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Summary 
Freshwater and marine environments are hotspots of methane cycling. Vast 

amounts of methane, a potent greenhouse gas, are produced predominantly in the 

sediments of these environments but very little eventually escapes to the atmosphere 

due to the activity of methane-oxidizing microorganisms. These microorganisms are 

pivotal in regulating methane emissions from the oceans and freshwater systems and 

their study therefore transcends scientific curiosity and is of global relevance to society 

as a whole. Despite their importance, the knowledge about these microorganisms is 

restricted to cultured isolates and little is known about the physiology of 

environmentally-relevant uncultured species. The aim of this study was to use culture-

independent functional metagenomics in combination with other physiological 

experiments to study the individual metabolic potential and activity that underlie the 

ecophysiology of several uncultured methane-oxidizing microorganisms. 

The first study (Chapter 2) shows that uncultivated gamma-proteobacteria 

related to Crenothrix are major methane consumers in two stratified Swiss lakes (Lake 

Zug and Rotsee). Although Crenothrix bacteria have been infamous for infestation of 

drinking water supplies for more than a century, little was known about their role in 

methane cycling in the environment. This study provides first insights into the 

metabolic potential and activity of Crenothrix and demonstrates their methane-

dependent growth under aerobic as well as under oxygen-deficient and denitrifying 

conditions. Reconstruction of Crenothrix genomes allowed us to clarify the phylogenetic 

assignment of their methane monooxygenase, an important classification marker for 

methanotrophs, and revealed the metabolic potential for nitrate respiration to nitric or 

even nitrous oxide. Overall these results suggest that Crenothrix can act as relevant 

biological sink for methane in stratified lakes. 

Chapter 3 focuses on methanotrophs of the candidate phylum NC10 in Lake Zug. 

These bacteria form a relevant link between the methane and nitrogen cycle but 

generally constitute only a minor part of the methanotrophic communities. We show 

that NC10 bacteria, which couple methane oxidation to a unique O2-producing 

denitrification pathway, dominated the microbial community in the anoxic hypolimnion 

of Lake Zug, comprising almost a third of the total bacterial population. This is the 

hitherto highest reported abundance from any environment. We describe the 
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physiology and the habitat of this new species of the genus “Candidatus 

Methylomirabilis”. The reconstructed genome of “Ca. Methylomirabilis limnetica” 

confirmed its methane-oxidizing, denitrifying potential and revealed features, such as 

formation of gas vesicles, previously not described for this genus. We could show that 

“Ca. M. limnetica” was transcriptionally highly active in situ but the full biogeochemical 

impact of NC10 bacteria has yet to be quantified.  

In Chapters 4 and 5, the physiology and metabolic potential of an archaeal-

bacterial consortium involved in the sulfate-dependent anaerobic oxidation of methane 

(S-AOM) was investigated using a highly active S-AOM enrichment culture. In contrast 

to freshwater environments, this strictly anaerobic process is the dominant methane 

sink in marine systems and controls the flux of methane to the atmosphere.  

In Chapter 4 unravels the individual metabolic potential and activity of ANME-2c 

archaea and SEEP-SRB1 bacteria using functional metagenomics in order to elucidate 

the division of labor and interactions between these intertwined microorganisms. The 

reconstructed genomes in conjunction with transcriptomic and proteomic data were 

used to gather support for current hypotheses concerning the physiology of the two 

microorganisms. We confirmed that ANME-2c encode, transcribe and express a 

complete reverse methanogenesis pathway for methane oxidation and propose several 

transcribed candidate genes, in particular two sulfite reductases, which might be 

involved in a previously proposed archaeal dissimilatory sulfate reduction pathway. 

Moreover we highlight the possibility of flavin-based electron bifurcation by soluble 

heterodisulfide reductase as an important but overlooked aspect in the electron 

transport chain of ANME. We confirm that SEEP-SRB1 express a complete canonical 

sulfate reduction pathway, which arguably could also be involved in sulfur 

disproportionation, and we also investigate the genomic potential for electron transfer 

between ANME-2c and SEEP-SRB1.  

Finally, Chapter 5 investigates a potential involvement of an S-AOM-associated 

archaeal-bacterial consortium in the cycling of inorganic phosphate. We demonstrate 

that the S-AOM microorganisms appear to utilize phosphate beyond assimilatory 

uptake and observed an enigmatic shuffling of phosphate between soluble and 

particulate fractions that was only active when methane was oxidized. These laboratory 

results highlight an intriguing yet unresolved involvement of phosphate in S-AOM that 

remains to be verified in situ. 



iii 

Zusammenfassung 
Süsswassersysteme und Ozeane sind durch intensive Methanzyklen geprägt. 

Obwohl grosse Mengen an Methan in den Sedimenten produziert werden, entweicht 

jedoch nur sehr wenig von diesem potenten Treibhausgas in die Atmosphäre. 

Hauptverantwortlich dafür sind Methan-oxidierende Mikroorganismen, welche eine 

entscheidende Rolle in der Regulierung von Methanemissionen spielen. Die Studie 

dieser Mikroorganismen erstreckt sich somit über die wissenschaftliche Neugier hinaus 

und ist für die Gesellschaft von grosser Bedeutung. Trotz ihrer Wichtigkeit ist das Wissen 

über diese Mikroorganismen auf kultivierte Isolate beschränkt und es ist wenig über die 

Physiologie von unkultivierten aber umweltrelevanten Spezies bekannt. Ziel dieser 

Studie war es, das individuelle Stoffwechselpotential und die Aktivität dieser 

unkultivierten Mikroorganismen mittels kulturunabhängiger, funktioneller 

Metagenomik in Kombination mit physiologischen Experimenten zu untersuchen. 

In der ersten Studie (Kapitel 2) wird gezeigt, dass unkultivierte Crenothrix-

Bakterien, welche den Gamma-Proteobakterien angehören, zu den wichtigsten Methan-

Konsumenten in zwei geschichteten Schweizer Seen (Zug und Rotsee) zählen. Obwohl 

Crenothrix-Bakterien seit mehr als einem Jahrhundert für den Befall von 

Trinkwasserversorgungssystemen bekannt sind, ist ihre Rolle im ökologischen 

Methanzyklus weitestgehend nicht verstanden. Diese Studie liefert auch erste Einblicke 

in das metabolische Potenzial und die Aktivität von Crenothrix und hebt ihr 

methanabhängiges Wachstum unter aeroben sowie unter sauerstoffarmen und 

denitrifizierenden Bedingungen hervor. Die Rekonstruktion von Crenothrix-Genomen 

ermöglichte es erstmals, die phylogenetische Zuordnung der Methanmonooxygenase, 

einem wichtigen phylogenetischen Marker für methanotrophe Bakterien, aufzuklären 

und zeigte das metabolische Potenzial für Nitratatmung zu Stickstoffmonoxid oder 

Distickstoffmonoxid auf. Insgesamt deuten diese Ergebnisse darauf hin, dass Crenothrix-

Bakterien als wichtige biologische Senke für Methan in geschichteten Seen fungieren. 

In Kapitel 3 wurden Bakterien des Kandidaten-Phylum NC10 im Zugersee 

untersucht. Diese Bakterien sind aufgrund ihrer Fähigkeit, Methan- und Stickstoffzyklen 

zu verknüpfen, von Bedeutung, jedoch bilden NC10-Bakterien in der Regel nur einen 

kleinen Teil der methanotrophen Gemeinschaft. Wir zeigen, dass NC10-Bakterien, 

welche Methan-Oxidation mit einem einzigartigen O2-produzierenden Denitrifikations-

Stoffwechselweg verbinden, die mikrobielle Gemeinschaft im anoxischen Hypolimnion 

des Zugersees dominierten und fast ein Drittel der gesamten Bakterienpopulation 

umfassten. Dies ist die bislang höchste Abundanz von NC10-Bakterien, die je in der 

Umwelt beschrieben wurde und erlaubte die erste Charakterisierung der Physiologie 

und dem Habitat dieser neuen Spezies der Gattung "Candidatus Methylomirabilis". Das 
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rekonstruierte Genom von "Ca. Methylomirabilis limnetica" bestätigte das Potential zur 

Methanoxidation und Denitrifikation und zeigte für diese Gattung neuartige Merkmale, 

wie zum Beispiel Gasvesikelgene, welche wahrscheinlich eine Adaption an das 

planktonische Habitat darstellen. Obwohl die hohe in situ Aktivität von "Ca. M. 

limnetica" transkriptionell nachgewiesen werden konnte, muss die biogeochemische 

Bedeutung der NC10-Bakterien erst noch quantifiziert werden. 

In den Kapiteln 4 und 5 wurde das physiologische und metabolische Potential 

eines Archaeen-Bakterien-Konsortiums in einer hochaktiven Anreicherungskultur 

untersucht, welches an der sulfatabhängigen anaeroben Oxidation von Methan (S-

AOM) beteiligt ist. Im Gegensatz zu Süsswassersystemen ist dieser streng anaerobe 

Prozess die dominierende Methan-Senke in marinen Systemen und kontrolliert den 

Fluss von Methan in die Atmosphäre. 

In Kapitel 4 entschlüsseln wir das individuelle metabolische Potential und die 

Aktivität von ANME-2c-Archaeen und SEEP-SRB1-Bakterien mit funktionellen 

metagenomischen Methoden, um die metabolische Arbeitsteilung und die 

Wechselwirkung zwischen diesen Mikroorganismen zu untersuchen. Die 

rekonstruierten Genome und transkriptomischen sowie proteomischen Daten wurden 

verwendet, um aktuelle Hypothesen über die Physiologie der beiden Mikroorganismen 

zu bestätigten. Unsere Untersuchungen zeigten, dass ANME-2c einen vollständigen 

Reverse-Methanogenese-Stoffwechselweg zur Methanoxidation exprimierten. Zudem 

wurden mehrere transkribierte Kandidatengene identifiziert, insbesondere zwei Sulfit-

Reduktasen, die an dem zuvor vorgeschlagenen archaealen, dissimilatorischen 

Stoffwechselweg zur Sulfatreduktion beteiligt sein könnten. Darüber hinaus stellen wir 

die Möglichkeit einer Flavin-basierten Elektronen-Bifurkation durch lösliche 

Heterodisulfid-Reduktase als wichtiger und zuvor übersehener Aspekt in der 

Elektronentransportkette von ANME heraus. Wir zeigen, dass SEEP-SRB1-Bakterien einen 

vollständigen Stoffwechselweg zur Sulfatreduktion exprimieren, der auch an Schwefel-

Disproportionierung beteiligt sein könnte. Darüber hinaus wurde das genomische 

Potential für den Elektronentransfer zwischen ANME-2c und SEEP-SRB1 untersucht.  

Schließlich wurde in Kapitel 5 eine mögliche Beteiligung eines S-AOM-

assoziierten Konsortiums am Zyklus von anorganischem Phosphat betrachtet. Die S-

AOM-Mikroorganismen scheinen Phosphat jenseits des assimilatorischen Bedarfs zu 

nutzen, da eine rätselhafte Umschichtung von Phosphate zwischen löslicher und 

partikulärer Phase beobachtet wurde. Diese Umschichtungen waren nur aktiv, wenn 

Methan oxidiert wurde. Diese Laborergebnisse zeigen eine faszinierende, aber noch 

ungelöste Beteiligung von Phosphat am S-AOM-Prozess, die aber in situ noch verifiziert 

werden muss. 
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Chapter 1 

Introduction 

“[…] life is driven by nothing else but electrons, by the energy given off by these 
electrons while cascading down from the high level to which they have been boosted up by 
photons.” 

– Albert Szent-Györgyi 

 

Anthropogenic greenhouse gases such as carbon dioxide (CO2), methane (CH4) 

and nitrous oxide (N2O) are recognized to be the main drivers of global warming 

observed since the beginning of the industrial Era (Ciais et al, 2014). The 

Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report predicts a 

grim future: without additional mitigation efforts, such as substantial reduction in 

anthropogenic greenhouse gas emission, “warming by the end of the 21st century will 

lead to high to very high risk of severe, widespread and irreversible impacts globally” 

(Pachauri et al, 2014). Methane, a very potent greenhouse gas, is present in earth’s 

atmosphere in trace amounts (<2 parts per million). Albeit its low atmospheric 

concentration, methane is the second most impactful anthropogenic greenhouse gas 

and atmospheric methane concentrations have steadily increased since the mid-20th 

century (Pachauri et al, 2014). Emission and consumption of methane are tightly linked 

to the activity of microorganisms. They are not only the main producers but also 

consumers of methane in the environment. By studying these microorganisms we are 

able to better understand the methane cycle and the factors controlling it – a 

prerequisite to mitigate methane emissions in the future. 

1 The aquatic methane cycle – sources and sinks 

It is estimated that around 70% of the global methane production (~550 Tg CH4 

year-1 (Kirschke et al, 2013)) is produced by methanogenic microorganisms (Conrad, 

2009), which makes them the largest source of methane globally. Non-biological 

sources of methane (i.e. thermogenic or pyrogenic origin) constitute around 30% of the 

global methane production (Ciais et al, 2014; Neef et al, 2010).  

Biologically, methane is formed under anaerobic conditions from organic matter 

(OM) by a consortium of fermentative primary degraders and methanogenic archaea. 
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Among other anaerobic environments, aquatic sediments are hotspots of 

methanogenesis as they provide an oxygen-free environment continuously supplied 

with OM. Primary producers fix carbon into OM by harnessing the sun’s energy near the 

surface. As the OM sinks through the water column it is degraded by heterotrophic 

microorganisms and some of it reaches the bottom where it enters the sediment. In the 

sediment, oxygen is quickly depleted by microbial respiration and mineralization of the 

OM continues under anoxic conditions with alternative electron acceptors (i.e. nitrate or 

sulfate). Additionally, OM is degraded by fermentative primary degraders to simple 

molecules (e.g. acetate, CO2, H2) in deeper layers of the sediment. Here, methane is 

finally produced by methanogenic archaea that feed off the fermentation products. 

Important environments acting as methane sources generally receive high fluxes of 

organic matter (e.g. wetlands, swamps or sediments), but environments heavily 

controlled by human activities such as rice paddies, ruminant animals, landfills or 

anaerobic digestion plants are also major sources of methane (Conrad, 2009).  

Methane that reaches the atmosphere is relatively short-lived and undergoes 

photochemical oxidation by OH radicals, which accounts for >80% of all atmospheric 

sinks (Ciais et al, 2014; Conrad, 2009). However, more than half of the globally produced 

methane never reaches the atmosphere. It is consumed close to the source by 

microorganisms which are the single most important process stopping methane from 

reaching the atmosphere (Reeburgh, 2003). Consumption before emission is especially 

pronounced in marine environments; oceans contribute relatively little to the global 

methane budget despite significant gross methane production (Reeburgh, 2007). 

In marine sediments, the vast majority of methane is readily oxidized under 

anaerobic conditions by the microbially-mediated process of anaerobic oxidation of 

methane (AOM) with sulfate as electron acceptor (S-AOM, (Hinrichs & Boetius, 2002; 

Reeburgh, 2007)). Quantitatively, sulfate-dependent AOM is the main sink of methane 

produced in the ocean and is responsible for removing an equivalent of 7 – 25% of the 

globally produced methane (Knittel & Boetius, 2009). Methane that escapes the 

sediment (mainly at cold seeps or hydrothermal vents) is oxidized by aerobic 

methanotrophs which further reduce the amount of methane that eventually reaches 

the atmosphere (Boetius & Wenzhöfer, 2013; Valentine, 2011).  
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In contrast to marine environments, microbially-mediated aerobic oxidation of 

methane is the primary route of methane removal (30 – 99% of produced methane) in 

most freshwater systems (Bastviken et al, 2008). Anaerobic oxidation of methane also 

plays a significant role in selected lakes (Crowe et al, 2011; Schubert et al, 2011), but its 

contribution to total methane oxidation in freshwater systems is currently poorly 

constrained (Borrel et al, 2011).  

2 Microbial methane oxidation 

Methane oxidation is performed by specialized microorganisms, so-called 

methanotrophs, which make a living off redox processes involving the oxidation of 

methane. Methanotrophs are ubiquitous in many oxic and anoxic environments where 

methane is present, ranging from subseafloor sediments to acidic hotsprings or 

hypersaline soda lakes. Methanotrophs can be broadly classified into two groups: 

aerobic methanotrophs that rely on oxygen for methane oxidation and anaerobic 

methanotrophs that use a range of alternative electron acceptors (e.g. sulfate or nitrate) 

to oxidize methane.  

2.1 Aerobic methane oxidation 

Major habitats of aerobic methanotrophs are freshwater systems (i.e. lakes, rivers 

or wetlands). In these environments, the highest oxidation rates and abundance of 

aerobic methanotrophs can generally be found at interfaces of anoxic and oxic zones 

such as the sediment surface or at the oxycline in stratified lakes (Hanson & Hanson, 

1996).  

In marine ecosystems, aerobic methanotrophs are abundant at the surface 

sediments characterized by high methane fluxes – such as methane seeps, gas hydrates 

or hydrothermal vent areas – but have also been detected in open ocean waters 

(Bowman, 2014). The habitat of aerobic methanotrophs also extends to extreme 

environments such as alkaline or acidic ecosystems and hot springs (Bodrossy et al, 

1997; Pol et al, 2007; Sorokin et al, 2000). Most methanotrophic strains can grow over a 

range of oxygen concentrations, including microaerophilic conditions, and can readily 

survive under anoxic conditions for prolonged durations (Roslev & King, 1995).  
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2.1.1 Aerobic Methanotrophs 

A common feature shared by aerobic methane-oxidizing microorganisms 

described to date is that they rely on molecular oxygen for methane oxidation and that 

they belong to the domain Bacteria. They are a subgroup of methylotrophs and 

specialize in the utilization of methane (and sometimes methanol) for anabolism and 

catabolism.  

Historically, aerobic methane-oxidizing bacteria (MOB) have been classified into 

type I and type II methanotrophs based on cellular morphology, ultrastructure, 

phylogeny and biochemical traits (Hanson & Hanson, 1996; Whittenbury & Dalton, 

1981). However, it has become clear in recent years that this broad classification scheme 

could not accommodate newly discovered MOB without introducing various 

exceptions. The scheme is still used to describe gamma (type I)- and 

alphaproteobacterial (type II) MOB but has been mostly replaced by taxonomic 

classification based on 16S ribosomal RNA (rRNA) sequence (Knief, 2015; Op den Camp 

et al, 2009). Most known MOB belong to Alpha- and Gammaproteobacteria, more 

specifically alpha-proteobacterial families Methylocystaceae and Beijerinckiaceae as well 

as gamma-proteobacterial families Methylococcaceae and Methylothermaceae (Bowman, 

2014; Hirayama et al, 2014). Recently, MOB have also been discovered in the phylum 

Verrucomicrobia (Dunfield et al, 2007; Islam et al, 2008; Pol et al, 2007). 

Most methanotrophs exhibit coccoid or rod-like morphology – a peculiar 

exception are uncultivated filamentous microorganisms which belong to genera 

Crenothrix and Clonothrix (Cohn, 1870; Roze, 1896). Despite being known to infest and 

block drinking water systems for decades, it was only recently that their ability to 

perform methane oxidation was only recently discovered (Stoecker et al, 2006; Vigliotta 

et al, 2007). Both genera form long sheathed filaments and apparently feature distinct 

complex life cycles involving propagation through septation and release of individual 

coccoid cells (Bowman, 2014; Völker et al, 1977). Besides their morphology and 

methane-oxidizing capacity, little is known about the ecology and physiology of these 

uncultivated methanotrophs. 

2.1.2 Methane oxidation, C1 metabolism and respiratory chain 
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Aerobic methanotrophs employ a specialized enzyme machinery to oxidize 

methane gradually to methanol, formaldehyde, formate and finally to CO2 (Figure 1). 

The first step of this pathway, the oxidation of methane to methanol, is catalyzed by two 

separate methane monooxygenases (MMO) that are hallmark enzymes of aerobic 

methanotrophy and are present in all aerobic MOB described so far (Hanson & Hanson, 

1996; Trotsenko & Murrell, 2008). Two distinct forms of MMO have been described: 

soluble MMO (sMMO) and particulate MMO (pMMO) (Anthony, 1986; Hakemian & 

Rosenzweig, 2007). The particulate, membrane-bound form is found in nearly all MOB 

(except genus Methylocella) while the cytoplasmic, soluble form is only found in a 

subset of MOB (Bowman, 2014; Dumont & Murrell, 2005). Particulate MMO are related to 

ammonia monooxygenases (AMO) which oxidize ammonia as their primary substrate 

but are also capable of oxidizing methane (Holmes et al, 1995; Hyman et al, 1988). 

Intriguingly, the filamentous gammaproteobacterial MOB Crenothrix polyspora has been 

reported to possess an ‘unusual’ pMMO closely related to AMO (Stoecker et al, 2006). 

However, these findings have recently been questioned. Studies suggested that the 

‘unusual’ Crenothrix pMMO was likely misassigned and represented a phylogenetically 

divergent AMO of ammonia-oxidizing Nitrospira bacteria instead (Daims et al, 2015; van 

Kessel et al, 2015).  

Methanol from methane oxidation by MMOs is further oxidized to formaldehyde 

by methanol dehydrogenase (MDH). Two MDH homologs have been described for 

MOB: calcium-dependent MxaF-type MDHs (Anthony, 2004) and lanthanide-dependent 

XoxF MDHs (Keltjens et al, 2014). Traditionally, MxaF-type MDHs were assumed to be 

the major functional MDHs in MOB. Though, XoxF homologs are encoded by many MOB 

and are likely the predominant MDHs in the environment. (Chistoserdova, 2016; Pol et 

al, 2014). The product of methanol oxidation, formaldehyde, is oxidized to formate via 

tetrahydromethanopterin (H4MPT)- or tetrahydrofolate (H4F)-linked C1 transfer pathway 

(Chistoserdova et al, 2009). Finally, formate is converted to CO2 by formate 

dehydrogenases, which conclude the aerobic methane oxidation pathway (Hanson & 

Hanson, 1996).  

  



Chapte

6 

Figure 1
proteob
of meth
(pMMO,
(MDH). 
tetrahyd
formate,
for biom
pathway

M

1). Gam

during 

monop

Alphap

combin

Chistos

Benson

Camp e

A

The ele

reaction

(DiSpiri

cytochr

Subseq

cytochr

dehydro

donor f

M

oxygen

r 1 - Introdu

1. Enzymat
bacterial me
hane to met
 sMMO) follo

Further 
dromethano
, which is ox

mass is clas
y in type I m

Most MOB 

mmaproteob

methane o

hosphate 

roteobacte

nes carbon 

erdova, 20

–Bassham 

et al, 2009). 

Aerobic MO

ctron dono

n, is though

to et al, 20

romes while

uently, red

rome c vi

ogenase, c

for terminal

Methane ox

 (Murrell et

uction 

ic pathway
ethanotrop
thanol is ca
owed by me
oxidation 
pterin (H4M
xidized to th

ssically deriv
ethanotroph

derive carb

bacterial (ty

oxidation, a

(RuMP) 

erial type II

from CO2 a

011). A thir

cycle; CBB 

OB couple 

or for meth

ht to be eit

004). Perip

e cytosolic 

ducing eq

ia membra

cytochrome

l cytochrom

xidation via

t al, 2000), 

ys of aerobi
hs (adapted

arried out b
ethanol oxid

of forma
MPT) or tetr
he final prod
ved from fo
hs or Serine 

bon for biom

ype I) MOB

as the sole 

cycle 

I MOB use

and formal

rd, purely 

cycle) is us

methane o

ane oxidat

her NADH 

lasmic met

oxidation 

quivalents

ane-bound

e bc1 comp

me c oxidase

a MMO by a

which is ei

ic methane 
d from Hans

by particulat
dation to for
ldehyde is
rahydrofolat
duct, CO2, by
ormaldehyde
cycle in type

mass forma

B use forma

carbon so

(Anthony, 

e the serin

ldehyde fo

autotroph

ed by verru

oxidation to

ion to met

(sMMO) or 

thanol oxid

of formate

from NAD

d enzymes

plex). Final

es that redu

aerobic MO

ither provid

oxidation 
son and Ha
te or solubl
maldehyde 
s mediate
te (H4F)-link
y formate d
e via Ribulo
e II methano

ation from 

aldehyde, w

urce for as

1982; 

e cycle for

r biomass f

ic carbon 

ucomicrobi

o the reduc

hanol, whic

a membra

dation by M

 and forma

DH are tr

s of the 

ly, cytochr

uce O2.  

OB directly r

ded extern

and carbon
nson, 1996
e methane 
by methano
d by en

ked C1 tran
ehydrogena
ose monoph
otrophs. 

methane o

which is tra

ssimilation 

Chistoser

r carbon a

formation 

fixation pa

al methano

ction of mo

ch is an ene

ne-integral

MDH is cou

aldehyde ge

ansferred 

respiratory

ome c ser

relies direct

ally or prod

 

n assimilati
6). Initial oxid

monooxyg
ol dehydrog
nzymes of 
nsfer pathw
ase (FDH). Ca
hosphate (R

oxidation (F

nsiently fo

via the rib

rdova, 2

assimilation

(Anthony, 

athway (Ca

otrophs (Op

olecular oxy

ergy-depen

l quinol (pM

upled to c

enerates N

to peripla

y chain (N

rves as ele

tly on mole

duced inter

 

on of 
dation 
enase 
enase 

the 
ay to 
arbon 

RuMP) 

igure 

rmed 

ulose 

2011). 

 that 

1982; 

alvin–

p den 

ygen. 

ndent 

MMO) 

c-type 

ADH. 

asmic 

NADH 

ctron 

ecular 

rnally 



Chapter 1 - Introduction 

 
7 

by NC10 bacteria via NO dismutation (Ettwig et al, 2012). However, aerobic MOB can be 

abundant and active in oxygen-deficient environments (e.g. (Oswald et al, 2016; 

Tavormina et al, 2013)). Genomic studies have revealed that many gamma-

proteobacterial “aerobic” methanotrophs encode partial denitrification pathways (often 

terminating N2O) potentially enabling survival under oxygen-limited conditions 

(Kalyuzhnaya et al, 2015; Kits et al, 2015a; Stein & Klotz, 2011). Furthermore, it has been 

shown that the gamma-proteobacterial methanotroph Methylomonas denitrificans is 

capable of coupling denitrification to methane oxidation under hypoxic conditions (Kits 

et al, 2015b). “Aerobic” MOB might be able to utilize both oxygen and nitrogen oxides 

as terminal electron acceptors (Chen & Strous, 2013), which could allow these 

microorganisms to conserve O2 (for methane oxidation by MMO) under oxygen-

deficient conditions. However, the physiology and activity of these denitrifying 

“aerobic” MOB is still poorly characterized but might be important in environmental 

methane and nitrogen cycling. 
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3 Anaerobic oxidation of methane 

Anaerobic oxidation of methane (AOM) is a microbially-mediated process that 

couples methane oxidation to the reduction of electron acceptors other than oxygen. 

Known electron acceptors for anaerobic oxidation of methane include nitrate, nitrite, 

metal ions (i.e. iron or manganese) and sulfate.  

3.1 Sulfate-dependent anaerobic oxidation of methane 

First indications for sulfate-dependent AOM arose from geochemical studies of 

marine sediments that showed a concurrent decrease of sulfate and methane in anoxic, 

distinct sediment layers, so-called sulfate-methane transition zone (SMTZ) (Barnes & 

Goldberg, 1976; Martens & Berner, 1974; Reeburgh, 1976). Subsequent studies indicated 

that the methane oxidation and sulfate reduction in sediments was stoichiometrically 

coupled (Eq. 1) (Iversen & Jørgensen, 1985).  

 

CH4 + SO4
2− → HCO3

− + HS− + H2O  ΔG°´=−16.6 kJ mol−1 (Eq. 1) 

 

Based on radiotracer and inhibition experiments it was suggested that S-AOM 

could be mediated by methanogenic archaea and sulfate-reducing bacteria despite the 

low Gibbs free energy change of the reaction (Alperin & Reeburgh, 1985; Hoehler et al, 

1994; Zehnder & Brock, 1979). Indirect evidence for the involvement of anaerobic 

methanotrophic archaea (ANME) came from archaeal lipid biomarkers that were 

imprinted with the isotopic 13C signature of methane and 16S rRNA gene sequences of a 

novel archaeal group related to methanogens (Hinrichs et al, 1999). Using fluorescence 

in situ hybridization (FISH), tightly packed consortia of ANME and SRB could be 

visualized (Boetius et al, 2000) and were subsequently discovered to be highly 

abundant in various methane-rich anoxic sediments and other environments such as 

the Black Sea (Michaelis et al, 2002), mud volcanoes (Lösekann et al, 2007) as well as 

cold and hot seepage sites (Holler et al, 2011; Omoregie et al, 2009). 

In marine sediments, the most widespread niche of S-AOM is the sulfate-

methane transition zone (SMTZ) that is typically located from one to several meters 

below the sediment surface (Jørgensen & Kasten, 2006). The products of S-AOM, 

bicarbonate and hydrogen sulfide, can reach high concentrations within and around 
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the SMTZ leading to the formation of authigenic mineral phases (i.e. Mg- and Ca-

carbonates) and alter redox chemistry of the sediment (Moore et al, 2004). For example, 

particulate Fe(III) oxo-hydroxides readily undergo reductive dissolution together with 

hydrogen sulfide within the SMTZ and release inorganic phosphate which was 

adsorbed to Fe(III) oxo-hydroxides. This mechanism can lead to increased porewater 

concentrations of soluble Fe(II) and phosphate in the SMTZ and likely controls 

authigenesis of phosphate minerals such as vivianite present in and below the SMTZ of 

anoxic basins and deep-sea fans (Jilbert & Slomp, 2013; März et al, 2008).  

3.1.1 Microorganisms involved in S-AOM 

The microorganisms that mediate S-AOM are related to anaerobic 

methanotrophic archaea (ANME) and associated Deltaproteobacteria, which often form 

tightly clustered aggregates (Figure 2). ANME are strict anaerobes and are 

phylogenetically related to methanogenic archaea of the orders Methanosarcinales and 

Methanomicrobiales. Based on 16S rRNA sequence analysis, anaerobic methanotrophic 

archaea (ANME) are phylogenetically subdivided into three main polyphyletic groups 

(ANME-1, ANME-2 and ANME-3). These groups are separated by considerably large 

phylogenetic distances which suggest that they belong to different families or even 

orders (Knittel & Boetius, 2009). The ANME-1 group is distantly related to 

Methanomicrobiales while ANME-2 and ANME-3 represent lineages within 

Methanosarcinales (Hinrichs et al, 1999; Knittel et al, 2005; Niemann et al, 2006). The co-

occurring bacterial partners are related to delta-proteobacterial 

Desulfococcus/Desulfosarcina cluster (DSS) or Desulfobulbus (DBB). ANME-1 and ANME-2 

groups are frequently associated with SEEP-SRB1 and SEEP-SRB2 subgroups of the DSS 

cluster whereas ANME-3 are often found together with Desulfobulbus (DBB) (Kleindienst 

et al, 2012; Knittel et al, 2003; Knittel et al, 2005; Niemann et al, 2006). Thermophilic 

members of ANME-1 associate with bacteria of the delta-proteobacterial HotSeep-1 

cluster which form a separate group unrelated to DSS or DBB (Holler et al, 2011; 

Krukenberg et al, 2016). Additionally, ANME-1 are also consistently found as single cells 

or as monospecific aggregates which are  apparently not associated with a bacterial 

partner (Knittel et al, 2005; Orphan et al, 2002).  
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In the same vein, a commensalistic relationship has been proposed that suggests 

methane oxidation and sulfate reduction by ANME archaea. But the sulfate-reducing 

partner would feed off of unknown carbon intermediates or products excreted by 

ANME instead of zero-valent sulfur (Thauer & Shima, 2008; Widdel et al, 2007). Thus far, 

experimental evidence for this model is mostly circumstantial (i.e. reports of 

monospecific archaeal aggregates) and is not supported by 13C isotopic labeling studies 

(Kellermann et al, 2012a; Wegener et al, 2008). 

3.1.3 Physiology of S-AOM-associated microorganisms 

S-AOM-associated microorganisms are often considered to be living at the 

thermodynamic limit of life which is estimated to be –15 kJ mol-1 (Caldwell et al, 2008). 

Indeed, the Gibbs free energy change, which apparently has to be shared by two 

separate microorganisms, is estimated to yield only –22 to –35 kJ (mol CH4)-1 under in 

situ conditions (–16.6. kJ mol-1 under standard conditions) (Caldwell et al, 2008). Due to 

the low energy yield, the growth of AOM consortia is extremely slow with estimated 

doubling times of 2 to 6 months (Holler et al, 2011; Milucka et al, 2012; Nauhaus et al, 

2007). Owing to the slow growth, enrichment of AOM consortia take years (and have 

been ongoing since more than a decade) and so far no axenic culture of an S-AOM 

consortium has been obtained. Physiological studies of S-AOM are also hindered by the 

fact that, with the exception of the bacterial TAOM partner “Ca. Desulfofervidus auxilii”, 

no S-AOM microbe could be successfully separated. 

3.1.3.1 Methane oxidation and carbon metabolism 

Labeling studies using 14C methane with methanogenic archaea suggested that 

the enzymatic pathway of methanogenesis in principle is reversible, albeit only 

marginally (Harder, 1997; Moran et al, 2005; Zehnder & Brock, 1979). Consequently it 

was proposed that ANME oxidize methane by reverse methanogenesis and indeed, 

genes encoding for most or all enzymes of the methanogenesis pathway are present 

and expressed in all methane-oxidizing ANME species investigated thus far (Arshad et 

al, 2015; Hallam et al, 2004; Haroon et al, 2013; Meyerdierks et al, 2010; Wang et al, 

2014). Much knowledge of this pathway and its reversibility has been drawn from 

previous extensive biochemical studies of methanogenesis (Thauer, 1998; Thauer, 

2011).  
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Reverse methanogenesis is a multistep enzymatic pathway during which 

methane is completely oxidized to CO2 (Figure 5). The first step in this process is 

catalyzed by methyl-coenzyme M reductase (Mcr) – a hallmark enzyme of anaerobic 

methanotrophs, similar to MMO of aerobic methanotrophs. In S-AOM-active microbial 

mats from the Black Sea, Mcr accounted for up to 7% of total extractable protein (Krüger 

et al, 2003). Methane is activated by Mcr and bound as methyl group to coenzyme M 

(CoM-SH) forming methyl-S-CoM; this reaction is coupled to the reduction of the 

disulfide of coenzyme M and coenzyme B (CoB-SS-CoM). The methyl group of methyl-S-

CoM is subsequently transferred to tetrahydromethanopterin (H4MPT) by the 

membrane-bound methyl-H4MPT:CoM methyltransferase (Mtr). CoM-SH produced 

during this step is oxidized with CoB-SH by heterodisulfide reductase (Hdr) forming 

CoB-SS-CoM, which again can be used by Mcr. Methyl-H4MPT is subsequently oxidized 

gradually to methylene-, methenyl-, and formyl-H4MPT by enzymes methylene-H4MPT 

reductase (Mer), methylene-H4MPT dehydrogenase (Mtd) and methenyl-H4MPT 

cyclohydrolase (Mch), respectively. Following the transfer of the formyl group from 

H4MPT to methanofuran (MFR) by formyl-MFR: H4MPT formyltransferase (Ftr), CO2 is 

released in the last step of reverse methanogenesis from formyl-MFR by the formyl-MFR 

dehydrogenase (Fmd). Reducing equivalents derived from the oxidation of methane 

during reverse methanogenesis (equivalent to 8 e–) are transferred to three different 

electron carriers (coenzyme F420, CoM-SH/CoB-SH and ferredoxin; Figure 5). With the 

exception of ANME-1 (Meyerdierks et al, 2010), which apparently lacks a Mer homolog, 

genomes of all ANME members sequenced to date encode the full reverse 

methanogenesis pathway.  
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(Milucka et al, 2012). Disproportionation of intermediate oxidation state sulfur 

compounds (i.e. elemental sulfur, polysulfides, sulfite or thiosulfate) is performed by 

members of Desulfocapsa, Desulfobulbus, Desulfovibrio and Desulfofustis that belong to 

Deltaproteobacteria (Finster, 2008). It has been shown for Desulfocapsa sulfexigens that 

disproportionation of intermediate sulfur compounds is apparently mediated by the 

same enzymes that mediate the canonical SR pathway (Finster et al, 2013; Frederiksen & 

Finster, 2003). Apr and Sat are thought to operate in reverse and produce sulfate by 

reverse electron flow to Dsr that reduces sulfite to sulfide. Hence it is equally plausible 

that the SR enzymes detected in DSS cells are involved in sulfur disproportionation as 

opposed to sulfate reduction (Milucka et al, 2012). Yet, little is known how the various 

intermediate oxidation state sulfur compounds are disproportionated by enzymes of 

the SR pathway but it has been shown that sulfite plays a crucial intermediate 

(Frederiksen & Finster, 2003). Molybdopterin oxidoreductases and rhodanese-related 

sulfurtransferases have also been suggested as potential candidates for 

disproportionation of thiosulfate and elemental sulfur (Finster et al, 2013).  

There is currently no evidence that ANME possess enzymes or genes of the 

canonical dissimilatory SR pathway (Milucka et al, 2013; Wang et al, 2014). Archaeal 

sulfate reduction so far has only been observed in few genera of sulfate-reducing 

thermophilic archaea that use the canonical SR pathway which was likely obtained from 

an ancient bacterial donor (Klein et al, 2001; Klenk et al, 1997). However, a nearly 

complete gene set encoding for assimilatory sulfate reduction has been identified in an 

ANME-1 draft genome (Meyerdierks et al, 2010). A dissimilatory role of this pathway 

cannot be excluded, especially since ANME likely rely on sulfide as sulfur source. 

Additionally, genes encoding for a F420-dependent sulfite reductase (Fsr) were identified 

on a metagenomic contig assigned to ANME (Hallam et al, 2004). Fsr is found in many 

genomes of methanogens where it was shown to be involved in sulfite detoxification 

and sulfur assimilation from sulfite (Johnson & Mukhopadhyay, 2005; Johnson & 

Mukhopadhyay, 2008). Moreover, Meyerdierks and colleagues (2005, 2010) identified 

several expressed, non-canonical heterodisulfide reductase (Hdr) gene clusters missing 

CoM-SH/CoB-SH-interacting subunits with potential relevance to sulfate reduction in 

ANME.  

3.1.3.3 C-type cytochromes 
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3.2 Anaerobic oxidation of methane coupled to denitrification 

Anaerobic methane oxidation coupled to denitrification is carried out by two 

metabolically distinct groups of microorganisms: “Ca. Methylomirabilis oxyfera” of the 

NC10 candidate phylum and “Ca. Methanoperedens nitroreducens” of the ANME group. 

Nitrite-dependent AOM is carried out by bacteria of the candidate phylum NC10 

(Raghoebarsing et al, 2006). The main habitat of NC10 bacteria appears to be anoxic 

freshwater systems (Deutzmann & Schink, 2011; He et al, 2016; Kojima et al, 2012) 

although NC10 have also been identified in marine oxygen minimum zones (Padilla et 

al, 2016). The first described member of NC10, “Ca. Methylomirabilis oxyfera”, has been 

shown to utilize a typical aerobic methane oxidation pathway for methane oxidation 

that includes the oxygen-dependent MMO enzyme (Ettwig et al, 2010a). In contrast 

most MOB, NC10 bacteria related to “Ca. Methylomirabilis oxyfera” are autotrophs. They 

do not derive biomass carbon from methane and fix CO2 via the autotrophic Calvin–

Benson–Bassham cycle (Ettwig et al, 2010a). “Ca. M. oxyfera” has been shown to couple 

methane oxidation to nitrite reduction (to N2 gas) via a unique O2-producing 

denitrification pathway. It is believed that molecular oxygen is formed by NO 

dismutation to N2 and O2, which is apparently catalyzed by an unusual membrane-

bound nitric oxide reductase that is speculated to work as NO dismutase (Ettwig et al, 

2010b; Ettwig et al, 2012). Intracellular oxygen production via denitrification is believed 

to be the defining feature of NC10 that allows these bacteria to perform methane 

oxidation by pMMO under anaerobic conditions. 

Nitrate-dependent AOM is carried out by the archaeon “Ca. Methanoperedens 

nitroreducens” (sometimes referred to as ANME-2d), which belongs to the lineage of 

ANME-2 that also harbors S-AOM-associated ANME groups (Haroon et al, 2013). “Ca. M. 

nitroreducens” is similar to S-AOM-associated ANME as it also utilized the reverse 

methanogenesis pathway for methane oxidation. However, “Ca. M. nitroreducens” 

performs AOM coupled to nitrate reduction (to nitrite) by itself as it possesses a nitrate 

reductase (Arshad et al, 2015; Haroon et al, 2013). Moreover, it has been recently shown 

that “Ca. M. nitroreducens” is also capable of metal ion-dependent AOM (i.e. Fe3+, Mn4+) 

(Ettwig et al, 2016). 
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In addition to these microorganisms, denitrification by aerobic MOB is an 

emerging topic in methanotroph research and has been introduced in the respective 

section that covers aerobic methanotrophs. Methane oxidation by MMO in these 

microorganisms apparently still relies on exogenous molecular oxygen, which makes 

them distinctly different from NC10 and “Ca. Methanoperedens nitroreducens”. 
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Aims and Outline 

 
The importance of methane-oxidizing microorganisms in limiting emissions of 

methane, a potent greenhouse gas, from aquatic environments cannot be overstated. 

One could even argue that it is hard to imagine how different Earth’s climate and 

ecosystems would be without these methane-devouring microorganisms. Despite their 

importance, relatively little is known about their individual physiology since many 

methane-oxidizing microorganisms are not available for study in pure culture. The aim 

of this thesis was to gain a better understanding of the physiology and ecology of 

several groups of methane-oxidizing microorganisms found in freshwater and marine 

systems. Throughout this thesis, genome-centric functional metagenomics was the 

main tool used to study these microorganisms, which allowed us to infer and in some 

cases unravel their physiology in the absence of pure cultures. Furthermore, we 

combined this approach with a variety of other analytical and experimental techniques 

to learn more about their habitat and ecophysiology. The results and data generated 

during this thesis will also serve as foundation for future research to expand and build 

upon. This will allow us to better understand and predict the role methane-oxidizing 

microorganisms play in a changing environment increasingly affected by human 

activity. 

In Chapters 2 and 3 of this thesis, we investigate the methanotrophic community 

in two Swiss stratified lakes (Lake Zug and Rotsee). These eutrophied lakes are 

seasonally or permanently stratified and harbor a diverse community of proteobacterial 

aerobic methanotrophs (Oswald et al, 2016). The role of Crenothrix bacteria in the 

methane cycle in these freshwater lakes is explored in Chapter 2. These filamentous 

bacteria have been known as contaminants of drinking water supplies for more than a 

century; however, their ecological relevance has remained unclear. Using stable-isotope 

labeling incubations in combination with bulk and single-cell imaging mass 

spectrometry as well as metagenomics, we highlight several aspects pertaining to their 

physiology and their role in the environment. In Chapter 3, we returned to Lake Zug in a 

different year to investigate the methanotrophic community and discovered highly 

abundant methane-oxidizing bacteria of the candidate phylum NC10. These 

methanotrophic bacteria, which were not detected in previous years ((Oswald et al, 
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2016), Chapter 2), have been described as widespread but rare members of the 

methanotrophic bacterial community in lakes. We highlight their metabolic and 

functional activity using metagenomics and metatranscriptomic techniques and 

suggest a niche for NC10 in the lacustrine methane and nitrogen cycle. 

In contrast to freshwater environments, sulfate-dependent anaerobic oxidation 

of methane (S-AOM) is the predominant process in marine environments that controls 

the flux of methane from sediments. This microbial process is mediated by a consortium 

of methanotrophic archaea and associated bacteria. Despite several decades of 

research, the individual physiology and relationship between these two different 

microorganisms has only been partially elucidated. In Chapter 4, we describe an 

genome-centric functional metagenomics approach to obtain the genomic blueprint of 

S-AOM-associated microorganisms from an enrichment culture. By using gene 

transcription profiles and detection of enzymes by metaproteomics, we reconstructed 

important metabolic pathways of both microorganisms that underlie their functional 

activity. Based on this, we evaluated different hypotheses regarding the physiology and 

interaction of microorganisms involved in S-AOM. 

Previous research has suggested that S-AOM-associated microorganisms not 

only play a role in sedimentary biogeochemical cycles of carbon and sulfur, but that 

their influence might also extends to the cycles of phosphorus and iron. In Chapter 5, 

we trace the fate of inorganic phosphate in a highly active AOM enrichment culture 

incubated with radiolabeled, inorganic phosphate (33P-phosphate). Additionally, we 

used scanning transmission electron microscopy coupled to energy dispersive x-ray 

analysis (STEM-EDX) to visualize and analyze electron-dense particles within AOM-

associated bacteria and use the combined results to speculate on the underlying 

mechanism that might cause the observed cycling of inorganic phosphate. 
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Crenothrix are major methane consumers
in stratified lakes
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Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth’s natural
protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a
substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria
related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of
drinking water supplies since 1870, but their role in the environmental methane removal has remained
unclear. While oxidizing methane, these organisms were assigned an ‘unusual’ methane mono-
oxygenase (MMO), which was only distantly related to ‘classical’ MMO of gamma-proteobacterial
methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-
proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass
spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as
under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of
oxygen as well as for the reduction of nitrate to N2O. The observed abundance and planktonic growth
of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in
stratified lakes and should be considered in the context of environmental removal of methane.
The ISME Journal (2017) 11, 2124–2140; doi:10.1038/ismej.2017.77; published online 6 June 2017

Introduction

Freshwater lakes represent large natural sources of
methane and contribute more to methane emissions
than the oceans despite their comparably smaller
area (Bastviken et al., 2004). Highest rates of
methane removal are usually measured at the
oxyclines, either in the water column or in the
sediment. Lake Rotsee and Lake Zug in Central
Switzerland are typical examples of temperate lake
systems with methane fluxes across the oxycline of
13 ±3mmol and 10± 3mmol m− 2 d− 1, respectively
(Oswald et al., 2015, 2016). Both lakes are stratified,
with methane-rich hypolimnia, but whereas the
shallow Lake Rotsee overturns annually, the deep
Lake Zug remains stratified throughout the year.

In both lakes, the vast majority of the upward-
diffusing methane is removed at the base of the
oxycline at in situ oxygen concentrations in the low
micromolar range (Oswald et al., 2015, 2016).
Methane oxidation at the oxycline was shown to be
coupled to the reduction of residual or in situ-
produced oxygen, but there were also indications for
methane-oxidizing activity under oxygen-deficient
conditions (Oswald et al., 2015, 2016).

Abundant gamma-proteobacterial methane-oxidiz-
ing bacteria (gamma-MOB) were shown to be
involved in methane removal in both lakes (Oswald
et al., 2015, 2016). Gamma-MOB are considered
aerobes requiring oxygen for methane activation,
even though some cultured representatives can
perform methane oxidation under denitrifying con-
ditions (Kits et al., 2015a, b). Environmentally
relevant representatives of gamma-MOB in lakes
and other freshwater habitats belong to the ‘classical’
genera of Methylobacter, Methylomonas, Methylo-
sarcina and Methylomicrobium (Boschker et al.,
1998; Bodelier et al., 2013; Oshkin et al., 2015),
and all possess particulate methane monooxygenase
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(pMMO) as the key methane-oxidizing enzyme
(Bowman, 2005). In Lake Rotsee and Lake Zug,
unicellular gamma-MOB represented a stable com-
munity at the oxycline. The bacteria showed rapid
growth on methane as evidenced by the increase in
cell abundances and the uptake of 13C-methane into
their biomass (Oswald et al., 2015, 2016).

In these studies, gamma-MOB were identified by
fluorescence in situ hybridization using the 16S
rRNA-targeted oligonucleotide probes Mgamma84
+705. Interestingly however, these probes do not
bind to members of a potentially important subgroup
of gamma-proteobacterial MOB, the putative
family Crenothrichaceae. Contrary to ‘classical’
MOB, these gamma-MOB are multicellular and
filamentous. So far, only two of these bacteria
have been documented in literature, Crenothrix
polyspora and Clonothrix fusca, and both were
retrieved from groundwater (Stoecker et al., 2006;
Vigliotta et al., 2007). Sporadically, environ-
mental occurrence of Crenothrix is reported in
literature based on retrieved 16S rRNA or pmoA
sequences (Dörr et al., 2010; Drewniak et al.,
2012), but its role in methane cycling has remained
unclear.

The metabolism of Crenothrix has been a matter of
debate since its first description as ‘Brunnenfaden’
(‘a well thread’; Cohn, 1870). Initially, Crenothrix/
Clonothrix filaments were considered to belong to
the ‘iron bacteria’ due to the presence of metal
particles in their sheaths (Roze, 1896; Jackson, 1902;
Molisch, 1910). This belief was challenged by
studies that failed to observe iron encrustation in
Crenothrix/Clonothrix filaments (Kolk, 1938; Wolfe,
1960), and the later discovery of membrane invagi-
nations has prompted suggestions for a methano-
trophic lifestyle (Völker et al., 1977). Eventually, the
capacity to oxidize methane was experimentally
confirmed on filaments retrieved from man-
made habitats (Stoecker et al., 2006; Vigliotta et al.,
2007). Interestingly, C. polyspora was reported to
possess an ‘unusual’ pMMO, which was only
distantly related to ‘classical’ MMO of gamma-
proteobacterial methanotrophs (Stoecker et al.,
2006), and has now been recognized to cluster
together with the ammonium monooxygenases of
completely nitrifying ‘comammox’ bacteria (Daims
et al., 2015; van Kessel et al., 2015).

Here we investigated the occurrence and involve-
ment of these filamentous bacteria in methane
oxidation at and below the oxyclines of Lake Rotsee
and Lake Zug. We performed stable isotope labeling
experiments followed by single-cell imaging to
explore the role of these microorganisms in environ-
mental methane cycling, and metagenomic analyses
to investigate their metabolic potential with respect
to aerobic and anaerobic respiration. For compar-
ison, we also performed metagenomic analysis
of a sample from Wolfenbüttel waterworks sand
filter reportedly containing high proportions of
C. polyspora.

Materials and methods

Geochemical profiling in Lake Rotsee
Profiling was done in October 2014 at the deepest
point (16m depth, 47°04.259‘N, 8°18.989‘E).
A multi-parameter probe was used to measure
photosynthetically active radiation (PAR; LI-193
Spherical Underwater Quantum Sensor, LI-COR,
Lincoln, NE, USA) along with conductivity, turbid-
ity, depth (pressure), temperature and pH (XRX 620,
RBR, Ottawa, ON, Canada). Dissolved oxygen was
simultaneously monitored online with normal and
trace micro-optodes (types PSt1 and TOS7, Presens,
Regensburg, Germany) with detection limits of 125
and 20 nM, respectively, and a response time of 7 s
(Kirf et al., 2014).

Water samples for dissolved methane analysis
were retrieved from distinct depths with a Niskin
bottle. Serum bottles (120ml) were filled completely
without bubbles or headspace through a gas-tight
outlet tubing allowing water to overflow. Solid
copper chloride [Cu(I)Cl] was immediately added
in excess to the water samples and the bottles were
crimped. Before analysis, a 30ml headspace was set
with N2 and after overnight equilibration methane
concentrations were measured in the headspace with
a gas chromatograph (GC; Agilent 6890 N, Agilent
Technologies, Santa Clara, CA, USA) equipped with
a Carboxen 1010 column (30m×0.53mm, Supelco,
Bellefonte, PA, USA) and a flame ionization detector.
Methane concentrations in the water phase were
back-calculated according to (Wiesenburg and
Guinasso, 1979). Stable carbon isotopes of methane
were determined in the same headspace by isotope
ratio mass spectrometry with a trace gas instrument
(T/GAS PRE CON, Micromass UK Ltd., Wilmslow,
UK) coupled to a mass spectrometer (GV Instru-
ments, Manchester, UK; Isoprime, Stockport, UK).
Isotopic ratios are given in δ-notation relative to the
Vienna Pee Dee Belemnite reference standard.

Oxygen, PAR, methane concentration and methane
isotope profiles for the sampling campaign in October
2014 are shown in Supplementary Figure 1. Geo-
chemical profiles from other Lake Rotsee campaigns
are reported in Oswald et al. (2015).

Lake Rotsee methane oxidation rates
Methane oxidation rates were measured in incuba-
tions set up in October 2014, with water from the 7m
depth (oxycline), and from 8m depth (with no
detectable oxygen). Water was collected with a
Niskin bottle and filled into sterile 1 l Schott bottles
without a headspace, closed with butyl stoppers and
kept cold and dark until further handling. In the
laboratory, 120ml was distributed into 160ml serum
bottles in an anoxic (N2-containing) glove box
(Iner Tec, Grenchen, Switzerland), closed with butyl
stoppers and crimped. Each incubation was supple-
mented with 13C-labeled methane (99 at%, Campro
Scientific, Berlin, Germany) and 12C-methane to
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reach 2 bar overpressure, resulting in ~ 1.8mmol l− 1

CH4 in the water phase and 50 at% 13C labeling
percentage. For comparison, in situ methane con-
centrations at 7 and 8m depth were ca. 15 and
35 μmol l− 1 (Supplementary Figure 1). Duplicate
bottles were incubated at 6 °C under dark and light
conditions along with a control (sterile filtered lake
water). Methane oxidation was monitored during an
incubation period of 7 days as production of 13CO2.
Anoxically withdrawn water samples (2 ml) were
transferred into 6ml Exetainers (Labco, Lampeter,
UK), fixed with 200 μl zinc chloride (50% w/v) and
acidified with concentrated H3PO4 (100 μl). Isotopic
ratios of CO2 were determined in the headspace with
a preparation system (MultiFlow, Isoprime) coupled
to an isotope ratio mass spectrometry (Micromass,
Isoprime). Subsequently, methane oxidation rates
were calculated as described previously (Oswald
et al., 2015). These rates are shown in Supplementary
Figure 1. As these incubations were unamended
(apart from methane addition), aerobic methane
oxidation in these incubations was presumably sus-
tained solely by oxygenic photosynthesis (Milucka
et al., 2015; Oswald et al., 2015). At selected time
points, sub-samples were also taken for catalyzed
reporter deposition fluorescence in situ hybridiza-
tion (CARD-FISH) analysis. These data are shown in
Supplementary Figure 3. Nanometer-scale secondary
ion mass spectrometry (NanoSIMS) and metagenome
analyses reported for Lake Rotsee (shown in Figure 1
and Supplementary Figure 2) were performed on
samples collected on a previous sampling campaign
in August 2013 (rates and other data from this
campaign are reported in Oswald et al. (2015)).

Lake Zug nitrate addition experiment
The sampling campaign was carried out in October
2013. Water samples from the anoxic 160m depth
were collected with a Niskin bottle, filled into sterile
Schott bottles, closed with a stopper and stored as
described above. The water was distributed into sterile
160ml serum bottles (a 120ml) in an N2 glove box
(Mecaplex, Grenchen, Switzerland) as described in
detail in Oswald et al. (2016). 13C-labeled methane (99
at%, Campro Scientific) was supplied at a ~20%
labeling percentage. A 2 bar methane overpressure
was set using 12C-methane. One set of duplicate bottles
received no further addition and served as a control
and one set of duplicate bottles was amended with
15NO3

− (from a sterile anoxic 100mmol l−1 stock
solution) to a final concentration of 50μmol l−1. Bottles
were incubated in the dark under in situ temperatures
(~5 °C) for 16 days. At regular intervals, bottles were
subsampled for 13CO2 measurements in order to
determine methane oxidation rates. For this, anoxically
withdrawn water samples (2ml) were transferred into
6ml Exetainers, fixed with zinc chloride and acidified
with concentrated H3PO4. Isotopic ratios of CO2 were
determined in the headspace using a Finnigan Gas-
Bench II attached to an isotope ratio mass spectrometer

(IRMS; Finnigan Delta Plus, Thermo Fisher Scientific,
Waltham, MA, USA). Subsequently, methane oxida-
tion rates were calculated as described previously
(Oswald et al., 2015). At selected time points, sub-
samples were also taken for CARD-FISH and nano-
SIMS analyses. An early time point (T= 2d) was
analyzed by nanoSIMS to obtain data for the calcula-
tion of methane uptake rates reported in Table 1. FISH
and nanoSIMS images from Lake Zug nitrate incuba-
tion (Figure 1; Supplementary Figure 6) originate from
the last time point of the incubation (T=16 d). The
sample for metagenome analysis (sample Z3) was also
taken at this time point. Additionally, an in situ water
sample from 160m was also used for metagenome
analysis (sample Z1). During this sampling campaign,
no incubations with added oxygen were performed.

O2-supplemented incubations referred to in this
manuscript were only performed during a sampling
campaign in June 2014 and are described in detail in
Oswald et al. (2016), where also the corresponding
geochemical profiles and methane oxidation rates
from relevant depths and incubations are reported.
Briefly, O2-supplemented incubations were set up as
described above, with the difference that instead of
nitrate, sterile air was injected to the incubations to
reach final O2 concentrations of ca. 80 μmol l− 1 (‘low
O2’) and ca. 200 μmol l− 1 (‘high O2’), respectively.
Incubations were subsampled at regular intervals for
methane oxidation rates, CARD-FISH and nanoSIMS
analyses. The CARD-FISH and nanoSIMS analyses
shown in Figure 1 were performed on samples taken
from 160m incubation after T=2 d. The sample for
metagenome analysis was taken at the last time point
of the ‘low O2’ 160m incubation (T=11 d).

Catalyzed reporter deposition fluorescence in situ
hybridization
Formaldehyde- (2% (v/v) final concentration) fixed
water samples were incubated for 30min at room
temperature before being filtered onto polycarbonate
GTTP filters (0.2μm pore size; Merck Millipore,
Darmstadt, Germany). For nanoSIMS analysis, samples
were filtered onto Au or Au/Pd-coated GTTP filters
(0.2 μm pore size). Permeabilization with lysozyme,
peroxidase inactivation, hybridization with specific
oligonucleotide probes labeled with horseradish per-
oxidase in combination with tyramide signal amplifi-
cation (Oregon Green 488) and DAPI counter staining
was performed as described previously (Pernthaler
et al., 2002). An overview of probes used (Biomers,
Ulm, Germany) is included in Supplementary Table 2.
For cell counts and biovolume determinations, one
filter was analyzed for each sample. Hybridized
filaments (using probe Mgamma669) were enumerated
in randomly selected fields of view with a confocal
laser scanning microscope (SP5 DMI 6000, Leica,
Wetzlar, Germany). For biovolume calculations, length
and width of415 filaments in410 fields of view were
then measured directly in confocal micrographs using
LAS AF Lite software (Leica). Values for the cell counts
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and methane uptake rates of unicellular gamma-MOB
cells were taken from Oswald et al. (2015) and Oswald
et al. (2016).

Nanometer-scale secondary ion mass spectrometry
Areas of interest containing positive CARD-FISH
hybridization signals were marked with a laser
micro-dissection microscope (DM 6000, Leica Micro-
systems, Mannheim, Germany). Laser-marked areas
were analyzed by nanoSIMS (NanoSIMS 50 l, Cameca,
Paris, France) at the MPI Bremen as described
previously. For Lake Rotsee (light incubation, 9m
depth), 12 and 26 filaments were analyzed in five
fields of view after 2 and 7 days of incubation,

respectively. For the Lake Zug low and high O2

addition experiments, 19 and 13 filaments were
measured in 9 and 7 fields of view, respectively, after
2 days of incubation. For the Lake Zug nitrate addition
incubation, 6 filaments were measured in 5 fields of
view after 2 days of incubation and 7 filaments were
measured in 5 fields of view after 16 days of
incubation. Obtained secondary ion images were drift
corrected, accumulated and processed with Look@Na-
noSIMS (Polerecky et al., 2012).

Biovolume and carbon assimilation rates
The biovolume of individual Crenothrix filaments
was calculated from their measured length and width

Figure 1 Methane-dependent growth of Crenothrix in Lake Rotsee and Lake Zug. (a) Crenothrix in the Lake Rotsee oxic incubation
visualized by CARD-FISH (green; counterstained by DAPI in blue) with a specific probe Creno445 (Stoecker et al., 2006). A small coccoid
cell targeted by the probe (marked by the asterisk) might represent a gonidial cell, which Crenothrix is reportedly capable of producing
(Völker et al., 1977). (b) The corresponding 13C/12C nanoSIMS image shows homogeneous 13C enrichment throughout the cell filament.
The small coccoid cell is also significantly enriched, albeit less. (c) The corresponding 32S/12C nanoSIMS image showing distribution of
organic material on the filter. (d) Putative Crenothrix filaments in the Lake Zug oxic incubation visualized by DAPI (blue) and CARD-FISH
(green) with probe Mgamma669. (e) Corresponding 13C/12C and (f) 32S/12C nanoSIMS images. Note the fragmented nature of the Crenothrix
filaments and the attached small (unidentified) bacteria. (g) Putative Crenothrix filaments in the Lake Zug anoxic incubation visualized by
DAPI (blue) and CARD-FISH (green) with probe Mgamma669. (h) Corresponding 13C/12C and (i) 32S/12C nanoSIMS images.
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by assuming a cylindrical shape. The length and the
width of filaments were determined from the CARD-
FISH images that were used for cell counting. Due to
the varying length of filaments, an average biovolume
of Crenothrix was calculated and is reported in
Table 1. The ‘average biovolume determined from
CARD FISH’ was calculated as an average of
biovolumes of individual filaments hybridized with
a Crenothrix-targeting probe (Mgamma669 or
Creno445) at the start of the respective incubation
and is reported with the s.d. ‘Total’ Crenothrix
biovolume reported in Table 1 and Supplementary
Figure 4 was obtained by multiplying the average
filament biovolume by the number of filaments per ml
of water. For comparison, the biovolume of unicel-
lular gamma-MOB cells was calculated from total cell
counts and by assuming an average spherical cellular
diameter of 2 μm.

Cellular 13C at % were calculated from 13C/12C
values of individual ROIs (regions of interest).
Regions of interests were drawn to outline single
Crenothrix cells (for example, Figures 1h and i),
whole filaments (Figures 1e and f) or parts of
filaments (Figures 1b and c). Both the background
(cell-free polycarbonate filter in the same field of
view) and the 13C enrichment of all cells in every field
of view was evaluated and compared for all measure-
ments. Rates of methane carbon uptake (fmol
C cellavg−1 d−1) of Crenothrix and unicellular gamma-
MOB were calculated from the 13C excess of the
measured cells using a conversion factor of 6.4 fmol
C μm−3 reported in Musat et al. (2008). These uptake
rates were corrected for the labeling percentage and
the incubation time. The methane uptake rates were
calculated only for filamentous cells, which were
stained with the Creno445 or Mgamma669 probe.
Hybridized single cells (such as in Figures 1a–c) were
not considered in the calculation.

DNA extraction, 16S rRNA gene amplicon sequencing
and analysis
Two in situwater samples from Lake Rotsee were used
for 16S rRNA gene amplicon sequencing. One was
collected from the oxycline (9m depth) during a
campaign in August 2013 and the other from anoxic
water (8m depth) during a campaign in October 2014
(Supplementary Table 4). Volumes of ca. 250ml were
filtered onto polycarbonate Nuclepore Track-Etched
Membrane filters (0.2 μm pore size; Whatman, Maid-
stone, UK). Filters were stored at −80 °C until DNA
was extracted with the UltraClean Soil DNA Isolation
Kit (MoBio Laboratories, Carlsbad, CA, USA). Extrac-
tion procedure was performed according to manufac-
turer’s instructions with the following adjustment:
vortexing with the Bead Solution was reduced to 30 s
with subsequent incubation on ice (30 s), and this cycle
was repeated four times.

The V3–V4 regions of the 16S rRNA gene were
targeted with primer pair 341 F (5′-CCTACGGGNG
GCWGCAG-3′) and 805 R (5′-GACTACCAGGGTATC

TAATC-3′). The forward primers contained unique
identifier sequences at the 5’-end for each sample to
allow for multiplex sequencing. Ten separate PCR
reactions (25 μl volume) were set up for each sample
including both forward and reverse primers (500 nM

each), deoxyribose nucleotide triphosphates (dNTPs;
800 μM), 1 × Taq reaction buffer, Taq DNA polymer-
ase (0.25 U) and DNA extracts of the respective
samples (0.5–1 μl). The reactions proceeded as
follows: initial denaturation (3 min at 95 °C), 25
cycles of denaturation (30 s at 95 °C), annealing
(30 s at 54 °C) and elongation (90 s at 72 °C); and
final elongation (10min at 72 °C). Parallel reactions
were combined and purified with the QIA quick PCR
Purification Kit (Qiagen, Hilden, Germany) following
manufacturer’s instructions, with a final elution in
1× TE buffer (30 μl; 10mM Tris-HCl (pH 8.0)+1mM

EDTA). The DNA was further purified with a gel
using SYBR Green I Nucleic Acid Gel Stain (Invitro-
gen, Carlsbad, CA, USA) followed by gel extraction
with QIAquick Gel Extraction Kit (Qiagen) according
to the manufacturer’s protocol. Extract concentra-
tions were measured fluorometrically using the
Qubit dsDNA HS Assay Kit and the Qubit 2.0
Fluorometer (Invitrogen). Illumina sequencing was
performed on the amplicons at the Max Planck-
Genome Centre (Cologne, Germany).

16S rRNA gene amplicon paired-end reads were
trimmed (right end only, trim quality threshold=10)
and merged (20 bases minimum overlap) using BBmap
software version 35.43 (sourceforge.net/projects/
bbmap). Reads were then separated by barcode and
trimmed (minimum length=300, maximum homo-
polymer length=8, maximum number of ambiguous
bases=0, minimum average quality score allowed over
50 bp window=20) using mothur v.1.36.1 (Schloss
et al., 2009). The separated reads were processed using
SILVAngs and standard parameters (Quast et al., 2013).

Lake metagenome sequencing and assembly
Two in situ water samples (Lake Rotsee, 9m depth,
August 2013 (sample R1) and Lake Zug, 160m depth,
October 2013 (sample Z1)) and four end time points of
incubations (Lake Rotsee, O2-supplemented (sample
R2), Lake Rotsee, light (sample R3), Lake Zug, low O2-
supplemented (sample Z2), Lake Zug, anoxic, nitrate-
supplemented (sample Z3); see Supplementary Tables 3
and 4 for additional sample information) were analyzed
by Illumina sequencing. The following water volumes
were filtered onto polycarbonate Nucleopore Tracked-
Etched membrane filters (0.2μm pore size; Whatman)
and stored at −80 °C: 250ml for in situ samples (R1 and
Z1), 50ml for Lake Rotsee incubations (R2 and R3) and
40ml for Lake Zug incubations (Z2 and Z3). DNA was
extracted from cut-up filters using the PowerSoil DNA
isolation kit according to manufacturer’s instructions
(MoBio Laboratories). DNA from lake Zug was frag-
mented by sonication (MiSeq: 600–700 bp; HiSeq2500:
300 bp) using a Covaris S2 sonicator (Covaris, Woburn,
MA, USA). The library was prepared using Ovation
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Ultra Low Library Systems V1 (for MiSeq) or V2 (for
HiSeq2500) kits (NuGEN Technologies, San Carlos, CA,
USA) and paired-end sequencing (2×300 or 2×150 bp)
was performed using the Illumina MiSeq (2×300 bp)
or HiSeq2500 (2×150 bp) platform (Illumina Inc.,
San Diego, CA, USA). DNA from Lake Rotsee was
fragmented by sonication (350 bp) using a Covaris S2
sonicator (Covaris), the library was prepared using
NEBNext Ultra DNA Library Prep Kit for Illumina
(New England Biolabs, Ipswich, MA, USA) and paired-
end sequencing (2×150 or 2×100 bp) was performed
using the Illumina HiSeq2500 or 3000 platform
(Illumina Inc.). Both MiSeq and HiSeq sequencing
was performed by the Max Planck-Genome-centre,
Cologne, Germany (http://mpgc.mpipz.mpg.de/home/;
Supplementary Table 3).

Sequences were quality checked using FastQC
(Andrews, 2010) and trimming, as well as adapter
removal was done using Trimmomatic 0.32 and
parameters MINLEN:20 ILLUMINACLIP:TruSeq3-
PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEN:50 (Bolger et al., 2014).
Metagenome assembly of sequences from the Lake
Zug incubation (anoxic, nitrate-supplemented (Z3;
Supplementary Tables 3, 4)) was performed using
SPAdes 3.5.0 (Bankevich et al., 2012) with mismatch
corrector enabled and default parameters.

Sand filter Crenothrix metagenome sequencing and
assembly
Samples containing high proportions of C. polyspora
filaments were taken from the backwash water of
rapid sand filters of the Wolfenbüttel waterworks
(Germany), which treats a mixture of oxic and anoxic
groundwater. During sampling, Crenothrix filaments
were retained from 600 to 850 liters of backwash
water by either sedimentation or filtration through a
fine-mesh sieve (200 or 400 μm). One sample was
collected in 2004 (on 21 June; sample C) and was
incubated with 500 μmol l−1 ammonium for 212 h.
The second sample was collected in 2005 (10
October, sample B) and was incubated at different
methane concentrations for 24 h. It should also be
noted that earlier we deposited one additional partial
and unpublished Crenothrix genome from a sand
filter sample from the Wolfenbüttel waterworks at
IMG (genome ID 3300005627). We did not analyze
that older genome sequence in the course of the
present study, because it originated from the same
site but had been sequenced less deeply than the two
sand filter Crenothrix genomes described here.

After the incubations, samples B and C were
frozen at − 20 °C and DNA was extracted in 2016
using a phenol chloroform protocol (Zhou et al.,
1996) including two bead-beating steps. Paired-end
sample libraries were prepared using Illumina
Nextera DNA Library Preparation Kit (Illumina
Inc.) and sequenced at Aalborg University (Denmark)
using an Illumina MiSeq with MiSeq Reagent Kit v3
(2 × 301 bp; Supplementary Table 3). Paired-end

reads were imported to CLC Genomics Workbench
v. 8.0 (CLCBio, Aarhus, Denmark) and trimmed
using a minimum phred score of 20, a mini-
mum length of 50 bp, allowing no ambiguous
nucleotides and trimming off Illumina sequencing
adaptors if found. All trimmed paired-end metagen-
ome reads were assembled using CLC’s de novo
assembly algorithm, using a kmer of 63 and a
minimum scaffold length of 1 kbp.

Metagenome binning, reassembly and annotation
Binning of contigs of the Lake Zug metagenomic
assembly (sample Z3, Supplementary Table 3) was
performed by exploiting differential contig coverage
from three sequenced metagenomic data sets: Z1 (Lake
Zug, in situ), Z2 (Lake Zug, O2-supplemented incuba-
tion) and Z3 (Lake Zug, anoxic, nitrate-supplemented
incubation) as described previously (Albertsen et al.,
2013) and implemented in the mmgenome R package
(http://madsalbertsen.github.io/mmgenome/; Karst et al.,
2016). Only contigs longer than 500bp were used and
the average coverage of each contig was computed
directly using BBmap 35.43 (http://sourceforge.net/
projects/bbmap/) with default parameters. Prodigal
2.60 (Hyatt et al., 2010) in metagenomic mode (-p meta)
and standard parameters was used to predict open
reading frames, which were translated to amino-acid
sequences and subsequently searched for using HMMER
3.1b (Eddy et al., 2013) against a set of 107 hidden
markov models of essential single-copy genes (Dupont
et al., 2012) using default settings and trusted cutoff
(-cut_tc) enabled. Protein sequences coding for essential
single copy genes were searched against NCBI non-
redundant database (retrieved in August 2015) using
BLASTP (Camacho et al., 2009) and an e-value cutoff of
10−6. The taxonomy (class level) of each essential single-
copy gene was assigned using MEGAN5 (Huson et al.,
2011; with the previously generated BLASTP xml file as
input) and themmgenome script ‘hmm.majority.vote.pl’.
Bowtie2 (Langmead and Salzberg, 2012) with standard
settings was used to map reads to contigs and the
number of paired-end connections between separate
contigs was calculated from the SAM file using the
mmgenome script ‘network.pl’.

Differential coverage of contigs between the two
sand filter Crenothrix metagenomes (Supplementary
Figure 8) and between the Lake Zug metagenomes
(Supplementary Figure 7), as well as paired-end
connections between separate contigs were used to
extract genomic bins from the metagenome using the
mmgenome R package (http://madsalbertsen.github.
io/mmgenome/; Karst et al., 2016). Reads used for
the initial assembly were mapped to the binned
contigs using BBmap of the BBmap package 35.43
(http://sourceforge.net/projects/bbmap/) using strin-
gent settings (approximate minimum identity = 0.98)
or CLC (sand filter Crenothrix). Mapped reads were
reassembled (only for the lacustrine Crenothrix)
using SPAdes 3.5.0 (Bankevich et al., 2012) with
mismatch corrector enabled and default parameters.
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Quality of the reassembled bins was assessed using
CheckM 1.05 running the lineage-specific workflow
(Parks et al., 2015). Annotation of the Crenothrix D3
draft genome was performed using RAST (Aziz et al.,
2008). CDS prediction and automated pre-annotation
of the two Wolfenbüttel sand filter Crenothrix
genome sequence bins were performed using the
PROKKA pipeline (Seemann, 2014) with an in-house
extended protein reference database. The annotation
of key metabolic pathways was manually refined.

The Whole Genome Shotgun project of lacustrine
Crenothrix sp. D3 has been deposited at DDBJ/ENA/
GenBank under the accession MBQZ00000000.
The version described in this paper is version
MBQZ01000000. Reads (Lake Zug and Lake Rotsee)
have been deposited at the Sequence Read Archive
under BioProject PRJNA325574. The two sand filter
Crenothrix metagenomic assemblies are available in
the European Nucleotide Archive (ENA) under the
study accession number PRJEB19189.

Phylogenetic analyses
Full-length amino-acid sequences of bacterial PmoA
and AmoA protein sequences were retrieved from
the Integrated Microbial Genomes database (IMG-ER;
Markowitz et al., 2009) using Pfam family PF02461.
Previously published protein sequences of ‘unusual’
PmoA of C. polyspora (accession ABC59822–
ABC59827; Stoecker et al., 2006), partial PmoA of
C. fusca (accession ABL64049; Vigliotta et al., 2007)
AmoA sequences belonging to Candidatus Nitrospira
nitrosa, (accession CUS31358; van Kessel et al.,
2015) as well as Candidatus Nitrospira inopinata
(accession CUQ66826; Daims et al., 2015) were
added to the reference set. After removing duplicate
sequences, protein sequences were aligned using
Clustal Omega 1.2.0 (Sievers et al., 2011) and default
parameters. A phylogenetic tree (135 taxa) was
calculated using RAxML 8.2.6 (Stamatakis, 2014)
and parameters: -f a -k -x 48020621 -p 6809427 -N
100 -T 8 -m PROTGAMMAWAG.

Partial Crenothrix 16S rRNA gene sequences were
retrieved from the Crenothrix draft genomes using
RNAmmer 1.2 (Lagesen et al., 2007), aligned using the
SILVA incremental aligner (SINA) 1.2.11 (Pruesse et al.,
2012) and imported to the SILVA SSU NR99_123
database (Quast et al., 2013) using ARB 6.1 (Ludwig
et al., 2004). Phylogenetic trees of the 16S rRNA gene
sequences were calculated using RAxML 7.7.2 inte-
grated in ARB with the GAMMA model of rate
heterogeneity and the GTR substitution model with
100 bootstraps.

Results and discussion

Crenothrix in Lake Rotsee and Lake Zug
To investigate the potential occurrence of filamen-
tous Crenothrix bacteria in two stratified lakes and
their involvement in the lacustrine methane cycle,

we first recorded geochemical evidence for methane
oxidation in situ. Concentration profiles recorded in
Lake Rotsee and Lake Zug over the course of 3 years
suggested a zone of methane consumption that
persistently coincided with the oxycline (profiles
from Lake Rotsee 2013 are shown in Oswald et al.
(2015), from 2014 in Supplementary Figure 1;
profiles from Lake Zug 2012, 2013 and 2014 are
shown in Oswald et al., 2016). Concurrently,
incubations with 13CH4 confirmed high rates of
methane oxidation at the oxycline (Oswald et al.,
2015, 2016; Supplementary Figure 1). These incuba-
tions were set up under both oxic and anoxic
conditions. In Lake Rotsee, oxic incubation condi-
tions were obtained either by addition of air or solely
by incubation of anoxic water in the light. In the
latter case, aerobic methane oxidation was presum-
ably sustained by oxygenic photosynthesis (Milucka
et al., 2015; Oswald et al., 2015). In Lake Zug, oxic
incubations were solely supplemented with air and
incubated in the dark. These different incubation set
ups reflected the different nature of the two lakes,
Lake Rotsee has a shallow, sun-lit oxycline, whereas
the oxycline of Lake Zug is very deep and dark.
Additionally, anoxic Lake Zug incubations supple-
mented with nitrate were also set up as Lake Zug
had the appropriate environment to test for
methane-dependent denitrification (Supplementary
Table 4).

We then analyzed the microbial community at the
Lake Rotsee oxycline by 16S rRNA gene amplicon
sequencing in 2 consecutive years (2013 and 2014;
Supplementary Figure 2). Along with gamma-
proteobacterial Methylococcaceae (Methylobacter,
Methylocaldum, Methylomonas and Methyloglobu-
lus species), CABC2E06 (an uncultured Methylococ-
cales clone; Wang et al., 2012; Quaiser et al., 2014),
and the marine methylotrophic group, also
sequences belonging to Crenothrix were retrieved.
On the basis of the number of recovered sequences,
Crenothrix-related organisms were 2–5-fold less
abundant than Methylococcaceae and comprised
0.06–0.1% of the total bacterial sequences in situ.
However, it is possible that the true abundance of
Crenothrix in situ was higher than what the 16S
rRNA gene abundances suggest, as, for example,
DNA extraction biases might strongly select against
these thickly sheathed microorganisms.

We could additionally confirm the presence of
Crenothrix in both lakes by CARD-FISH with two
oligonucleotide probes reported to target Crenothrix,
Mgamma669 and Creno445 (Eller et al., 2001;
Stoecker et al., 2006). The more specific oligonucleo-
tide probe Creno445 bound only sporadically, when
the hybridization stringency was strongly reduced
(Supplementary Figure 3). On the other hand, the
Mgamma669 probe hybridized most of the conspic-
uous filaments in all analyzed samples from both
lakes (in situ water as well as incubations, Figure 1;
Supplementary Figure 3) even though some fila-
ments did not hybridize even with this more general
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probe (for example, Supplementary Figures 3a, b).
With both probes, we observed two hybridized cell
morphotypes—filaments and single round cells
(Figure 1; Supplementary Figure 3). Both morpho-
types have been observed for Crenothrix spp.
previously and it has been proposed that the smaller
round cells represent reproductive cells that bud
from the ends of vegetative cell filaments (Cohn,
1870; Völker et al., 1977). However, given the
compromised specificity of the Creno445 probe at
low stringency and the broad specificity of the
Mgamma669 probe, it is also possible that the
hybridized single cells represented other gamma-
MOB, reportedly targeted by the Mgamma669 probe
(for example, Methylobacter or Methylomonas; Eller
et al., 2001). Therefore, the here-reported Crenothrix
cell counts and biovolumes are solely based on
counts of Creno445- or Mgamma669-hybridized
filaments and thus represent conservative estimates.
Overall, in all analyzed incubations from both lakes
total Crenothix biovolumes increased over time
(Supplementary Figure 4b). This confirms that
Crenothrix was growing under both oxic and anoxic
conditions.

Whereas unicellular gamma-MOB had consis-
tently cell sizes of ca. 2 μm, the individual cells in
Crenothrix-like filaments reached an average length
of ca. 5 μm (Figure 1; Supplementary Figures 3a
and 5a). The average length and width of Lake Rotsee
Crenothrix filaments was ca. 45 and ca. 1.5 μm,
respectively, with individual filaments reaching
4100 μm length (Supplementary Figure 3). Fila-
ments were often intertwined and bunched together,
as observed previously (Cohn, 1870; Völker et al.,
1977). In Lake Rotsee, the biovolume of Crenothrix
was about eight-fold higher than that of unicellular
gamma-MOB at depths corresponding to the highest
observed methane oxidation rates (in 2012 and 2013;
Supplementary Figure 4a). Only in 2014 unicellular
gamma-MOB biomass contribution was higher
than that of Crenothrix (Supplementary Figure 4).
We speculate that these differences might be con-
nected to the complex life cycle of Crenothrix
(Supplementary Discussion). In Lake Zug, the fila-
ments were shorter but more consistent in terms of
length, reaching an average length and width of ca.
28 and 1.4 μm (in 2013) and ca. 20 and ca. 1.4 μm (in
2014), respectively.

Methanotrophic growth of Crenothrix
To confirm that the observed cell growth (that is,
increase in cell numbers and biovolume over time;
Supplementary Figure 4b) was methane-derived,
samples from the 13CH4-supplemented incubations
were further analyzed by nanoSIMS. Filamentous
bacteria hybridized with the Mgamma669 probe
consistently constituted the highest 13C-enriched
population in all three investigated incubations
(Lake Rotsee oxic, Lake Zug oxic and Lake Zug
anoxic; Figure 1; Supplementary Figure 5). The 13C

enrichment confirmed that 13CH4 was assimilated
into cell biomass, such as is common for gamma-
proteobacterial methanotrophs (Trotsenko and
Murrell, 2008). In some of the images, fragmentation
of filaments into single vegetative cells was apparent,
even though the uptake of 13C appeared homoge-
nously spread throughout the whole filament. In
both lakes, Crenothrix filaments appeared to be
colonized by other non-identified bacteria, which
did not show comparably strong enrichment in 13C
and might thus represent heterotrophic epibionts
(Figure 1). In contrast, the single round cells
(hybridized with Mgamma669 probe) were similarly
enriched in 13C as the Crenothrix filaments
(Figures 1a–c), supporting the speculation that these
cells belong to methanotrophic bacteria and might
potentially represent reproductive Crenothrix cells.

In the Lake Rotsee oxic incubation, the uptake of
methane-derived carbon by Crenothrix filaments was
comparable to that of ‘classical’ unicellular gamma-
MOB (13C enrichment of 22 ± 4.8 at % and 29±4.1 at
%, respectively; Table 1; Figure 1; Supplementary
Figure 2). However, due to its larger biovolume
Crenothrix assimilated ca. 4–6-fold more methane
than the ‘classical’ gamma-MOB in the same incuba-
tion (1.73 or 1.18 μmol methane l− 1 d− 1 and
0.27 μmol methane l− 1 d− 1, respectively; Table 1).
These numbers are based on average filament
biovolumes and cell counts determined by CARD-
FISH at the beginning of the incubation and do not
take into account any increase in cell numbers over
time, as the incubation conditions might have
differently affected the growth of the different
MOB. However, even if we take into account the
increase of cell numbers over time, overall contribu-
tion of Crenothrix to methane uptake in Lake Rotsee
was still higher than that of the unicellular gamma-
MOB, even though the difference was not so
pronounced (ca. 1.4 higher based on Tend cell
counts).

Crenothrix filaments in Lake Zug oxic incubations
were also active and assimilated methane at rates
of ca. 0.04 μmol methane l−1 d−1 (Table 1;
Figures 1d–f). This is much lower than the overall
contribution of Crenothrix in Lake Rotsee, which is
largely due to their lower abundance (1.1E+03
cells per ml) and smaller average biovolume (ca.
30 μm3).

Additionally, Crenothrix was also active in our
anoxic denitrifying incubations where not enough
oxygen was present to account for measured
methane oxidation rates (2.7 μmol l− 1 d− 1 13CO2

produced in 15NO3-supplemented incubation, a ca.
10-fold increase compared to control incubation
without any added electron acceptor (0.234 μmol
l− 1 d− 1 13CO2 produced)). The methane-dependent
growth under oxygen-deficient conditions was evi-
denced as cell biomass enrichment in both 13C (from
13C-CH4; Figures 1g–i) and 15N (from 15N-nitrate;
Supplementary Figure 6), even though the methane
uptake rates were somewhat lower (0.03 μmol

Crenothrix in lakes
K Oswald et al

2132

The ISME Journal



methane l− 1 d− 1) than those in incubations supple-
mented with oxygen (Table 1).

Metagenomic analyses of Lake Rotsee and Lake Zug
Due to the strong dominance of eukaryotic sequences
in Lake Rotsee, we were not able to assemble a
genomic bin of Crenothrix from any of the sequenced
samples (Supplementary Table 1a).

On the other hand, in the Lake Zug metagenomes
eukaryotic sequences were almost completely absent
and the relative abundance of Crenothrix-related
sequences was considerably higher (Supplementary
Table 1a). Therefore, a metagenome from a Lake Zug
anoxic incubation (sample Z3, Supplementary
Table 4) was used for the assembly of a Crenothrix
genome.

The Crenothrix D3 draft genome was binned by
exploiting the differential coverage of contigs in
metagenomes obtained from the in situ metagenome
of Lake Zug and two different incubations (an
oxygen-supplemented and an anoxic, nitrate-supple-
mented; Supplementary Figure 7a; see also Materials
and Methods section and Supplementary Table 4 for
sample details). We retrieved several bins represent-
ing gamma-MOB from the Lake Zug assembly (data
not shown). The metagenomic sequences within
these two bins were also present in our Lake Rotsee
metagenomes, as indicated by their respective cover-
age (Supplementary Figure 7b). 16S rRNA gene
retrieved from one of these bins putatively belonged
to a Methylobacter (Figure 2a). The other bin
contained a partial 16S rRNA gene (909 bp) that
clustered closely with C. polyspora (Figure 2a), even
though the level of similarity (95% identity) suggests
that the Lake Zug Crenothrix is a different species.
Most closely related environmental sequences were
retrieved from groundwater and habitats highlighted
primarily for iron richness (Bruun et al., 2010), yet
apparently containing methane (Kojima et al., 2009;
Kato et al., 2013).

Retrieval of the Crenothrix D3 16S rRNA gene
sequence from the Lake Zug metagenome allowed us
to also investigate the reasons behind the poor
performance of the Creno445 probe. The comparison
of the probe binding region on the 16S rRNA gene
sequence revealed that the Creno445 FISH probe
(length: 18 nt) had five mismatches with the partial
16S rRNA gene from our metagenomic Crenothrix D3
bin (Supplementary Table 2). Interestingly, out of 47
16S rRNA gene sequences in the SILVA database
(NR99, release 123) that were assigned to Crenothrix/
Crenothrichaceae, only seven sequences (including
four C. polyspora sequences published by Stoecker
et al. (2006)) contained less than five mismatches.
Thus it seems that while the Creno445 probe is very
specific to C. polyspora, it might not be suitable for
environmental detection of other Crenothrix strains
and species. In comparison, the lacustrine Creno-
thrix 16S rRNA gene had only a single mismatch
with the Mgamma669 probe, which explains the

comparably better performance of this (not Creno-
thrix-specific) probe on our samples.

Interestingly, the clade CABC2E06, which forms
an apparent sister group to Crenothrix based on the
16S rRNA tree (Figure 2a), had an identical number
of mismatches to both probes. As the 16S rRNA gene
sequences assigned to this group were retrieved from
both Lake Rotsee (Supplementary Figure 2) and Lake
Zug (data not shown), it is feasible that the
CABC2E06 bacteria in these samples were also
hybridized by the Mgamma669 probe. Additionally,
if the CABC2E06 bacteria were filamentous, they
may have been included in the here-reported cell
and biovolume counts.

Genome-inferred C1 metabolism of lacustrine
Crenothrix D3
In the Crenothrix D3 draft genome from Lake Zug
(Supplementary Table 1b), we searched for pMMO
genes. We found all genes encoding for pMMO,
which were organized in the arrangement pmoCAB,
such as is common for gamma-proteobacterial type I
MOB (Trotsenko and Murrell, 2008). The phyloge-
netic analysis of the PmoA amino-acid sequence
showed that the sequence fell within the PmoA
group of other known gamma-MOB, including the
PmoA sequence of the other described filamentous
methane oxidizer, C. fusca (Figure 2b). However, the
presence of conventional gamma-proteobacterial
pmoA in the lacustrine Crenothrix strain was
inconsistent with the findings of ‘unusual’ pmoA
previously reported for C. polyspora based on PCR
and quantitative PCR (Stoecker et al., 2006). Our
Crenothrix D3 draft genome did not contain any
‘unusual’ pmoA; in fact, no ‘unusual’ pmoA or amoA
has been retrieved in any of the other gamma-MOB-
assigned bins either.

We thus decided to address this discrepancy by
obtaining metagenomic data from the original
samples used in the Stoecker et al. (2006) study.
Two samples obtained in 2004 from the rapid sand
filters of the Wolfenbüttel waterworks (Germany)
were analyzed and, after differential coverage
binning, genomic information of two Crenothrix
strains was obtained (Supplementary Figure 8). A
partial 16S rRNA sequence retrieved from one sand
filter Crenothrix bin (bin 1; 817 bp) was 98%
identical to the C. polyspora 16S rRNA sequence.
As the sample reportedly contained high propor-
tions of C. polyspora, it is feasible that (at least one
of) the sand filter Crenothrix was in fact C.
polyspora. However, throughout this manuscript
we refer to these organisms as sand filter Creno-
thrix, without a species name. The sand filter and
the lacustrine Crenothrix likely represented differ-
ent species as indicated by the average sequence
identities of their shared genes (Supplementary
Discussion).

Both genomes of the sand filter Crenothrix species
contained a pmoCAB operon (gene similarities
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between both bins 96–99%) and a pxmABC operon
(gene similarities between both bins 93–99%). PmoA
encoded by the genes from the pmoCAB operon
clustered together with other gamma-proteobacterial
PmoA sequences (Figure 2b) and the affiliation of the
pxmABC operon with the sequence-divergent pxm
cluster was confirmed by a phylogenetic analysis of

pxmA (Tavormina et al., 2011; Figure 2b). PxmA has
been suggested to play a role in methane oxidation
under hypoxic and denitrifying conditions by
Methylomonas denitrificans and Methylomicrobium
album (Kits et al., 2015a, b). It thus appears that
Crenothrix might be another denitrifying methano-
troph containing both pmoCAB and pxmABC
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operons. Importantly, no ‘unusual’ pmoA could be
detected in the sand filter Crenothrix bins. However,
the ‘unusual’ pmoA sequence previously assigned to
C. polyspora was detected in a different bin, clearly
belonging to the completely nitrifying Nitrospira,
apparently co-occurring with C. polyspora in the
sample (Daims et al., 2015; van Kessel et al., 2015;
Pinto et al., 2016). This finding is discussed in more
detail in the Supplementary Discussion. It is inter-
esting to note that whereas all three Crenothrix
PmoA sequences fell within the ‘classical’ gamma-
proteobacterial PmoA branch, the lacustrine Creno-
thrix PmoA clustered separate from the sand filter
Crenothrix bins 1 and 2 and C. fusca (Figure 2b).
Comparison of the 16S rRNA gene and PmoA amino-

acid trees suggested that the PmoA of the lacustrine
Crenothrix might have been obtained laterally from
another gamma-proteobacterial methanotroph. This
is supported by the fact that transposase genes were
located immediately up- and downstream of the
lacustrine Crenothrix pmoCAB operon on the respec-
tive contig (data not shown).

In addition to the gene cluster encoding for
pMMO, we also retrieved a full gene cluster for
soluble methane monooxygenase (sMMO; smmoX-
YBZDC) in the lacustrine Crenothrix and in one sand
filter Crenothrix bin. This enzyme is relatively rare in
gamma-proteobacterial methanotrophs (Murrell,
2010) and was not found in C. polyspora previously
(Stoecker et al., 2006), presumably due to the

Figure 2 Phylogenetic tree of Crenothrix 16S rRNA gene and PmoA amino-acid sequences retrieved from Lake Zug and sand filters of the
Wolfenbüttel waterworks. (a) Phylogenetic tree of partial 16S rRNA gene sequence retrieved from the lacustrine Crenothrix (909 bp) and
from one sand filter Crenothrix (817 bp, bin 1) draft genomes. Note that the 16S rRNA gene sequence of Lake Zug ‘lacustrine’ Crenothrix
(but not of the sand filter Crenothrix) is monophyletic with clade CABC2E06. The tree was calculated with the RAxML maximum
likelihood program implemented in the ARB package without constraining the alignment by a filter or weighting mask. Bootstrap values
470 (out of 100 resamplings) are shown in front of each node. The taxonomic affiliations indicated by the colored boxes are based on the
SILVA SSU reference database (release 123; (Pruesse et al., 2007)). Fourteen type strains spread among gamma-proteobacteria were used as
an outgroup. Nucleotide accession numbers are listed in brackets. The bar shows an estimated nucleotide sequence divergence of 10%.
(b) Maximum likelihood phylogenetic tree of bacterial PmoA/AmoA amino-acid sequences (135 taxa) showing affiliation of PmoA
sequences recovered from the Lake Zug Crenothrix bin (red arrow) as well as of the two sand filter Crenothrix genome bins (green arrows).
All three Crenothrix PmoA sequences clustered within the ‘classical’ gamma-proteobacterial PmoA branch. Bootstrap support of total 100
bootstraps are shown in black (495%), gray (490%) and white (470%) circles. Scale bar indicates substitutions per site.

Figure 3 Genome-inferred metabolic potential of Crenothrix for respiration and methane oxidation. Predicted metabolic potential of the
lacustrine Crenothrix as well as of the two sand filter Crenothrix species with respect to its CH4 and N metabolism inferred from the three
draft genomes. Indicated are the methane oxidation pathway (gray boxes), the aerobic respiratory chain (orange boxes) and the pathway for
nitrate respiration (blue boxes). Genes that were found in the respective Crenothrix genomes (square: lacustrine Crenothrix D3; triangle:
sand filter Crenothrix bin 1; circle: sand filter Crenothrix bin 2) are depicted in red, not found in white. Cyt. bc1 complex, cytochrome bc1
complex; Cyt. bd complex, cytochrome bd complex (cydABCD); cyt c., cytochrome c; CytS, cytochrome c’-beta; FDH, formate
dehydrogenase; H4F, tetrahydrofolate; H4MPT, tetrahydromethanopterin; HCO, heme copper oxygen reductase (COXI-III); Hcp, hybrid
cluster protein; Hcr, NADH-dependent Hcp reductase; MDH, methanol dehydrogenase (xoxF); Nar, nitrate reductase (narGHI); NarK,
nitrate/nitrite antiporter (narK); NirS, copper-containing nitrite reductase (nirS); Nqr, sodium-translocating NADH:quinone oxidor-
eductase; pMMO, particulate methane monooxygenase (pmoCAB); Q, ubiquinone; RuMP, ribulose monophosphate; sMMO, soluble
methane monooxygenase (smmoXYBZDC).
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mismatches between the applied PCR primers and the
respective target regions in the mmoX gene.
We cannot conclusively prove involvement of sMMO
in methane oxidation by Crenothrix; however, as the
substrate range of sMMO seems much broader than
that of pMMO (Dalton, 2005; Semrau et al., 2011), it is
feasible that Crenothrix might have the capacity to
utilize other C-compounds as suggested previously
(Stoecker et al., 2006). This could explain the
reported occurrence of Crenothrix in, for example,
natural bitumen deposits (Saidi-Mehrabad et al.,
2013). All three retrieved genomes (two sand filter
Crenothrix genomes as well as the lacustrine Creno-
thrix D3 genome) further contained all necessary
genes for complete oxidation of methane to CO2

(Supplementary Discussion; Figure 3).
Like many other type I methanotrophs

(Chistoserdova and Lidstrom, 2013), Crenothrix
might use the RuMP pathway for C1 assimilation
from formaldehyde, as genes for all necessary
enzymes were found in all three draft genomes
(Figure 3). On the other hand, the serine cycle
apparently missed genes encoding for hydroxypyr-
uvate reductase and malate thiokinase. Crenothrix
had the genomic potential for mixed acid fermenta-
tion to succinate and potentially acetate (gene
encoding for phosphate acetyltransferase was miss-
ing in lacustrine Crenothrix D3 genome and one sand
filter Crenothrix, but was putatively present in the
other sand filter Crenothrix bin) and hydrogen
production (via NAD-reducing hydrogenase, hox-
FUYH; only present in the lacustrine Crenothrix).
Pyruvate, which serves as the starting point for
fermentation, could be generated from formaldehyde
via enzymes of the RuMP and pyrophosphate-
mediated glycolytic pathway that was encoded
in all three Crenothrix genomes. Mixed acid fermen-
tation and H2 production via these pathways has
been shown to be a major route of methane-derived
carbon respiration in methanotrophs growing under
oxygen limitation (Kalyuzhnaya et al., 2013).

Aerobic and anaerobic respiration by Crenothrix
In agreement with the demonstrated cell growth and
activity in our oxic incubations, all three Crenothrix
genomes encoded a multitude of aerobic respiratory
chain complexes, such as a sodium-pumping NADH:
ubiquinone oxidoreductase (Na+-NQR), the M and L
subunits of the NADH:quinone oxidoreductase, the
bc1 complex, an A1-type heme copper cytochrome c
oxidase, a type B heme copper cytochrome c oxidase
(only the sand filter Crenothrix) and a cytochrome bd
oxidase that might potentially act as a high-affinity
terminal oxidase (Figure 3).

Additionally, the draft genome of the lacustrine
Crenothrix D3 as well as one of the sand filter
Crenothrix strains also contained a partial pathway
for the respiration of nitrate. We retrieved genes
encoding for a membrane-bound respiratory nitrate
reductase (narGHI), a nitrite/nitrate antiporter (narK) as

well as a periplasmic multi-copper nitrite reductase
(nirK). Genes encoding for nitric oxide (NO) and
nitrous oxide (N2O) reductases (norBC and q-type
nor, and nosZ, respectively) were not found in any of
the three bins. Yet, interestingly, all three Crenothrix
genomes encoded proteins for alternative pathways of
NO detoxification to N2O. In the genome of Crenothrix
D3, a gene cluster containing hcp and hcr genes was
found. The hcp gene encodes for a unique hybrid
cluster protein (Hcp), which has recently been shown
to act as a high-affinity NO reductase in Escherichia
coli, producing N2O as the end product (Wang et al.,
2016). The Hcp sequence retrieved from the Crenothrix
D3 genome contained the six highly conserved
residues involved in 4Fe-2S-2O cluster coordination
(Aragao et al., 2008) as well as a glutamic acid residue
(E492 of E. coliHcp) essential for NO reductase activity
(Wang et al., 2016). Overall, the Crenothrix D3 Hcp
shared 49% amino-acid identity with the NO-reducing
Hcp of E. coli. The hcr gene, located immediately
downstream from hcp, encodes for the Hcr protein and
acts as a NADH-dependent Hcp reductase (van den
Berg et al., 2000), while simultaneously protecting Hcp
from nitrosylation by its substrate, NO (Wang et al.,
2016). The hcp/hcr genes in Crenothrix D3 genome
were preceded by norR, a transcriptional regulator of
three different enzymes (NO reductase, flavorubre-
doxin and flavohaemoglobin) that all utilize NO as a
substrate (Rodionov et al., 2005). We thus speculate
that, despite being routinely annotated as a hydro-
xylamine reductase, the Hcp/Hcr system in Crenothrix
could in fact act as a NO reductase and substitute Nor-
type NO reductases under denitrifying conditions. In
the two sand filter Crenothrix genome bins no
homologs of Hcp were found. However, both bins
(but not the lacustrine Crenothrix genome bin)
contained a homolog of cytochrome c'-beta, a member
of the cytochrome P460 family found in, for example,
gamma-proteobacterial methane oxidizers (Zahn et al.,
1996; Campbell et al., 2011) and gamma- and beta-
proteobacterial ammonia oxidizers (Bergmann and
Hooper, 2003; Klotz et al., 2006). Cytochrome c'-beta
can reduce NO to N2O (Elmore et al., 2007). Interest-
ingly, in one of the bins this gene (cytS) was located
directly downstream of the haoA and haoB genes
encoding for hydroxylamine dehydrogenase. As both
the Hcp and the cytochrome c’-beta are predicted to be
cytoplasmic proteins and NO is produced in the
periplasm (by NirK), it is feasible that their activities
are not coupled and (some) NOmight escape out of the
cell (Figure 3).

The experimentally demonstrated and genome
analysis-supported metabolic potential for methane-
dependent growth under nitrate-reducing conditions
cannot serve as a final proof of nitrate reduction by
Crenothrix in Lake Zug. However, it is interesting to
speculate that such metabolic versatility might
expand the habitat of these facultative anaerobic
bacteria, potentially enabling them to survive
periods of oxygen starvation by switching to using
nitrate as an electron acceptor for methane
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oxidation. Denitrification is an emerging feature of
gamma-MOB, which has been supported by geno-
mics and was also experimentally demonstrated
(Hoefman et al., 2014; Kalyuzhnaya et al., 2015;
Skennerton et al., 2015; Kits et al., 2015a, 2015b). It
has been proposed that respiration of nitrate might
enable aerobic gamma-MOB to colonize anoxic
waters (Chistoserdova, 2015; Knief, 2015). In Lake
Rotsee and Lake Zug, Crenothrix was indeed found
in the anoxic waters below the oxycline in at least 2
consecutive years. Its abundance in anoxic lake
waters suggests that it might successfully compete
with more obligate anaerobic methane oxidizers,
such as archaeal methanotrophs (Haroon et al., 2013)
or ‘Candidatus Methylomirabilis oxyfera’ (Ettwig
et al., 2010).

Conclusions

Members of the genus Crenothrix are rare methane
oxidizers, which are not available in pure or
enrichment cultures and will not be readily picked
up in environmental samples by the currently
available specific FISH probe (Creno445). The
ambiguity surrounding their pmoA has further
complicated the in situ detection using molecular
methods. In the past, this has hampered our under-
standing of these peculiar organisms and possibly
led us to underestimate their role in the biogeo-
chemical nutrient and element cycles.

In our study, we could unambiguously demon-
strate a key role for these organisms in the mitigation
of methane emissions from two stratified lakes. In
Lake Rotsee, Crenothrix even contributed more to
methane uptake than the ‘classical’ unicellular
gamma-MOB. In up to 3 consecutive years Creno-
thrix was recurrently found throughout the stratifica-
tion period of Lake Rotsee and Lake Zug, and thus
appears to be a stable part of the indigenous
microbial community. Our data are also the first to
demonstrate that Crenothrix is capable of growing as
a planktonic species in the lake water column. Given
the capacity of Crenothrix to rapidly grow up into
large biomass, its participation in methane cycling
also in other relevant habitats should be considered.
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Supplementary Information File 

Supplementary Discussion 

Life cycle of Crenothrix and lake turnover 

In Lake Rotsee, the proportion of small gonidial to large filamentous cells varied 

between sampling years. In 2012 and 2013 we observed many long intact filaments 

(Supplementary Figure 3), whereas in 2014 we only detected short Crenothrix fragments 

and gonidial cells seemed to be more numerous. In 2012 and 2013 our sampling was 

conducted in August, when stratification was stable and methane fluxes had probably 

reached their maximum (13±3 mmol m-2 d-1; (Oswald et al, 2015) whereas in 2014 the 

sampling campaign was conducted in late October and though the lake still showed 

stable stratification below 7 m depth, the methane fluxes were somewhat lower (8±2 

mmol m-2 d-1; Supplementary Figure 1). It is possible that filaments may have 

propagated just before the lake overturn which increased the ratio of comparably small 

gonidial cells to long vegetative cells. These changes in their life cycle could explain the 

comparably lower Crenothrix biovolume contribution in 2014. 

 

Average nucleotide and amino acid identities of lacustrine and sand filter Crenothrix  

The average nuceotide identities (ANI; (Richter & Rosselló-Móra, 2009) between 

Crenothrix strain D3 and the two sand filter Crenothrix genomes were 72.9 - 73% and 

80.5 % between the latter two genomes, respectively. These values are far below 

proposed species delineation boundaries of 95 - 97% (Goris et al, 2007; Varghese et al, 

2015). The average amino acid identity (AAI, (Konstantinidis & Tiedje, 2005) between 

Crenothrix strain D3 and the two sand filter Crenothrix species is 66.1 – 66.4 % and the 

AAI between the two latter genomes is 77.4%. These AAI values are above the proposed 

genus delineation boundary of 60% (Luo et al, 2014) suggesting that all three Crenothrix 

species indeed belong to the same genus. It should be noted that also other members 

of the Methylococcaceae (such as Methyloglobulus morosus; (Deutzmann et al, 2014) 

have AAI values with the three Crenothrix genomes that suggest affiliation to the same 

genus (data not shown), and therefore the taxonomy of this order might need to be 

revised. 
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Extended genome description of sand filter Crenothrix species and the lacustrine 

Crenothrix D3 

Downstream oxidation of methanol 

All Crenothrix genomes contained a XoxF homolog encoding for the large 

subunit of the pyrroloquinoline quinone- and cerium-dependent methanol 

dehydrogenase (MDH), an enzyme catalyzing downstream oxidation of methanol to 

formaldehyde or formate. Interestingly, mxa genes encoding for the calcium-

dependent MDH and its accessory proteins were not found in the lacustrine Crenothrix 

D3 draft genome and sand filter Crenothrix bin 2 but were found in sand filter Crenothrix 

bin 1. Absence of mxa-type MDHs in genomes containing xoxF-type MDHs have so far 

been described for several methylotrophs (Chistoserdova, 2011; Giovannoni et al, 2008; 

Kalyuhznaya et al, 2009; Wilson et al, 2008) as well as verrucomicrobial methanotrophs 

(Khadem et al, 2012; Op den Camp et al, 2009; Pol et al, 2014). Genes encoding for 

enzymes catalyzing a four-step C1 interconversion of formaldehyde to formate via the 

methenyl-tetrahydromethanopterin pathway (fae, mtdB, mch, fhc) were all present, in 

both the lacustrine and the sand filter Crenothrix genomes. The alternative 

tetrahydrofolate (H4F)-linked pathway was missing FolD, the bifunctional enzyme acting 

as methylene-H4F dehydrogenase and methenyl-H4F cyclohydrolase. However, in the 

case of Crenothrix, this enzyme might be substituted by Fch and Mtd, such as has been 

shown for other methylotrophs (Chistoserdova, 2011). These genes (fch, mtdB, and 

several mtd homologues) were found in the Crenothrix genomes. In the last step, 

formate can further be oxidized to CO2 by a NAD-dependent formate dehydrogenase, 

which was encoded in all three Crenothrix draft genomes.  

 

Carbohydrate metabolism (only annotated for the lacustrine Crenothrix) 

All genes encoding for core enzymes involved in the pentose phosphate 

pathway, tricarboxylic acid cycle, Entner-Doudoroff pathway as well as Embden-

Meyerhof-Parnas pathway were present in the lacustrine Crenothrix D3 draft genome. 

 

Nitrogen assimilation (only annotated for the lacustrine Crenothrix) 

Genes encoding for assimilatory nitrate and NAD(P)H-dependent nitrite 

reductase were retrieved from the lacustrine Crenothrix D3 draft genome. Downstream 
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assimilation of ammonium can proceed via the GS/GOGAT-pathway by glutamine 

synthetase and glutamate synthase which genes are both present in the genome.  

 

Nitrogen fixation 

Lacustrine Crenothrix might also have the potential to fix dinitrogen gas since 

the genome contains key genes encoding for nitrogenase as well as a suite of its 

accessory proteins (i.e. nifKDHWENX). Nitrogenase genes were absent from both sand 

filter Crenothrix draft genomes, with the exception of nifK in bin 1. 

 

Discussion of the canonical gamma-proteobacterial and ‘unusual’ pmoA sequence in 

the sand filter Crenothrix 

Stoecker et al. (2006) have retrieved ‘unusual’ pmoA from a sample strongly 

dominated by filaments that were identified by morphology as C. polyspora. C. polyspora 

abundance was observed by FISH using a Crenothrix-specific probe as well as Bacteria- 

and Archaea- and Eukarya-specific FISH probes and was independently confirmed by 

qPCR using two general and two C. polyspora-specific 16S rRNA gene targeting primer 

sets [Figure 3 of the Stoecker et al. (2006) paper]. By using additional qPCR assays for the 

‘unusual’ pmoA (two assays) and canonical gamma-proteobacterial pmoA (two assays) a 

much higher abundance of the ‘unusual’ than the canonical pmoA was observed and 

thus it was concluded that C. polyspora very likely encodes the ‘unusual” pmoA gene. 

This conclusion was further supported by the fact that transcription of the ‘unusual’ 

pmoA was strongly induced by methane addition [Figure 7 in the Stoecker et al. (2006) 

paper]. Surprisingly, we and others recently demonstrated that completely nitrifying 

Nitrospira species (comammox) encode amoA genes that are highly similar to the 

‘unusual” pmoA genes assigned to C. polyspora (Daims et al, 2015; Palomo et al, 2016; 

Pinto et al, 2016; van Kessel et al, 2015). 

To address this issue, we obtained frozen material from the sample used in the 

Stoecker et al. 2006 paper (this sample material had been used for unpublished 

incubation experiments before freezing) and reconstructed two draft C. polyspora 

genomes by metagenomic sequencing. Interestingly, these genomes had ANI values 

that demonstrated that they represent two different Crenothrix species to which we 

thus refer to as sand filter Crenothrix species in this manuscript. In both genome bins the 
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canonical gamma-proteobacterial methane monooxygenase (in addition to another 

gamma-proteobacterial pmoABC operon; see main text) was encoded, while the 

‘unusual’ pmoA could not be detected. However, the ‘unusual’ pmoA previously 

assigned to C. polyspora was detected in the metagenome from this sample in one of 

the two comammox Nitrospira bins (see Supplementary Figure 8; the other comammox 

Nitrospira bin contains another ‘unusual’ amoA). We thus conclude from these data that 

in the sample used by Stoecker et al. 2006 comammox Nitrospira thrived, which encode 

the ‘unusual’ pmoA (and use it as amoA), and that the two C. polyspora strains encode 

the canonical gamma-proteobacterial pmoA [which was also retrieved in the Stoecker et 

al. (2006) study but assigned to another gamma-MOB in the sample, Methylomicrobium 

album]. We do not have a conclusive explanation for the qPCR data shown in Figure 3 in 

the Stoecker et al. (2006). The strongly increased transcription of the ’unusual’ pmoA 

gene after addition of methane to the C. polyspora-dominated sample as described by 

Stoecker et al. could either be explained by the existence of a low abundant methane-

oxidizing Crenothrix strain possessing this gene (as speculated below) or by methane-

induced secretion of metabolites by C. polyspora that stimulated the comammox 

Nitrospira in the sample. In the Stoecker et al. (2006) study DNA for the qPCR assays was 

extracted using the FastDNA kit (QBiogene, Irvine, CA) while the much harsher phenol 

chloroform bead beating protocol was used in our metagenome analysis of the same 

sample. One could thus speculate that the FastDNA kit did not lyse the dominant 

populations of Crenothrix strains (with canonical gamma-proteobacterial pmoA) and 

only DNA from a low abundant Crenothrix strain (not binned in the metagenome) was 

obtained, whose canonical pmoA has been replaced by the comammox amoA. The 

existence of comammox Nitrospira that are very closely related to purely nitrite-

oxidizing Nitrospira strains, which do not possess the ’unusual’ pmoA/amoA gene, 

indicate lateral gene transfer events of the genes necessary for ammonia oxidation, and 

suggest a complex evolutionary history of these genes (Daims et al, 2015). 
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Summary 

Methanotrophic bacteria represent an important biological filter regulating 

methane emissions into the atmosphere. Planktonic methanotrophic communities in 

freshwater lakes are typically dominated by aerobic gamma-proteobacteria, with some 

contribution from alpha-proteobacterial methanotrophs, and the NC10 bacteria. These 

uncultured methanotrophs, related to “Candidatus Methylomirabilis oxyfera”, oxidize 

methane using a unique pathway of denitrification, which produces N2 and O2 from 

nitric oxide (NO). Here we describe a new species, “Ca. Methylomirabilis limnetica”, 

which dominated the planktonic methanotrophic community in the anoxic depths of 

the stratified Lake Zug, comprising 27 % of the total bacterial population. Gene 

transcripts assigned to “Ca. M. limnetica” constituted approximately one third of all 

metatranscriptomic sequences retrieved in situ. The reconstructed genome encoded a 

complete pathway for methane oxidation, and an incomplete denitrification pathway, 

including two non-canonical NO reductases that presumably function as O2-producing 

NO dismutases. In contrast to “Ca. M. oxyfera”, the genome of “Ca. M. limnetica” 

appeared to lack some key metabolic genes, such as membrane-bound nitrate 

reductase, hydroxylamine oxidoreductase, the cytochrome bc1-complex and two heme–

copper oxidases. We speculate that “Ca. M. limnetica” temporarily bloomed in the lake 

during non-steady-state conditions suggesting a niche for NC10 in the lacustrine 

methane and nitrogen cycle.  
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Introduction 

Temperate lakes are environments with intense methane cycling. Methane, a 

potent greenhouse gas, is abundantly produced in lake sediments from buried organic 

matter. Due to the comparably low sulfate concentrations, sulfate-dependent anaerobic 

methane oxidation often fails to completely consume the upward methane flux, in 

contrast to marine sediments. Therefore, large amounts of methane tend to enter the 

bottom waters of lakes. Lakes with oxic water columns, in which aerobic methane 

oxidation is constrained to a thin layer at the sediment surface, significantly contribute 

to atmospheric methane emissions (Bastviken et al, 2004). In contrast, in lakes that 

develop hypoxic and anoxic bottom waters, methane is often completely consumed at 

the lake oxycline by aerobic methane oxidation.  

Aerobic methane-oxidizing bacteria have long been recognized to play an 

important role in the regulation of methane emissions to the atmosphere (Reeburgh, 

2003). Major taxa of gamma-MOB in lakes and other aquatic habitats include 

Methylomonas, Methylobacter, Methylosoma and Methylosarcina (Bowman, 2014). It has 

emerged recently that some of these organisms also possess the capacity to thrive in 

apparently anoxic waters and sediments, where their activity and growth can be 

sustained by oxygen production and transport (Blees et al, 2014; Milucka et al, 2015; 

Oswald et al, 2016a), fermentation (Kalyuzhnaya et al, 2013) or denitrification (Kits et al, 

2015a; Kits et al, 2015b; Oswald et al, 2017; Padilla et al, 2017). Interestingly, dedicated 

anaerobic methane oxidizers belonging or related to the ANME archaea (Ettwig et al, 

2016; Haroon et al, 2013; Knittel & Boetius, 2009) seem to be constrained to lake 

sediments (Schubert et al, 2011; Weber et al, 2017) and play a comparably minor role in 

methane removal even in fully anoxic water columns.  

A group of methanotrophs, whose role in the environmental methane cycle is 

yet to be fully assessed, are the bacteria of the NC10 phylum (Raghoebarsing et al, 

2006). These organisms oxidize methane using nitrite as an electron acceptor. The first 

described representative of this clade, “Candidatus Methylomirabilis oxyfera” has been 

proposed to have a unique capacity to disproportionate nitrogen oxide(s) intracellularly 

and produce molecular oxygen, which is used for methane oxidation (Ettwig et al, 

2010b; Ettwig et al, 2012). This unique pathway allows NC10 to thrive in hypoxic 

habitats, despite the obligate need for oxygen to activate and oxidize methane (He et al, 
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2016; López-Archilla et al, 2007; Padilla et al, 2016; Raghoebarsing et al, 2006; Shen et al, 

2016; Zhu et al, 2012). Recent studies have demonstrated that NC10-related 

methanotrophs are present in the anoxic water column of a freshwater reservoir and 

sediments of deep freshwater lakes (i.e. Lake Constance (Deutzmann & Schink, 2011; 

Deutzmann et al, 2014) and Lake Biwa (Kojima et al, 2012)), and they were proposed to 

significantly contribute to methane removal in these lakes. However, direct activity of 

NC10 in situ has not been demonstrated to date. Despite the increasing number of 

environmental reports, “Ca. M. oxyfera” rarely appears to dominate bacterial, or 

specifically methanotrophic, communities, particularly in planktonic habitats.  

So far, bacteria of the NC10 phylum have not been found in Lake Zug (Oswald et 

al, 2016a) or the other well-studied temperate lakes of Switzerland. Here, we report an 

incidental finding of a “Ca. M. oxyfera”-related bacterium that dominated the bacterial 

community in the deep anoxic methane-rich hypolimnion. We report a morphological 

and genomic description of this new putative species “Candidatus Methylomirabilis 

limnetica”, infer its in situ activity from metatranscriptomics, and describe the 

biogeochemical conditions during the sampling period that presumably led to the 

bloom of this bacterium.  

Results and Discussion 

Biogeochemistry of Lake Zug 

Lake Zug is a deep eutrophic freshwater lake located in Central Switzerland. The 

lake is permanently stratified and has reportedly not turned over since 1950 (Müller, 

1993). During the sampling campaign in September 2016, several interesting features in 

the chemical profiles were noted (Figure 1a,b).  

The oxycline was located at about 106 m depth, well above the usual depth (140 

- 150 m) that was measured in 2012, 2013 and 2014 (Oswald et al, 2016b). No oxygen 

was detected with the trace optode (TOS7, Presens, Regensburg, Germany; detection 

limit approximately 20 nmol l-1) below this depth on two consecutive sampling days. 

Methane concentrations at the given depths were ca. 2-fold higher than the years 

before and methane was depleted ca. 10 m below and not at the oxycline. During the 

current sampling campaign in 2016, the flux of oxygen and methane across their 

respective zones of consumption was 7.8 and 2.2 mmol m-2 d-1, respectively, and thus 
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oxidation of ammonium and production of nitrogen oxides. This event most likely 

occurred before our sampling campaign. 

NC10 bacteria were abundant in the profundal anoxic waters of Lake Zug 

In the previous years, a large portion of upwards-diffusing methane was shown 

to be oxidized near the oxycline by abundant gamma-proteobacterial methane-

oxidizing bacteria (Oswald et al, 2016a). Additionally, it was shown that filamentous 

gamma-proteobacterial Crenothrix bacteria were major methane consumers in Lake 

Zug (Oswald et al, 2017).  

To obtain a quantitative overview of the methane-oxidizing community in Lake 

Zug in 2016, we first classified and quantified 16S rRNA gene sequences in the 

unassembled metagenomic sequences from all three depths; near the oxycline (110 m), 

below it (120 m) and in middle of the anoxic hypolimnion (160 m; Figure 1a). For all 

three depths, a metagenome (Illumina HiSeq2500 2×250 bp; Supplementary Table S2) 

and a metatranscriptome (Illumina HiSeq3000 1×150 bp; Supplementary Table S2) was 

generated.  

Methylococcales were stable members of the microbial community at all three 

investigated depths. Up to 10% of all 16S rRNA gene sequences were classified as 

Methylococcales; the majority of these belonged to genera Methylobacter, Crenothrix, 

Methylomicrobium and the CABC2E06 clade. Sequences classified as verrucomicrobial 

methanotrophs (mainly “Ca. Methylacidiphilum sp.”) were also detected, albeit at low 

abundance (0.1–0.3%). However, this assignment might require verification as these 

verrucomicrobial methanotrophs are known to thrive under conditions not found in 

Lake Zug (i.e. pH 1-5 and temperature above 50°C; (Op den Camp et al, 2009)). Known 

alphaproteobacterial methanotrophs (e.g. Methylocystaceae and Beijerinckiaceae) were 

not detected. This is consistent with the methanotrophic community analyzed in this 

lake previously by CARD-FISH (Oswald et al, 2017; Oswald et al, 2016a). 

Interestingly, we found conspicuously high abundances of 16S rRNA gene 

sequences putatively assigned to the NC10 phylum in the metagenomic sequences 

from 120 m and 160 m depth. In these metagenomes, NC10-related sequences 

constituted approximately 10% and 19% of all classified metagenomic 16S rRNA gene 

sequences, respectively, and thus were two-fold more abundant than the‘classical’ 
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gamma-proteobacterial methanotrophs. At 110 m depth, which was nearest to the 

oxycline, only 0.7% of all classified 16S rRNA gene sequences were assigned to NC10.  

The high abundance of NC10 bacteria was confirmed by catalyzed reporter 

deposition fluorescence in situ hybridization (CARD-FISH; Fig 1c). Water samples 

obtained from 120 m and 160 m were stained with an oligonucleotide CARD-FISH probe 

specific for NC10 bacteria (DBACT-0193; Figure 1c) and contained 1.1 and 2.8 x 106 cells 

ml-1, accounting for 10.0% (120 m) and 26.8% (160 m) of all DAPI-stained cells. This 

probe has 1 nucleotide mismatch to the 16S rRNA gene sequence belonging to NC10 

retrieved from Lake Zug (Supplementary Table S1). A similarly high proportion of cells 

was hybridized with the DBACT-1027 probe (0 mismatches), whereas no hybridized cells 

were found with the DBACT-447 probe (5 mismatches; data not shown).  

These results showed that in September 2016 planktonic NC10 bacteria were the 

dominant methanotrophic microorganisms in the profundal, anoxic waters of Lake Zug. 

To our knowledge, this is the highest relative abundance of NC10 that has been so far 

reported from any environment. The highest previous report was from the Feitsui 

reservoir where up to 16 % of all cells were identified as NC10 using CARD-FISH (DBACT-

1027 probe; (Kojima et al, 2014)). Interestingly, apart from being eutrophic, Lake Zug 

and Feitsui reservoir share few similarities. Whereas Lake Zug is a deep and permanently 

stratified temperate lake, Feitsui reservoir is a comparably shallow (mean depth of 40 m) 

and monomictic subtropical reservoir. It is thus not immediately obvious which habitat 

might favor the growth of NC10 to such high abundances. It is possible that during the 

non-steady-state conditions during the sampling campaign in September 2016 a 

unique combination of factors contributed to the observed bloom of NC10 bacteria, 

possibly including microoxic conditions and/or high organic matter content. 

Genome reconstruction and phylogenetic assignment of “Ca. M. limnetica” 

The high abundance of NC10 bacteria in the sample enabled us to assemble a 

putative NC10 genomic bin. The binning process was based on guanine-cytosine 

content as well as average contig coverage of the 160 m metagenome and a putative 

NC10 genomic bin was obtained from a co-assembly of all three depths. The contigs 

within this bin had the highest average coverage in the metagenomes from 120 m and 

160 m (average contig coverage 451-fold and 851-fold) but only comparatively low 

coverage (30-fold) in the 110 m metagenome. The average contig coverage of the 
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metagenomic bin matched well with the abundance of NC10 bacteria previously 

estimated in our 16S rRNA read survey and CARD-FISH analysis. Summary statistics of 

the genomic bin (after targeted re-assembly) and comparison to the closed genome of 

“Ca. M. oxyfera” is shown in Table 1. Analysis by CheckM (Parks et al, 2015) suggested 

that the genomic bin was of high quality with similar estimates of completeness (96.2%) 

and contamination (1.7%) as the closed genome of “Ca. M. oxyfera” (accession 

FP565575.1, Table 1). 

Table 1. Overview of genome statistics for “Ca. M. limnetica” and comparison to “Ca. M. 
oxyfera”. The complete genome of “Ca. M. oxyfera” was retrieved from GenBank (accession 
number FP565575.1). Coding sequences, rRNAs and tRNAs were predicted using Prodigal (Hyatt 
et al, 2010), Aragorn (Laslett & Canback, 2004) and RNAmmer (Lagesen et al, 2007) implemented 
in the Prokka annotation pipeline (Seemann, 2014b). Genome quality metrics were computed 
using CheckM (Parks et al, 2015) running the lineage specific workflow. 

 “Ca. M. limnetica” “Ca. M. oxyfera” 

Contigs 40 1 

Genome size (bases) 2,554,766 2,752,854 

GC content (%) 58.4 58.6 

Coding sequences 2530 2707 

rRNAs / tRNAs 16S-23S-5S / 52 16S-23S-5S / 48 

Completeness / Contamination / 

Strain heterogeneity (%)  

96.2 / 1.7 / 0.0 

(marker sets: 117) 

96.3 / 2.6 / 0.0  

(marker sets: 117) 

 

Next we used the assembled full-length 16S rRNA gene sequence (1549 bp) 

retrieved from the NC10 genomic bin for taxonomic classification. Comparative analysis 

of the 16S rRNA gene sequence showed 95.1% identity to “Ca. M. sinica” (He et al, 2016) 

and 96.3% identity to “Ca. M. oxyfera” (Ettwig et al, 2010a; Raghoebarsing et al, 2006). 

These values are higher than the threshold for genus definition (95%) but are below the 

species cutoff value (98.6%; (Konstantinidis et al, 2017; Yarza et al, 2014)). A whole 

genome analysis further showed that the pairwise average nucleotide identity (ANI) 

between our retrieved NC10 genome and the genome of “Ca. M. oxyfera” was 81.8%. 

This is well below the accepted ANI species boundary (95–96%; (Goris et al, 2007; 

Richter & Rosselló-Móra, 2009)). Taken together these data suggest that the NC10 

population present in Lake Zug likely represented a new species within the genus “Ca. 

Methylomirabilis”, which we here name “Ca. Methylomirabilis limnetica”. 
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Phylogenetic analysis of the 16S rRNA gene sequences showed that the 

sequence “Ca. M. limnetica” clustered within a subgroup of NC10 (Figure 2a). The 

sequences within this subgroup were nearly identical (>99% sequence identity) and 

likely represented the same species. Interestingly, the sequences were retrieved from 

geographically distant freshwater lakes (Lake Constance (Germany) and Lake Biwa 

(Japan), a freshwater reservoir (Feitsui, Taiwan) (Deutzmann & Schink, 2011; Kojima et al, 

2014; Kojima et al, 2012) and a minerotrophic peatland (Brunssummerheide, The 

Netherlands (Zhu et al, 2012)). Both currently described species of the genus “Ca. 

Methylomirabilis”, “Ca. M. oxyfera” and “Ca. M. sinica”, clustered in a different, more 

divergent branch of the 16S rRNA gene tree (Figure 2a).  

Phylogenetic analysis of the “Ca. M. limnetica” PmoA (Figure 2b) showed that the 

sequence clustered together with partial PmoA sequences assigned to NC10 which 

were retrieved from Lake Constance (Deutzmann & Schink, 2011). The Lake Constance 

sequences were almost identical to the PmoA sequence of “Ca. M. limnetica” (98.2–

99.3%; 61–69% coverage). Partial PmoA sequences retrieved from Brunssummerheide 

(Zhu et al, 2012), Lake Biwa (Kojima et al, 2012) and Feitsui reservoir (Kojima et al, 2014) 

formed a separate but closely related sister clade (approximately 96–97% identity). A 

third, more distantly related polyphyletic cluster mainly constituted PmoA sequences 

retrieved from a waste water treatment plant (Lieshout) (Luesken et al, 2011), a river 

sediment (Bhattacharjee et al, 2016) as well as “Ca. M. oxyfera” and “Ca. M. sinica”. The 

sequences in this cluster were more distantly related to “Ca. M. limnetica” PmoA 

sequence (91–96% identity).  

Genome-inferred central C1 and energy metabolism 

The high-quality genome of “Ca. M. limnetica” allowed for a reconstruction of 

pathways involved in carbon and energy metabolism (Figure 3). “Ca. M. limnetica” 

encoded the pathway for complete aerobic oxidation of methane (Table 3), including 

particulate methane monooxygenase (pMMO; pmoCAB) and one Xox-type methanol 

dehydrogenase (MDH; xoxFJG). Genes encoding for soluble methane monooxygenase 

(sMMO) and MxaF-type methanol dehydrogenase, which was found in “Ca. M. oxyfera” 

previously (Ettwig et al., 2010?), were not encoded in “Ca. M. limnetica” genome. 

Downstream conversion of formaldehyde to formate could either proceed via 

tetrahydromethanopterin (H4MPT)-dependent or tetrahydrofolate (H4F)-dependent C1 
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Respiratory complexes of “Ca. M. limnetica” 

It has been proposed that NC10 bacteria, specifically “Ca. M. oxyfera”, produce O2 

from nitrogen oxides by a unique intra-aerobic denitrification pathway involving a 

nitrite reductase and a putative NO dismutase (Ettwig et al, 2010a; Ettwig et al, 2012; Wu 

et al, 2011b). The genome of “Ca. M. limnetica” also encoded for a partial denitrification 

pathway (Figure 3; Table 2a) including periplasmic nitrate reductase (napAB), cd1-type 

nitrite reductase (nirS) and three genes encoding for quinone-interacting nitric oxide 

reductase (qNOR; norB). Membrane-bound nitrate reductase (narGHI) and nitrous oxide 

reductase (nosZ) were not found in the “Ca. M. limnetica” genome. The amino-acid 

sequences of two nitric oxide reductases of “Ca. M. limnetica” (encoded by tandem 

genes MEZU 00035-26) featured nearly all modified residues of the quinol-binding and 

catalytic site that have been identified in two divergent qNORs of “Ca. M. oxyfera” and 

marine NC10 bacteria (Figure 4, (Ettwig et al, 2012; Padilla et al, 2016)). These qNOR 

enzymes have been speculated to function as NO dismutase (NOD) that 

disproportionates two molecules of NO into N2 and O2 thus allowing NC10 bacteria to 

oxidize methane using pMMO in the absence of exogenous O2 (Ettwig et al, 2010a; 

Ettwig et al, 2012). Like “Ca. M. oxyfera”, “Ca. M. limnetica” also encoded for a third, most 

likely genuine NO-reducing qNOR that contained the same conserved residues of 

canonical qNORs of “Ca. M. oxyfera” and other microorganisms (Figure 4). 

In addition to nitrogen oxides, “Ca. M. limnetica” also has the genomic potential 

to use O2 as terminal electron acceptor. We identified genes encoding for two types of 

terminal oxidases (Table 2b); a heme copper oxidase (A1-type HCO; (Pereira et al, 2001)) 

and an alternative oxidase (AOX) that belongs to the di-iron carboxylate group of 

proteins (Berthold & Stenmark, 2003). Although NC10 bacteria grow anaerobically, it has 

been speculated that O2 from NO dismutation could be respired by these terminal 

oxidases (Wu et al, 2011a). The genome of “Ca. M. oxyfera” also encoded for two 

additional heme-copper terminal oxidases (bo- and ba3-type; labeled HCO 2 and 3 (Wu 

et al, 2011a)) which were however not found in the genome of “Ca. M. limnetica”. 

Alignment of Lake Zug metagenomic reads (160 m) to the genome of “Ca. M. oxyfera” 

further confirmed that these HCOs were encoded in genomic regions not present in our 

metagenomic dataset (Supplementary Figure 2). 
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oxidoreductase (Hao). The absence of hao genes from the “Ca. M. limnetica” genome is 

intriguing as Hao has been suggested to play a role in the detoxification of 

hydroxylamine in methanotrophs (Campbell et al, 2011; Nyerges & Stein, 2009). 

Hydroxylamine is formed via the co-metabolism of ammonium by methane 

monooxygenase – a process that is likely also relevant in Lake Zug as methane and 

ammonium were present in almost equimolar concentrations in situ (Figure 1a,1b). 

Other genes encoding for enzymes known to be involved in hydroxylamine 

detoxification, such as cytochrome P460 (cytL) (Bergmann et al, 1998), were also absent 

from the “Ca. M. limnetica” genome thus raising the question of how “Ca. M. limnetica” 

disposes of this toxic intermediate. To confirm that these genes were indeed absent 

from the genome of “Ca. M. limnetica” we searched the whole metagenomic assembly 

for genes encoding the aforementioned enzymes but could not identify highly covered 

contigs encoding for close homologs. Additionally, by mapping the sequences of the 

160 m metagenome to the genome of “Ca. M. oxyfera” we saw that whereas genomic 

regions with gene homologs shared between both species were well covered (per-base 

coverage > 100), the average coverage was close to zero for all genomic regions 

containing aforementioned genes exclusive to “Ca. M. oxyfera” (Supplementary Figure 

2).  

In situ gene expression of “Ca. M. limnetica” 

To investigate whether “Ca. M. limnetica” was transcriptionally active in situ, we 

aligned the metatranscriptomic reads obtained from 110 m, 120 m and 160 m depth to 

the “Ca. M. limnetica” genome. We found that nearly one third of all non-rRNA 

metatranscriptomic sequences from 120 m and 160 m (28.4% and 32%, respectively) 

aligned to the genome of “Ca. M. limnetica”. The overall alignment rate of the 

metatranscriptome from 110 m (2.8%) was much lower, in line with the much lower 

abundance of “Ca. M. limnetica” at this depth.  

A comparison of the 100 most transcribed genes of “Ca. M. limnetica” showed a 

clear difference between metatranscriptomes originating from near the oxycline (110 

m) and from below (120 m & 160 m). We found that 94 out of the top 100 transcribed 

genes were shared between the two deeper metatranscriptomes from 120 m and 160 m 

depth. This was not the case for the 110 m metatranscriptome where only about half of 

the top 100 transcribed genes were shared with the metatranscriptomes from 120 m 
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and 160 m. We found several genes encoding for toxin-antitoxin systems and proteases 

exclusively transcribed among the top 100 genes by “Ca. M. limnetica” at 110 m. Toxin-

antitoxin systems appear to have an important role in bacterial stress physiology and 

growth control (Blower et al, 2011; Buts et al, 2005; Hayes & Low, 2009). Hence, the 

increased transcription of these genes might reflect a response of “Ca. M. limnetica” to 

hypoxic conditions close to the oxycline.  

Transcription of functional genes involved in methane oxidation and 

denitrification was in accord with the proposed anaerobic, methanotrophic and 

denitrifying lifestyle of NC10 bacteria. Among the 100 most transcribed genes of “Ca. M. 

limnetica” shared in all three metatranscriptomes were the genes encoding for methane 

oxidation and denitrification (Table 3); in particular genes encoding for particulate 

methane monooxygenase, nitrite reductase and one gene copy of the putative NO 

dismutase (MEZU 0035; Table 2a). At 120 m and 160 m, transcription of the second gene 

copy (MEZU 0036) was three orders of magnitude lower (Table 2). Interestingly, at 110 m 

both putative NO reductase genes were highly transcribed (Table 2a). This observation 

is in line with the suggestion of Luesken et al (2012) who proposed that “Ca. M. oxyfera” 

might only transcribe both copies of NO reductase when exposed to oxygen. 

Transcription of the “canonical” qNOR was detected at all depths, implying that “Ca. M. 

limnetica” might also reduce NO to N2O in situ. However, the transcription levels of the 

‘canonical’ qNOR were significantly lower than those of the predominantly transcribed 

putative NOD (84 to 146-fold). “Ca. M. limnetica” also encoded a periplasmic nitrate 

reductase (NapAB) but its transcription was much lower than that of e.g. the nitrite 

reductase (NirS; Table 2). It thus remains unclear, whether M. limnetica can use nitrate as 

an electron acceptor in situ. “Ca. M. oxyfera”, which also possesses NapAB, was incapable 

of using nitrate as electron acceptor (Ettwig et al, 2010a).  
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Table 2. In situ transcription of selected functional respiratory genes of “Ca. M. limnetica”. 
Listed are functional genes encoding for dissimilatory nitrogen metabolism and respiratory 
complexes of “Ca. M. limnetica” and their respective transcription. Transcription was quantified 
as RPKM (reads per 1 kb gene length and per million mapped transcripts) in metatranscriptomes 
obtained from 110 m, 120 m and 160 m depth. Gene homologs of “Ca. M. oxyfera” have been 
identified using amino-acid sequences BLASTP; only the top hit (by e-value or % sequence 
identity) is shown (alignment coverage >94%; except NapA 83%). 

Protein Gene Locus tag 

Homolog in “Ca. 

M. oxyfera” 

Transcription (RPKM) 

110 m 120 m 160 m 

Periplasmic nitrate reductase napA MEZU_02571 DAMO_2411 435 6,096 6,668 

 napB MEZU_02570 DAMO_2410 746 8,539 9,888 

Nitrite reductase nirS MEZU_02574 DAMO_2415 7485 231,857 267,063 

Nitric oxide reductase norZ1 MEZU_00990 DAMO_1889 478 3,560 3,748 

 norZ2 MEZU_00036 DAMO_2434 12,188 1,215 1,472 

 norZ3 MEZU_00035 DAMO_2437 40,540 468,670 549,730 

Cytochrome c oxidase, A1-type coxIIII MEZU_00432 DAMO_1162 116 3,901 3,804 

 coxIII MEZU_00433 DAMO_1164 109 2,927 3,027 

 coxI MEZU_00434 DAMO_1165 113 1,912 2,135 

 coxII MEZU_00435 DAMO_1166 159 2,247 2,332 

Alternative oxidase aox MEZU_01093 DAMO_2910 62 1,694 1,653 

Cytochrome bc-like complex qcrA MEZU_00163 DAMO_0820 229 6,660 7,053 

 qcrB MEZU_00164 DAMO_0821 217 5,212 5,884 

 - MEZU_00165 DAMO_0822 191 4,840 5,400 

Cytochrome bc-like complex qcrA MEZU_00213 DAMO_1672 431 4,460 4,270 

 qcrB MEZU_00214 DAMO_1671 402 4,461 4,949 

 - MEZU_00215 DAMO_1670 237 2,739 2,934 

 - MEZU_00216 DAMO_1669 311 4,786 5,246 
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Table 3. In situ transcription of functional genes of “Ca. M. limnetica” involved in methane 
oxidation. Listed are functional genes encoding for the complete methane oxidation pathway 
in “Ca. M. limnetica” and their respective transcription. Transcription was quantified as RPKM 
(reads per 1 kb gene length and per million mapped transcripts) in metatranscriptomes 
obtained from 110 m, 120 m and 160 m depth. Gene homologs of “Ca. M. oxyfera” were 
identified using amino-acid sequences BLASTP; only the top hit (by e-value or % sequence 
identity) is shown (alignment coverage >93%). 

Protein Gene Locus tag 

Homolog in “Ca. 

M. oxyfera” 

Transcription (RPKM) 

110 m 120 m 160 m 

Particulate methane 

monooxygenase 
pmoC MEZU_00022 DAMO_2451 20,096 294,363 345,326 

 pmoA MEZU_00023 DAMO_2450 11,744 245,506 291,305 

 pmoB MEZU_00024 DAMO_2448 11,669 237,046 273,803 

Methanol dehydrogenase xoxG MEZU_01075 DAMO_0138 736 17,397 17,994 

 xoxJ MEZU_01076 DAMO_0136 777 20,638 22,392 

 xoxF MEZU_01077 DAMO_0134 4,206 97,097 110,208 

Formaldehyde activating enzyme fae MEZU_01323 DAMO_0454 4,534 123,653 122,288 

Methylene H4MPT dehydrogenase mtd MEZU_01324 DAMO_0455 1,298 39,926 43,705 

Formyltransferase/hydrolase 

complex 
fhcB MEZU_01326 DAMO_0457 776 23,016 25,528 

 fhcA MEZU_01327 DAMO_0458 567 15,587 16,861 

 fhcD MEZU_01328 DAMO_0459 580 18,222 19,083 

 fhcC MEZU_01329 DAMO_0460 777 22,242 23,125 

Bifunctional methylene H4F 

dehydrogenase / methenyl H4MPT 

cyclohydrolase 

folD MEZU_00798 DAMO_1852 322 5,799 5,560 

Formyl H4F deformylase purU MEZU_02250 DAMO_2586 69 855 1,076 

Formate dehydrogenase fdhA MEZU_00184 DAMO_0853 130 2,869 3,429 

 

Table 4. Overview of genes encoding for enzymes involved in nitrogen oxide and oxygen 
respiration of “Ca. M. limnetica” and “Ca. M. oxyfera”. The nomenclature of heme-copper 
oxidase 1-3 of “Ca. M. oxyfera” is listed according to (Wu et al, 2011a). 

 Nar Nap NirS qNor Nos Hao HCO1 
(cox) 

HCO2 
(cyo) 

HCO3 
(cba) 

AOX cytochrome 
bc1 complex 

“Ca. M. limnetica” - + + + - - + - - + (-) 
“Ca. M. oxyfera” + + + + - + + + + + + 

 

Besides genes involved in methane oxidation and dissimilatory nitrogen 

metabolism, many genes encoding for proteins involved in transcription and translation 

(i.e. RNA polymerase, translation initiation factor) as well as numerous ribosomal 

proteins were among the highest transcribed genes at all depths. Furthermore, we 

identified a well transcribed gene cluster encoding for several gas vesicle-related 
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proteins including the main structural gas vesicle protein (GvpA) and associated 

proteins (GvpL/F, GvpN and GvpK). In fact, gvpA was among the highest transcribed 

genes at all depths (~500,000 RPKM at 120 and 160 m). The presence and expression of 

genes encoding for gas vesicles suggests that “Ca. M. limnetica” might be capable of 

adjusting or maintaining its position in the water column. Interestingly, “Ca. M. oxyfera”, 

which was isolated from freshwater sediment, appears not to encode homologs of 

these Gvp-associated proteins.  

The large proportion of highly transcribed genes in all three in situ 

transcriptomes suggests that at the time of sampling the “Ca. M. limnetica” population 

was still transcriptionally active, even though it is not clear whether this activity was 

accompanied by methane oxidation. 
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Experimental Procedures  

Geochemical profiling and sample collection 

Sampling was carried out in September 2016 at a single station located in the 

deep, southern lake basin of Lake Zug (~200 m water depth; 47°06'00.8" N, 8°29'35.0" E). 

A multi-parameter probe was used to measure conductivity, turbidity, depth (pressure), 

temperature and pH (XRX 620, RBR, Ottawa, ON, Canada). Dissolved oxygen was 

monitored online with normal and trace micro-optodes (types PSt1 and TOS7, Presens, 

Regensburg, Germany) with detection limits of 125 and 20 nM, respectively, and a 

response time of 7 s (Kirf et al, 2014). Water samples for measurements of methane and 

nitrous oxide concentrations were retrieved from distinct depths with a syringe 

sampler. Water from individual 50 ml syringes was filled through a gas-tight rubber 

tubing into serum bottles (120 ml), allowing water to overflow. Solid copper chloride 

(CuCl2) was immediately added in excess to the water samples and the bottles were 

closed with a butyl rubber stopper (head-space free) and crimped. Before analysis, a 

30ml headspace was set with N2 and after overnight equilibration methane and nitrous 

oxide concentrations were measured in the headspace with a gas chromatograph (GC; 

Agilent 6890 N, Agilent Technologies, Santa Clara, CA, USA) equipped with a Carboxen 

1010 column (30m× 0.53 mm, Supelco, Bellefonte, PA, USA) and a flame ionization 

detector. Methane concentrations in the water phase were back-calculated according to 

(Wiesenburg & Guinasso Jr, 1979).  

Concomitantly with dissolved gases, water samples for ammonium and NOx 

measurements were collected from the same depths using the same syringe sampler. 

40 ml of water was directly injected into a 50-ml Falcon tube containing 10 ml of OPA 

reagent for fluorometric ammonium quantification according to (Holmes et al, 1999). 

For NOx quantification, 1.5 ml of water was added to an eppendorf cup prefilled with 15 

μl HgCl2 and combined nitrate and nitrite concentration was determined by commercial 

chemiluminescence NOx analyzer after reduction to NO with acidic Vanadium (II) 

chloride (Braman & Hendrix, 1989). After reduction to NO, nitrite was determined with 

acidic potassium iodide and nitrate was then calculated as the difference between NOx 

and nitrite. 

From each depth, 3 ml of water were sampled into a 15 ml Falcon tube 

containing formaldehyde for subsequent FISH analyses.  
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Water for DNA/RNA analyses were collected with a Niskin bottle from 110m, 

120m and 160m water depth. For each depth, 2 x 1 L water was immediately filtered 

onboard (0.2 μm GTTP filter; Merck Millipore, Darmstadt, Germany); filters for DNA 

extraction were air dried and filters for RNA extraction were immediately immersed in 

RNAlater preservation solution (Life Technologies, Carlsbad, CA, USA). DNA and RNA 

filters were stored at – 20ºC until further processing.  

Diffusive flux calculation 

Diffusive fluxes (J) of O2, NH4 and CH4 across the hypolimnion–epilimnion 

interface were calculated assuming steady state by using the maximum concentration 

change ( C) over a specific depth range ( x; that is,  m) applying Fick’s first law:  

 

A turbulent diffusion coefficient (that is, Eddy diffusivity D) of 2.7 × 10−5 m2 s−1 

was used. Diffusive fluxes were calculated over depth intervals where gradients of the 

respective solutes were highest. For O2, the depth interval was 60 and 106 m. For CH4 

and NH4, the depth interval was 120 and 117.5 m. CH4 and NH4 flux in deeper depths was 

calculated over a depth interval of 150 and 180 m and 170 and 180 m, respectively. 

Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-
FISH) 

Waters samples (3 ml) were fixed with formaldehyde (final concentration 2% 

[w/v]) for 1.5 h at room temperature before being filtered onto polycarbonate GTTP 

filters (0.2 μm pore size, effective filter diameter = 20 mm; Merck Millipore, Darmstadt, 

Germany). Permeabilization with lysozyme, peroxidase inactivation, hybridization with 

specific oligonucleotide probes labeled with horseradish peroxidase (for details see 

Supplementary Table S1; Biomers, Ulm, Germany), tyramide reporter deposition 

(Oregon Green 488) and 4',6-diamidino-2-phenylindole (DAPI) counter staining was 

performed according to (Pernthaler et al, 2002). Filters were embedded in a mix of 

Citifluor/Vectashield (4:1) and mounted onto glass slides.  Cell counting was performed 

with Nikon Eclipse Ci microscope (Axioskop 2, Zeiss, Germany) in randomly selected 

fields of view until ~1000 DAPI-stained cells were counted. 
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Nucleic acid extraction and metagenome and metatranscriptome 
sequencing 

DNA was extracted from cut-up filters using Powersoil DNA isolation kit. For RNA 

extraction, filters were briefly rinsed with nuclease-free water and RNA was extracted 

from cut-up filters using PowerWater RNA isolation kit (including removal of genomic 

DNA by DNase I digestion). Both nucleic acid extraction kits (MoBio Laboratories, 

Carlsbad, CA, USA) were used according to manufacturer’s instructions. DNA and RNA 

were quantified using the Qubit dsDNA HS or RNA HS Assay kits and the Qubit 2.0 

Fluorometer (Invitrogen, Carlsbad, CA, USA).  

For metagenomic sequencing, DNA was fragmented by sonication (500 nt) using 

a Covaris S2 sonicator (Covaris, Woburn, MA, USA) and library preparation was done 

according to manufacturer’s instructions using NEBNext Ultra II DNA Library Prep Kit for 

Illumina (New England Biolabs, Ipswich, MA, USA). Paired-end sequencing (2×250 bp) 

was performed using the Illumina HiSeq2500 platform (Illumina Inc., San Diego, CA, 

USA) in rapid mode with SBS chemistry v2. For metatranscriptomic sequencing, total 

RNA was first concentrated using the RNA Clean & Concentrator kit (Zymo Research 

Corp., Irvine, CA, USA) according to manufacturer’s instructions. Depletion of rRNAs was 

done with the Ribo-Zero rRNA Removal Kit (Bacteria) for Illumina (Epicentre, Madison, 

WI, USA) with a protocol adaptation for low input amounts. cDNA library preparation 

was done with the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New 

England Biolabs) according to protocol and sequencing (1×150 bp) was performed 

using the Illumina HiSeq3000 platform (Illumina Inc.) with SBS chemistry. Library 

preparation and sequencing was performed by the Max Planck-Genome-centre 

Cologne, Germany (http://mpgc.mpipz.mpg.de/home/). Detailed information for each 

metagenomic and metatranscriptomic dataset can be found in Supplementary Table 

S2. 

Metagenomic assembly, binning and genome analysis 

Paired-end Illumina reads were trimmed using Trimmomatic 0.32 (Bolger et al, 

2014) and parameters MINLEN:20 ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:50. Trimmed Illumina reads from all three 

metagenomes were co-assembled using metaSPAdes assembler 3.9.1 (Nurk et al, 2016) 

and k-mer lengths of 21,33,55,77,99,127. Illumina reads of each metagenome were 
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mapped to the assembled contigs using BBmap 35.43 (Bushnell, 2016) with 

approximate minimum identity of 95% (minid=0.95) and default parameters. Open 

reading frames were predicted using Prodigal 2.60 (Hyatt et al, 2010) running in 

metagenomic mode (-p meta) and standard parameters. Translated amino-acid 

sequences were subsequently searched for using HMMER3 (http://hmmer.org/) against 

a set of 107 hidden markov models of essential single-copy genes (Dupont et al, 2012) 

using trusted cutoff values (-cut_tc) and default settings. Protein sequences coding for 

essential single copy genes were searched against NCBI non-redundant database 

(retrieved August 2015) using DIAMOND 0.8.34 blastp (Buchfink et al, 2015) and an e-

value cutoff of 10–6. The taxonomy (class level) of each essential single-copy gene was 

assigned using MEGAN5 and the mmgenome script ‘hmm.majority.vote.pl’ 

(http://madsalbertsen.github.io/mmgenome/). Binning of “Ca. M. limnetica” contigs 

from the co-assembly was based on differential contig coverage in metagenomes from 

160 m and 120 m (Supplementary Figure 1) and was performed using the mmgenome R 

package (http://madsalbertsen.github.io/mmgenome/; (Karst et al, 2016)). Trimmed 

Illumina reads of the 160 m metagenome were mapped to the binned contigs using 

BBmap and stringent mapping settings (approximate minimum identity = 0.95). 10% of 

the mapped reads were selected at random and re-assembled using SPAdes 3.50 

(Bankevich et al, 2012) with mismatch corrector enabled (-careful). The re-assembly was 

further refined by removing short and low-coverage contigs (length < 500, average 

coverage < 10-fold). The quality of the re-assembled genome was assessed using 

CheckM 1.05 (Parks et al, 2015) running the lineage-specific workflow and genome 

annotation was performed using Prokka 1.12 (Seemann, 2014a) in metagenomic mode 

(-metagenome) and the RAST online annotation server (Aziz et al, 2008). The annotation 

of key metabolic pathways was manually inspected and refined. 

The Whole Genome Shotgun project of “Ca. Methylomirabilis limnetica” has 

been deposited at DDBJ/ENA/GenBank under the accession NVQC00000000 and 

BioProject PRJNA401219. The version described in this paper is version NVQC01000000.  

For microbial community analysis from metagenomic Illumina reads, trimmed 

paired-end reads matching the 16S rRNA gene sequence were identified using 

SortMeRNA 2.1 (Kopylova et al, 2012) and supplied archaeal and bacterial 16S rRNA 

databases (silva-arc-16S-id95, silva-bac-16S-id90). Paired-end rRNA gene sequences 
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were then merged using BBmerge (Bushnell, 2016) with a minimum overlap of 20 bases. 

The merged reads (~8,700 – 11,400 sequences for each metagenome) were submitted 

to the SILVAngs web service (Quast et al, 2013) for taxonomic classification.  

Pairwise average nucleotide identity (ANI) values between the genomes of “Ca. 

M. limnetica” and “Ca. M. oxyfera” were calculated using BLAST (ANIb) and the 

JSpeciesWS online service (Richter et al, 2015). Relative genome sequence coverage of 

“Ca. M. oxyfera” (Supplementary Figure 2) was calculated by mapping trimmed 

metagenomic sequences from Lake Zug (160 m) to the genome of “Ca. M, oxyfera” 

(retrieved from GenBank; accession FP565575) using BBmap 35.43 (Bushnell, 2016) and 

standard settings. Average genome coverage (500 bp interval) was calculated and 

visualized using BLAST Ring Image Generator (Alikhan et al, 2011). Gene coordinates of 

selected genes were imported from GenBank and Refs. (Luesken et al, 2012; Wu et al, 

2011a). Homologs shared between “Ca. M. limnetica” and “Ca. M. oxyfera” were 

identified by using BLASTP (Camacho et al, 2009) with protein-coding CDS of “Ca. M. 

limnetica” as queries and all protein-coding CDS of “Ca. M. limnetica” as subject 

database. The homologs reported in Tables 2 and 3 represent the top BLASTP hit (by e-

value and % sequence identity) and were manually inspected to assure that the 

alignment coverage was sufficient (typically > 90%) 

Multiple sequence alignment of amino-acid sequences of nitric oxide reductase 

was done following the previous alignment by (Ettwig et al, 2012). Sequences were 

retrieved from GenBank, imported into JalView 2.10.1 (Waterhouse et al, 2009) and 

aligned using ClustalOmega 1.0.2 (Sievers et al, 2011) web service implemented in 

JalView. 

Metatranscriptome data analysis 

Illumina reads were trimmed using Trimmomatic 0.32 (Bolger et al, 2014) 

performing removal of Illumina adapters (ILLUMINACLIP:TruSeq3-SE.fa:2:30:10), 

adaptive trimming (MAXINFO:100:0.2) and retaining reads with a minimum length of 75 

bp (MINLEN:75). Ribosomal RNA (rRNA) reads were removed from the trimmed reads 

using SortMeRNA 2.1 (Kopylova et al, 2012) and the prepackaged 8 rRNA databases 

(silva-bac-16s-id90, silva-arc-id95, silva-euk-18s-id95, silva-bac-23s-id98, silva-arc-23s-

id98, silva-euk-28s-id98, rfam-5s-id98, rfam-5.8s-id98). The non-rRNA reads were 

mapped to the genome of “Ca. M. limnetica” using Bowtie2 2.1.0 (Langmead & Salzberg, 
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2012) and standard parameters. Indexed BAM files were generated using samtools 

0.1.19 (Li et al, 2009) and the count of alignment to genomic features (based on the 

indexed BAM file as well as GFF file generated by Prokka) was performed using bedtools 

2.23.0 multicov tool (Quinlan & Hall, 2010). Normalized gene transcription was 

quantified as “reads per kilobase and million” (RPKM) (Mortazavi et al, 2008) which was 

calculated by counting the number of mapping reads per gene divided by gene length 

(in kilobases) and sum of reads mapping to all genes (in millions). 

Phylogenetic analyses 

Full length 16S rRNA gene sequence was retrieved from the genome of “Ca. M. 

limnetica” using RNAmmer 1.2 (Lagesen et al, 2007), aligned using the SILVA 

incremental aligner (SINA) (Pruesse et al, 2012) and imported to the SILVA SSU NR99 

database (release 123; (Quast et al, 2013)) using ARB 6.1 (Ludwig et al, 2004). Additional 

NC10 16S rRNA gene sequences originating from Lake Constance (Deutzmann & Schink, 

2011), Brunssummerheide (Zhu et al, 2012) and the Eastern Tropical North Pacific 

(Padilla et al, 2016) were also added to this dataset. Maximum likelihood phylogenetic 

trees of 16S rRNA gene sequences were calculated using RAxML 7.7.2 (Stamatakis, 2006) 

integrated in ARB with the GAMMA model of rate heterogeneity and the GTR 

substitution model with 500 bootstraps. 

NC10 PmoA amino-acid sequences were identified and retrieved from NCBI 

GenBank using blastp against the NCBI non-redundant protein database with the PmoA 

amino-acid sequence of “Ca. M limnetica” as query. As an outgroup, methane and 

ammonium monooxygenase subunit A sequences of Methylomicrobium japanense 

(PmoA, BAE86885.1), Methylocystis sp. SC2 (PmoA, CCJ08278.1), Methylacidiphilum 

fumariolicum SolV (PmoA1, CCG92750.1) and Nitrosomonas cryotolerans (AmoA, 

AAG60667.1) were added to the dataset. Maximum likelihood phylogenetic trees of 

were calculated using RAxML 8.2.6 (Stamatakis, 2014) using the GAMMA model of rate 

heterogeneity and the substitution matrix and base frequency of the WAG model with 

100 bootstraps (parameters -f a -k -N -m PROTGAMMAWAG). Phylogenetic trees were 

visualized using the Interactive Tree of life (iTOL v3) webservice (Letunic & Bork, 2016). 
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Etymology 

“Candidatus Methylomirabilis limnetica” [lim.ne′ti.ca. N.L. fem. adj. limnetica 

pertaining to lakes] 
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Summary 

Sulfate-dependent anaerobic oxidation of methane (S-AOM) is mediated by a 

consortium of anaerobic methanotrophic archaea (ANME) and associated 

Deltaproteobacteria. This strictly anaerobic process is the dominant sink of methane in 

marine sediments and controls the flux of methane, a potent greenhouse gas, to the 

atmosphere. However, the absence of pure cultures of S-AOM microorganisms has 

hampered our understanding of their physiology and interactions. Here, we studied the 

metabolic potential and activity of S-AOM-associated microorganisms in a highly active 

S-AOM enrichment culture using a functional metagenomics approach, including 

metagenomic, metatranscriptomic and metaproteomic techniques. We reconstructed 

genomes of ANME-2c archaea and SEEP-SRB1 bacteria, which represent the first 

genomes of their respective genus or even family. We confirmed that ANME-2c archaea 

expressed a complete reverse methanogenesis pathway for methane oxidation and 

proposed several candidate genes, specifically two sulfite reductases, which might be 

involved in a previously proposed archaeal dissimilatory sulfate reduction pathway. 

Furthermore we raised the possibility of flavin-based electron bifurcation by soluble 

heterodisulfide reductase as an important but overlooked aspect in the electron 

transport chain of ANME. Our data also confirmed that SEEP-SRB1 expressed a complete 

sulfate reduction pathway and associated membrane-bound complexes, which 

arguably could also be involved in sulfur disproportionation. Moreover, we investigated 

the potential for electron transfer via multiheme cytochromes c and pili between ANME-

2c and SEEP-SRB1.  
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Introduction 

Marine sediments are hotspots of methane cycling. Methane, a potent 

greenhouse gas, is copious in anaerobic marine sediments where it originates 

predominantly from microbial degradation but also thermal breakdown of buried 

organic matter (Reeburgh, 2007). However, very little methane escapes the sediments 

mainly due to the activity of anaerobic methane-oxidizing microorganisms. These 

specialized microorganisms dine on methane in the complete absence of molecular 

oxygen but instead use sulfate, which is abundantly present in the marine environment, 

as electron acceptor for the anaerobic oxidation of methane (AOM). This biological 

process is termed sulfate-dependent anaerobic oxidation of methane (S-AOM, Eq. 1) 

and plays a pivotal role in regulating the flux of methane from marine sediments 

(Boetius & Wenzhöfer, 2013; Reeburgh, 2007). 

(Eq. 1)  CH4 + SO4
2– → HCO3

– + HS– + H2O 

The microorganisms that mediate S-AOM have puzzled researchers ever since 

the discovery of the S-AOM process in the mid-seventies (Barnes & Goldberg, 1976; 

Martens & Berner, 1974). The idea that S-AOM was the result of cooperation between 

two different microorganisms already emerged early on (Hoehler et al, 1994; Zehnder & 

Brock, 1979) and has been a central theme of S-AOM research ever since. Numerous 

studies have provided evidence that S-AOM is mediated by anaerobic methanotrophic 

archaea (ANME) and bacteria related to sulfate-reducing Deltaproteobacteria (Boetius et 

al, 2000; Hinrichs et al, 1999; Michaelis et al, 2002; Orphan et al, 2002). In situ but also in 

vitro studies have shown that ANME and the associated bacteria co-occur (or co-enrich) 

and often form tight aggregates further fueling the discussion about a commensalistic 

or even mutualistic relationship between the two microorganisms (Boetius et al, 2000; 

Knittel et al, 2005; Nauhaus et al, 2007; Nauhaus et al, 2002; Orphan et al, 2002). 

Phylogenetically, methane-oxidizing ANME archaea form distinct groups related 

to methanogenic archaea within the phylum Euryarchaeota (Knittel & Boetius, 2009). 

The three main groups discovered thus far are related to the methanogenic orders of 

Methanomicrobiales (ANME-1) and Methanosarcinales (ANME-2 and -3) (Boetius et al, 

2000; Hinrichs et al, 1999; Niemann et al, 2006). The ANME groups are separated by 

large phylogenetic distances and belong to different orders or families (Knittel & 
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Boetius, 2009; Knittel et al, 2005) – even the diversity within the ANME groups is 

considerable. For example, the polyphyletic ANME-2 group is subdivided into several 

subgroups (ANME-2a/b,c,d) (Martinez et al, 2006; Mills et al, 2005) that exhibit strikingly 

different physiology. Whereas ANME-2a/b and -2c appear to be associated with sulfate-

dependent AOM (Knittel et al, 2005), “Ca. Methanoperedens nitroreducens” (ANME-2d) 

has not been observed in consortia and uses nitrate, iron or manganese instead of 

sulfate as electron acceptor (Arshad et al, 2015; Ettwig et al, 2016; Haroon et al, 2013a). 

The S-AOM associated Deltaproteobacteria are similarly diverse and are either related to 

the Desulfosarcina/Desulfococcus clade (DSS), Desulfobulbus (DBB) or “Ca. 

Desulfofervidus” (HotSeep1 cluster) (Holler et al, 2011; Krukenberg et al, 2016; Lösekann 

et al, 2007; Schreiber et al, 2010). DSS- and DBB-related members are further divided 

into four SEEP-SRB clades (Kleindienst et al, 2012). Thus far, all ANME groups have been 

shown to live in consortia – ANME-2 archaea are mostly associated with DSS and ANME-

3 with DBB (Knittel & Boetius, 2009). However, ANME also have been consistently found 

without a partner (in particular ANME-1) or a partner unrelated to SEEP-SRB (Knittel et al, 

2005; Lösekann et al, 2007; Orphan et al, 2002; Pernthaler et al, 2008; Schreiber et al, 

2010).  

The interplay between ANME and associated Deltaproteobacteria has been 

investigated in great detail but the mechanism is still not fully understood. Several lines 

of evidence have unambiguously established that all known groups of ANME archaea 

are capable of anaerobic oxidation of methane (Hallam et al, 2004; Hinrichs et al, 1999; 

Scheller et al, 2010). However, there still exists conflicting evidence about the role of the 

co-occurring and putatively sulfate-reducing bacteria associated with S-AOM. The 

phylogenetic association of DSS with other sulfate-reducing bacteria has led to the 

hypothesis of a syntrophic relationship between methane-oxidizing ANME and sulfate-

reducing bacteria. Such a syntrophic relationship would however necessitate an 

electronic coupling between the partners for which several mechanisms have been 

proposed (see reviews by (Knittel & Boetius, 2009; Widdel et al, 2007)): I) direct 

interspecies electron transfer, II) diffusible redox-active mediators or III) reduced carbon 

compounds. Recent studies of ANME-1 and -2 have provided evidence in favor of direct 

interspecies electron transfer (McGlynn et al, 2015; Scheller et al, 2016; Skennerton et al, 

2017; Wegener et al, 2015) whereas the latter mechanism involving transfer of reduced 
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carbon compounds but also H2 has been extensively tested on different ANME groups 

but could not be confirmed (Nauhaus et al, 2005; Wegener et al, 2015; Wegener et al, 

2008). Similarly, redox-active mediators such as humic acids, AQDS or phenazines did 

not appear to be suitable electron acceptors for methane oxidation by ANME-1 and -2 

communities (Nauhaus et al, 2005). However, this observation was recently challenged 

by a study showing decoupling of archaeal methane oxidation by ANME-2 via diffusible 

electron acceptors (i.e. AQDS isomers) (Scheller et al, 2016). Yet a different S-AOM model 

has suggested that ANME-2 can couple methane oxidation to sulfate reduction 

independently of DSS, thus challenging the longstanding paradigm of a syntrophic 

relationship between S-AOM microorganisms (Milucka et al, 2012). According to the 

model, ANME-2 archaea perform both methane oxidation and sulfate reduction. Zero-

valent sulfur formed by archaeal sulfate reduction could react abiotically under sulfidic 

conditions forming polysulfides which are subsequently disproportionated to sulfate 

and sulfide by the DSS.  

Despite the surge of metagenomic studies, surprisingly few genomes of ANME 

and associated bacteria have been published. So far, genomes representing ANME 

subgroups ANME-1, -2a and -2d have been published (Arshad et al, 2015; Haroon et al, 

2013a; Meyerdierks et al, 2010; Wang et al, 2014). Hence, our knowledge of the 

metabolic potential of the phylogenetically diverse ANME groups and subgroups is still 

incomplete. For example, no genome of ANME-2c group has been published yet, even 

though members of this subgroup are globally distributed and found in many marine 

sediments (Knittel & Boetius, 2009; Ruff et al, 2015). Likewise, we know very little about 

the metabolic potential of the S-AOM-associated bacteria for which only recently 

several genomes have become available (Krukenberg et al, 2016; Skennerton et al, 

2017) 

Here, we used an functional metagenomics approach to study the metabolic 

potential and activity of ANME-2c archaea and associated DSS bacteria present in an S-

AOM enrichment culture. In particular we focused on metabolic pathways involved in 

methane and sulfur transformation. In addition, we evaluate different hypotheses 

surrounding the S-AOM mechanism using our genomic, transcriptomic and proteomic 

data. 
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Methods 

Cultivation and maintenance of S-AOM enrichment culture 

The S-AOM enrichment culture derived from a culture that has been enriched 

over 10 years from a sediment sample collected on a cruise of RV L’Atlante in September 

2003 in the eastern Mediterranean Sea (Milucka et al, 2012). The ISIS culture was 

incubated in artificial SRB seaweater medium (salts: 0.76 mmol l-1 KBr, 8.05 mmol l-1 KCl, 

10 mmol l-1 CaCl2 * 2 H2O, 27.9 mmol l-1 MgCl2 * 6 H2O, 27.6 mmol l-1 MgSO4 * 7 H2O, 451 

mmol l-1 NaCl, 4.67 mmol l-1 NH4Cl, 1.47 mmol l-1 KH2PO4, 30 mmol l-1 NaHCO; vitamins 

and trace elements: according to (Widdel & Bak, 1992); redox indicator: 1 mg l-1 

Resazurin; reducing agent: 0.5 mmol l-1 H2S pH 7.5) anaerobically in serum bottles sealed 

with butyl rubber stoppers. Serum bottles having a N2:CO2 (90:10) headspace were 

pressurized with methane (Air Liquide) to 3 bar overpressure and incubated on a shaker 

(40 rotations min-1.) at room temperature. Medium was regularly exchanged with fresh 

artificial seaweater medium when sulfide concentrations reached ~ 20 mmol l-1 in an 

anaerobic glove box (Mecaplex) under N2:CO2 (90:10) atmosphere.  

Sulfide was determined spectrophotometrically at 670nm using the methylene 

blue method (Cline, 1969). Prior to sulfide determination, samples were filtered (0.45 

μm) and immediately fixed with 5% ZnCl2 (0.5x sample volume). For sulfate 

determination, samples fixed with ZnCl2 (same as sulfide samples), filtered through a 

syringe filter (0.45 μm) and analyzed on a 761 Compact ion chromatograph (Methrom) 

equipped with CO2 suppressor module, Zn trap (Metrosep A Trap 1-100/4.0) and a 

Metrosep A SUPP5 column. Carbonate buffer (3.2 mmol l-1 Na2CO3, 1 mmol l-1 NaHCO3) 

served as an eluent. 

A sulfur amended S-AOM culture, which was sequenced and used for differential 

coverage binning, was obtained by transferring biomass of 15 ml S-AOM enrichment 

culture anaerobically to an equal amount of sulfate-free artificial SRB seawater medium 

(same as S-AOM enrichment culture, except: 55.5 mmol l-1 MgCl2 * 6 H2O, 0.0 mmol l-1 

MgSO4 * 7 H2O, 423 mmol l-1 NaCl; trace element solution did not contain FeSO4 * 7 H2O) 

in a 50 ml serum bottle which was subsequently pressurized with 1 bar N2. To this 

culture, colloidal sulfur stock solution (~30 mmol S l-1 suspended in sulfate-free artificial 

SRB seawater medium) was added to a final sulfur concentration of ~ 3.5 mmol l-1. 

Colloidal sulfur was prepared as described by (Steudel et al, 1988) except that the sulfur 
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pellet was suspended in sulfate-free SRB medium instead of H2O after 9 rounds of 

peptization. The sulfur amended S-AOM culture was maintained by exchanging the 

medium roughly every 2 month with fresh sulfate-free artificial SRB seawater medium 

amended with colloidal sulfur stock solution (final sulfur concentration of ~3.5 mmol l-1). 

Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) 

Aliquots of the S-AOM enrichment culture were fixed in 2% formaldehyde in 50 

mM phosphate buffer (pH 7.4) at room temperature for 1h and filtered onto 

polycarbonate GTTP filters (0.2 μm pore size; Millipore). CARD-FISH was performed on 

filter pieces according to (Pernthaler et al, 2002). In brief, cells were permeabilized with 

lysozyme solution (10 mg ml-1 lysozyme in 0.1 M Tris buffer containing 0.05 M EDTA) for 

1 h at 37°C followed by sodium dodecyl sulfate (0.5% [m/m]) for 10 min. at room 

temperature. Endogenous peroxidases were bleached with 0.01 M hydrochloric acid. 

Hybridization was performed using specific oligonucleotide probes linked to horse 

radish peroxidase (Biomers, Germany) for ANME (ANME2-538) and DSS (DSS-658). 

Hybridization was performed for 3 h at 46°C at 40% (ANME2-538) or 50% (DSS-658) 

formamide concentration. Amplification was performed using tyramide Alexa 488 (1 μl 

ml-1; for DSS-658) or Alexa 594 (1 μl ml-1; for ANME2-538) for 20 min. at room 

temperature. For double-labeled CARD-FISH, this process was repeated (without 

permeabilization) after additional peroxidase inactivation with 0.5% H2O2 followed by 

ethanol wash. Filter pieces were then stained with 4',6-diamidino-2-phenylindole (DAPI, 

1 μg ml-1) for 20 min. at room temperature, embedded in a mounting solution (4:1 v/v 

Citifluor:Vectashield), mounted on glass slides and visualized by epifluorescence 

microscopy (Axioskop 2, Zeiss) 

Total RNA and DNA extraction 

S-AOM biomass was harvested by centrifugation (5 min at 5000 x g) from ~10ml 

S-AOM enrichment culture. Total RNA and genomic DNA was extracted from the cell 

pellet using Powersoil Total RNA isolation kit followed by DNA Elution Accessory Kit 

(both MoBio Laboratories) as per manufacturer’s instructions. Additionally, genomic 

DNA was isolated from the same S-AOM enrichment culture using DNeasy Blood 

&Tissue kit (Qiagen) according to manufacturer’s instructions. DNA from 5 ml sulfur-
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amended S-AOM culture was harvested after 5 month of incubation as described above 

using the Powersoil Total RNA isolation kit followed by DNA Elution Accessory Kit. 

Whole metagenomic and metatranscriptomic shotgun sequencing 

Genomic DNA extracted from the S-AOM enrichment culture (“Powersoil” and 

“Blood&Tissue” DNA extraction) was fragmented by sonication (600 - 700bp) using a 

Covaris S2 sonicator (Covaris, USA), libraries were prepared using NEBNext Ultra DNA 

Library Prep Kit for Illumina (New England Biolabs) and paired-end sequencing (2 x 

250bp) was performed using the Illumina MiSeq platform with Illumina Chemistry v3 

(Illumina). Library preparation and MiSeq sequencing was performed by the Max 

Planck-Genome-center Cologne, Germany (http://mpgc.mpipz.mpg.de/home/).  

Genomic DNA obtained from the sulfur-amended S-AOM culture was sheared 

for 6 minutes using the Ion Xpress™ Plus Fragment Library Kit following the 

manufacturer’s instructions. Further library preparation was performed using the Ion 

Plus Fragment Library Kit following manufacturer’s instructions. Size selection of the 

library was performed using an E-gel 2% agarose gel. Emulsion PCR was performed 

using the Ion PGM™ Template OT2 400 kit and sequencing was performed on an 

IonTorrent PGM using the Ion PGM™ sequencing 400 kit and an Ion 318v2 chip. All kits 

used in this section were obtained from Life technologies. 

Total RNA extracted from the S-AOM enrichment culture was enriched for 

messenger RNA by partial removal of ribosomal RNA using the MICROBExpress™ 

Bacterial mRNA Enrichment Kit (Ambion) following manufacturer’s instructions. Further 

library preparation was performed using the Ion Total RNA-Seq Kit v2 following 

manufacturer’s instructions, with 10 min fragmentation. Size selection of the library was 

performed using an E-gel 2% agarose gel. Emulsion PCR was performed using the Ion 

PGM™ Template OT2 200 kit and sequencing was performed on an IonTorrent PGM 

using the Ion PGM™ sequencing 200 kit and an Ion 318v2 chip, resulting in resulting 4.5 

million reads with an average length of 116 bp. All kits used for metatranscriptomic 

shotgun sequencing were obtained from Life technologies. 

Metagenome assembly and genome binning 

Reads obtained from Illumina MiSeq sequencing were quality checked using 

FastQC (Andrews, 2010) and trimming as well as adapter removal was done using 
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Trimmomatic 0.32 (Bolger et al, 2014) and parameters MINLEN:20 

ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 

MINLEN:50.  

To remove low abundance reads and facilitate de-novo assembly, trimmed reads 

were binned by kmer depth using BBnorm of the BBmap package (Bushnell, 2016b) 

prior to assembly (S-AOM “Powersoil”: 30 – 550 kmer depth; S-AOM “Blood&Tissue”: 50 – 

1000 kmer depth). The filtered reads of the two samples were then assembled 

separately using SPAdes v3.1.0 (Bankevich et al, 2012) with mismatch corrector option 

enabled (--careful) and k-mer sizes of 21, 33, 55, 77, 99 and 127.  

Binning of metagenomic contigs was performed using a combination of 

differential coverage and tetranucleotide frequency binning implemented in the 

mmgenome 0.6.3 workflow (Albertsen et al, 2013; Karst et al, 2016). The ANME-2c 

genome was obtained from the “Blood&Tissue” assembly by differential coverage 

binning between “Blood&Tissue” and “Powersoil” datasets. The preliminary genomic bin 

of ANME-2c was further refined using tetranucleotide frequency (Supplementary Figure 

3). Using the same principles, a preliminary genome of SEEP-SRB1 was obtained from 

the “Powersoil” assembly. The preliminary SEEP-SRB1 genomic bin was further refined 

by differential coverage using metagenomic reads of the sulfur-amended S-AOM 

culture and “Blood&Tissue” datasets (Supplementary Figure 4). 

For binning of both genomes, only contigs longer than 500 bp were used and 

the average coverage of each contig was computed directly using BBmap 35.43 

(Bushnell, 2016a) with default parameters. Prodigal 2.60 (Hyatt et al, 2010) in 

metagenomic mode was used to predict open reading frames which were subsequently 

searched using HMMER 3.1b (Sean R. Eddy, 2015) against a set of 107 hidden markov 

models of essential single copy genes using default settings and trusted cutoff (-cut_tc) 

enabled. Protein sequences coding for essential single copy genes were searched 

against NCBI non-redundant database using BLASTP (Camacho et al, 2009) and a 

maximum e-value cutoff of 1e-6. The taxonomy (class level) of each essential single copy 

gene was assigned using MEGAN5 (Huson et al, 2007) (with the previously generated 

BLASTP xml file as input) and the mmgenome script “hmm.majority.vote.pl”.  

For genome re-assembly, reads used for the initial assembly (ANME-2c: 

“Blood&Tissue”, SEEP-SRB1: “Powersoil”) were mapped to the binned contigs 
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representing the genomes ANME-2c and SEEP-SRB1 using BBmap (Bushnell, 2016b) and 

stringent settings (approximate minimum identity = 0.98). Mapped reads were 

reassembled using SPAdes 3.5.0 (Bankevich et al, 2012) with mismatch corrector 

enabled (--careful), read coverage cutoff (--cov-cutoff 10) and default parameters. Small 

and low coverage contigs (<500bp; <10x coverage) were removed and quality of the 

reassembled bins was assessed using CheckM 1.05 (Parks et al, 2015) running the 

lineage-specific workflow. The two obtained genomes were annotated using Prokka 

1.11 in metagenomic mode (Seemann, 2014) and RAST annotation server (Aziz et al, 

2008).  

Phylogenetic analyses 

Full length 16S rRNA gene sequences were retrieved from the ANME-2c and 

SEEP-SRB1 genomes using RNAmmer 1.2 (Lagesen et al, 2007), aligned using the SILVA 

incremental aligner (SINA) 1.2.11 (Pruesse et al, 2012) and imported to the SILVA SSU 

NR99_123 database (Quast et al, 2013) using ARB 6.1 (Ludwig et al, 2004). Maximum 

likelihood phylogenetic trees of 16S rRNA gene sequences were calculated using RAxML 

7.7.2 integrated in ARB with the GAMMA model of rate heterogeneity and the GTR 

substitution model with 100 bootstraps.  

For microbial community analysis from metagenomic Illumina reads (only 

Blood&Tissue DNA extraction), trimmed paired-end reads matching the 16S rRNA gene 

were identified using SortMeRNA 2.1 (Kopylova et al, 2012) and supplied archaeal and 

bacterial 16S rRNA databases (silva-arc-16S-id95, silva-bac-16S-id90). Paired-end rRNA 

gene sequences were then merged using BBmerge (Bushnell, 2016b) with a minimum 

overlap of 20 bases. Merged reads were submitted to the SILVAngs web service (Quast 

et al, 2013) for taxonomic classification. 

Pairwise average amino acid identity (AAI) values were calculated using the web 

AAI calculator web service of the enveomics collection (http://enve-

omics.ce.gatech.edu/aai/, (Rodriguez-R & Konstantinidis, 2016)). Protein sequences of 

following reference genomes were retrieved: ANME-1, FP565147.1, (Meyerdierks et al, 

2010); ANME-2a, IMG 2565956544, (Wang et al, 2014); “Ca. M. nitroreducens”, IMG 

2515154041, (Haroon et al, 2013a) and SEEP-SRB1 genomes of BioProject identifiers 

PRJNA326769 and PRJNA290197 (Skennerton et al, 2017). 
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Transcriptomic data analyses 

Metatranscriptomic reads (4,386,143 sequences) were filtered by length (30bp 

cut-off), the surviving reads (4,1824,727) were processed using SortMeRNA 2.1 

(Kopylova et al, 2012) and the prepackaged 8 rRNA databases (silva-bac-16s-id90, silva-

arc-id95, silva-euk-18s-id95, silva-bac-23s-id98, silva-arc-23s-id98, silva-euk-28s-id98, 

rfam-5s-id98, rfam-5.8s-id98). The remaining non-rRNA reads (499,588) were mapped to 

the ANME-2c and SEEP-SRB1 genomes using Bowtie2 and standard parameters 

(Langmead & Salzberg, 2012). For each gene, normalized gene expression was 

quantified as “reads per kilobase and million” (RPKM) which is calculated by counting 

the number of mapping reads per gene divided by gene length (in kilobases) and total 

amount of mapped reads (in million). Mapped reads were quantified using bedtools 

multicov v2.23.0 (Quinlan & Hall, 2010) and normalized gene expression for each gene 

(in RPKM) was quantified using the Bioconductor package edgeR 3.6.8 (Robinson et al, 

2010). 

Metaproteomics 

15 ml S-AOM enrichment culture was harvested by centrifugation (5 min. at 5000 

x g) and the resulting biomass pellet was flash frozen in liquid nitrogen and stored at –

80ºC until further processing. The pellet was thawed and total protein was extracted 

and solubilized using RapiGest reagent (Waters). In-solution protein digested was 

performed as described previously (Wessels et al, 2010). Briefly, proteins were reduced 

by incubating the sample for 20 minutes in 10 mM DTT at room temperature. 

Subsequently, reduced cysteine residues were alkylated by incubating the sample with 

50 mM chloroacetamide for 20 minutes at room temperature in the dark. Subsequently, 

proteins were pre-digested using 0.5ug LysC enzyme (cuts C-terminal to Lys) for 3 hours 

at 37 degrees Celsius. Next, the sample was diluted 3 times with 50 mM ammonium 

bicarbonate and Trypsin was added (0.5 μg) for overnight digestion at 37 degrees 

Celsius. The resulting peptide mixture was desalted and concentrated using C18 

reversed phase solid phase extraction tips (Agilent Technologies C18 Omix tips). 

Proteomic analysis using LC–MS/MS was performed as described previously 

(Wessels et al, 2010). Measurements were performed using a nano-Advance nanoflow 

liquid chromatography system (Bruker Daltonics) coupled via electron spray ionization 
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captive sprayer to a maXis Plus UHR Qq–ToF mass spectrometer. Chromatographic 

separation was performed using a Acclaim PepMap 100 trapping column (75μm x 2 cm 

packed with nanoViper, 3μm 100Å C18 particles; Thermo Scientific) and Acclaim 

PepMap RSLC analytical column (40 ºC; 75μm x 15 cm, nanoViper, 2μm 100Å C18 

particles; Thermo Scientific). 3 μg tryptic digest peptide mixture was loaded on to the 

trapping column at 7 μl/min and eluted during a 240 min linear gradient of 3 – 35% 

acetonitrile in 0.1% formic acid at a flow rate of 500 nl/min. The mass spectrometer was 

operated in positive ion mode (AutoMSn; data dependent MS/MS): 3 sec duty cycle, 

mass range 200-3200 m/z, 2Hz full MS spectra rate, precursor intensity scaled MS/MS 

acquisition rate (3Hz @ 2000 cts - 20Hz @ 100.000 cts), preferred chargestate range z=2-

4+, only precursors within range of 400-1400 m/z, exclude singly charged precursors, 

0.5min dynamic exclusion enabled, reconsider precursor if current intensity/previous 

intensity >4, exclude after 1 spectrum). Fragmentation experiments were performed 

using collision induced dissociation. 

Raw MS/MS data were processed using MaxQuant software v.1.5.0.0 (Cox & 

Mann, 2008). The following settings were used for peptide and protein identification: 

carbamidomethyl (Cys) as fixed modification, oxidation (Met), and deamidation (NQ) as 

variable modifications, predefined MS and MS/MS settings for Bruker Qq-TOF 

instruments, minimal peptide length six amino acids and a maximum allowed false 

discovery rate of 1% at both the peptide and protein level. Translated coding DNA 

sequences were obtained from the Prokka annotation and were used as protein 

sequence database for searches of the MS/MS data. Protein abundance values were 

calculated as intensity based absolute quantification (iBAQ) values (Schwanhäusser et 

al, 2011). 

 

 

  



Chapte

106 

Result

Activity

continu

volcano

L’Atalan

amende

active –

stoichio

methan

specific

the maj

or ANM

Figure 1
consum
with me
aggrega
Alexa594

Genom
associa

T

S-AOM 

subject

gene re

initial o

r 4 - Physio

ts 

y and CARD

In this stu

uous cultiva

o Isis. The 

nte and ha

ed with me

– with met

ometrically 

ne, no sign

c CARD-FISH

jority of DA

ME-2 probe (

1. Microbia
ption and s
ethane as s
ate labeled w
4). c, Same f

me reconst
ated microo

To obtain t

enrichmen

ed to next-

eads from th

overview of

logy of S-A

D-FISH of S

udy we use

ation of ba

sediment w

s been ma

ethane eve

thane as th

to sulfide a

nificant sulf

H probes fo

API-stained 

(Figure 1b, 

al activity a
sulfide prod
ole electron
with probes
field of view 

ruction an
organisms

he genomi

nt culture, 

-generation

he metagen

f the micro

OM 

S-AOM enr

ed a high

atch cultur

was collect

aintained a

er since. Th

he sole elec

at high rate

fate reduct

or DSS (DSS

cells in the

1c; for deta

and CARD-F
uction of S-

n donor. b, 
s DSS-658 (g
as (b) staine

nd phyloge
s 

c blueprint

DNA was

n sequencin

nomic data

bial comm

richment cu

ly enriched

res from se

ted in Sept

nd sub-cul

e sedimen

ctron dono

s (~0.5 mm

ion or sulf

S-658) and 

e enrichme

ails on used

FISH of the 
-AOM enric
Double hyb

green, using
ed with DAPI

enetic ass

t of the S-AO

s extracted

ng. First, we

aset (Blood&

munity. Base

ulture 

d S-AOM c

ediments o

tember 20

ltured on a

t-free enric

or, this cultu

mol l-1 d-1) (Fi

fide produc

ANME-2 (A

nt culture w

d probes, se

S-AOM en
hment cultu
bridization C

g Alexa488) 
I. Scale bar re

ignment o

OM-associa

d from the

e retrieved a

&Tissue DN

ed on this a

culture ob

of the Med

03 on a cr

artificial sea

chment cul

ure reduce

igure 1a). In

ction was o

NME-2-538

were staine

ee Supplem

richment c
ure during 2
CARD-FISH 
and ANME-
epresents 5 

of the dom

ated microo

e enrichme

and classifie

A extractio

analysis we

btained thr

iterranean 

ruise of the

awater me

lture was h

ed sulfate n

n the absen

observed. U

8) we found

ed by eithe

mentary Tab

ulture. a, S
200 h incub
image of S

-2-538 (red, 
μm. 

minant S-A

organisms i

ent culture

ed the 16S 

on) to acqui

e estimated

 

ough 

mud 

e R/V 

dium 

highly 

nearly 

nce of 

Using 

d that 

r DSS 

ble 2). 

 

ulfate 
bation 
-AOM 
using 

AOM-

n the 

e and 

rRNA 

ire an 

d that 



Chapter 4 - Physiology of S-AOM 

 
107 

ANME-2 or SEEP-SRB constituted the majority of the microbial population in the 

enrichment culture. 16S rRNA gene sequences phylogenetically assigned to ANME-2 or 

SEEP-SRB groups accounted together for approximately 57% of all classified sequences. 

31% of all 16S rRNA gene sequences were classified as ANME-2 of which the majority 

was ANME-2c (~65% of ANME-2) and the rest ANME-2a/b (~35% of ANME-2). The S-

AOM-associated SEEP-SRB1 and 2 clades constituted 19% and 7% of all sequences, 

respectively. 

Next, the metagenomic reads were preprocessed, assembled and binned, 

resulting in two metagenomic bins that represented the genomic sequences of the two 

most abundant microbial populations (Supplementary Figure 3 and 4). The bins were 

preliminarily assigned to Deltaproteobacteria or Euryarchaeota based on taxonomic 

analysis of single copy genes. After reassembling, the genome quality was estimated 

with CheckM (Parks et al, 2015), which indicated that the genomes were almost 

complete (>95%) and contained little contamination (<6%). The analysis also revealed 

that both genomes exhibited significant strain heterogeneity (~50%; Table 1) and 

therefore likely represented population genomes of closely related strains. Using the 

same analysis, considerable strain heterogeneity was also observed for other published 

genomes of ANME-2a and ANME-1 (27% and 80%, respectively; (Meyerdierks et al, 2010; 

Wang et al, 2014)) but not for “Ca. Methanoperedens nitroreducens”. The general 

features of the ANME-2c and SEEP-SRB1 genomes that were obtained in this study are 

summarized in Table 1. 

Table 1. Overview of genome statistics of SEEP-SRB1 and ANME-2c. Coding sequences, 
rRNAs and coding sequences were predicted using Prodigal (Hyatt et al, 2010) and RNAmmer 
(Lagesen et al, 2007) implemented in Prokka (Seemann, 2014). Genome quality metrics were 
computed using CheckM (Parks et al, 2015) running the lineage specific workflow. 

 SEEP-SRB1 ANME-2c 

Contigs 250 206 

Genome size (bases) 3,765,937 2,834,694 

GC content (%) 41.6 49.9 

Coding sequences 3,469 2,909 

rRNAs  16S-23S-5S 23S/16S 

Completeness / Contamination / Strain 
heterogeneity (%)  

98.1 / 1.3 / 50.0  
(marker sets: 156) 

95.6 / 5.5 / 41.7  
(marker sets:154) 
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The assembled full-length 16S rRNA gene sequence present in each genomic bin 

was then used for a more detailed taxonomic classification. We were able to assign the 

two genomes, which were putatively assigned to Euryarchaeota and 

Deltaproteobacteria, to the dominant ANME-2c and SEEP-SRB1 population present in 

the enrichment culture(Supplementary Figure 1 and 2). Closely related 16S rRNA gene 

sequences (>98% identity) of the ANME-2c and SEEP-SRB1 genome have been retrieved 

from methane-rich sediments, particularly methane seeps, from around the globe such 

as Mediterranean mud volcanoes Kazan and Amsterdam, Hydrate Ridge, Santa Monica 

Basin and also near the island Elba (Meyerdierks et al, 2005; Pachiadaki et al, 2010; 

Scheller et al, 2016; Wegener et al, 2016). Comparative 16S rRNA gene sequence and 

average amino acid identity (AAI) analysis with published genomes of ANME and SEEP-

SRB suggested that two genomes described here are the first of their respective genus 

or even family. For both ANME-2c and SEEP-SRB1, AAI and 16S rRNA gene identity 

values to published genomes of the respective groups clearly exceeded the proposed 

category thresholds for new genera (<95% 16S rRNA gene identity; <65% AAI; 

(Konstantinidis et al, 2017)). We found that our ANME-2c genome was most closely 

related to a genome of ANME-2a (Wang et al, 2014) to which it shared 89.1% 16S rRNA 

gene identity and 54.9% AAI. For the SEEP-SRB1 genome we found that it shared 52.2–

58.0% AAI with several recently published genomes assigned to SEEP-SRB1 (Skennerton 

et al, 2017).  

Metatranscriptomic and metaproteomic data analysis 

To quantify transcription of functional genes of SEEP-SRB1 and ANME-2c we 

extracted total RNA from the S-AOM enrichment culture incubated for one week in fresh 

medium. Total RNA was subjected to rRNA depletion followed by whole 

metatranscriptome shotgun sequencing and in silico removal of rRNA reads. The 

remaining non-rRNA reads (499,588) were then mapped to the SEEP-SRB1 and ANME-2c 

genomes. In total, 47.7% of all non-rRNA reads mapped to the two genomes (ANME-2c 

34.2%; SEEP-SRB1 13.5%). Gene transcription was quantified for each coding sequence 

as RPKM (reads per Kb of gene per million of mapped reads, (Mortazavi et al, 2008)). For 

the metaproteome, whole-cell protein including cytosolic and membrane fraction were 

extracted from several mg biomass of the enrichment culture harvested after 1 week of 

incubation in fresh medium. 3μg protein was tryptically digested and analyzed by liquid 
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chromatography-mass spectrometry resulting in 43946 MS/MS spectra. Translated 

predicted coding sequences of SEEP-SRB1 and ANME-2c genomes were used as custom 

database for analysis in MaxQuant (Cox & Mann, 2008) to which 8.5% (3755) MS/MS 

spectra matched. In total 1763 peptides or 198 unique proteins (128 ANME proteins, 70 

SEEP-SRB1 proteins) were identified using 1% false discovery rate as 

validation/assessment criteria. Protein abundance was estimated using the intensity 

based absolute quantification method (iBAQ, (Schwanhäusser et al, 2011)). 

Methane oxidation pathway and electron transport chain of ANME-2c 

Within the ANME-2c genome we identified all genes encoding for a full reverse 

methanogenesis pathway (Figure 2; Extended Data Table 1), including N5,N10-

methylene-tetrahydromethanopterin reductase (mer), which previously wasn’t detected 

in ANME-1 metagenomes (Hallam et al, 2004; Meyerdierks et al, 2010). Several genes 

encoding for subunits of enzymes of the reverse methanogenesis pathway such as 

tetrahydromethanopterin (H4MPT) S-methyltransferase (mtr), N5,N10-methylene-H4MPT 

reductase (mer), methenyl-H4MPT cyclohydrolase (mch) and formylmethanofuran 

dehydrogenase (fmd) were present multiple times in the ANME-2c genome (Extended 

Data Table 1). The amino-acid sequence identity between duplicate sequences was 30–

40% for Mtr and 43–48% in case of Mer and Mch. All genes encoding for the seven core 

enzymes of the reverse methanogenesis pathway were highly transcribed, in particular 

methyl-coenzyme M reductase (mcrABG; RPKM = 43,000–70,000). In case of duplicate 

genes we found that only one copy was predominantly transcribed (>10-fold higher 

RPKM). Gene transcription of reverse methanogenesis genes gradually decreased in 

oxidative direction throughout the pathway from approximately 70,000 RPKM (mcr) to 

<1,000 RPKM (fmd). Consistent with our transcriptomic results, we identified at least one 

or more subunits of all seven core enzymes involved reverse methanogenesis in the 

metaproteome thus confirming that ANME-2c expresses the full reverse 

methanogenesis pathway (Extended Data Table 1). Proteins of the reverse 

methanogenesis pathway (in particular Mcr and Mtd, iBAQ score 0.1–6.3 x 106) were 

among the most abundant proteins of ANME-2c identified in the metaproteome 

(Supplementary Figure 5). 
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encoded three gene clusters related to soluble heterodisulfide reductases that could be 

involved in electron transfer reactions (Supplementary Table 5). Hdr gene cluster I 

encoded for a poorly transcribed heterodisulfide reductase (hdrABC, RPKM = 21–44) that 

was not identified in the metaproteome. In contrast, Hdr cluster II (ANME_02102–06) 

encoded for a HdrD-like protein, HdrABC and δ-subunit of methylviologen-reducing 

hydrogenase (MvhD), which were comparably much higher transcribed (RPKM = 743–

1,748). A third Hdr gene cluster (III), which was also well transcribed (RPKM = 855–

1,365), was composed of genes encoding for HdrA, MvhD as well as two proteins with 

similarity to β-subunit of coenzyme F420 hydrogenase/dehydrogenase and α-subunit of 

formate dehydrogenase (FdhA), respectively. In contrast to Hdr cluster I, prominent 

expression of almost all genes of the well transcribed Hdr clusters II and III was 

confirmed by our metaproteomic analysis (iBAQ =2.0 x 104–6.1 x 105; Supplementary 

Figure 5).  

ANME-2c encodes several well transcribed multi-heme cytochromes c 

Within the ANME-2c genome we identified eleven genes encoding for multi-

heme cytochromes c (MHC; Supplementary Table 3), which encoded for proteins that 

contained two or more heme-binding motifs (>2 CxxCH). Of these 11 MHC genes, three 

genes (ANME_02168, 01594, 02604) were substantially transcribed (>1,000 RPKM) and 

encoded for MHCs with 13 and 11 heme-binding motifs. Distant homologs of these well 

transcribed MHCs were identified in “Ca. Methanoperedens nitroreducens” and 

Geoalkalibacter subterraneus annotated as hypothetical proteins (39% and 28% amino-

acid sequence identity, respectively; Supplementary Table 3). Despite their high 

transcription, expression of these MHCs could not be detected.The only MHC of ANME-

2c identified in the metaproteome (ANME_01820) contained 31 heme-binding motifs 

and was apparently low in abundance (iBAQ = 263) and weakly transcribed (RPKM = 48).  

Two adjacent MHC genes of ANME-2c (ANME_02055–56) encoded for proteins 

with 16 and 17 heme binding motifs, respectively, one of which contained two putative 

S-layer domains (ANME_02055). Transcription of both genes was low (RPKM < 170) and 

the encoded proteins were not detected in the metaproteome. Combined together, 

these two genes were similar to a single gene encoding for a MHC/S-layer fusion protein 

of in ANME-2a, which has been previously described (IMG-MER identifier 2566125052, 

(McGlynn et al, 2015)). It appears that ANME_02055 represented the N-terminus 
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(residue 1–1395; 38% amino acid identity) and ANME_02056 the C-terminus (residue 

1419–2108; 41% amino acid identity) of the S-layer MHC homolog of ANME-2a. Other 

genes encoding for MHCs with S-layer domains were not detected in the ANME-2c 

genome. 

Genome-inferred metabolic capacity for dissimilatory sulfur metabolism of ANME-
2c 

No genes encoding for the canonical dissimilatory sulfate reduction pathway 

(Sat, Apr, Dsr) were detected in the ANME-2c genome, which is consistent with previous 

genomic and immunological labeling studies of S-AOM-associated ANME archaea 

(Hallam et al, 2004; Meyerdierks et al, 2010; Milucka et al, 2013; Wang et al, 2014). 

However, within the ANME-2c genome we identified a putative sulfate permease of the 

sulP family (ANME_02902, RPKM = 12) as well as three genes that could potentially be 

involved in dissimilatory sulfur metabolism. These three genes were located in close 

genomic proximity to each other and encoded for a F420-dependent sulfite reductase 

(Fsr, ANME_01246), a small siroheme sulfite reductase-like protein (Dsr-LP, 

ANME_01242) and an octaheme cytochrome c similar to tetrathionate reductase (OTR, 

ANME_01244). The latter protein sequence shared only low similarity with OTR of 

Shewanella oneidensis MR-1 (30% amino acid sequence identity; 83% coverage) but 

retained most of the conserved residues of the active site and substrate binding pocket 

found in OTR from Shewanella oneidensis MR-1 (Supplementary Figure 7, (Mowat et al, 

2004)). We found that ANME-2c transcribed the genes encoding for Fsr, Dsr-LP as well as 

OTR-like protein (RPKM = 207–464) and expression of Fsr (iBAQ = 42.8 x 103) was 

confirmed by our metaproteomic data.  

Dissimilatory sulfur metabolism, electron transport and type IV pili of SEEP-SRB1 

Within the SEEP-SRB1 genome we identified all genes encoding for the canonical 

sulfate reduction pathway (Figure 2) including ATP sulfurylase (Sat), APS reductase 

(AprAB), dissimilatory sulfite reductase (DsrAB) and DsrC protein. All these genes were 

well transcribed (RPKM = 7,425 – 26,401) and expression was also confirmed by our 

metaproteomic data (Extended Data Table 2). Moreover, Sat, AprAB and DsrAB were 

among the most abundant SEEP-SRB1 proteins identified in the metaproteome (iBAQ 

158.0 – 516.5 x103; Supplementary Figure 5b). Well transcribed genes encoding for 
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soluble DsrC protein (RPKM = 14,340) as well as membrane-bound complexes 

DsrMKJOP and QmoABC (average RPKM = 1,685–2,049) were also encoded in the SEEP-

SRB1 genome (Figure 2). With the exception of DsrC, at least one subunit of all these 

complexes was also detected in the metaproteome (iBAQ = 13.5–118.4 x 103; Extended 

Data Table 2).  

Next, we searched for membrane-bound complexes involved in electron 

transport such as quinone-reducing complex (Qrc) or tetraheme cytochrome 

membrane complex (Tmc), which are often present in bacteria that also contain 

enzymes for sulfate reduction (Grein et al, 2013; Rabus et al, 2015). Within the SEEP-

SRB1 genome we identified well transcribed genes encoding for the membrane-bound 

respiratory quinone-reducing complex (QrcABCD, RPKM = 1068 – 2102) and partial 

tetraheme cytochrome membrane complex (TmcBCD, RPKM = 359 – 829). In agreement 

with the prominent transcription of both complexes, we could confirm expression of 

QrcC (iBAQ = 19.9 x 103) and TmcBC (iBAQ = 28.0 – 187.0 x 103 ; Extended Data Table 2). 

Periplasmic hydrogenases or formate dehydrogenases, which have been shown to 

donate electrons via tetraheme cytochromes c to Qrc and Tmc (Grein et al, 2013), were 

not encoded in the genome of SEEP-SRB1. 

Cytochromes c and type IV pili of SEEP-SRB1 

In the SEEP-SRB1 genome we identified total of 25 genes encoding for multi-

heme cytochromes c with up to 26 heme-binding sites (Supplementary Table 4). The 

majority of these MHC genes were transcribed and encoded for proteins with 4–12 

heme binding motifs. The highest transcription was observed for genes encoding for 

three tetraheme cytochromes c (RPKM = 938–20111; DSS_00053, DSS_2785 and 

DSS_03053) and genes associated with heme-containing, respiratory enzymes (i.e. QrcA 

and DsrJ; RPKM = 986–2,102). Despite the observed transcription of most MHC genes, 

we only identified a single MHC protein (DSS_03494, iBAQ = 8.8 x 103) in the 

metaproteome, of which no transcripts were identified in the metatranscriptome. 

The SEEP-SRB1 genome encoded several genes encoding for type IV pili 

(Extended Data Table 2) including genes encoding for the inner membrane alignment 

complex (pilMNOP), the outer membrane secretin pore (pilQ) and two pre-pilins (pilA). 

Transcription of these genes was comparatively low (RPKM = 44–144) except for one 
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pilA gene (RPKM = 402) and no pili-associated proteins could be detected in the 

metaproteome. 

Discussion 

Reverse methanogenesis pathway and electron transport chain of ANME-2c 

To date, almost all genomes of ANME archaea have been found to encode a 

complete reverse methanogenesis pathway for methane oxidation (Arshad et al, 2015; 

Hallam et al, 2004; Haroon et al, 2013b; Meyerdierks et al, 2010; Meyerdierks et al, 2005; 

Wang et al, 2014). While most genomic studies focusing on ANME found a complete 

pathway, it was suggested that ANME-1 archaea might encode an incomplete reverse 

methanogenesis pathway that was missing Mer (Meyerdierks et al, 2010). Here we show 

that ANME-2c archaea in the S-AOM enrichment culture encode a “conventional” full 

reverse methanogenesis pathway. Furthermore, we were able to confirm that ANME-2c 

transcribed and, for the first time, expressed the full reverse methanogenesis pathway. 

Interestingly, the ANME-2c genome encoded for multiple, sequence-divergent copies of 

several genes of the reverse methanogenesis pathway of which only one copy was 

predominantly transcribed and expressed. Redundancy and sequence divergence of 

reverse methanogenesis genes in ANME-2 genomes appear to be not unusual and has 

also been observed for ANME-2a (Wang et al, 2014) and “Ca. Methanoperedens 

nitroreducens” (Haroon et al, 2013a). 

From the methanogenesis pathway, which has been systematically studied in 

methanogenic archaea (for review see (Thauer, 1998; Thauer et al, 2008)), reducing 

equivalents for methanogenesis are supplied by three electron carriers: coenzyme M 

and B, coenzyme F420 (twice) and ferredoxin. Since the same pathway, albeit in reverse, 

catalyzes anaerobic oxidation of methane, it is reasonable to assume that these electron 

carriers serve as direct electron acceptors in the reverse methanogenesis pathway 

(Thauer, 2011). Oxidation of CoM-SH/CoB-SH in ANME-2c might proceed via soluble and 

membrane-bound Hdr. Membrane-bound Hdr could couple the oxidation of CoM-

SH/CoB-SH to the reduction of membrane-integral methanophenazine but would likely 

have to be driven by scalar translocation of protons to the cytoplasm (Abken et al, 1998; 

Deppenmeier & Müller, 2007; Welte & Deppenmeier, 2011).  
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D; FrhB/FdhB, coenzyme F420-reducing hydrogenase/formate dehydrogenase subunit B; FdhA-
like, formate dehydrogenase subunit A-like. 

These Hdrs, which include the electron-bifurcating HdrA subunit, could in 

principle allow for flavin-based electron bifurcation-mediated interconversion of 

reducing equivalents between the redox carriers. Electron bifurcation by Hdr, which are 

widespread enzymes in anaerobic bacteria and archaea (Buckel & Thauer, 2013), might 

be an additional mechanism by ANME-2c to conserve energy. Similar to the reduction of 

ferredoxin in methanogens (Kaster et al, 2011), flavin-based electron bifurcation could 

also generate low redox potential electrons. These electrons could in principle enable 

ANME-2c to catalyze reduction reactions, such as sulfate to sulfite, with a very low redox 

potential. 

Possible routes and sinks for electrons originating from the reverse 
methanogenesis pathway 

Although ANME-2c encodes all enzymes necessary to couple methane oxidation 

to the reduction of the membrane-integral methanophenazine, it is unclear where the 

electrons go from there. Two routes have been proposed: I) archaeal sulfate reduction 

(Milucka et al, 2012) or II) transfer to an extracellular electron acceptor (either sulfate-

reducing bacteria or metal ions) (McGlynn et al, 2015; Scheller et al, 2016; Wegener et al, 

2015). For the latter route it was suggested that reducing equivalents from 

methanophenazine could be transferred via a membrane-bound cytochrome b and 

extracellular cytochromes c (possibly containing S-layer domains) to an extracellular 

electron acceptor (McGlynn et al, 2015). Although we identified a well transcribed and 

expressed membrane-bound cytochrome b (ANME_00241, RPKM = 1,246, iBAQ = 17.4 x 

103), the physiological function of this cytochrome b still needs to be clarified. 

Moreover, we found that transcription of the S-layer MHC gene by ANME-2c was low 

(RPKM = 65) and the corresponding protein could also not be detected in the 

metaproteome. Since very little is known about the function of MHCs in archaea (Kletzin 

et al, 2015), it remains unknown whether other well transcribed MHC of ANME-2c are 

indeed involved in electron transfer or fulfill a different physiological function. 

Alternatively, archaeal sulfate reduction, which was previously proposed by 

(Milucka et al, 2012), might be supplied by reducing equivalents from the 

methanophenazine pool. Direct reduction of sulfate to sulfite with methanophenazine 
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as electron donor is thermodynamically problematic as the redox potential E°′ of 

methanophenazine/dihydromethanophenazine redox couple (–165 mV) is well above 

the redox potential of the SO4
2–/HSO3

– couple (–512 mV) (Thauer et al, 2007; Tietze et al, 

2003). It is currently unclear how sulfate reduction to sulfite in ANME-2c might proceed; 

however, it was previously speculated that sulfate reduction could be coupled 

(potentially via ferredoxin) to Formyl-MFR/CO2 + MFR redox couple which operates at a 

sufficiently low potential (E°′ between -500 mV and -530 mV, (Thauer, 1998)) (Milucka et 

al, 2012; Thauer, 2011). Alternatively, we hypothesize that electrons with a sufficiently 

low redox potential could be generated via electron bifurcation by soluble 

heterodisulfide reductase of ANME-2c.  

Sulfite, which might be an intermediate of archaeal sulfate reduction, could in 

principle be reduced directly to sulfide with methanophenazine. This reaction would be 

thermodynamically not a problem as the redox potential of HSO3
– /HS– couple is 

sufficiently high (–120 mV; (Thauer et al, 2007)) to allow reduction by 

methanophenazine (–165 mV). Reducing equivalents from methanophenazine could be 

transferred for example via membrane-bound cytochrome b directly or indirectly (e.g. 

cytochrome c) to the small sulfite reductase-like protein (Dsr-LP) encoded within the 

genome of ANME-2c. Alternatively, sulfite reduction could also proceed in a presumably 

non-energy conserving manner via F420-dependent sulfite reductase using reduced 

coenzyme F420 as electron donor. In any case, intracellular sulfite levels would have to 

be tightly controlled since sulfite is an inhibitor of methanogenesis and is therefore also 

expected to inhibit reverse methanogenesis (Johnson & Mukhopadhyay, 2008b). 

It is also possible that these sulfite reductases have physiological functions 

unrelated to dissimilatory S metabolism (such as sulfite detoxification, which was shown 

for Fsr (Johnson & Mukhopadhyay, 2005; Johnson & Mukhopadhyay, 2008a)); yet it is 

intriguing that the sulfite reductase genes, which were identified in other ANME 

genomes (Supplementary Figure 6), were transcribed and Fsr could even be detected in 

the metaproteome although sulfite was never added to the S-AOM enrichment culture.  

Role of SEEP-SRB1 bacteria in S-AOM 

In this study we showed that SEEP-SRB1 bacteria encoded all enzymes of the 

canonical sulfate reduction pathway (Sat, AprAB, DsrAB, DsrC) as well as membrane-

bound QmoABC and DsrMKJOP complexes. Genes encoding for these proteins were 
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among the highest transcribed genes of SEEP-SRB1 and with the exception of DsrC, 

expression of all proteins was detected in the metaproteome. However, studies of sulfur 

disproportionating bacteria (i.e. Desulfocapsa or Desulfobulbus) also have shown that the 

same enzymes catalyze sulfur disproportionation (Finster, 2008; Finster et al, 2013; 

Frederiksen & Finster, 2003). It is therefore difficult to ascertain from our data and 

without physiological experiments whether SEEP-SRB1 perform sulfate reduction or 

sulfur disproportionation. However, considering that a physiological study by Milucka et 

al. (2012) has shown that DSS bacteria in the enrichment culture are capable of sulfur 

disproportionation, it is plausible that these well transcribed and expressed enzymes 

are involved in disproportionation. Sulfur disproportionation is still poorly understood 

process but it was suggested that sulfite is a central intermediate (Böttcher et al, 2005; 

Finster, 2008; Frederiksen & Finster, 2003). In particular it is unknown how polysulfides, 

which seem to be the disproportionated by DSS (Milucka et al, 2012), could be 

converted to sulfite. Conspicuous membrane-bound molybdopterin oxidoreductases or 

polysulfide reductases, which have been implicated in sulfur species interconversion in 

disproportionating bacteria (Finster et al, 2013; Mardanov et al, 2016), were not present 

in the SEEP-SRB1 genome.  

Within the SEEP-SRB1 genome we identified well transcribed and expressed 

electron-accepting, membrane-bound complexes Qrc and Tmc. These complexes are 

commonly found in sulfate-reducing bacteria and have been shown to accept electrons, 

which are ultimately funneled into sulfate reduction, from periplasmic enzymes (e.g. 

hydrogenase, formate dehydrogenase) via periplasmic tetraheme cytochromes c3 (Grein 

et al, 2013). The prominent transcription of Qrc, Tmc as well as of several genes 

encoding for tetraheme cytochrome c3 (RPKM = 938 –20,112) leave little doubt that 

these enzymes are important modules in the electron transport chain of SEEP-SRB1. 

Intriguingly, periplasmic hydrogenases or formate dehydrogenases were absent from 

the SEEP-SRB1 genome, which suggests an alternative periplasmic source of reducing 

power. Skennerton et al. (2017) and Krukenberg et al. (2016) argued that, based on a 

syntrophic S-AOM model, electrons transferred from ANME archaea might be fed 

through tetraheme cytochromes c3 into the electron transport chain of the sulfate-

reducing bacterial partner. Alternatively we suggest that Qrc and Tmc might be 

electron-accepting complexes (via tetraheme cytochromes c3) of a yet to be identified, 
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periplasmic enzyme involved sulfur disproportionation; for example, this putative 

enzyme could be involved in the initial interconversion of polysulfide to sulfite. In any 

case, further physiological experiments are needed to substantiate these hypotheses. 

Experiments with syntrophic co-cultures of Geobacter have suggested that multi-

heme cytochromes c and pili might be involved in direct exchange of electrons 

between microorganisms (Summers et al, 2010). Similarly it was suggested that direct 

interspecies transfer in thermophilic S-AOM might be facilitated through nanowire-like 

structures formed by type IV pili (Wegener et al, 2015), which however has been 

questioned recently (Walker et al, 2017). Although SEEP-SRB1 also encoded a complete 

set of genes for type IV pili, we did not observe high transcription of pili genes. In 

contrast to “Ca. Desulfofervidus auxilii”, which transcribed pilA at similar levels to dsrA 

under syntrophic conditions (Wegener et al, 2015), we found that transcription by SEEP-

SRB1of pilA (PRKM = 402) was orders of magnitudes lower than dsrA (RPKM = 16,402). 

Furthermore, we could not detect expression of type IV pili proteins in the 

metaproteome. Nevertheless it might still be possible that SEEP-SRB1 utilizes pili to 

mediate cellular functions such as cell adhesion or microcolony formation (Craig et al, 

2004). 

Electron transfer mediated by multi-heme cytochromes c of the S-AOM-

associated bacterial partner (and ANME) has been proposed as mode of electron 

transfer that might not necessarily rely on conductive pili but rather on a cytochrome c-

mediated conductive extracellular matrix (McGlynn et al, 2015; Skennerton et al, 2017). 

We found that SEEP-SRB1 encoded and transcribed several multi-heme cytochromes c 

that could be indeed involved in electron transfer. With one exception, none of these 

sometimes well transcribed multi-heme cytochromes c were detected in the 

metaproteome. It is unclear if these proteins were not expressed or if they were not 

detected for unknown, technical reasons related to the metaproteomic analyses. In any 

case, several aspects of cytochrome-mediated electron transfer in S-AOM consortia are 

still unresolved (reviewed by (Lovley, 2016)) and the physiological function of the multi-

heme cytochromes c has yet to be directly demonstrated. 
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Supplementary Tables 

Supplementary Table 1. Summary of sequencing datasets used in this study. 

Sequencing dataset  Sequencing technology No. of (paired-end) reads 

AOM Powersoil MiSeq, 2x250 bp 7,594,147 
AOM Blood&Tissue MiSeq, 2x250 bp 5,895,760 
AOM, sulfur-amended IonTorrent PGM, 318v2 chip 5,300,000 
AOM transcriptome IonTorrent PGM, 318v2 chip 4,386,143 

 

Supplementary Table 2. Overview of used oligonucleotide probes. Listed are target groups, 
probe sequence, formamide concentration in the hybridization buffer and references. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Probe Target group Probe sequence 
(5'- 3') 

Formamide
% [v/v] Reference 

DSS-658 Desulfosarcina/ 
Desulfococcus group 

TCC ACT TCC CTC TCC 
CAT 50 (Manz et al, 1998) 

ANME-2-538 ANME-2 GGC TAC CAC TCG 
GGC CGC 

50 (Treude et al, 2005) 
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Extended Data Tables 

Extended Data Table 1. Gene transcription (in RPKM) and expression (iBAQ score values) 
of selected ANME-2c genes.  

Locus Tag Product Gene RPKM (iBAQ 
score 

Reverse methanogenesis 

ANME_01255 Methyl-coenzyme M reductase subunit alpha mcrA 69751 108730 

ANME_01254 Methyl-coenzyme M reductase subunit gamma mcrG 62611 8498500 

ANME_01252 Methyl-coenzyme M reductase II operon protein D mcrD 57482 0 

ANME_01253 Methyl-coenzyme M reductase I operon protein C mcrC 47278 - 

ANME_01251 Methyl-coenzyme M reductase subunit beta mcrB 43094 6279000 

ANME_00191 Tetrahydromethanopterin S-methyltransferase subunit A 1 mtrA1_1 5356 - 

ANME_02416 Tetrahydromethanopterin S-methyltransferase subunit A 1 mtrA1_2 82 - 

ANME_00192 Tetrahydromethanopterin S-methyltransferase subunit B mtrB_1 4541 - 

ANME_02415 Tetrahydromethanopterin S-methyltransferase subunit B mtrB_2 116 - 

ANME_00193 Tetrahydromethanopterin S-methyltransferase subunit C mtrC_1 4496 142920 

ANME_02414 Tetrahydromethanopterin S-methyltransferase subunit C mtrC_2 85 - 

ANME_00194 Tetrahydromethanopterin S-methyltransferase subunit D mtrD_1 3789 - 

ANME_02413 Tetrahydromethanopterin S-methyltransferase subunit D mtrD_2 76 - 

ANME_00195 Tetrahydromethanopterin S-methyltransferase subunit E mtrE_1 3494 - 

ANME_02412 Tetrahydromethanopterin S-methyltransferase subunit E mtrE_2 82 - 

ANME_00190 Tetrahydromethanopterin S-methyltransferase subunit F mtrF_1 3460 - 

ANME_02417 Tetrahydromethanopterin S-methyltransferase subunit F mtrF_2 263 - 

ANME_00189 Tetrahydromethanopterin S-methyltransferase subunit G mtrG_1 5554 192810 

ANME_02418 Tetrahydromethanopterin S-methyltransferase subunit G mtrG_2 42 - 

ANME_00188 Tetrahydromethanopterin S-methyltransferase subunit H mtrH_1 4404 358820 

ANME_02419 Tetrahydromethanopterin S-methyltransferase subunit H mtrH_2 123 - 

ANME_01600 5,10-methylenetetrahydromethanopterin reductase mer_1 7815 461460 

ANME_02420 5,10-methylenetetrahydromethanopterin reductase mer_2 78 - 

ANME_02010 F420-dependent methylenetetrahydromethanopterin 
dehydrogenase Mtd 2687 2097600 

ANME_00995 Methenyltetrahydromethanopterin cyclohydrolase mch_2 1922 152900 

ANME_00210 Methenyltetrahydromethanopterin cyclohydrolase mch_1 243 - 

ANME_00875 
Formylmethanofuran--tetrahydromethanopterin 
formyltransferase ftr 1459 348430 

ANME_00035 
Molybdenum dependent formylmethanofuran 
dehydrogenase F 

FmdF 2070 45492 

ANME_00036 Molybdenum dependent formylmethanofuran 
dehydrogenase E FmdE 648 - 

ANME_00038 Molybdenum dependent formylmethanofuran 
dehydrogenase D 

FmdD 74 - 

ANME_00039 Molybdenum dependent formylmethanofuran 
dehydrogenase B FmdB 137 - 

ANME_00040 
Molybdenum dependent formylmethanofuran 
dehydrogenase A FmdA 65 - 

ANME_00041 Tungsten dependent formylmethanofuran dehydrogenase C FwdC 110 - 

ANME_02722 Formylmethanofuran dehydrogenase operon gene G FmdG 112 - 

ANME_02723 Formylmethanofuran dehydrogenase B FmdB 105 - 

ANME_02724 Formylmethanofuran dehydrogenase D FmdD 50 - 



Chapter 4 - Physiology of S-AOM 

 
140 

Locus Tag Product Gene RPKM 
(iBAQ 
score 

F420:H2 dehydrogenase 

ANME_01599 F(420)H(2) dehydrogenase subunit F FpoF 2236 57780 

ANME_01773 F(420)H(2) dehydrogenase subunit L FpoL_1 22 - 

ANME_01775 F(420)H(2) dehydrogenase subunit L FpoL_2 23 - 

ANME_01776 F(420)H(2) dehydrogenase subunit N FpoN_1 23 - 

ANME_02463 F(420)H(2) dehydrogenase subunit A FpoA 580 20160 

ANME_02464 F(420)H(2) dehydrogenase subunit B FpoB 1514 - 

ANME_02465 F(420)H(2) dehydrogenase subunit C FpoC 2176 282960 

ANME_02466 F(420)H(2) dehydrogenase subunit D FpoD 1991 209950 

ANME_02467 F(420)H(2) dehydrogenase subunit H FpoH 803 - 

ANME_02468 F(420)H(2) dehydrogenase subunit I FpoI 2395 266070 

ANME_02469 F(420)H(2) dehydrogenase subunit J FpoJ_1 753 - 

ANME_02470 F(420)H(2) dehydrogenase subunit J FpoJ_2 1502 - 

ANME_02471 F(420)H(2) dehydrogenase subunit K FpoK 1874 - 

ANME_02472 F(420)H(2) dehydrogenase subunit L FpoL_3 1503 - 

ANME_02473 F(420)H(2) dehydrogenase subunit M FpoM 1660 91267 

ANME_02474 F(420)H(2) dehydrogenase subunit N FpoN_2 1998 - 

V-type ATP synthase 

ANME_01521 V-type ATP synthase alpha chain ntpA 631 - 

ANME_01522 V-type ATP synthase beta chain ntpB 559 - 

ANME_00655 V-type ATP synthase subunit C ntpC 254 - 

ANME_00478 V-type ATP synthase subunit D ntpD 125 - 

ANME_02026 V-type ATP synthase subunit E ntpE 652 0 

ANME_01520 V-type ATP synthase subunit F ntpF 212 55864 

ANME_02029 V-type ATP synthase subunit H ntpH 305 - 

ANME_02028 V-type ATP synthase subunit I ntpI 362 - 

ANME_02027 V-type ATP synthase subunit K ntpK 457 - 

Electron transport complex Rnf 

ANME_02108 Electron transport complex protein RnfB RnfB 2415 - 

ANME_02109 Electron transport complex protein RnfA RnfA 805 - 

ANME_02110 Electron transport complex protein RnfE RnfE 554 - 

ANME_02111 Electron transport complex protein RnfG RnfG 813 62234 

ANME_02112 Electron transport complex protein RnfD RnfD 229 - 

ANME_02113 Electron transport complex protein RnfC RnfC 882 - 

Heterodisulfide reductase 

ANME_01561 CoB--CoM heterodisulfide reductase iron-sulfur subunit A hdrA 21 - 

ANME_01562 CoB--CoM heterodisulfide reductase subunit B hdrB 43 - 

ANME_01563 CoB--CoM heterodisulfide reductase iron-sulfur subunit C hdrC 13 - 

ANME_02102 CoB--CoM heterodisulfide reductase iron-sulfur subunit D hdrD 826 - 

ANME_02103 CoB--CoM heterodisulfide reductase iron-sulfur subunit C hdrC 743 134980 

ANME_02104 CoB--CoM heterodisulfide reductase subunit B hdrB 895 - 

ANME_02105 CoB--CoM heterodisulfide reductase iron-sulfur subunit A hdrA 1183 10238 

ANME_02106 F420-non-reducing hydrogenase iron-sulfur subunit D mvhD 1748 51224 
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Locus Tag Product Gene RPKM 
(iBAQ 
score 

ANME_02618 CoB--CoM heterodisulfide reductase iron-sulfur subunit A hdrA 854 24461 

ANME_02619 F420-non-reducing hydrogenase mvh iron-sulfur subunit D mvhD 1005 6410470 

ANME_02620 Formate dehydrogenase subunit beta fdhB 874 278500 

ANME_02621 Formate dehydrogenase subunit alpha like protein fdhA 1365 77228 

ANME_02238 CoB--CoM heterodisulfide reductase iron-sulfur subunit D hdrD 2187 17449 

ANME_02239 CoB--CoM heterodisulfide reductase subunit E hdrE 1444 - 

ANME_01629 CoB--CoM heterodisulfide reductase iron-sulfur subunit A hdrA 81 - 

ANME_01884 CoB--CoM heterodisulfide reductase iron-sulfur subunit C hdrC 28 - 

Sulfite reductase 

ANME_01242 Sulfite reductase, dissimilatory-type subunit alpha dsr-LP 207 - 

ANME_01246 Coenzyme F420 sulfite reductase fsr 465 42845 

CO dehydrogenase/acetyl-CoA synthase 

ANME_01530 CO dehydrogenase/acetyl-CoA synthase subunit alpha codh/acsA 368 7758 

ANME_01195 CO dehydrogenase/acetyl-CoA synthase subunit beta codh/acsC 538 14867 

ANME_00895 CO dehydrogenase/acetyl-CoA synthase subunit delta codh/acsD 430 - 

ANME_01529 Co dehydrogenase/acetyl-CoA synthase subunit epsilon codh/acsB 206 - 

ANME_00917 CO dehydrogenase/acetyl-CoA synthase subunit gamma codh/acsE 432 - 

Acetyl-CoA synthase 

ANME_01542 Acetyl-CoA synthetase acs 31 - 

ANME_01678 Acetyl-CoA synthetase acs 44 - 

Multiheme cytochromes c 

ANME_01820 Doubled CXXCH motif (Paired_CXXCH_1)  - 48 263 

ANME_02055 Immune inhibitor A peptidase M6  - 65 - 

ANME_02056 Doubled CXXCH motif (Paired_CXXCH_1)  - 172 - 

ANME_02168 hypothetical protein  - 117 - 

ANME_02775 hypothetical protein  - 3249 - 

ANME_01594 Class III cytochrome C family protein  - 3323 - 

ANME_02604 hypothetical protein  - 1124 - 

ANME_00931 Doubled CXXCH motif (Paired_CXXCH_1)  - 39 - 

ANME_01244 Cytochrome c  - 277 - 

ANME_02229 hypothetical protein  - 274 - 

ANME_02742 hypothetical protein  - 61 - 

ANME_02743 hypothetical protein  - 32 - 
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Extended Data Table 2. Gene transcription (in RPKM) and expression (iBAQ score values) 
of selected SEEP-SRB1 genes. 

Locus Tag Product Gene RPKM 
iBAQ 
score 

Sulfate reduction  

DSS_01055 Sulfate adenylyltransferase sat 9431 483820 

DSS_01059 Adenylylsulfate reductase subunit alpha aprA 16402 158030 

DSS_01060 Adenylylsulfate reductase subunit beta aprB 11025 - 

DSS_03055 Dissimilatory sulfite reductase, subunit D dsrD 3217 161890 

DSS_03056 Dissimilatory sulfite reductase, subunit B dsrB 8401 252000 

DSS_03057 Dissimilatory sulfite reductase, subunit A dsrA 7425 516530 

DSS_02004 Dissimilatory sulfite reductase, subunit C dsrC 14340 - 

Membrane-bound respiratory complexes 

DSS_01056 
Quinone-interacting membrane-bound oxidoreductase 
subunit C QmoC 1613 13492 

DSS_01057 Quinone-interacting membrane-bound oxidoreductase 
subunit B QmoB 2360 118360 

DSS_01058 Quinone-interacting membrane-bound oxidoreductase 
subunit A QmoA 2175 47615 

DSS_03202 Sulfite reduction-associated complex DsrMKJOP protein DsrP DsrP 1800 - 

DSS_03203 Sulfite reduction-associated complex DsrMKJOP protein DsrO DsrO 2697 - 

DSS_03204 Sulfite reduction-associated complex DsrMKJOP protein DsrJ DsrJ 986 - 

DSS_03205 Sulfite reduction-associated complex DsrMKJOP protein DsrK DsrK 1890 55069 

DSS_03206 Sulfite reduction-associated complex DsrMKJOP protein DsrM DsrM 1669 - 

DSS_00347 Transmembrane complex subunit B TmcB 829 28078 

DSS_00348 Transmembrane complex subunit C TmcC 391 

DSS_00349 Transmembrane complex subunit D TmcD 359 187050 

ATP synthase 

DSS_03414 ATP synthase F0 sector subunit b` - 833 - 

DSS_03415 ATP synthase F0 sector subunit b atpF 3310 30352 

DSS_03416 ATP synthase subunit delta atpH 5140 - 

DSS_03417 ATP synthase subunit alpha atpA 2804 158070 

DSS_03418 ATP synthase gamma chain atpG 1020 

DSS_03419 ATP synthase subunit beta atpD 3399 187420 

DSS_03420 ATP synthase epsilon chain atpC 4860 21110 

DSS_00164 ATP synthase protein I atpI 1111 - 

DSS_00165 ATP synthase protein I2 atpI2 786 - 

DSS_00166 ATP synthase F0 sector subunit a atpB 1028 - 

DSS_00167 ATP synthase F0 sector subunit c atpE 37122 - 

CO dehydrogenase/acetyl-CoA synthase 

DSS_00568 CO dehydrogenase/acetyl-CoA synthase subunit alpha codh/acsA 258 - 

DSS_00577 CO dehydrogenase/acetyl-CoA synthase subunit delta codh/acsD 429 - 

DSS_00578 CO dehydrogenase/acetyl-CoA synthase subunit beta codh/acsB 529 - 

DSS_00579 CO dehydrogenase/acetyl-CoA synthase subunit gamma codh/acsC 225 5855 

DSS_00580 CO dehydrogenase/acetyl-CoA synthase subunit epsilon codh/acsE 744 - 

Acetyl-CoA synthetase 

DSS_01221 Acetyl-coenzyme A synthetase acs 363 - 

DSS_02306 Acetyl-coenzyme A synthetase acs 157 - 
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Locus Tag Product Gene RPKM iBAQ 
score 

Cytochromes c 

DSS_03053 Class III cytochrome C family protein - 20112 - 

DSS_02785 Acidic cytochrome c3 precursor - 1064 - 

DSS_00053 Acidic cytochrome c3 precursor - 938 - 

DSS_03485 Doubled CXXCH motif (Paired_CXXCH_1) - 646 - 

DSS_02871 Doubled CXXCH motif (Paired_CXXCH_1) - 555 - 

Type IV pili 

DSS_01738 Type IV pilus biogenesis protein pilQ pilQ 45 - 

DSS_01739 Type IV pilus biogenesis protein pilP pilP 77 - 

DSS_01740 Type IV pilus biogenesis protein pilO pilO 81 - 

DSS_01741 Type IV pilus biogenesis protein pilN pilN 88 - 

DSS_01742 Type IV pilus biogenesis protein pilM pilM 144 - 

DSS_03230 type IV pilus assembly protein pilY pilY 318 - 

DSS_03234 type IV pilus modification protein PilV pilV 134 - 

DSS_02280 type IV pilin pilA pilA 124 - 

DSS_00514 type IV pilin pilA pilA_2 402 - 

Heterodisulfide reductase 

DSS_00569 heterodisulfide reductase, subunit A hdrA 251 - 

DSS_00570 heterodisulfide reductase, subunit B hdrB 127 - 

DSS_00571 heterodisulfide reductase, subunit C hdrC 354 - 

DSS_00038 Heterodisulfide reductase subunit A HdrA 100 - 

DSS_00039 Heterodisulfide reductase subunit F1' HdrF1' 293 - 

DSS_00040 Heterodisulfide reductase subunit F1 HdrF1 86 - 

DSS_03353 CoB--CoM heterodisulfide reductase subunit C hdrC 0 - 
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Summary 

Studies suggest that microbes associated with the sulfate-dependent anaerobic 

oxidation of methane (S-AOM) may directly influence sedimentary P cycling. Unusual 

authigenesis of iron (Fe) and phosphorus (P)-bearing minerals within S-AOM dominated 

sediment horizons have been observed (Jilbert & Slomp, 2013) and Fe- and P-rich 

particles have been found within S-AOM-associated microbes (Milucka et al, 2012). To 

investigate inorganic phosphorus (Pi) cycling associated with S-AOM, we performed 

trace radioactive 33Pi experiments on an S-AOM enrichment culture incubated under 

low (~ 4 μmol l-1) and high (~0.5 mmol l-1) phosphate concentrations. S-AOM biomass 

cultivated at high phosphate contained 9.1 dry-wt% HCl-extractable phosphate, which 

was Mg-bound, while the biomass cultivated at low phosphate concentration contained 

<0.1 dry-wt% phosphate. The particulate phosphate phase was likely located 

extracellularly. Phosphorus-rich inclusions in the enrichment culture biomass were not 

detected by scanning transmission electron microscopy (STEM) coupled with energy 

dispersive X-ray analysis (EDX). In the radiotracer experiments, 33Pi was removed from 

the aqueous phase and into a Pi-bearing particulate phase located in the S-AOM 

biomass flocs only under S- S-AOM conditions. In the absence of methane, and S-AOM, 
33Pi uptake from solution ceased. Bulk dissolved Pi concentrations, however, remained 

constant under both S-AOM and control conditions. These results suggest that 

organisms within the enrichment culture induce Pi exchange processes when active (i.e. 

in the presence of methane). Exchange rates inferred from the radiotracer were 

substantial since the turnover time of soluble phosphate was estimated in the range of 

3 – 9 days in the cultures. Epicellular phosphate may help to ameliorate eventual 

carbonate encrustation e.g. through the complexation of Ca2+ and Mg2+ ions or by 

creation of Pi-rich microenvironments surrounding the S-AOM aggregates.  
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Introduction 

Sulfate-dependent anaerobic oxidation of methane (S-AOM) has a major role in 

coupling biogeochemical cycles of sulfur and carbon in sediments. S-AOM was 

discovered nearly 35 years ago from sediment porewater profiles showing concurrent 

disappearance of both methane and sulfate at the so-called sulfate-methane transition 

zones (SMTZ), where upward diffusing methane was consumed by downward diffusing 

sulfate (Barnes & Goldberg, 1976; Martens & Berner, 1974; Reeburgh, 1976).  

Subsequent studies demonstrated that sulfate-coupled AOM is mediated by 

anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria belonging to 

the Desulfosarcina/Desulfococcus clade (DSS) (Boetius et al, 2000; Hinrichs et al, 2000; 

Hoehler et al, 1994; Nauhaus et al, 2002). Despite the low free energy change associated 

with sulfate-dependent AOM, estimates indicate that S-AOM consumes > 90 % of 

methane produced in marine sediments. Therefore, S-AOM plays an important part in 

regulating greenhouse gas emission from the ocean seafloor (Reeburgh, 2007). 

The influence of S-AOM on biogeochemical cycles extends beyond the cycling of 

carbon and sulfur to phosphorus (P) and iron (Fe). The sedimentary Fe and P cycles are 

tightly linked due to the efficient scavenging of dissolved inorganic phosphate (Pi) by 

particulate Fe(III) oxo-hydroxides. Once deposited, Pi can be released within deeper, 

sulfidic sediment layers by reductive dissolution of the Fe(III) oxo-hydroxides. This 

mechanism, along with organic matter degradation, is a major cause for elevated Pi 

concentrations characteristically found in sulfidic sediment horizons such as the SMTZ 

(e.g. (McManus et al, 1997; Sundby et al, 1992)). Therefore, the SMTZ can act as a source 

of Pi that either diffuses upwards and downwards where it can further react to form 

authigenic P-bearing phase, e.g. carbonate fluoroapatite (Ruttenberg & Berner, 1993,) 

both above and below the SMTZ (März et al, 2008). 

Authigenic Fe(II) phosphates (e.g. vivianite) have been identified as the main P 

burial phase in Fe-rich large river fan sediments and brackish marginal-sea sediments, 

where authigenesis of Fe(II) phosphates below the SMTZ is most likely driven by high 

free Fe(II) concentrations (Burns, 1997; März et al, 2008; Slomp et al, 2013). In sediments 

of the Baltic and the Black Sea, authigenesis of Fe(II) phosphate was also observed to 

occur within sulfidic, S-AOM-associated sediment layers (Dijkstra et al, 2014; Egger et al, 

2015; Jilbert & Slomp, 2013). The formation of vivianite in these latter cases did not 
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appear to be driven by supersaturation of the pore water with respect to vivianite. The 

authors of these studies suggest that the Fe(II) phosphates forming in these sulfidic 

environments may be strongly influenced by the S-AOM process itself. 

Intriguingly, distinct Fe- and P-rich inclusions have been identified within the 

cytoplasm of DSS cells associated with S-AOM mats found in the sulfidic zone of the 

Black Sea (Milucka et al, 2012). Furthermore, in the same study bacterial DSS cells could 

be distinguished from the ANME cells by their relatively greater P:C contents. These 

observations are consistent with the hypothesis that S-AOM associated cells may be 

directly involved in the inorganic P enrichment or P mineral authigenesis, but the 

hypothesis has not been directly tested. 

Therefore, we investigated the influence of S-AOM activity on P distributions and 

cycling in a similar enrichment culture. Here we report on the elemental composition 

and geochemistry of the of the S-AOM biomass in the enrichment culture – both at the 

bulk and on the single-cell level. We then use 33P radiotracer at low and high phosphate 

concentrations to investigate the microbial control of P uptake associated with S-AOM.   
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Methods 

Culture origin and cultivation 

The S-AOM enrichment culture derived from a culture that has been enriched 

over 10 years from a sediment sample collected on a cruise of RV L’Atlante in September 

2003 in the eastern Mediterranean Sea (Milucka et al, 2012). The ISIS culture was 

incubated in artificial SRB seaweater medium (salts: 0.76 mmol l-1 KBr, 8.05 mmol l-1 KCl, 

10 mmol l-1 CaCl2 * 2 H2O, 27.9 mmol l-1 MgCl2 * 6 H2O, 27.6 mmol l-1 MgSO4 * 7 H2O, 451 

mmol l-1 NaCl, 4.67 mmol l-1 NH4Cl, 1.47 mmol l-1 KH2PO4, 30 mmol l-1 NaHCO; vitamins 

and trace elements: according to (Widdel & Bak, 1992); redox indicator: 1 mg l-1 

Resazurin; reducing agent: 0.5 mmol l-1 H2S pH 7.5) anaerobically in serum bottles sealed 

with butyl rubber stoppers. Serum bottles having a N2:CO2 (90:10) headspace were 

pressurized with methane (Air Liquide, Germany) to 3 bar overpressure and incubated 

on a shaker (40 rotations min-1.) at room temperature. Medium was regularly exchanged 

with fresh artificial seaweater medium when sulfide concentrations reached ~ 20 mmol 

l-1 in an anaerobic glove box (Mecaplex, Switzerland) under N2:CO2 (90:10) atmosphere. 

Growth (doubling times) are estimated to be several month (Milucka et al, 2012).The 

low phosphate enrichment culture was derived from the high phosphate culture by 

incubation for 2 months (with occasional medium exchanges) in medium containing 10 

μmol l-1 phosphate. After each medium exchange, free Pi concentration gradually 

increased over several days. The medium exchanges were repeated until no increase of 

Pi concentration could be observed. 

Chemical analysis 

Total dissolved sulfide was determined spectrophotometrically at 670nm using 

the methylene blue method (Cline, 1969) and was adapted for small volumes. Prior to 

sulfide determination, samples were filtered through a 0.45 μm syringe filter and 

immediately fixed with 5% ZnCl2 (0.5x sample volume).  

Sulfate was determined on samples filtered through a 0.45 μm syringe filter, 

immediately fixed with ZnCl2 (same as sulfide samples), and centrifuged at 12000 

relative centrifugal force (RCF, in g) for 5 min. Sulfate in the supernatant was determined 

on a 761 Compact ion chromatograph (Methrom AG, Switzerland) equipped with CO2 
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suppressor module, Zn trap (Metrosep A Trap 1-100/4.0) and a Metrosep A SUPP5 

column. Carbonate buffer (3.2 mmol l-1 Na2CO3, 1 mmol l-1 NaHCO3) served as an eluent.  

Inorganic phosphate was determined spectrophotometrically by molybdenum 

blue method at 820nm (Murphy & Riley, 1958). Prior to the analysis, samples were 

filtered through a 0.45 μm syringe filter and stored for several days at 4°C until 

interfering sulfide was oxidized by oxygen.  

STEM-EDX 

Biomass was fixed with 4% formaldehyde (FA) in 0.1M 3-(N-

morpholino)propanesulfonic acid (MOPS) buffer (pH 7.4). To 1ml biomass in medium an 

equal volume of fixative was added and the cells were incubated with head-over-head 

rotation for 15 min. at 21°C. Biomass was pelleted by centrifugation for 2 min. at 800 

RCF (21°C), supernatant was decanted and replaced with fresh fixative, followed by 2h 

fixation with head-over-head rotation at 21°C. Subsequently cells were washed 5x with 

0.1 M MOPS buffer (pH7.4) by pelleting the biomass at 800 RCF (1 min., 21°C) decanting 

the supernatant and replacing it with fresh buffer. After the last wash, buffer was 

replaced for 12% gelatin in 0.1 M PHEM (60 mM piperazine-N,N′-bis(2-ethanesulfonic 

acid), 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 10 mM ethylene 

glycol tetraacetic acid, 2 mM MgCl2, pH 6.9) at 37°C and the fixed biomass was 

incubated for 5 min. at 37°C with intermitted resuspension. Next the biomass was 

pelleted at 1600 RCF for 3 min. at 37°C and the sample was solidified on ice for 15 min. 

Samples were removed from the microtubes, excess gelatin was trimmed off using a 

razorblade and the pellet was diced in blocks of 1-2 mm3. Sample blocks were infiltrated 

overnight at 4°C with 2.3 M sucrose in PHEM buffer and the next day mounted on 

specimen pins and frozen in liquid nitrogen. Samples were cryosectioned (75 nm 

sections) using a cryo-ultramicrotome UC7/FC7 (Leica Microsystems, Austria). 

Cryosections were picked up with a drop of 1% methyl cellulose and 1.15 M sucrose in 

PHEM buffer and transferred to formvar-carbon-coated copper hexagonal 100 mesh 

grids. 

STEM imaging was performed on a Quanta FEG 250 (FEI, Netherlands) equipped 

with and Everhart-Thornley detector for transmission electron imaging (14 regions) 

under high vacuum mode at 20 kV. EDX was done using a dual detector system XFlash 
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6|30 (energy resolution Mn Kɑ < 123 eV, detector area = 30 mm2; BrukerNano, Germany) 

at a working distance of 10 mm. 

Elemental analysis by ICP-OES 

Biomass was filtered onto weighed 0.22 μm GTTP filters (dried in desiccator for 

24h; Millipore, Germany) and washed very briefly with 0.5M NaCl solution followed by 

MQ water. Filters were dried at 80ºC overnight and dry mass was determined (~1 mg) 

before incubation in 1M HCl for 1h at 55ºC. The filter and loose biomass was collected 

by centrifugation (12000 RCF, 10 min.) and washed twice with 1M HCl. The washings 

and the extract were combined and Ca, Mg, Fe, P, S, Ni and Co were determined by 

inductively coupled plasma-optical emission spectrometer (ICP-OES) that was equipped 

with an ultrasonic nebulizer (PerklinElmer Optima 3300 R). 

33P radiotracer incubation experiments 

15 ml aliquots of the S-AOM enrichment culture were transferred into 30 ml 

serum bottles sealed with butyl rubber stoppers. The medium was exchanged twice 

(incubation time: 6h) with modified SRB seawater medium (modifications: 10 mmol l-1 

MgSO4 * 7 H2O, 45.5 mmol l-1 MgCl2 * 6 H2O, 0.5 or 0.005 mmol l-1 KH2PO4, 15 mmol l-1 

NaHCO) before carrier-free 33P-phosphate radiotracer (Hartmann Analytics, Germany) 

and 1.5 mmol l-1 NaH13CO3 (Sigma-Aldrich, USA) was added. Serum bottles were 

pressurized with 2 bar methane or N2:CO2 (90:10). Samples were taken regularly for 

liquid scintillation counting, sulfate, sulfide and phosphate determination. Samples for 

scintillation counting were filtered through a 0.22 μm GTTP filter (Millipore, Germany). 

The filter was briefly washed once with modified SRB medium and twice with 1M HCl. 
33P activity in the filtrate (medium) and on the filter was determined by liquid 

scintillation counting (liquid scintillation counter: 2900TR LSA, Packard, USA; 

scintillation fluid: IrgaSafe, PerkinElmer, USA). 
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1a). Peaks of uranium (U), copper (Cu), aluminum (Al) and silicon (Si) are system peaks 

originating from staining (U), copper mounting grid (Cu) or detector (Al and Si). 

The S-AOM flocs formed in the enrichment culture differed in appearance and 

geochemical characteristics depending on the ambient phosphate concentration. 

Elemental analysis by ICP-OES of HCl extracts highlighted major differences in the 

elemental composition of low and high Pi biomass flocs. We found 9.1 dry-wt% HCl-

extractable Pi in the high and only small amounts (< 0.1 dry-wt %) in low phosphate 

biomass flocs (Table 1). Pi and Mg were present in approximately equimolar amounts in 

the HCl extracts of low and high phosphate biomass. Calcium content was only 1.6% for 

the high phosphate enrichments, but 22.4 %wt for the low phosphate treatments. In the 

latter case, the Ca was most likely bound as calcium carbonate, which was visible by eye 

as a white precipitate encrusting the black biomass flocs, and distinct needle-shaped 

carbonate crystals observed under higher magnification (see Supplementary Fig. S3). 

Other elements determined in the acidic extracts such as Fe, Mn, Ni and Co constituted 

< 1 %wt of the dry mass of both cultures (Table 1 and Supplementary Table S2). 

Table 1. Elemental composition of biomass determined by ICP-OES in HCl extracts of low 
and high phosphate incubations.  

Incubation Ca  
%wt dry mass 
mmol (g dry 

mass)-1 

Mg 
%wt dry mass 

μmol (g dry 
mass)-1 

Fe 
%wt dry mass 

μmol (g dry 
mass)-1 

PO4
3- 

%wt dry mass 
μmol (g dry 

mass)-1 

Low 
phosphate 

22.35 
5.577 

0.01 
4 

0.04 
7 

0.05 
5 

High 
phosphate 

1.62 
0.404 

3.35 
1370 

0.42 
75 

9.08 
956 

33P radiotracer incubations 

Phosphate cycling in low and high phosphate S-AOM enrichment cultures was 

investigated using 33P radiotracer. Rates are summarized in Table 2. In the presence of 

methane, sustained sulfate reduction took place as indicated by the linearly increasing 

sulfide and decreasing sulfate concentrations (Fig. 2a and b). The sulfate reduction rate 

(SRR) calculated from the sulfate concentrations was 16.2 and 53.8 μmol l-1 h-1 in low and 

high Pi incubations, respectively. In both low and high Pi incubations, the SRR was 

typically 1.6-times greater than the sulfide production rate. When methane was 
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observed in the low Pi incubations; there the Pi concentration fluctuated without 

significant trend between 2 and 6 μmol l-1 in both the control and methane amended 

incubations (Fig. 2d). In contrast to the bulk Pi concentrations, 33P activity in the medium 

(33Pm) exhibited a decrease in all incubations where S-AOM was occurring, i.e., where 

methane was present and sulfate was being consumed. For the high Pi incubation, the 
33Pm decrease was approximately linear throughout the experiment from 146 to 65 MBq 

(–0.62 MBq l-1 h-1; Fig. 2e). 33Pm of the low Pi incubation decreased initially over the first 

70 hours from 414 to106 MBq l-1 (–4.4 MBq l-1 h-1; 0 – 70h; Fig. 2f) and then remained 

approximately constant thereafter (70–185h). In the absence of methane, and therefore 

no AOM activity, 33Pm activity remained constant in the high Pi incubation or decreased 

only slightly in the presence of low concentrations of Pi (Fig. 2e and f).  

Table 2. Sulfate reduction rate and rates of 33P change obtained from radiotracer 
experiments of low and high phosphate experiment amended with methane. 

 Low phosphate experiment High phosphate 
experiment 

Sulfate reduction rate  
(μmol l-1 h-1) 

16.2
(r2=0.93) 

53.8  
(r2=0.98) 

Average phosphate concentration 
(μmol l-1) 

4.1 414.7 

Δ33P activity in medium 
(MBq l-1 h-1) 

4.37 
(r2=0.99; 0 – 70h) 

0.62 
(r2=0.97) 

33P derived P cycling rate
(μmol l-1 h-1) 

0.053 (0 – 70h) 1.86 

Δ33P activity washed biomass 
(MBq l-1 h-1) 

0.561 (r2=0.72; 0 – 42h) 

0.355 (r2=0.52; 0 – 185h) 
0.030 

(r2=0.72) 

 

S-AOM enrichment culture flocs washed with 1M HCl of both high Pi and low Pi 

S-AOM active incubations were distinctly more enriched in radiotracer when compared 

to the control incubations without methane (Fig. 2e and f). The recovered 33P activity in 

the washed biomass at the end of the methane amended incubation was ~ 6 and 17 % 

of 33Pm lost from the medium for high and low Pi incubation, respectively. 33P activity in 

the wash fraction was confirmed by scintillation counting but was not systematically 

quantified.  

To test whether the Pi cycling is an indirect effect caused by of chemical changes 

occurring within the medium during S-AOM (e.g. co-precipitation due to increased 

alkalinity), we performed a control experiment where the changes were replicated in 

the absence of methane (Fig. 3). In brief, we incubated radiotracer-free S-AOM 
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Discussion 

Pi cycling under S-AOM conditions 

The experiments with 33P demonstrate that there is indeed a link between the 

activity of S-AOM microorganisms and inorganic phosphate cycling. 33P was removed 

from solution when methane was present in both the low and high phosphate 

experiments (Fig. 2a and b). Without methane, 33Pm activity remained unchanged (high 

Pi incubation) or slowly decreased (low Pi incubation). Because bulk net distributions of 

Pi did not change over time in the experiments, the decrease in 33P activity indicates that 

P exchanges between the solution and solid, biomass-containing phases. This exchange 

occurs only when S-AOM occurs.  

One possibility is that the 33Pm removal from solution simply reflects a side-effect 

cause by the changing medium chemistry during the course of the experiment. Pi 

adsorption and co-precipitation with carbonate minerals has been previously reported 

(de Kanel & Morse, 1978; Otsuki & Wetzel, 1972) and might indirectly influence P cycling 

in our culture due to the increased carbonate alkalinity generated by the S-AOM 

process. Nevertheless, our experiments with adding old medium to replicate changes in 

the extent of the S-AOM reaction, i.e., decreasing sulfate, and corresponding increases 

in sulfide and carbonate alkalinity, had no effect on total dissolved 33P activity (Fig. 4). 

Moreover, the decline in 33Pm during the methane amended conditions was immediate, 

when changes in the medium chemistry associated with would be minimal. In the 

absence of methane and S-AOM, we could not induce 33Pm uptake; therefore we 

propose an active and direct involvement of the S-AOM-associated microbes in this 

process.  

One possibility is that S-AOM microorganisms store excess P. Microbial Pi uptake 

for biomass formation or storage, however, is unlikely the main driving mechanism 

behind the observed radiotracer behavior in our cultures. In case of uptake or storage, 

one would expect that the radiotracer and Pi show similar behavior. Our results did not 

exhibit such behavior since the 33Pm activity substantially decreased even while Pi 

concentration remained approximately constant. Furthermore, apparent rates of Pi 

removal (based on the change of 33P activity and the mean phosphate concentration) of 

1.86 (high Pi exp.) and 0.053 μmol l-1 h-1 (low Pi exp.) are substantial; they yield turnover 

times for dissolved Pi of 9 days (high Pi exp.) and 3 days (low Pi exp.) respectively. The 
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rates are nearly two orders of magnitude larger than the estimated assimilatory Pi 

uptake rates (few nmols l-1 h-1; Supplementary Table S1). Furthermore, only a small 

fraction of 33P lost from the medium was retained in the biomass after brief washing 

with 1M HCl. Extraction of organic P or a common P storage product, e.g. 

polyphosphate, has been reported to require prolonged exposure (hours) to 1M HCl 

and high temperatures (Eixler et al, 2005; Ruttenberg, 1992), but exposure to 1M HCl in 

our experiments was brief (minutes). 

Rather than uptake and storage within the biomass, exchange of free Pi with a 

particulate Pi pool appears to be a more likely mechanism. To provide some level of 

insight into the nature of the solid phase Pi pool, we determined bulk elemental 

composition in acidic HCl extracts (analyzed by ICP-OES) of biomass flocs. When 

switching the medium of the high phosphate culture to lower phosphate 

concentrations we observed a gradual increase of free phosphate (visible in Fig. 2f), 

independent of S-AOM activity, and indicating dissolution of a P mineral. This was 

confirmed by our bulk elemental analysis where we found 9.1 dry-wt% HCl-extractable 

Pi in the high and only small amounts (< 0.1 dry-wt %) in low phosphate biomass flocs. 

Our results indicated almost equimolar concentrations of Mg and Pi in high (1.44 mol 

Mg (mol Pi)-1) and low Pi biomass (0.78 mol Mg (mol Pi)-1). Therefore Pi seems to be 

bound in an Mg containing P mineral, which is consistent with reports of Pi precipitating 

as Mg-Ca phosphate under similar abiotic conditions (Golubev et al, 1999).  

The bulk Pi extraction method also does not distinguish between extra- and 

intracellular Pi, but the application of STEM-EDX revealed intracellular particles only 

within the DSS cells of both low and high phosphate cultures. Similar Fe-rich particles 

have been found in DSS from S-AOM-active bacterial mats from the Black Sea that were 

also enriched in P (Milucka et al, 2012) or S (Reitner et al, 2005b; Reitner et al, 2005a). 

While EDX analysis of several of our particles (n=9) also showed almost always Fe 

enrichment in contrast to cellular background, neither P, Mg nor S could be detected. As 

a result we suggest that the Mg-bearing phosphate mineral involved in Pi cycling is 

located extracellularly. In our experiments we found no evidence of significant 

authigenesis of Fe-bearing phosphate minerals that was recently reported to occur 

within the SMTZ (Dijkstra et al, 2014; Jilbert & Slomp, 2013), but free ferrous iron 
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concentrations are not expected to be significant in our cultures (e.g. Fe is added only 

as a trace element). 

Interestingly, throughout both the high and low Pi experiments, bulk Pi 

concentrations remained constant. These apparently contradictory results are readily 

resolved if we consider that the bulk Pi rapidly achieves a steady-state concentration 

between the solid phase (including biomass) and the solution phase, whereas, the 33Pi 

added to the solution phase is initially not in steady-state. During P cycling, free Pi and 

radiotracer transition into a particulate Pi pool at the same rate as Pi (and subsequently 
33P) is released again. Over time, 33Pm activity will decrease and radiotracer will 

accumulate in the particulate pool. The system eventually settles in a steady state in 

respect to 33P after which 33P activity in both pools will remain constant despite ongoing 

Pi exchange. We hypothesize that steady state was reached in the low phosphate 

radiotracer incubation visible by constant 33Pm activity from 70h onwards despite 

ongoing S-AOM activity (inferred by sulfate and sulfide concentrations). Thus, a 

biologically induced exchange process between Pi and extracellular, inorganic P 

minerals is the most likely explanation for the observed 33P radiotracer behavior. 

Possible mechanism and function of Pi exchange 

In marine environments, microbe P-mineral interactions are well studied. For 

example, microbes have been identified as important players due to their ability to 

release Pi from organic matter (Baturin & Bezrukov, 1979) and their involvement in 

deposition of P-bearing minerals (Diaz et al, 2008; Schulz & Schulz, 2005). Nonetheless, 

we could not find reports in the literature which have specifically implicated microbes in 

the exchange of free Pi with P-minerals as described in our study. This might be related 

to the fact that the P cycling described in this study is a cryptic process (no net-change 

of Pi concentration) that reveals itself through the application of P isotopes. So far very 

few studies have used P radioisotopes to investigate sedimentary P cycling processes 

and therefore microbe P-mineral exchange might be an overlooked aspect. It remains 

to be shown if our observations also hold true for in-situ conditions and that they are a 

unique feature of S-AOM-associated microbes.  

It is unclear how P cycling could benefit S-AOM-associated microbes. We note 

that the S-AOM enrichment culture, which was kept for several months at low 

phosphate concentrations (< 10 μmol l-1) showed gradually decreasing S-AOM rates 
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(inferred by sulfide production; data not shown) and simultaneous, creeping 

carbonatization of the biomass. Carbonate mineral formation was likely facilitated by 

low phosphate concentrations since phosphate has been shown to inhibit calcite and 

aragonite precipitation (Berner et al, 1978; Plant & House, 2002). Carbonate encrusting 

the biomass could have had a disruptive effect on the S-AOM microbes through e.g. 

diffusive barrier formation or mechanical stress that led to decreased S-AOM rates. We 

hypothesize that by continuously liberating Pi from e.g. a slow forming Pi-bearing 

mineral phase, S-AOM microbes could potentially increase local Pi concentration to 

protect themselves from carbonatization. Such a microbial driven process could have 

interesting implications for sedimentary processes through creation of Pi-rich 

microenvironments. 

Conclusions 

Our results show that S-AOM-associated microbes cycle Pi between soluble Pi 

and particulate Pi, latter is likely located extracellularly and Mg-bound. Cycling appears 

to be actively performed by the microbes and was only observed when cultures were 

“energized” by methane. Pi cycling rates were significant since the time of turnover of 

free Pi was estimated to be 3 – 9 days (depending on Pi concentration). We speculate 

that Pi cycling act as a protection mechanism against excessive carbonatization of the 

biomass. 
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Chapter 6 

Conclusions and Outlook 

This thesis provides a deeper understanding on microbial methane oxidation in 

freshwater and marine systems by studying several groups of microorganisms that drive 

this process in the environment. The study of these microorganisms is important 

because they play a key role in controlling emissions of the greenhouse gas methane to 

the atmosphere. The novel insights gained into the metabolic potential and activity of 

these microorganisms allows us to better understand their role and contribution 

towards the biogeochemical cycling of methane and other intersecting element cycles. 

Methane oxidation in lakes - physiology and ecology of two contrasting 
microbial groups 

The majority of methane oxidation occurring in freshwater lakes is commonly 

thought to be performed by aerobic methanotrophs, yet little is known about the 

importance and physiology of individual groups that mediate this process. In this thesis 

we investigated the methane-oxidizing community in Swiss temperate lakes, which are 

typical examples of eutrophic stratified lakes found in many temperate regions. We 

looked into the ecology, activity and physiology of two contrasting methane-oxidizing 

groups with hitherto poorly characterized environmental relevance: the filamentous 

Crenothrix bacteria (Chapter 2) and the wondrous NC10 bacteria (Chapter 3). 

Thus far, Crenothrix bacteria were infamous for infesting and clogging drinking 

water supplies but little was known about their physiology and role in the environment 

besides their methanotrophic lifestyle (Stoecker et al, 2006b). In Chapter 2 we show that 

Crenothrix bacteria are important players in the methane cycle of freshwater lakes. At 

first, this finding was unexpected since Crenothrix bacteria only constituted a minor 

fraction of the indigenous methane-oxidizing microbial community, which was mainly 

composed of gamma-proteobacterial methane oxidizing bacteria (gamma-MOB). By 

measuring the activity of single Crenothrix filaments using nanometer-scale secondary 

ion mass spectrometry (nanoSIMS), we showed that the large Crenothrix bacteria overall 

oxidized as much methane as the more abundant but smaller gamma-MOB. This 

highlights that comparatively rare microorganisms can have a large ecological impact 



Chapter 6 - Conclusions and Outlook 

 
168 

on their environment and that abundance is not always a good indicator for 

importance.  

Using next-generation sequencing and genome binning techniques, we then 

reconstructed three Crenothrix genomes (from Lake Zug and a water treatment plant) to 

gain a better insight into the metabolic potential of these uncultivated methanotrophs. 

Phylogenetic analyses of these genomes showed that the genus Crenothrix appears to 

be polyphyletic, harboring several species, and might be more diverse and therefore 

more widely distributed than previously assumed. Furthermore we show that Crenothrix 

do not possess an “unusual” particulate methane monooxygenase (pMMO, (Stoecker et 

al, 2006a)) but rather possess a “classical” gamma-proteobacterial pMMO. This is 

important since “unusual” PmoA previously assigned to Crenothrix, which has been 

shown to be an ammonium monooxygenase of Nitrospira bacteria (Daims et al, 2015; 

van Kessel et al, 2015), serves as an important marker for the detection of these 

physiologically different microorganisms in the environment. Additionally, we found 

that PmoA of Crenothrix might be affected by lateral gene transfer, which should be 

considered in studies that rely on PmoA as marker for Crenothrix.  

Although methane oxidation and abundance of gamma-MOB was generally 

highest at the oxycline, our study demonstrated that Crenothrix bacteria, which we also 

identified in anoxic waters of Lake Zug and Rotsee, were apparently also capable of 

methane oxidation under both oxic as well as anoxic and denitrifying conditions. 

Genomic analysis further supported that Crenothrix appear to be well adapted to 

oxygen-limited conditions as the genome encoded a partial respiratory denitrification 

pathway and genes for mixed acid fermentation. Both systems are emerging features of 

“aerobic” methanotrophs that might allow these microorganisms to thrive even under 

oxygen-limiting conditions (Chistoserdova, 2015; Kalyuzhnaya et al, 2013; Kits et al, 

2015; Knief, 2015). However, the role and contribution of denitrifying aerobic 

methanotrophs towards N cycling in these systems, which are often eutrophied and 

receive high inputs of N, is still poorly understood. Although further studies are needed 

to assess and quantify methane-dependent growth of Crenothrix (and other gamma-

MOB) under nitrate-reducing conditions, our data suggests these microorganisms 

might be important links between the biogeochemical cycles of methane and nitrogen 

in freshwater lakes. Furthermore, it is also important to consider the end-product of 
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denitrification as ours and other genomic studies have shown that gamma-MOB 

consistently lack nitrous oxide reductase (Dam et al, 2013; Stein & Klotz, 2011), which 

might suggest N2O (and possibly other nitrogen oxides) as an end product. N2O has a 

substantially higher global warming potential than methane, therefore the role 

Crenothrix and other denitrifying gamma-MOB should also be considered in the 

environmental control of climate-relevant greenhouse gases other than methane. 

In Chapter 3, we returned to Lake Zug in September 2016 to investigate the 

methanotrophic community, which was in the previous years mainly composed of 

gamma-MOB (Chapter 2, (Oswald et al, 2016a)). To our surprise we found that 

planktonic NC10 bacteria, which we did not detect in the previous years, dominated the 

microbial community in the deep, anoxic hypolimnion of Lake Zug where NC10 

constituted up to 27% of the total microbial community. This was only the second 

report of abundant planktonic NC10 in the environment (Kojima et al, 2014). Previously, 

NC10 bacteria have been known to be widespread but rare members of the microbial 

community and their contribution to methane and nitrogen cycling in freshwater lakes 

remained poorly characterized.  

The reconstructed genome of the dominant NC10 population represented a 

novel species of the genus “Candidatus Methylomirabilis”, which we named “Ca. 

Methylomirabilis limnetica”. This name was chosen to emphasize its lacustrine affiliation 

since closely related 16S rRNA gene sequences of “Ca. M. limnetica” have been retrieved 

from several freshwater lakes and reservoirs across the globe. The genome of “Ca. M. 

limnetica” contained all necessary genes for complete methane oxidation (via pMMO) 

and incomplete denitrification, including two non-canonical NO reductases that 

presumably function as O2-producing nitric oxide dismutases. In comparison to “Ca. 

Methylomirabilis oxyfera”, which was isolated from a Dutch ditch sediment 

(Raghoebarsing et al, 2006), we found that the genome of “Ca. M. limnetica” showed 

evidence possibly related to genome streamlining and adaptation to its planktonic 

habitat. A major difference was that “Ca. M. limnetica” encoded genes for gas vesicle 

formation as well as less homologs or variants of enzymes with apparently redundant 

function (i.e. heme-copper oxidases, cytochrome bc1 complexes, methanol 

dehydrogenases), which might contribute to a more specialized and possibly 

opportunistic lifestyle of “Ca. M. limnetica”. Our transcriptomic data provided further 
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evidence that “Ca. M. limnetica” was transcriptionally highly active in situ since up to a 

third of all mRNA transcripts from the metatranscriptome of the deeper depths could be 

assigned to “Ca. M. limnetica”. Furthermore we found that genes involved in 

transcription and translation were well expressed by “Ca. M. limnetica”, which 

suggested that the apparent bloom of “Ca. M. limnetica” was still ongoing. Transcription 

of functional genes related to methane oxidation and denitrification was in accord with 

the proposed lifestyle of NC10 bacteria; in particular our transcriptomic data confirmed 

that the presumably O2-producing NO dismutase, which was highly transcribed in situ, 

appears to play a key role in the metabolism of by “Ca. M. limnetica”.  

Our findings highlight yet another unrecognized major player in methane 

cycling of freshwater lakes. In contrast to Crenothrix, which was identified in successive 

years, NC10 appears to favor certain but yet unknown conditions that may trigger a 

bloom. We speculate that non-steady-state conditions in September 2016 could have 

opened a niche for NC10, in particular we noticed that the oxycline was located at about 

106 m depth, which was well above the usual depth (140-150 m) that was measured in 

previous years (Chapter 2, (Oswald et al, 2016b)). Although the high abundance and 

transcriptional activity of “Ca. M. limnetica” suggests that this microorganism could be a 

major player in methane and nitrogen cycling, further studies are needed to confirm 

and quantify its denitrifying and methane-oxidizing activity in situ. In this context it 

would also be important to elucidate the factors that trigger a bloom, which would aid 

to predict, measure and quantify their role in the environment. It might very well be 

that NC10 bacteria, which produce N2 gas (Ettwig et al, 2010; Raghoebarsing et al, 2006), 

could temporarily become the main contributors of N-loss and methane oxidation in 

aquatic systems. 

Marine S-AOM: Unraveling intertwined microorganisms 

In Chapters 4 and 5 we continued on the topic of microbial methane oxidation 

with a focus on marine anaerobic oxidation of methane coupled to sulfate reduction (S-

AOM). This microbially mediated process is widespread in marine sediments and is a 

major factor controlling the flux of methane from sediments to the ocean and 

eventually to the atmosphere.  

In Chapter 4, the metabolic potential and activity of anaerobic methanotrophic 

archaea (ANME) and associated Deltaproteobacteria that mediate S-AOM was 
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investigated using a highly active S-AOM enrichment culture. A major goal was to 

untangle the physiology and metabolic activity of the individual microorganisms and 

use the generated metabolic model as a basis for the discussion an S-AOM mechanism 

previously proposed by Milucka et al. (2012). We focused on this particular model 

because the same S-AOM enrichment culture was used in both studies. This was an 

important aspect of our study since it is unknown if a single S-AOM mechanism is 

applicable to all ANME and DSS groups that mediate S-AOM.  

First, we successfully reconstructed two genomes of ANME-2c and SEEP-SRB1, 

which to our knowledge represent the first genomes of their respective genus or even 

family. Our data confirmed that ANME-2c oxidize methane through a full reverse 

methanogenesis pathway. We also showed that ANME-2c encode and express a 

membrane-bound electron transport chain likely coupled to the methanogenesis 

pathway, as proposed previously (McGlynn et al, 2015). However, the role of soluble 

heterodisulfide reductases (Hdr) should be considered in this context. Although soluble 

Hdr of ANME have been discussed before (Arshad et al, 2015; Hallam et al, 2004; 

Meyerdierks et al, 2010; Meyerdierks et al, 2005), our study highlights that soluble Hdr, 

which were well transcribed and also expressed, are likely important puzzle pieces of 

the electron flow in ANME archaea and might be a key to understanding the 

mechanism of S-AOM. In particular, the possibility of flavin-based electron bifurcation is 

an intriguing aspect of soluble Hdr that thus far has been largely excluded from 

metabolic models of ANME. In any case, further biochemical studies are needed to 

confirm physiological role and activity of soluble Hdr in ANME-2c.  

Another open question is the role of sulfur metabolism-associated genes – two 

sulfite reductases in particular – of ANME-2c. An assimilatory or detoxifying role, which 

has been described for the F420-dependent sulfite reductase in methanogens (Johnson 

& Mukhopadhyay, 2005) (Johnson & Mukhopadhyay, 2008), does not appear directly 

obvious. Like methanogens, ANME-2c likely directly assimilate sulfide as source of sulfur. 

Furthermore, formation of substantial amounts of sulfite, which was not added to the 

enrichment culture, seems unlikely. Hence we speculate that these sulfite reductases, 

which were transcribed, might be involved in a putative archaeal sulfate reduction 

pathway of ANME-2 that was proposed previously (Milucka et al, 2012). However, 

several open questions still remain: What could the end product of this putative 
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archaeal sulfate reduction pathway be? In relation to this, would these sulfite reductases 

be directly involved in dissimilatory reduction or would they fulfill auxiliary roles (e.g. 

removal of by-products)? And, finally, how and by what enzyme is sulfate reduced in the 

first place? Here, we speculate that electrons with sufficiently low redox potential could 

in principle be generated via flavin-based electron bifurcation. Although our functional 

genomics approach laid a solid foundation for future investigations, many of the 

aforementioned questions are difficult to answer without additional confirmation by 

physiological experiments. 

Another aspect we investigated through our functional genomics study was the 

metabolic potential and activity S-AOM-associated SEEP-SRB1 bacteria. A major finding 

was that SEEP-SRB1 encoded, transcribed and expressed all genes of the canonical 

sulfate reduction pathway in addition to associated, membrane-bound complexes. 

However, this finding by itself was not necessarily indicative that SEEP-SRB1 have a 

sulfate-reducing, syntrophic life style. The same enzymes have also been suggested to 

mediate sulfur disproportionation and even sulfide oxidation in other 

Deltaproteobacteria (Finster, 2008; Frederiksen & Finster, 2003; Thorup et al, 2017); 

furthermore, physiological experiments by Milucka et al. (2012) have shown that DSS 

are capable of polysulfide (mostly likely disulfide) disproportionation. Although this 

suggests that SEEP-SRB1 use these enzymes for disproportionation, sulfate reduction by 

SEEP-SRB1 cannot be excluded based on our data. Also, it is still unclear how polysulfide 

would be initially converted to sulfite, which has been shown to be a crucial 

intermediate in other disproportionating bacteria (Finster, 2008). A key protein in this 

process could be the highly transcribed sulfur carrier protein DsrC, which has been 

shown to form a trisulfide bridge that includes a zero-valent sulfur atom bound to two 

cysteine residues and has been shown to be a key intermediate in reduction of sulfite to 

sulfide (Santos et al, 2015). In this respect it would be interesting to investigate the 

possibility of an interaction of DsrC (and the associated DsrMKJOP complex) with 

polysulfides, which might represent an entry mechanism of zero-valent sulfur during 

sulfur disproportionation (Thorup et al, 2017).  

In the recent years, several studies have suggested direct interspecies electron 

transfer (DIET) as an alternative S-AOM mechanism to the one proposed by Milucka et 

al. (2012). Although electron transfer via conductive pili has been suggested to occur in 
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thermophilic S-AOM consortia (Wegener et al, 2015), our functional genomics data did 

not support transcription and expression of pili genes by SEEP-SRB1. Conversely, multi-

heme cytochromes c (MHC) of ANME-2c and SEEP-SRB1, some of which we found to be 

well transcribed, might be more suitable candidates and have been previously 

proposed to mediate electron transfer in S-AOM consortia (McGlynn et al, 2015; 

Skennerton et al, 2017). However, a major challenge regarding the involvement of 

MHCs in electron transfer is that they are a diverse group of proteins and are often 

functionally poorly characterized (Kletzin et al, 2015). Therefore, presence of MHC genes 

in our and other S-AOM-associated microorganisms might serve as indirect evidence for 

DIET, but further studies are needed to directly prove conductance of electrons. This 

could be tested for example by directly measuring the conductance of individual S-

AOM aggregates or by establishing an artificial consortia that mediate electron transfer 

solely via MHCs, which then could be modified and tested in various ways (e.g. 

differential gene transcription or heterologous gene expression).  

Another important puzzle piece to understand the physiology and possible 

interaction between the two partners could be the membrane-bound complexes Qrc 

and Tmc of SEEP-SRB1. Those complexes, which were well transcribed and expressed, 

have been shown to serve as entry points for electrons derived from periplasmic 

reactions (classically periplasmic hydrogenases or formate dehydrogenases, (Grein et al, 

2013)) and would therefore be candidates to accept exogenous electrons (possibly 

transferred via DIET from ANME). However, an involvement in polysulfide 

disproportionation might also be possible (as discussed in Chapter 4) and further 

studies are needed to clarify the source of electrons accepted by these complexes. An 

approach to further test and verify different hypotheses surrounding the S-AOM 

mechanism could involve analysis of differentially transcribed genes of both 

microorganisms in incubations grown under standard S-AOM and under 

disproportionating conditions without methane. Also, obtaining an ANME-free culture 

of SEEP-SRB1 (e.g. through incubation with polysulfide and without methane) would be 

immensely useful for further physiological and biochemical characterization. The 

opposite (i.e. enriching for ANME) might also be possible by using an artificial electron 

acceptors, which has been shown to decouple methane oxidation from sulfate 
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reduction in S-AOM microcosm experiments (Scheller et al, 2016), although it first has to 

be tested if this is also possible in our S-AOM enrichment culture. 

In Chapter 5 we investigated a direct involvement of S-AOM-mediating 

microorganisms in the sedimentary phosphorus (P) cycle, which was hinted towards in 

two studies: Milucka et al. (2012) reported Fe- and P-rich particles in DSS bacteria of an 

S-AOM enrichment culture and ii) the discovery of unusual authigenesis of iron (Fe) and 

P-bearing minerals within S-AOM dominated sediment horizons (Jilbert & Slomp, 2013). 

Prompted by these findings we investigated whether S-AOM-mediating 

microorganisms may directly influence the P cycle in an S-AOM enrichment culture by 

combining 33P radioactive tracer incubations, single cell imaging and elemental analysis 

of the S-AOM biomass. Interestingly, we found that the S-AOM-associated 

microorganisms actively shuffled Pi between a soluble and a particulate pool, which was 

likely an epicellular magnesium-bound phosphate mineral. In incubations at lower Pi 

concentrations, we observed the same effect but additionally observed substantial 

carbonatization of the S-AOM biomass, which coincided with decreased S-AOM activity. 

These findings demonstrate that S-AOM-associated microorganisms appear to utilize Pi 

beyond assimilatory uptake, however, further experiments are needed to show if the 

enigmatic shuffling of soluble and particulate Pi pools also occurs in the environment 

and how it might affect the sedimentary P cycle. To further test this and to expand 

preliminary work with sediment from the Black Sea, S-AOM-active sediments could be 

incubated under in situ conditions with 33P radiotracer and the partitioning of the 

radiotracer into different sedimentary P reservoirs could be traced by sequential 

extraction using the SEDEX procedure (Ruttenberg, 1992). Additionally, this could be 

combined with microautoradiography-fluorescence in situ hybridization (Lee et al, 1999) 

to link uptake and storage of P, possibly as intracellular P-bearing mineral, to individual 

cells with known phylogenetic identity. 

In conclusion, this thesis provides an intimate look into the inner workings of 

several methane-oxidizing microorganisms that inhabit marine as well as lacustrine 

systems. The use of functional metagenomics allowed us to not only study their 

metabolic potential, but also to predict their metabolic activity that underlies their 

ecophysiology. In combination with other techniques, we put the spotlight on two 

unrecognized freshwater methanotrophs and elucidate their metabolism and role in 
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the environment. Furthermore, we provide first insights into the genomic blueprint and 

metabolic activity of marine microorganisms that mediate the sulfate-dependent 

anaerobic oxidation of methane. Although many open questions remain, the results 

and data presented in this thesis further serve as foundation for future studies to 

hypothesize, test and provide answers to remaining as well as yet unasked questions 

pertaining to these small but mighty beasts. 

Directions for future research 

This thesis has illuminated the metabolic potential and activity of several 

methane-oxidizing microorganisms. It goes without saying that there remains much to 

be discovered and the more one begins to understand, the more questions suddenly 

surface. Hereinafter, some directions for future research are suggested and sketched 

out. 

1. Anaerobic “aerobic” methanotrophs and the lacustrine nitrogen cycle 

In Chapter 2, we highlighted that Crenothrix bacteria might also oxidize methane 

and thrive under oxygen-limited conditions by respiratory denitrification. Although this 

feature is an emerging topic in methanotroph research (Kits et al, 2015), still little is 

known how important and widespread denitrification coupled to methane oxidation by 

“aerobic” methanotrophs is. Yet, gamma-proteobacterial methanotrophs are 

considered the most important methane-oxidizing group in freshwater lakes and these 

habitats have conditions that might favor denitrifiers due to high nitrogen loads. 

Understanding the contribution of these methanotrophs towards overall denitrification 

in these systems would provide valuable insights into the lacustrine N cycle, and, thus 

help to interpret the role of methanotrophs in controlling climate-relevant greenhouse 

gases (i.e. methane and nitrous oxide). 

2. Role of NC10 in the environment 

As discussed in Chapter 3, the contribution of NC10 towards environmental 

methane and nitrogen cycling still needs to verified and quantified. To do this, we have 

to first understand the conditions and factors that lead to the bloom of NC10 and 

subsequently determine their activity and overall contribution. This might be best 

studied in a high resolution (both temporally and spatially) multi-year sampling 
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campaign on Lake Zug and other stratified methane-rich lakes. This might provide 

much needed answers to understand how frequently NC10 blooms occur, which greatly 

affects our view on the environmental relevance of NC10. Furthermore, our study also 

begs the question if NC10 bacteria, which have been identified at low abundance in 

marine systems (Padilla et al, 2016), might show similar blooming behavior in marine 

environments similar to Lake Zug (i.e. the Black Sea). 

3. Functional microbial communities surrounding freshwater 
methanotrophs 

Certain methylotrophs and other microbial taxa (e.g. Flavobacterium) are often 

found to co-occur with methanotrophs in freshwater environments (Beck et al, 2013; 

Chistoserdova, 2015), which was also observed in our study of Lake Zug and Rotsee but 

was not elaborated on in this thesis. Although it is tempting to speculate that these so-

called satellite communities feed off of by-products produced by methanotrophs (e.g. 

methanol), there is little direct evidence for such a cross-feeding. Furthermore, it is not 

known if the interaction is solely based on C1 compound(s) or if other substances 

potentially produced by methanotrophs (e.g. nitrogen oxides) also might play a role. By 

investigating the interaction of methanotrophs and the associated functional 

communities we might gain a more holistic view on the process of methane oxidation 

and the associated microorganisms in freshwater systems. 

4. The mechanism of S-AOM in light of phylogenetic diversity 

Despite the large phylogenetic differences between different groups of ANME 

archaea and associated DSS bacteria, it is in many cases still assumed that the same 

mechanism underlies S-AOM in all groups. However, studies of “Ca. Methanoperedens 

nitroreducens”, which belongs to a subgroup of ANME-2, have shown that these 

archaea are functionally diverse and can couple methane oxidation to both iron as well 

as nitrate reduction (Ettwig et al, 2016; Haroon et al, 2013). Considering that for example 

ANME-2c are more closely related to “Ca. M. nitroreducens” than to ANME-1, it might 

just be that different groups of S-AOM-associated microorganisms have evolved 

separate mechanisms for apparently the same process. By expanding our functional 

genomics approach combined with standardized physiological experiments to yet 
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poorly characterized S-AOM-associated groups, it might be possible to illuminate and 

finally resolve this age-old question. 
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