microorganisms appear to utilize P;
beyond assimilatory uptake, however, further experiments are needed to show if the
enigmatic shuffling of soluble and particulate P; pools also occurs in the environment
and how it might affect the sedimentary P cycle. To further test this and to expand
preliminary work with sediment from the Black Sea, S-AOM-active sediments could be
incubated under in situ conditions with 33P radiotracer and the partitioning of the
radiotracer into different sedimentary P reservoirs could be traced by sequential
extraction using the SEDEX procedure (Ruttenberg, 1992). Additionally, this could be
combined with microautoradiography-fluorescence in situ hybridization (Lee et al, 1999)
to link uptake and storage of P, possibly as intracellular P-bearing mineral, to individual
cells with known phylogenetic identity.

In conclusion, this thesis provides an intimate look into the inner workings of
several methane-oxidizing microorganisms that inhabit marine as well as lacustrine
systems. The use of functional metagenomics allowed us to not only study their
metabolic potential, but also to predict their metabolic activity that underlies their
ecophysiology. In combination with other techniques, we put the spotlight on two

unrecognized freshwater methanotrophs and elucidate their metabolism and role in
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the environment. Furthermore, we provide first insights into the genomic blueprint and
metabolic activity of marine microorganisms that mediate the sulfate-dependent
anaerobic oxidation of methane. Although many open questions remain, the results
and data presented in this thesis further serve as foundation for future studies to
hypothesize, test and provide answers to remaining as well as yet unasked questions

pertaining to these small but mighty beasts.

Directions for future research

This thesis has illuminated the metabolic potential and activity of several
methane-oxidizing microorganisms. It goes without saying that there remains much to
be discovered and the more one begins to understand, the more questions suddenly
surface. Hereinafter, some directions for future research are suggested and sketched

out.

1. Anaerobic “aerobic” methanotrophs and the lacustrine nitrogen cycle

In Chapter 2, we highlighted that Crenothrix bacteria might also oxidize methane
and thrive under oxygen-limited conditions by respiratory denitrification. Although this
feature is an emerging topic in methanotroph research (Kits et al, 2015), still little is
known how important and widespread denitrification coupled to methane oxidation by
“aerobic” methanotrophs is. Yet, gamma-proteobacterial methanotrophs are
considered the most important methane-oxidizing group in freshwater lakes and these
habitats have conditions that might favor denitrifiers due to high nitrogen loads.
Understanding the contribution of these methanotrophs towards overall denitrification
in these systems would provide valuable insights into the lacustrine N cycle, and, thus
help to interpret the role of methanotrophs in controlling climate-relevant greenhouse

gases (i.e. methane and nitrous oxide).

2. Role of NC10 in the environment

As discussed in Chapter 3, the contribution of NC10 towards environmental
methane and nitrogen cycling still needs to verified and quantified. To do this, we have
to first understand the conditions and factors that lead to the bloom of NC10 and
subsequently determine their activity and overall contribution. This might be best

studied in a high resolution (both temporally and spatially) multi-year sampling
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campaign on Lake Zug and other stratified methane-rich lakes. This might provide
much needed answers to understand how frequently NC10 blooms occur, which greatly
affects our view on the environmental relevance of NC10. Furthermore, our study also
begs the question if NC10 bacteria, which have been identified at low abundance in
marine systems (Padilla et al, 2016), might show similar blooming behavior in marine

environments similar to Lake Zug (i.e. the Black Sea).

3. Functional microbial communities surrounding freshwater
methanotrophs

Certain methylotrophs and other microbial taxa (e.g. Flavobacterium) are often
found to co-occur with methanotrophs in freshwater environments (Beck et al, 2013;
Chistoserdova, 2015), which was also observed in our study of Lake Zug and Rotsee but
was not elaborated on in this thesis. Although it is tempting to speculate that these so-
called satellite communities feed off of by-products produced by methanotrophs (e.g.
methanol), there is little direct evidence for such a cross-feeding. Furthermore, it is not
known if the interaction is solely based on C1 compound(s) or if other substances
potentially produced by methanotrophs (e.g. nitrogen oxides) also might play a role. By
investigating the interaction of methanotrophs and the associated functional
communities we might gain a more holistic view on the process of methane oxidation

and the associated microorganisms in freshwater systems.

4, The mechanism of S-AOM in light of phylogenetic diversity

Despite the large phylogenetic differences between different groups of ANME
archaea and associated DSS bacteria, it is in many cases still assumed that the same
mechanism underlies S-AOM in all groups. However, studies of “Ca. Methanoperedens
nitroreducens”, which belongs to a subgroup of ANME-2, have shown that these
archaea are functionally diverse and can couple methane oxidation to both iron as well
as nitrate reduction (Ettwig et al, 2016; Haroon et al, 2013). Considering that for example
ANME-2c are more closely related to “Ca. M. nitroreducens” than to ANME-1, it might
just be that different groups of S-AOM-associated microorganisms have evolved
separate mechanisms for apparently the same process. By expanding our functional

genomics approach combined with standardized physiological experiments to yet
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poorly characterized S-AOM-associated groups, it might be possible to illuminate and

finally resolve this age-old question.
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