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Abstract 

Organic matter in marine sediments is one of the largest pools of reduced carbon on Earth. 

It had been known as recalcitrant carbon pool with scarce living biomasses. The findings of 

microbes at several kilometers below seafloor suggest there is a substantial amount of living 

biomasses in the subsurface sediments under extreme conditions, for example, decreasing 

labile biomolecules as carbon sources, electron acceptors, and thermal conditions at deeper 

layers. Those microbes might drive a slow but extensive carbon flow and play an important 

role in the carbon cycle in deep Earth. It is not known how the microbes could survive on the 

recalcitrant organic matter (ROM) ‘leftover’. The gap of knowledge is especially in the initial 

step of degradation process: how the ROM is degraded to assimilable substrates. Dissolved 

organic matter (DOM) encompasses the analytical window for the initial degradation of ROM. 

However, the DOM pool is complex and comprises tens of thousands of formulae. Therefore, 

this study focused on firstly the method of DOM characterization, secondly the DOM cycling 

and degradation process in subseafloor sediment. In further, this study aims to answer the 

questions: how the degradation patterns of organic matter change with environmental condition 

in the subsurface sediments, which are highly stratified by redox conditions and thermal 

gradients. 

Characterization of DOM is the first step of this study. Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR MS) is a powerful tool in characterizing DOM in 

molecular level but is a destructive tool and needs relatively large volume of sample (>10 mL). 

Whereas, the achievable volume of pore water in deep sediments is highly limited, an 

alternative method – Excitation Emission Matrix spectrum (EEMs) is promising in 

characterizing DOM due to its advantage of less volume, non-destructive and no pretreatments 

of solid phase extraction. The second chapter describes the method optimization of EEMs 

especially to understand matrix effects including the dilution effect, concentration of ions 

sensitive to redox conditions and storage conditions for samples from anoxic marine sediments. 
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Results were verified by FT-ICR MS. Pretreatments of pore water from anaerobic environment 

were suggested in this study and enable measurements with micro-liquid sampling (50 μL in 

this study). EEMs allows for observation of deep and stratified sediment at dense intervals in 

deep biosphere research. 

In the third chapter, the impacts of redox conditions on the DOM and the degradation 

pathway were investigated by incubation experiments. Incubations were conducted under 

sulfate-reducing condition and methanogenic condition. Series with inhibitor aims to stop the 

terminal mineralization step and observe the accumulating substrates during degradation under 

sulfate reducing condition. DOM was characterized by EEMs and FT-ICR MS. Multiple lines 

of evidences, i.e., the quantification of DOC, production of ammonia and DIC (∆NH4
+/∆DIC 

ratio) were applied to verify the selectivity of degradation processes. The results showed that 

the DOM components differ under sulfate reducing and methanogenic conditions. The patterns 

of organic matter degradation are featured as follows: (1) under sulfate reducing condition, 

more oxidized DOM is accumulated and the formulae with 3 or 4 nitrogens are more depleted, 

a rapid turnover of protein-like compounds were observed; (2) under methanogenic condition, 

more reduced DOM with lower O/C ratio were detected; decreasing O/C ratio corresponds to 

a rapid blue-shift of humic-like compounds which suggests the contribution of humic-like 

compounds to microbial degradation, while the nitrogen-containing formulae is not preferred 

by microbes under methanogenic condition. In further, incubation experiment with the addition 

of yeast extracts confirmed that the biopolymer fragments emitting protein-like peaks are not 

favored under methanogenic condition but are mostly consumed in two days under sulfate-

reducing condition. Results suggest that the organic matter degradation pathways vary with 

redox conditions, the degradation pathway are featured not only in the terminal step as is 

known, but also in the initial step of the degradation process.  

At the greater depth, temperature might play an important role in organic matter degradation 

and preservation process. The fourth chapter compared DOM compositions at different 

temperatures (20-85°C) with Nankai Trough sediment retrieved during IODP Expedition 322. 

DOM was characterized by EEMs and FT-ICR MS. Concentration of dissolved Fe and Mn was 

monitored. Results showed that (1) at 85°C, there was a major contribution from abiotic process 

of acetate production and it contributes to terminal steps; (2) at 55°C, the abiotic decomposition 
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of humics could provide assimilable fragments that contribute to the monomer precursors for 

fermentation; (3) at 35°C, abiotic process could barely contribute to humics-decomposition but 

accelerate the release of organic molecules to mobile phase. By incubations of the Nankai 

Trough sediment, this study proposes mechanisms of heat-induced microbial metabolism via 

anaerobic degradation of organic matter in deep sediments, including release of the metal ions 

and organic matter, the exposure and decomposition of the aged macromolecules. A model for 

abiotic humic substances decomposition is proposed. In summary, results suggest the abiotic 

process might change the degradation pathways by offering precursors without energy cost 

from microbes, and therefore potentially affects the carbon cycle in deep earth and microbial 

community. 

In summary, this dissertation addressed the interactions between microbes and DOM in 

stratified anaerobic sediments by combinations of EEMs and FT-ICR MS. It is indicated that 

the metabolism of microbes is sensitive and adaptive to environmental conditions, which 

ultimately influence the carbon and nitrogen flow in subsurface sediments due to the change 

of microbial metabolisms and abiotic processes. 
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Zusammenfassung 

Organisches Material in Sedimentablagerungen auf dem Meeresboden ist das größte 

Kohlenstoffreservoir auf der Erde. Es gilt als schwer abbaubar. Die Entdeckung von 

mikrobiellem Leben selbst einige Kilometer tief unter dem Meeresboden beweist, dass es in 

marinen Sedimentablagerungen eine erhebliche Menge an Biomasse gibt, die unter extremen 

Bedingungen existieren kann, und wirft zahlreiche Fragen auf; zum Beispiel: welche 

Kohlenstoffquellen und Elektronenakzeptoren werden genutzt? Wie kann organisches Material 

abgebaut werden, obwohl ihr Gehalt an labilen Biomolekülen mit der Tiefe abnimmt? Welche 

Rolle spielt die zunehmende Erhitzung des organischen Materials in tieferen Schichten? Die in 

der tiefen Biosphäre lebenden Mikroorganismen könnten einen langsamen, aber extensiven 

Kohlenstofffluss steuern und eine wichtige Rolle im Kohlenstoffkreislauf der tiefen Erde 

spielen. Es ist nicht bekannt, wie die Mikroben auf der Basis von schwer abbaubarem 

‘Restmaterial‘ (ROM) der organischen Substanz überleben könnten. Eine große Wissenslücke 

besteht vor allem in Hinblick auf die ersten Schritte des Degradationsprozesses, in denen ROM 

zu assimilierbaren Substraten abgebaut wird. Die Analyse der Zusammensetzung des gelösten 

organischen Materials (DOM) erlaubt einen Einblick in die ersten Abbauschritte des ROMs. 

DOM besteht aus komplexen Molekülen mit Zehntausenden von Formeln. Daher konzentrierte 

sich diese Studie auf die Charakterisierung und den Abbauprozess von DOM im marinen 

Sediment. Diese Studie zielt außerdem darauf ab, die Fragen zu beantworten, wie sich die 

Muster des organischen Stoffumsatzes mit zunehmender Sedimenttiefe ändern, mit der sich 

auch Redox-Bedingungen und der Einfluss von thermischen Prozesse graduell ändern. 

Die Charakterisierung von DOM ist der erste Schritt von dieser Forschung. Die Fourier-

Transformations-Ionenzyklotronresonanz-Massenspektrometrie (FT-ICR MS) ist ein 

leistungsfähiges Werkzeug zur Charakterisierung von DOM auf molekularer Ebene. Für die 

Messung werden jedoch relativ große Probenvolumen (> 10 ml) benötigt und vollständig 

verbraucht. Das Porenwasservolumen, das aus tiefen Sedimenten gewonnen werden kann, ist 

jedoch nur sehr begrenzt. Für die Charakterisierung von DOM in Porenwässern sind 

Fluoreszenzspektroskopie und die Erstellung von Anregungs-Emissions-Matrix Spektren 
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(Excitation Emission Matrix Spectra, EEMs) eine vielversprechende alternative Methode, da 

für sie nur wenige Probenvolumen benötigt wird und die Messung zerstörungsfrei ist und ohne 

Vorbehandlung der Proben mit Festphasenextraktion durchgeführt werden kann. Das zweite 

Kapitel beschreibt die Methodenoptimierung. Dabei galt es insbesondere Matrixeffekte zu 

verstehen, einschließlich des Verdünnungseffekts, der Konzentration von Ionen, die gegenüber 

Redoxbedingungen empfindlich sind, und den Einfluss von Lagerungsbedingungen für Proben 

aus anoxischen Meeressedimenten zu untersuchen. Die auf EEMs basierenden Ergebnisse 

wurden mit FT-ICR MS Analysen verglichen. Aus dieser Methodenentwicklung resultieren 

Empfehlungen für die Vorbehandlungen von Porenwasser aus anaerober Umgebung, die DOM 

Analysen auch an sehr kleinen Porenwasserproben (~ μg C, 50 μL in dieser Studie) erlauben. 

Diese Methodenentwicklung bereitet den Weg für die Analyse von DOM in Porenwässern tief 

begrabener Sedimente und trägt damit zur Untersuchung des Kohlenstoffflusses in der tiefen 

marinen Biosphäre bei.  

Im dritten Schritt wurden die Auswirkungen von Redoxbedingungen auf DOM und DOM-

Abbauwege in Inkubationsexperimenten untersucht. Inkubationen wurden unter 

sulfatreduzierenden Bedingungen und methanogenen Bedingungen durchgeführt. Eine Serie 

mit Inhibitor-Zugabe zielte darauf ab, den terminalen Mineralisierungsschritt zu stoppen und 

die assimilierbaren Substrate während des Abbaus unter sulfatreduzierenden Bedingungen zu 

beobachten. DOM wurde durch EEMs und FT-ICR MS charakterisiert. Es wurden mehrere 

Beweislinien angewendet, z.B. die Quantifizierung von DOC, die Produktion von Ammoniak 

und DIC (ΔNH4
+/ΔDIC-Verhältnis), um die Selektivität von Abbauprozessen zu verifizieren. 

Die Ergebnisse dieser Studie zeigen, dass sich die DOM-Komponenten unter 

sulfatreduzierenden und methanogenen Bedingungen unterscheiden. Die Muster des Abbaus 

organischer Substanz sind wie folgt gekennzeichnet: (1) unter sulfatreduzierenden 

Bedingungen wird mehr oxidiertes DOM akkumuliert, während Formeln mit 3 oder 4 

Stickstoffatomen abnehmen; zusätzlich wurde ein schneller Umsatz von proteinartigen 

Verbindungen wurde beobachtet; (2) unter methanogenen Bedingungen wurde mehr 

reduziertes DOM mit einem niedrigeren O/C-Verhältnis nachgewiesen; ein abnehmendes O/C-

Verhältnis entspricht einer schnellen Blauverschiebung von Huminstoff-ähnlichen 
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Verbindungen, was auf den Beitrag von Huminstoff ähnlichen Verbindungen zum 

mikrobiellen Abbau hindeutet, während die Stickstoff enthaltenden Formeln von 

Mikroorganismen unter methanogenen Bedingungen nicht bevorzugt werden. Ein 

Inkubationsexperiment mit der Zugabe von Hefeextrakten bewies darüber hinaus, dass die 

proteinähnlichen Peaks emittierenden Biopolymerfragmente unter methanogenen 

Bedingungen nicht bevorzugt werden, aber unter sulfatreduzierenden Bedingungen meistens 

schon in zwei Tagen verbraucht werden. Die Ergebnisse deuten darauf hin, dass die 

Abbauwege der organischen Substanz mit den Redoxbedingungen variieren, und zwar nicht 

nur wie bereits bekannt im Endschritt, sondern auch schon im Anfangsschritt des 

Abbauprozesses. 

In größeren Sedimenttiefen könnte die Temperatur eine wichtige Rolle beim Abbau und 

Konservierungsprozess organischer Substanzen spielen. Das vierte Kapitel vergleicht DOM-

Zusammensetzungen bei verschiedenen Temperaturen (20-85°C) in Inkubationsexperimenten 

mit tiefem Sediment, das während IODP-Expedition 322 aus dem Shikoku Becken am Rande 

des Nanaki Trogs vor Japan gewonnen wurde. DOM wurde durch EEMs und FT-ICR-MS 

charakterisiert. Die Konzentration von gelöstem Fe und Mn wurde überwacht. Die Ergebnisse 

zeigten, (1) bei 85°C einen wesentlichen Beitrag von abiotischen Prozessen  zur Bildung von 

Acetat im terminalen Schritten; (2) dass bei 55°C die abiotische Zersetzung von Huminstoffen 

assimilierbare Fragmente liefert, die als Monomervorläufer zur Fermentation beitragen 

könnten; (3) dass bei 35°C abiotische Prozess kaum zur Zersetzung von Huminstoffen 

beitragen, aber die Freisetzung von organischen Fragmenten in die mobile Phase beschleunigt 

wird. Durch Inkubationen des Nankai-Trog-Sediments schlägt diese Studie Mechanismen des 

durch Hitze induzierten mikrobiellen Stoffwechsels durch anaeroben Abbau von organischem 

Material in tiefen Sedimenten vor, einschließlich der Freisetzung der Metallionen und 

organischen Substanzen, was zur Exposition und Zersetzung der gealterten Makromoleküle 

führt. Ein Modell für den Abbau von abiotischen Huminstoffen wird vorgeschlagen. Des 

Weiteren deuten die Ergebnisse darauf hin, dass der abiotische Prozess die Abbau-Selektivität 

und -Wege verändern könnte, indem er Vorläufer ohne Energiekosten von Mikroben anbietet 

und daher potenziell den Kohlenstoffkreislauf in der tiefen Biospähre beeinflusst. 
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Zusammenfassend lässt sich sagen, dass die Kombinationen von EEMs und FT-ICR MS zur 

Untersuchung der Wechselwirkungen zwischen Mikroorganismen und DOM in anaeroben 

Sedimenten zeigt, dass der Metabolismus von Mikroben sensitiv und adaptiv für 

Umweltbedingungen ist und auf diese Weise letztendlich der Kohlenstoff- und Stickstofffluss 

in tiefen marinen Sedimenten beeinflusst wird. 
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 Introduction 

1.1.  Marine sediments in the global carbon cycle 

1.1.1 The significance of marine sediments as carbon reservoir 

 

Fig. 1.1. The role of sedimentary organic carbon in the global carbon cycle. Figure has been adapted from 

Ruddiman (2014). Corg is an abbreviation for organic carbon. Data of Corg in sediments are from Hedges 

and Keil (1995). 

Marine sediments play a key role in the global carbon cycle. They are the largest reservoir 

of organic carbon on Earth, containing 1.5x1017 g organic carbon in marine surface sediments 

and 1.5x1022 g organic carbon in sedimentary rocks, including kerogen (Emerson and Hedges, 

1988; Berner, 1989; Hedges and Keil, 1995) (Fig. 1.1). The degradation and alteration of 

organic matter proceeds only slowly in subseafloor sediments, it hold reservoirs for methane 

(CH4) (or gas hydrate) and higher hydrocarbons such as petroleum, which are of high societal 

relevance as greenhouse gases and energy resources.  
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Fig. 1.2. The model of humic substances: (a)  Structure of humic acid (Stevenson, 1994) and (b) 

Structure of soil organic matter (Schulten and Schnitzer, 1997; Saparpakorn et al., 2007). Blue, red and 

white balls represent carbon, oxygen and hydrogen atoms, respectively. 

Subsurface sediments were considered as a huge pool for the preservation of organic matter. 

Intrinsically and biotically, the organic leftovers in subsurface sediments were reported to be 

compounds undergoing selective degradation and therefore were refractory (Henrichs, 1992; 

Wakeham and Canuel, 2006; Arndt et al., 2013). The preserved organic pool in sediments has 

been recognized as largely molecularly ‘uncharacterized leftovers’ (Wakeham et al., 1997; 

Hedges et al., 2000). Physically, the preservation of organic compounds can be sustained by a 

coating of organic compounds on minerals, which could protect the organics from degradation 

(Hedges et al., 2001). The accessibility of those labile molecules (e.g. amino acids, 

carbohydrates) can be reduced by the incorporation of organic compounds  into refractory 

geomacromolecules or humic substances (Fig. 1.2)  (Henrichs, 1992; Knicker and Hatcher, 

1997; Schulten and Schnitzer, 1997; Zang et al., 2000). Moreover, chemically, polymerization 

and abiotic condensation of organics (polysaccharide and proteinaceous materials, phenol 

compounds) take place during diagenetic processes and produces geopolymers which are 

difficult to define structurally  (Ertel and Hedges, 1985; Ishiwatari et al., 1986; Hedges and 

Keil, 1999; Wakeham and Canuel, 2006; Burdige, 2007). Without the availability of oxygen 

(O2) as an electron acceptor, the rate of the mineralization process is slower in subsurface 

sediments (Henrichs and Reeburgh, 1987; Wakeham and Canuel, 2006).  

Although the anaerobic mineralization processes are slow, they might drive a substantial 

microbial community in the subsurface (Schippers et al., 2005). Sedimentary organic matter 

provides carbon, energy and nutrients for microbial communities in the deep subseafloor 

biosphere, where intact microbial cells have been found down to 2.5 km below seafloor 

(a)                                                              (b) 
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(Inagaki et al., 2015). Life strategy of microbes is still obscure in the anoxic and energy-limited 

deep subsurface sediments. This would be informative for understanding the fate of the 

recalcitrant organic carbon pool. Are the marine sediments a pool for preservation or reactor? 

How could we observe the anaerobic degradation process of recalcitrant organic matter?  

1.1.2  Continental margin sediments as an important reactor for organic matter 

Continental margin sediments are a major sink of organic matter (Hedges and Keil, 1995). 

Although they account for only 20% of the surface area of the ocean, it contributes equally to 

carbon and nitrogen biogeochemical cycles in the sediments compared to deep sea sediments 

(Walsh, 1991). Due to river discharge of terrestrial organic matter and high productivity in 

coastal region, large amount of organic matter were exported to the surface sediments, 

however, organic preservation in the marine environment is less than 0.5% of the total 

exportation (Hedges and Keil, 1995).  

 

Fig. 1.3. Stratification of sediment and electron acceptors. Adapted from Lam and Kuypers (2011). E’0 

shows the electrode potentials of various redox couples at pH = 7. 

The degradation of organic matter is an oxidation process, which is impacted by the 

oxidation-reduction potential (Fig. 1.3). The successive depletion of electron acceptors via 

denitrification, manganese (Mn) reduction, iron (Fe) reduction and sulfate (SO4
2-) reduction is 

owed to a gradual decrease in the energy production per mole of organic carbon oxidized to 

carbon dioxide  (Fig. 1.4) (Canfield et al., 1993; Chen et al., 2003; Parkes et al., 2014). Among 

those reactions, sulfate reduction has the highest contribution to the mineralization of organic 
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carbon in anoxic coastal sediment. Bowles et al. (2014) estimated that, 11.3 teramoles of sulfate 

is reduced yearly, globally accounting for the oxidation of 12 to 29% of the organic carbon 

fluxing to the seafloor. Sulfate reduction is the prevailing process in coastal sediments 

compared to pelagic sediments, where the reduction of oxygen and nitrate is dominant 

(Middelburg et al., 1993). In the deeper layer, the sulfate-methane-transition zone (SMTZ) is 

an important diagenetic redox boundary within marine sediments where the anaerobic 

oxidation of CH4 (AOM) occurs (Hinrichs et al., 1999; Boetius et al., 2000; Lin et al., 2016). 

Below the sulfate-methane-transition zone (SMTZ), there is increasing production of CH4 from 

CO2 or volatile fatty acids (VFA, e.g., acetate). In the absence of sulfate, microbes largely 

depend on the generation of energy through reduction of CO2 to CH4. 

Fig. 1.4. Relative energy yield via different electron acceptors. Adapted from Lovley and Chapelle (1995). 

No units for the relative energy yield. 

The in situ temperature in the sediments increases with depth. The continental subsurface 

sediments are featured by the deep thermal flow, especially in the deeply buried sediments near 

subduction zones in plate boundaries, ultimately leading to transformations of kerogen and 

release of hydrocarbons. Those extreme environments are supposed to be informative for the 

early life evolution and the origin of eukaryotes (Baross and Hoffman, 1985; Sogin, 1991; 

Martin and Müller, 1998). The gradual heating facilitates the abiogenic alteration of 

sedimentary organic matter and oil formation (Vandecasteele, 2008), it might potentially also 

stimulate the deep biosphere by producing acetate (Wellsbury et al., 1997), during these 

processes, the role played by the microbes is not clear.  

1.1.3  DOM as a potential window to observe carbon cycling in the subseafloor 

Plenty of studies have tried to observe the preservation and alteration of organic matter in 

the solid phase of sediments via bulk parameters (e.g., carbon content and isotope) or 
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biomarkers (e.g., lignin, sugar, amino acid) (Hedges et al., 1997; Dauwe and Middelburg, 1998; 

Dittmar and Lara, 2001; Schmidt et al., 2010; Arndt et al., 2013; Cathalot et al., 2013).  

Most of the organic carbon in the sediments is in solid phase and slowly degraded. 

Mineralization fueled a small fraction of POC, which is not distinguishable by measurements 

of bulk parameters (Arnosti and Holmer, 2003). Investigations of the solid phase from in situ 

profiles result in information of long-term geologic carbon cycle in years to more than millions 

of years. Based on this information, however, it is difficult to understand the degradation 

processes and metabolism of microbes in subsurface sediments, where the biological cycle 

might take place relative rapidly (Arnosti and Holmer, 2003; Weston et al., 2006). In addition, 

variation in solid phase might result from biological, abiotic geological processes or varied 

organic matter sources during paleo-period. It is still unclear how the supposedly recalcitrant 

organic matter in marine sediments can serve as a food source as the degradation pathway is 

not known. Alternatively, the mobile organic matter in pore water is a potential window to 

observe the degradation processes and the carbon cycling during metabolism of microbes. The 

analysis of pore waters has become an important tool to elucidate the in situ metabolic activity 

of microbial communities (Heuer et al., 2009; Heuer et al., 2010; Rowe and Deming, 2011; Lin 

et al., 2012; Tong et al., 2013; Oni et al., 2015). Reactions of anaerobic organic matter 

degradation might be observable in the dissolved organic matter (DOM) pool as an 

intermediate pool during the remineralization of sedimentary organic matter. DOM receives 

the products of hydrolysis and fermentation processes, holding the substrates of terminal 

oxidation. It is differentiated from particulate organic matter by size limit below ~0.45 μm 

(Zsolnay, 2003).  

A better mechanistic understanding of microbe-DOM-interactions is essential for the 

following aspects: (1) DOM could serve as electron donors and react with certain electron 

acceptors in a redox reaction, providing energy and nutrient for microbes. Via indoor-

incubation, the transformation of DOM might be informative for the ongoing degradation 

process. The surviving strategy of microbes in subsurface sediment would be elucidated. (2) 

The investigation of DOM might provide new insights into the role of the deep subseafloor 

biosphere in the organic carbon preservation and global carbon cycle. However, so far little is 

known about the interaction between DOM and microbes and the impact of biogeochemical 
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processes on the composition of dissolved organic matter in marine subsurface sediments 

mainly due to the challenges of DOM characterization. 

1.2  Interaction between microbes and DOM in marine subsurface sediment 

1.2.1 Microbes in marine subsurface sediment 

The study of the deep biosphere inferred that the mineralization and assimilation of organic 

carbon mainly exist in subsurface sediments. Although the diagenetic processes in the 

subseafloor are slow (Jørgensen and Marshall, 2016), there is a substantial amount of 

biomasses in the deep biosphere. The size of the deep biosphere is estimated to be huge: One 

of the first estimations by Whitman et al. (1998) suggested the global subseafloor sedimentary 

microbial abundance could be 3.5×1030 cells, comprising 55–86% of Earth’s prokaryotic 

biomass and 27–33% of Earth’s living biomass. The size of deep biosphere is remained under 

question: Other studies estimated that the microbial abundance in subseafloor sediments might 

be as high as 5×1030 cells (Lipp et al., 2008) or  2.9×1029 cells (corresponding to 4.1 petagram 

(Pg) C and ∼0.6% of Earth’s total living biomass (Kallmeyer et al., 2012)). An updated 

estimation results in 5.39 × 1029 cells and  the depth integrated activity calculations demonstrate 

that subsurface sediments can be responsible for the majority of sediment activity (up to 90%) 

(Parkes et al., 2014). Considering this high amount of active biomass, a better knowledge of 

the diverse anaerobic metabolism would be important for the understanding of the carbon, 

nitrogen and sulfur cycling in sediments (Schulz and Zabel, 2006). Those cycles are closely 

connected  to  the chemistry of the ocean and the atmosphere on Earth and thus the global 

climate (Schippers et al., 2005).  

Deep biosphere is characterized by microbial communities with slow metabolism. 

Jørgensen and Marshall (2016) suggested a cell community might go through only 10,000 

generations from the time it is buried beneath the mixed surface layer until it reaches a depth 

of tens of meters several million years later. By adaptation of the radiotracer method, it has 

been possible to directly measure sulfate reduction rates that vary over more than 7 orders of 

magnitude, for example on the Peruvian shelf, from >1000 nmol SO4
2-cm-3 day-1 at the 

sediment surface to < 0.001 nmol SO4
2- cm-3 day-1 at 100 m subsurface (Schulz and Zabel, 

2006). The slow metabolism is accompanied with energy-limited conditions in deep sediments 
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(Jørgensen and Boetius, 2007). Nevertheless, sediments taken from depth more than one kmbsf 

have proved the existence of microbes (Roussel et al., 2008; Inagaki et al., 2015). It is not clear 

on which substrates the microbes are living. Up to 76% of total cells in the sediments 

incorporated heterotrophic substrates into their biomass carbon whereas 22% of total cells used 

CO2 (Morono et al., 2011). The studies of archaea, which represent a major component of the 

deep marine subsurface biosphere, exhibit special autotrophic metabolism pathway (Berg et 

al., 2010). Autotrophy fixing CO2 becomes more important in the hydrogen-producing deep 

layers with production of H2 via radiolysis or heating (Sleep et al., 2004; Parkes et al., 2011). 

Impacts of deep biosphere on global biogeochemical cycles are not clear before we know which 

substrates the heterotrophic microbes could live on.  

1.2.2 Anaerobic degradation of organic matter by microbes 

1.2.2.1 DOM in the initial steps of anaerobic degradation 

Organic matter in solid phase undergoes a series of steps during mineralization resulting in 

a complex organic pool in dissolved/mobile phase as DOM (Middelburg et al., 1993). The 

hydrolyzed organic matter in DOM pool is assimilable and passable for microbes via cell wall 

or remains in the pore water as leftover. During the degradation, the assimilable organic 

compounds provide the carbon, nutrients for microbes and electron donors for producing 

energy in subsurface sediment. Thus, as an intermediate pool in the degradation of organic 

matter, DOM in the pore water is a shuttle pool of organic matter reflecting the production and 

consumption during degradation (Weston et al., 2006).  

Under oxic conditions, organic matter could be degraded directly to carbon dioxide via the 

tricarboxylic acid cycle by a single cell, while under anoxic conditions, a group of anaerobic 

microbes is participating in the food chain in sediments (Middelburg et al., 1993). The 

traditional well-known anaerobic degradation consists of three steps (Fig. 1.5). The initial step 

starts with breaking down the polymers via extracellular hydrolase, resulting in a soluble pool 

of high molecular weight (HMW) DOM. In the following, the HMW-DOM is further 

fermented into small volatile fatty acids or alcohols accompanying hydrogen production. These 

fermentation products are further metabolized by microorganisms that use oxidants (e.g., 

sulfate) to carbon dioxide and methane.  
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Fig. 1.5. Anaerobic degradation of organic matter, adapted from  Middelburg et al. (1993). HMW-DOM 

and LMW-DOM stand for high and low molecular weight dissolved organic matter, respectively. 

DOM is an intermediate pool sensitively revealing the production and consumption of 

organics. Microbial activities alter the molecular composition of DOM — potentially transform 

labile molecules into refractory dissolved organic matter (RDOM), which is assumed to be an 

important part of the microbial carbon pump in the ocean (Jiao et al., 2011). Different from the 

microorganisms in the water column with high primary production and freshly-produced 

bioavailable compounds, the ‘dark life’ in subsurface sediment survives from a complex and 

refractory organic residue. Prokaryotes dominate subsurface sediments and are featured by 

higher metabolic versatility than eukaryotes (Dworkin et al., 2006; Berg et al., 2010). To date 

little is known about the biogeochemical interactions between microbes and DOM in marine 

sediments. 

Arnosti and Holmer (2003) reported that the dissolved organic carbon (DOC) in pore water 

was fast cycled, on average 8 - 31% of the sedimentary DOC pool must be turned over on a 

daily basis in Skagerrak; in the meantime, there is no distinguishable change in the bulk 

parameters of the solid phase. It suggested a close link between anaerobic degradation by 

microbes and DOM. Researches have investigated the turnover of DOM with molecular 

characterization in pore water by in situ profiles (Chen et al., 1993; Ohno, 2002; Schmidt et 

al., 2011; Tfaily et al., 2013; Seidel et al., 2015). However, it remains to be unclear as the DOM 

transformation deduced from in situ profiles might result from diverse environmental 

conditions, physical diffusions, and geological processes mixing with microbial processes.  



1.2 Interaction between microbes and DOM in marine subsurface sediment 9 

 

 

1.2.2.2 Microbial degradation of biopolymers 

 

Fig. 1.6. Specific anaerobic degradation pathways of organic matter for aromatics, sugars, amino acids 

and long chain fatty acids, taken from Lovley and Chapelle (1995). 

The anaerobic degradation processes of labile biopolymers were well investigated (Fig. 1.6). 

The organic matter is degraded via diverse metabolic pathways in anaerobic environments. 

Carbohydrates and proteins were conventionally considered as labile components for microbes. 

In an organic-rich coastal sediment, pore water carbohydrates constitute 85% of the DOC in 

near-surface intervals, while the fraction decrease to 24% at depths of 14–16 cm (Arnosti and 

Holmer, 1999), indicating that carbohydrates in pore water are likely turned over on short 

timescales in surface. Cellulose is the most abundant biopolymer in terrestrial environments 

and is normally associated with other natural compounds. It is decomposed by the anaerobic 

community through a complex microbial food chain: the first step is an enzymatic hydrolysis 

via celluloses, which mostly are large and multiprotein complexes produced by diverse 

anaerobes. Partial disassociation of the complexes might cause loss of activity of cellulase 

(Leschine, 1995). After hydrolysis, the hydrolysate is utilized by cellobiose-fermenters 

(Ljungdahl and Eriksson, 1985) or glucose-fermenters and terminally mineralized to CH4, CO2, 

and H2O (Fig. 1.6). Fermentation is usually the rate-limiting step in the anaerobic 

decomposition of cellulose to methane (Wolin and Miller, 1987).  

Proteins are also favorable food for microbes as they are a source for energy, carbon and 

nitrogen. It is estimated that the total hydrolysable amino acids make up 11 to 23% of the total 

carbon mineralized in a coastal sediments (Henrichs and Farrington, 1987). Proteins or peptides 
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are first hydrolyzed by proteinase. This process has not been well studied in natural anaerobic 

environments. Although there have been former studies of in situ profiles of amino acids, their 

turnover is hardly observed (Henrichs and Farrington, 1979; Alberic et al., 1996; Dauwe and 

Middelburg, 1998; Lomstein et al., 2006). Incubation experiments with sediments suggested 

that long peptide chains are fast degraded by a preferential cleavage of certain peptide bonds 

during hydrolysis (Pantoja et al., 1997). Afterwards, removal of amino group and acid 

oxidation commonly occurs in the anaerobic amino acid degradation before fermentation 

(Barker, 1981). It should be noticed that for the diverse types of amino acids microbes exhibit 

distinct preferences of degradation and metabolic pathways (Barker, 1981; Ramsay and 

Pullammanappallil, 2001; Leong et al., 2016).  

Strong evidence of anaerobic degradation of aromatics has been found in 1934 (Tarvin and 

Buswell, 1934). Denitrification, sulfate reduction, fermentation or methanogenic fermentation 

could contribute to the degradation of aromatics (Evans and Fuchs, 1988). The pathways of 

aromatics degradation are diverse, and might happen in the side chains, aromatic rings or even 

both. The common step of cleavage of an aromatic ring is polarization of the stabilized 

conjugation structure resulting in a higher attainability of aromatic compounds during the 

transformation of aromatic rings to cyclohexane (Evans and Fuchs, 1988; Harwood et al., 

1998). The attachment of hydroxyl or carboxyl groups to the aromatic nucleus facilitates 

biodegradation (Battersby and Wilson, 1989). Lignin is a representative of terrestrial organic 

matter with aromatic rings. Its relative inertness and massive production by land biomass 

makes it, or its derivatives, widespread compounds in coastal sediments and contributes to the 

formation of humic substances. Based on tests with aryl-14C-labeled coniferyl alcohols, it was 

concluded that lignin is anaerobically not degraded (Hackett et al., 1977), but incubation of the 

solubilized lignin fractions with an inoculum from an anaerobic mesophilic sludge digester 

showed the cleavage of the intermonomer bonds during the  degradation of lignin and a 

production of methane (Colberg and Young, 1982). Dittmar and Lara (2001) suggested the 

aromatic ring cleavage as a possible principal mechanism for lignin decay in sulfate-reducing 

sediments. Degradation of side chains, e.g., demethylation, was found under aerobic conditions 

(Dittmar and Lara, 2001; Frazier et al., 2005).  The inconsistent results are a hint for that the 

anaerobic degradation of aromatic compounds, e.g. lignin in natural environment, might not be 

constrained to certain reported pathways and might change with experimental / environmental 

conditions (e.g., redox condition) or inoculum.  
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Long chain fatty acid (LCFA) are less labile for microbes compared to carbohydrates and 

proteins. Unsaturated fatty acids are easier degraded than the saturated LCFA and the 

degradability decreases with the length of saturated fatty acids (Novak and Carlson, 1970). The 

degradation could be fulfilled by -oxidation or  -oxidation (Mackie et al., 1991). The former 

involves the sequential decrease in carbon number of fatty acids by oxidative decarboxylation; 

the latter starts with activation of fatty acids to acyl-CoA esters and involves a 2-carbon 

reduction in chain length with oxidation enzyme (Mackie et al., 1991; Sousa et al., 2009).  

1.2.2.3 Microbial degradation of organic geopolymers 

The definition of geopolymer proposed by Davidovits (1993) refers only to the inorganic 

geopolymers. Some geopolymeric materials can last for a long time due to their unique 

geopolymeric structure, so-called three-dimensional crosslink (Kim et al., 2006). Similarly, the  

humic substances in sediments are geopolymers polymerized from peptide, carbohydrate or 

phenols with crosslink to minerals (Ertel and Hedges, 1985; Ishiwatari et al., 1986; Schulten 

and Schnitzer, 1995; Schulten and Leinweber, 2000). Microbial degradation of the humic 

substances is not clear. This is especially an important topic for the subsurface sediments where 

the humic substances dominate in the organic carbon pool. Henrichs (1992) found that the 

specific compound classes that have been measured in sediments (e.g., hydrolyzable amino 

acids and carbohydrates, fatty acids and hydrocarbons) often decompose as slowly as total 

organic carbon (TOC) in the upper 1 m of coastal sediments. This study suggested that the 

compounds or fragments with higher bioavailability might not be selectively used in the 

sediments due to incorporation into the refractory macromolecules. As a potential explanation, 

Hedges et al. (2001) proposed that the physical coating of organic matter is correlated with the 

non-selective degradation in oxic environment. In summary, humic substances are supposed to 

be less efficiently degraded due to their irregular structures and coated compounds for enzyme 

attacks.  

Nevertheless, humic substances could benefit the so-called humic-reducing microbes via 

electron transferring in quinone groups  (Scott et al., 1998; Klüpfel et al., 2014). Immobilized 

humic substances and their analogues could even serve as effective redox mediators for the 

removal of recalcitrant pollutants (Costa et al., 2010; Martínez et al., 2013). It is not clear 

whether the humic substances could be carbon source or not. One interesting hint is that the 

methoxyl group of aromatics in coal could serve as carbon source for methanogen (Mayumi et 
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al., 2016), which is a common functional group in terrestrial humic compounds. Evidence is 

accumulating that Archaea with a heterotrophic life style play an important role in the deep 

biosphere (Biddle et al., 2006; Lipp et al., 2008; Berg et al., 2010) with their unique ability to 

cope with extreme energy starvation, and their presumed ability to degrade complex 

recalcitrant organic residues. It remains to be explored whether the humic substance might 

provide not only the electron donor but also the carbon or nutrient for microbes. 

1.3  Methodologies for DOM characterization 

1.3.1  EEMs 

1.3.1.1 Principles of the method 

 

Fig. 1.7. Principle of fluorescence emission. Electrons from ground state orbitals to high energy levels, 

excited state (orange balls), afterwards relax to more stable ground state (small blue balls).   

DOM is a potential window for observing the degradation processes of either geopolymers 

or biopolymers. In the pore water, DOM is a mixture of thousands of individual compounds 

(Schmidt et al., 2011; Oni et al., 2015; Schmidt et al., 2017; Valle et al., 2017), therefore 

molecular characterization is challenging. The analysis of such complex DOM compositions 

by Fluorescence Spectroscopy is an alternative approach since chromophores of DOM could 

absorb and emit light of specific wavelengths based on molecular structure of the compound. 

For example, conjugation structures of aromatic rings that contain π-electron can be excited by 

UV light effectively and emit fluorescence in the UV to visible light spectrum (Fig. 1.7). 

Excitation emission matrices spectra (EEMs) can be generated by exciting DOM containing 
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water samples with light over a range of wavelengths in the UV spectrum and simultaneously 

measuring wavelengths and intensity of light that is emitted from the excited samples. 

Typically, such EEMs contain thousands of wavelength-dependent data points of fluorescence 

intensity, which can be grouped into excitation-emission regions based on range of 

fluorescence peak (ex/em).  

1.3.1.2 Indices derived from 2D fluorescence spectrum 

FI, BIX and HIX derived from 2D-scan of emission spectrum resulting from excitation at 

370 nm, 310 nm and 254 nm were interpreted as indexes of terrestrial source (FI), biological 

activity (BIX) and humification (HIX), respectively (Mcknight et al., 2001; Huguet et al., 

2009). 

The fluorescence index (FI) is the ratio of the fluorescence intensity at 450 and 500 nm 

emission resulting from the excitation at 370 nm (Mcknight et al., 2001). FI can be used to 

distinguish the origin of DOM. Generally, FI is less than 1.4 in terrestrial dominated DOM; FI 

of microbial-derived DOM is higher than 1.8 (Mcknight et al., 2001). The signal is based on 

humic-like peak C in long emission wavelength. 

Biological activity index (BIX) is calculated from the ratio of fluorescence intensity emitted 

at 380 nm and 430 nm resulting from the excitation at 310 nm. BIX provides an information 

about fresh autochthonous DOM (BIX > 1) (Huguet et al., 2009). The signal is derived mainly 

from humic-like peak M, which is less conjugated than humic-like peak C. 

Humification index (HIX) is calculated from the ratio of integrated fluorescence emission 

in 435–480 nm to that in 300–345 nm at excitation of 254 nm (Ohno, 2002; Huguet et al., 

2009). HIX more than 10 and HIX less than 4 indicates humified DOM and autochthonous 

DOM, respectively (Huguet et al., 2009). Higher HIX values correspond to maximal 

fluorescence intensity at long wavelength and thus the presence of complex molecules like high 

molecular weight aromatics (Senesi and Miano, 1991; Huguet et al., 2009). 
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1.3.1.3 Peaks and index derived from 3D fluorescence spectrum 

Application of EEMs in water column is firstly proposed in 1990s (Coble et al., 1990; 1996). 

The EEMs of samples varies with organic matter composition and is hard to be quantified and 

categorized by direct observation (examples in Fig. 1.8).  

 

Fig. 1.8. Typical EEMs Spectrum and chromophore regions. (a) Pore water sample dominated by humic-

like peaks; (b) Yeast extract dominated by protein-like peak; (c) Pore water sample from heated sediment 

with both high protein-like peaks and humic-like peaks. 

Parallel factor analysis (PARAFAC) is a generalization of Principal Components Analysis 

(PCA) to higher order arrays. Decomposition of multi-dimensional arrays leads to the 

mathematical identification and quantification of independently varying fluorophores, e.g., a 

simple and robust result for easier interpretation (Bro, 1997; Stedmon and Bro, 2008; Murphy 

et al., 2013). PARAFAC analysis was developed in recent years and enables the classification 

of compounds (Stedmon and Bro, 2008; Murphy et al., 2010; Murphy et al., 2013; Cuss and 

Guéguen, 2016). Combined with PARAFAC analysis (Stedmon et al., 2007; Stedmon and Bro, 

2008), the Excitation-Emission-Matrix Spectra (EEMs) (Coble, 1996; 2007) can be used to 

identify different fluorescent DOM components such as protein-like and humic-like 

compounds. An example of PARAFAC analysis was shown in Fig. 1.9. 

 

Fig. 1.9. An example of peaks identified by PARAFAC analysis. Six peaks (from component 1 to 6: C1, C2, 

M1, M2, A and T, respectively). 

 

(a)                                              (b)                                            (c) 
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Protein-like peaks are mainly classified into tyrosine-like peak B (ex/em 270-280 nm/300-

310 nm) and tryptophan-like peak T (ex/em 270-280 nm/340-370 nm) (Coble, 1996; Yamashita 

and Tanoue, 2003; Yamashita and Tanoue, 2004; Fu et al., 2006; Martínez-Pérez et al., 2017).  

Protein-like peaks are induced by aromatic amino acids, e.g., tryptophan, tyrosine and 

phenylalanine, and represent a relatively labile DOM pool in some water column studies 

(Stedmon and Markager, 2005b; Fellman et al., 2010; Lønborg et al., 2010). Proteins 

containing aromatic amino acid residues, generally emit fluorescence due to tryptophan, and 

tyrosine fluorescence is only observed in the absence of tryptophan (Creighton, 1983; 

Yamashita and Tanoue, 2003). Tryptophan-like DOM was reported to be consumed 

preferentially compared to tyrosine-like materials (Jaffé et al., 2014). Accordingly, in the 

surface water of Sagami Bay, amino acid-containing DOM in the high molecular mass fractions 

was comprised of protein molecules or least degraded proteins (polypeptides) exhibiting 

protein-like peak T, while in the deep water (1000 m) other forms of amino acids were 

dominant and exhibited peak T and B (Yamashita and Tanoue, 2004). The other compounds, 

e.g., gallic acid and tannins were reported to emit protein-like peaks (Maie et al., 2007) as 

phenol compounds with auxochrome could be fluorescent at the region of protein-like peaks. 

This is not surprising due to the diverse possibility of compounds for certain fluorescent peak. 

It should be noticed that the protein-like peak do not necessarily correspond to the high 

bioavailability (Cory and Kaplan, 2012). One thing for certain is that protein-like peaks should 

imply less conjugated structure mainly with two or less aromatic rings for natural DOM 

samples (Zsolnay, 2003). 

Humic-like peaks represent irregular geopolymers – humic substances, which emit 

fluorescence at > 400 nm with mainly four to seven aromatic rings (Zsolnay, 2003). Those 

peaks imply different sources of organic matter in the studies of water column, e.g., terrestrial 

and marine humic-like components (Coble, 1996; Fellman et al., 2010). They were classified 

as peaks C, M and A according to Coble (1996). Peak C (ex/em 350/450 nm), with longest 

emission wavelength at UVA range represents large molecules with aromatic functional groups 

and conjugations. Such components are commonly referred as terrestrial origin (Coble, 1996; 

Fellman et al., 2010). Peak M (ex/em: 300-320/395-410 nm) represents compounds that are 

less aromatic than peak C, and is commonly referred to as autochthonous, microbial or marine 

components with relatively lower molecular weight (Coble, 1996; Fellman et al., 2010; Ishii 

and Boyer, 2012). Peak A shows the shortest excitation wavelength at UVC range and emission 
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wavelength at UVA range. It represents common components in natural aquatic systems and 

resembles aromatic fulvic acids from terrestrial sources (Stedmon and Markager, 2005a; Coble, 

2007).  

Humic-like peaks and protein-like peaks identified in 3D spectra were conventionally 

considered as the labile and refractory components in many studies (Hudson et al., 2007; 

Lønborg et al., 2009; Fellman et al., 2010; Lønborg et al., 2010; Lønborg and Álvarez-Salgado, 

2012; Jaffé et al., 2014). Recent studies based on the incubation of sludge implied a preferential 

utilization of carbohydrate and protein-like DOM in anaerobic degradation processes, while 

humic-like compounds were most resistant to biodegradation (Li et al., 2014; Li et al., 2015).  

Humic substances dominate in sedimentary organic matter and are considered to be 

refractory. The preservation of this material might be attributed to its complexity and 

irregularity that inhibits the efficiency of microbial degradation. On the one hand, the humic 

fraction of high-molecular-weight (HMW) DOM accumulated in sediments as abiotic 

condensation products of low-molecular-weight (LMW) DOM during humification (Krom and 

Sholkovitz, 1977). One the other hand, the observation of blue-shift of fluorescence spectra 

suggests an opposite process: less conjugation of humic substances during diagenesis (Sierra 

et al., 2001). Other studies suggest the humic substances are contributing to the energy 

achieving process for microbes for transferring the electrons (Scott et al., 1998; Martínez et al., 

2013; Klüpfel et al., 2014). It is not clear whether the humic substances is refractory and what 

is the role of microorganisms in the transformation processes.  

The ratio of peaks A and C to peak M (AC/M) or C/M ratio can be used to identify a blue-

shift of the fluorescent signal of organic compounds. Such a shift is produced by the loss of 

conjugation structures. The AC/M ratio represents the proportion of compounds with longer 

emission wavelength, i.e., large terrestrial molecules with aromatic functional groups and 

conjugations. The blue-shift is indicated by the decrease of AC/M ratio and indicates a loss of 

aromaticity, e.g., loss of aromatic ring or auxochrome. In further, it indicates the ratio of 

terrestrial DOM and autochthonous DOM in water column. 

1.3.1.4 Advantages and disadvantages 

This method enables the sensitive observation of the complex DOM in small sample 

volume, which makes high-frequency observations possible especially for the samples limited 
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by volumes. Unlike many other methods, pretreatments including desalting and concentrating 

are not necessary before measurements. Low instrument and maintenance costs made it 

possible to use this method extensively in recent years in marine and environmental sciences.  

Care needs to be taken due to the ambiguity of EEMs in molecular-level information and 

multi-possibility for non-natural DOM fluorescent compounds. Identification of the 

chromophores is a major challenge. Interpretation limitations is especially a problem for small 

data sets with little spectral variability, the results of PARAFAC analysis might be over-

simplified and show models with few (≤ 3) components (Rosario-Ortiz and Korak, 2017).  

Moreover, the implication of protein-like and humic-like peak is not consistently accepted in 

former studies. For example, protein-like peak has been found to be closely related with the 

the content of labile amino acid, whereas, this peak might also consist of labile fluorescent 

compounds encapsulated in the non-fluorescent recalcitrant fractions or other biopolymers 

(Yamashita and Tanoue, 2004; Cory and Kaplan, 2012). Therefore, verification of the 

information characterized by this method is important. For example, in this thesis, yeast 

extracts were used to confirm the turnover of protein-like biopolymer fragments.  

Besides, the fluorescent signal is affected by several factors. Quenching might happen due 

to the complexation between DOM and ions or particles (Manciulea et al., 2009). Change in 

pH may have large effect in the shape of humic-like compounds with phenol groups (Mobed 

et al., 1996). In addition, the matrix effect and the effect of oxygen/redox conditions are not 

fully understood. For samples and wavelengths where DOM absorption coefficients are above 

approximately 10 m-1 or 0.1 cm-1, inner filter effect might impact the spectra (Stedmon and 

Bro, 2008), which could be corrected by mathematical methods (Mobed et al., 1996). 

1.3.1.5 Applications in environmental researches 

The methods have been successfully applied in water column studies of ocean, estuary 

water, and rivers (Coble, 2008; Murphy et al., 2008; Yamashita and Tanoue, 2008; Murphy et 

al., 2010; Lønborg et al., 2010; Guo et al., 2010; Yang et al., 2011; Jaffé et al., 2014; Gan et 

al., 2016). It has been also applied in the surface sediment pore water or underground water 

(Komada et al., 2002; Chen and Hur, 2015; Huang et al., 2015). Without identifying exact 

molecular composition, water column studies showed EEMs provided information about 

aromaticity (Ishii and Boyer, 2012), size (Her et al., 2003; Cuss and Guéguen, 2015), quinone-
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like compounds (Cory and McKnight, 2005), transformations and turnover (Yamashita and 

Tanoue, 2003; Coble, 2008; Catalá et al., 2015) as well as the potential bioavailability of DOM 

(Stedmon and Markager, 2005b; Lønborg et al., 2009; Lønborg et al., 2010). Its application is 

not limited to natural DOM, pollutions due to fluorescent compounds in natural water could be 

determined by EEMs with PARAFAC analysis (Zhou et al., 2013; Ferretto et al., 2014; Peleato 

et al., 2017).  

1.3.2 FT-ICR MS 

1.3.2.1 Principles of the method 

 

Fig. 1.10. Grouping of formulae by elemental ratio and original spectrum of FT-ICR MS sample, adapted 

after  (Kim et al., 2003; Sleighter and Hatcher, 2008; Schmidt, 2009). (a) Potential regional plots of some 

major biomolecular components in the van Krevelen diagram; (b) Original spectrum of ESI-negative FT-

ICR MS and expanded sections of mass spectra at nominal mass 407 of sediment pore water from mud belt. 

The molecular formula for DOM could be achieved by Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR MS). The molecular characterization of DOM could be 

informative for examining the role and dynamics of sedimentary organic matter pool. Its high 

resolution is realized by ions bent into a circular path by the magnetic field excited (excited at 

their resonant cyclotron frequencies) and cycling by passing near detection plates; continuous 

injections of one samples enable the accumulation of signals and resolution of peaks. The 

technique was invented in 1974 (Comisarow and Marshall, 1974a; Comisarow and Marshall, 

1974b). The high resolution is especially an advantage for the complex mixtures, e.g., natural 

DOM with resolving power of 8×105 at m/z 300 (Kujawinski et al., 2001).  

(a)                                                       (b)          
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Base on the H/C ratio and O/C ratio, a van Krevelen Diagram could be generated for the 

visualization of compositional variations (Fig. 1.10) (Kim et al., 2003; Kujawinski et al., 2004). 

It should be noticed that in the natural DOM pool compounds over longtime diagenesis process 

might not necessarily correspond to the regions shown in Fig. 1.10a.  

1.3.2.2 Application in environmental researches 

With the development of statistical approach (Kujawinski and Behn, 2006; Koch et al., 

2007; Sleighter et al., 2010; Herzsprung et al., 2014), time-consuming manual formula 

assignment could be avoid. It has been successfully applied to characterize seawater DOM 

(Koch et al., 2005; Hertkorn et al., 2006; Hertkorn et al., 2013), river water DOM to evaluate 

land usage (Wagner et al., 2015), investigate organic matter degradation (Gonsior et al., 2009; 

Koch et al., 2014; Lechtenfeld et al., 2014) and thermal transformation of OM (Hawkes et al., 

2015; Gomez-Saez et al., 2016; Hawkes et al., 2016; Lin et al., 2017). Characterization of DOM 

in marine pore water is reported in several recent studies (Schmidt et al., 2009; Schmidt et al., 

2011; Schmidt et al., 2014; Seidel et al., 2014; Schmidt et al., 2017; Valle et al., 2017): DOM 

in marine pore water is characterized by abundant nitrogen-containing formulae (CHNO). 

CHNO compounds are transformed via: (a) hydrolysis and deamination with reducing 

molecular size and nitrogen content; (b) oxidation and hydration; and  (c) methylation and 

dehydration (Schmidt et al., 2011; Abdulla et al., 2017).  

1.3.3  Other techniques in characterizing DOM 

Nuclear magnetic resonance spectroscopy (NMR) is a conventional analytical method in 

characterizing organic matter, especially for pure compounds. It is first described and measured 

by Rabi et al. (1938). Based on the type of nuclei and its chemical environment (electron), 

signals of absorbed electromagnetic radiation differ. 1H-NMR (Fig. 1.11) and 13C-NMR is most 

commonly used nuclei, which determine the chemical environment of hydrogen and carbon, 

respectively. Multi-dimension of NMR is proposed and developed in 1980s-1990s (Ernst et al., 

1987; Brüschweiler et al., 1991; Wüthrich, 1994) and it has been applied in the DOM 

characterization in recent seawater investigations (Hertkorn et al., 2006; Hertkorn et al., 2013; 

Abdulla and Hatcher, 2014). It is a powerful tool in resolving the functional group and chemical 

structure, for example, carboxylic acids, aromatic rings, and aliphatic chains etc., which could 

not be directly identified by FT-ICR MS or EEMs. The data analysis of NMR is usually done 
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by manual processes; automation of data processing is not popularized. The natural DOM often 

shows overlapping signals in the spectra.  

   

 

Fig. 1.11. Identification of the functional group by chemical shift in 1H-NMR. Figure has been redrawn 

from Balci, 2005. TMS is abbreviation for tetramethylsilane. 

Other methods, e.g., infrared spectroscopy, are also commonly applied in the 

characterization of pure compounds and occasionally in the studies of natural organic matter  

combined with NMR or EEMs (Guo et al., 2012; Abdulla and Hatcher, 2014). Vibration of 

certain atom/bond show vibrational frequency close to infrared light. Functional groups or 

carbon bonds absorbing light at specific wavelength show characteristic peaks and vary with 

surrounding chemical environments. It is a qualitative method for characterization of the 

chemical groups. The three methods (EEMs, FT-IR and NMR) are summarized in Fig. 1.12.  

 

Fig. 1.12. Comparisons of the principles of the three methods (EEMs, FT-IR, and NMR). 
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1.4  Environmental conditions modulating the terminal steps of organic matter 

degradation 

1.4.1 Terminal steps of degradation 

There are plenty of intermediates in an anaerobic organic matter degradation chain, e.g., 

short-chain fatty acid, alcohol etc., of which acetate and hydrogen are two of the most common 

products or substrates in anoxic sediment.  

Acetate is produced from diverse substrates: chemolithoautotrophic substrates (e.g., H2-

CO2), sugar and O-demethylate methoxylated aromatic compounds (Ljungdahl, 1986; Drake 

et al., 2013). Acetogens coexist and cooperate with terminal mineralizer (e.g., sulfate reducers 

and methanogens) due to a better life strategy and energetic cost of biosynthesis, of which 

energy yields per substrate is not necessarily the only variable controlling microbial 

metabolism in energy-depleted environment (Lever, 2012). Acetate could be oxidized in anoxic 

conditions via citric acid cycle, carbon monoxide dehydrogenase pathway and 

disproportionation to carbon dioxide and methane (Thauer et al., 1989). The energy yields vary 

with the metabolic pathway. For example, in standard condition (0°C, 101 kPa, 1 mol/L), the 

denitrifying bacteria produce energy of 802 kJ/mol (Payne, 1981). Whereas, the sulfate 

reducers-Desulfotomaculum acetoxidans produce energy of 63 kJ/mol via carbon monoxide 

dehydrogenase pathway (Widdel and Pfennig, 1977), the energy production is 36 kJ/mol for 

methanogens, which is sufficient for driving the synthesis of only 0.5 mol ATP (Thauer et al., 

1989).  

Metabolism of acetate could produce H2 and the metabolism is endergonic (∆G0 = +95 

kJ/mol) when the pressure of H2 was kept below 10-4.2 atm (Zinder and Koch, 1984). The 

bacteria that degrade acetate into CO2 and H2 could grow syntrophically with H2-consuming 

microbes. Hydrogen is also produced during fermentation process, which is ultimately 

consumed by terminal mineralizer – sulfate reducers or methanogens etc. via interspecies 

hydrogen transfer (Stams and Plugge, 2009). Theoretically, concentration of H2 in a steady 

state is associated with the redox conditions. Independent to the organic matter composition, 

Lovley and Goodwin (1988) determined typical range of H2 concentration of 7-10 nM for 

methanogenesis; l-l.5 nM for sulfate reduction; 0.2 nM for Fe reduction; less than 0.05 nM for 
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Mn(IV) or nitrate reduction. Metabolism of H2 in subsurface sediment attracted attention lately 

due to its contribution to the survival of microorganisms in the deep biosphere, especially the 

thermophilic bacteria and archaea that obtain H2 from abiotic processes instead of biological 

processes (Szatmari, 1989; Freund et al., 2002; Sokolova et al., 2004; Hellevang, 2008; 

Verhaart et al., 2010).  

1.4.2 Impact of redox conditions on terminal steps of anaerobic degradation 

The terminal processes are modulated by the availability and type of electron acceptors. 

They are fulfilled by denitrifying bacteria, iron/sulfate reducing bacteria and methanogenic 

archaea. Consistently, the intermediates (volatile fatty acid, alcohol) could be metabolized in 

different ways. For example, denitrifying bacteria degrade acetate via the citric acid cycle 

(TCA) cycle, which is a common metabolism in aerobic microorganisms, sulfate reducers 

degrade acetate via carbon monoxide dehydrogenase pathway. Difference of degradation 

between sulfate–reducing and methanogenic condition is summarized in Fig. 1.13. 

Methanogens disproportionate acetate to CH4 and CO2. It was reported that acetate is the only 

organic compound with a carbon-carbon bond that methanogens can degrade (Zellner and 

Winter, 1987; Thauer et al., 1989). Methanogens also rely on the so-called ‘secondary 

fermenters’, which produce mainly C1/C2 intermediates or methylated compounds (Oremland 

and Polcin, 1982; Demirel and Scherer, 2008). The compounds for methanogenic processes 

were listed in Table 1.1. In addition, the recent findings suggest that methanogens are capable 

of several other metabolisms: reduction of Fe(III) oxides and extracellular quinones (Bond and 

Lovley, 2002); a single methanogen has been proven to produce methane from coal by methoxy 

group in complex compounds (Mayumi et al., 2016).  

As a comparison, the sulfate reducers are more versatile in degrading the small 

intermediates: the secondary fermenters are not necessary; a monomer or intermediates 

fermented from monomers could be utilized by sulfate reducers (Muyzer and Stams, 2008). 

The anaerobic degradation chain consists of the terminal mineralization and initial steps, e.g., 

hydrolysis or fermentation. It is not clear whether the initial steps of anaerobic degradation 

would change with the redox conditions. Kristensen et al. (1995) suggested that soluble and 

labile substrates were metabolized in a similar rate with or without oxygen. However, the 

particulate and complex macromolecule were degraded far more slowly under anaerobic 
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conditions compare to aerobic conditions, due to the limiting step in initial phase (hydrolytic 

and fermentative enzymatic attack) under anaerobic conditions (Kristensen et al., 1995).  

 

Fig. 1.13. Anaerobic degradation of organic matter under (a) sulfate-reducing condition and (b) 

methanogenic condition, figure was adapted from Muyzer and Stams, 2008. 

 Although the major parts of sediments were uniformly defined as anoxic zone, the 

immobility of solid phase results in stratification of redox conditions in sediments. It is 

enigmatic whether the different anaerobic conditions are related to the specific pathways of 

organic matter degradation, especially the initial steps. 

Table 1.1. Typical reactions during methanogenesis 

.  

Source from Chynoweth (1996) and Demirel and Scherer (2008) 
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1.4.3 Impact of temperature on terminal steps of anaerobic degradation 

Temperature increases with depth due to geothermal heating in subsurface environments 

and has important role in chemical reactions and kinetics. Chemically, temperature may affect 

the Gibbs free energy yield from a redox reaction, accordingly, temperature is modulating 

microbial energy production, which drives the survival of microbes and maintenance 

requirements (Tijhuis et al., 1993). Microbial community composition and cell membrane 

adapt to the surrounding temperature (Cossins and Prosser, 1978; Schouten et al., 2002; 

Gagliano et al., 2014; Schmidt et al., 2015; Pollo et al., 2016). Microbial habitat is 

distinguished in wide range of temperature. There are psychrophiles (≤ 20°C), mesophiles (20-

42°C), thermophiles (42-70°C) and hyperthermophiles (> 70°C). Some prokaryotes can grow 

at temperatures as high as +120°C (Kashefi and Lovley, 2003). At temperature higher or lower 

than optimum growth temperature, the growth rate decreases sharply due to the thermal 

inactivation of enzymes and disruption of the membrane structure (Dworkin et al., 2006). With 

the increase of temperature, cell membrane contains more saturated bond or cyclization instead 

of olefinic bond (De Rosa et al., 1980; Elling et al., 2015). In addition, temperature affects the 

optimum pathway of terminal mineralization. Roussel et al. (2015) examined the impact of 

temperature on terminal mineralization processes at the range of 0-80°C with sediments from 

tidal flat, Woodhill Bay, UK (non-thermal sediments): acetate oxidation has maximum activity 

at up to ∼34°C for metal oxide reduction with metal oxide as electron acceptor and up to 

∼50°C for sulfate reduction with sulfate as electron acceptor. Below 50°C, sulfate reduction 

by utilizing acetate is increasing with temperature, but H2 is more preferred substrate (Roussel 

et al., 2015). Methanogens also show similar change of substrates to preferentially use H2 at 

high temperature, meanwhile methanogenesis from methylamine ceased at high temperature 

(> 43°C) (Schulz and Conrad, 1996; Roussel et al., 2015).  

It is noteworthy that optimum temperature of microbes is not limited to the above ranges. 

It depends on the in situ temperature of sediments and on microbial communities. Furthermore, 

as for the initial steps, enzymatic hydrolysis and fermentation is reported to be impacted by 

temperature: the maximum hydrolysis rate were found at 10-20°C for Arctic sediment and > 

30°C for intertidal sediment of North Sea (Arnosti, 1998; Arnosti and Jørgensen, 2003; Hao 

and Wang, 2015). The biological hydrolysis is limited by the enzyme thermostability and 

denaturation of enzymes (protein) is generally rapid at high temperature (Colussi et al., 2012). 
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Protein degradative reactions at high temperatures (> 80°C) occur only slowly in 

conformationally intact proteins (Koch et al., 1990; Daniel, 1996). In some specialized cases, 

some bonds or ions are helpful to increase thermostability of certain enzyme, e.g., disulfide 

bridges (Matsumurat et al., 1989), hydrogen bonding (Vogt et al., 1997). The extremely 

thermostable amylolytic enzyme found in archaea has half-life of 2 h at 120°C (Koch et al., 

1990). Considering the short half-life of the enzyme at high temperature, it would be expensive 

to renew the extracellular enzyme and repair thermal damage. The upper limit of life is as high 

as 121°C (Blöchl et al., 1997; Kashefi and Lovley, 2003). It is interesting whether the biotic 

hydrolysis is efficiently supporting the survival of microbes at high temperature and whether 

there is ‘rough and ready’ foods for microbes from abiotic processes. Lin et al. (2017) 

suggested that hydrothermal heating of young rift sediments released massive bioavailable 

DOM at 90°C. It is not clear to what extent the abiotic process has contributed to the release 

of carbohydrate and peptides in dissolved phase and ultimately to microbial metabolism. 

Moreover, in the aged and oligotrophic sediment, this process might play a less important role 

due to the limitation of bioavailable organic matter. 

1.5  Objectives and outline of thesis 

One key question in deep biosphere research is microbial carbon metabolism in the extreme 

conditions with recalcitrant organic residue and limited electron acceptors, i.e., the mechanisms 

of anaerobic degradation in different extreme environmental conditions. Stratification of 

sediments lead to variation in redox conditions and temperature, which leads to the change of 

microbial community and terminal mineralization (Clark et al., 1998; Biddle et al., 2005; 

Briggs et al., 2013; Roussel et al., 2015). The terminal step of degradation reviewed above 

suggested varied patterns due to the change of environmental conditions. It raises questions of 

initial steps of degradation: Could the refractory organic matter be degraded to assimilable 

substrates and how is the degradation pathway under varied environmental conditions 

(summarized in Fig. 1.14).  
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Fig. 1.14. Carbon cycle in the ocean and questions remained in subseafloor sediments. SR and MOG refer 

to the sulfate reducing condition and methanogenic condition, respectively. 

The initial steps of anaerobic degradation are largely unknown especially due to the 

complexity of dissolved organic matter (DOM). To investigate the impact of biogeochemical 

processes on the composition of DOM in marine subsurface sediments, this thesis aims to 

answer following questions in a generalized way:  

1. Can fluorescence spectroscopy be applied for the analysis of DOM in subsurface 

sedimentary pore water, especially for the geopolymers?  

2. Could the geopolymers be degraded and consumed by microbes? Which substrates 

were preferentially degraded or assimilated by microbes in energy-limited 

environments? 

3. How do redox conditions and temperature influence the DOM cycling? 

To address these questions, three sub-projects were designed: 

1.5.1 Sub-project 1: method establishment 

Aim: (1) impacts of matrix effects and sample storage; (2) pretreatments of EEMs samples 

from anoxic marine sediments. 
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Fig. 1.15. Scheme of first experimental design. SRFA and YE are abbreviation of Suwannee River Fulvic 

Acid and yeast extracts, respectively. For pristine samples, the liquid was filtered by filter (pore size 0.2 

ρm) from sediment slurries. 

Compared to these oxic environments, pore water in deep sediment is unique with highly 

concentrated DOC, high concentrations of redox-sensitive inorganic ions. It is unclear how to 

pretreat the samples and to what extent the matrix effects affect the indexes. This study aims 

to investigate the impacts of pretreatments on the fluorescence spectra. Impact of DOM 

concentration, NaCl, Fe(II), Fe(III), Mn(II), S2- and O2 exposure were investigated (Scheme 

flow in Fig. 1.15). Tests were made on humic-like DOM represented by Suwannee River Fulvic 

Acid and protein-like DOM represented by yeast extract. For confirmation, natural pristine 

samples from anoxic incubations of sediments were used; sediments samples from North Sea 

and Rhône Delta represent for metal-ion-rich terrestrial DOM and sulfide-rich DOM, 

respectively. For the validity of the results, we used FT-ICR MS as a complementary method. 

EEMs could be used to continuously monitor changes of DOM in incubations or in-situ profiles 

at high sampling frequency in a small amount of liquid (50 μL in this study, the magnitude of 

order at μg C). This is especially an advantage for the study of deep biosphere as sampling of 

pore water is a demanding task for the deep compacted sediments. A manuscript of method 

establishment was written and will be submitted soon. 
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1.5.2 Sub-project 2: impacts of redox conditions on DOM cycling 

Aim: (1) DOM cycling under sulfate reducing vs. methanogenic conditions; (2) selectivity 

of the initial steps before fermentation and terminal mineralization; (3) carbon cycle and 

preservation modulated by redox-conditions. 

 

Fig. 1.16. Scheme of second experimental design.  

The microbes are surviving under the limitation of electron acceptors in the deep reduced 

sediments. The coastal anoxic sediments are typically stratified into sulfate-reducing and 

methanogenic conditions. Incubations with different sulfate addition were conducted to 

evaluate the impact of redox conditions on DOM cycling and thereafter the anaerobic 

degradation path (Fig. 1.16). Inhibitors were added to one batch to allow the accumulation of 

metabolites and observation of fermentation and terminal steps. By EEMs and ultrahigh 

resolution FT-ICR MS, we found typical mechanism of anaerobic degradation in different 

redox conditions in subsurface sediment (sulfate-reducing zone and methanogenic zone). 

Based on incubation of sediment from the Mediterranean Sea, it was elucidated how the 

selectivity of anaerobic degradation and pathways of organic matter degradation prior to the 

terminal step shifts in response to the stratification of redox conditions. A manuscript based on 

the experiment was written and is ready for submission.  

1.5.3 Sub-project 3: impacts of thermal conditions on DOM cycling 

Aim: (1) impact of temperature of DOM and acetate production in heated deep sediments; 

(2) define the contribution of biotic and abiotic process in the initial step on the degradation of 

organic matter.  

•Setting: SR condition indicated by sulfate consumption
•Purpose: Observation of initial step of degradation by DOM
•
•

Sulfate-reducing condition (SR)

•Setting: MOG condition indicated by CH4 production
•Purpose: Observation of initial step of degradation by DOM
•
•

Methanogenic condition (MOG)

•Setting: SR-inhibited condition with inhibitor molybdate
•Purpose: Labile intermediates, sulfate reducer and its symbiont in 
selective carbon cycling

•
•Sulfate-reducing condition (SR)

•Setting: Addition of yeast extract under SR and MOG condition
•Purpose: Consumption of biopolymers under SR condition vs. MOG 
condition

•
•Derivative experiments
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Fig. 1.17. Scheme of third experimental design. 

In the deep subseafloor, geothermal heating is an important environmental factor and 

associated with alteration of organic matter and minerals. It is not clear whether and how 

heterotrophic organisms in deep sediments are stimulated by heating. This study investigated 

the microbial carbon cycling at mesophillic, thermophilic and hyperthermophilic conditions in 

subseafloor sediments recovered from a high heat-flow area in the Nankai Trough (IODP Site 

C0012). Experiments were conducted in the temperature range of 20°C to 85°C and consisted 

of alive, killed and partly inhibited series for differentiation of biotic/abiotic and 

intermediate/terminal processes (Fig. 1.17). Microbial activity, transformation of organics and 

metabolic intermediates were monitored via analysis of hydrogen gas, hydrogenase enzyme 

activity, dissolved organic matter (DOM), Mn & Fe, and volatile fatty acids. DOM was 

characterized by EEM spectroscopy and FT-ICR MS. Results showed temperature modulated 

the contribution of abiotic process on the anaerobic degradation of humic substances. The aged 

(7.8 Ma old) macromolecular – humic substances are split into labile and refractory units during 

heating. This study provided the basis for a new conceptual model for the initiation of humic 

substance degradation. The model suggests that the combination of abiotic and biotic processes 

in DOM degradation is crucial for the sustenance of the deep life in moderately heated 

sediments. A manuscript based on the experiment was written and is under revision by 

coauthors. 

•Setting: Control vs. mesophilic, thermophilic hyperthermophilic
•Purpose: Observation of initial degradation, fermentation by 
monitoring DOM and acetate

•
•Alive series

•Setting: Control vs. mesophilic, thermophilic hyperthermophilic
•Purpose: Observation and differentiation of abiotic contribution 
on DOM decomposition and acetate production

•
•Killed series

•Setting: Control vs. mesophilic, thermophilic hyperthermophilic
•Purpose: Observation and differentiation of biotic contribution of 
sulfate reducers 

•
•Inhibited series

•Setting: Addition of yeast extract under mesophilic, thermophilic 
hyperthermophilic conditions

•Purpose: Confirm the consumption of labile protein-like DOM

•

•
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Abstract 

Marine sediment is the major carbon reservoir on Earth and a possible pool of substantial 

carbon cycling stimulated by the deep biosphere. Dissolved organic matter (DOM), a feedstock 

linked to carbon cycling in these sediments, is difficult to be characterized. Moreover, recovery 

of pore water from anoxic deep sediments is a demanding task. This study aims to apply 

excitation-emission-matrix spectroscopy (EEMs) for DOM characterization in small amounts 

of liquid. We investigated the impacts of DOM concentration, ionic strength, the presence of 

typical redox sensitive ions and oxygen exposure on the fluorescence spectra. Parameters 

determined by fluorescence spectra include 3D-indices after PARAFAC analysis including P/H, 

AC/M (or C/M) ratio and common 2D-indices including FI (contribution of terrigenous DOM), 

BIX (autochthonous DOM and biological activity), HIX (humification index). Tests were made 

with Suwannee River Fulvic Acid (SRFA) representing humic-like DOM and yeast extract 

(YE) representing protein-like DOM, and results were confirmed with sedimentary DOM 

samples from anaerobic incubations. (a) For high humics concentration (20 mg/L), quantitative 

information is lost while qualitative information (peak ratio, FI and BIX) remains reliable; 

over-dilution (< 0.6 mg/L) makes analysis more susceptible to noise. Humics concentrations 

in the range of 0.9 mg/L-6 mg/L (absorption coefficient < 0.06 cm-1) result in both consistent 

quantitative and qualitative results; for natural water in this study, ~ 1 μg of dissolved organic 

carbon is enough. (b) O2 exposure significantly impacts the fluorescence of sedimentary Fe(II)-
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rich DOM samples from the Rhône Delta due to changes of the matrix instead of intrinsic 

change of DOM, which remained relatively constant according to Fourier transform ion 

cyclotron resonance mass spectrometry. (c) The major redox-sensitive elements including 

Fe(II), Mn(II) in anoxic sedimentary pore water resulted in a loss of fluorescence even without 

oxidation. This effect is negligible if the concentration of Fe(II), Mn (II) is below 0.06 mM in 

the final diluted samples. Sulfide induces a red-shift of the fluorescence spectra, therefore, we 

recommend to flush sulfide-rich samples with N2 before storage. (d) EEMs is a complementary 

method for DOM characterization to FT-ICR MS, as for the latter the protein-like DOM is 

selectively lost during solid phase extraction. Based on these observations we propose a sample 

preparation pipeline for pore water from anaerobic environments that enables measurements 

with micro-liquid sampling (50 μL in this study) and thereby the time-efficient, high-resolution 

observation of DOM composition in deep biosphere research. 

Key words: deep subsurface sediment, EEMs, PARAFAC, pore water

2.1 Introduction 

Marine sediments and sedimentary rocks play a key role in the global carbon cycle as the 

largest carbon pool on Earth (Berner, 1982; Berner, 1989; Hedges and Keil, 1995). The anoxic 

subsurface sediments were commonly considered as the pool for preservation of recalcitrant 

organic matter (Henrichs and Reeburgh, 1987). During the past two decades, however, 

abundant microbial communities have been found to exist in deeply buried sediments, even 

down to 2.5 km below seafloor (Parkes et al., 1994; Roussel et al., 2008; Inagaki et al., 2015), 

and the widespread occurrence of biogenic methane and gas hydrate in subseafloor 

environments testifies to their biological activity (Kvenvolden, 1995; Inagaki et al., 2006; 

Sherwood Lollar et al., 2006). The discovery of the deep subseafloor biosphere challenges our 

understanding of the carbon cycle and raises new questions about the nature of sedimentary 

organic matter, its degradation, and preservation.  

Sediments contain both particulate organic matter (POM) attached to sediment grains and 

dissolved organic matter (DOM) in their interstitial waters. Since turnover rates are slow, 

alterations in the large POM pool are difficult to observe, but reactions of organic matter 

degradation might be observable in the much smaller, more short-lived DOM pool. As an 

intermediate pool during the remineralization of sedimentary organic matter, DOM receives 
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the products of hydrolysis and fermentation processes, thus holding the pool substrates 

accessible to terminal remineralization (Middelburg et al., 1993). Detailed analyses of 

sedimentary DOM can potentially open a window to examine carbon cycling in sediments 

(Krom and Sholkovitz, 1977; Chin et al., 1998; Weston, Porubsky, V. a. Samarkin, et al., 2006; 

Tfaily et al., 2013; Valle et al., 2017).  

Marine sedimentary DOM is a complex mixture of thousands of different compounds 

(Schmidt et al., 2009; Schmidt et al., 2011). The analysis of DOM in marine sediments is 

typically complicated by small sample volumes, for which pore-water samples need to be 

extracted from sediment cores by a rhyzon sampler or squeezer. So far, concentrations of bulk 

dissolved organic carbon (DOC) have been determined routinely, for example in the context of 

scientific ocean drilling programs, e.g., IODP, ODP (Simoneit and Sparrow, 2002; Heuer et al., 

2009; Lin et al., 2012; Lin et al., 2015), and analyses of individual compound classes, such as 

volatile fatty acids (VFAs) and alcohols, have been carried out occasionally (Heuer et al., 2009; 

Zhuang et al., 2014), but an overall characterization of the complex DOM pool in the deep 

biosphere has rarely been achieved. Methods such as Fourier Transform Ion Cyclotron 

Resonance Mass Spectrometry (FT-ICR MS) for formulae assignments, Nuclear Magnetic 

Resonance Spectroscopy (NMR) for functional groups (Hertkorn et al., 2006; Hertkorn et al., 

2013), and Infrared Spectroscopy (IR) for chemical bonds (Artham and Doble, 2012; Guo et 

al., 2012), have been successfully applied in environmental studies. Especially, FT-ICR MS 

resolves thousands of individual molecular formulae in highly complex mixtures, and can be 

used for unraveling the composition of hitherto ‘uncharacterizable’ DOM (Koch et al., 2005; 

Dittmar et al., 2007; D’Andrilli et al., 2010; Hertkorn et al., 2013; Schmidt et al., 2014; Schmidt 

et al., 2017). All three methods require relatively large sample volumes (tens of milliliter or 

more) for pore water DOM samples. The retrieval of samples in excess of a few milliliters pore 

water, however, is a demanding task. This is especially true for deep biosphere studies, as pore 

water yields decrease with increasing depth and consolidation of sediments. 

Fluorescence Spectroscopy is an alternative approach to the direct molecular 

characterization of DOM by FT-ICR MS, NMR and IR. Compared to the latter, Fluorescence 

Spectroscopy can be carried out on smaller sample volumes (2-3 mL for seawater) without 

pretreatment by solid phase extraction (SPE), is non-destructive and lower-cost. It takes 

advantage of the presence of chromophores in DOM that absorb and emit light of specific 
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wavelengths, which are related to the molecular structure of the compounds. 3D fluorescence 

spectra, also known as Excitation Emission Matrix Spectra (EEMs), contain thousands of 

excitation and emission wavelength-dependent data points of fluorescence intensity that can be 

grouped into different DOM components by Parallel Factor Analysis (PARAFAC) as statistical 

tool (Stedmon and Bro, 2008; Murphy et al., 2010; Murphy et al., 2013; Cuss and Guéguen, 

2016).  

EEMs can be used to identify and quantify different fluorescent DOM components such as 

protein-like peaks related to labile compounds (Yamashita and Tanoue, 2003; Stedmon and 

Markager, 2005a; Fellman et al., 2010; Lønborg et al., 2010), and humic-like peaks indicating 

highly aromatic terrestrial DOM,  microbial or marine DOM  (Coble et al., 1990; Coble, 1996; 

Coble, 2007; Fellman et al., 2010; Ishii and Boyer, 2012). Based on the individual fluorescent 

peaks in 3D-scans, peak ratios can be used to infer the aromaticity, sources, and bioavailability 

of DOM without determination of the exact molecular composition and regardless of 

unambiguous identification of fluorescent component pools. In addition, 2D-scans of emission 

spectra resulting from excitation at 370 nm, 310 nm, and 254 nm serve as indices for terrestrial 

source (FI), biological activity (BIX) and humification (HIX), respectively  (Mcknight et al., 

2001; Ohno, 2002; Huguet et al., 2009). More indices can be derived from 3D-scans and 2D-

scans, e.g., A/T, C/A, C/T ratio (Baker et al., 2008; Hansen et al., 2016), redox index (Cory 

and McKnight, 2005), molecular weight by E4/E6 ratio (Chen et al., 1977), Freshness index 

( ) (Parlanti et al., 2000), etc. 

EEMs have been successfully applied to investigate DOM in the water column of oceans, 

estuaries and rivers (Coble, 2008; Murphy et al., 2008; Yamashita and Tanoue, 2008; Murphy 

et al., 2010; Lønborg et al., 2010; Guo et al., 2010; Yang et al., 2011; Jaffé et al., 2014; Gan et 

al., 2016; Martínez-Pérez et al., 2017), shallow sediments and underground water (Burdige, 

2001; Komada et al., 2002; Burdige et al., 2004; Chen and Hur, 2015; Huang et al., 2015). The 

applicability of EEMs for deep anoxic sedimentary DOM is rarely explored. In particular, the 

following matrix and sample handling effects require attention compared to the aquatic systems 

or surface sediments. (a) Concentrations of chromophoric DOM are one to two orders higher 

in pore-waters, and this might cause inner filter effects (i.e., chromophore optical absorption in 

the excitation or emission region) and need to be corrected (Tucker et al., 1992; Kubista et al., 

1994; Mobed et al., 1996; Ohno, 2002; Gu and Kenny, 2009; Luciani et al., 2009). By 
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separating peaks by PARAFAC analysis, the upper limit of DOM concentration for the 

quantitative and qualitative analysis would be clearer. More importantly, given the small 

volumes available for the deep pore-water from compacted sediments, it is valuable to consider 

dilution of samples and therefore to verify the lower limit of DOM concentration. (b) High 

concentrations of metal ions in anoxic sediments might lead to complexation of DOM and 

precipitation, thus affecting chromophore properties and identification of EEMs peaks; iron 

has shown effect of quenching (Poulin et al., 2014), it is not clear at which concentration range 

the ions interfere with the EEMs or could be negligible. (c) Anaerobic redox conditions prevail 

in marine sediments, and the contact of sedimentary DOM samples with ambient air during 

sample handling might trigger oxidation, complexation, and precipitation that can affect optical 

signals. (d) Dilution of high concentration samples leads to decrease of ionic strength, the effect 

of which has been tested for humic acids (Mobed et al., 1996), while its impact on individual 

peaks after PARAFAC analysis and indices of natural pore water samples is not known.  

Therefore, we investigated the potential matrix effects in sediment pore-waters in a series 

of experiments, including impacts of DOM concentration, ionic strength, major redox-sensitive 

metal ions, and S2-. We tested the Suwanee River Fulvic Acid Standard (SRFA) and yeast 

extract (YE) as representatives for humic-like and protein-like DOM, respectively, as well as 

two mixtures of natural sedimentary DOM prepared from slurries of coastal marine sediments 

(North Sea and Rhône Delta). The anoxic natural samples also served to test the effect of 

oxygen exposure during sample handling for EEMs and FT-ICR MS analyses.  

2.2 Materials and methods 

2.2.1 Experiments 

The experiments were summarized in the flow chart in Fig. 2.S1. 

2.2.1.1 Test of matrix effects in DOM samples prepared from SRFA and YE 

Potential matrix effects that might occur in marine sedimentary DOM due to high 

concentrations of DOM, salts, metals and sulfide in pore water were tested with two reference 

samples. Humic-like DOM was investigated using a 1 g/L stock solution prepared from SRFA 

(standard reference material of the International Humic Substances Society) and N2-flushed, 



36 Chapter 2  Establishment of method 

 

 

O2-free Milli-Q water. Protein-like DOM was investigated using a 10 g/L stock solution, which 

had been prepared from yeast extract (YE) (Alfa Aesar, H26769) in O2-free Milli-Q water. 

Both solutions were kept under N2 atmosphere in 100-mL serum bottles that were closed with 

grey butyl rubber stoppers and crimp caps.  

Four sets of tests were performed to evaluate the influence of DOM concentration, salts, 

metals and sulfide: (a) In order to test the effect of DOM concentration, secondary stock 

solutions (SRFA: 400 mg/L) were diluted with Milli-Q water in nine dilution steps, yielding a 

concentration range of 0.18-20 mg/L SRFA. (b) NaCl or KCl was commonly used in the test 

of ionic strength in physio-chemical experiment (Mobed et al., 1996; Snowden et al., 1996; 

Icenhower and Dove, 2000). In order to investigate the impact of ionic strength, secondary 

stock solutions (SRFA: 400 mg/L; YE: 1000 mg/L) were mixed with NaCl solution, yielding 

a DOM concentration of 4 mg/L for SRFA and 10 mg/L for YE and NaCl concentrations 

ranging from 0 to 327 g/L. (c) The impact of major redox-sensitive metal ions was tested by 

addition of FeCl3, FeCl2, MnCl2, yielding a concentration range of 0-0.9 mM for the metals 

ions and a DOM concentration of 4 mg/L for SRFA and 10 mg/L for YE. (d) The potential 

interference of sulfide was tested over a concentration range of 0-10 mM in 4 mg/L SRFA and 

10 mg/L YE respectively. Stock solutions of Na2S were prepared at concentration of 200 mM 

and kept under N2. All dilution series were prepared on the same day and analyzed immediately 

by fluorescence spectrometry.  

2.2.1.2 Preparation of slurries for in-house standards of marine sedimentary DOM 

In order to confirm the matrix and sampling effects in natural anoxic pore-water samples, 

two in-house standards of marine sedimentary DOM were prepared using large sediment 

samples from two contrasting environments – North Sea tidal flat and surface sediment from 

the Rhône Delta. While the former has low TOC and high sulfide concentrations, the latter is 

characterized by high concentrations of TOC and metals. The first in-house standard was 

prepared from surface sediment (~2-7 cm) of the North Sea tidal flat Janssand off Spiekeroog 

Island, North Sea (53° 44.18′ N, 7° 41.97′ E), that was accessed by foot during ebb tide in 

October, 2013. The coastal sediment was sandy, black, and odorous due to a high abundance 

of dissolved sulfide. The total organic carbon (TOC) content was low (0.2 wt.%). The sediment 

was representative of natural sulfide-enriched autochthonous DOM samples. The second in-

house standard (Rhône Delta) was prepared from surface sediments (mixtures of sediments 
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from depth 0-18 cm) from the Rhône Delta in the Gulf of Lions, Western Mediterranean Sea, 

sampled at site GeoB17306 (43° 18.95' N, 4° 52.18' E, 30 m water depth) during RV Poseidon 

Cruise POS450 in April 2013. This coastal site is characterized by high riverine input, high 

TOC contents (1.3 wt.%), anoxic conditions, and high concentrations of dissolved metal ions. 

This sample represents a typical terrestrial DOM end member dominated by humic-like 

compounds with slight admixture of protein-like compounds. The surface sediment was 

retrieved by multi corer (GeoB17306-1). Immediately after core recovery, the upper 0-18 cm 

of sediment were transferred into three Schott glass bottles, which were flushed with N2, closed 

with butyl rubber stoppers and stored at +4°C until further processing on shore. Details on 

coring operations and sample handling onboard are given in the cruise report (Heuer et al., 

2014). 

For the generation of large-volume aqueous samples for DOM analyses, the sediment 

samples were homogenized and further processed in the following way: 100 mL of wet 

sediment were slurried 1:1 with oxygen-free autoclaved artificial seawater, which was prepared 

from 0.682 g KCl, 1.5 g CaCl2*2H2O, 5.7 g MgCl2*6H2O, 26.4 g NaCl, 6.8 g MgSO4*7H2O, 

0.099 g KBr in 1 L Milli-Q water, to which finally 10 mL of 1 M NaHCO3 solution were added. 

The slurries were kept under N2 atmosphere in 250-mL Schott glass bottles closed with butyl 

rubber stoppers, and incubated in the dark at room temperature for one year for samples from 

the Rhône Delta and two years for samples from the North Sea. For the slurry of the latter, 20-

mL liquid was taken and filtered through N2-flushed acetate cellulose filter (Sartorius, 0.2 μm), 

samples were used for test of precipitation, oxidation and removal of sulfide; the rest of the 

slurry was incubated at 85°C for 15 days for being representative of natural DOM samples 

containing both protein-like and humic-like compounds. After incubation, the liquid phase was 

sampled by syringe and filtered through N2-flushed acetate cellulose filter (Sartorius, 0.2 μm) 

prior to further processing, storage, or analysis. For FT-ICR MS analysis, 20-mL samples of 

the filtered liquid phase were stored in glass serum vials under N2 atmosphere at +4°C.  

2.2.1.3 Test of matrix effects of natural marine sedimentary DOM  

In order to confirm potential matrix effects in natural samples, dilution series were prepared 

from our in-house marine sedimentary DOM standards in the following way: (a) The effect of 

DOM concentration was confirmed by diluting filtered liquid phase samples with O2-free Milli-

Q water (NaCl, 35 wt.‰) in dilution steps of 1:1, 1:11 (v:v, natural sample/total) yielding 
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concentration of dissolved organic carbon of 36 mg C/L, 3.3 mg C/L for samples from the 

Rhône Delta,  60 mg C/L, 5.5 mg C/L for samples from the North Sea. (b) The effect of ionic 

strength was tested with additional NaCl concentrations of 0, 32.7 g/L and 327 g/L, each 

sample containing 3500 μL NaCl solution and 350 μL natural sample. For natural samples 

from the North Sea and the Rhône Delta, there are no amendments of redox-sensitive ions 

(Fe(III), Fe(II), Mn(II), sulfide) because their concentration was already high in the DOM 

samples. The samples for testing DOM concentration and ionic strength series were analyzed 

within one day by EEMs and each EEMs was performed immediately after sample preparation.  

2.2.1.4 Effects of sample storage on DOM samples from anoxic slurries 

While EEMs can be conducted at the time of sampling without further sample treatment, 

FT-ICR MS requires sample preparation by solid phase extraction (SPE, Dittmar et al., 2008), 

and usually the limited access to the analytical infrastructure requires sample storage. Here, we 

tested (a) the effect of long-term O2 exposure on DOM samples after SPE on the results of FT-

ICR MS and, for comparison, on the results of EEMs, and (b) the effect of short-term O2 

exposure of pristine liquid phase of the in-house-prepared DOM samples on the results of 

EEMs. The reported change of FT-ICR MS data and EEMs of DOM after SPE refers to only 

the variation of DOM without matrix effects. 

Solid phase extraction of DOM was performed on 20-mL liquid phase samples using pre-

cleaned Bond Elut-PPL cartridges (200 mg sorbent, Agilent Inc.) according to Dittmar et al. 

(2008) and Schmidt et al. (2014). Extraction was carried out in a glove bag under N2 

atmosphere. DOM was eluted from the cartridge with 1.5 mL methanol (LiChrosolv, Merck). 

The residue after solid phase extraction was sampled to check the loss of fluorescence signal 

during extraction. The DOM extracts of both in-house standards for FT-ICR MS and EEMs 

analysis were further split into two parts and stored for two months at -20°C, one under ambient 

air and the other one under N2 atmosphere. For storage, we used 2-mL glass vials closed with 

Teflon coated septa. DOM extracts after SPE were analyzed by EEMs and FT-ICR MS. In 

order to ensure O2-free storage conditions, the 2-mL sample vials were kept in N2 flushed 50-

mL Schott bottles. For EEMs measurements, 20 μL DOM extracts in methanol were taken, 

dried, and dissolved in O2-free Milli-Q water. 
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In addition, the original liquid phase of the in-house-prepared samples from the Rhône Delta 

and North Sea sediments was measured by fluorescence spectrometer prior to O2 exposure, 

after two-hours and after 24-hours O2 exposure. 

2.2.2 Analytical Methods 

2.2.2.1 EEMs – Measurements  

Spectra were recorded by a fluorescence spectrophotometer (Agilent Cary Eclipse, USA). 

The integral area of the Raman peak at excitation 350 nm was determined using Milli-Q water 

as a reference. Excitation wavelengths were increased in 5 nm steps from 230 nm to 410 nm, 

and emission spectra were recorded in 2 nm intervals from 300 nm to 530 nm. More than 100 

samples were analyzed by PARAFAC analysis (Stedmon and Bro, 2008). The spectra with 

significant loss of signal or uncommon peaks resulting from the addition of metal ions were 

deleted during the PARAFAC processing. The relative standard deviation of the Raman peak 

excited at 350 nm was below 0.5% from a routine measurement tested with fresh Milli-Q water. 

Reproducibility test of 4 mg/L SRFA suggests that the relative standard deviation of peaks 

modeled by PARAFAC was better than 2%.  

The undiluted samples were tested by absorption spectrum to quantify the chromophoric 

dissolved organic matter (CDOM) which might absorb the fluorescence. Absorption spectra 

were measured on a Shimadzu UV-1280 UV-vis absorption spectrophotometer with 1 cm 

cuvette. Absorption at wavelength 350 nm (a350) was recorded. Absorption measured in the 

machine (abs) could be transformed to absorption coefficient (m-1 or cm-1) by the equation:  

a( ) = 2.303 A( )/L   Eq. 2.1 

 L is the cell path-length in meters or centimeters. is the wavelength. Absorption spectra 

were measured to quantify the concentration of chromophoric DOM when inner filter effects 

occur and therefore, confirm upper and lower limit of DOM concentration. 

2.2.2.2 EEMs – Peaks and Indices 

Based on EEMs and PARAFAC, the following peaks were identified in 3D-scan spectra 

and named based on the maxima of excitation and emission intensities (ex/em) (Fig. 2.S2): 

peaks B, T, M, A’, C. Peak P represent the total protein-like DOM (B and T, B: ex/em 275/305 
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nm; T: ex/em 280/350 nm); peaks M (ex/em: 315(250)/400 nm), A’ and C (ex/em: 2/450-460 

nm) represent humic-like DOM and together named as peak H. Value in parenthesis (250) is 

secondary peak. A’ represents peak A together with peak C in the PARAFAC analysis results. 

‘AC’ represents the sum of peak A’ and peak C. The intensity of fluorescence is normalized 

by the Raman peak and the unit is R.U. 

The indices FI, BIX and HIX derived from 2D-scans of emission spectra were interpreted 

as proxies of terrestrial organic matter source (FI), biological activity (BIX) and humification 

(HIX), respectively (Mcknight et al., 2001; Huguet et al., 2009). The fluorescence index (FI) 

was determined as ratio of the fluorescence intensity at 450 nm to 500 nm emission excited at 

370 nm, indicating terrestrial-derived DOM (higher plant originated) with FI less than 1.4 and 

microbial-derived DOM with FI more than 1.8 (Mcknight et al., 2001). BIX is the ratio of 

fluorescence intensity emitted at 380 nm and the maximum of intensity at 430 nm excited at 

310 nm, indicating fresh autochthonous DOM production (BIX > 1). Humification index (HIX) 

is calculated from the ratio of integrated fluorescence emission in the range 435–480 nm to that 

in the range 300-345 nm, indicating humified DOM with HIX higher than 10 and 

autochthonous DOM with HIX less than 4 (Huguet et al., 2009). High HIX values correspond 

to maximal fluorescence intensity at long wavelength and thus to the presence of complex 

molecules like high-molecular-weight aromatics (Senesi and Miano, 1991; Huguet et al., 2009). 

2.2.2.3 FT-ICR MS 

 Samples were analyzed in methanol/water 1:1 (volume ratio) with negative-ion 

electrospray ionization (ESI, Apollo II electrospray source, Bruker Daltonik GmbH, Bremen, 

Germany) with a flow rate of 5 μL/min on a Bruker SolariX XR FT-ICR MS (Bruker Daltonik 

GmbH, Bremen, Germany) equipped with a 7 T refrigerated actively shielded superconducting 

magnet (Bruker Biospin, Wissembourg, France). Sodium trifluoroacetate was used as a 

calibration compound (Moini et al., 1998). DOM extracts were injected at the concentration of 

~20 mg/L. 200 scans were added to one mass spectrum with an accumulation time of 0.02 s. 

Molecular formulae were calculated in the mass range of 200-650 Da with a formula tolerance 

of ±0.5 ppm. Peak intensity was calibrated by the base peak of the mass spectrum and named 

relative intensity (rInt). Formulae were deleted if they had no corresponding isotopic formulae. 

Formulae containing N4P2, N2P2, S2P2, O1, O0 were not considered in the final data set. All 

peaks that matched contaminant formulae (anthropogenic surfactants listed on 
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http://www.terrabase-Inc.com) or detected in the blank sample (rInt > 0.1) were deleted. More 

details were described in Schmidt et al. (2014). The formulae were classified as groups of CHO, 

CHNO and CHOS compounds, which contain exclusively C, H, O atoms, C, H, N, O atoms, 

or C, H, O, S atoms, respectively. The peak magnitudes reported in this manuscript are relative 

intensity normalized to the sum of all peaks, i.e., rIntn = IntPeak/∑IntallPeaks. 

2.3  Results and discussion 

2.3.1 Investigated peaks and indices 

Apart from the five peaks identified after PARAFAC analysis and the indices FI, BIX and 

HIX derived from the 2D-scan of the emission spectrum, there are more parameters that can 

be derived from individual peaks. The ratio of peak A and C to peak M or peak C to M can be 

used to identify a blue-shift of the fluorescent signal of organic compounds. Decrease of AC/M 

ratio is attributed to the loss of conjugation structures, for example, less aromatic rings, double 

bonds etc. In the aquatic systems, the peak C represents the more conjugated terrestrial DOM 

compared to peak M, which in studies of seawater has been recognized to comprise 

marine/autochthonous compounds (Coble, 2007; Ishii and Boyer, 2012). Another interesting 

index is P/H, e.g., the ratio of protein-like peaks to humic-like peaks. 

2.3.2 Experimental evaluation of potential matrix effects on EEMs  

2.3.2.1 Humic-like DOM 

(a) Impact of DOM concentration on fluorescence of humic-like DOM 

The effects of DOM concentration on the widely used parameters derived from EEMs were 

firstly investigated using SRFA. The humic components AC and M showed a linear response 

of the fluorescence signal to DOM concentration over a concentration range of 0.18 mg/L-6.0 

mg/L (a350 < 0.06 cm-1) (Fig. 2.1a). High concentrations lead to an underestimation of the peak 

intensity of the humic-like peak; for example, at 20 mg/L the fluorescence peak was 21% lower 

than expected based on the linear regression of fluorescence and concentration at lower 

concentrations. This is confirmed by natural samples of in-house-prepared sedimentary marine 

DOM from the North Sea and the Rhône Delta: high concentrations of DOM without dilution 



42 Chapter 2  Establishment of method 

 

 

resulted in a substantial loss (> 50%) of the fluorescent signal due to the inner filter effect (Fig. 

2.1b). Thus, fluorescence intensity of peaks AC and M, and consequently total humic-like 

peaks, are underestimated if DOM concentration is too high. The AC/M ratio is less sensitive 

to high concentration, and increases by 6% at a concentration of 20 mg/L SRFA compared to 

the average values for SRFA concentrations between 0.18 mg/L and 6 mg/L (Fig. 2.1c).  

 

Fig. 2.1. Impacts of concentration of SRFA and in-house-prepared natural DOM samples on indices 

derived from humic-like peaks. (a) Effect of dilution on 3D indices tested by SRFA; (b) impact of over-

concentrated sample without dilution on 3D indices tested by natural samples, black column for Rhône 

Delta and red column for North Sea; sample after appropriate dilution (11-fold) was compared, data have 

been corrected to original concentration by dilution factor; (c) impact of SRFA concentration on 3D and 2D 

indices; (d) impact of SRFA concentration on HIX; (e) effect of 11-fold dilution on 3D and 2D indices, tested 

by natural samples, black column for Rhône Delta and red column for North Sea. HIX above 10 indicates 

humified DOM; the red dash line in figure (d) shows HIX at 10. 

The HIX index derived from 2D spectra is likewise affected by SRFA concentration and 

particularly sensitive to changes in the low concentration range (SRFA < 0.6 mg/L, a350 < 0.006 

cm-1, H peaks <0.08 R.U.) (Fig. 2.1d). HIX higher than 10 and HIX less than 4 indicate 

humified DOM and autochthonous DOM, respectively (Huguet et al., 2009). The implication 

of the index is therefore lost at low concentrations range (SRFA < 0.6 mg/L) as HIX is below 

10 for the humic substances (Fig. 2.1d). Ohno (2002) introduced a method to correct HIX by 

defining the humification index as the fluorescence intensity in the 300-345 nm region divided 

by the sum of intensity in the 300-345 nm and 435-480 nm regions. In this study, the corrected 
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HIX (HIX-c) becomes constant with concentrations above 0.6 mg/L SRFA (Fig. 2.S3). 

Therefore, for samples varying in DOM concentration, HIX must be corrected. Care should be 

taken in interpreting HIX, even if it is corrected to HIX-c, as it might not correctly reflect 

humification processes if the concentration of fluorescent DOM is low (intensity of humic-like 

peaks < 0.08 R.U., SRFA < 0.6 mg/L). Stepwise dilution from 0.18 mg/L to 20 mg/L resulted 

in relatively constant FI, BIX values of SRFA.  

Concentration of pristine in-house prepared DOM samples from the North Sea (60 mg/L 

DOC) and the Rhône Delta (36 mg/L DOC) is far beyond the highest concentration of SRFA 

(20 mg/L SRFA, 10 mg/L DOC) tested in this study. The analysis of these two natural DOM 

samples confirmed that high DOM concentration in pristine samples result in an 

underestimation of humic-like DOM and slight bias of AC/M, BIX, and HIX compared to the 

diluted sample.  

(b) Impact of salinity on fluorescence of humic-like DOM 

The humic-like peaks from the SRFA standard and the related indices change only slightly 

with salinity (Fig. 2.2a, c). A previous study has shown that in the range of 0 to 1 M KCl, ionic 

strength has no significant impact on EEMs spectra (Mobed et al., 1996). However, these 

authors compared overall spectra instead of indices and individual peaks. In our study, we 

confirm that ionic strength has minor impacts on AC/M ratio, BIX and FI of SRFA spectra 

(Fig. 2.2a, c), while the humic-like peak increased slightly by 6% and HIX increased by 5% 

with addition of 32.7 g/L NaCl (Table 2.1). Similarly, spectra of the samples from the Rhône 

Delta and North Sea responded only slightly and inconsistently to changing NaCl concentration 

(Fig. 2.2b, e). Reasons for that might be extensive, for example, salt induced probably a change 

in complexation between organic matter and ions, e.g., ionic strength affects the complexation 

of Cu-natural organics (Cao et al., 2004); the inorganic ions in pristine natural samples is not 

clear and the impact of NaCl on the organic complexes is not predictable in this study due to 

the diversity of organics and ions. 
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Fig. 2.2. Impacts of NaCl concentration on the indices derived from humic-like peaks. (a) Effect of ionic 

strength on 3D indices tested by SRFA; (b) effect of ionic strength on 3D indices tested by natural samples, 

black column for Rhône Delta and red column for North Sea;  (c) effect of ionic strength on 3D and 2D 

indices tested by SRFA; (d) effect of ionic strength on 2D index – HIX tested by SRFA; (e) effect of ionic 

strength on 3D and 2D indices, tested by natural samples, black column for Rhône Delta and red column for 

North Sea, samples were 11-fold diluted. SRFA at concentration of 4 mg/L was used for tests. HIX above 10 

indicates humified DOM; the red dash line in figure (d) shows HIX at 10. 

 Attention should be paid to the potential effect of salts (NaCl), because they might impact 

the intensity of Raman peak, which leads to a worse calibration (Fig. 2.S5). Therefore, a 

consistent salinity for one dataset is easier for calibration process. 

(c) Impact of transition metal ions and sulfide on EEMs of humic-like DOM 

Fe(III), Mn(IV) and sulfate are the main electron acceptors during organic degradation in 

marine anoxic sediment. Their reduction produces oxygen-sensitive ions such as Fe(II), Fe(III), 

Mn(II), S2-, which may affect the fluorescence spectra because they may lead to the formation 

of metal-organic complexes and/or precipitation. Moreover, their concentration might vary 

largely due to the stratification and diagenesis process in sediments (Canfield et al., 1993; 

Schulz et al., 1994). For example, as a consequence of iron reduction, high concentrations of 

Fe(II) may accumulate: as much as 0.5 mM dissolved iron were detected in the subsurface of 

the Rhône Delta in this study. Our results suggest that the EEMs of DOM sample is most 

sensitive to Fe(III) even at 0.03 mM, high concentrations of both Fe(II) (0.2 mM) and Mn(II) 
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(0.6 mM) also affect the fluorescence spectra and the derived parameters (H, AC/M, FI, HIX 

and BIX) (Table 2.1, Fig. 2.3); this is possibly due to the complexation between transition metal 

ions and organic matter (Poulin et al., 2014) and formation of small particles of metal oxides, 

which might induce quenching of fluorescence (Manciulea et al., 2009). Especially, one reason 

for the decrease of AC/M, i.e., blue-shift of fluorescence, might be that long-emission regions 

of the fluorescence spectra associated with greater DOM conjugation were more susceptible to 

iron quenching (Poulin et al., 2014). Addition of Fe(II) and Mn(II) in concentrations < 0.06 

mM did neither affect the DOM spectra nor the indices (< 5% for Fe(II), < 3% for Mn(II) 

compared to the sample without ions addition) (Table 2.1, Fig. 2.3). Addition of Na2S in SRFA 

resulted in a red shift of the spectra, i.e. longer excitation and emission wavelength and 

accordingly bias of index AC/M, FI, BIX, HIX (Table 2.1, Fig. 2.3) 

 

Fig. 2.3. Effect of redox conditions-sensitive ions on humic-like peaks. (a)-(f) show the EEMs spectra of 

SRFA samples with addition of Fe(II), Mn(II), S2-. (a)-(c): Fe(II), Mn(II), S2- at concentrations of 0.06 mM, 

0.06 mM, 0.3 mM, respectively. (d)-(f) show the EEMs spectra of SRFA samples with addition of Fe(II), 

Mn(II), S2- at concentrations of 0.6 mM, 0.6 mM, 1 mM, respectively. SRFA used for test was at concentration 

of 4 mg/L 

2.3.2.2 Protein-like DOM 

In general, humic-like compounds are thought to dominate the marine sedimentary DOM 

pool while protein-like DOM likely comprises only a minor fraction, as amino acid-C 

contributes < 10% of DOC in sediment pore waters (Alberic et al., 1996; Lomstein et al., 1998). 

Protein-like peaks comprise roughly 5% of the fluorescence intensity of humic-like peaks in 
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SRFA and (< 15%) in natural sample from the Rhône Delta. In the sample from the North Sea, 

fluorescence intensity of protein-like peaks is half of the humic-like peaks. For comparison, 

protein-like peaks in YE are 18 times higher than humic-like peaks (Fig. 2.4).  

 

Fig. 2.4. Comparisons of samples with different proportions of protein-like compounds. SRFA is 

representative of DOM with rare protein-like peaks; natural samples from Rhône Delta and North Sea 

represent for DOM with slight visible protein-like peaks and significant protein-like peaks, respectively; YE 

is representative of DOM constitute of protein-like peaks. SRFA at concentration of 4 mg/L and YE at 

concentration of 10 mg/L were used for tests. 

Impact of dilution on protein-like peaks was investigated in the natural samples containing 

mixtures of protein-like and humic-like peaks. The threshold of over-concentrated and over-

dilution is investigated. Similar to what was observed for humics, the intensity of protein-like 

peaks increased from 0.3 R.U. to 5.5 R.U. after 11-fold dilution for natural North Sea samples 

and increased from 0.2 R.U. to 1.3 R.U. after 11-fold dilution of Rhône Delta samples (Fig. 

2.5b) (corrected by dilution factor). This effect is attributed to the quenching of protein-related 

fluorescence by concentrated humics (Wang et al., 2015). This study showed that it can be 

reduced by dilution. On the other hand, the test using SRFA showed that over-dilution induced 

another problem (SRFA < 0.9 mg/L) as all the fluorescent peaks are small and the noise peak 

near peak B and Raman peak might be recognized as a real protein-like peak during PARAFAC 

analysis (Fig. 2.5a), accordingly the P/H ratio is strongly overestimated at low concentration 

of SRFA (Fig. 2.S4). Thus, both over-concentration and over-dilution led to bias of intensity 

and proportion of protein-like peaks. 
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Fig. 2.5.  Impacts of dilution and NaCl on the indices derived from protein-like peaks and the ratio of 

protein-like peaks and humic-like peaks (P/H). (a) Example of over-dilution sample tested by SRFA; (b) 

results of over-concentrated sample without dilution on on protein-like peaks-related parameters tested 

by natural samples, black column for Rhône Delta and red column for North Sea; sample after appropriate 

dilution (11-fold) was compared, data have been corrected to original concentration by dilution factor; (c) 

effect of different salt concentrations on protein-like peaks-related parameters tested by YE; (d) impacts 

of different salt concentrations on protein-like peaks-related tested by natural samples, black column for 

Rhône Delta and red column for North Sea. SRFA at concentration of 4 mg/L and YE at concentration of 10 

mg/L were used for tests.  

We found slight increases (< 4% in yeast extract) in the intensity of protein-like peaks with 

increasing NaCl concentration (Fig. 2.5c). Changes in the protein-like peaks with ionic strength 

may result from slight variations of the quaternary structure of proteins due to changes in the 

non-covalent bond with ionic strength (Lakemond et al., 2000), slight structural reorganization 

changes the chemical environment of fluorescent groups and consequently their fluorescence 

behavior.  

Impact of transition metal ions and sulfide on EEMs of protein-like DOM is shown in Table 

2.1 and in Fig. 2.6: EEMs spectra of YE samples were slightly affected by addition of Fe(III), 

Mn(II) at concentrations of 0.2 mM and 0.6 mM respectively. Compared to humic-like DOM, 

protein-like DOM is less sensitive to these ions. Addition of 1 mM Na2S results in loss of 

fluorescence intensity in protein-like peaks at low excitation wavelength (250 nm) and a sharp 

increase at higher excitation wavelength, e.g., red-shift of the spectra (B/T ratio in Table 2.1, 

Fig. 2.3c). 
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Fig. 2.6. Effect of redox conditions-sensitive ions on protein-like peaks. (a)-(c) shows the EEMs spectra 

of YE samples with addition of Fe(III), Mn(II), S2- at concentrations of 0.2 mM, 0.6 mM, 1 mM. Protein-like 

DOM is less sensitive than humic-like DOM to addition of Fe(III), Mn(II). YE solution at concentration of 10 

mg/L was used for the experiments. Y-axis in figure (c) is different from the other three figures. 

2.3.3 Experimental evaluation of O2 exposure effects during sample storage 

The effect of O2 exposure on EEMs spectra was tested with extracted DOM and with in-

house prepared natural sedimentary DOM.  

As for the SPE-extracted sample from the North Sea, FT-ICR MS characterization showed 

a slight change of DOM after 2 months O2 exposure compared to storage under N2 (Fig. 2.7). 

The few formulae in the blue circle suggest compounds with low O/C and m/z were most 

significantly transformed (Fig. 2.7a, c, d): there are in total 109 formulae decreasing by more 

than 0.02 in relative intensity (i.e., rIntn > 0.00004), which account for only 1.2% of all the 

formulae. EEMs showed consistent results: the AC/M ratio increased by 0.05 (3%) after O2 

exposure and P/H ratio before and after O2 exposure remained the same (0.22) for the extracted 

DOM (Table 2.1). For the extracted DOM, quantitative change of fluorescence peaks after O2 

exposure was not compared.  
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Fig. 2.7.  Effect of O2 exposure on pore water DOM characterized by FT-ICR MS. (a) change of DOM 

sample from North Sea in Van Krevelen diagram; (b) change of DOM sample from Rhône Delta in Van 

Krevelen diagram; (c) change of O/C ratio in DOM sample from North Sea, formulae were classified by 

aromaticity; (d) change of O/C ratio in DOM sample from Rhône Delta, formulae were classified by 

aromaticity; (e) change of molecular weight in DOM sample from North Sea, formulae were classified by 

aromaticity; (f) change of molecular weight in DOM sample from Rhône Delta, , formulae were classified by 

aromaticity. Type 1: aliphatic compounds, AI < 0; type 2: highly unsaturated compounds, 0.55 ≥ AI ≥ 0; 

type 3: aromatic compounds (including condense aromatic compounds), AI > 0.5. The peak magnitude 

shown in figures is relative intensity normalized to the sum of all peaks. rIntn > 0: increase after air 

exposure; rIntn < 0: decrease after air exposure.    AI =  
ଵାେିభ

మ୓ିୗିభ
మ(୒ା୔ାୌ)

େିభ
మ୓ି୒ିୗି୔
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As for the sample from the Rhône Delta Site GeoB17306 as representative of terrestrial 

DOM, there is more loss of smaller aromatic compounds (mz < 400) and production of larger 

O-rich highly unsaturated or aromatic compounds (mz > 400) when stored in the presence of 

O2 (Fig. 2.7b, d, f). According to the O/C and H/C ratio in van Krevelen diagram, these 

formulae could be tannin-like polyphenol compounds (Fig. 2.7b). Possible mechanism is the 

formation of C-O-C bond between phenol aromatic rings in oxygen-sensitive organic 

compounds resulting in longer linear macromolecules after oxygen exposure (Poncet-Legrand 

et al., 2010). To be more specific, the larger O-rich formulae increased by more than 0.02 (rIntn > 

0.00004) in relative intensity and accounted for 1.2% of all assigned CHO formulae and 0.05% 

of all CHNO formulae (data not shown in figures). CHOS formulae were more sensitive to O2 

exposure, 8.9% of all CHOS formulae increased in rInt by more than 0.02 (rIntn > 0.00004); 

this is possibly due to oxidation of sulfur-containing functional groups, e.g., thiol groups 

(Barnard et al., 1961; De Filippis and Scarsella, 2003).  

 

Fig. 2.8. Effect of O2 exposure on EEMs spectra of sample from Rhône Delta. (a) EEMs spectra of fresh 

sample without exposure to O2; (b) EEMs spectra of fresh pore water exposed to O2 for 2 hours, 

fluorescence peak reduced and noise peak appeared; (c) EEMs spectra of sample without precipitation, of 

which the fluorescence intensity is higher. 

Without SPE, the original DOM sample from the Rhône Delta showed a recognizable 

change of EEM spectra (Fig. 2.8b) after only 2 hours exposure to O2; at the same time, the 

pellucid liquid became turbid. Fig. 2.8c showed that after O2 exposure for 24 hours the EEMs 

of supernatant of DOM sample emitted more intense fluorescence than that of the original fresh 

air-free pore water. As extracted DOM remained similar after O2 exposure, the change of 

spectra might be caused by the oxidation of redox-sensitive metal ions in the original sample. 

As a comparison, for the sulfide-enriched sample from North Sea without high concentrations 
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of the redox-sensitive metal ions, EEMs were similar before and after O2 exposure for 24 hours 

(Table 2.1).  

2.3.4 Recommendations for the analysis of anoxic interstitial water DOM by EEMs  

The impacts of dilution, ionic strength, metal ions, sulfide, and oxygen are summarized in 

Table 2.2.  

Table 2.2. Change of fluorescent signal due to concentration, NaCl concentration, metal ions, sulfide, O2 

exposure. ‘NS represents no significant impact. The relative changes below 3% were defined as ‘NS’. ‘↑’ and 

‘↓’ represent increase and decrease of the parameters with higher concentration of DOM, added ions or O2 

exposure.  

 
Index Concentration    

(SRFA) 
NaCl 

concentration 
Fe(III)      Fe(II)       Mn(II)     Na2S DOM after 

O2 exposure     
Acceptable 
range  

All indices in this 
study 

0.9-6 mg/L   
 (~1 μg C) 

0-32.7 g/L 0-0.007 
mM 

0-0.06 
mM 

0-0.06 
mM 

<0.03 
mM  

2 months  

2D indices FI NS NS ↑ NS NS ↑ ↓  
HIX ↑ ↑ ↓ ↓ ↓ ↓ ↑  
BIX NS NS ↑ NS NS ↑ NS 

3D indices Protein-like peaks NS if>0.9 mg/L ↓ or ↑ ↓ ↓ ↓ ↑ /  
Humic-like peaks  NS NS ↓ ↓ ↓ NS (sum) /  
AC/M NS ↑ ↓ ↓ ↓ ↑ NS 

 

The inner filter effect in concentrated DOM samples can be compensated either via complex 

calculation with absorption spectra (Tucker et al., 1992; Kubista et al., 1994; Mobed et al., 

1996) or by dilution (Burdige et al., 2004). Due to the usually limited volume of pore water in 

deep sediments, dilution using smaller volumes of the original sample was chosen as an 

approach to avoid the inner filter effects. In former studies of shallow pore water, the upper 

limit of absorption coefficient is inconsistent: e.g., below 0.02 cm-1 (Tfaily et al., 2013), 0.05 

cm-1 (Burdige et al., 2004), 0.1 cm-1 (Stedmon and Bro, 2008).  We suggest further that the 

upper limit of concentration depends on the target parameters of EEMs. For quantitative 

information, concentration range of SRFA from 0.18 mg/L to 6 mg/L (a350 < 0.06 cm-1) shows 

linear response of the fluorescence signal of humic-like peaks; for qualitative information, 

concentration range of SRFA from 0.9 mg/L to 20 mg/L (a350 > 0.009 cm-1, > 0.11 R.U. of 

humic-like peaks) shows reliable data of peak ratios and indices. The highest dilution factor 

depends on the fluorescence quantum efficiency and concentration of fluorescent DOM instead 

of DOC, and it might vary largely in different samples. Estimates of the contribution of 

chromophoric DOM to total dissolved organic carbon (DOC) in the ocean ranged from 20% to 
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70% (Coble, 2007). In this study, 80-fold dilution is also possible for both the samples from 

North Sea and Rhône Delta, sample volumes could be reduced to 50 μL (~ μg carbon) (> 0.11 

R.U., > 0.5 mg C/L). The highest concentration depends on the absorption coefficient, which 

should not exceed 0.06 cm-1 in the diluted sample.  

For dilution, Milli-Q is an acceptable choice since the individual peaks and indices of 

fluorescence spectra are slightly changed with NaCl (mostly < 4%). To maintain the same 

Raman peak induced by NaCl and the same concentration of NaCl after dilution, we suggest 

that water at similar salinity of seawater (35‰ NaCl) instead of Milli Q water could be used 

for the dilution and easier for the calibration of Raman peak. 

O2 exposure led to slight transformation of DOM (AC/M increased by 3%) in two-months. 

For long-term storage to years, it could be possible that storage might lead to more bias of 

spectra especially for DOM enriched in polyphenols sensitive to O2. A consistent way of 

storage including duration and headspace is necessary. Attention needs to be paid on major 

redox-sensitive ions in natural sedimentary DOM samples (metal-ion-rich or sulfide-rich). (1) 

For an original sample with Fe(II) and Mn(II) in concentrations < 0.6 mM, impacts of both 

ions are negligible at a dilution factor of 11-fold, and sample should be stored under N2 and 

diluted with O2-fee water. In the case of inevitable O2 exposure or storage under air atmosphere, 

precipitation is likely to occur in the metal-ion-rich pore water samples, and it should be 

avoided during measurements. (2) The sulfide-rich sample is recommended to be purged with 

N2. In the original in-house-prepared DOM sample from North Sea, the concentration of sulfide 

is 3.95 mM, after purging with N2 for 2 minutes, it decreased to 0.01 mM (Table 2.S1). 

Alternatively, after inevitable oxidation of sulfide happened, within one week there was 2.06 

mM sulfide oxidized to sulfate and the residue sulfide is only 0.24 mM (Table 2.S1), i.e., ca. 1 

mM sulfide precipitated as sulfur. The precipitation of elemental sulfur is observed over 

longtime storage. Unlike the metal oxides, the sulfur precipitates remained in suspension and 

should be excluded via filtration. 

At last, it is worthwhile to notice that the signal of protein-like DOM is found to be 

significantly lost after solid phase extraction, accordingly the P/H ratio decreased by 60% 

(Table 2.S2), indicating the signal of labile DOM might be selectively lost during the extraction 

process. If the pore water samples contain a significant fraction of protein-like DOM, 

combination of FT-ICR MS with EEMs is especially recommended. By the latter information 
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on both protein-like and humic-like DOM are included and a dataset of hundreds of samples is 

easily realizable; based on the overview of EEMs, by FT-ICR MS the molecular-level 

characterization on selected samples is feasible and provide complementary information. 

2.4 Conclusions 

Based on tests of SRFA representing humic-like peaks, YE representing protein-like peaks 

and in-house-prepared natural samples, impacts of different pretreatments were examined: (1) 

over-dilution results in bias of qualitative information including P/H and HIX, while BIX and 

FI is constant over a broad range of DOM concentrations and insensitive to inner filter effects; 

(2) concentrations of Fe(II) and Mn(II) above 0.09 mM in the diluted sample result in noise 

peak interfering PARAFAC analysis and loss of fluorescence signal especially for humic-like 

peaks; sulfide can cause observable red-shift of both humic-like peaks and protein-like peaks; 

(3) O2 exposure led only to slight changes of EEMs for extracted in-house-prepared natural 

DOM in two month, while for the same original water, the EEMs were highly sensitive to 

oxygen, possibly due to reactions of redox-sensitive metal ions.  

Therefore, we recommend the following measures to reduce the matrix effect on EEMs: (1) 

Storage without headspace of air or uniform exposure to O2 if inevitable; sulfide-rich samples 

should be flushed with N2 for 2 min to exclude sulfide; (2) dilution with O2-free NaCl solution 

(35‰ wt) before measurements; (3) measurements of supernatant if sample is exposed to O2 

and precipitation is formed. For sedimentary DOM samples examined in this study, micro-

liquid sampling (50 μL, ~ 1 μg C) is sufficient without necessity of solid phase extraction.  

With appropriate pretreatments, EEMs make high-frequency observations possible for 

anoxic and volume-limited pore water samples. 
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2.5 Supplementary materials 

 

 

Fig. 2.S1. Flow scheme of the tests. ‘YE’ and ‘SRFA’ represent the yeast extract and Suwannee River Fulvic 

Acid. ‘Pristine samples’ are the in-house prepared natural sedimentary DOM samples from North Sea and 

Rhône Delta. The ‘Extracted DOM ‘is DOM from the pristine sample after solid phase extraction. 
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Fig. 2.S2. EEMs components identified by PARAFAC analysis. Components 1, 2, 3, 4, 5 represents peak 

A(C), M, C, T and B, respectively.  

 

 

 

Fig. 2.S3. Variation of HIX-c with concentration of SRFA. HIX-c is corrected HIX based on the equation 

HIX-c = ∑I435-480/( ∑I300-345 + ∑I435-480) (Ohno, 2002). I is the fluorescence intensity at each wavelength. 
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Fig. 2.S4.  Variation of the ratio of protein-like and humic-like peak (P/H) with increasing concentration 

of SRFA. 

 

 

 

Fig. 2.S5.  Impact of salt on the Raman peak: (a) The EEMs spectra of the Milli-Q water in NaCl 

concentrations of 327, (b) 32.7 g/L and (c) 0 g/L. 

 

Table 2.S1. Variation of sulfide and sulfate after treatments of N2 flushing and O2 exposure. In-house-

prepared samples from North Sea sediments were tested.  

  Concentration of sulfide (mM) 
 

Sulfate accumulation (mM) 

Samples  Original After 
pretreatments 

After one day After one week 

Flush with N2 
for 2 min 

3.95 0.01 / / 

O2 exposure  3.95 0.24 (one week) 0.92 2.06 

 

 

(a)                                        (b)                                            (c) 
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Table 2.S2. Comparisons of DOM fluorescence spectra before and after solid phase extraction (SPE) by 

PPL cartridge. 20-mL liquid sample was used for solid phase extraction. In-house-prepared samples from 

North Sea sediments after incubation were tested as the pristine sample contains both substantial protein-

like and humic-like compounds. 

Sample P/H AC/M FFI  BIX HIX 

Before SPE 0.5 1.2 1.5 0.9 4.3 

After SPE - DOM extract 0.2 1.5 1.6 0.6 8.1 

After SPE - residue liquid 1.5 0.6 1.8 1.2 0.5 
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Abstract 

Sedimentary dissolved organic matter (DOM) is an important pool of intermediates 

produced during carbon cycling in the subseafloor. Rapid degradation of organic matter in the 

Rhône delta sediment results in significant stratification of redox zones. However, to date little 

is known about the quality of largely unknown DOM and anaerobic degradation path adapted 

to redox conditions in sediment. In order to study the effect of redox conditions (sulfate 

reducing vs. methanogenic) on DOM quality and transformation, sediments (0-18 cm) from the 

Rhône River Delta were incubated under anaerobic condition, with redox conditions being 

controlled by sulfate amendment. The progress of incubation was monitored by H2, CH4, 

sulfate, DIC, DOC, acetate production and changes in the DOM composition were determined 

by 3D Fluorescence Spectroscopy, i.e., Excitation Emission Matrix Spectroscopy (EEMs), and 

ultra-high-resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-

ICR-MS). Parallel Factor analysis (PARAFAC) of EEMs was used to distinguish different 

groups of DOM (humic-like and protein-like compounds) to evaluate composition, conjugation 

and size of DOM. Prior to incubation humic-like sedimentary DOM predominated and nearly 

half were CHO and one third were CHNO compounds of the molecular formulae (> 5000) 

identified by FT-ICR-MS. During incubation, protein-like DOM and CHNO formulae with 3 

and 4 N atoms formulae were rare under both sulfate reducing and methanogenic conditions. 

(1) Incubation under sulfate reducing conditions resulted in a fast release and net accumulation 
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of dissolved organic carbon (DOC). Protein-like DOM was rapidly cycled while humic-like 

DOM accumulated. Consistently, CHNO formulae with 3 and 4 N atoms decreased and 

accumulated faster, whereas formulae with one N and oxygen-rich unsaturated compounds (AI: 

0-0.5) became more enriched. (2) In contrast, during incubation under methanogenic 

conditions, there was no net accumulation of DOC; Blue-shift of the fluorescence spectra 

indicated that humic-like DOM was transformed possibly associated with loss of oxygen-

bearing functional groups. This interpretation is consistent with the relative decrease of 

oxygenation and carbon number in the pool of aromatic and highly unsaturated compounds in 

the FT-ICR-MS. Approximately 90% of molecular formulae that were lost under methanogenic 

conditions were accumulated under sulfate reducing conditions. Our results suggest that under 

sulfate reducing conditions organic matter degradation results in the accumulation of highly 

oxidized DOM, while protein-like compounds are selectively consumed; when the redox 

regime changes to methanogenic conditions, microbes apparently utilize the humic-like and 

oxygen-rich compounds of the oxidized DOM pool that accumulated under sulfate reducing 

conditions. Consequently, redox regimes and the associated biogeochemical processes 

influence rate and fractions of DOM released by and consumed in the deep biosphere, which 

could ultimately shape the composition of the preserved sedimentary organic matter and the 

DOM released to the ocean. 

Key words: DOM characterization, sulfate reduction, methanogenesis, Excitation Emission 

Matrix Spectroscopy (EEMs), Fourier Transform Ion Cyclotron Resonance Mass Spectrometer 

(FT-ICR-MS) 

3.1 Introduction 

Marine sediments are a major reservoir of organic carbon (Hedges and Keil, 1995; Burdige, 

2007). Sedimentary organic matter plays an important role as substrate for benthic organisms, 

which contribute to its degradation during low-temperature diagenesis. Degradation is rapid in 

surface sediments and decreases with increasing sediment depth concomitantly with the 

depletion of oxygen and other terminal electron acceptors in subsurface layer (Middelburg, 

1989; Hartnett et al., 1998; Dauwe et al., 2001; Rysgaard et al., 2001; Mincks et al., 2005; 

Arndt et al., 2013). Nevertheless, up to 90% of sediment prokaryotic activity takes place in 
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subsurface layers (Parkes et al., 2014). This subsurface activity fueled by recalcitrant organic 

matter and limited supply of electron acceptors raises questions about survival mechanisms in 

the subseafloor biosphere (Jørgensen and Boetius, 2007; Rowe and Deming, 2011; Lever et 

al., 2015). While the control imposed by electron acceptors has been studied intensively 

(D‘Hondt et al., 2004; Biddle et al., 2005; Jorgensen et al., 2012; Briggs et al., 2013), little is 

known about electron donors, e.g., organic matter. Sedimentary pore water DOM is produced 

during organic matter degradation; its molecular composition is controlled by the source of 

organic matter as well as biogeochemical processes such as hydrolysis, fermentation, and 

terminal mineralization (Middelburg et al., 1993; Burdige and Zheng, 1998; Billerbeck et al., 

2006; Rowe and Deming, 2011; Arndt et al., 2013; Koho et al., 2013; Schmidt et al., 2017). 

Terminal step differ according to the redox conditions. In sulfate-rich subsurface sediments, 

sulfate reducing microbes, mainly bacteria, are responsible for much of the terminal organic 

matter mineralization in coastal region (Capone and Kiene, 1988; Chen et al., 2003). Sulfate 

reducers gain energy from intermediates produced during organic matter degradation (Muyzer 

and Stams, 2008), such as short-chain fatty acids and alcohols (Oremland and Polcin, 1982; 

Hansen, 1994; Liu and Whitman, 2008) and a few polymers (Labes and Schönheit, 2001). After 

sulfate is depleted, the importance of methanogenesis (MOG) increases; methanogenic archaea 

mainly utilize C1 and C2 compounds or hydrogen (Oremland and Taylor, 1978; Zinder, 1993; 

Liu and Whitman, 2008).  

As the anaerobic degradation of organic matter involves multiple steps and substrate types, 

from particulate organic matter, over complex DOM, and monomeric intermediates, to the 

terminal products CO2 and CH4 (Middelburg et al., 1993; Muyzer and Stams, 2008; Rowe and 

Deming, 2011; Arndt et al., 2013), we hypothesize that pathways of organic matter degradation 

prior to the terminal step differ according to the redox condition and are thus reflected in the 

molecular composition of pore water DOM. The aim of this study is to examine how the 

composition of pore water DOM is modulated by the prevailing redox conditions, specifically 

under sulfate reducing vs. methanogenic conditions, and whether there are predominant 

mechanisms of organic matter degradation.  

The complexity (Mopper et al., 2007) of pore water DOM and rapid turnover of substrates 

(Henrichs, 1992; Weston, Porubsky, Samarkin, et al., 2006) necessitate complementary 

analytical methods for DOM characterization. Combined with Parallel Factor analysis 
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(PARAFAC) as statistical tool (Stedmon et al., 2007; Stedmon and Bro, 2008), the Excitation-

Emission-Matrix Spectra (EEMs, also known as 3-D fluorescence spectra) can be used to 

measure peaks representing either a group of labile autochthonous protein-like compounds or 

a group of refractory humic-like compounds (Coble, 1996; Yamashita and Tanoue, 2003; 

Coble, 2007; Ishii and Boyer, 2012). Applications of this approach provided information about 

the degree of aromaticity in soil DOM (Zsolnay, 2003), DOM size in water column studies 

(Her et al., 2003; Cuss and Guéguen, 2015), and transformations and turnover (Coble, 2008; 

Catalá et al., 2015) as well as the potential bioavailability of DOM (Stedmon and Markager, 

2005b; Lønborg et al., 2009; Lønborg et al., 2010; Gan et al., 2015), without determination of 

the exact molecular composition. It is a non-destructive method and requires small sample 

volumes (e.g., 0.3 mL in this study), which enables a high sample throughput and application 

to studies in which sample volume is limited. Molecular-level characterization of DOM can be 

achieved with Fourier-transform ion-cyclotron resonance mass spectrometry (FT-ICR MS) 

(Koch and Dittmar, 2006; Hertkorn et al., 2006; Schmidt et al., 2011; Hertkorn et al., 2013; 

Lechtenfeld et al., 2014; Schmidt et al., 2014) although losses during sample extraction and 

selectivity of electrospray ionization preclude representation of the entire DOM pool (Dittmar 

et al., 2008; Green et al., 2014; Perminova et al., 2014). FT-ICR MS has been applied to studies 

investigating the microbial processes in water column and pore water (D’Andrilli et al., 2010; 

Schmidt et al., 2011; Lechtenfeld et al., 2014; Koch et al., 2014), photochemical alteration of 

DOM (Kujawinski et al., 2004; Dittmar et al., 2007; Gonsior et al., 2009) and degradation state 

of DOM (Flerus et al., 2012; Lechtenfeld et al., 2014), thereby showing its power in high-

resolution detection of thousands of individual constituents. The combination of the bulk-level 

information of the fluorescent DOM pool and the molecular information accessible by FT-ICR 

MS has provided complementary insights into the properties of lake water DOM (Stubbins et 

al., 2014; Kellerman et al., 2014; Tfaily et al., 2015; Kellerman et al., 2015). Thus, the EEMs 

and FT-ICR MS could be combined for an overview of DOM (especially, geopolymers) in 

intensive time/geological scale by former and more detail information by latter for selected 

samples.  

 We incubated sediments from Rhône River pro-delta in the Mediterranean Sea in laboratory 

experiments mimicking in-situ diagenesis over a period of 75 days. Sediments from the Rhône 

River pro-delta are particularly suited for such experiments as they are characterized by rapid 

remineralization, predominance of terrestrial organic matter and a shallow depth of the 
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transition zone from sulfate-reducing to methanogenic conditions. This study investigates the 

composition of pore-water DOM in marine sediments of the Rhône River Delta by EEMs to 

obtain an overview of in situ DOM profile in the redox-condition-stratified sediment. 

Additionally, sediment slurries were incubated in laboratory experiments to study how redox 

conditions and associated biogeochemical processes influence the composition of DOM during 

early diagenesis. The complementary application of EEMs (repeated sampling throughout the 

experiment) and FT-ICR MS (sampling at start and end when the redox conditions were 

achieved) for DOM characterization provides new insights into the transformation of DOM 

during the initial stages of degradation. Moreover, in order to monitor transformation during 

fermentation and terminal processes, analyses of low molecular weight organic compounds 

(volatile fatty acids, e.g., acetate) and inorganic products (DIC, NH4
+) were conducted to 

establish a comprehensive view of the biotic degradation pathways under different redox 

conditions in marine sediments. 

3.2 Methods and Sampling Sites 

3.2.1 Study site and sampling 

The Rhône River delta is characterized by rapid turnover of organic matter and high 

sedimentation rates (Ludwig et al., 2003; Miralles et al., 2005), high remineralization rates and 

significant stratification of redox conditions. Therefore, site GeoB 17306 was selected; it is 

located in the prodelta of the River Rhône (43° 18.96' N, 4° 52.17' E, 30 m water depth), Gulf 

of Lions, Western Mediterranean Sea. Samples were obtained during RV Poseidon cruise 

POS450 in March 2013 (Fig. 3.S1 in supplementary materials). The Rhône River is the largest 

freshwater source in the modern Mediterranean Sea with an average sediment flux of 14.2 Mio 

t/year, corresponding to a sediment deposition yield of 324 t/km2/year (Ludwig et al. 2003). 

Sediments in the Rhône River delta contain high total organic carbon content (TOC) > 1.36%, 

with TOC being derived from marine and terrestrial sources with a predominance of terrestrial 

organic matter (Cathalot et al., 2013). There is rapid oxygen uptake in the sediment (Lansard 

et al., 2009) resulting in anoxic conditions below the upper mm of sediment and high rates of 

sulfate reduction, resulting in a shallow sulfate-methane transition zone (Zhuang et al., in 

preparation; Zhuang, 2014). Sediment cores GeoB 17306-1 and GeoB 17306-2 were retrieved 

by multi-corer and gravity corer, respectively.  
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For in-situ profiles, pristine pore-waters were extracted from the gravity core immediately 

after recovery onboard RV Poseidon. The pore-water samples were filtered via Rhizon suction 

samplers (0.1 μm porous polymer, Rhizosphere Research, Wageningen, the Netherlands) and 

stored at -20°C.  

For incubation experiments with sediment slurries in the laboratory, sediment was sampled 

from three depth layers of the multi-corer (0-6 cm, 6-12 cm, 12-18 cm), each representing 

sulfate-reducing conditions. Sediment was transferred into Schott bottles and sealed under N2 

atmosphere immediately after core recovery. Sediments have been stored at 4°C for two years 

in lab before incubation.  

3.2.2 Incubation experiments 

3.2.2.1 Preparation of slurries 

The recipe of artificial seawater includes major elements (Na, Mg, K, Ca, Cl) (artificial 

seawater with sulfate: 0.682 g KCl, 1.5 g CaCl2·2H2O, 5.7 g MgCl2·6H2O, 26.4 g NaCl, 6.8 g 

MgSO4·7H2O, 0.099 g KBr; artificial seawater without sulfate: 0.682 g KCl, 1.5 g CaCl2·2H2O, 

11.3 g MgCl2·6H2O, 26.4 g NaCl, 0.682 g MgSO4·7H2O, 0.099 g KBr). The artificial seawater 

was autoclaved at 120°C and flushed with N2 for 2 hours. 1 M NaHCO3 (aq) was sterilized by 

filtration with 0.1 μm filter (PES, Sartorius). The sediment slurry was prepared in a glovebox 

under N2 atmosphere (2% H2). Before being mixed with sediment, 10 mL NaHCO3 (aq) and 

0.5 mL of thiosulfate (30 g/L) was added to each liter of artificial seawater. To test whether the 

artificial seawater is oxygen-free, an aliquot of 10 mL artificial seawater was transferred to a 

tube and tested by resazurin; lack of color change to pink indicated the absence of oxygen in 

artificial seawater. In this study, no resazurin was added to the artificial seawater used for 

slurries since it would interfere with optical parameters measured by fluorescence 

spectroscopy. Sulfide was added to a final concentration of 200 μM. Nutrients were added to 

a final concentration of 1.5 mM ammonia and 0.5 mM phosphate.  

The temperature of sediment was slowly increased from 4°C to room temperature in an 

insulation can one day before preparing a slurry. For the incubation experiments, the three 

sediment samples from upper 18 cm of the multi core GeoB 17306-1 were combined, 

homogenized, and subsequently split into 8 subsamples each containing 100 g sediment and 
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100 artificial seawater under N2 atmosphere. In detail, firstly 800 mL sediment is mixed with 

20 mL sulfate-free artificial seawater in a sealed sterile plastic bag and homogenized for 2 

hours by continually malaxating the bag. The mixture was then separated into ten 200-mL 

Schott bottles (280 mL total volume) and six Hungate tubes (16 mL total volume), which 

contained 100 mL and 5 mL sediment, respectively.   

The pre-incubation lasted for 3 days at room temperature. The headspace is filled with N2 

atmosphere containing 2% H2. The bottles and Hungate tubes were sealed with butyl rubber 

stoppers at a pressure of two bar in headspace to avoid intrusion of air. The concentration of 

iron is ~ 0.4 mM, which is close to the value (0.5 mM) in the in-situ pore water profile under 

sulfate reducing condition (data not shown). 

3.2.2.2 Incubation settings with control subseries 

Table 3.1.  Design of incubation experiments. There are three series (I, II, III) and for the main incubation 

and three series for the additional experiments (IV, V, VI) after the main incubation. There are two 

duplicates for each series. SR: sulfate reduction; MOG: methanogenesis. YE: Yeast extracts 

No. Series name Addition Purpose Parameters Duration 
I ‘SR’ series Continuous sulfate 

addition 
SR condition CH4, H2, SO4

2-, acetate, 
DIC, DOC, EEMs,  
FT-ICR-MS 

75 days 

II 'SR→MOG' 
series 
 

No addition (sulfate 
residue 4.5 mM on 
day 0) 

MOG condition 
 (37th-75th day) 

CH4, H2, SO4
2-, acetate, 

DIC, DOC, EEMs,  
FT-ICR-MS 

75 days 

III 'SR-inhibited' 
series 

Molybdate 20 mM  To achieve intermediates CH4, H2, SO4
2-, acetate, 

DIC, DOC, EEMs 
75 days 

IV 'YE-SR' series YE 0.1 g/L Degradation of biopolymer 
(SR condition) 

EEMs 40 days 

V 'YE-MOG' 
series 

YE 0.1 g/L Degradation of biopolymer 
(MOG condition) 

EEMs 40 days 

VI 'YE-SR-
inhibited' series 

YE 0.1 g/L 
molybdate 20 mM 

Impacts of sulfate 
reduction on initial steps 

EEMs 40 days 

 
 In order to study the impact of redox conditions, we incubated the sediment under sulfate-

reducing and methanogenic conditions by controlling the concentration of sulfate. The slurries 

were made from sediment and artificial seawater according to a volume ratio of gas: liquid: 

solid phase 0.8:1:1. All the six series (in duplicates) are listed in Table 3.1. The details are 

described as follows: 
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Three major series: In order to ensure sulfate-reducing conditions, sulfate was supplied. 

Artificial seawater containing 30 mM sulfate was added to four Schott bottles, resulting in the 

final concentration of sulfate at ca. 25 mM. Sulfate-reducing condition was maintained during 

the incubation by addition of Na2SO4 solution when the sulfate concentration was lower than 

18 mM. In contrast, methanogenic conditions were established through addition of sulfate-free 

artificial seawater in another two Schott bottles, for which the final slurries contained residual 

sulfate from original sediment at 5 mM. This series was named ‘SR→MOG’ series. To observe 

the intermediates formed under sulfate reducing condition, two Schott bottles added with 

sulfate-containing artificial seawater were amended with 20 mM molybdate as inhibitor of the 

terminal step of sulfate-reduction (Banat et al. 1983); this series is named 'SR inhibited'. A dead 

control was not feasible, as methods commonly used for sterilization will slightly affect the 

DOM pool or DOM analyses, e.g., addition of zinc chloride would quench the fluorescence 

signal, heating during autoclaving would induce changes in the DOM pool. 

Three subseries with added protein-like compounds: The three additional series amended 

with yeast extract aimed to confirm the degradation of bioavailable biopolymers, which 

represents DOM emitting protein-like peaks, in this case proteinaceous compounds. The 

subseries with substrate addition were incubated in Hungate tubes. The redox condition was 

controlled in the same way as the main series. After 75 days pre-incubation, the three series in 

Hungate tubes including duplicates were incubated for 40 days with addition of yeast extract 

to the final concentration ca. 0.5 g/L in pore water and named as 'YE-SR' series, 'YE-MOG' 

series, and 'YE-SR-inhibited' series (Table 3.1), respectively. 

All bottles were placed in an incubator at 28°C. Before sampling at the first time point, the 

headspace was flushed again with N2 for 5 min and afterwards kept under two bar N2 for 75 

days. The solid and liquid phases were equilibrated overnight for the first time point of 

sampling.  

3.2.2.3 Time series of sampling and sample preparation 

In addition to EEMs and FT-ICR MS analyses for monitoring changes in DOM, we measured 

H2, CH4, sulfate for monitoring the redox condition, and quantified DOC and DIC and acetate. 

For the major series, samples for EEMs, CH4 and H2 were taken twice per week to monitor the 

progress of incubation. For FT-ICR MS, samples were taken at start and end due to the high 
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sample requirement (>10 mL); one more sample on 37th day was taken when the methanogens 

thrived. For acetate, sulfate, DIC and DOC, samples were collected after 0, 4, 12, 20, 37, and 

75 days. Liquid was firstly transferred to a glass vial and then split into subsamples, and further 

processed in a glovebox (anaerobic chamber). The samples for sulfate measurements were 

amended with ZnCl2 before storage to avoid interference from sulfide oxidation after 

precipitation of ZnS. After sampling of each time-point, gas pressure was recorded by digital 

pressure probe and each bottle was supplemented with N2 to maintain a constant pressure at 

two bars after sampling. For additional series with yeast extract, samples for EEMs were taken 

on day 0, 2, 5, 10, 40. 

Subsamples for acetate analysis were filtered using nylon filters (0.2 M, Omni lab). 

Subsamples for or all other analyses were filtered using cellulose filter (0.2 M, Sartorius AG). 

Vials were sealed in glovebox and covered with Parafilm afterwards. FT-ICR MS samples were 

stored at +4°C, while all other liquid samples were stored at -20°C. 

As for FT-ICR MS sample, DOM was concentrated by solid-phase extraction (SPE) using 

PPL cartridges (Agilent, 3mL, 200mg) according to the protocol by Dittmar et al. (2008). 10-

20 mL liquid was taken for extraction. SPE was carried out in a glove box under N2 atmosphere 

to avoid possible oxidation of samples. Prior to extraction, samples were acidified with 

hydrochloric acid (Supra pure, Merck) to pH 2. Cartridges were rinsed with diluted 

hydrochloric acid (pH = 2) to remove salts and dried before elution. DOM was eluted with 1.5 

mL methanol (Lichrosove quality, Merck). One blank sample was extracted and analyzed to 

check for possible contamination during extraction. Samples after SPE were stored under N2 at 

-20°C in the dark. 

3.2.3 Analytical techniques 

3.2.3.1 EEMs  

Samples were measured by a fluorescence spectrophotometer (Agilent Cary Eclipse, USA) 

at room temperature in a 1-cm (path length) quartz fluorescence cell. Samples were diluted 

with N2-flushed Milli-Q water (NaCl, 35 g/L) in a ratio of 1:10. The absorption coefficient was 

checked by UV detector at 280 nm and 350 nm to assure it did not exceed 0.05 cm-1 (Tucker 

et al., 1992; Burdige et al., 2004). The integral area of the Raman peak (excitation 350 nm) was 
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calculated using Milli-Q water as a reference. Emission spectra ranging from 300 nm to 530 

nm were recorded every 2 nm while exciting at wavelengths in the range of 230-410 nm in 5-

nm increments. Fluorescence spectra of each sample were combined to create excitation 

emission matrices (EEMs). Inner filter effects were not taken into consideration after dilution. 

EEMs of more than 100 samples (including in situ samples from the cruise) were modeled by 

parallel factor analysis (PARAFAC) in MATLAB software (Stedmon and Bro, 2008). Without 

samples with molybdate addition, the appropriate number of components was validated by 

split-half analysis. The relative standard deviation of the Raman peak excited at 350 nm was 

0.47% from a daily routine measurement of fresh Milli-Q water. The relative standard deviation 

for peaks modeled by PARAFAC analysis was better than 2% from the reproducibility test of 

samples in this study. EEMs are used as basic means for DOM characterization. Names of the 

peaks were assigned according to Coble (2007) including three humic-like peaks (M, A, C) 

and one protein-like peak (T). Molybdate affected humic-like peaks in excitation wavelength 

close to 250 nm, samples with molybdate addition is not included in the final data set for humic-

like peaks.  

Peak C represents large molecules with aromatic functional groups and conjugations, which 

is commonly referred to as terrestrial DOM; Peak M commonly represents autochthonous, 

microbial or marine material with relatively lower molecular weight; Peak A represents 

common components in natural aquatic systems and resembles aromatic fulvic acid  (Coble, 

1996; Stedmon and Markager, 2005a; Coble, 2007; Fellman et al., 2010; Ishii and Boyer, 2012) 

3.2.3.2 FT-ICR-MS 

DOM extracts were analyzed on a Bruker SolariX XR FT-ICR mass spectrometer (Bruker 

Daltonik GmbH, Bremen, Germany) equipped with a 12 T refrigerated actively shielded 

superconducting magnet (Bruker Biospin, Wissembourg, France), a dual ionization source 

(ESI and MALDI, Apollo II electrospray source, Bruker Daltonik GmbH, Bremen, Germany) 

and a dynamically harmonized analyzer cell (ParaCellTM, Bruker Daltonik GmbH, Bremen, 

Germany). All samples were analyzed in sequence on one day using identical instrument 

settings. Initially, mass spectra were calibrated externally with arginine clusters in negative ion 

mode using a linear calibration. Samples were diluted to similar concentrations of ~20 mg C/L 

and ionized by electrospray ionization in negative ion mode. 200 scans were added to one mass 

spectrum ranging from m/z 150 to 4000 with syringe flow rate at 5.0 uL/min and ion 
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accumulation time of 0.08 s. Molecular formulae were assigned to peaks with signal-to-noise 

ratios > 4. Spectra were internally calibrated with compounds that were repeatedly identified 

in marine interstitial water DOM samples (Schmidt et al., 2014). The mean square errors of 

internal calibration were below 0.1 ppm. Molecular formulae were calculated in the range of 

m/z 200-650 within a mass error window of ±0.5 ppm. The oxygen-to-carbon ratio (O/C) and 

hydrogen-to-carbon ratio (H/C) were set in the range of 0.01 > O/C > 1.2 and H/C > 0.35. 

Molecular formulae were calculated by considering the following elements 1H, 12C, 13C0–1, 16O, 
14N0–4, 32S0–2, 34S0–1, 31P0–2. Mass peaks that are consistent with anthropogenic surfactants 

(http://www.terrabase-Inc.com) or in the list of peaks identified in the blank sample with a 

relative intensity (rInt) > 0.3 were deleted. rInt is calculated by normalization to the base peak 

of each sample. Multiple formulae were filtered with the homologous series approach and 

isotope check (Koch et al., 2007). Double bond equivalents (DBE) represent the numbers of 

double bonds and rings in a molecule (Eq. 3.3), including the double bonds of carboxyl groups. 

Formulae with rInt > 0.02 and signal-to-noise ratios >10 were used in the final data analysis 

and included < 10 double assignments. The formulae with peak intensities varying by more 

than 0.02 in parallel samples were not included in the final dataset (< 0.1%). Formulae with 
13C were not considered in the data interpretation. rInt was used in the first step of data analysis 

and Van Krevelen Diagram.  

rInt = IntPeak/∑Intbase peak Eq. 3.1 

Sum-normalized intensity (rIntn) used for further data interpretation was the relative 

intensity normalized to the sum of all peaks intensities to investigate the loss of different types 

of compounds (aliphatic, highly unsaturated and aromatic compounds):  

rIntn = IntPeak/∑IntallPeaks Eq. 3.2 

DBE-O (Eq. 3.4) is the approximation of DBE in a molecule without consideration of double 

bonds associated with oxygen. Aromaticity index (AI) refers to the density of carbon-carbon 

double bonds in a molecule and can be calculated after Eq. (3.5) (Koch and Dittmar, 2006; 

Koch and Dittmar, 2016). Formulae with AI > 0.67, 0.67 ≥ AI > 0.5, 0.5 ≥ AI ≥  0, AI < 0 are 

characterized by condensed aromatic, aromatic, highly unsaturated and aliphatic compounds, 

respectively.  

DBE =  C − ଵ
ଶ

H + ଵ
ଶ

N + ଵ
ଶ

p + 1   Eq. 3.3 
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DBE − O =  C − ଵ
ଶ

H + ଵ
ଶ

N + ଵ
ଶ

p + 1 − O  Eq. 3.4 

AI =  
ଵାେିభ

మ୓ିୗିభ
మ(୒ା୔ାୌ)

େିభ
మ୓ି୒ିୗି୔

  Eq. 3.5 

3.2.3.3 Analytical methods for other geochemical parameters 

The concentration of H2 in headspace was measured instantly by Peak Performer 1 gas 

chromatograph (Peak Laboratories, USA). A 3-mL gas-lock syringe was used to take 0.8 mL 

gas from the Schott bottle. The gas in syringe was balanced to around 1.6 mL under 

atmospheric pressure. Precise volume of 1 mL gas is needed for each injection. Calculation of 

H2 in solution (Lin et al. 2012): H2 expressed as ppb, obtained from chromatographic analysis 

to molar concentrations [H2]g = H2×P×R-1×T-1 (where P is the total gas pressure in the 

headspace, R is the universal gas constant, and T is the temperature in Kelvin). β is the 

solubility coefficient of H2 for calculation of H2 in liquid phase based on data in gas phase, 1/β 

is 67 by calculation according to Crozier and Yamamoto (1974). [H2]aq = β×[H2]g 

The concentration of methane was analyzed instantly by GC (ThermoFinnigan GmbH, 

Bremen, Germany) equipped with a CPPoraBOND Q column (Agilent Technologies 

Deutschland GmbH, Böblingen, Germany) and flame ionization detector. The column 

temperature program was set at 60°C. 200-μL gas was injected for each sample. 

Chromatographic responses were calibrated using hydrocarbon standards (Scott Specialty Gas 

Co., 100 ppm). The concentration is described as μmol/L (μM) in slurry according to Henry's 

law. The detection limit for methane is 0.078 μM.  

Samples for sulfate determination were centrifuged and the supernatant was taken for further 

analysis. Measurements of sulfate were conducted by photometric determination (Tabatabai 

1974). The precipitation reagent (barium ions and gelatin) were added to the acidified sample 

and the turbidity was measured by spectrophotometer (UVmini-1240, Shimazu) at wavelength 

of 420nm. A quantitative 6-point calibration ranged from 0.1 mM to 1 mM was carried out 

prior to the analysis of samples. Samples at concentration above 1 mM were diluted before 

adding precipitation reagent. Each sample was separated into two subsamples, each of which 

was measured three times. This method permits determination of sulfate at concentration as 

low as 0.05 mM. 
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DOC and DIC were measured by Carbon analyzer MultiN/C 2100s (Analytic Jena, 

Germany). For DOC analysis 2 mL sample was acidified (pH < 2) by adding 30 μL 30% 

hydrochloric acid (Supra pure, Merck) before analysis. DOC was measured as non-purgeable 

organic carbon in acidified samples purged with CO2-free synthetic air. The measurements 

were carried out by high-temperature catalytic oxidation at 750°C and product CO2 was 

detected with an infrared detector. Final DOC concentrations were average values of triplicate 

measurements. The detection limit was 20 μmol C/L. For DIC measurements, CO2 was 

liberated from the original sample in a 10% phosphoric acid trap. The detection limit was 10 

μmol C/L. 

Concentration of acetate were analyzed by liquid chromatography-isotope ratio monitoring 

mass spectrometer (irm-LC-MS) as reported previously (Heuer et al., 2006; Heuer et al., 2010). 

Sample is firstly seperated with high performance liquid chromatography (ThermoFinnigan 

Surveyor HPLC) and oxidized in an LC IsoLink interface (ThermoFinnigan, Germany). The 

oxidized product CO2 was measured on a DELTA Plus XP mass spectrometer 

(ThermoFinnigan). The quantitative analysis of acetate is based on the linear correlation 

between signal area recorded by irm-LC-MS and injected amount of carbon (Heuer et al., 

2006). The detection limit for quantitative analysis of acetate was 5 μM. 

3.3 Results 

3.3.1 Confirmation of redox conditions and ongoing initial/ intermediate/ terminal processes 

The redox conditions of three major series were achieved and confirmed by hydrogen, 

methane and sulfate. The concentration of methane in the ‘SR’ series with sufficient sulfate 

addition remained low during incubation (< 5 μM) (Fig. 3.1a). The ‘SR→MOG’ series without 

sulfate addition showed two phases: during the first phase (day 0 to day 37), sulfate decreased 

by 4.2 mM to 0.3 mM. Concentration of methane was low, ranging from 2.9 μM to 12.9 μM; 

in the second phase from day 37 to day 75, sulfate was mostly depleted (0.3 mM at day 37) and 

the methane concentrations increased from 12.9 μM to 671.3 μM with concurrent accumulation 

of hydrogen (Fig. 3.1a, b). In ‘SR-inhibited’ series with SR inhibited by 20 mM molybdate, 

methane concentrations reached the highest value of 1.9±0.3 mM (> 2% in the headspace). It 

showed the lowest sulfate reduction rate and concentration of hydrogen decrease at a lower 
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rate, compared to ‘SR’ series. In both ‘SR’ and ‘SR-inhibited’ series, hydrogen reached similar 

concentration at the end of incubation (Fig. 3.1b). 

 

Fig. 3.1.Background information during incubation for confirmation of the redox conditions and 

ongoing initial/ intermediate/ terminal processes: (a) concentration of methane, (b) hydrogen, (c) DIC, (d) 

acetate, (e) loss of sulfate, and (f) accumulation of DOC expressed as ∆DOC in two phases (0-37 days and 

37-75 days); concentration of acetate during incubation (f). Series I: SR-alive; series II: SR→MOG; series III: 

SR-inhibited. Incubations were conducted at 28°C using slurries with a solid/liquid ratio of 1 (v/v). 
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 DIC concentrations increased in all series during incubation (Fig. 3.1c). The most significant 

accumulation of DIC and DOC (∆DOC) was observed in the ‘SR’ series coinciding with the 

fastest sulfate loss (Fig. 3.1e, f). The ‘SR→MOG’ series showed a clear turning point after 37 

days when methanogenic conditions were established (Fig. 3.1c). After sulfate was depleted, 

DIC increased slowly and the DOC concentration remained constant (Fig. 3.1c, f). In the ‘SR-

inhibited’ series, DIC accumulation was significantly lower than the ‘SR’ series (Fig. 3.1c). 

DOC rose sharply from day 0 to day 12, and remained relatively constant afterwards (Fig. 3.S5 

in supplementary material).  

Acetate, as an important intermediate in anaerobic metabolism, was below detection in the 

‘SR’ series. In the ‘SR→MOG’ series, acetate dropped from day 0 to day 37 and afterwards 

increased from 5.4 μM to 24.4 μM after day 37 (methanogenic conditions) (Fig. 3.1d). In the 

‘SR-inhibited’ series, acetate reached the maximum concentration of 438 μM on day 12, which 

is equivalent to 876 μM dissolved organic carbon. Afterwards acetate decreased gradually to 

concentrations of 34.3 μM at the end of the incubation. The fasted accumulation of acetate 

occurred concurrently with the sharpest DOC increase between days 0 and 12.  

3.3.2 Monitoring DOM by EEMs during incubation 

3.3.2.1 Peaks identification by PARAFAC analysis and derived indices 

The peaks are named according to Coble (1996) and listed in supplementary materials (Fig. 

3.S2). Peaks C1, C2, M1, M2 and A are humic-like peaks. Peak T is a protein-like peak. Peaks 

C1 and C2 are derived from peak C with peak A (C1: ex/em 350/450 nm; C2: ex/em 

270(380)/480 nm), with longest emission wavelength. Humic-like Peak M1 and M2 were both 

in the range of M peak (ex/em: 300-320/395-410 nm). The emission wavelength of peak M2 

is 20 nm shorter than M1. Peak M represents compounds that are less aromatic than peak C. 

Humic-like peak A shows the shortest excitation wavelength and same emission wavelength 

as peak C. Since the peak A and peak C is inseparable after PARAFAC analysis, sum of them 

(AC) were presented in the results. Two indices derived from peak ratios, i.e., AC/M ratio and 

M1/M2.ratio were used to describe the red-shift or blue-shift of fluorescence signal and 

therefore the variation of conjugation in humic-like compounds. 
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3.3.2.2 In-situ profile of EEMs 

In the core GeoB 17306-2, the SMTZ is assigned on the basis of data of sulfate and methane 

(Zhuang, 2014). The sum of fluorescent peaks (∑Fluo) increased at depth until ~200 cmbsf and 

remained constant below this depth (Fig. 3.2). The ratio of two humic-like peaks M1/M2 

increased from 14 cm to 75 cm. The AC/M ratio decreased in the upper 175 cm, indicating a 

selective loss of terrestrial humic-like compounds (C and A) at longer wavelength of 

fluorescence emission.  

 

Fig. 3.2. In-situ profiles of DOM characterized by EEMs including sum of fluorescent peaks (∑Fluo), AC/M  
and M1/M2 at station GeoB17306, Rhône Delta. Unit of fluorescence intensity is Raman Unit (R.U.). AC/M ratio 
indicates the blue-shift of the bulk humic-like compound pool. M1/M2 ratio indicates the blue-shift of 
autochthonous DOM. Sulfate-methane transition zone (SMTZ) is indicated by grey dash line. 

3.3.2.3 EEMs during incubations of three major series 

For the incubation series in which the sulfate reducer were not inhibited by molybdate, the 

protein-like peak T was small (Fig. 3.3a, b) and contributed approximately 5% of the overall 

fluorescence (∑Fluo) in the pore water at the start of incubation; 95% of ∑Fluo derived from 

humic-like signals (EEMs of original sample in Fig. 3.3b). In ‘SR-inhibited’ series, the 

intensity of the protein-like peak (peak T) (Fig. 3.3a) increased sharply from 0.7 R.U. on day 

0 to 1.8 R.U. on day 4, it reached up to 2.6 R.U. within 21 days, and afterwards remained 

relatively constant, thus showing a similar trend as DOC (Fig. 3.S5). 
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Fig. 3.3. Variation of protein-like DOM during incubations characterized by EEMs: (a) variation of protein-
like peak during incubation in three series; (b) EEMs of series III 'SR-inhibited' on day 0; (c) EEMs of series III 
'SR-inhibited' on day 12; (d) the difference of EEMs: ∆EEMs = EEMsday 12 - EEMsday 0 showing accumulation of 
protein-like peak. The protein-like peak was emphasized by dashed circles in the EEMs. 

Humic-like compounds increased in both ‘SR’ and ‘SR→MOG’ series during incubation 

(Fig. 3.4a). The ratio of sum of peak A and C and peak M (AC/M) represents the proportion of 

compounds with longer emission wavelengths, i.e., large terrestrial molecules with aromatic 

functional groups and conjugations. Ratio M1/M2 (Fig. 3.4c) indicates the change of the DOM 

pool represented by M peak, i.e., in-situ autochthonous or marine DOM. The blue-shift is 

shown by the decrease of AC/M and M1/M2 and both ratios indicate loss of aromaticity, e.g., 

loss of aromatic ring or auxochrome. AC/M in ‘SR’ series showed a slight blue-shift of 

fluorescence spectra resulting from an increased fluorescence of peaks M with short excitation 

and emission wavelengths (Fig. 3.4b). The decrease of AC/M and M1/M2 is particularly strong 

in ‘SR→MOG’ series after 37 days when sulfate was depleted and methanogenic conditions 

were established (Fig. 3.4b, c).  

 

Fig. 3.4 Changes of humic-like DOM during incubations as indicated by EEMs: (a) quantitative change of all 
humic-like peaks; (b) AC/M representing the blue-shift of the bulk humic-like compound pool; (c) ratio of peak 
M1 and M2 (M1/M2) during incubation representing the blue-shift in autochthonous DOM. 
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3.3.2.4 EEMs in additional series with substrates additions 

The additional experiments with yeast extract addition compared the consumption of 

protein-like DOM under different redox condition. After 2 days, the protein-like peak has been 

substantially reduced (80%) in the ‘YE-SR’ series under sulfate reducing conditions (Fig. 3.5a, 

c), meanwhile no significant loss of peak T was observed in ‘YE-SR-inhibited’ (figure not 

shown in figure) or ‘YE-MOG’ series, even on the 10th day (Fig. 3.5b, d). The extended 

incubation of 40 days under methanogenic condition finally resulted in loss of 89% of the 

protein-like peak (data not shown in figure). 

 

Fig. 3.5. Changes in yeast-derived proteinaceous DOM during incubations under sulfate-reducing (YE-

SR) and methanogenic (YE-MOG) conditions: (a) EEMs at start with yeast extraction added under sulfate 

reducing condition; (b) EEMs at start with yeast extraction added under methanogenic condition; (c) EEMs 

on 2nd day with yeast extract added under sulfate reducing condition; (d) EEMs on 10th day with yeast 

extraction added under methanogenic condition. The black arrows show the position of protein-like peak 

in the EEMs (ex/em 280/350). Scale of the color is based on fluorescence intensity of z-axis. 

3.3.3 Molecular composition of DOM characterized by FT-ICR MS during incubations 

3.3.3.1 Changes of intensity-weighted averages of characteristic parameters during 

incubation 

FT-ICR MS data of DOM from ‘SR’ and ‘SR→MOG’ series were compared. The DOM 

sample at start is from slurry of homogenized sediment and sulfate-free artificial seawater 

before incubation. 6386 discrete formulae were identified in the m/z range of 200-650 Da. 
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48.1% of the peaks were CHO compounds (weighted-average value by accounting for peak 

intensity: 66.8%), 38.7% (weighted-average: 21.0%) were CHNO compounds (dominated by 

formulae with one N atom, i.e., CHNO-N1) and 12.5% of the peaks were CHOS compounds 

(dominated by formulae with one S atom) (Fig. 3.S3). In ‘SR’ series, the formulae were on 

average more oxygen-rich and had a more aromatic character as indicated by an increased 

weighted-average (wa) O/Cwa ratio, DBE/Cwa ratio, DBE-Owa and decreased H/Cwa ratio at the 

end of incubation (Table 3.2). The formulae ‘SR→MOG’ series showed decreased O/Cwa ratio, 

DBE/Cwa, m/zwa and increased H/Cwa ratio and DBE-Owa at the end of incubation (Table 3.2).  

Table 3.2.  Intensity-weighted averages of characteristic parameters derived from FT-ICR MS analysis. 

SD: average of standard deviation of the duplicates (* formulae with 13C or 34S were not included). 

Series, phase Cwa m/zwa O/Cwa H/Cwa DBE/Cwa N/Cwa S/Cwa DBE-Owa 
All series, day 0, 19.4 414.1 0.50 1.17 0.48 0.013 0.0051 -0.21 
SR series, day 75 19.5 422.8 0.53 1.06 0.53 0.016 0.0029 0.18 
SR→MOG series, day 37 18.0 394.7 0.54 1.08 0.53 0.016 0.0037 -0.13 
SR→MOG series, day 75 17.6 381.4 0.52 1.11 0.51 0.015 0.0036 0.02 
SD  0.23 5.7 0.005 0.008 0.004 0.0002 0.0001 0.05 

 

At the end of the incubation on day 75, 75% and 86% of the originally present formulae were 

still detected in the ‘SR’ and ‘SR→MOG’ series, respectively. The differential mass spectra in 

Fig. 3.6, nevertheless, show that the relative abundance of formulae changed substantially over 

the course of the experiments. Peaks with a decreased relative abundance in the ‘SR’ series 

were distributed across a larger m/z window from m/z 250 to 650 (Fig. 3.6a). Although the 

m/zwa in ‘SR’ series was higher at the end, the average molecular carbon number was similar 

(Cwa: 19.4 at start vs. 19.5 at end); the slightly increased molecular weight was attributed to the 

increased contribution of oxygen and nitrogen. Peaks with the strongest increase in the relative 

abundance within the ‘SR’ series had low to intermediate molecular weight (m/z 250 to 380) 

(Fig. 3.6a). Unlike the ‘SR’ series, the ‘SR→MOG’ series showed a small relative increase of 

formulae in lower m/z range and a strong decrease in relative peak intensity of formulae within 

the low to intermediate m/z range (Fig. 3.6b). 
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Fig. 3.6. Differential mass spectra showing changes in the relative peak intensity of formulae during 

incubations (a) from day 0 to day 75 of series I ‘SR’, (b) from day 37 to 75 of series II ‘SR→MOG’ when 

methanogenic conditions was achieved. ∆rInt = rInt(end)- rInt(start). ∆rInt > 0, relative intensities of 

formulae increased; ∆rInt < 0, relative intensities of formulae decreased during incubation. rInt is the peak 

intensity normalized to base peak. 

3.3.3.2 Variation of CHO, CHNO and CHOS compounds during incubation 

In ‘SR’ series, the number of CHNO compounds increased slightly by 3.6% (average-

weighted, no increase), while the number of CHOS compounds increased by 0.6% (average-

weighted, no increase) (Fig. 3.S3); In ‘SR→MOG’ series, percentages of CHNO compounds 

remained constant during incubation and CHOS relatively decreased by 1.3% when the sulfate 

was depleted. 



3.3 Results 81 

 

 

 

 

Fig. 3.7. Differential van Krevelen diagram showing changes in the relative peak intensity of formulae 

during incubations (a) from day 0 to day 75 of series I ‘SR’, (b) from day 37 to 75 of series II ‘SR→MOG’. 

Color bar shows the change of relative intensity (∆rInt = rInt(end)- rInt(start)); ∆rInt > 0, relative 

intensities of formulae increased, ∆rInt < 0, relative intensities of formulae decreased during incubation; 

data points ranged from ∆rInt > 0.1 and ∆rInt < -0.1were shown in the same color as ∆rInt = 0.1 and ∆rInt 

= -0.1, respectively. (c) Percentage of different groups of accumulated and reduced formulae during 

incubation under sulfate reducing (SR) and methanogenic conditions (MOG). ∆rInt > 0: accumulated 

during incubation; ∆rInt < 0: lost during incubation. rInt is the peak intensity normalized to base peak (rInt 

= IntPeak/IntBase peak).  

Under sulfate reducing condition, oxygen-poor compounds were lost and oxygen-rich 

compounds were enriched (Fig. 3.7a). For example, CHNO-N3/N4 compounds were 

preferentially lost (14% of the lost formulae) compared to its original percentage in all formulae 

(3%), while CHNO-N1/N2 compounds slightly accumulated (24% of the accumulated 

formulae at the end compared to 21% of all formulae originally) (Fig. 3.7c). Under 

methanogenic conditions, highly oxygen-rich CHO compounds with relatively low H/C ratio 
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were lost (Fig. 3.7b); CHNO-N1/N2 compounds were more depleted than that under sulfate 

reducing condition (Fig. 3.7c). There is no preferential utilization of CHNO-N3/N4 under 

methanogenic conditions. It is noteworthy that for the formulae (rInt > 0.1, i.e., rIntn > 0.0002) 

lost under methanogenic condition, more than 90% of them were enriched under sulfate 

reducing condition while not vice versa. 

3.3.3.3 Variation of compounds according to aromaticity during incubation 

The EEMs mainly comprise fluorescent compounds with aromatic moieties. For a better 

comparison of EEMs and FT-ICR MS data, molecular formulae were classified into four 

groups based on AI, including aliphatic, highly unsaturated, aromatic and condensed aromatic 

compounds (condensed aromatic compounds are included among the aromatic compounds in 

the following description) (Fig. 3.8).  

Compounds with varied aromaticity showed partly different trends in ‘SR’ series and 

‘SR→MOG’ series. Under sulfate reducing conditions, the highly unsaturated formulae 

(compounds possessing 7-15 oxygen atoms, with O/C ratio 0.2-0.4) were more oxygen-rich at 

the end (Fig. 3.8a). Aliphatic compounds mainly decreased in abundance; in comparison, 

highly unsaturated and aromatic compounds mainly increased (Fig. 3.8a). There is no 

preference of molecular size (evaluated by carbon number) under sulfate reducing condition 

(Fig. 3.8b). Regardless of the aromaticity, mainly compounds in the intermediate size range (C 

number 15-20) with elevated O/C ratio (0.4-0.6) accumulated during incubation (Fig. 3.8b).  

Under methanogenic conditions, relatively smaller compounds (carbon number 10-20) 

accumulated (Fig. 3.8d). Compared to aliphatic compounds, the abundance of highly saturated 

and aromatic compounds was more reduced during the incubation (Fig. 3.8c, d) and the 

molecular assemblage shifted to lower carbon numbers (Fig. 3.8d). The oxygen content was 

reduced within the group of highly unsaturated and aromatic compounds (Fig. 3.8c). This loss 

of oxygen and carbon coincided with the blue-shift observed in EEMs during incubation, which 

was stronger under methanogenic condition. 
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Fig. 3.8. O/C ratio and carbon number distribution of formulae during incubations for aliphatic, highly 

unsaturated and aromatic compounds under sulfate reducing condition (a, b) and methanogenic condition 

(c, d). Z-axis shows the change of sum-normalized intensities (∆rIntn) during incubation, i.e., ∆rIntn = 

rIntn(end)- rIntn(start)). ∆rIntn > 0: accumulated during incubation. ∆rIntn < 0: lost during incubation. 

Formulae with AI > 0.67, 0.67 ≥ AI > 0.5, 0.5 ≥ AI ≥ 0, AI < 0 are characterized as condensed aromatic (Type 

IV), aromatic (Type III), highly unsaturated (Type II) and aliphatic compounds (Type I), respectively. rIntn 

represents the sum-normalized intensities (rIntn = IntPeak/∑IntallPeaks). 
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3.4 Discussion 

3.4.1 DOM transformation under sulfate reducing conditions 

3.4.1.1  Quantitative change of DOM 

Sulfate reducers are among the main microbial players in anaerobic carbon cycling in marine 

sediments (Jørgensen, 1982) and sulfate reduction is the predominant terminal step in organic 

carbon mineralization in coastal marine sediments (Capone and Kiene, 1988; Canfield et al., 

1993; Chen et al., 2003; Muyzer and Stams, 2008). Consistent with this, we observed highest 

DIC production under sulfate reducing conditions (Fig. 3.1). At the same time, DOC increased 

concurrently with sulfate consumption and remained constant after sulfate was depleted. 

Sulfate reduction apparently stimulates DOM release from the solid phase resulting in a net 

accumulation in the pore waters. Observations based on a wide range of coastal and continental 

margin sediments pore water also suggested a positive relationship between pore water DOC 

concentrations and carbon mineralization rate (Burdige and Zheng, 1998). 

When sulfate reducers were inhibited, both DOC and DIC remained constant at 

concentrations of 3.5-3.8 mM and 15.4-16.5 mM, respectively, which suggests that the 

observed DOC release during sulfate reduction was a biotic process. There is no evidence for 

sulfate reducers directly taking part in DOC production by hydrolysis of particulate organic 

carbon (POC) in the sediment; however, the biotic factor appears to be central for the release 

and subsequent mineralization of DOC. Since most of the sulfate reducers cannot degrade 

polymers (Hansen, 1993) and sulfate reducers depend on other microbes providing 

fermentation and degradation products (Schink, 1997; Plugge et al., 2011), syntrophic partners 

of sulfate reducers are potential candidates for the transformation of POC to DOC. This is 

supported by the fact that on day 12, inhibition of sulfate reduction resulted in maximum 

concentration of intermediates and stable DOC concentrations (Fig. 3.1, S6). Accordingly, we 

suggest that inhibition of the terminal step of sulfate reduction resulted in accumulation of 

intermediates, which in turn resulted in a slowing down of the initial hydrolytic steps associated 

with DOC release. 
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The three major experiments showed that the activity of sulfate reduction influences the final 

concentration of DOC in pore water by indirectly affecting the upstream processes (POC to 

DOC) and directly controlling the downstream processes (DOC to DIC). 

3.4.1.2  Qualitative change of DOM 

(a) Cycling of protein-like compounds 

The fluorescence signal of protein-like peak T represents a relatively labile pool of DOM in 

lake and ocean water (Yamashita and Tanoue, 2003; Stedmon and Markager, 2005b; Fellman 

et al., 2010; Lønborg et al., 2010). In the in situ pore water sample peak T was small (< 5%), 

which was expected as amino acid-C contributes 4-9% of DOC in sediment pore waters 

(Alberic et al., 1996; Lomstein et al., 1998) and 1–13% of the pore water DON (Landén and 

Hall, 2000). The rapid release and degradation of intermediates resulted in a low abundance of 

protein-like peak and acetate in ‘SR’ series, which is important because the pool of 

intermediates needs to remain small to allow efficient carbon flow between fermenters and 

sulfate reducers (Schink, 1997). The inhibited experiment supports this reasoning: the 

inhibition of terminal step – sulfate reduction resulted in a sharp increase of protein-like peak 

during incubation (Fig. 3.3), suggesting that protein-like compounds were rapidly released 

from a particulate precursor pool and subsequently utilized if without inhibition. This is not 

surprising as the solid phase has a great potential of releasing labile DOM intermediates due to 

the considerably high concentrations of bound amino acids compared to dissolved free amino 

acid in liquid phase (e.g., 16,632 mg C/m2 vs. 43 mg C/m2 in bound amino acids vs. dissolved 

free amino acid in Southern Hatteras Abyssal plain at depth 0-10 cmbsf (Rowe and Deming, 

2011)). By inference, the accumulation of protein-like compounds in ‘SR-inhibited’ series 

suggests rapid consumption of labile protein-like DOM when sulfate reduction is active, 

because comparable accumulation of protein-like compounds was not observed in ‘SR’ series. 

Although protein-like peak T and acetate were both actively cycled, they showed different 

trends in the ‘SR inhibited’ series after the 12th day: acetate was consumed after the maximum 

concentration of 438 μM on day 12 (Fig. 3.1), whereas, the protein-like peak T remained 

constant afterwards. This suggests that acetate is consumed without active sulfate reduction, 

e.g., via methanogenic processes, while degradation of protein-like peak appears to be inhibited 

without active sulfate reduction.  
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A few studies linked EEMs with molecular formulae and found significant correlations. For 

example, Stubbins et al. (2014) reported that a significant proportion of the protein-like peak 

is linked to N-containing aromatic compounds and correlates with concentrations of 

hydrolysable amino acids in natural water. In terrestrial pore waters the protein-like peak 

appears to be associated with more saturated compounds (Tfaily et al., 2015). We found a 

consistent pattern of CHNO-N3/N4 compounds and the protein-like peak T: firstly, the 

abundance of both was low (former: 2-5%; latter: 5%); secondly, they varied slightly during 

incubation and showed rapid cycling. CHNO-N3/N4 compounds were more preferentially 

produced and consumed under sulfate reducing conditions compared to methanogenic 

conditions (Fig. 3.7c). Preferential hydrolysis of PON relative to POC was also suggested in a 

former study at shallow layers (Weston et al., 2006). Moreover, based on a 14-days incubation 

of pore water with inoculates from shallow layers, 54% of the DON (dominated by 

combined/free amino acid, urea) was rapidly utilized by bacteria (Guldberg et al., 2002). Thus, 

CHNO-N3/N4 compounds appear to include a readily bioavailable fraction, possibly 

consisting of labile proteinaceous molecules or derivatives derived from peptides. It should be 

noted that CHNO-N1/N2 show different trends compared to CHNO-N3/N4 compounds: the 

former compounds rather accumulated under sulfate reducing conditions (Fig. 3.7c). This 

suggests a different bioavailability of CHNO-N1/N2 compounds, which are either more 

recalcitrant or have an elevated production during incubation. These compounds could be 

produced during early diagenetic reactions by incorporation of ammonia (Amrani et al., 2007; 

McKee and Hatcher, 2010) or deamination during degradation of proteinaceous molecules/ 

CHNO-N3/N4 compounds (Schmidt et al., 2011; Abdulla et al., 2017).  

(b) Transformation of humic-like peaks and aromatic, highly unsaturated compounds 

vs. aliphatic compounds 

Humic-like DOM accumulated rapidly during the ‘SR’ incubation (Fig. 3.4a). This suggests 

that the accumulation of aromatic or highly unsaturated fraction under sulfate reducing 

condition. The relative constant composition ratio of humic-like DOM (Fig. 3.4b,c) implied it 

was not strongly transformed or degraded during incubation. It is consistent with studies of 

oxic environments, which suggested that humic-like DOM is refractory against microbial 

attack (Yamashita and Tanoue, 2008; Fellman et al., 2010; Lønborg et al., 2010).  
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Congruently, FT-ICR MS showed that the aromatic compounds did not decrease during 

incubation; they were mainly produced under sulfate reducing conditions as inferred by an 

increased rIntn (Fig. 3.8a, b). The pool of aromatic and highly unsaturated formulae generally 

became enriched in compounds with greater number of O atoms during the incubation. An 

increase in O-rich compounds with depth has been reported for shallow marine sediments (Oni 

et al., 2015; Seidel et al., 2014) and for the sulfate reduction zone in the Rhône Delta and Gulf 

of Lions shelf (Schmidt et al., 2017) and is probably a result of diagenetic processes during 

oxidation, e.g., by sulfate reduction. The formulae accumulated during incubation were mainly 

in the range of 0.6 > O/C > 0.8 and 0.67 > AI > 0 producing the observed shift in O/Cwa ratio 

at the end; the respective compounds fall in the range of hydrolysable tannins in a van Krevelen 

diagram (Mopper et al., 2007) or degraded/modified lignin (Liu et al., 2011; Waggoner et al., 

2015). 

In contrast to aromatic compounds, compounds of lower aromaticity were depleted, 

especially aliphatic compounds (Fig. 3.8a, b). In general, the relative intensity of aliphatic 

compounds decreased during the incubation regardless of O/C ratio or carbon numbers (Fig. 

3.8a, b) suggesting non-selectivity of oxidation state or molecular size for aliphatic compounds. 

These lost aliphatic formulae were dominated by CHNO compounds. 

In sum, under sulfate reducing condition, microbes prefer compounds accessible for initial 

hydrolytic and enzymatic attack on organic matter. 

3.4.2 DOM transformation under methanogenic conditions 

3.4.2.1  Quantitative change of DOM 

After sulfate was depleted, the accumulation of DOC stopped and DIC production slowed 

down, which suggests that the fresh DOM production during organic matter degradation was 

limited under methanogenic conditions. A stop in the accumulation of DOC after the depletion 

of sulfate was also observed in estuary sediments by Weston et al. (2006) and in the in situ 

DOC profiles of Rhône Delta sediments (Schmidt et al., 2017). A potential reason for the 

decreased hydrolysis could be that a greater fraction of the organic matter becomes associated 

with mineral surfaces with increasing burial in sediments and thus less accessible for enzymatic 

hydrolysis (Wakeham and Canuel, 2006). By contrast, sediments and length of incubation in 
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our experimental study are identical in all three series, so that the different rates of DOC 

production are probably related to the redox conditions rather than interactions with mineral 

surfaces. Cease of DOC accumulation with depleted sulfate imply that the decreasing electron 

acceptors are limiting factor for initial steps and therefore result in decreasing substrates in the 

dissolved phase. Accordingly, it is assumed that limited substrates influence the microbial 

community at deep sediments. Consistently, in former studies of in-situ profiles, change in the 

microbial community structures and energy turnover between different layers have been 

observed (Biddle et al., 2005; Durbin and Teske, 2011; Jorgensen et al., 2012; Miyatake et al., 

2013) and cell density below the sulfate-methane transition zone (SMTZ) layer dropped in the 

deeper sediment layers (Leloup et al., 2009; Briggs et al., 2013).  

3.4.2.2 Qualitative change of DOM 

(a) Protein-like peaks and CHNO compounds under methanogenic conditions 

After sulfate was depleted in the ‘SR  MOG’ experiment, the protein-like peak remained 

constant. This constancy signals balanced between production and consumption of protein-like 

DOM, it does not provide information on the kinetics the underlying processes. A rather slow 

kinetics is supported by evidence from the additional experiments in which yeast extract was 

added for investigation of biopolymer fragments (Fig. 3.5b,d). Under methanogenic conditions, 

the degradation of protein-like DOM was far slower than that under sulfate reducing conditions 

(Fig. 3.5). Second evidence is that, without yeast extract addition, release and degradation of 

CHNO-N3/N4 were both less under methanogenic conditions (Fig. 3.7c). The slow cycling of 

CHNO and protein-like DOM under methanogenic conditions is further corroborated by 

slightly decreasing ammonium concentrations during the experiment (Fig. 3.S4 in 

supplementary materials). Thus, we conclude that the continuously small percentage of protein-

like peak resulted from slow production and consumption of protein-like DOM under 

methanogenic conditions. Accordingly, we suggest that redox conditions not only influence the 

terminal step but also the initial step regarding to hydrolysis of biopolymers. Notably, despite 

protein being considered a labile compound pool, its degradation appears to be retarded in 

methanogenic sediment. 
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(b) Transformation of humic-like compounds and aromatic, highly unsaturated 

compounds vs. aliphatic compounds   

The in situ data from the Rhone prodelta (Fig. 3.2) showed that the accumulation of humic-

like DOM ceased when sulfate was depleted. Data from incubation experiments are consistent 

with this observation: humic-like DOM accumulated more slowly under methanogenic 

conditions (Fig. 3.4). Humic-like DOM, which is generally considered to be a refractory 

organic matter pool (Stedmon and Markager, 2005b; Yamashita et al., 2010) showed the most 

pronounced changes in composition under methanogenic conditions. We observed a blue-shift 

in form of decreased AC/M and M1/M2 ratio after sulfate was depleted and methanogenesis 

was most active. The decrease of AC/M and M1/M2 ratio could be caused by the loss of 

aromatic moieties (Zsolnay, 2003), auxochrome/chromophore (e.g. -OH,-OCH3, –COOH, -

CO-) attached to aromatics (Gauglitz and Vo-Dinh, 2003; Mistry, 2009), which is accompanied 

by a decreasing molecular weight. The obvious blue-shift under methanogenic conditions is 

probably a result of the transformation of DOM and low inputs of freshly released DOM from 

the POM pool (see DOC and DIC in Fig. 3.1). The decreasing AC/M ratio and M1/M2 ratio of 

humic-like peaks suggests that there is preferable utilization of peak A, C and M1, which 

suggests the loss of conjugation structures in larger terrestrial and autochthonous humic 

substances. Thus, microbes metabolize the humic-like DOM pools under methanogenic 

conditions when the release of fresh DOM from POM is limited. 

FT-ICR MS data show that the relative abundance of O-rich and larger aromatic/highly 

unsaturated compounds decreased under methanogenic conditions (Fig. 3.8c, d) indicating a 

reduction of DOM. The van Krevelen diagram (Fig. 3.7b) suggests that the compounds with 

decreased abundance are in the range of lignin-like compounds. Oxidized aromatic compounds 

are chemically more susceptible to nucleophilic attack by electron donors. Accordingly, 

smaller and more reduced aromatic or highly unsaturated compounds accumulated. The 

compositional data from FT-ICR MS are consistent with the observations from EEMs that 

indicate a loss of functional groups (-OH, -OR, -COOH) and aromatic rings under 

methanogenic conditions. Both aromatic formulae and most significantly highly unsaturated 

oxygen-rich formulae were lost under methanogenic conditions. Moreover, these degraded 

oxygen-rich compounds were mostly smaller molecules with lower carbon number and higher 

O/C ratio. This is in line with a former study by Guo et al. (2012) who suggests a loss of 
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functional group -CH3 and -COOH during anaerobic fermentation using Fourier-transform 

infrared spectroscopy.  

Our results suggest that humics serve not only as reversible electron donor (Scott et al., 1998; 

Martínez et al., 2013; Klüpfel et al., 2014) for sedimentary microbes but also as carbon and 

energy sources. It is interesting to know that the humic substances, which are conventionally 

known as recalcitrant substrates for aerobic microbes, are favorable methanogenic condition. 

For methanogenic conditions, FT-ICR MS suggests a lower loss of aliphatic compounds, 

which is in contrast to the trend observed under sulfate reducing condition. Formulae that plot 

in the van Krevelen diagram in the range of lipids, carbohydrates, and amino acids were less 

efficiently degraded under methanogenic conditions.  

3.4.3 Different substrates selectivity under sulfate-reducing vs. methanogenic condition 

due to changing electron acceptors 

The preferential cycling of CHNO- and protein-like compounds under sulfate reducing 

relative to methanogenic conditions implies a different substrate selectivity of microbial 

organic matter degradation. It implies an intriguing figure in deep biosphere of syntrophic 

mechanism fulfilling a degradation chain from high-molecular-weight organic matter to 

terminal products adapted to starvation of inorganic electron acceptor. This is summarized in 

Fig. 3.9.  

 

Fig. 3.9 Proposed scheme of DOM cycling and energy flow in anoxic marine sediments. Black arrows 

show the flow of organic matter. The width of arrows represents relative rate of flow. Norg and Oorg are 

abbreviation of N and O in organic compounds, respectively. 
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Several plausible factors may be responsible. (1) This phenomenon might result from a 

higher efficiency of hydrolysis under sulfate reducing conditions, as supported by the higher 

DOC production in our experiments. (2) Schink (1997) suggested that a syntrophic community 

of terminal mineralizers and fermenters is energetically favored compared to a corresponding 

methanogenic community, e.g., ∆G0’ = −48.1 kJ/mol acetate via sulfate reduction (Glombitza 

et al., 2015), ∆G0’ = −31 kJ/mol acetate via methanogenesis (Hattori, 2008). Under 

environmental conditions, less than one ATP can be synthesized under methanogenic condition 

(Deppenmeier and Müller, 2008). Under in situ conditions in marine sediments, Gibbs free 

energies of reaction for sulfate reduction are about twice as high as under methanogenic 

conditions (e.g., Wang et al., 2010). Considering the high cost in synthesizing enzymes for 

hydrolyzing biopolymers, proteins and carbohydrates would be more effectively degraded 

under sulfate-reducing conditions. (3) Under methanogenic conditions, degradation of 

fermentation products such as fatty acids with more than two carbon atoms, the so-called 

secondary fermenters are needed for methanogenesis (Schink, 1997), while sulfate reducing 

bacteria as terminal mineralizer are metabolically more versatile (Hansen, 1994) and can utilize 

products of primary fermentations. Thus, under methanogenic conditions the microbial 

activity, including that of methanogen, is more limited by supply of adequate substrates derived 

from hydrolysis and fermentation. They prefer smaller ‘processed’ compounds.  

When the inorganic electron acceptors are depleted, humic substances may serve as electron 

acceptors (Lovley et al., 1996). Redox potential ranges for sulfate reduction are -150 to 0 mV 

and for methanogenesis via CO2 reduction in natural environment are -250 mV, respectively 

(Schuring et al., 1999). Humics as natural compounds in anaerobic environment with redox 

potential ranges of -230 to +180 mV (Yang et al., 2016). Turning point of the direction of 

electron flow to/from humics is controlled by redox potential and reached when the system 

turns to methanogenic conditions. FT-ICR MS and EEMs suggested that oxygen-bearing 

functional group were lost during the reduction of humics under methanogenic condition. 

Consistent with our observations, a recent study demonstrated that methoxylated aromatic 

compounds could serve as substrate for methanogenesis in subsurface sediments via the loss 

the methoxy group (Mayumi et al., 2016), which is a typical functional group of lignin and 

terrestrial humics (Malcolm, 1990). 
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3.5 Conclusions 

(1) EEMs and FT-ICR MS complement each other in DOM characterization and provide an 

in-depth view of the compositional changes in initial step of anaerobic degradation. They 

enabled the elucidation of the different patterns of DOM cycling under sulfate reducing vs. 

methanogenic conditions. 

(2) Under sulfate reducing conditions, sufficient sulfate drives a fast upstream process 

(production of DOC from POC) as well as the terminal mineralization. In the pool of newly 

released organic matter from POC, there was a rapid turnover of protein-like compounds and 

consistently aliphatics and CHNO-N3,4-formulae were readily lost. In the meantime, 

refractory compounds accumulated in the DOM pool, which are dominated by oxygen-rich 

humic-like compounds. 

(3) Under methanogenic conditions, hydrolysis process was less efficient and there was no 

accumulation of DOC with inability of releasing organic carbon from solid phase. Microbes 

tend to utilize refractory DOM, and congruently rapid transformation of ‘refractory’ humic-

like peaks occurred. As a result, smaller aromatic and highly unsaturated compounds with low 

O/C accumulated, suggesting the utilization of aromatic humic substances via losing oxygen-

containing functional groups and side chains as fluorochromes. Different from the situation 

under sulfate reducing conditions that the selectivity depends more on the type and diagenesis 

degree of compounds (aliphatic, biopolymers), DOM is preferentially degraded along a 

gradient from a high to low nominal oxidation state of carbon under methanogenic conditions.  

(4) Electron acceptor (sulfate) not only modulates directly the terminal step of mineralization 

as is known, but also indirectly shapes the initial steps of degradation chain. The varied 

preference of type, element (O, N) of molecules along with redox conditions suggests different 

selectivity modulated by sulfate availability. The life strategy of anaerobic microbes responds 

to availability of terminal electron acceptor at initial steps. Considering the important role of 

delta sediments in the carbon cycle, the redox regimes and the associated biogeochemical 

processes would influence the regional carbon and nitrogen cycle via preferential DOM 

released, consumed, and ultimately shape the composition of organic carbon preserved.  

 



3.5 Conclusions 93 

 

 

Acknowledgements  

We thank the ship staff and the scientific party during Poseidon Cruise 450 of DARCSEAS 

II. We are grateful for the sampling during incubation by Stanislav Jabinski, Jenny Wendt, and 

Xavier Prieto for the acetate measurements. This study is funded by the European Research 

Council under the European Union’s Seventh Framework Programme–“Ideas” Specific 

Programme, ERC grant agreement No. 247153 (Advanced Grant DARCLIFE; PI: Kai.-Uwe 

Hinrichs), DFG through the Research Center/Excellence Cluster MARUM-Center for Marine 

Environmental Sciences (Project GB2) and China Scholarship Council.  



94 Chapter 3 Impacts of redox conditions 

 

 

3.6 Supplementary materials 

 

Fig. 3.S1. Location of Site GeoB17306 in the Rhône River Delta, West Mediterranean. 

 

 

 

Fig. 3.S2.  Six peaks (Component 1 to 6: C1, C2, M1, M2, A, T, respectively) identified by PARAFAC 

analysis. 
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Fig. 3.S3.  Composition of DOM characterized by FT-ICR-MS. (a): van Krevelen plot of ‘SR’ series with 

sulfate addition at end on 75th day; (b) van Krevelen plot of ‘SR→MOG’ series at end on 75th day (c) CHO, 

CHNO, CHOS, CHNOS compounds ‘SR’ series and SR→MOG’ series after methanogens thrived. The 

percentages were average-weighted. SR: abbreviation for sulfate reducing condition, MOG: abbreviation 

for methanogenic condition. 
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Fig. 3.S4. Variation of ammonia (column) and ∆DIC/∆NH4+ (dot) during incubation of ‘SR’ series I and 

‘SR→MOG’ series II from 37-75 days when the system turned into methanogenic condition. ∆DIC = 

DIC(end)-DIC(start), ∆NH4+ =  NH4+(end)- NH4+(start). 

 

 

Fig. 3.S5. Variation of DOC during incubation of all the three major series. 
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Abstract 

Life strategies in  Earth’s deep biosphere are largely unknown and possibly informative for 

understanding early life and the deep carbon cycle. In the deep subseafloor, geothermal heating 

is an important environmental factor and is associated with the alteration of organic matter and 

minerals. While autotrophic organisms are thought to benefit from hydrogen producing 

reactions, it is not clear whether and how heterotrophic organisms in deep sediments are 

stimulated by heating. This study investigated microbial carbon cycling at mesophillic, 

thermophilic and hyperthermophilic conditions in the sediments recovered from a high heat-

flow area in the Nankai Trough (IODP Site C0012). Experiments were conducted in the 

temperature range of 20°C to 85°C and consisted of alive, killed and partly inhibited series of 

incubations for the differentiation of biotic/abiotic and intermediate/terminal processes. 

Microbial activity, transformation of organics, solid phase and metabolic intermediates were 

monitored via analysis of hydrogenase enzyme, dissolved organic matter (DOM), Mn and Fe, 

and volatile fatty acids. DOM was characterized by Excitation Emission Matrix Spectroscopy 

and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. With increasing 

temperature the following changes occurred compared to the control series at 20°C: (a) At 

mesophilic conditions (35°C), DOM is released due to heating via abiotic process; hydrolysis 

of biopolymer fragments and fermentation are accelerated and attributed to biotic processes. 

(b) At thermophilic conditions (55°C), abiotic reactions became more important and humics 
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are decomposed in both alive and killed controls; hydrolysis of biopolymer fragments is 

inhibited and accelerated fermentation is attributed to abioticcally-produced precursors. (c) At 

hyperthermophilic conditions (85°C), breakdown of humics (mainly CHNO with one or two 

nitrogen atoms) coincided with the limitation of microbial hydrolysis; rapid accumulation of 

acetate from abiotic decomposition outcompeted microbial fermentation. Our data suggest that 

aged (7.8 Ma old), macromolecular humic substances are split into both labile and refractory 

units during heating, and provide the basis for a new conceptual model for humics cracking. 

The model suggests that the combination of abiotic and biotic processes in DOM degradation 

is crucial for sustaining the deep biosphere in moderately heated sediments.   

Key words: deep biosphere, DOM, humics-decomposition, thermal environment, 

hydrogenase  

 

4.1 Introduction 

Marine sediments are the largest reservoirs of organic Carbon on Earth (Hedges and Keil, 

1995). In the anoxic subsurface layer, sediments were long considered as a pool of preserved 

refractory Carbon (Henrichs and Reeburgh, 1987). In recent decades, however, researchers of 

the Integrated Ocean Drilling Program (IODP) have revealed that subseafloor sediments harbor 

over half of all prokaryotic cells on Earth. This community, inhabiting what is known as the 

marine deep biosphere, has a size of > 1029 living cells (Schippers et al., 2005; Kallmeyer et 

al., 2012; Parkes et al., 2014) and extends to > 2 kmbsf (Roussel et al., 2008; Ciobanu et al., 

2014; Inagaki et al., 2015; Inagaki et al., 2016). Studying the survival strategy of the deep 

biosphere is crucial for understanding the deep carbon cycle.  

Biotically, anaerobic degradation of organic matter consists of three steps: hydrolysis by 

extracellular enzymes, intracellular fermentation and terminal mineralization (e.g., sulfate 

reduction, methanogenesis) (Middelburg et al., 1993; Muyzer and Stams, 2008). The deep 

sediment intrinsically faces aged material, leftover after long diagenesis and largely consisting 

of molecularly-uncharacterized humic substances (Hedges et al., 2000), which is less 

degradable via the conventional microbial pathway. Moreover, the physical environment in the 

deep subsurface controls the availability of habitats for life due to decreasing porosity (Parnell 

and Mcmahon, 2016) and mineral-encapsulated organic matter (Schulten and Schnitzer, 
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1997)s, which results in steric hindrance for extracellular enzymes. These difficulties suggest 

the recalcitrant organic matter is hardly utilized via the conventional microbial degradation 

pathway and point to an unknown mechanism providing available substrates. 

Heat-induced stimulation of chemoautotrophic microbes via abiotic hydrogen production 

has been reported as one of the survival strategies in the deep biosphere  (Sleep et al., 2004; 

Parkes et al., 2011). As for heterotrophic microbes, it is assumed that during heating recalcitrant 

organic matter might be degraded to feedstock for microbes (Horsfield et al., 2006; Riedinger 

et al., 2015), e.g., by production of acetate (Wellsbury et al., 1997). However, it is not clear 

how the heated refractory organic matter in sediments degrades and supplies the carbon needed 

for deep life. Indirect evidence arises from the well-known ‘oil window’, i.e. the transformation 

of organic matter above 50°C due to the thermal transformation of kerogen during millions of 

years (Vandecasteele, 2008), which suggests that, at the microbial-tolerable range (as high as 

120°C, Kashefi and Lovley, 2003), the abiotic decomposition might happen at the same time 

with biological degradation. It is not known how the abiotic and biotic processes are coupled 

to each other. This research aims to better understand this coupling, identify the role of abiotic 

process, and define at which temperature and at which step they trigger or stimulate the 

biological degradation process.  

Sediments in the Nankai Trough, located Southeast of Japan, are exposed to high heat flow 

at deep layers (Yamano et al., 1984) and are thus an ideal environment for investigating the 

microbial degradation processes of deep life under different thermal conditions. In a laboratory 

experiment, four sub-series were incubated at 20°C, 35°C (mesophiles), 55°C (thermophiles) 

and 85°C (hyperthermophiles). Aiming at the complete degradation path from polymer to end 

products – hydrolysis, fermentation, and terminal mineralization were investigated. Excitation 

Emission Matrix Spectroscopy (EEMs) and Fourier Transform Ion Cyclotron Resonance Mass 

Spectrometry (FT-ICR MS) were used to characterize DOM compounds released during 

heating and their subsequent transformation. For the turnover of low-molecular-weight 

compounds, production and consumption of labile intermediates (acetate) was monitored in 

alive and sulfate-reducer-inhibited series. The abiotic processes were evaluated by dead 

controls. Based on above, a degradation model under changing thermal conditions is proposed.  
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4.2 Methods and sampling site 

4.2.1 Study sites 

Core C0012A-13R2 was collected during cruise IODP 322 in the Nankai Trough (Fig. 4.1). 

The site (32°45'N / 136°55'E) is located in Shikoku Basin on the subducting Philippine Sea 

plate. Temperature increased in the deep sediments, the temperature at 530 mbsf is ~62°C. The 

temperature at the seafloor was estimated to be 2.85°C, with an average thermal gradient of 

135°C/km. The sulfate-reduction zone at Site C0012 is at ~250 mbsf  (Strasser et al., 2014). A 

sample from a depth of 159 mbsf was selected for the incubation experiments. The sample 

originates from a layer of hemipelagic mudstone, with an age of 7.8 Ma, an in-situ 

concentration of sulfate of ca. 10 mM and a temperature at ~22°C calculated from in-situ 

profiles (Marcaillou et al., 2012; Torres et al., 2015).  

 

Fig. 4.1. Location of sampling site and tectonic structure in Nankai Trough. 
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4.2.2 Incubation  

For the preparation of sediment slurries, artificial seawater was prepared. The recipe of 1 L 

artificial seawater with 30 mM sulfate included 0.682 g KCl, 1.5 g CaCl2·2H2O, 5.7 g 

MgCl2·6H2O, 26.4 g NaCl, 6.8 g MgSO4·7H2O and 0.099 g KBr. For 1 L artificial seawater 

without 30 mM sulfate, recipe remains the same except that amount of MgCl2·6H2O was 

increased to 11.3 g and MgSO4·7H2O reduced to 0.682 g. 500 mL of each were mixed to obtain 

1 L artificial seawater containing 15 mM sulfate. The artificial seawater was autoclaved at 

120°C and flushed with N2 for 2 hours. Trace elements solution, thiamin solution, vitamin B12 

solution and vitamins mixture solution (0.3 mL for each) were added to 1 L artificial seawater. 

The trace element solution was acidified and contained 0.5 mM H3BO3, 0.5 mM MnCl2·4H2O, 

0.8 mM CoCl2·6H2O, 0.1 mM NiCl2·6H2O, 0.01 mM CuCl2·2H2O, 0.5 mM ZnSO4·7H2O, 0.15 

mM Na2MoO4·2H2O. The vitamins mixture solution was made according to Widdel and Bak 

(1992). 1 M NaHCO3 (aq) was sterilized by filtration with 0.1 μm filter (PES, Sartorius) and 

kept under CO2. 1 mL NaHCO3 (aq) was added to 1 L artificial seawater. The sediment slurry 

was prepared in a glovebox under N2 atmosphere (2% H2). 0.5 mL of thiosulfate (30 g/L) was 

added. Sulfide was added to the final concentration of 500 μM. Nutrients were added to final 

concentration in the slurry of 1 mM ammonium and 0.3 mM phosphate.  

Sediment was first mixed with artificial seawater in a sealed sterile plastic bag in a ratio of 

4:5 (v:v) and homogenized for 2 hours by continually malaxating the bag. The mixture was 

then incubated in a 1 L-Schott bottle for the first week under N2 atmosphere with 2% H2. The 

headspace was replaced by pure N2 after a week and incubated for another week. Two weeks 

later, after the sediment mudstone was softened, the slurry was homogenized again. Then the 

slurry was separated into subsamples with a final ratio of 3:1:1 (v:v:v, 

headspace:medium:sediment) in a glove box. The bottles were sealed with butyl rubber 

stoppers and the slurry was kept under N2 at a pressure of two bar for another two weeks at 

room temperature. 

After pre-incubation, slurries were incubated at 20°C, 35°C, 55°C and 85°C. For the heated 

series, the temperature was gradually increased at an interval of 10°C/hour. The killed series 

were autoclaved at 120°C twice. Long-time killed controls are not feasible due to the recovery 

of spores after autoclaving (Tuominen et al., 1994; Berns et al., 2008). Therefore, the trustable 

data set was shortened to 3 weeks although the incubation of killed controls lasted for 55 days. 
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In another series (‘inhibited’), sulfate reduction was inhibited by the addition of 20 mM 

molybdate on the 15th day. Before sampling of the first time point, the headspace was flushed 

again with N2 for 5 min and kept under two bar N2. All the series (all in duplicates except the 

killed series at 20°C and 85°C) and the incubation conditions are listed in Table 4.1. Additional 

yeast extract (YE) series were incubated under similar conditions as a comparison for 

biopolymer fragments and monomers as yeast extract shows protein-like peak in EEMs. Two 

duplicates were added with yeast extract, the other two were added with hydrolyzed yeast 

extract, for which the YE were hydrolyzed in oxygen-free 4 M NaOH at 85 °C for 16 h under 

pure N2. 

Table 4.1. Incubation settings. There are two duplicate incubations for each series except the killed 

series at 20°C and 85°C.  

Series 
No. 

Series naming Temperature of 
Subseries 

Duration (days) 

I Controlled series 20°C 55 
II Alive series 35°C, 55°C, 85°C 55 
III Inhibited series 20°C, 35°C, 55°C, 

85°C 
55 (molybdate addition on 15th day) 

IV Killed series 20°C, 35°C, 55°C, 
85°C 

55 (data after 21 days were not 
interpreted) 

V YE series 35°C, 55°C and 85°C 10 
 

Hydrogen gas concentrations were measured two times a week to monitor incubation. 

Samples for EEMs were collected at time point 0, 1, 3, 15, 30 and 55 days. The liquid phase 

was sampled by first transferring it to a glass vial and then separating it into subsamples in a 

glovebox: a) subsamples for acetate analysis were filtered using nylon filters (0.2 μM, Omni 

lab); b) subsamples for other analyses (DOM, inorganic ions) were filtered using cellulose 

acetate filter (0.2 μM, Sartorius AG). Vials were sealed in the glovebox and covered with 

Parafilm afterwards. Due to the volume limitation of incubated slurry, subsamples for FT-ICR 

MS analysis were taken only at day 0 and at the end of incubation for alive series at 20-55°C; 

for alive series at 85°C, samples were taken on day 0, 1, and at the end of incubation. FT-ICR 

MS samples were stored at +4°C. Before measurements, samples were acidified to pH 2. DOM 

were extracted with PPL cartridges (Agilent, 3 mL, 200 mg) under N2 atmosphere (Dittmar et 

al., 2008) to remove salts. The cartridges were eluted with 1.5 mL methanol (Lichrosove 

quality, Merck) and the eluents were stored at -20°C for further DOM analysis. Samples for 
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EEMs and inorganic ions were stored at -20°C. Sediment samples for hydrogenases analysis 

were stored at -80°C under N2. For series with YE addition, EEMs samples were taken on day 

0 and day 10. 

4.2.3 Analytical techniques 

4.2.3.1  DOM characterization by EEMs 

Samples were measured on a fluorescence spectrophotometer (Agilent Cary Eclipse, USA) 

after dilution with O2-free Milli-Q water (NaCl 35g/L). More than 300 samples were modeled 

by parallel factor analysis (PARAFAC). Five components were identified (Fig. 4.S1) including 

two protein-like peaks (ex/em: 275 nm/310 nm; 275 nm/350 nm); two humic-like peaks (ex/em 

in 325(250) nm/400 nm as peak M; ex/em in 360(250) nm/460 nm as peak AC) and one peak 

also presents in the blank of artificial seawater with addition of vitamin (ex/em: 250(280)/350 

nm). We attribute the peak to the fluorescence emitted by the vitamin solution overlapping with 

a protein-like peak. In the final dataset, the fluorescence signal was corrected by subtracting 

signal shown in artificial seawater. Wavelength number in parenthesis of ex/em data refers to 

the peak shown together with the other one. In the figures, humic-like and protein-like peaks 

were abbreviated as peaks H and peaks P. 

4.2.3.2  DOM characterization by FT-ICR MS 

Samples were diluted to a DOM concentration of 20 mg C/L in solvent of methanol: water 

(1:1, v/v). Samples were ionized with electrospray ionization (ESI, Apollo II electrospray 

source, Bruker Daltonik GmbH, Bremen, Germany) and characterized in negative ion mode on 

a Bruker SolariX XR FT-ICR MS (Bruker Daltonik GmbH, Bremen, Germany) equipped with 

a 7 T refrigerated actively shielded superconducting magnet (Bruker Biospin, Wissembourg, 

France). The mass spectrometer was calibrated with sodium trifluoroacetate (Moini et al., 

1998). Samples were injected at rate of 5 μL/min. 200 scans were added for each measurement. 

Internal calibration resulted in mass accuracy better than 0.1 ppm. Formulae were calculated 

in the m/z range of 200-650 considering the following elements: 1H, 12C, 13C0–1, 16O, 14N0–4, 
32S0–2, 34S0–1, 31P0–2. Only formulae in the range of O/C ratio of 0.01-1.2 and H/C ratio of 0.35-

2.3 were considered in the calculation process and unrealistic formulae in the DOM samples 

with N4P2, N2P2, S2P2, O1, O0 were removed from the dataset. During initial processing, 
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peak magnitude is presented as relative intensity (rInt), which was calculated by normalization 

to the base peak. Multiple formulae were filtered as described by Koch et al. (2007). Less than 

five multiple assignments were observed in the final data set. Peaks found in the list of 

contamination formulae (anthropogenic surfactants listed on http://www.terrabase-Inc.com) or 

blank sample (rInt > 0.1) were deleted. In the figures, formulae are shown in relative intensity 

of individual formulae normalized to all the assigned formulae. 

CHO formulae contain only C, H, O atoms and CHNO formulae contain C, H, N, O atoms, 

those formulae with sulfur or phosphorus are included in the group of CHNO in this study. 

CHNO-N1, N2 and CHNO-N3,N4 represent compounds with one or two nitrogen atoms and 

three or for nitrogen atoms, respectively.  

4.2.3.3  Hydrogen concentration 

0.5 mL headspace was taken for H2 measurement by Peak Performer 1 gas chromatograph 

(Peak Laboratories, USA) according the method described by Lin et al. (2012). Concentration 

of H2 in slurry was calculated according to Crozier and Yamamoto (1974).  

4.2.3.4  Acetate concentration  

Samples were measured by liquid chromatography-isotope ratio monitoring mass 

spectrometer (irm- LC/MS) as described by Heuer et al. (2006, 2010). The high performance 

liquid chromatography (ThermoFinnigan Surveyor HPLC) is combined with an LC IsoLink 

interface (Therm Finnigan) for chemical oxidation of the effluents and subsequently a DELTA 

Plus XP mass spectrometer (ThermoFinnigan) for detection of oxidized product – CO2. The 

detection limit for quantitative analysis of acetate is 5 μM. 

For series at 55°C and 85°C, biotic and abiotic productions of acetate were calculated from 

alive, inhibited and killed series. (1) Abiotic production of acetate was calculated from killed 

series:  

Aabiotic production = A15days-A0day Eq. 4.1 

For the abiotic production of acetate after 15 day, data were calculated from incubation from 

0 to 15 days. (2) Total production of acetate:  
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Atotal production  = Anet production+Abiotic consumption Eq. 4.2 

Anet production calculated from the accumulation of acetate in alive series. (3) Biotic production 

of acetate:  

Abiotic production = ATotal production-Aabiotic production. Eq. 4.3 

A in the equation is abbreviation of acetate. (4) Biotic consumption (minimum) is calculated 

from the difference between sulfate reducer inhibited and alive series; the biotic consumption 

(minimum) refers to only the consumption by sulfate reducer. 

4.2.3.5  Ammonium, sulfate, manganese, iron concentration 

Concentration of NH4
+ and sulfate was determined by photometry (Quick Chem 8500, 

Lachat) and ion chromatography (882 Compact IC plus, Metrohm), respectively. Since no zinc 

is added to fixing the S2-, the concentration of sulfate included the reduced sulfur oxidized to 

sulfate during storage and refer to the total dissolved sulfur. Fe and Mn ions were detected by 

Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) (Vista Pro CCD-

simultaneous, Agilent). 

4.2.3.6  Hydrogen oxidation potential 

After the incubation experiment ended, the incubation vials were stored at -80°C. The 

sediment slurry was later incubated with radiolabeled hydrogen gas to investigate the potential 

activity of hydrogenase enzymes. Hydrogenase enzymes are ubiquitous in subsurface 

microorganism, exclusively intracellular and catalyze hydrogen metabolism. Duplicate 

sediment samples were incubated under tritium gas. Over time, hydrogenase enzyme catalyzed 

isotope reaction between tritium gas and water molecule, which produced tritiated water. The 

radioactivity of tritiated water was measured by liquid scintillation counter (PerkinElmer 

Tricarb 2810TR®). The more details of the method is described elsewhere (Soffientino et al., 

2009; Adhikari et al., 2016).  
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4.3 Results 

4.3.1 Background information of microbial activity: ongoing terminal process and 

inhibition of terminal step  

 

Fig. 4.2. Concentration of H2 during incubations: (a) series at 20°C; (b) series at 35°C; (c) series at 55°C; 

(d) series at 85°C. In the inhibited series sulfate reducers were inhibited by molybdate addition at day 15. 

The killed series was monitored for 55 days, data after 21 days were not shown here as microbes recovered 

in the final phase of incubation. Vertical dashed line shows the timepoint of molybdate addition. Note that 

the scale of y-axis in figure (d) differs from the others. 

Radiotracer based hydrogenase enzyme assay showed H2 turnover (> 10-7 mol g-1day-1) in 

all alive series (Fig. 4.S2). At 20°C, the concentration of H2 was low and remains constant in 

the alive series. Inhibition of sulfate reducers led to a dramatic decrease of hydrogenase activity 

and an accumulation of H2 that peaked shortly after molybdate addition clearly pointing to the 

relevance of sulfate reduction on H2 metabolism (Fig. 4.2a, S2). Series at 35°C were featured 

by high hydrogenase activity, low and balanced concentration of H2 and a weaker effect of 

sulfate reducer inhibition on H2 metabolism compared to the series at 20°C (Fig. 4.2b, S2). At 
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55°C, heat induces instant H2 accumulation, which was quickly consumed after 3 days in the 

alive series; the inhibited series showed a decrease of hydrogenase and an increase of H2 

concentration at the end (Fig. 4.2c, S2). At 85°C, H2 concentration was high in all subseries; 

the killed control showed a contribution of H2 from abiotic process (>10 times higher than that 

in the series at 20-55°C), which was consumed and balanced by microbes in the alive series. 

Compared to alive series, the inhibited series showed higher accumulation of H2 after 15 days 

after molybdate addition due to the lagged inhibition of sulfate reducer (Fig. 4.2d, S2). 

Interestingly, H2 concentration in the inhibited series at 20°C and 35°C decreased after their 

maxima; at 55°C and 85°C it kept increasing. 

4.3.2 Initial step of thermal alteration of organic matter characterized by DOM  

4.3.2.1   Quantitative changes of DOM 

Peak C results from large molecules with aromatic functional groups and conjugated 

systems typically found in terrestrial DOM (Coble, 1996; Fellman et al., 2010; Ishii and Boyer, 

2012); peak M is related to compounds that are less aromatic, and is commonly referred to as 

autochthonous, microbial or marine material with relatively lower molecular weight  (Coble, 

1996; Fellman et al., 2010; Ishii and Boyer, 2012). Peak A is thought to result from aromatic 

fulvic acids that are common in natural aquatic systems (Stedmon and Markager, 2005a). 

Heating resulted in immediate accumulation of humic-like peaks (CA and M) after 

overnight balance on the first day, which is linearly correlated with temperature (R2 = 0.97) in 

alive series (Fig. 4.3a). Killed controls similarly confirm the linear response of humic-like 

peaks with temperature (Fig. 4.3b). Thus, the release of humic-like DOM seems to be 

modulated by abiotic process and increased by temperature instead of hydrolysis via hydrolase.  
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Fig. 4.3. Quantification and qualification of DOM by EEMs during incubations. (a) Concentration of 

humic-like DOM increases linearly with temperature after overnight incubation in the alive series; (b) 

Concentration of humic-like DOM increases linearly with temperature after overnight incubation in the 

killed series; (c) Composition change of humic-like DOM during incubation in the alive series; for each 

series, the individual bars correspond to day 0,1,3,15,30,55 from left to right; (d) Composition change of 

humic-like DOM during incubation in the killed series; for each series, the individual bars correspond to 

day 0,1,3,15 from left to right; (e) Change of humic-like DOM and protein-like DOM during incubation phase 

I (0-3 days) of the alive series; (f) Change of humic-like DOM and protein-like DOM during incubation phase 

II (3-15 days) of the alive series. ∆P = Pend-Pstart, and ∆H = Hend-Hstart.. P and H are abbreviation of protein-

like and humic-like peaks, respectively. 
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4.3.2.2   Qualitative changes of DOM  

(a) Characterization of DOM by EEMs 

Humic-like peak M, which implies smaller molecule, is less effectively retained in the 

extracted DOM compared to humic-like peak AC, thus AC/M ratio can be used to identify a 

blue-shift of the fluorescent signal of organic compounds. Such a shift is produced by the loss 

of conjugation structures, which might be auxochrome or aromatic ring. AC/M increased 

slightly in the alive series at 35°C compared to 20°C; The AC peak was relatively enriched 

compared to M peak during the initial stages of incubation in the alive series at 55°C and 85°C, 

resulting in an increased AC/M ratio (Fig. 4.3c). This effect was more pronounced at higher 

incubation temperatures. After 3 days, this trend was inverted, and a relative depletion of the 

AC vs. the M peak was observed (Fig. 4.3c). Simultaneously, the protein-like peaks increased 

more than humic-like peaks at 55°C and 85°C (Fig. 4.3). Besides, it is noticed that AC/M is 

lower in the killed series from the starting time point and decreased faster afterwards probably 

due to being heated during autoclaving at 120°C before incubation. Based on these 

observations we divided the incubations into two phases: Phase I includes 0-1 days and Phase 

II includes 3-55 days (1-55 days for FT-ICR MS). Phase I was dominated by the process of 

quantitative accumulation of mainly humic-like DOM. Phase II was characterized by 

breakdown of humic substances and production of humic fragments and protein-like DOM.  

The protein-like peaks (P) were balanced and lowest at 35°C without accumulation in phase 

I and II (Fig. 4.3e, f). At 55°C and 85°C, protein-like peaks increased strongly during phase II 

(Fig. 4.3e, f). For further confirmation of the turnover of protein-like compounds, the YE series 

amended with yeast extract and hydrolyzed yeast extract showed similar consumption of 

protein-like peaks during incubations in 10 days at 35°C. As a comparison, consumption of 

protein-like DOM in YE hydrolyzed series is higher than that in YE series at 55°C and 85°C 

(Fig. 4.S5).  

(b) Characterization of DOM by FT-ICR MS 

Data from FT-ICR MS analysis revealed that the DOM before incubation is featured by a 

high H/Cwa ratio (1.5) and a low O/Cwa ratio (0.38) (Table 4.2), as well as 40% nitrogen-

containing formulae (dominated by CHNO-N1, N2), which result in an N/Cwa ratio of 0.026 
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(Table 4.2). There are scarce formulae in the region of high O/C in the Van Krevelen diagram 

(Fig. 4.4). Our data also show that after 55 days of incubation samples from alive series at 

20°C-55°C show a relatively similar profile, without major differences in molecular formula 

composition (Table 4.2). 

Table 4.2.  Intensity-weighted averages (‘wa’ in subscript) of characteristic parameters derived from 

FT-ICR-MS analysis. Formulae with 13C or 34S were not included. 

Sample mzwa Cwa Hwa Owa Nwa Swa Pwa DBE-Owa H/Cwa O/Cwa 
20°C, start 378.2 18.7 27.6 6.79 0.43 0.36 0.03 -0.69 1.51 0.38 
20°C, start 388.4 19.2 28.5 6.79 0.56 0.36 0.07 -0.46 1.51 0.38 
35°C, end 404.3 20.2 28.7 7.36 0.54 0.26 0.03 -0.23 1.44 0.38 
55°C, end 397.4 19.9 28.3 7.03 0.57 0.28 0.06 0.02 1.44 0.37 
85°C, 1 day 444.3 22.3 37.5 6.96 1.21 0.30 0.06 -1.75 1.68 0.33 
85°C, end 413.1 20.8 31.2 6.92 0.89 0.27 0.06 -0.26 1.50 0.35 

 

 

The alive series at 85°C was investigated with more details by FT-ICR MS, adding data points 

on 1 day. In phase I (1 day), there was release of larger DOM resulting in the increase of carbon 

number from 19.0 to 22.3 and m/zwa from 383 to 444 (Table 4.2). The freshly released DOM 

was more saturated and less oxygenated (Fig. 4.4c). The increased N/Cwa ratio was attributed 

to accumulation of CHNO-N1, N2 in higher molecular weight (Fig. 4.4a). Most of the formulae 

with increased signal intensity were located in the peptide-like region in the van Krevelen 

diagram according to their H/Cwa and O/Cwa ratios. At phase II, CHNO-N1, N2 formulae 

decreased and CHO compounds in the lower molecular weight range accumulated (Fig. 4.4b).  
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Fig. 4.4.  DOM characterized by FT-ICR MS during incubations of alive series at 85°C. (a) Change of formulae 

during phase I, z-axis shows the number of nitrogen atoms in formulae; (b) Change of formulae during 

phase II, z axis shows the number of nitrogen atoms in formulae; (c) Change of formulae shown in a Van 

Krevelen Diagram during phase I; (d) Change of formulae shown in a Van Krevelen Diagram during phase 

II. Color scale shows changes in normalized intensity of individual formulae during incubation. Positive 

values and negative values represent increased and decreased normalized intensity of formulae, 

respectively. The three circles in the Van Krevelen Diagram represent for the potential range of 

biomolecular components: protein (I), lignin (II) and cellulose (III) (Kim et al., 2003), which are only based 

on elemental compositions, geopolymer mixtures of biomolecular fragments might locate in these regions 

4.3.3 Intermediate and terminal step: turnover of labile intermediates  

Acetate consumed by terminal mineralizer (sulfate reducers) was calculated from the loss 

of acetate in the alive series and accumulation of acetate in the inhibited series (method of 
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calculation: see also 2.3.4). Abiotic production rate of acetate is based on data from 0-15 days 

and assumed to be constant during incubation. Biotic consumption by sulfate reducer was 

determined using the data from 30-55 days when sulfate reducers were inhibited because 

hydrogen concentration in the inhibited series suggested the inhibition effect worked after 30 

days at 55°C and 85°C, which is 15 days later than series at 20°C and 35°C. The apparent biotic 

consumption by sulfate reducer is assumed to be constant during incubation with enough 

acetate at 55°C and 85°C.  

At 20°C and 35°C, acetate decreased continuously in the alive series due to faster 

consumption than production; biotic consumption (15-55 days) by sulfate reducer corresponds 

to 583 μM and 257 μM, respectively (Fig. 4.S3). For series at 20°C and 35°C, there were no 

comparisons of abiotic and biotic production in Fig. 4.6 as the abiotic decomposition process 

is negligible.  

Fig. 4.5.  Production and consumption and acetate during incubation: (a) biotic and abiotic production of 

acetate calculated from alive series, killed series, and inhibited series during 0-15 days; (b) biotic and 

abiotic production of acetate calculated from alive series, killed series, and inhibited series during 15-30 

days; (c) biotic and abiotic production of acetate calculated from alive series, killed series, and inhibited 

series during 30-55 days. Total production (minimum) = accumulation + biotic consumption(minimum); 

Abiotic production: production in killed series; Biotic production = Total production - abiotic production; 

biotic consumption(minimum) is calculated from the difference between sulfate reducers inhibited and 

alive series. 

At 55°C, alive series showed a fast net accumulation of acetate (258 μM) from 15 days to 

30 days, and afterward a fast decrease of 113 μM due to biotic consumption (Fig. 4.S3). A 

portion of the acetate derived from abiotic process (Fig. 4.5), however, it was not enough to 

support the biotic consumption proved by the decrease of acetate after 30 days. Biotic 

production contributed most to total acetate production, especially during 15-30 days. 
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At 85°C, there was continuous net accumulation of acetate from the start in the alive series, 

which became slower after 30 days; the biotic consumption by sulfate reducer was 237 μM 

during 30-55 days; the killed series showed a fast production of acetate from abiotic process 

within 15 days at 85°C, which contributed apparently more than half of the total acetate 

production during 0-15 days and 30-55 days (Fig. 4.5).  

4.3.4 Inorganic ions released from solid phase to dissolved phase 

 

Fig. 4.6. Release of inorganic ions from solid phase during incubation: (a) total dissolved S production 

in pore water in phase I; (b) total dissolved S production in pore water in phase II; (c) ammonia Fe, Mn, 

production in pore water in phase I; (d) ammonia, Fe, Mn, production in pore water in phase II. Y-axis in 

(d) is ten times smaller than the others. The error bars are invisible due to their smaller size than the 

symbols. 

During incubation, the concentration and production of iron remained low (Fig. 4.6c,d). The 

increase of ammonia, total dissolved sulfur and Mn started already at low temperature (Fig. 

4.6). At 35°C, the overnight (phase I) increase in humic-like peaks described above takes place 

simultaneously with increasing concentrations of total sulfur (170 μM), ammonia (83 μM) and 

Mn (1 μM) (Fig. 4.6a,c). Similar to humic-like compounds, the ammonia production is linearly 

correlated with temperature (R2 = 0.99), while production of total dissolved Mn shows an 

exponential increase with temperature (R2 = 0.99). In phase II, concurrent with humics-
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decomposition, there was slower release of ammonia, sulfur and Mn. Both the ammonia and 

Mn increase correlates exponentially with temperature (R2 = 0.99) (Fig. 4.6b,d).  

4.4 Discussion 

4.4.1 Proposed degradation path of humic substances 

4.4.1.1   Variations in degradation with increasing temperature  

As the conventional anaerobic degradation is considered to consist of mainly three steps, 

the mechanisms involved at each temperature will be discussed in this same order: from the 

initial step of hydrolysis, to the intermediate step of fermentation and the terminal step of 

mineralization (e.g. sulfate reduction). 

(a) Series at 35°C 

At mesophilic conditions (35°C), in the initial step, the increased humic-like pool could not 

contribute to the labile substrates via self-decomposition: slightly varied AC/M ratio in alive 

series (Fig. 4.3) suggested the released humic substances were not transformed, and there is no 

observable breakdown of humics due to abiotic heating confirmed by the killed series. This 

implies that humic substances as geopolymers tend to be refractory at 35°C. Both FT-ICR MS 

and EEMs suggest only small changes in the dissolved organic pool during incubation (Fig. 

4.3, Fig. 4.4). Considering the fast mineralization in series incubated at 35°C indicated by 

acetate (Fig. 4.S3), the consistent composition of the dissolved phase might result from an 

equilibrated balance between production and consumption of labile substrates. The killed series 

indicated geopolymers represented by humics were not abiotically transformed. Instead of 

abiotic thermal decomposition, hydrolysis by extracellular enzyme would produce monomers 

that could be accessible for fermenters at 35°C. Protein-like compounds were released together 

with humic-like DOM and thereafter protein fraction, which is encapsulated and protected in 

refractory compounds (Knicker and Hatcher, 1997; Zang et al., 2000), were exposed to 

enzyme. Thus, the release of humics to the liquid phase facilitates enzymatic cleavage of co-

released biopolymers. As there is no evidence of abiotic production of acetate and H2 due to 

heating at 35°C, both intermediates should be biotically produced via fermentation.  
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(b) Series at 55°C 

At thermophilic conditions (55°C), in the initial step, humic-like compounds were rapidly 

released and afterwards decomposed abiotically from day 3 to day 15 (Fig. 4.3). After the 

decomposition of humic-like compounds during 3-15 days, the high production of acetate in 

the alive series and low abiotic production implies that acetate is mainly produced by 

fermentation (Fig. 4.5, S3). At this point, it is not clear what the precursors of acetate or H2 are, 

nevertheless, monomers should be available for fermentation. In sum, although the contribution 

of abiotic process to acetate production is low under thermophilic condition (Fig. 4.5), we 

suggest that the abiotic process has contributed largely in the initial steps and facilitated the 

presence of assimilable DOM as precursor for fermentation.  

A further question is to which extent the biological hydrolysis contributes to the initial step 

at 55°C, to be more specific, whether biological hydrolysis is efficiently supporting 

fermentation at 55°C or not. For this question, there is no direct evidence in this study. Former 

studies suggested production of acetate benefits from increasing hydrolysis at 55/50°C. 

Glucosidase and protease were suggested to be active at 55°C (Hao and Wang, 2015). 

Consistently, an additional incubation with young surface sediment (North Sea) showed ratio 

of protein-like peaks to humic-like peaks increase most sharply before day 3 at 55°C (Fig. 

4.S4). This trend did not continue after three days. This can however be explained by the lagged 

denaturation of enzyme, its half-life period might take 16.7-44.9 hours at 55°C (Abdel-Naby 

et al., 2017), which means the hydrolase might work in the first few hours or days resulting the 

increase of protein-like peaks. Whereas, opposite phenomenon was observed in this study of 

Nankai Trough. There was more production of humic-like peaks resulting in lower ratio of 

protein-like peaks to humic-like peaks before day 3 (Fig. 4.S4). Assumed that the biological 

hydrolysis is ongoing and a main contributor of producing precursors for fermentation, the 

highest acetate accumulation would be expected during the first hours or days, before 

denaturation of enzymes as shown in former incubations (Hubert et al., 2009; Hubert et al., 

2010; Hao and Wang, 2015). However, acetate increased only after 15 days after the 

decomposition of humic-like compounds happened. Since the hydrolyzed monomers is more 

favorable suggested by the comparison of YE and YE hydrolyzed series (Fig. 4.S5), the 

monomers (e.g. amino acid) tend to be from decomposition of humic-like compounds via 

abiotic process rather than the biotic hydrolysis. In summary, the delayed accumulation of 
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acetate (during days 15-30 instead of at start) after the decomposition of humic-like compounds 

suggests that, the biological hydrolysis is not efficiently supporting fermentation at 55°C. 

(c) Series at 85°C 

At hyperthermophilic conditions (85°C), in the initial steps, enzymatic hydrolysis producing 

monomers is considered to be less important due to the following reasons: (1) this process is 

already inhibited when temperature increase from 35°C to 55°C; consequently, the inhibition 

of hydrolase due to heating should be more at 85°C; (2) although the optimum hydrolysis rate 

might be shifted according to the different type of organic matter (Arnosti and Jørgensen, 2003) 

or source of microbes (Arnosti, 1998), the enzyme is expected to be very quickly denatured 

above 55-65°C (Colussi et al., 2012); (3) there the protein-like peak in the YE series did not 

decrease indicating protein-like DOM was not consumed.  

The next question is whether the low molecular intermediates were mainly originated from 

abiotic or biotic processes (fermentation). Our results, shown in Fig. 4.5, suggested that acetate 

is mainly produced from abiotic processes (Fig. 4.5). Since the abiotic production of acetate is 

larger than the acetate consumed by sulfate reducers, within 15 days, the acetate from thermal 

decomposition would be sufficient to fuel sulfate reduction in this sediment. Therefore, biotic 

hydrolysis and fermentation were less important, as electron donors were generated during 

abiotic decomposition of macromolecular humics; acetate in terminal mineralization was 

mainly produced from abiotic processes and afterwards utilized biotically.  

Based on above, variations of the degradation mechanisms with increasing temperature are 

summarized in Fig. 4.7. 
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Fig. 4.7.  Degradation path of organic matter at 35°C, 55°C and 85°C including biotic and abiotic 

processes. At 85°C, abiotic process contribute to the pool of acetate and thereby to terminal steps; at 55°C, 

the abiotic decomposition of humics could provide assimilable fragments that could contribute to the 

monomer precursors for fermentation; at 35°C, abiotic process barely contributed to humics 

decomposition but accelerate the release of organic fragments to the liquid phase. 

4.4.1.2   Intrinsic mechanism of humics-decomposition 

Humic substances are geopolymers in dynamic association with recognizable biomolecular 

fragments of low molecular mass components including aliphatic and aromatic fractions 

(Stevenson, 1994; Leenheer and Rostad, 2004; Sutton and Sposito, 2005); the associations 

being stabilized by hydrogen bonds or through attachment to the solid phase (Schulten and 

Schnitzer, 1995; Schulten and Leinweber, 2000).  

Release of humics fragments and further decomposition of these fragments can be attributed 

to different chemical bond cracking processes. In phase I, the breakdown of weak bonds, e.g., 

ionic bonds and hydrogen bonds, result in the exposure and stretch of capsuled sedimentary 

organic matter and the release of ammonia and metal ions from metallic oxides and sulfides. 

Consistently, total dissolved Mn and sulfur increased by 0.044 mM and 0.33 mM overnight 

after incubation at 85°C (Fig. 4.6). Even after a small temperature increase from 20°C to 35°C, 

concentrations of dissolved metal ions increased. Similarly, ammonia increased after overnight 

incubation and was linear correlated with temperature, pointing to an abiotic process (Fig. 4.6). 

Chemically, the major limit of deep life is attributed to scarce labile substrates, especially for 

the deep and aged sediments having underwent long-term diagenesis with abundant 

molecularly uncharacterized geopolymers (Wakeham et al., 1997). Moreover, the labile 
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monomers are encapsulated in the solid phase (Knicker and Hatcher, 1997). Thus, chemically 

the cracking of ionic bonds or hydrogen bonds contributes to the exposure of substrates to 

further degradation. 

In phase II, especially at temperatures of 55°C and 85°C, the production rate of dissolved 

Mn and ammonia is slower than in phase I (Fig. 4.6), suggesting the breakdown of weak bond 

breakdown was less important than in phase I. AC/M ratio was decreased. This suggests that 

the conjugation structure of humic-like compounds was reduced and humic substances were 

decomposed at increased temperature. The consistent pattern of AC and M peak in killed series 

after heating, i.e. increase during the initial stage followed by decrease from day 3 on, suggests 

that the decomposition of humics was a result of abiotic processes instead of hydrolase. The 

decomposition of humics in this phase is mainly attributed to the loss of conjugation structures 

and the chemical bonds in the organic matter (covalent bond). Although humic substances are 

considered as complex molecules, they are composed of mainly C-H, C-C, C = C, C-O, C = O, 

C-N bonds (Stevenson, 1994; Schulten and Schnitzer, 1995; Chefetz et al., 2002). In phase II, 

the decrease of larger aliphatic CHNO-N1,N2 compounds suggested formation of small 

aliphatic compounds in series at 85°C (Fig. 4.4). The decomposition of CHNO should not be 

attributed to peptide bond as C-N in peptides is thermally stable and only cleavable by strong 

acid, base or proteolytic enzymes. Moreover, CHNO-N1,N2 at m/z 200-650 in this study, 

which is located in the region of aliphatics, should not be identified as peptides, but rather as 

semi-degraded peptides attached to other refractory CHO fractions (Schmidt et al., 2011; 

Schmidt et al., 2014), via deamination (Abdulla et al., 2017) or incorporation of N (Amrani et 

al., 2007). The bond energy of C-N is lower than C-O and followed by C-C (Gray, 1965). The 

former more tends to be cracked, although the adjacent functional group and the reaction 

product might affect the tendency of cracking.  

Based on above, variations of the decomposition mechanisms of humics are summarized in 

Fig. 4.8. 
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Fig. 4.8.  A proposed model for abiotic decomposition of humic substances due to heating. (a) Model of 

humic substance, adapted from Stevenson’s model and new insights from Leenheer and Rostad (2004); (b) 

humic substances attached to minerals and labile compounds trapped in humic substances in solid phase; 

Humic substances adsorbed on solid phase minerals contribute to the formation of hydrogen bonds 

between clay minerals and ammonia (Zhang et al., 2013); (c) humic substances were detached from solid 

phase and labile compounds trapped in humic substances were released; (d) large humic substances were 

decomposed due to heating, during the decomposition the small monomers were produced and assimilated 

by microbes. 

4.4.2 Implication for carbon flow and microbial survival in thermal deep earth  

Although the percentage of abiotic acetate production within 15 days is small (0.06 wt.% of 

TOC), it could represent a huge carbon flow and ‘feast’ for deep life considering the huge pool 

of 15000000 Gt sedimentary organic carbon (Hedges and Keil, 1995). This mechanism is of 

less importance at the surface, where the biotic fermentation of fresh materials more efficiently 

produces the substrates. Wellsbury et al. (1997) showed that acetate production in alive series 

from deep sediment at 690 mbsf is substantially lower than in surface sediment at either 30°C 

or 55°C. This study suggests that heat induced an accelerated shunt of carbon into two pools: 
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one is favorable for microbes, while the other one is a more refractory reservoir for long 

preservation of carbon. FT-ICR MS analyses suggested that the residual refractory DOM 

consisted of smaller and aromatic compounds (Fig. 4.4), whereas the labile compounds 

consisted of aliphatic fragments of CHNO-N1,N2 compounds. The higher the temperature is, 

the more assimilable and smaller substrates are produced from abiotic processes. 

According to our data, the abiotic decomposition at temperatures below the upper limit of 

life might play a crucial role in sustaining life in deep biosphere. Our study showed that the 

biotic degradation chain becomes shorter at higher temperatures. This suggests that due to the 

assistance of heating in abiotic hydrolysis and intermediate production, some microbial 

communities including hydrolyzers and fermenters are not as necessary as initially expected or 

might play a lesser role in the deep biosphere. Terminal mineralizers, e.g., acetate and hydrogen 

utilizers would benefit from the thermal environment. Accordingly, microbial community 

structures should change. Consistently, the shift of microbial community and metabolic 

preference with temperature has been reported in former studies of terminal mineralization 

processes (Roussel et al., 2015). 

4.5 Conclusions and outlook  

Organic matter in sediments is stabilized by intrinsic recalcitrance of organic compounds, 

spatial inaccessibility and interaction with minerals (Lützow et al., 2006). According to our 

study, heating processes released the metal ions and organic matter leading to increased 

accessibility of polymers or free monomers; in further, the aged macromolecules can be 

decomposed and produce labile substrates available for microbial life. 

We identified the contribution of biotic and abiotic processes in three steps. With increasing 

temperature, the humic-like DOM became more decomposed and smaller labile substrates were 

produced, whereas biotic degradation became less important. (1) At 35°C, abiotic processes 

could barely produce acetate or other assimilable fragments from heat-induced decomposition. 

Heating resulted in the fast release of weakly bonded macromolecules from the solid phase, 

including detachments of biopolymer fragments, which are most efficiently used and balanced 

by microbes. (2) At 55°C, biological hydrolysis could not efficiently support fermentation, 

while the abiotic decomposition of humics provided assimilable fragments as precursors for 
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fermentation; afterwards, biotic processes continued via fast fermentation; (3) At 85°C, abiotic 

processes contributed to microbial life by providing macromolecules (mainly CHNO-N1,N2) 

which were decomposed to smaller molecules, while the biotic fermentation was minor. The 

excess abiotic production of acetate suggests that a simpler primitive life with a lower energy 

cost and simpler carbon metabolism is possible in thermal environments with less necessity of 

fermentation and hydrolysis by hydrolase.  
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4.6 Supplementary materials 

 

Fig. 4.S1. Five peaks identified by PARAFAC analysis, including two protein-like peaks (ex/em: 275 

nm/310 nm; 275 nm/350 nm; two humic-like peaks (ex/em: 325(250) nm/400 nm; 360(250) nm/460 

nm) and one peak of mixture of protein-like peak and vitamin shown in the blank of artificial seawater with 

addition of vitamin (ex/em: 250(280)/350 nm). 

 

 

Fig. 4.S2. Background information of microbial activities: (a) hydrogen concentration measured at the 

end of the incubation experiment;(b) Hydrogenase enzyme based hydrogen utilization potential. 
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Fig. 4.S3. Acetate concentration in various series during incubation: (a) series at 20°C; (b) series at 35°C;  

(c) series at 55°C; (d) series at 85°C. The dashed line shows the timepoint of molybdate addition.  

 

  

Fig. 4.S4. Comparison of the ratio of protein-like peaks and humic-like peaks during incubations. (a) 

Incubation at 55°C of sediments from North Sea as representative young sediment, (b) Incubation at 55°C 

of sediment from Nankai Trough. 
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Fig. 4.S5. Increase consumption of protein-like DOM in YE (hydrolyzed) series compared to YE series, 

YE series is for testing biopolymer fragments consumption and YE (hydrolyzed) series is for testing 

monomers consumption. The increase of consumption after YE has been hydrolyzed showed faster 

consumption of monomers. YE = yeast extract. 

 

 

Fig. 4.S6. Distribution of different formulae groups (grouped by elemental composition: CHO, CHNO, 

CHOS, CHNOS, and the others): (a) number and (b) percentage of each type of formulae. The percentage of 

formulae is calculated by rIntn = ∑rIntneach group/∑rIntnall formulae
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 Conclusions and outlooks 

5.1 Conclusions 

This thesis investigated the interaction between DOM and geomicrobial processes in 

subseafloor sediments. Firstly, we evaluated the application of EEMs in analysis of DOM in 

subsurface sediment pore water. By focusing on DOM, the initial steps of the degradation of 

particulate organic matter to smaller, soluble compounds were observed. The products of 

fermentation and terminal degradation steps were monitored by measurements of volatile fatty 

acids (e.g. acetate) and end products (DIC or NH4
+). Based on these data, we concluded that 

redox conditions and temperature affect the DOM composition and cycling. Results suggested 

that the preference of substrates and degradation pathways varied with environmental 

conditions in the subsurface sediments. 

5.1.1  Analytical window sensitive to microbial metabolism in subsurface sediments 

The combination of EEMs and FT-ICR MS was successfully applied in the incubations 

aiming at the impacts of redox conditions (sulfate reducing vs. methanogenic conditions) and 

heating. With overview of DOM via EEMs at high-frequency sampling intervals, quantitative 

and qualitative information of DOM transformation was obtained. Based on this information, 

FT-ICR MS analysis at selected time point enabled a precise observation of DOM and 

explained the transformation for protein-like and humic-like compounds. 

Cares should be taken for EEMs pore water samples. Concentration, salts, redox-sensitive 

inorganic ions, and O2 exposure affect the EEMs. Accordingly, an appropriate method for 

DOM characterization is validated for anaerobic pore water samples. (1) To avoid impacts of 

O2 on redox-sensitive inorganic ions, samples should be stored without headspace of air for the 

metal ions-rich samples and purged with N2 for sulfide-rich samples. O2 exposure has a 

negligible impact on the composition of most organic compounds detected by FT-ICR MS in 

two months. (2) The final concentration of Fe(II) or Mn(II) should below 0.06 mM to avoid 

their impacts on humic-like peaks. (3) Samples should be diluted with O2-free NaCl solution 

(35‰ wt.) (a350 after dilution: 0.009-0.06 cm-1) in appropriate concentrations to avoid inner 
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filter effect at high concentration and noise peaks at low concentration. (4) If inevitably 

exposed to O2 for Fe(II) or Mn(II)-rich samples, precipitation should be avoided during 

measurements. Micro-liquid sampling (50-300 μL) is sufficient. Without loss of protein-like 

compounds caused by solid phase extraction, EEMs enables a promising application in 

quantitative and qualitative analysis of the DOM for deep biosphere research. 

5.1.2   Microbial metabolism in subsurface sediments implied from DOM 

In this study, we focus on the impacts of environmental conditions (redox conditions, 

temperature) on the composition of electron donors and the microbial metabolism. In the 

stratified subsurface sediments, there are different ongoing degradation processes and 

microbial metabolism. 

(1) Cooperation of microbes by multi-stage degradation 

Under sulfate reducing conditions, the production of DOM from the particulate organic 

matter pool was stimulated. Qualitatively, there was a rapid turnover of protein-like peaks and 

accumulation of humic-like DOM leading to a more concentrated refractory DOC pool due to 

selective degradation inferred by EEMs. FT-ICR MS analysis confirmed that CHNO-N3,4 

formulae were readily lost while CHNO-N1 compounds accumulated. Compared to series 

under methanogenic conditions, the microbes under sulfate reducing conditions preferentially 

utilized biopolymers fragments rapidly. With inhibition of sulfate reducer, turnover of acetate 

was not inhibited while the turnover of labile biopolymers fragments was continuously 

inhibited. It suggests the preferential degradation of labile biopolymers and the initial step of 

hydrolysis is closely linked to the terminal process (sulfate reduction). Different selectivity in 

initial step was modulated by sulfate availability and, more specifically, sulfate reducer.  

It is known that the availability of sulfate modulates the terminal step of mineralization; in 

further, this study suggests it shapes the upper steps of degradation chain as inferred by high 

molecular weight-DOM. The initial degradation steps are sensitive to the availability of 

electron acceptor, which is utilized in terminal step. It implies an intriguing figure in the deep 

biosphere of syntrophic degradation chain from HMW organic matter adapted to starvation of 

electron acceptor.  

(2) It’s better not be a ‘picky’ eater. 
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Under methanogenic conditions, potential metabolic energy through respiratory processes 

is severely limited. During incubation, release of DOC slowed down and net accumulation 

ceased with depleted sulfate, suggesting that the release of fresh DOM from sediment slowed 

down. Microbes tend to shift to assimilate former refractory DOM with inability of releasing 

organic carbon from solid phase. The ‘refractory’ humic-like compounds were rapidly 

transformed: the blue-shift of fluorescence spectra occurred. Consistently, FT-ICR MS analysis 

showed the production aromatics with less carbon and oxygen suggesting the mechanism of 

blue-shift of humic-like peaks by losing oxygen-containing functional groups and side chains 

as fluorochromes. Consequently, the microbial communities inhabiting the methanogenic layer 

benefit from the residues of microbial metabolism within the sulfate-reducing layer. Processed 

humic-like compounds in dissolved phase were more degraded. Although the microbes in 

methanogenic layer exhibit less capability in hydrolysis processes, they are not ‘picky’ and 

utilize the residue of humic-like compounds. 

 (3) Adapt to environmental conditions, e.g., heating 

The incubation under heated condition provided insight into the mechanism of heat-induced 

microbial metabolisms with contribution of abiotic processes in deep sediment including three 

steps (35-85°C): (1) fast abiotic release of the weakly-bound macromolecules from the solid 

phase; this process started at 35°C and increased with temperature; (2) slow abiotic 

decomposition of humic substances (mainly CHNO-N1,N2) to smaller molecules, it occurs at 

55°C and 85°C; (3) abiotic production of substrates for terminal mineralization, it plays a major 

role at 85°C. The higher temperature led to more production of molecule in low-molecular 

weight from abiotic processes and less dependency of metabolites produced after hydrolysis 

and fermentation. Thus, the higher the temperature is, the shorter the biotic degradation chain 

could be. It implied a life with a simpler carbon metabolism in achieving ‘food’ in thermal 

environment with less dependence on fermentation and hydrolysis by hydrolase.  

5.1.3   Implication for the carbon cycle in subsurface sediments 

Redox conditions and temperature affect the selectivity of degradation. As for the former, 

considering the important role of delta sediments in the carbon cycle, the redox regimes and 

the associated biogeochemical processes would influence the regional carbon and nitrogen 

cycle via preferential DOM released, consumed, and ultimately shape the composition of 
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carbon preserved in the coastal sediments. In the deeply buried, heated sediments, the abiotic 

decomposition produces acetate for terminal mineralization from organic matter. The 

compounds sensitive to heating could be preferentially utilized and escape the preserved carbon 

pool. The recalcitrant organic matter – humic substances are mobilized and become accessible 

to microbial carbon cycling. Thus, heat induced an accelerated shunt of preserved carbon into 

two pools: one is favorable for microbes, while the other one is a more refractory reservoir for 

long preservation of carbon. In sum, the interactions of DOM and microbes indicate a varying 

microbial-drived carbon cycling and close interactions between biosphere and geosphere in the 

subsurface sediments. 

5.2 Outlook and limitations 

There are several open questions remaining after completion of this thesis. It is not clear 

what the intrinsic reason is for varied selectivity of organic compounds under different redox 

conditions. The first possibility might be the shift in the microbial community. For example, 

under sulfate reducing conditions, the terminal mineralizer are sulfate-reducing bacteria, while 

under methanogenic condition it is methanogenic archaea. These microbes along with their 

syntrophic community partners might exhibit different affinity to various types of organic 

matter. A second possibility might come from the energy limitation: different energy yields 

depending on electron acceptors might be one of the driving factors for the change of pathways. 

As for the terminal process, the energy produced from methanogen is less than that from sulfate 

reduction with same amount of acetate. The initial steps – hydrolysis of the biopolymers 

necessitate high amount of energy. The Gibbs free energy for all the steps is required to be 

calculated to verify the second possibility. 

Besides, particular monomers or functional groups for abiotic acetate production are not 

clear and remain to be examined in the future studies. It is interesting and remains to be 

quantified that the potential contribution of acetate or H2 production under geothermal 

condition in formation of methane in subsurface sediments under more reduced environments. 

More work is needed before the principal findings of this PhD thesis can be transferred to 

other marine sedimentary settings. For the impact of heating, this study should be less 

implicative for environments with many fresh biopolymer fragments, the substrates produced 
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from biotic process might be enough for the luxious production and turnover of hydrolase at 

high temperature and the contribution of abiotic processes might have less impacts on the 

degradation of organic matter in these environments.
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