Longterm Generalized Actions for

Smart, Autonomous Robot Agents

Jan Winkler

Copyright(© 2017

A Dissertation Presented to the
FACULTY 3
UNIVERSITY OF BREMEN, GERMANY
In Partial Fulfillment of the
Requirements of the Degree
Dr.-Ing.

(Doctor of Engineering)

Committee:

Prof. Michael Beetz Computer Science

Prof. David Michael Lane Engineering

Date of doctoral defence: 5th of February, 2018

Jan Winkler

Affidavit

I hereby confirm that my thesis entitled “Longterm Generalized Actions for Smart, Autonomous
Robot Agents” is the result of my own work. I did not receive any help or support from
commercial consultants. All sources and materials applied are listed and specified in the thesis.

Furthermore, I confirm that this thesis has not yet been submitted as part of another exam-
ination process neither in identical nor in similar form.

Eidesstattliche Erklarung

Hiermit erklére ich an Eides statt, die Dissertation “Longterm Generalized Actions for Smart,
Autonomous Robot Agents” eigenstindig, d.h. insbesondere selbstindig und ohne Hilfe eines
kommerziellen Promotionsberaters, angefertigt und keine anderen als die von mir angegebenen
Quellen und Hilfsmittel verwendet zu haben.

Ich erkldre auferdem, dass die Dissertation weder in gleicher noch in &hnlicher Form bereits
in einem anderen Priifungsverfahren vorgelegen hat.

Signature / Unterschrift

il

Acknowledgements

I would like to express my special appreciation and thanks to my advisor Professor Michael
Beetz, PhD. You have been a tremendous mentor for me. Your vision and seemingly endless
optimism have greatly inspired me, and your advice changed the way I see the field of robotics.
I would also like to thank Professor David Michael Lane for serving as my committee member.
I am honored that he co-examined my thesis.

I would especially like to thank Ferenc Béalint-Benczédi for the great collaboration through-
out the whole time, and for lending his expertise in image understanding. Without him, many
aspects of my work would have lacked vision. Also, I thank Lorenz Md&senlechner and Moritz
Tenorth for introducing me to CRAM and KnowRob, and for patiently answering my countless
questions concerning both. Furthermore, I thank Mihai Pomarlan, Georg Bartels, Zhou (Yuen)
Fang, Daniel Nyga, Daniel Bessler, Alexis Maldonado, Gheorghe Lisca, Jan-Hendrik Worch,
and Gaya Kozhayan for many fruitful discussions and for their invaluable comments on this doc-
ument. You did a great deal to help me when I was stuck and brought new ideas to my attention.

Last but not least, a special thanks to the institute’s management and secretariat for the great

constant support. The institute rests on your shoulders, and you do a great job keeping every-
thing up and running.

iii

v

Dedication

To my parents for all their love and support and putting me through the best education possible.
I appreciate their sacrifices and I would not have been able to get to this stage without them.

To Rebekka for her support, patience, and unending love, and for putting my head right again
more than once. I would not have gotten through this doctorate if it was not for her.

Table of Contents

Affidavit / Eidesstattliche Erklirung

Acknowledgements

Dedication

List of Tables

List of Figures

List of Algorithms

List of Acronyms

Abstract

Zusammenfassung

Chapter 1 Introduction

1.1 Motivation.
1.2 Research Scenario
1.3 The Challenge
1.3.1 What is the Challenge?
1.3.2 Why is it interesting? Why is it important?
1.3.3 Why is it a hard problem? Why has it not been solved yet?
1.4 Approach
1.5 Contributions oo

1.6 Reader’s Guide

iii

x1

xii

xXiv

XV

xvii

Xix

11

vi

Chapter 2 Related Work

21

2.2

2.3

Planning and Robot Architectures,
2.1.1 Robot Plan Design and Behavior Control
2.1.2 Classical Planning Approaches
2.1.3 Robot Architectures
Behavior
2.2.1 State Automata Lo
2.2.2 Task Networks L
2.2.3 Behaviour Trees L
Autonomy e e e
2.3.1 Episodic Memories in Autonomous Systems
2.3.2 Vague Task Execution in Real World Scenarios

2.3.3 Longterm Autonomy

Chapter 3 Overview and Foundations

3.1
3.2

3.3

Generalized Plan Design and Representation for Robots
Data Logging and Learning from Episodic Memories
3.2.1 What are Robot Episodic Memories

Embodiment of Autonomous Robot Control Programs

Chapter 4 Generalized Plan Design and Representation for Robots

4.1

4.2

4.3

Principles of Generalized Plan Design
4.1.1 Action Description vs. Goal Definition
4.1.2 Knowledge-based Strategy Selection
4.1.3 Experience-based Behavior Enhancement
4.1.4 Implicit Modular Task Recovery
CRAM as a Robot Plan Language
421 Robot Plan Design
4.2.2 Representing Robot Plans: Behaviour Trees
Mobile Manipulation
4.3.1 Common Tasks for Mobile Manipulators
4.3.2 Overcoming Space Constraints when Accessing Containers

4.3.3 Task Stability: Pre- and Post-Poses in Robot Manipulation

13
13
13
14
14
15
15
15
15
16
16
16
17

19
19
19
20
21

23
23
25
25
27
28
29
32
33
34
35
38
39

vii

4.4

4.5

4.3.4 Plan Design for Reactive Task Monitoring in Mobile Manipulators

4.3.5 Example: Autonomous Object Search Tasks

4.3.6 Example: Autonomous Fetch Tasks

Contextual Knowledge in Autonomous Robot Agents

4.4.1 Contextually Constraining Generalized Plans

4.4.2 Static and Dynamic Knowledge

Planning for Generalized Fetch and Place Activities

4.5.1 An A"-based Planner for Generalized Actions

4.5.2 Example: Re-arrangement of Objects in Retail Shopping Racks

4.6 Context-dependent Failure Handling Strategy Selection

4.7

Summary

Chapter 5 Data Collection and Experience-Based Learning

5.1
5.2
5.3
5.4

5.5

0.6

0.7

0.8

9.9

Performance Enhancement through Experience

Machine Learning oL

Methods in AI based Robotics

Anatomy of Episodic Memories

54.1 How Episodic Memories are Recorded

Generating Experience Models from Episodic Memories

5.5.1 Expectation Models: Task Outcome Prediction

5.5.2 Prototypical Experiences: Informed Strategy Exploration

Multi-modal Analysis of Robot Experiences

5.6.1 Approach and Comparison

5.6.2 Multi-modal Data Analysis

5.6.3 Evaluation. e

Learning PDDL Domain Knowledge from Experience

5.7.1 Identifying PDDL Actions from Experience,

Automated Experiments for Data Collection

5.8.1 Requirements for Experiment Scenarios

5.8.2 AutoExperimenter: A tool for generating meaningful data

5.8.3 Adaptation to other Scenarios

Summary

39
40
41
42
43
44
45
46
46
48
49

51
51
52
52
53
5%)
o7
o7
65
70
70
71
72
73
74
76
77
7
80
80

viii

Chapter 6 Embodiment of Autonomous Robot Control Programs 83

6.1 Failure Handling and Recovery in the Real World 83
6.1.1 Exhaustingly Repeating Actions as most Naive Handling Strategy 86
6.1.2 Global Failure Taxonomy 87
6.1.3 Uncertainty for Mobile Robots in the Real World 88

6.2 Raw Interfaces to the External World 90
6.2.1 ROBOSHERLOCK: Semantic Perception 91
6.2.2 Movelt!: Abstract, Constrained Motion Planning 91

6.3 Translating Symbolic and Subsymbolic Information 93
6.3.1 Perception Queries and Results 0oL 93
6.3.2 Motion Planning Queries and Results 93

6.4 Maintaining a Dynamic Planning Scene for Manipulation. 96

6.5 Navigation in Semantically Known Environments 97

6.6 Summary e e e 98

Chapter 7 Evaluation 99

7.1 Experiment Scenarioo 99
7.1.1 Experimental Data Lo 101

7.2 The Role of Generalized Plans 102

7.3 Imsights about what did not work L. 105

7.4 Automated Experiments 107
7.4.1 Simulated vs. Real Experiments 108

Chapter 8 Conclusion 109

8.1 The Need for Abstract Activity Descriptions 109
8.1.1 Human Household Scenarios 109

8.2 Summary of the Approach 109
8.2.1 Discussion 110

8.3 Future Research 111
8.3.1 Significant Amounts of Episodic Memories on Real Robots 111
8.3.2 Plan Verification for Generalized Plans 111
8.3.3 Generalizing over Multiple Domains 111
8.3.4 Experience Transfer between Different Robots 112

1X

8.3.5 New Machine Learning Methods

Appendix A Research Platforms

A.1 The Willow Garage PR2: A Capable Mobile Manipulator

A.2 Gazebo: Simulation-based Manipulation
Appendix B Plans
Keyword Index

References

113
113
114

115

117

119

1.1
1.2

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3

6.1
6.2

7.1
7.2
7.3

List of Tables

Preferences of individual meal participants)
Meal object characteristics 5
Components contained in an Episodic Memory 20
Atomic action primitives for mobile manipulation 0L 35
Common types of static and dynamic information 45
Action primitives for re-arranging shopping rack oL 47
Action weights for re-arranging shopping rack, 48
Most prominent SEMREC RPC calls 56
Example training data for decision trees L oL 61
Implemented Plan Scoring Methods 69
Dimensions for categorizing robot plan failures 86
Symbolic and subsymbolic uncertainty types 89
Resulting set of fetch and place tasks 101
Numerical analysis of 425 experiments 103
Ignoring flow control operators helps generalizing experience models 106

x1

List of Figures

1.1 A PR2 robot picks items from a refrigerator 2
1.2 Precise environment knowledge is an enabler for reasoning-intensive tasks 2
1.3 Example situation from table setting experiments 3
1.4 Impression of the experiment kitchen environment and areamap 4
1.5 Table seat structure 5
1.6 Decision models improve over time through variation 8
1.7 Example analyses from aggregated Episodic Memories 9
1.8 Object picking scenes: From drawer, fridge, full table 9
3.1 Architecture model separated by main entities 20
3.2 Governing architecture of the presented topics 21
4.1 Trade-off between specialized and Generalized Plans 24
4.2 Action Description vs. Goal Definition 26
4.3 Schematics of hierarchical, modular plan elements 29
4.4 Step-wise generalization of action descriptions 0L 30
4.5 Designator driven grasp strategy decisiono 30
4.6 BT representation of simple plan o000 31
4.7 Individual CRAM language elements represented as BT constructs 34
4.8 Common tasks for mobile manipulation robots 36
4.9 Opening containers under space constraints 38
4.10 Decision flow of grasping an object oL 45
4.11 Architecture overview of modified A planner 46
4.12 Planning representation for shopping rack re-arrangement 47
5.1 Task tree for “serve milk” and fitting concept ontology 03
5.2 Example task tree visualization of recorded experience 55
5.3 Structure and Content of a single EM instance 58
5.4 The architecture of a robot’s prediction capabilities, based on ExMods. This
figure highlights their distinct role in the overall architecture. 59
5.5 Combining different EM task trees into a compound model 60
5.6 Virtual branches for unknown task types in ExMods 64
5.7 Architecture embedding Prototypical Experiences 66
5.8 PEofafetchand placetask L o 66
5.9 Example of PEs based strategy generation 68
5.10 Calculation of confidence intervals for expected task time consumption 69
5.11 Processing pipeline for Multi-modal Analysisof EMs 70
5.12 Probability distributions for successful grasping learned from EMs 73
5.13 Architecture overview for cascaded planning and learning from experience 74
5.14 Task tree of a robot experience Lo oo 76
6.1 Failure Taxonomy oL 87
6.2 Object information encoded in KNOWROB 94
6.3 Relevant coordinate systems for grasping an object 95

xii

7.1
7.2
7.3
7.4
7.5

Al
A2

B.1
B.2
B.3
B.4
B.5

Problem inference for Mary as the only guest on a Wednesday breakfast 100
Selection of final experiment states oL oL 101
Reiteration of Figure 5.12 o 102
Composition of hierarchical generalized plans 104
Typical phases during table setting 104
The Willow Garage PR2 Robot and one of its grippers 113
Different manipulation tasks as performed by a PR2 in the Gazebo simulator . . 114
Behavior Tree version of a simple CRAM grasping plan 115
Behavior Tree version of a monitoring plan. 115
Behavior Tree version of a search object plan 116
Behavior Tree version of a fetch object plan 116
Behavior Tree version of a simple object grasping plan 116

xiii

List of Algorithms

5.1 Plan definition macro that adds logging capabilities o7
5.2 Simple plan for annotating RTPs during a decision making process 60
5.3 Task Tree Generalization 61
5.4 Decision tree from Episodic Memories 0oL 62
5.5 Example plan using the choose operator 63
5.6 Computing Task Result Probabilities 64
5.7 Inverted decision tree for choosing parameters using the choose operator 65
5.8 Recursively creating Prototypical Experiences 67
6.9 Example CRAM grasping code 84
6.10 Concurrently monitored object transport task 85
7.11 Problem generator for table setting tasks o000 100

Xiv

List of Acronyms

ADL Action Description Language

AE AutoExperimenter

AT Artificial Intelligence

AMCL Adaptive Monte Carlo Localization

AR Augmented Reality

AUV Autonomous Underwater Vehicle

BDI Belief-Desire-Intention

BT Behaviour Tree

CAD Computer Aided Design

CRAM Cognitive Robot Abstract Machine

CV Computer Vision

CWA Closed World Assumption

DOF Degree of Freedom

DSL Domain Specific Language

EM Episodic Memory

ExMod Expectation Model

FSM Finite State Machine

GPS General Problem Solver

HTN Hierarchical Task Network

IK Inverse Kinematics

JSON JavaScript Object Notation

MMVG Mixed Multivariate Gaussian Distri-
bution

MVG Multivariate Gaussian Distribution

NPC Non-Player Character

OIR Object Identity Resolution

OMPL The Open Motion Planning Library

OWA Open World Assumption

OWL Web Ontology Language

PDDL Planning Domain Definition Language

PDM Point Distribution Model

PM Process Module

PTU Pan/Tilt Unit

PE Prototypical Experience

RANSAC Random Sample Consensus

RAP Reactive Action Package

REP Reduced Error Pruning

ROS Robot Operating System

RPC Remote Procedure Calling

RTP Relevant Task Parameter

SBCL Steelbank Common Lisp

SEMREC Semantic Hierarchy Recorder

SIFT Scale-invariant Feature Transform

STRIPS STanford Research Institute Prob-
lem Solver

SVM Support Vector Machine

TCP Tool Center Point

TF The Transform Library

UAYV Unmanned Autonomous Vehicle

UIMA Unstructured Information Manage-
ment Architecture

YAML Yet Another Markup Language

XV

xvi

Abstract

Creating intelligent artificial systems, and in particular robots, that improve themselves just like
humans do is one of the most ambitious goals in robotics and machine learning. The concept
of robot experience exists for some time now, but has up to now not fully found its way into
autonomous robots.

This thesis is devoted to both, analyzing the underlying requirements for enabling robot
learning from experience and actually implementing it on real robot hardware. For effective
robot learning from experience I present and discuss three main requirements:

(o) Clearly expressing what a robot should do, on a vague, abstract level
I introduce Generalized Plans as a means to express the intention rather than the actual
action sequence of a task, removing as much task specific knowledge as possible.

(o) Defining, collecting, and analyzing robot experiences to enable robots to improve
I present Episodic Memories as a container for all collected robot experiences for any arbi-
trary task and create sophisticated action (effect) prediction models from them, allowing
robots to make better decisions.

(o) Properly abstracting from reality and dealing with failures in the domain they occurred in
I propose failure handling strategies, a failure taxonomy extensible through experience, and
discuss the relationship between symbolic/discrete and subsymbolic/continuous systems
in terms of robot plans interacting with real world sensors and actuators.

I concentrate on the domain of human-scale robot activities, specifically on doing household
chores. Tasks in this domain offer many repeating patterns and are ideal candidates for ab-
stracting, encapsulating, and modularizing robot plans into a more general form. This way, very
similar plan structures are transformed into parameters that change the behavior of the robot
while performing the task, making the plans more flexible.

While performing tasks, robots encounter the same or similar situations over and over again.
Albeit humans are able to benefit from this and improve at what they do, robots in general
lack this ability. This thesis presents techniques for collecting and making robot experiences
accessible to robots and outside observers alike, answering high level questions such as “What
are good spots to stand at for grasping objects from the fridge?” or “Which objects are especially
difficult to grasp with two hands while they are in the oven?”. By structuring and tapping
into a robot’s memory, it can make more informed decisions that are not based on manually
encoded information, but self-improved behavior. To this end, I present several experience-
based approaches to improve a robot’s autonomous decisions, such as parameter choices, during
execution time.

Robots that interact with the real world are bound to deal with unexpected events and
must properly react to failures of any kind of action. I present an extensible failure model
that suits the structure of Generalized Plans and Episodic Memories and make clear how each
module should deal with their own failures rather than directly handing them up to a governing
cognitive architecture. In addition, I make a distinction between discrete parametrizations of
Generalized Plans and continuous low level components, and how to translate between the two.

Xvil

XViil

Zusammenfassung

Kiinstliche intelligente Systeme zu erschaffen, speziell Roboter, die sich nach dem Vorbild von
Menschen selbst verbessern ist eines der ambitioniertesten Ziele in sowohl der Robotik als auch
dem Maschinellen Lernen. Das Konzept von Robotererfahrungen existiert zwar schon seit einiger
Zeit, hat seinen Weg bisher aber noch nicht vollstdndig in die autonome Robotik gefunden.

Diese Arbeit ist beiden Aspekten gewidmet: Der Analyse der unterliegenden Anforderungen,
um Robotern das Lernen aus Erfahrung zu ermoglichen und der tatséchlichen Umsetzung auf
echter Roboter-Hardware. Fiir tatsichliches Roboter-Lernen aus Erfahrungen présentiere und
diskutiere ich drei Hauptpunkte:

(o) Eine klare Darstellung was ein Roboter tun soll, vage und abstrakt beschrieben
Ich stelle Generalisierte Plane (Generalized Plans) vor, die zum Ausdruck der Absichten
eines Roboters dienen und weniger der tatsidchlichen Aktionsabfolge, um sie zu erreichen.
Es wird so viel aufgabenspezifisches Wissen wie mdoglich entfernt.

(o) Definieren, sammeln und analysieren von Robotererfahrungen, um Robotern zu ermdglichen,
sich zu verbessern
Ich prasentiere Episodische Erinnerungen (Episodic Memories) als Aggregat fiir alle gesam-
melten Robotererfahrungen zu einer Aufgabenstellung. Basierend darauf erstelle ich aus-
gekliigelte Pradiktionsmodelle, die einen Roboter bessere Entscheidungen treffen lassen.

(o) Abstraktion von der Realitit und der Umgang mit Fehlern in der Domdne, in der sie
aufgekommen sind
Ich stelle Fehlerbehandlungsstrategien auf, sowie eine Fehlertaxonomie, die durch Er-
fahrungen erweitert werden kann. Ich diskutiere auferdem den Zusammenhang zwis-
chen symbolischen/diskreten und subsymbolischen/kontinuierlichen Systemen in Bezug
auf Roboterpléne, die mit realweltlichen Sensoren und Aktuatoren interagieren.

Ich konzentriere mich auf die Doméne von menschnahen Roboteraktivitdten, speziell Haushalt-
sarbeiten. Aufgaben in diesem Bereich eréffnen viele sich wiederholende Muster und sind ideale
Kandidaten fiir Abstraktion, Kapselung und Modularisierung von Roboterplénen in eine allge-
meinere Form. Auf diesem Wege werden sehr dhnliche Planstrukturen in eine flexible Parame-
terform gebracht, die das Verhalten des Roboters wihrend der Ausfithrung veréndern kann.

Wiéhrend der Planausfiihrung begegnen Roboter immer wieder der gleichen oder dhnlichen
Situationen. Obwohl Menschen in der Lage sind, davon zu profitieren und sich in dem verbessern,
was sie tun, fehlt Robotern im Allgemeinen diese Fahigkeit. Diese Arbeit stellt Techniken
vor, um Robotererfahrungen zu sammeln und fiir sowohl Roboter als auch externe Beobachter
zugénglich zu machen. Es kénnen Fragen beantwortet werden wie “Von wo aus lassen sich Gegen-
stande gut aus dem Kiihlschrank nehmen?” oder “Welche Gegenstinde sind besonders schwierig
mit zwei Hinden zu greifen, wenn sie im Ofen sind?”. Durch Strukturierung und Zugénglich-
machen des Gedéachtnisses von Robotern konnen diese besser fundierte Entscheidungen treffen,
die nicht rein auf manuell eingebundenem Wissen basieren, sondern auf selbstverbessertem Ver-
halten. Zu diesem Zweck présentiere ich mehrere Ansétze zur erfahrungsbasierten Verbesserung
von Entscheidungsprozessen in autonomen Robotern, wie z.B. Parameterwahlen, wiahrend der
Planausfiihrung.

xXix

Roboter, die mit der realen Welt interagieren, miissen mit unerwarteten Ereignissen rechnen
und geeignet auf Fehler jeglicher Art reagieren kénnen. Ich prisentiere ein erweiterbares Fehler-
modell, das der Struktur von Generalisierten Pldnen und Episodischen Erinnerungen gerecht
wird und stelle klar, wie einzelne Module ihre eigenen Fehler behandeln sollten, bevor sie diese
an eine néchst hdhere Instanz weitergeben. Zusétzlich unterscheide ich zwischen einer diskreten
Parametrisierung von Generalisierten Plinen und kontinuierlichen, nierdigstufigeren Komponen-
ten, und wie zwischen beiden tibersetzt wird.

XX

Chapter 1

Introduction

“The key to good decision making is not knowledge. It is understanding.
We are swimming in the former. We are desperately lacking in the latter.”

— Malcolm Gladwell [39]

This thesis is dedicated to making autonomous robots able to robustly and efficiently perform
vaguely described tasks, and to learn from their experience to improve task success rates. To
this end, three major components are presented, discussed, and evaluated: The design and
representation of Generalized Robot Action Plans that very vaguely formulate what a task should
achieve. A framework for recording, semantically defining, and accessing robot experiences, or
Robot Episodic Memories from which vague Generalized Plans are improved and high level
questions about the tasks performed are answered. Episodic Memories represent all details of
a task, and allow reconstruction of every step the robot took. Embodiment mechanisms that
execute vaguely described tasks in the real world with the help of transparently added knowledge,
dealing with the (un-)foreseen failures encountered in mobile manipulation scenarios. Within the
context of Embodiment, another cross-functional topic is presented: Identifying known failures
from a failure taxonomy, or extending the taxonomy if new failures are encountered.

I discuss both, the conceptual groundwork and the actual implementation of all components.
With the results of my research, robots have access to prediction mechanisms driven by decision
trees or probability distributions learned from their experience. Their Generalized Plans can
automatically adapt to whether a parametrization was a good or a bad fit in the past, and can
on the fly choose a new strategy that fits the current situation. Robots that perform actions
using my Generalized Plans cover a wide range of situations as the plans describe the task’s
intention rather than an action sequence.

All examples are built around the topic of household robots in human-scale environments,
and center at the task of autonomously setting a meal table. After reading this thesis, the
reader will know what generality in robot action plans is, why generalized plans are superior to
specialized ones when learning is involved, and why this generality must be properly translated
when dealing with the real world by connecting vital low-level skills such as motion control and
perception. Furthermore, the reader will have a firm grasp on what Robot Episodic Memories
are, what information they hold, what kinds of questions they can answer, and what type of
models can be generated from them to improve robot behavior and action success rates.

1.1 Motivation

In my research, I focus on the area of today’s servcice robots. More precisely, I develop high
level control mechanisms for robots helping in the household, allowing them to get better over
time using experience. Figure 1.1 shows the robot which I use for my research — the Willow
Garage PR2 — while it is collecting items from a refrigerator. It also shows the same robot in
simulation, as I validate the functionality of all my robot action plans in simulation first. The
latter is also a great source for training data in machine learning, which I use to improve the
performance of robot plans.

In Figure 1.2 a situation from a supermarket shelf is shown. Items occlude each other, and
there is more than one of the items needed. Choosing the right one and moving others out of the
way requires knowledge, which my plans transparently add to whatever the robot is supposed
to do. The necessary low level functionality is also handled transparently, so the action plan
really only describes what the robot should do, not how to do it exactly.

2. Research Scenario

Figure 1.1: A PR2 robot picks items from a refridgerator. This requires knowledge about the
items to pick, the surroundings, the other items, and applicable motion constraints from the
task description and inherent task requirements (e.g. keep the bottle upright because its lid is
open). Also, all plans are executable in a simulated environment; next to testing, this is a great
source for machine learning data.

Figure 1.2: Precise environment knowledge is an enabler for reasoning-intensive plans. It does
not only store and infer correct object identities and poses, but also discovers multiple instances
of the item to pick — triggering decision processes.

All of my approaches are based on the archetype of human activities and how they improve:
Humans have the ability to learn from everyday tasks, and become very efficient at doing them.
I take this ideal and mix three elements to enable robots to do the same: Complex and rich
manipulation activities, longterm experiments to collect a large amount of experience from
these activities, and learning methods to produce meaningful, plan improving data from these
experiences. In human everyday activities, I exploit strong regularities: Shared actions between
different tasks, or repeatedly doing the same task with slight variations every time. Humans are
able to solve tasks very elegantly after doing them a number of times, even for very complex
actions. My research motivation thus is: How can this be achieved in robots? My research
is based on this sole question, which also defines my overall goal: Robots that do the same
household activity for two weeks should become much better at doing it afterwards. By learning
the ins and outs of the task, the robot becomes more flexible and robust through learning, and
effectively programs itself according to the tasks needs.

1.2 Research Scenario

As an experimental platform for describing my concepts and showcasing a possible implemen-
tation, I chose the activity of setting a meal table. The scenario’s environment, a kitchen, is
quasi-static and offers a wide variety of manipulation tasks for robots: Finding, picking and
placing human-scale objects, opening and closing doors and drawers, and navigating around
obstacles usually found in human homes.

Introduction

Context
| Tim || Monday ||Breakfast|
v
Meal Items
| Muesli || Coffee |
v
Arrangement

Cup

Milk Muesli O

Lol

Figure 1.3: Example situation from table setting experiments conducted in simulation. The
overall context is that Tim wants to have breakfast on a Monday. From background knowledge,
the arrangement shown above is inferred (left). The respective tasks are executed in simulation
(right).

=0
Spoon

Figure 1.3 depicts an example situation from the experiments I conducted in simulation.
Figure 1.4 shows an impression of the real laboratory kitchen environment used for experiments
and a top-down view of the area’s map, including some of the relevant semantically annotated
furniture. The environment holds a number of challenging details: (1) The accessible floor area
is concave, making 2D navigation more difficult. (2) The available containers feature horizontal
(fridge) and vertical (dishwasher) doors, as well as prismatic drawer joints. Each of the three
requires a separate strategy for opening and closing it. (3) The three countertops (sink area,
kitchen island, meal table) can be used for setting a table. They have different heights, and an
autonomous robot needs to be able to set a meal table on any of them.

The task of setting a meal table itself bears two main challenges: Acquiring the objects,
and actually arranging them on the table. Acquiring the objects includes searching for them at
hypothetical whereabouts, opening and closing containers on the way as necessary, and moving
obstructing objects out of the way. Arranging them includes taking into account the preferences
of the meal participants for whom the table is set, and finding suitable, free regions for putting
down the objects in an efficient way.

The table setting (and subsequent tidying up) task relies on a very vague task description,
filling in any missing information from static background knowledge, contextual hints, or expe-
rience. In the example scenario I constructed, the initial task parametrization is generated by
a task sampler that resolves a very vague context description into a concrete series of tasks an
autonomous robot can perform. The task sampler produces these based on who takes part in
the meal, whether it is a weekday or the weekend, and the type of the meal (breakfast, lunch,
dinner). Tables 1.1a and 1.1b depict the ground truth of the task sampler. Figure 1.5 shows
what a typical meal seat looks like, showing its different regions. Table 1.2 defines which part
of tableware goes where in that seat structure.

I chose the meal table setting scenario as it

(o) Features rich variations of repetitive tasks: Fetching objects with very different handling
requirements from various places in a kitchen and placing them at appropriate places on
a table. The task’s structure is very clear and encapsulated, making it a prime candidate
for generalization.

(o) Does not change structurally, but only from a parametrization point of view: This property

3. The Challenge

oven sink_area_counter_top ‘ fridge

drawers dishwasher

1 1 1 I I] |

<

(0, 0) 1.0m

kitchen_island_counter_top

dog-1ogunoo-oyqes estr

Figure 1.4: Impression of the experiment kitchen environment (left) and map of the relevant
area, including furniture (right).

makes it an ideal subject for learning from experience. Predicting success of strategies
and parameters for parts of the task, using experience data and the current context, are
perfectly suited for this kind of scenario. Fetch and place can be modeled as an open-ended,
repetitive scenario and can thus be used for longterm robot experiments.

(o) Requires proper translation of abstract plans in real actions, based on the environment’s
and the task’s needs: Although not explicitly described in its plans, a robot has to properly
execute every abstract action on real objects in a real environment.

1.3 The Challenge

To position the research presented in this thesis, in this section I discuss what the challenges
of my research area are, why they matter, and why they have not been solved before. To put
the challenges in perspective, I give a number of concrete examples of situations that are very
difficult or even impossible to solve for current robot control programs without additional help
or information.

1.3.1 What is the Challenge?

The main challenge I address in my research is the execution of robot manipulation activities
of natural complexity and variability, in particular fetch and place tasks in human household
environments. At the same time, this execution must result in the collection of experience about
the task — in all its detail. The most difficult aspect of this topic is to properly translate very
vague task descriptions in actionable items a robot can perform in the real world — flexibly,
robustly, and efficiently. These activities must be executed over long periods of time in poten-
tially unknown environments. This should result in representative collections of experiences that
properly reflect what a robot did, when it failed, and why.

Introduction

Person Day Time Meal Meal Required Objects
Breakfast Muesli, Coffee Bowl
Workday Lunch Eats out . Spoon
Tim Dinner Bread Muesli Muesli Box
Breakfast Muesli, Coffee Milk Box
Weekend Lunch Fish Bowl
Dinner Bread Soup Spoon
Breakfast Bread, Coffee Coffee Cup
Workday Lunch Soup Tea Cup
Mary Dinner Bread Bread Plate
Breakfast Muesli, Tea Butter Knife
Weekend Lunch Fish Fish Plate
Dinner Bread Fish Knife

(a) Participant Meal Preferences (b) Meal Tableware Requirements

Table 1.1: Preferences of meal participants and required objects for serving individual meal
types. The preferences change based on the day of the week and on the time of the day.

Back/ . Back/ Object Place

Left ack Right
Bowl Center
Spoon Left
Cup Right, Back

Center .)

ke Area Right Plate Center
Butter Knife Left
Fish Knife Left

Table 1.2: Objects used for setting a meal table.
They have designated places where they need
to be placed relative to the participant’s seat.
Unmentioned objects can go anywhere free.

Figure 1.5: Named areas relative to
a meal participant’s seat, divided se-
mantically: Left, right, front, back,
and combinations thereof.

A robot needs a large deal of knowledge to decide how to act robustly and efficiently: How
to identify an object, how to grasp it properly, what to take into account when putting it down
again, and how to react if any of these steps fail. The knowledge gap for robots starts at a very
basic level: Where to stand in order to reach an object, which part of the object to grasp, and
how much space is necessary when putting it down again. Neither exists a common database of
these details, nor are they so obvious that a robot can infer them on the fly, in general making
informed decisions from static knowledge included in a robot action plan practically impossible.

Humans easily solve a large number of very complex tasks. We do not only do this when
everything works, but can on the fly deal with a large amount of variations and problems that
arise. The questions that surface now are: How can robots be enabled to do the same? What are
the steps a robot needs to take to make everything alright, despite unexpected events? While
the former is the larger research question covered in this work, the latter can be exemplified well
using very basic (mobile) manipulation skills:

(o) Put a plate on the table: Fetching a plate from one place and placing it on a certain table
— Find out where plates are: What is the environment map of where objects (or object
classes) are located; if no plates can be found, a suitable substitute must be identified

— Find a way to get to that place: Which path to take, how to evade obstacles

— Make the plate accessible: How to open any closed containers that (might, if no
specific location is known) contain a plate (requires knowledge about handles and

3. The Challenge

joints, and how to use them); what to do if the plate is obstructed by other objects

— Identify the plate: Which plate matches the context (dinner plate, dessert plate);
requires knowledge about what plates look like and what purpose they serve

— Pick the plate: Where to stand in order to reach the plate; which arm to use; what
parts of the plate are graspable; what is the collision environment of the containing
furniture; what is the model of the plate

— Transport the plate to the destination: How to hold the plate along the way; which
instance of “table” must the plate be placed on; how to get to that table

— Placing the plate on the table: What to do if there is no space on the table; where
exactly must the plate be placed

(o) Serve a glass of water: Pouring water from a container into a glass

— Position yourself to reach both, the source container and the target glass: What is
the reachibility of the robot’s arms; which arm is used for pouring; where to stand

— Grasping the source container: Where is the object graspable; what parts are the
opening used to pour from

— Determine how much to pour: How much can the target container hold; how much
is in the source container; what is a appropriate amount to serve

— Pouring the liquid: Where to position the source container; what angle to use to
pour; what are the dynamics of water while pouring; when to stop tilting and thus
stop pouring

Both examples show: A robot needs a fair deal of knowledge that depends on both, the context,
the expectations of the person ordering the task, and the circumstances in which the task is
done. For a robot to make everything alright when ordered to perform a task, static plans and
a limited static knowledge base does not suffice — and if unexpected interruptions and failures
occur, even more knowledge, robustness and flexibility are required.

To implement the above characteristics and overcome the current challenges described, a ma-
jor requirement is a robot plan language with a suitable level of expressiveness. This language
must be able to cover all three areas: abstract descriptions of tasks, meta programming capabil-
ities for transparently augmenting plans with experience collection and usage mechanisms, and
a mature failure propagation and handling mechanism.

1.3.2 Why is it interesting? Why is it important?

Fetch and place activities are a very important topic in robotics, as robust and efficient fetch
and place skills allow a robot to abstract away from the actual environment it operates in. They
are used as building blocks for more complex behavior — thus it is this knowledge intensive
abstraction that makes them valueable, but also very difficult to perform in real world settings.
At the same time, they are a prime candidate for experience based learning, as their structure
is mostly fixed, and their parametrization depends on factors shared between use-cases: What
is the object to be grasped, where is it, how should it be grasped, and what are the relevant
obstacles in the environment.

With the above problem solved, robots would only need a very crude description of how
to perform a task. They would then repeat it over and over again, in a multitude of variable
situations, and collect lots of experience on the way. They would then get better at each and
every try, and eventually master the task. With their collected experiences, they could even
explain under which circumstances a task is feasible and make predictions about their own
chances for success — which in turn speeds up tasks and reduces fatal failures. Robots would
then be able to act more flexibly, robustly, and elegantly, and get closer to the expectations
humans have of their actions.

Introduction

1.3.3 Why is it a hard problem? Why has it not been solved yet?

The more generic and abstract a task becomes, the less concrete information about how to do it
is known per se. A generic object fetch activity would contain just enough information to identify
what to do — and in no way how. An autonomous robot needs to add all extra information for
grounding the vague task in its current environment, and for figuring out how to execute the
single steps it needs to take. Thus for a robot “fetch me a glass of water” is much more difficult
than “pick an empty glass from the kitchen cabinet, fill it with water from the tap, and bring it to
me”. These vague descriptions can easily lead to ambiguities that the robot needs to resolve in
a trial-and-error fashion. Robots in general lack the ability to draw from experience to foresee
when a decision leads to bad results. Even when the right decision was made, unforseen events
(dropping an object, knocking it over, a path being blocked, having no space to put down an
object) can interrupt the robot’s activity. The most difficult aspects in this problem are:

(o) The proper definition of vague task descriptions, leaving out all task and domain specific
knowledge, and the transparent addition of necessary knowledge when executing them

(o) Collecting and analyzing robot experiences over long periods of time, and improving a
robot’s decision-making process through them to increase the overall task success rate,
making it able to semantically answer high level questions about whay it did, why it did
it, and what went wrong

(o) Properly detecting and handling foreseen and unforeseen failures in the real world, and
adapting the task strategy accordingly

These points pose a number of research challenges in themselves, which is why they have
not been solved before. Robot programming languages oftentimes directly connect the plan
and the execution view of a task, resulting in rather specialized plans than does not generalize
well. Based on this, collected robot experiences map onto the concrete, specialized plans — and
not on the more generic, abstract intention of the task. The missing separation between the
different layers also leads to failure detection and handling being a direct part of the plan itself:
Even low level failures or failures in sub plans (like fetching a glas when setting a table — no
glas was found in the cabinet) are handled by the specialized plan version. This again breaks
the separation between abstract failures and concrete problems in the environment the plan is
embodied in by the robot.

1.4 Approach

In this thesis I present my research on the design of a smart, robust plan- and experience-
based robot control architecture that allows longterm autonomy and experience-based learning.
To this end, I lay the conceptual groundwork for static knowledge-based robot plans and equip
them with extensive failure-handling capabilities and task-knowledge. Robots that perform tasks
using my plans collect Episodic Memories of their doings. These memories — or experiences
— enable the robots to predict what will happen next, to choose proper parametrizations for
their actions in order to succeed, and to plan ahead which steps are helping them to achieve
their goals. From experience, they can semantically answer abstract questions such as “what did
you do”, “why did you do it”, and “what went wrong”. Ultimately they improve at what they
do by continuing to do it, through experience and an evolving intuition. This process is shown
in Figure 1.6: Based on what went well and what did not work, a robot forms and improves
models predicting its own success, learning from its failures and preventing future ones.

I define robot plan language elements for describing tasks as abstractly as possible, and
move the actual embodiment and handling of real world failures into a completely separate
conceptual layer. This way, my plans convey only their actual intentions, as free as possible
from implementation, hardware platform, and environment details.

4. Approach

| Grasp Cup | —>| Grasp Cup | —>| Grasp Cup | —>| Grasp Cup |

Context Context Context Context
| Distance = 0.7m | | Distance = 1.2m | | Distance = 0.7m | | Distance = 1.2m |
| Angle = 12 deg | | Angle = -20 deg | | Angle = 12 deg | | Angle = -20 deg |
I I I I
Parameters Parameters Parameters Parameters
Arm = Left		Arm = Right		Arm = Right		Arm = Right
Grasp side = Front	Grasp side = Front	Grasp side = Right		Grasp side = Left		
Success		Unreachable		Success		Unreachable
Improves Improves Impioves						
v T~ ¥ T ¥ T~ v						
Decision Tree A l—	Decision Tree B l—	Decision Tree C l—	Decision Tree D			
” . " "Too far away and the "Right arm works when "Right arm does not work
Everything works right arm does not work" grasping from the right" from the front or left

when too far away and
angle wrong"

Figure 1.6: Through experiencing different variations of the same task, the decision models of
the executing robot improve over time.

I must put special emphasize on the fact that task intelligence (or competence) does not come
from nowhere. We build and program robots for purposes manifested in our own needs, namely
we want them to do tasks for us exactly as we expect each other to do them, or better. Thus, in
this thesis I does not let robots bootstrap core abilities or well-understood task knowledge. A
robot’s behavior is based on a solid, manually written plan that acts as a heuristic prior — and
with experience, the robot gets better at it and changes the plan’s parameters, adapting to the
task’s needs, and mastering the task itself. That said, a primitive heuristic starter plan does not
nearly cover all necessary situations. In my experiments, common problems for the uninformed
robot were:

(o) Not knowing where objects usually are located: The task took very long and had a rather
high probability of failure as all locations had to be searched in an arbitrary order.

(o) Not knowing where to stand in order to properly grasp an object: Without experience
models that dictate good locations to stand at, the robot in my system relied on a linear
gaussian distribution around the object to grasp, often repositioning itself before actually
being able to reach it.

(o) Not knowing where placing an object fails more often: Given a degree of freedom when
placing an object, the robot often chose angles or positions on the table that were syntac-
tically correct, but were situationally unreachable.

These problems were remedied when the experience of the robot grew, but even with a
heuristic prior plan, bootstrapping its parametrization needs these failure experiences to actually
develop expertise.

Throughout the whole thesis, I concentrate on the broad area of autonomous mobile ma-
nipulation, and more particularly on robots that perform tasks in human households. Tasks in
households are well-understood and we have a definite set of expectations about what tasks are
important, how they should be done, and what is contextually appropriate to achieve them. To
explain my concepts in a real world scenario, I exemplarily chose the activity of setting a meal
table which I already introduced in Section 1.2.

To give the reader an idea of my work’s results, Figure 1.7 shows an example data analysis of
aggregated travel paths of the same task, as well as the multivariate mixed gaussian distribution

Introduction

sink area.counter_top (il
T g i i — E—
Y
L "
1.0m
kitchen.islandcounter_top a_
g
:
& [
8

Figure 1.7: Example analyses from aggregated Episodic Memories: Aggregated travel paths
during execution of the same task in multiple instances, and multivariate mixed gaussian distri-
butions over places a robot stood at while it was grasping successfully.

Figure 1.8: Picking objects in different situations: Objects can be stored in drawers or fridges
that need to be opened and that act as collision objects; places can be crowded with objects,
and every detected object needs to be identified, and accounted for during collision checking.

over places a robot stood at while grasping objects. The former is used for predicting the
probability of passing along other interesting areas, while the latter is used for predicting good
places to stand at for grasping.

1.5 Contributions

In my research, I focus on the design of Generalized Plans that record, and make use of robot
Episodic Memories (EMs) to improve their own performance [103]. To alleviate the challenges
described above, I introduce design principles and language constructs for generalizing robot
action plans. My considerations give them semantic meaning to allow a robot to reason about the
plan’s role during its current task, and enable the ability to transparently make use of external
knowledge sources and the current context as sources of information. I present my findings
in Chapter 4: Generalized Plan Design and Representation for Robots in which I introduce
requirements for plans to be considered generalized, identify and decompose common tasks
in mobile manipulation, and pinpoint how generalized plans deal with vague parametrizations
— especially using experience. Additionally, I describe the various knowledge sources that
robots can be parametrized from, and give a case in point for planning using the identified
common manipulation tasks. My main contribution in terms of Generalized Plan Design and
Representation thus is:

(o) Design Principles for Generalized Robot Plans for supporting Modularity,
Knowledge integration, and Recovery in Autonomous Behavior

(o) Encapsulating and separating plans by semantic meaning (for mobile manipulation)
(o) Transparently accessing knowledge sources, including the task’s context

5. Contributions

(o) Hierarchically organizing plans for modular recovery and proper context composition

To validate my Generalized Plans, I execute the same abstract plans in two different scenar-
ios, namely on a real PR2 in an actual kitchen environment, and in a simulated version of the
kitchen with slightly different semantics. Additionally, I generate a large number of variations
for the latter and let the same generic fetch and place plans set a meal table over and over again.
Since the actual execution in both environments is handled by low level modules that specialize
on the respective environment, the qualitative behavior based on the Generalized Plans should
be the same. My experiments show that this indeed is the case, and variations only happen
during parametrization of the low level skills, while showing comprehensible, expected behavior
of the executed high level task.

Both, the result from and the input to Generalized Plans is data contained in Episodic
Memories [105] recorded while performing robot actions. In Chapter 5: Data Collection and
Experience-Based Learning 1 introduce these memories themselves and how they benefit Gen-
eralized Plans through action effect prediction and informed guessing of good task parameters.
Robot Episodic Memories allow access to all past decision-making processes and their perceived
effects. Aggregated, longterm collected amounts of Episodic Memories allow to generalize over
the executed tasks and identify common patterns, or outliers in parametrizations that impact the
task’s success rate. In the designated Chapter, I go into detail about how to generate experience
models for predicting the success of symbolic task parameters, and how multivariate gaussian
mixture models are generated for finding suitable parameter ranges for continuous parameters.
Additionally, I describe how PDDL domains can be extended automatically through learning
from experience and automated classification of tasks. My main contribution in terms of data
collection and behavior improvement thus is:

(o) Robot Behavior Improvement from Longterm Experience-based Learning using
Episodic Memories

(o) Acquiring Episodic Memories that fully reflect the executed task’s structure and con-
tain all decision-making processes and their perceived effects

(o) Interpreting Episodic Memories by semantically accessing them and answering high
level, abstract questions about the task from the robot’s point of view

(o) Learning from aggregated Episodic Memories by forming prediction models and robot
facilities for informed parameter guessing to improve task success based on longterm
experience collection

To validate the content of the collected Episodic Memories, I inspect the experience models
generated from aggregated memories. Their content shows the provided knowledge gain. If their
content (which is human-readable: decision trees with nominal classes, gaussian distributions
over good places to pick up objects, etc.) reflects the intrinsics of the executed task and the
environment it was performed in, the underlying experience data must be correct.

Autonomous robots must act flexibly and robustly enough to translate their vague task de-
scriptions into proper physical actions in the real world [101]. Humans can perform marvelously
complex tasks from a very abstract description — even despite unexpected interruptions, wrong
information, and the plain need to find an alternative solution to what we want to achieve. To
date, this is a major challenge for robots that lack both, a proper intuition and the skills needed
to properly react to the real world’s difficulties. In Chapter 6: Embodiment of Autonomous
Robot Control Programs I present my approach to abstract vague plans away from actual robot
actions. For the chapter’s main part, I introduce and discuss two of my research topics: Failure
handling and recovery for known and for unknown failures, and the implicit translation between

10

Introduction

discrete parametrizations of plans and continuous parametrizations of sensor and actuator sys-
tems. Finally, I discuss common issues that autonomous robots have to deal with in the real
world. My main contribution in terms of autonomous robots in real world scenarios thus is:

(o) Embodiment of Autonomous Robot Control Programs through Sensor/Actu-
ator Abstraction, Failure Categorization, Experience-based Skill Improvement

(o) Low level skill improvement through experience

(o) Failure categorization, handling, and recovery, supported by Episodic Memories that
form a global failure taxonomy

(o) Translation between discrete, abstract plan parametrizations and concrete real-world
sensor and actuator values

To validate the Embodiment layer of my architecture, I inspect the performance of my plans
in the real world, how they decide to enact vague instructions, and how well failure handling
performs. The Episodic Memories of all plan executions provide enough evidence about which
reason led to which decision and what failures were handled, and how. This indeed shows that
robust and flexible behavior stems at least in part from properly handling low level failures on
the respective module levels.

To exemplify my contributions, I developed fetch and place plans in which an autonomous
mobile robot sets a meal table. All topics, the generalized plans, the experience-based learning
that improves plans, and the embodiment of said plans in the actual scenario are explained in
detail in their respective chapters. Ultimately, I present vital elements of longterm fetch and
place manipulation activities on a Willow Garage PR2 robot using my developed components
in both, actual robot hardware (see Appendix A.1: The Willow Garage PR2: A Capable Mobile
Manipulator), and simulation (see Appendix A.2: Gazebo: Simulation-based Manipulation).

1.6 Reader’s Guide

This thesis is structured as follows. Chapter 2 gives an outlook of related work and already
existing approaches to adjacent research problems. In Chapter 3, an overview of my overar-
ching system architecture is presented and each of the three main component-centric chapters
is introduced. Chapter 4 introduces and explains principles for generalized plan design and
representation, and includes both conceptual and code examples for the ideas presented. In
Chapter 5 I present and discuss the role of data collection and machine learning mechanisms
when used in conjunction with robot Episodic Memories and Generalized Plans. Furthermore,
in Chapter 6 I go into the importance of a dynamic failure taxonomy, interfaces to the real
world from abstract generalized plans, and how to translate data between both view points. In
Chapter 7 I evaluate my concepts based on experiments I concluded on a real PR2 robot and in
simulation, and conclude my work in Chapter 8 with a brief summary of what was done and an
outlook towards open research aspects.

11

6. Reader’s Guide

12

Chapter 2

Related Work

“If I have seen further, it is by standing on the shoulders of giants.”
— Isaac Newton [60]

To make the context of my work more clear, I added related work from a number of research
fields similar, or adjacent to my own. For controlling and defining a robot’s behavior, T go
into more detail about (1) Planning and Robot Architectures, (2) Behavior Definition, and (3)
Autonomy.

2.1 Planning and Robot Architectures

2.1.1 Robot Plan Design and Behavior Control

The very essence of controlling a robot to perform a task is to relieve humans from the same job.
Further down that road lies the obvious goal of completely relinquishing human intervention until
the task is done. A very interesting line of research that pursues very similar goals to my own is
the work of Lane et al., with special emphasis on the Pandora project [52, 53]. They develop and
implement a robot architecture that relies on a strong encapsulation of abstraction layers, and on
a strong formalization of knowledge using Web Ontology Language (OWL). At the same time,
they have a focus on embodiment in the real world and go to great lengths to properly detect and
handle failures. Their main goal is Persistent Autonomy — making Autonomous Underwater
Vehicles (AUVs) able to deal with the majority of problems themselves over extended periods
of time. Different, though, is the domain of application (underwater maintenance vs. household
chores), and the kinds of tasks pursued: Their work is strongly influenced by periods without
communication in which the AUV has to work on its own, while I focus on the plan-based control
part of autonomy, namely knowledge integration and plan design.

Behavior control using robot planning capabilities has been tackled with diverse architec-
ture approaches. Following an analysis of common architectural challenges such as the context
problem, failing upwards, and least committment — the same ones discussed in this thesis —
, Berger et al. [14] presented their double pass architecture, a Belief-Desire-Intention (BDI) in-
spired framework that specializes on highly dynamic environments. Their proposed solution to
the common challenges is to abolish the strictly layered hierarchy of plans and let the (planned)
Intention part of BDI act as an action initiator, effectively decoupling the deliberate and re-
active parts. This approach greatly increases a plan’s performance in environments with high
dynamics, at the cost of a strict task tree structure.

Behavior design for autonomous robots has been approached with various means. Popular
examples are the Robot Task Commander (RTC) by Hart et al. [40] created for the NASA-
JSC robots Robonaut-2 and Valkyrie. RTC is effectively a mixture of a framework for creating
behavior "building blocks" (process nodes) and an IDE for building state machines out of these
blocks, and executing them. Representing behavior as state machines makes it relatively easy
to understand, predict, and debug, but lacks features such as using failure escalation to enable
local failure handling, or the notion of "contextual parametrization’.

Another engine for describing robot behavior was introduced by Niemiiller et al. [62] to
control the humanoid robot Nao. They explicitly position themselves in a "middle layer” be-
tween the deliberate top level control and the bottom layer of hardware interfaces. Using hybrid
state machines (HSMs), they account for a strong hierarchical task structure, relying on layered

13

1. Planning and Robot Architectures

execution and monitoring. For them, triggered behaviors are "skills”, and any behavior cannot
call other behaviors above its own abstraction layer.

A major bias towards one specific activity in household robots’ prospective has been found
and studied by Taipalus et al. [91]. According to their study, "[...] fetching of objects from table-
tops or shelves in home environment is one of the key functionalities for a mobile manipulator
type of home robot.". At the same time, they find that the main challenges are "[...] that
the environment is dynamic, poorly defined and some times even unknown.”. Both claims are
well in line with the argumentation and results of this thesis. Their proposed solution to these
challenges is rather different, though: They implement a remote control framework that allows
a user to control a mobile manipulator’s fundamental skills (navigation, grasping objects, etc.).
They skip the top level autonomy and replace it by a human that takes care of all "planning”
work.

2.1.2 Classical Planning Approaches

Commonly, classical planning approaches allow the definition of a problem in an axiomatic de-
scription language. This description is transformed into a search problem, allowing a sufficiently
efficient search algorithm to find a (minimal) path from a given initial state to a given goal state.
From any state to any other state, a (possibly empty) set of transition operators exists that allow
moving from one state to the other, resulting in a graph search problem. In my work, I do not
do planning explicitly using a first order planning language, but implicitly through automated
selection of the next, most appropriate action from a number of actions available at that time
(e.g. when accessing a location, open it if it is a drawer or fridge in the most appropriate way).
This selection is based on static rules in a knowledge base, contextual hints, and prior knowledge
learned from experience.

Currently, the most common abstract framework for describing planning problems is the
Planning Domain Definition Language [58]. While PDDL itself is not a planner, it is the base
for implementations of the STanford Research Institute Problem Solver (STRIPS) planner [31],
and its spiritual successor, the Action Description Language (ADL) planner [68]. A significant
difference between them is that STRIPS is strictly constrained by the Closed World Assump-
tion (CWA), while ADL allows an Open World Assumption (OWA). Both planners produce a
complete path from start to goal state based on known state transitions, planned symbolically.
Given the very high degree of uncertainty and strong subsymbolic character of decisions my
plans need to make, a symbolic planner’s state space suffers from intractability when applied to
them. Thus, my approaches structurally need to fall into a second category besides the PDDL
based, analytic planners: A heuristic action selection.

Even when — in a sufficiently simple scenario — a valid action sequence has been calculated
with a symbolic planner, it is still a sequential description of symbolic, atomic actions that
rely on a conforming environment. Given the need for reactivity when the environment can
drastically change without prior notice, the plans need to show a high degree of concurrency,
monitoring the course of action. It has been proven though that mapping a partially ordered
sequence of abstract actions on concurrent reactive skills is extremely difficult [82, 83].

2.1.3 Robot Architectures

In my work, the execution of actual robot plans and reacting to their various outcomes or
interruptions plays a central, crucial role. Albeit largely being labelled a plan language, Cognitive
Robot Abstract Machine (CRAM) really serves as a complete robot architecture model: It has
the authority and ability to make goal-directed decisions, collects sensor information to maintain
a sufficiently precise world model, and executes plans to minimize the delta between a current,
and a desired state.

14

Related Work

A series of well-known robot architectures exists that focus on the purely architectural as-
pects. The ones being most closely related to my own work are 3T [3, 17, 38], the subsumption
architecture [18|, and PRS/BDI [45].

2.2 Behavior

2.2.1 State Automata

A rather common, and by way of comparison rather easy way to define straight forward behavior
are State Automata — or state machines. They consist of states an intelligent agent can be in,
and possible transitions (edges) that lead to other states. In terms of robots, edges are usually
associated with actions that either change the state of the robot, the environment, or both.

Two characteristics in state machines stand out: (1) To control robot behavior, a state
machine is usually finite [75], and are called Finite State Machines (FSMs). The robot has a
finite number of states it can be in. Although infinite state machines have their application in
theoretical logic and planning [1], they currently yield no advantages to robot behavior definition.

(2) The other characteristic is hierarchy: Different "strains” of behavior are encapsulated
into one state machine, and a higher level state machine exists for which the encapsulated
behavior is merely a state. They can be expressed explicitly [2], or implicitly [15, 84].

While the behavior resulting from generalized plans can be represented by hierarchical FSM
a posteriori, a behavior definition a priori is unfeasible. Tasks can succeed or fail for a multitude
of reasons not directly apparent from the plans’ syntactical structure. Thus, the entirety of
knowledge stored in external knowledge bases and experiences used for action effect prediction
and implicit parametrization would need to be encoded into such an FSM to represent all possible
edges. Additionally, the FSM would need to be updated every time new knowledge becomes
available.

2.2.2 Task Networks

Another established concept to define behavior for robots are task networks, and more generally,
Hierarchical Task Networks (HTNs). They rely on the definition of named tasks that need doing,
and that can be combined into a Reactive Action Package (RAP). Inside the RAP, tasks can be
structured sequentially, or in parallel [32]. HTNs in particular allow STRIPS like definition of
preconditions and effects of a task, but are more expressive |28|.

HTNs pose a very elegant and abstract way to define behavior, which is well aligned with
the principles of generalized plans. Since HTN planning is an interesting research field by itself
and offers new ways to define behavior beyond the scope of this thesis, a future addition to my
work could well be an integration with HTN style behavior definition and planning.

2.2.3 Behaviour Trees

To express structured, partially non-linear behavior, Behaviour Trees have proven to be a vital
mechanism for programming robot activities, and Non-Player Characters (NPCs) in games. In-
teresting applications include increasing a UAV’s modularity by encapsulating partial Behaviour
Trees (BTs) [65], and helping to improve robustness and safety in hybrid systems [21]. In this
thesis, I use BTs solely for representational purposes of abstract robot plans. Generalized plans
in their entirety are difficult to represent this way for the same reasons given under "State Au-
tomata”, although the operators available in BTs allow to encode the general mechanisms used
(retrying actions, sequences, conditions, etc.).

15

3. Autonomy

2.3 Autonomy

2.3.1 Episodic Memories in Autonomous Systems

The concept of Episodic Memories is not entirely new. Nuxoll and Liard [63] have shown that
EMs — although largely ignored up to that point — can be used to improve a task’s performance
in the cognitive architecture SOAR. They present concepts for encoding, storing, and retriev-
ing memories, and developed a computational model of a working memory that extrapolates
knowledge from past memories. One of their prime examples for behavior enhancement through
memories is TankSoar [64].

The presented approach — while spiritually pointing in exactly the same direction — differs
from mine in both, type and application of memories. The authors focus mainly on integrating
their EM concept into the SOAR cognitive architecture while I use EMs as an external, optional
tool for deducing parametrizations. EMs as presented in this thesis are the "raw” data used
for model generation, which in turn improves plan performance. One major difference between
their and my EMs is the role of the hierarchical task tree: My reasoning and model building
techniques use the task tree as the prime reference point. The authors’ live knowledge retrieval
mechanisms — prior to using the knowledge — select explicit features from individual tasks to
improve their agents’ behavior.

2.3.2 Vague Task Execution in Real World Scenarios

Performing tasks just like humans is easier said than done for autonomous robots. Most of the
time, they lack a proper task model or strategy to handle obscure situations. I found that the
three “grand challenges” for autonomous robots in human-scale environments as summarized by
Kemp et al. [46] clearly show why these problems are complex, difficult to solve, and require
lots of background information today’s robots do not have per se. Each of these challenges is a
very specific scenario on its own, but requires robots to be very skilled in a certain, more general
task. The challenges they suggest and the required robot skills therein are:

(o) Tidying up a House: Fetching and placing objects of unknown nature, using knowledge
of common object placement, handling large variance in room and furniture structure

(o) Preparing and Delivering Food: Manipulating flexible materials, using tools made for
humans, performing small but complex assembly tasks

(o) Outdoor Party Preparation: Collaborating with humans, taking instructions from
them, moving large outdoor furniture together

The main research fields that need to contribute to these feats are perception, learning, plat-
form design, control, and collaboration between robots and humans. While all of these domains
are distinctively different, one of their common problems is the uncertainty of information. Per-
ception systems rely on accurate data for object classification, and learning algorithms produce
robot behavior based on the training data available. Control algorithms require correct sensor
input to operate within acceptable tolerances, and platform design needs to compensate for un-
certainty structurally, supporting sensor information gathering and recovering from failed task
attempts. Finally, collaboration between robots and humans requires a robot to have a detailed
and near-exact model of the current state and the intentions of its human partner, wherein
uncertainty in the robot system can lead to fatal decisions when the human is close by.

Since robots act in increasingly dynamic environments, they can barely ever know the com-
plete state of the world around them to a sufficient degree of accuracy at all times. The challenge
for autonomous mobile robots therefore is not so much to prevent or remove uncertainty, but
recognizing and handling it properly. Given the domain of household chores, this means objects

16

Related Work

are often not where they belong, their state is not as expected (e.g. clean vs. dirty), and symbolic
task and object descriptions are highly ambiguous due to being strongly underspecified.

Examples of complex tasks that robots are in principle capable of include making pancakes
[9], cookie baking [16], laundry folding [51], and meal preparation [66]. More individual tasks
are especially challenged in the RoboCup@Home context [88, 89]. All of these tasks have a
definite, judgeable outcome and are over once that outcome was reached. Their environment
specifically reflects the task they need to solve. In a fully autonomous system, the environment
and contextual knowledge would only vaguely correlate to the task to perform, requiring much
more reasoning effort by the autonomous robot itself to find out what to do, when it is complete,
and how well it was performed.

2.3.3 Longterm Autonomy

A major difficulty in today’s robot systems is longterm autonomy — stable plan execution and
proper failure handling and recovery without human intervention over prolonged stretches of
time. Lane et al. [52] have pursued longterm autonomy for underwater robots. They identified
three key areas necessary for making robots fit for longterm autonomy:

(o) Correctly and thoroughly describing the world (world model)
(o) Directing and Adapting Intentions (goal-driven, reactive behavior)
(o) Acting Robustly (considering expected or unexpected failures)
While their work specializes in AUV, these key areas are valid for autonomous service robots
as well. All three areas require consistent data definitions and updates, and smart, transparent

incorporation in action plans. Especially the last point, robustness, is very hard to achieve when
done manually by a human: Not all situations can be foreseen in the real world.

17

3. Autonomy

18

Chapter 3

Overview and Foundations

“Design is not just what it looks like and feels like.
Design s how it works.”

— Steve Jobs [97]

In the following chapters, I will present a number of topics central to my research, how
they are intertwined, and what their ultimate benefits for autonomous robots are. Figure 3.1
shows the overall architecture of my work, featuring all major components. I will present the
currently presented area at the example of this architecture. At its core are Generalized Robot
Action Plans and their representation. These plans are embodied by a number of low-level skills
for sensing the environment, and after making sense of the results, enacting their intentions
— an Embodiment layer. While these plans are executed, divergences from the expected path
of action are either identified as known failures or classified as new failure classes. These are
then inserted into a global failure taxonomy, being mapped to failure handling heuristics. All
of this activity is recorded into Episodic Memories that serve as the basis for machine learning
approaches that improve the performance of said Generalized Plans by the means of Expectation
Models. Figure 3.2 shows the respective execution and data flow paths in great detail, further
clarifying each component’s role.

3.1 Generalized Plan Design and Representation for Robots

The core element of my research are Generalized Plans for autonomous robots. These plans are
very abstract descriptions of a — usually fairly complex — task and have the distinction of being
underspecified and vague in their parametrization. They are parametrized based on a concrete
task description, static facts from a knowledge base, the current context, and memorized data
from earlier executions.

The idea of Generalized Plans is to make them applicable to as many variations of their
abstract task as possible. To meet the lack of specialization for one particular variation, they
employ heuristic fallbacks for any missing parameter. This way, robots are initially rather bad
at their task, but over time collect experience in performing it, ultimately mastering the task
and being on par with, or even exceeding specialized, non-generalized plans.

Along with the description of tasks, the description and classification of failures is also
abstracted to a point where real failure circumstances cannot be clearly identified. Like the
parameters necessary for executing a plan, failures are learned over time after performing the
same plan over and over again. Differences between the expected and the actual path of action
are noted, and are used to either identify a known failure class, or to classify and add a new
failure class to a global failure taxonomy.

Generalized Plans, their prerequisites and design criteria, as well as their representation are
discussed in Chapter 4.

3.2 Data Logging and Learning from Episodic Memories

Autonomous robots make lots of decisions while performing a plan without human help or
intervention. These decisions are mostly based on momentary information, such as intermediate
inference results or sensor input, that is lost afterwards. This makes retracing the reasons for
decisions — or the decisions themselves — very difficult, and therefore raises two issues: Firstly,

19

2. Data Logging and Learning from Episodic Memories

Execution Learning Generalized Plans Data Collection, Learning

] N|
| Plan Design Principles k_ ’| Episodic Memories |

Generalized Expectation T 1
Robot Plans € Models
A 4
| Knowledge Integration I)I Machine Learning |

Episodic -
Memories , Embodiment 5

| Low Level Interfaces —{ Plan Improvements |

Embodiment —>»

Figure 3.1: The overall, high level architecture includes Generalized Robot Plans, a conglomerate
of Episodic Memories as machine learning data source and Expectation Models as the learning
subject, and an Embodiment layer that lets an autonomous robot interact with the real world.

Low Level Information High Level Information
Raw Camera Images (RGBD) Goals and Intentions

Sensor Values (Fingertip Pressure, ...) Task Parameters and Results
Kinematic Transformations (¢f) Hierarchical Task Tree

Detected Object Characteristics (Poses, Extents, ...) Thrown and Caught Failure Instances
Performed Atomic Actions
Perception Request and Result Pairs

Table 3.1: Components contained in Episodic Memories, separated by low and high level infor-
mation.

debugging of complicated decision-making processes during development or maintenance phases
is obscured. Secondly, autonomous robots themselves do not have access to former evidence of
which decisions led to what results, effectively ruling out machine learning applications based
on this evidence.

To address these issues, I developed the concept of Episodic Memories for autonomous robots.
Episodic Memories are collected while a robot performs a task, and reflect all symbolic plan data
(plans, parametrizations, outcomes) and all relevant sensor data from a task [105]. Using this
conglomerate of data, I developed a system for reconstructing the course of action of any formerly
performed task and comparing it to a current execution, resulting in task Expectation Models
[103]. These models can predict the outcome of a current task based on its parameterization and
the overall current context. Furthermore, Episodic Memories can answer high level, semantic
questions about the tasks a robot performed: “how was a task done”, “what was the context
and what was different in the environment than usually”, “did everything go well or were there
unexpected interruptions”.

3.2.1 What are Robot Episodic Memories

Episodic Memories (EMs) represent both, the low level, high volume data that continuous sensors
in a robot system produce, and the high level, low volume intentional data that symbolically
describes action parametrizations, a hierarchical task tree, and the result of any action a robot
performs.

Table 3.1 shows an excerpt of components that are usually included in such an EM. The
low level, subsymbolic part includes raw camera images, continuous kinematic transformations,
and other sensor values for all time steps. The high level, symbolic part describes the robot’s

20

Overview and Foundations

Newly identified | Registering failure class i
failure classes |and symptoms in taxonomy Failure Taxonomy

| :
I

I
| | Known failure |
: | handling strategies |,
| Detecting known failures !

(o))
£5 © 777" Embodiment’
51 2 Correcting Plan Execution through Failure Handling X .Embod|m.ent|
£3 . . i ;| Semantic Perception|,
c Y Sensing Environmental State & Action Effects I|System i
=0 : I
- /] I
Execution in the Enacting Desired Physical Actions :ILO\.N Ll Heier |
real world _ }I,SEES: ==—=——======c _
Expectations of | . ' . . .| Expectation
Failures, Sensor Diagnosing Predicted Behaviour I Model
Values, Durations | |
Compound Model
|
|
|

... Parameterization Tracking Active State via Context Change

I
I
1
|
1
I
I
~ 1
I

: I
: 1 I
= ... Sensor Readings | Logged 0 ‘ ‘
5] ! Episodic Memories D :
o | —a
8 : Symbolic plan events Continuous sensor data : | :
| ! ‘
X | d . I

. Pl
Logging { Sympollc Plan Events , 14 Learning IV!ong |
Continuous Sensor Data . 1and Generalization ‘*
Modelling Internal ! Task-N*awgate Task-Perceive Task;irasp : : ‘\

1l
Plan Structure With-Designators With-Designators : : :
[!

[

[

Data Collection!

Figure 3.2: Governing architecture of the presented topics: Generalized Plans act as the central
element for embodying tasks in the real world, collecting and classifying data in the process.
Failures are either identified as known or new, and in the latter case are inserted into a global
failure taxonomy that maps them to failure handling heuristics. From the executed plans,
episodic memory data is recorded and fascilitated into expectation models allowing a robot to
make predictions about a task’s outcome while executing it, and choosing optimal parameters
from experience.

intentions and goals, its task knowledge, action parameterizations and results, and the general
hierarchical task tree of what happens while the robot is performing its work. Both levels are
linked via unique identifiers and — in the case of continuous data — ranges of time points. Au-
tonomous robots use both, symbolic as well as subsymbolic data to make decisions: The current
context, action parameterization, sensor values, and world belief can fundamentally change the
decision making process. EMs reflect this volatile information and make it accessible to model
building, machine learning, and data analysis techniques after an action episode concluded.
The data logging infrastructure and learning applications are explained in detail in Chapter 5.

3.3 Embodiment of Autonomous Robot Control Programs

To enact either hand-crafted or dynamically planned behavior of autonomous robots efficiently
and effectively, a robust layer for interacting with the real world is a must. Since in the nature of
Generalized Plans the actual connection to the real world is not considered, an embodiment com-
ponent is required. I present this component in the form of mechanisms for controlling motion
control and navigation, as well as for sensors required by the robot. This layer also transpar-
ently handles failures that arise during interaction with the environment as far as possible. As
part of the embodiment, I present a global failure taxonomy that identifies known failures and
classifies new ones, selecting proper handling strategies. Embodiment also covers the translation
of discrete, abstract parametrizations of Generalized Plans into — context dependent — con-
tinuous parameters for low level skills. The required knowledge to properly parametrize these

21

3. Embodiment of Autonomous Robot Control Programs

actions can be dictated by the more abstract higher level plans. Following a least commitment
approach, I push these decisions as far down the queue as possible — ideally letting the actually
executing module decide on the concrete parameters, only escalating the decision if it cannot
find a solution on its own.

All of these aspects are discussed in Chapter 6.

22

Chapter 4

Generalized Plan Design and Representation for Robots

“Intelligence 1is the ability to adapt to change.”
— Stephen Hawking [41]

To make a robot able to handle diverse and quickly changing contexts it was not explicitly
programmed for, a very generic way for describing its action plans and concurrently running
monitoring mechanisms is required. This very abstract plan is then grounded in explicit knowl-
edge about the current situation, making it executable.

This chapter describes the fundamental principles I use in designing generalized robot plans. 1
introduce the principles of generalized plan design and their benefits, raise the role of uncertainty
in real world settings, and introduce the most common tasks for mobile manipulators as well as
some strategies for performing them. Furthermore, I describe the importance of robot knowledge
required for grounding very abstract plans in concrete situations to make them executable.
Finally, I go into detail about the focus of my research on this topic and summarize the most
important aspects of my work.

From a robot programming point of view, I introduce the CRAM plan language that has
foundational character to my work. Therein, I explain why I chose CRAM, what my contribu-
tions to the system are, and how I represent the encoded robot action plans using Behaviour
Trees.

Execution Learning

Generalized ¢ Expectation
Robot Plans Models

S N

Episodic

Embodiment —>» Memories

4.1 Principles of Generalized Plan Design

Generalized robot plans are supposed to perform their specific task in very different contexts. At
the same time, they need to convey functionality and semantic meaning of what their purpose
is. This provides two requirements when designing generalized robot plans:

(o) Knowledge-integration to support decision-making in different contexts, making the
plan more flexible and tolerant to changes in task description and constraints, and

(o) Conveying semantic meaning through design of encapsulated plans with well-defined
behaviors and interfaces

These very high level requirements are underpinned by a list of concrete design aspirations,
their requirements, and how to achieve them:

23

1. Principles of Generalized Plan Design

Generalize
Specialized Plan Fg------------"~ - Generalized Plan
N Specialize

(o) Efficient (o) Flexible
(o) Covers few situations very well (o) Covers many situations averagely
(o) Coded manually or planned (o) Learned

symbolically (o) Needs to infer domain knowledge
(o) Has domain knowledge included from external sources

Figure 4.1: Trade-off between specialized and Generalized Plans. Specialized plans solve one
task very well and efficient, while Generalized Plans cover a large area of similar plans very
flexibly, but are in general less efficient.

(o) Accounting for anticipated and unanticipated failures: Failures must be clearly
classified into cases that a robot can know, and cannot know about. The former is coun-
tered with careful, explicit consideration in generalized plans while the latter must be
satisfied by heuristics that cover as much ground as possible.

(o) Selecting actions based on hierarchical knowledge: All action sequences and their
concrete instantiation must be based on the available knowledge, or default to a common
fallback solution. Knowledge is to be acquired through concrete parametrizations, static
rules in a knowledge base, inference, or the context.

(o) Self-specialization through experience: The very idea of generalized plans is that they
— ultimately — contain no task and domain specific knowledge at all. In the simplest case,
they draw this knowledge from external rule sets (e.g. a knowledge base). Their final form
should allow them to draw upon (processed) experiences from earlier executions, learning
from mistakes and improving by themselves.

(o) Encapsulating functionality: Generalized plans are hierarchical constructs. As such,
every layer must take full responsibility for taking track of, managing, and cleaning up
their own effects on the internal belief state and the external world. Every generalized
plan must thus be accompanied by a generalized clean-up routine. This aspect is well in
sync with Beetz’ structured reactive controllers [5] and structured plans [6], applied to a
more abstract type of plan.

In their initial design phase, these plans act as if they were static. They are designed
completely by human developers or are planned symbolically by an automated planner. In
principle, a designer could distinguish two static cases for robot plans: (1) Generalized Plans
that cover a wide range of applications, featuring a mediocre performance, or (2) specialized
plans that do one thing very well, impinging upon application generality. Figure 4.1 depicts this
trade-off. To allow true self-specialization for robot plans, generalizing them requires a special
plan structure: Task parameters are abstracted to a purely symbolic level, leaving no traces
of actual task or domain intelligence. Which action steps to perform, and how to parametrize
them solely depends on external information and is similar to Beetz’ declarative goals [10]. The
same accounts for concurrent failure handling, the choices of which failures to monitor for which
action, and what the respective recovery strategies are.

The more general a plan is, the fewer domain-specific knowledge is encoded into it. To make
a robot able to improve its own behavior and thus its own plans over time, these plans need
to draw rules for their decision-making from a knowledge base, which is populated with static
task-related background information and robot experience data.

Since domain-specific knowledge is encoded programming-language agnostically in a well-
defined knowledge format, it is easier to maintain and understand for developers on a conceptual

24

Generalized Plan Design and Representation for Robots

level. Debugging and maintaining their behavior in explicit situations requires analysis of the
infered domain knowledge though. The effort for this depends on the amount of knowledge and
the interdependencies involved. I will go into detail about debugging this volatile information
when I cover Episodic Memories.

In the following sections, I will point out elements of major importance in generalized plan
design: (1) The role of strategy selection based on knowledge about the task and the current
context, and (2) enhancing a robot’s behavior through experience. Additionally, T will pinpoint
the role of these elements in concrete examples during autonomous object search, and fetch and
place tasks.

A Plan’s Degree of Generality

The degree of generality of an existing plan reflects whether my above principles were obeyed
when designing and implementing it. To make any statements about its generality, the following
questions about the plan have to be answered:

(o) Does the plan include no traces of explicit task domain knowledge?

(o) Does the plan make no assumptions about the environment or the robot platform that are
not vital to the task performed?

(o) Does the plan scale to all situations that could be encountered during its task?
(o) Does the plan rely on learnable parameters?

(o) Does the plan use general modules that have overlap with other tasks?

So for a fully generalized plan all questions would be answered with a yes. Violations to
these criteria generally result in less performance gain through experience, and make the plan
more of a niche solution than a generalized task module.

4.1.1 Action Description vs. Goal Definition

Instructions given by humans often involve a mixture of two representations: A task is either
explicitly described as an action, or as the definition of a goal state, starting from an initial
state. Both representations are shown schematically in Figure 4.2. While it is relatively simple
to perform a given action description in a start state, deducing the required actions when only
the start and goal states are known is more challenging. Traditionally, this is the task performed
by planning algorithms such as STRIPS (and more generally: PDDL planners).

Planning action sequences — or at least the next step — is vital for cognitivist autonomous
agents in dynamic environments. In this thesis, I concern myself further with Planning Domain
Definition Language (PDDL) based planning and PDDL domain extension through learning in
Section 5.7.

4.1.2 Knowledge-based Strategy Selection

The same general task often needs to be executed in different fashions, depending on what is
known about the context and the task itself. One of the most common examples in mobile
manipulation is grasping an object: The overall sequence of how to grasp an object stays the
same: Approach an object, open the hand, enclose the object (or parts of it), close the hand,
carry off the object. This sequence is driven by both, symbolic and subsymbolic parameters
that define the actual execution:

Symbolic:

(o) Which arm to use

25

1. Principles of Generalized Plan Design

Action Description Goal Definition

Side Effects

/7\

State A @ State A —>» —» State B

\ /r

Figure 4.2: Action Descriptions with an initial state A result, when successful, in a definite
state B. Goal Definitions with an initial state A and a goal state B can have arbitrarily many
ambiguous transition paths, which can cause unintended side effects. Action Descriptions are
the disambiguated form of Goal Definitions, i.e. the concrete selection of one transition path,
accepting all of its side effects.

(o) Which approach strategy to use: From the front, top, side, etc. [19, 22]
(o) Which part of the object to grasp (task dependent [81])

Subsymbolic:

(o) Relative position of the grasp point on the object
(o) Force to apply, closing radius of the hand

Given an incomplete description such as (an action (to grasp) (object 70)), an au-
tonomous robot has to infer all the required information from its own knowledge base and the
context. When designing generalized plans, as little of this information as possible should be
present in the plans. Which arm to use for grasping is infered e.g. based on heuristics like which
hand is free, and how far each hand would have to travel to reach the object. More elaborate
approaches use knowledge about the purpose of the grasp, e.g. from subsequent plan steps or
the parent task’s current goal. The object part to grasp depends on the task for which purpose
the grasp is performed: For pouring, a bottle must be grasped at its body and not at its cap.
For only transporting it, all parts are fine. The approach strategy is constrained by the part
chosen: For a bottle standing upright, the body can only be approached from the sides, front
and back. The cap can be approached from the top as well.

The required information — at the example of grasping an object — can come from a number
of distinct sources, with each (if present) superimposing its predecessors:

(o) Static knowledge base, based on task type
The task always has a certain default way of handling objects.

(o) Static knowledge base, based on object type
The object type to act upon is per default always handled in a certain way.

(o) Static knowledge base, based on task/object type combinations
The object is grasped for pouring from it, so some parts may not be used for grasping.

(o) Contextual constraints
Parent tasks constrain how to grasp this object, or objects in general (e.g. with-context)

(o) Description of the current task
The explicit description of the task to perform states how to handle the object.

(o) Requirements and constraints observed while performing the task
The object is not approachable from the left and back side, so only approach directions
from the right and front are possible.

26

Generalized Plan Design and Representation for Robots

In some cases, the ambiguity of vague task descriptions cannot be resolved using the available
information. There are two ways to overcome this problem:

(©)

Assuming heuristic default behavior

For every action parameter, a fallback value, and thus a default behavior is specified. While
this ensures executability of the task, it might result in suboptimal, or even disasterous
behavior: Grasping a very fragile object with a default, average grasping force can easily
destroy it, possibly rendering the task (and its supertasks) impossible.

Signalling insufficient information and escalating the problem

The next-higher supertask is informed that too little information is available, and is sup-
posed to re-parameterize or provide additional hints for execution. This is handed up along
the task tree until either the missing information becomes available, or a human operator
(the final parent node) is reached and asked to provide it.

Depending on the task, and how crucial its success (or disasterous its failure) is, both strate-
gies can be intermixed in the same generalized plan. Section 4.4 will further elaborate on the
source and nature of contextual knowledge for autonomous robots.

4.1.3 Experience-based Behavior Enhancement

The whole concept and idea of generalized plans is to take explicitly modeled situations out of
action descriptions, resulting in schematic, abstract plans. While this, given enough supporting
knowledge, makes the plans very versatile it has two major drawbacks for plan designers:

(1)

Identifying and repairing plan problems is much more difficult

The more general a plan is, the less information is available about why a certain decision
was made, and which parameterization led to a certain outcome. How control structures
are intertwined strongly depends on the tasks defined by external knowledge (possibly
unknown to the designer).

Accounting for specific situations is very cumbersome

As in generalized plans decisions are made based on external knowledge, it gets signifi-
cantly more difficult to introduce new behavior for a specific situation than it would in an
imperatively programmed, task-specific action sequence. In the former, appropriate rules
need to be defined that are compatible with all other task descriptions, while in the latter
an additional branch of code can explicitly account for the situation.

Problem number one is addressed by equipping the robot’s plan architecture with compre-
hensive plan logging capabilities: Each language construct is augmented by emitters that signal
when the construct starts, ends, or when significant atomic actions within it are triggered. Ex-
ample constructs are (sub)plans, queries to external components, or failure handling elements:

;5 Definition of plans
(defmacro def-plan (name parameters code)
“(let ((id (signal-start :plan ,name ,parameters))

(return-value nil)) ;; Return wvalue 7s relevant
(unwind-protect (setf return-value (progn ,@code))
(signal-end id return-value))))

;5 Definition of failure handlers

(defmacro def-failure-handler (name &rest handling-code)
(let ((fnc-name (symbol (concatenate ’string "handle-failure-"

27

1. Principles of Generalized Plan Design

(write-to-string name)))))
¢ (progn
;; Defines the actual handler function
(defun ,fnc-name (failure)
(let ((id (signal-start :failure-handling ,name failure)))
(unwind-protect (progn ,@handling-code)
(signal-end id))))
;5 Globally stores mamed reference to handler
(global-register-handler fnc-name))))

;; Example usage of def-failure-handler
(def-failure-handler :simple-retry
(do-retry))

;5 with-failure-handlers catches failures and calls the respective
;5 globally registered handlers.
(with-failure-handlers ((:manipulation-failure :simple-retry)
(:navigation-failed :other-handler))
(perform-some-failure-prone-task))

The functions signal-start and signal-end record their activity into a hierarchical tree
that represents the structure of the tasks executed. Additionally, this tree can hold information
about start and end times of nodes, return values of functions (success/failure), and any occurring
meta data (e.g. plan parameters, requests and results of a call to the perception system, etc.).
The resulting data can be inspected for when a given failure happened, what execution trace led
to it, and which parameter values were involved in the decision-making process leading to this
failure. A plan designer therefore has full access to all static as well as volatile information from
the plan execution. Section 3.2.1 explains in-depth what the structure of this resulting data is.

The second problem emerges from the fact that knowledge rules for defining generalized
plan’s behavior can become too complicated to manage manually. This is remidied by applying
machine learning techniques to the logged execution data from the previous problem: Decision
trees, confidence intervals for probabilistic parameter choices, and static rules can be learned
from sufficient amounts of Episodic Memory data. In Chapter 5, this process is explained in
detail, together with comprehensive code examples.

4.1.4 TImplicit Modular Task Recovery

One of the main advantages of modular, context-less plan design is that with these plan prim-
itives, a large variety of complex behavior can be defined [102]. The same principle is advan-
tageous for failure handling. Ingham et al. [43| have developed the programming approach
RMPL that allows constraining of concurrently running processes while performing an other-
wise sequential task. Their task execution monitors a set of variables and fires upon meeting
predefined requirements. I extended this principle by introducing mechanisms for interrupting
plan performance when unusual conditions arise, following a take-down routine. As each of my
(sub)plans is accompanied by a take-down strategy to rewind its own effects, each layer in the
hierarchy only has to revert its own actions. This strategy allows for encapsulating implicit
recovery mechanisms to properly unwind tasks created by complex plan hierarchies. Figure 4.3
gives an intuition of how the resulting plan structure elements are encapsulated and can be
combined again.

Such “building block” plans have well-defined behaviors and capabilities. They are seman-
tically annotated with required input parameters and possible outcomes. Nesting them entails

28

Generalized Plan Design and Representation for Robots

Navigation
Go to Low-Level Arrived EEEE ;
ect Searc

Cancel Interface Unreachable Search J
object at — 5 G Found objects at
- Cancel Nawgatlon$_)q" EMEEPLION Object not found

Perception
>@® Unreachable

Perceive O ow-Level Found objects
Interface Object not found

Transport Object |

Transport c let
i i object omplete
Manipulation | Cancel Object not found
Complete Location unreachable
Move Arm Low-Level
Cancel Interface Unreachable Manipulation failed
Controller Failure Object lost

Figure 4.3: Schematics of hierarchical, modular plan elements. On the left are basic primi-
tive functions: Navigation, Perception, and Manipulation. On the right are compositions of
primitives: “Object Search” as a linear sequence of Navigation and Perception, and “Transport
Object”, featuring a parallel monitoring process to trigger regrasping when necessary. Every
element has defined in- and outputs.

advantages in code reusability, modularity and function encapsulation, but also grants semantic
meaning to the contained structures and the resulting overall plan.

4.2 CRAM as a Robot Plan Language

In this section I give an overview of what CRAM is, why I chose it in my work, and how I extend
it. CRAM has foundational character to my work, as many of my techniques are implemented
using its language constructs or design concepts.

CRAM defines a comprehensive programming environment for writing flexible action plans
for autonomous robots [12]. It is suited for reasoning about its own plan execution [101] and
allows robot control in the real world, as well as in simulated environments (e.g. Gazebo, see
Appendix A.2: Gazebo: Simulation-based Manipulation).

The main purpose of CRAM is to design and implement robot action plans on a very abstract
level that are grounded in the real world as late as possible during execution, following a least-
commitment approach. This way, the executing robot commits to actual action only when really
needed, not giving up degrees of freedom in reasoning and decision making too early. To this
end, CRAM offers a number of operators and environments that allow vague description of
objects, locations, and actions, in the form of designators [57]. Designators are used throughout
all generalized robot plans in CRAM and are its main means for defining degrees of freedom for
decision making. They are hierarchical trees of key-value pairs, with the values being any valid
Lisp constructs, including other designators. Typical designators are defined as follows:

(an object (type cup) (color red)) ;5 Object destignator
(a location (on table) (in kitchen)) ;5 Location designator
(an action (to grasp) (an object (type cup))) ;. Action designator

To resolve these vague constructs, CRAM makes use of its internal Prolog-esque reasoning
engine, using backtracking over multiple hypothesises for vague descriptions to find a proper
grounding in the current situation. Since their ambiguity can lead to multiple solutions, des-
ignator solutions are tried iteratively, ordered from the most specific fit to the most general
one. Specific solutions are based on specialized, possibly learned knowledge about the current
situation and are highly efficient. General solutions are fallbacks that almost always work, at
the cost of speed, efficiency, and task competence. Figure 4.4 depicts this process.

29

2. CRAM as a Robot Plan Language

(to grasp) (object ...) (to find) (object ...) (to detect) (object ...)
= : S memorized earlier S

o o o

2 learned grasp point 2 residence spots = water bottle

% geometrically infered % in places fitting % container holding
F} grasp point @ object category 0] 2L of water

C = =

o front push grasp, S anywhere in the o

force closure robot's vicinity ivgcentaiuey
Figure 4.4: Action descriptions are first grounded in the most specialized facts known to the
robot, and are generalized iteratively when the specialized rules do not work (learned knowledge,
static knowledge base content, generic rules).

2 || Define generic Perceive objects Enrich through side

9 object in vicinity knowledge base

0

sl G x(2) > (>0)
[,\f Grasp Point

g (an object (an object (an object E (an action (an action

s (type cup) ° (to grasp) (to grasp)

3 (color red)) (dimensions 0.1 0.03) || (weight 1009) @ (obj ...) (obj ...)

g - . (shape round) (owner Jan) o (approach- (approach-
w (grasp-point side) || 8 direction ...) direction ...)
v (grasp-point top)) || (grasp-strategy || (grasp-strategy
._g. .L_’ top-grasp) side-grasp)
° <

Figure 4.5: Example of grasp strategy decision based on an object designator’s content. An
object in vicinity is perceived given the generic description (type cup) (color red). A per-
ception system enriches the object’s description by visual characteristics (6D pose, dimensions,
shape), and a knowledge base appends non-visual, but known features (weight, owner, defined
grasp points and their grasp strategies). Based on the object’s pose and grasp-type, different
grasping-actions are performed.

For resolving designators and grounding them in the current situation, each type is handled
differently: Object designators usually describe dominant object features, and are enriched
using perception systems (6D pose, dimensions, further visual characteristics), and a knowledge
base holding non-visual information (weight, affordances, task-specific constraints). Location
designators symbolically describe superimposable geometric constraints to represent an area from
which the plan system can sample actual 6D poses. Action designators describe atomic actions
performable by a robot; the actions actually executed depend on the hardware platform used,
and are translated into (series of) actual hardware function calls using a hardware abstraction
layer (so-called Process Modules).

Based on the result of designator resolution, flexible plans change their behavior in qualita-
tive, and quantitative ways. Figure 4.5 shows an example of a simple plan to grasp an object,
based on the respective object designator’s content. By grounding designators in the current
situation, flexible plans can change their strategy to solve a task more competently. This results
in varying behavior that is difficult to foresee during design time, and requires elaborate failure
detection and handling mechanisms that can handle very different situation configurations. By
learning a task model based on experience data, predictions about these failures can be made
such that a robot can anticipate problematic situations and avoid them altogether [103].

Ultimately, these complex plans are in structure very similar to BTs: BTs are a capable tool
for modeling and visualizing hierarchical action plans, but lack the ability to explicitly model

30

Generalized Plan Design and Representation for Robots

with-designators

seq

/T

perceive enrich-from-kb true seq

seq

grasp-point grasp with strategy
side? "from side"

grasp-point | [grasp with strategy
top? "from top"

Figure 4.6: BT representation of the simple plan shown in Figure 4.5.

data, such as designators. A depiction of the simple plan shown in Figure 4.5 represented as BT
primitives can be seen in Figure 4.6. Here, the two decision branches for top or side grasps are
modeled using two sequences with initial checks as gatekeepers. The first one features a "true”
decorator to keep the upper sequence running when the object is not grasped from the top. The
individual primitives and their correlation to generalized robot plans in general and the CRAM
language in particular will be explained in 4.2.2: Representing Robot Plans: Behaviour Trees.

As apparent from the above example, and explained in more detail in [102], generalized
robot plans make use of different knowledge sources to make their own behavior more flexible
and reactive. When executing a plan, three different knowledge types are typically used to
support a robot’s decision making processes:

(o) Task-related Knowledge: Parameterization of the current task, as specified by either a
parent plan, or ultimately by a human operator.

(o) Static Environment and Background Knowledge: Semantic maps of the environ-
ment, physical models of doors and drawers, but also static facts the robot uses for inference
(such as “Perishable items reside in the fridge”).

(o) Volatile Sensoric Knowledge: Dynamic perception results, detected obstacles, dynamic
triggers in the environment. All of these are unknown during design-time.

These knowledge sources are extended by a fourth one which can be assumed static for single
plan executions, but affects the priors an autonomous robot has:

(o) Experience-based Knowledge: Learned rules about correlations between contexts, task
parameters, and their outcomes [103].

On the basis of these knowledge sources, reactive robot plans must be able to select, inter-
rupt, and change their behavior whenever necessary. Strategies are selected based on a current
situation, such as grasping with the left or right hand, depending on which one is available or
closer to the object to grasp. While executing a task, a concurrent watchdog process must mon-
itor task relevant features for significant changes, and adapt the task accordingly. An example
for this would be an object slipping from the gripper during transport, requiring regrasping.
When changing a task, recovery mechanisms must clean up any now-unwanted alterations in
the environment, which can range from belief state updates within the robot to executing new
plans that perform complex manipulation activities. In [102], these requirements are explained
in detail, and the with-context environment is introduced:

31

2. CRAM as a Robot Plan Language

(with-context (c; ... c¢c,) task)

with-context allows the specification of n contextual constraints ¢; that are active while
executing task. Such constraints can be not using the robot’s left gripper, or to limit the area
in which the robot is allowed to move. An important property of with-context is that it can be
nested. A task can therefore be constrained by its own limitations, such as a maximum driving
acceleration of 1m/s2) but also by contextual constraints from plans further up in the hierarchical
chain, such as a total maximum velocity of 57/s.

4.2.1 Robot Plan Design

Conceptually, robot plans are a set of sequentially or hierarchically ordered directives that trans-
form sensed information about the robot’s environment into knowledge of the current state of
the world, compare them to a desired state, and perform appropriate actions to minimize the
delta between both. To formulate these very abstract instructions in a way that robots can
understand, a plan language is required that allows access to the robot’s sensing capabilities,
and controls its actuators. Based on the principles of the chosen architecture design, a robot’s
desired intentions are then encoded into this plan language.

In my research, I used the cognition-enabled architecture CRAM to define robot behavior.
CRAM is based on Steelbank Common Lisp (SBCL), which allows to define extensions of the
plan language easily, and enables flexible development of new language constructs. Many other
prominent architectures for robots exist (for example PrRoDIGY [20], ESL 37|, PRS [44], SOAR
[49], Icarus [54], POMDPs [70], and SmartTCL [86]). I chose CRAM over these alternatives
due to a multitude of reasons, with the most prominent ones being:

(o) Use of Designators as native, flexible data structures for vague entity description [11]

(o) Proven applicability and existing interfaces for embodiment in modern real world
robotics |8, 12]

(o) Complete integration with the Robot Operating System (ROS)

(o) Actively developed and maintained in several EU funded projects
(e.g. RoBOHOwW, ROBOEARTH, SHERPA, SAPHARI, ACAT)

To formalize and implement knowledge used to parametrize robot plans, I chose the popular
PROLOG driven knowledge base KNOWROB by Moritz Tenorth [93]. KNOWROB is used in a
large number of public projects and has excellent integration with both, CRAM and ROS.

The design process of generalized robot plans requires constant re-evaluation and recon-
sideration of their structure. Because evaluation requires criteria, I chose the excellent set of
rules from Introduction to AI Robotics |59], as adapted from the original set in Behavior-Based
Robotics [4]:

(o) Support for modularity: Does it show good software engineering principles?
(o) Niche targetability: How well does it work for the intended application?

(o) Ease of portability to other domains: How well would it work for other applications
or other robots?

(o) Robustness: Where is the system vulnerable, and how does it try to reduce that vulner-
ability?

While originally these criteria were intended to judge the quality of robot software architec-
tures, they serve the purpose of evaluting robot plans perfectly well. As pointed out in [59],

32

Generalized Plan Design and Representation for Robots

the niche targetability and ease of portability are often at odds with each other, requiring the
designer to make trade-offs and prioritize emphasis per case. In the case of generalized robot
plans though, niche targetability is enabled through knowledge-based specialization of general-
ized plans, making the niche target a polymorphic sub-case of the general situation. Therefore
the design of generalized plans does not suffer from this trade-off, but can enable new niche
targets using external knowledge made available to the robot, leaving the Generalized Plans
intact.

The design of generalized robot plans is explained in more detail in the following sections.

4.2.2 Representing Robot Plans: Behaviour Trees

Symbolically planned robot behavior typically has hierarchical character: A higher order activity
plan specifies atomic sub-activities which it employs while seeking to achieve its own goals. How
exactly these sub-activities perform their task is beyond the control and interest of the higher
order plan, leaving aside task-specific parameterizations and contextual constraints.

While from a programmatic point of view this approach yields elegant plans that are compa-
rably easy to comprehend, it lacks a proper representation on a conceptual level: To get an idea
of the big picture of a plan and all of its sub-plans, all encapsulated activities need to be ex-
panded and inserted into one huge plan construct. Since on this level the exact implementation
is usually not of interest, I represent these plans using Behaviour Trees (BTS).

In this section, I give a brief introduction to Behaviour Trees and why I use them, and
present common CRAM language constructs, as the architecture of my choice, represented in
that format. While most shorter plans in the following sections and chapters are spelled out in
actual code, I will compile larger-scale plans into BT format for the sake of clarity. These plans
can be found in Appendix B: Plans.

Behaviour Trees: A brief Introduction

Behaviour Trees are effectively n-ary trees with a fixed set of node types that reflect how these
nodes should be evaluated when processing the tree. The basic node classes, together with some
of their specializations in BTs are:

(o) Composition: An aggregator node that has at least one child node. Typical specializa-
tions include Sequence nodes that perform all child nodes sequentially, and Fallback nodes
that return upon the first successful child in a linear sequence.

(o) Decorator: Has exactly one child, either transforming that child’s return state (e.g.
negation), or acting as a control flow structure such as a loop.

(o) Leaf: Cannot have any children. Implements actual, atomic program behavior beyond
the hierarchical structure of the BT. Examples are starting a navigation action, reading a
sensor value, or picking up an object.

A BT is traversed depth-first, while Composite nodes can define an alternate order of ex-
ecution of their child nodes, or prematurely return before having processed all children. Each
node can have one of three return states when queried: Success, Failure, or Running. It is up
to the respective Composite node to decide how to handle a child’s return value. A Sequence
node would continue executing child nodes until either all children returned Success, or one child
returned Failure.

BTs have gained large momentum in game development, controlling NPC behavior. While
the roles of most NPCs are very specific and narrow, the applicability of BTs for behavior
definition based on an exogeneous world state maps perfectly to robot plan design. In my
work, I do not use BTs for actual behavior control, but rather for visualization and conceptual

33

3. Mobile Manipulation

Composition: Composition: Composition: Composition:
pursue par seq partial-order
Decorator: Decorator:
with-failure-handling whenever Leaf: Leaf:

/ é grasp perceive
T
! I

Figure 4.7: Individual CRAM language elements represented as BT constructs: Compositions
having multiple children, Decorators with mostly one child, and Leafs representing atomic actions

design. The robot behavior presented here is thus implemented as CRAM plans. However,
more complex behavior is depicted as BTs for the sake of clarity.

Common CRAM language constructs represented as BTs

As per Section 4.2.2: Behaviour Trees: A brief Introduction, the most common flow control con-
cepts and example atomic actions from the CRAM plan language are depicted as BT constructs
in Figure 4.7. The individual elements I defined in BT terminology are described as follows:

(o) pursue: Runs all children in parallel, until one returns. All other children are forcefully
terminated. Returns the return value of the finished child.

(o) par: Runs all children in parallel. Succeeds if all succeed, fails if one fails. Returns the
result of the child that finished last.

(o) seq: Runs all children sequentially, until one fails, or all succeed. Returns the respective
value.

(o) partial-order: Runs children in designated order (potentially in parallel). Returns the
result of the child that finished last.

(o) with-failure-handling: Runs main child and additionally runs failure handling code
(optional child) if a failure signal from the main child was caught. If no failure signal was
caught, the child’s return value is returned.

(o) whenever: Whenever a given condition is met, the only child is run (possibly concur-
rently). Returns the child’s return value.

(o) grasp: Atomically runs code to pick up an object. Return value depends on the success
of the implementation.

(o) perceive: Atomically runs code to perceive an object, the environment, or other details
as specified in the node’s parametrization. Return value depends on the success of the
implementation.

4.3 Mobile Manipulation

The most prominent task for autonomous robots is the manipulation of objects. In this section,
I will discuss the role of mobility in manipulation tasks, its advantages and inherent risks.
In current factory settings, robots — as well as the objects they manipulate — are relatively
static with respect to their environment, requiring the robot to only move its end effectors for
manipulation. Outside of factories, especially in human-scale environments, scenes are designed
to fit human habits. For example in households, objects are constantly moved around, storage
places are scattered around multiple rooms, and tasks require robots to operate in two or more
non-adjacent places. Examples for such tasks are tablesetting and meal preparation. Both

34

Generalized Plan Design and Representation for Robots

Primitive Description Class Req. Component
Enclose Enclosing object with hand Grasping Hand/Gripper

Release Releasing object from hand Grasping Hand/Gripper
Navigate Navigating mobile base (2-dimensional) Navigation Mobile Base

Reach Reaching cartesian coordinates Motion Arm Kinematics

Look Pointing camera at coordinates Motion Pan/Tilt Unit (“Head”)
See Identifying objects in field of view Vision Perception System

Table 4.1: Atomic action primitives required by mobile manipulation robots. Each primitive
is member of a class of primitives (grasping, navigation, motion, vision), and requires certain
components for operation.

require an autonomous robot to fetch objects from cupboards, drawers, and a fridge, and bring
them to the working area in a kitchen or a meal table. Navigation, as well as path planning
under consideration of obstacles, is thus a central part to enable manipulation.

To illustrate variability of parametrizations and strategies that a Generalized Plan should
be able to cover, I list common tasks in manipulation up to implementation details.

4.3.1 Common Tasks for Mobile Manipulators

During mobile manipulation, autonomous robots can achieve most tasks using a set of atomic
action primitives as shown in Table 4.1. Using these primitives, I constructed a number of tasks
very common for mobile manipulators. Their sequence and composition of primitives is detailed
in Figure 4.8.

The five basic actions an autonomous mobile manipulator needs to be capable of are closing
and opening its hand, moving its base, reaching for entities in its vicinity, and visually identifying
its surroundings. Additionally, a sixth capability is moving its head — or Pan/Tilt Unit (PTU)
— situating its camera system. While this is not notoriously necessary, it gives the robot addi-
tional freedom to explore the environment and relieves it of unnecessarily using its navigational
capabilities. This reduces localization uncertainty from odometry drift, and the risk of collisions.

In Figure 4.8, six basic activities are decomposed into the above primitives necessary to
perform them. Each of the activities can have one or more preconditions, such as first finding,
localizing, and approaching an object before it can be picked up, or identifying a drawer handle
before it can be grasped. These additional steps are highly context dependent and are not part
of the actual task. They need to be taken care of by a higher level plan that checks and ensures
the availability of all required information to perform the more basic tasks. The same plan (or
its parent plans) must take care of handling failures that were emitted while performing the
basic activities, and react accordingly by either retrying, choosing a different task, or by giving
up.

In the following paragraphs, each of the basic activities is discussed briefly, together with
their specific requirements, potential pitfalls, and information that was left out of the Figure for
the sake of brevity and clarity.

Picking up an object (Figure 4.8a) An object needs to be in the robot’s vicinity in order to
be picked up. The robot needs to be kinematically able to reach it without colliding with other
objects. All necessary information about the object (e.g. grasp points) and task (e.g. which
end effector and which grasp point to use) must be available prior to picking it up, partially
acquired through e.g. a Searching for an object action.

First, the robot needs to approach the object with its end effector and assume a pregrasp
pose (the role of pre- and post-poses will be further explained in Section 4.3.3). While doing

35

3. Mobile Manipulation

Picking up an object

7 N

Putting down an object

] N

Pregrasp Grasp Lift Carry Preputdown Putdown Unhand Park
Reach Reach Enclose Reach Reach Reach Reach Release Reach Reach
(a) Picking up an object (b) Putting down an object
Opening a container Closing a container
Grasp ~Pull close Move Unhand Grasp Move Push away Unhand
har‘ldle to r(‘)bot base ‘away har‘ldle har‘ldle base‘close from ‘robot har‘ldle
Reach . Release Reach . Release
=)] N t o 0 N t o
Enclose Reach ~ Navigate Reach Enclose —avigate Reach Reach

(d) Closing a container
(drawer, cupboard)

(c) Opening a container
(drawer, cupboard)

Searching for an object Transporting an object

\Identify Search /MW t/o tarxm Putdown

Make object Look at
accessible object object for object object get location get location object
. Possibly All ex- . Possibly All ex-
Possibly All Look See All cept See ~avisate All cept See

(e) Searching for an object (f) Transporting an object

Figure 4.8: Common tasks for mobile manipulation robots, as constructed from atomic action
primitives. “Possibly All” denotes tasks that may or may not require all primitives, such as
accessing target locations (e.g. table top vs. drawer).

so, the end effector is positioned as close to the object as possible, while not colliding with
other objects around it. It then goes into an actual grasp pose, linearly moving the end effector
towards the object (in case of a full closure grasp). During this phase, collisions are ignored to
account for object model errors that would make the object appear too large, making grasping
it impossible. Alternatively, a motion planner could be allowed a collision penetration depth
for the object model. The end effector is then closed to fixate the object. The motion planner
must be informed of two changes: Attaching the collision model of the grasped object to the
end effector, and adding its mass to the kinematic chain; for heavy objects, the dynamics of the
robot arm will change, potentially resulting in controller failures when ignored.

To take minor model and perception errors into account, the robot then slightly lifts the
object from the table. Possible misperception could position it inside of the table model in the
collision scene, otherwise making moving an object fixated to the robot’s end effector impossible,
thus preventing successful motion planning. After lifting, the robot assumes a carry pose for
transport with the end effector holding the object, again avoiding collisions in a free space
motion.

Consecutive motion planning tasks for this end effector now need to take the object’s shape
into account, as it stays “attached” to the robot until it is put down, lost, or taken away.

36

Generalized Plan Design and Representation for Robots

Putting down an object (Figure 4.8b) Similar to picking up an object, putting it down
requires immediate vicinity to the location where the object is to be placed. This means for
most cases that this action was preceeded by a Transporting an Object action. Additionally,
the target location has to be perceived as “free”, with enough space to fit the object. The robot
has to be kinematically able to reach the target location such that the object can reach its final
pose.

The object to put down needs to be brought close to its target location first. To do so, under
consideration of the collision environment, the robot assumes a preputdown pose. The object
is then linearly moved into place, to the final putdown pose, ignoring collisions to account for
possible errors in the environment model and the target location (e.g. collision model of the put
down surface is geometrically higher than the target pose). The object is then released from
the end effector, which is then linearly moved away from the object into an unhand pose close
to the object. This is done for the same reasons that, during picking up an object, a pregrasp
pose is assumed. After releasing the object, it is important to detach the object model from the
robot model to inform the motion planner of the changes in the kinematic robot chain and the
end effector extents. The end effector is then moved into a park pose, avoiding collisions in a
free space motion.

Opening a container (Figure 4.8c) The container to open needs accessible handles that
the robot can either pull, push, or otherwise move to uncover the container’s contents. At least
one handle needs to be kinematically reachable, and its exact pose and characteristics need to be
available to the robot. Additionally, enough space needs to be available for moving the robot’s
corpus out of the way when opening the container.

Initially, the handle used to open the container must be grasped. Depending on the charac-
teristics of the container, it is usually either attached to a prismatic joint (drawers), or a revolute
joint (e.g. cupboards, fridges, dishwashers), which affects the trajectory used for opening the
container. This information is either already known when the container has been identified (and
the information is available in an external knowledge base), or is dynamically infered based on
the force excerted on the grasping hand when moving the container door [77]. The handle is
pulled close to the robot to make base navigation with a grasped handle more tractable. The
base is then mowved to fulfill opening the container. Base movement is only necessary when e.g.
a drawer opens farther than the robot can pull its arm back or when the initial base position is
too close to the drawer already. Navigating back allows for additional space along the opening
axis. Opening a cupboard with a revolute door and a long door lever can require evading the
opening door, also requiring base movement. Figure 4.9 depicts some examples for this. Finally,
the handle is unhanded to allow other navigation and manipulation activities.

Closing a container (Figure 4.8d) Closing a container is done in the exact opposite way
than opening it. The robot requires information about the door handle, grasps it, moves the
base such that the largest part of the opening trajectory is covered, and pushes the door close.
The handle is then again unhanded.

Contrary to opening a container, handle information is not essential when closing it. Pushing
the door into the appropriate direction is a faster alternative to close it and requires no precise
grasping, but leaves the door dynamics uncertain and can lead to unwanted collisions.

Searching for an object (Figure 4.8e) Searching and identifying a desired object requires
at least a vague description of what the performing robot needs to look for, and a perception
system that can process this description to yield either success or failure upon object inspection.

In human households, objects can reside on tables, in drawers, cupboards, behind doors, or
in any other enclosed, covered, or obstructed area. Making an object accessible means finding
a potential residence location, approaching it, and opening or uncovering it if necessary (as in

37

3. Mobile Manipulation

(a) Opening a drawer (b) Opening a cupboard
with a prismatic joint with a revolute door joint

2R =
-\
N

(d) Opening a dishwasher door

Robot

(c) Opening a room door
in a narrow corridor

Figure 4.9: Most common cases of extra space requirements and constraints when opening
containers of different kinds.

opening a container). To test available objects against the desired description, the robot points
its camera at the object, and processes perceived visual cues to identify what it sees. These
steps (together with closing the container again) are repeated until either the object is found,
or a frustration tolerance is exceeded.

Transporting an object (Figure 4.8f) Besides the preconditions of its subtasks, object
transport requires information about the object to deliver, and its target location. Necessary
object knowledge includes constraints such as not tilting a full mug, or a maximum velocity for
fragile, unstable, or stacked objects.

For transporting an object, it first has to be searched and localized. The robot then picks
it up and mowes its base close to the target location. This location needs to be made accessible
(e.g. opening a door, etc.) before the robot can put down the object.

For situations that require more than one hand to carry — such as heavy objects, or objects
of large dimensions — making the target location accessible needs to be done before actually
acquiring the object. These two variants have to be distinguished by a higher level plan that
has a priori information about the task, or that can branch into the respective strategy after the
object has been found and identified.

4.3.2 Overcoming Space Constraints when Accessing Containers

Accessing containers in household environments ranges from removing the lid of a jar over
swinging open a cupboard door to pulling out a drawer. Opening and closing such containers
is part of the most common tasks for mobile manipulators in human households (see Section
4.3.1), and thus deserve a closer examination.

One of the biggest challenges for robots when handling containers is potential extra space
required for articulating them, as for example for very long drawers or revolute door joints with
a long lever. Without sufficiently sophisticated strategies, this can even make articulating them
impossible. Figure 4.9 depicts some of the most common cases, which are explained in more
detail in the following paragraphs.

38

Generalized Plan Design and Representation for Robots

Opening drawers (Figure 4.9a) Opening a long drawer requires extra space behind the
robot standing in front of the drawer. The handle is grasped and the drawer is pulled open as
far as possible without moving the base. If the drawer needs to be opened even further, the base
is moved back to pull the drawer out. Alternatively, a robot can stand beside the drawer when
opening it if no additional space is available to move the base back.

Opening cupboards (Figure 4.9b) Most cupboards feature a door with a revolute joint
that needs to be swung open to access its contents. A robot must grasp the door’s handle and
then, while opening the door, simultaneously evade it. Given that enough space is available, it
can back off behind the door path and then return to the opened cupboard when the door is
completely open.

Opening room doors (Figure 4.9c) Rooms in human households are often connected via
narrow corridors, featuring little more space than doors require to be opened. Instead of applying
the same strategy as for opening cupboards that mostly have enough free space around them,
robots can partially articulate the door using its handle, and at an appropriate time switch to
“pushing it open”. This removes full control over the door dynamics, but allows for successfully
passing closed doorways in narrow corridors.

Opening dishwashers (Figure 4.9d) Similar to opening doors in narrow corridors where
the handle of an open door is very difficult to access, current robots cannot reach “under” an
open dishwasher door. The same strategy works here: Pulling the door open until a certain
degree, from which on the door is “pushed” down until it is sufficiently wide open. For this
maneuver, the acting robot requires either long enough arms to push the door down with the
end effector, or a mechanism that allows moving the torso sufficiently far down.

4.3.3 Task Stability: Pre- and Post-Poses in Robot Manipulation

It is common practice in robotics to define so-called “pre-” and “post-poses” for when robot
manipulators act on objects. The prime example is grasping: Before actually enclosing a robot’s
gripper around an object, it assumes a pose close to the object. Ideally, the remaining path to
fully wrap the gripper around the object is achievable by a linear motion in cartesian space. The
same accounts for unhand-poses after placing an object or when opening containers and grasping
their handles. The reason for this is simple: Without these intermediate waypoints, a motion
planning movement controller would have to rely on perfect object model and perception data.
Even 0.5¢m difference in object position can result in the robot knocking over the object while
directly approaching its grasp pose. When first going into a pre-grasp pose and safely navigating
around the object, only a relatively simple linear motion is left to perform, greatly lowering the
chance of accidentally destroying the manipulation scene. This adds to the overall stability of
the task, while not semantically being part of it. Different motion controllers, morphologies, and
tasks can require varying amounts and types of intermediate waypoints.

4.3.4 Plan Design for Reactive Task Monitoring in Mobile Manipulators

The common tasks described in Section 4.3.1 consist of idealistic step sequences a robot takes
to accomplish the respective task. Effectively a large number of failures can occur that can lead
to unanticipated task pertubations. To detect these failures and recover from the subsequent
divergence from the expected course of action, critical subtasks must be checked regularly to
detect anomalies early.

One example for this is transporting a grasped object and monitoring its correct position
in the gripper. Heavy or difficult to handle objects can slip out of a robot’s hand, resulting in

39

3. Mobile Manipulation

object loss. This either interrupts the task and requires recovery (e.g., picking up the object
again), or renders the task impossible (the object is completely out of reach).

To monitor the object position in the robot’s hand, a vision system can permanently watch
it and notify the plan system about significant changes. This constantly allocates the vision
system, making it unavailable for tasks like navigating in a dynamic environment or searching
for further objects while moving. A better alternative is to monitor changes in the force profile
of the grasp (as described by Kragic et al. [48]) and to then trigger a rudimentary check using
the vision system.

4.3.5 Example: Autonomous Object Search Tasks

Object search is a very common task for autonomous robots. It is required for virtually any other
task that involves objects, such as delivery, meal preparation, tablesetting, etc. The generalized
plan for performing such a task, written as a CRAM function, has the following structure (BT
version shown in Figure B.3):

(def-plan search-object (object)
(let ((lazy-locations (possible-residence-locations object))
(found nil))
(while (and (not found) (has-solutions lazy-locations))
(with-failure-handling
((location-unreachable (retry))) ,; On failure, try the next solution
(when (has-solutions lazy-locations))
(let ((current-location (next-solution lazy-locations)))
(approach current-location)
(when (requires-articulation current-location)
(articulate current-location :open)) ;; Open container
(let ((containing-volume (3d-volume current-location)))
(look-at containing-volume :center)
(let* ((perceived-objects
(perceive-objects object containing-volume))
(matched-object (any-of perceived-objects
#’matches object)))

(unless matched-object ;; Leave open when object was found
(when (requires-articulation current-location)
(articulate current-location :close))) ;; C(Close container

(when matched-object ;,; We are done
(setf found matched-object)))))))
found))) ;; Return etther the found object, or ‘nilf

A number of fundamental external functions take over the reasoning-part for this generalized
plan function:

(o) possible-residence-locations: Given the object type and the place the robot is cur-
rently located at (such as in a kitchen), there exists a number of possible places where
the object could be. A cup might be on the table, in the cupboard, or in the dishwasher.
While these are some of the most probable residence locations for cups in kitchens, it could
be anywhere else: in the sink, the refridgerator, or the microwave. In order to reflect this
in the generalized plan, these locations are identified by their characteristic of being a stor-
age construct [94]: An orthogonal ontology in a knowledge base can define this property,
allowing possible-residence-locations to infer that a microwave is possible, although
less probable [79]. Recording EMs, the resulting probability distributions of which objects

40

Generalized Plan Design and Representation for Robots

were found where in what context can act as a statistical prior for these possible residence
locations [103].

(o) approach: In order to interact with any given object, the robot must first be brought in
physical vicinity, i.e. it must approach the object in order to be able to reach it. Starting
from a current location, arbitrary obstacles can hinder the robot from reaching its goal
location. Path planning can partially help overcome this problem in both, convex and
concave environments. Approaching an object therefore requires decisions on the path to
take to reach an object (using e.g. waypoints), or signal a failure when the goal location
cannot be reached.

(o) requires-articulation: Objects that are stored in containers such as drawers, cupboards
or cabinets require articulation in order to make them accessible. This can result in opening
doors, or pulling open drawers.

(o) articulate: While articulating a container holding an object, a robot must pay special
attention to possibly blocking joints, obstacles hindering doors or drawers from opening,
and must not get in its own way while articulating. Additionally, handle opening and
closing trajectories must be calculated based on the global pose of the container, the joint
axis of its opening, and the joint boundary limits.

(o) perceive-objects: After the place where an object potentially resides has been made
accessible, a perception routine capable of inspecting the containing space must judge its
contents. Drawers have a different internal structure than e.g. refridgerators or cupboards,
and require different approaches to meaningfully detect objects inside.

(o) matches: All objects that are detected inside of a contaning space must be checked for their
fitness compared to the object in question. Lighting, obstruction, vague descriptions, and
exogeneous events can make the object differ from its expected image. Assuming plausible
error margins can help identify these objects nevertheless, but open up the possibility for
false positives.

The usage of external functions in the given search-object function explains them and their
purpose pretty well. While some of them are very specific to the task at hand, such as matches
and possible-residence-locations, the rest is rather common with other functions, too:
approach, requires-articulation, articulate, and perceive-objects are valid functions
for picking up or placing objects in other scenarios as well.

4.3.6 Example: Autonomous Fetch Tasks

Fetch tasks, as a common consequence of object search tasks, are the predominant activity
primitive for autonomous robots. Fetching objects is at the core of tasks like table setting, tidying
up roomwms, or going shopping, but also feeding material into factory machines or supporting
surgery. While there are examples of tasks without the need of fetching objects, it does act as a
basic building block to enable everyday activity, for example fetching required tools to perform
a completely different task.

A generalized plan that takes into account different object locations and grasp types is shown
below. A lazy variant of the search-object plan is used to find all instances of objects that
match the description of the object (BT version shown in Figure B.4).

(def-plan fetch-object (object)
;5 Vague description is turned into lazy list rTeal world references of object
(let ((lazy-found (lazy-search-objects object)))
(with-failure-handling
((manipulation-failed (retry))) ,;,; OUn failure, try the next solution
(while (has-solutions lazy-found)
(let ((current-object (next-solution lazy-found)))

41

4. Contextual Knowledge in Autonomous Robot Agents

;5 Assumptions: Object approached, container (if any) is open
(let* ((valid-arms (or (value (context-constraints ‘(:valid-arms))
:valid-arms) ;; Which fact to return
“(:left :right))) ;,; Default value
(lazy-grasps (lazy-calculate-grasps ;; Lozy List of grasps
current-object (handles current-object)
:valid-arms valid-arms))
(constraints (context-constraints ‘(:max-tilt-angle
:max-velocity))))
(with-failure-handling
((manipulation-failed ;; Try the nexzt grasp
(when (has-solution lazy-grasps) (retry))))
(let ((current-grasp (next-solution lazy-grasps)))
(perform-grasp current-grasp :constraints constraints)))))))))

Fundamental external functions common with the search-object plan are the ones handling
lazy lists (next-solution and has-solutions). Moreover, fetch-object uses the following
external functions for reasoning and actual manipulation:

()

lazy-search-objects: This is a slight variation of the search-object plan from Sec-
tion 4.3.5 in which not only the first matching object is returned, but all objects detected
matching successively. The function still handles searching for, and approaching objects,
but switches to the next probable one when a new solution is requested.
lazy-calculate-grasps: A similar principle as in lazy-search-objects applies to this
function: Based on the geometry of the object to grasp, its handles (i.e. its allowed
grasp points) and the valid arms of the robot to use for grasping, grasps are calculated
lazily such that this calculation is only ever performed when a new set of arm/grasp point
relations is required. Calculating grasps can become (time-)expensive when the shortest
arm travelling path or a lot of physical constraints are taken into account. Lazy lists
of grasps — if properly implemented — never perform more calculations than actually
necessary, with the drawback that no global optimum can be ensured this way. The latter
would require all results to be available for the sake of comparison.
context-constraints: Contextual constraints can require specific modifications of oth-
erwise generic actions. In this case the modifiers :valid-arms, :max-tilt-angle, and
:max-velocity specify constraints on how to handle objects when holding them.
perform-grasp: This function executes the actual grasp. Grasping an object consists of
multiple phases, starting with assuming a pregrasp pose (see Section 4.3.3), opening the
gripper, assuming a grasp pose, closing the gripper, and finally retracting the arm under
consideration of movement constraints. Any of these phases can fail due to for example
physical constraints or controller failure, triggering a manipulation-failed failure that
rewinds the performed actions, leading to trying the next possible grasp, if available.

When fetching objects and after having found a valid object, the main decision making
matter is how to handle the object exactly. This includes deciding on what parts of the object
to touch with which of the robot’s grippers, and taking into consideration contextual constraints.
While the former is mostly geometric reasoning, the latter depends on both, the task itself, the
object, and the current context.

4.4

Contextual Knowledge in Autonomous Robot Agents

Commonly, robot plans in cognitivist architectures such as CRAM are structured as hierarchical
trees, allowing encapsulation and modular reuse. An underrepresented aspect in plan languages

42

Generalized Plan Design and Representation for Robots

is implicit context awareness. Tasks ought to perform differently based on their ezplicit parame-
terization, but also on implicit circumstances. These depend on dynamic factors, such as volatile
perception knowledge, but also on static knowledge available through external knowledge bases.

Abstract generalized, modular plans are not supposed to cover all possible situations ex-
plicitly, but represent a generalist strategy that changes its structure and resulting behavior
based on available knowledge. As briefly introduced in Section 4.2, T therefore introduce the
with-context environment:

(with-context (¢y ... c¢,) code)

Within plans, a contextual parametrization for other plan building blocks they are using can
be defined. Any layer can therefore either add new contextual parameters c;, or alter old ones.
The behaviour of single plan blocks in code can thus be influenced by a semantically higher
hierarchy. One simple example that benefits from this approach is a context that describes
the transport of liquid filled mugs. The result would produce different maximum tilting angles
during motion planning than when transporting empty ones, given the assumption that nothing
should be spilled.

In the following subsections, I will start with an example explaining how the with-context
environment is used, going into detail about its implementation. I will then briefly discuss
static and dynamic knowledge, and give an overview of where the different types of knowledge
commonly originate from in robot systems.

4.4.1 Contextually Constraining Generalized Plans

This section motivates the usage of with-context, and its effect on lower-level plans. Here,
the fetch-object task from Section 4.3.6 is constrained when transporting liquid-filled objects
(e.g. coffee cups). In this plan, the non-lazy variant of the search-object plan is used. For
the sake of clarity, if search-object is called with the description of an object already found,
it just returns that instance.

(def-plan constrained-fetch-object (obj)
(let* ((obj (search-object obj))

(obj-state (perceive-state obj)) ,; Identifies facts of ‘obj’

(obj (or (when (has-fact obj-state :liquid-level)
(update-object
obj ¢((:liquid-level

,(get-fact obj-state :liquid-level)))))
obj)))
(with-context ¢((:max-tilt-angle ,(kb-constraint :max-tilt-angle obj))
(:max-velocity ,(kb-constraint :max-velocity obj)))
(fetch-object obj))))

The above plan is overly explicit. It does, however, show the implications of using contex-
tual constraints: fetch-object is implicitly re-parametrized without mentioning those changes
in any arguments to the function. fetch-object retrieves required constraints by calling
context-constraints (again, see Section 4.3.6). In the above plan, kb-constraint returns
the value of a specific constraint as reported by the knowledge base, based on a complete object
description. A more general version of constrained-fetch-object incorporating all possible
modifiers from an external knowledge base is shown below:

(def-plan constrained-fetch-object (obj)
(let* ((obj (search-object obj))
(obj-state (perceive-state obj))

43

4. Contextual Knowledge in Autonomous Robot Agents

(facts (mapcar (lambda (name) ¢(,name ,(get-fact obj-state name)))
(fact-names obj-state)))
(obj (update-object obj facts))
(constraints (mapcar (lambda (name) °(,name ,(kb-constraint name obj)))
(fact-names obj-state))))
(with-context constraints
(fetch-object obj))))

In this version, first all facts are extracted from the object state and inserted into the object
description. Using this updated description, all constraints available from the knowledge base are
collected. These constraints then parametrize with-context, and further implicitly constrain
fetch-object. A possible implementation of with-context is seemingly simple:

(defvar *contextual-constraints* (make-hash-table))

(defun get-contextual-constraints ()
contextual-constraints)

(defun set-contextual-constraints (constraints)
(setf *contextual-constraints* constraints))

(defun context-constraint (constraint)
(gethash constraint *contextual-constraintsx))

(defun context-constraints (constraints)
(mapcar (lambda (constraint) ¢(,constraint ,(context-constraint constraint)))
constraints))

(defmacro with-context (constraints &body code)
‘(let* ((old-constraints (get-contextual-constraints))
(new-constraints (make-hash-table)))
;; Make a copy of the extsting constraints table
(loop for h being the hash-keys in old-constraints
do (setf (gethash h new-constraints) (gethash h old-constraints)))
(dolist (constraint ,constraints) ;; Update inner scope
(destructuring-bind (name value) constraint
(setf (gethash name new-constraints) value)))
(set-contextual-constraints new-constraints)
(unwind-protect (progn ,@code)
(set-contextual-constraints old-constraints)))) ;; Return to outer scope

4.4.2 Static and Dynamic Knowledge

I will briefly explain two types of knowledge a robot has at its disposal, what their origins are,
and what they are used for: (1) Static and (2) dynamic (volatile) knowledge.

Static knowledge is all information known a priori that does not change during the course of
a single robot task episode. Task episodes are enclosed sets of actions. If a piece of information,
such as the opening degree of a drawer, changes in between two task episodes — opening the
drawer and picking an object from it — the information about its collision model becomes
quasi-static for the governing task, such as setting a table.

44

Generalized Plan Design and Representation for Robots

Information Static Dynamic Source

Floor Maps v’ Map files

Collision Environment v’ Environment description

Task Description v’ Parent task / human operator
Person’s Meal Preferences v’ Knowledge Base / Experience
Perception Results Perception system / sensors
Kinematic Robot State Joint sensors / self model
Object Pose in Hand Object tracking

Milk Availability Check kitchen

COCK

Table 4.2: Common types of either static or dynamic information and where they originate from

Try in Order]

Grasp

Check grasp v Assume
feasibility Pregrasp Pose
#
-1 =
Identify proper .
grasp for object |4 Open Gripper

-1 -
C Check for free Assume Assume
arm Grasp Pose 4 Pregrasp Pose

4 > A

grasped
grasp >
infeasible

#
Close Gripper object ‘i

Parameters to try: left arm, right arm

Figure 4.10: Decision flow of grasping an object based on both, static and dynamic information:
Available arms, known grasps for the object, their current feasibility, fixed (pre-)grasp offsets,
and the volatile success/failure of all intermediate steps.

Dynamic knowledge is volatile information unavailable at design time that becomes avail-
able at, and vanishes again during runtime. Dynamic knowledge is either information recorded
by sensors, acquired from other external input channels, or inferred from available information
(dynamic or static).

Table 4.2 shows common types of information from both classes and where they originate from.
Figure 4.10 shows the decision flow of grasping an object based on both, static and dynamic
information.

A special type of quasi-static knowledge are Episodic Memories. They specifically change
only after complete episodes, and contain all relevant dynamic knowledge that was deemed
volatile during the execution of the task episode. This knowledge is now available as an a
posteriori source for knowledge inference, resulting in new static knowledge for the next task
episode. Chapter 5 details this topic further in great detail.

4.5 Planning for Generalized Fetch and Place Activities

In this Section I give an overview and concrete example of how to integrate generalized fetch
and place plans with traditional planning. To this end, I designed and implemented an A* based
planner that can easily be adapted to any graph search based problem. To showcase how to
plan for generalized plans, and to introduce another domain of use, I employ the example of a

45

5. Planning for Generalized Fetch and Place Activities

Problem Statement ¢__| State | ____| Possible | _y solution
Representation | Transitions .
v Action
Current State Sequence 1
Planner » Modified A*
[Search 1
-> ! ! :
Goal State Heuristic Distance Action
Cost Function Measure Sequence n

Figure 4.11: Architecture overview of the modified A" planner. Four components are domain
specific (shown in italic): State representation, state transitions, heuristic cost function, and
distance measure. The state representation is used in the problem statement and while planning,
and the possible transitions are used during planning and when presenting the solution. The
heuristic cost function and the distance measure are only used by the A" search algorithm itself.

robot reordering a shopping rack [100].

4.5.1 An A"-based Planner for Generalized Actions

Fetch and place actions are usually part of a larger task which builds on top of object transport.
Common challenges include obstructed objects that need to be made accessible, and placing
objects in a way such that they do not hinder placing other objects later on. To cover as many
of such cases as possible, I designed the above mentioned planner such that it can:

(o) Generate action sequences from a current scene state into a desired goal scene state,
(o) Match generic goal states, with multiple states fitting the goal (multiple end-points), and

(o) Produce multiple solutions, in descending quality order.

The resulting planner is very generic and can be applied to any graph search based problem.
To apply it to a specific problem domain, four components need to be defined:

o) A state representation (e.g. shopping shelf state, meal table state),

)
o) Possible transitions between two states (e.g. pick, place, move base, lower /raise torso),
)
)

o) A heuristic cost function for state transitions, and

(
(
(
(

o) A distance measure between states.

The planner’s general architecture is shown in Figure 4.11. Action sequences calculated with
this planner consist of an ordered list of atomic transitions as defined for the domain, iteratively
leading from the start state to the desired goal state. Ideally, a robot performing such a sequence
can then linearly iterate over all entries, executing them one by one, ultimately arriving in the
desired state. Due to the purely symbolic nature of the planner, it does not address reality’s
uncertainty in e.g. physical object repositioning tasks. Therefore, the action sequences can only
act as prior strategies for physical robots. In-between steps a robot should always validate the
perceived vs. the expected state of the scene. Upon divergence of the two, a new strategy can
be planned based on the perceived state, recovering from object misplacement, misperception,
and exogeneous scene changes.

The fully implemented planner is available online' under the open source BSD license.

4.5.2 Example: Re-arrangement of Objects in Retail Shopping Racks

One application for a planner that generates action sequences for autonomous robots is the
re-arrangement of arbitrary objects in a shopping rack. As mentioned in Section 4.5.1, four
domain-specific components need to be defined in order to make use of the planner:

"http://www.github.com/fairlight1337/shopping_scenario

46

http://www.github.com/fairlight1337/shopping_scenario

Generalized Plan Design and Representation for Robots

torso lift height

Start State Intermediate State Goal State

[] []
[1[] B

[1 M [I[][]

[1 @ 1]

EEET]
HENENEN

torso lift height
torso lift height

L LT m I L]

left hand right hand robot base left hand right hand robot base left hand right hand robot base

Figure 4.12: Internal planning representation of start, intermediate, and goal states of a shopping
rack re-arrangement scenario. The performing robot can pick and place objects with both hands
individually, hand over an object from one hand to the other, move its base to different fixed
floor locations, and raise or lower its torso.

Action Primitive Parameter(s) Description

pick object, hand Picks up an object with the given hand.

place object, location Places the held object at the given location.
handover Hands over a held object from one hand to the other.
move-torso height Moves the robot’s torso to the given height.
move-base position Moves the robot’s base to the given position.

Table 4.3: Action primitives available to a robot that autonomously re-arranges objects in a
shopping rack.

(©)

State Representation: In principal, the shopping rack is divided in a number of shelf
levels, offering space for a limited amount of objects on each level. A rack state represents
the object occupancy in this rack at any given point, in addition to which objects are held
in the robot’s hands, where the robot’s base is positioned, and at what height its movable
torso currently is. Figure 4.12 depicts these internal representation states exemplarily.

Possible Transitions: To transform a rack from one state into another, a robot can
perform a number of action primitives, as described in Table 4.3. Per transition, exactly
one action is performed.

Heuristic Cost Function: The heuristic cost function of transforming a state Sy into
Sj is given by H(Sp, S1) as shown in equation 4.1.

H(Sp,S1) = Number of misplaced objects in Sy relative to S; (4.1)

Distance Measure: The distance between two states Sy and 57 is the accumulated cost
of the action sequence A;, such that A;(Sy) — S1, under consideration of the atomic action
weights w as shown in Table 4.4. Equation 4.2 represents the mathematical formulation
of the distance measure.

D(Sp,S1) = TP075 = [Zw(Ai,k) = D(S51,50) (4.2)
k=1

D(Sp,S1) > 0 , D(So,S)=0 , D(So,S1)> H(So,S51)

Since w > 1, H(Sy, S1) never overestimates D(Sp, S1), as required by A*.

47

6. Context-dependent Failure Handling Strategy Selection

Action A;; | Pick Place Move Torso Move Base Handover
Weight w 1.2 1.2 2.0 1.0 1.5

Table 4.4: Atomic action weights for elements in an action sequence for re-arranging a shopping
rack.

The parametrized planner produces action sequences that transform the shopping rack from
its current state into any given goal state, if possible. The transitions as shown in Table 4.3
represent generalized plans — their exact manner of execution (and feasiblity) depends on the
context and the concrete task description. Instead of “pick” or “place”, any other generalized
action such as “fetch a glass” or “clean the living room” are allowed in their respective scenarios
as long as they fit the heuristic cost function and a state distance measure.

4.6 Context-dependent Failure Handling Strategy Selection

This section addresses strategies in generalized plans for selecting failure handling routines and
parametrizations based on the failure and the current context. As already introduced in Sec-
tion 6.1, failures can partially be addressed in the local context they occur in. The hierarchical
character of generalized plans then allows each layer of the hierarchy to attempt to solve the
problem, or escalate it.

The most simple strategy for dealing with failures is statically retrying: The task is re-
attempted n times, a frustration limit, before it is escalated. Blindly retrying a task only has
potential to work in non-deterministic settings, and can have three types of outcomes:

(o) Success: The task is performed as intended
(o) No change: The same failure occurs again, possibly with slighly different details

(o) Different failure: A different failure occurs

Blind retries are a common fallback solution when no more elaborate approach is available.
More intelligent — and knowledge enabled — strategies include the following:

(o) Reparametrization: Domain knowledge about the task performed allows to deduce
parameter ranges it expects. Together with additional contextual constraints (see Sec-
tion 4.4), the allowed ranges can be narrowed down, and a possibly more feasible part of
the search space can be explored. I explain how to do this in Section 5.5.1.

(o) Strategy change: Several approaches can exist to alleviate any one failure. By trying
different ones — keeping track of what did not work — a generalized plan raises the chances
to successfully recover.

(o) Requesting external help: An autonomous robot can request help (from humans or
other robots) to transform the currently problematic situation into a manageable one. It
must explain what the problem is and which parts it cannot solve itself.

The strategies suggested above can be selected based on rules stored in an external knowledge
base. Three pieces of information are required for a proper strategy selection: (1) The failure
itself, (2) the current context, and (3) the task description. In my work, I make failure handling
strategies explicit when possible: A controller failure that was successfully detected in one of the
robot arms always results in a restart of the controller once, and requests human intervention if
this does not work. For more general situations, such as fetching an object resulting in no object
being found, more intelligent strategies are required: Try a different cupboard, a different room,
or try to substitute the object.

48

Generalized Plan Design and Representation for Robots

In the AI research field — and especially planning — failure detection and recovery is a
whole subfield of its own. In my work, I deal with failures following the concepts presented
above. For plan repair, partial and global replanning, and more specialized strategies I direct
the interested reader to the respective literature [23, 25, 36, 67].

4.7 Summary

In this chapter, I motivated the current challenges for autonomous robots in human households,
and subsequently sketched plan design principles for generalized, abstract robot action plans.
I covered three main areas: (1) Mobile manipulation and its inherent challenges and pitfalls,
(2) the role of contextual knowledge in autonomous robots, and (3) planning for generalized,
abstract action descriptions.

I have described key concepts important for generalizing plans and for removing task and
domain specific knowledge from action descriptions, most importantly being: (1) Role and han-
dling of anticipated vs. unanticipated failures, (2) the difference between, and role of symbolic
and subsymbolic knowledge, (3) local and global task recovery in uncertain situations, (4) com-
mon tasks and their structure for mobile manipulation, and (5) contextually constraining plans
using static vs. dynamic knowledge. I implemented the presented concepts in a set of CRAM
compatible macros and functions and presented code examples where appropriate.

The concepts described in this chapter lay the logical foundation for all chapters to follow.
My work revolves about generalized plans, how they can be parametrized from autonomously
collected robot experience, and how their connection to the real world is established without
hindering their performance or versatility.

49

7. Summary

50

Chapter 5

Data Collection and Experience-Based Learning

“Erperience 1s simply the name we give our mistakes.”

— Oscar Wilde [98]

Even simple decision-making processes are based on mostly volatile information that is either
derived from existing knowledge, or inferred from the situational context. While for robots the
result of these processes is often visible in physical actions, their reasoning process stays opaque
to outside observers. This has two drawbacks: (1) It is difficult to trace back the reasons that
led to a decision, hindering the detection of behavioral anomalies, and (2) the reasoning model
stays hidden, never allowing a robot to learn from its own decision making.

In this chapter, I will describe the benefits of experience collection for autonomous robots, and
show the conceptual design and implementation of a framework for collecting Episodic Memories.
These memories allow to answer high level semantic questions like “Which steps did you take to
achieve your goal?” or “Did unexpected failures happen?”, but also more concrete questions like
“What are all positions you stood at when grasping succeeded?” or “In which cupboard are plates
usually stored?”. As a case in point, I will present my findings at the example of an autonomous
robot setting and tidying up a meal table, what the resulting experiences are, and how they
can be used to improve the robot’s behavior and performance. The framework I am presenting
fully integrates with the concept of Generalized Plans from the previous chapter, and benefits
from their design patterns. Using the collected experiences, I introduce action prediction models
(Expectation Models) and how experiences can be generalized into a descriptive action model
(Prototypical Experiences). Afterwards, I introduce a sophisticated framework for automatically
collecting and archiving Episodic Memories from simulation, and automatically diversifying
environment and task parameters for rich datasets.

Building on top of the Episodic Memories introduction in Section 3.2, two topics around
robot experience are highlighted here: (1) The process of and tools for collecting experiences,
and (2) machine learning techniques applicable to the resulting data. Based on the second
topic, I will draw connections to how the performance of Generalized Plans is improved through
experience. For all areas, I will introduce programming language constructs that enable and
ease data logging where applicable.

Execution Learning

Generalized ¢ Expectation
Robot Plans Models

N

Episodic

Embodiment —>» Memories

5.1 Performance Enhancement through Experience

Acting autonomously in a dynamic environment requires making decisions under uncertainty.
For robots, this uncertainty is grounded in two facts: Neither can a robot be 100% sure about

o1

2. Machine Learning

its knowledge of the world, and thus whether it is deciding based on correct information, nor
can it be sure of the consequential success of its decisions. Humans make decisions based on a
mixture of background knowledge and practical experience [71]. While we can supply today’s
robots with sufficient background knowledge about a task, they completely lack the ability to
draw from experience or even form some sort of intuition from it. My claim is that robots
increase their performance when having task experience at hand, being able to project the most
probable outcome of their actions, and making decisions that have proven to work well. Gaining
task experience basically means collecting information about one’s doings, extracting rules and
facts from it, and transforming these into a more general model of the task’s characteristics,
requirements, and consequences. In my research, I therefore collect all information utilized by a
robot to make its decisions, the ever-changing world state as far as it is known, and the perceived
consequences of the robot’s actions, into EMs. I then generate experience models from these
memories that influence the robot’s decision making process. To achieve this, I developed a
set of software tools that collect and process memory data, and have created an interface for
CRAM robot plans [12] to make use of experience models.

The symbolic portion of all robot memories is encoded in the OWL format to make it
semantically accessible. I use the KNOWROB framework [93] to access this data. This choice
was made as KNOWROB offers a highly flexible reasoning ontology fit for the robotics domain
and allows to formulate PROLOG queries based on symbolic as well as subsymbolic memory data
when encoded in OWL. To date, no other framework that offers these capabilities in the domain
of robotics or adjacent fields is known to me.

5.2 Machine Learning

Robot experience data is represented as task episodes that include all information collected
while the robot performed a task. This data features a very broad content, from low level sensor
information like laser scanners or fingertip pressure sensors to high level semantic data such
as the robot’s intentions, or the purpose of a trajectory it performed with its arms. Which
parts of this information is important for optimizing ahead of performing a task is difficult if
not impossible to deduce for human developers, given that those tasks are potentially novel,
performed continuously, and are met with slight variations every time.

To identify relevant information from an episodic memory, I use different machine learning
approaches. Which techniques are used depends on which layer of information to process:
For low level, quantitatively abundant and subsymbolic data Reduced Error Pruning (REP)
trees yield great results. High level symbolic data is processed using the C4.5 algorithm [73].
Both approaches result in decision trees that, based on statistical evidence, identify a causal
relationship between recorded memory data and perceived effects in the robot’s environment
while performing a task. For data that structurally cannot yield a direct causal relationship, I
developed a Mixed Multivariate Gaussian model that produces Gaussian distributions over an n-
dimensional parameter space, learned from experiences, and able to give a good estimate of how
probable the success of a parametrization is. Combined with knowledge about the task’s general
structure, which is also included in the episodic memories, I formulate Expectation Models
(ExMods) [103] to optimize a plan’s performance. These models are further extended and
enhanced through reinforcement learning: When encountering new situations or failures when
doing its duties, a robot gets more in-depth experience, resulting in more elaborate ExMods.

5.3 Methods in AI based Robotics

For my research, I borrow several concepts from classical Artificial Intelligence (AI) and research
in AT based Robotics, the most pominent ones being:

02

Data Collection and Experience-Based Learning

Task Tree Concept Ontology
fridge
container glass
[find |\ substitute]_)[find] [fetch] [pour]
n I n n I n n n n n n 'Ikll n "
glass glass cup cup mi cup holds-liquid cup
not-found
pool

i
|
|
y I
original requirements !
"container", "holds milk" :

¢ water
generalize new requirements liquid <
milk

"milk" -> "liquid" "container", "holds liquid"

Figure 5.1: Example task tree for the task “serve milk” and the fitting concept ontology for
household robots. In the task tree, the object concept “glass” was substituted by “cup” because
it is — in the context of the task — a suitable replacement based on the properties “container”
and “holds liquid”.

(o) The Hybrid Deliberative/Reactive Paradigm: The actions to take are “planned” in
advance, represented by a robot plan engineer manually designing elaborate generalized
plans. These plans are then executed, reactively changing strategies and reparameterizing
on the go as the situation requires it.

(o) Backtracking during Task Performance: When one approach does not work, its
effects are unwound until a state is reached in which an alternative approach becomes
available. This lets a robot explore promising solution candidates more easily, while only
performing the actually required real world actions to assess its options before performing
an expensive switch to a different strategy.

(o) Unsupervised and Reinforcement Learning: By collecting experiences and equipping
a robot with the ability to judge whether it reached its end goal, it can supervise itself,
removing the human operator from the reinforcement learning loop.

These concepts — being very abstract in their nature — are the underlying ideas of my
generalized robot plans. Architecture-wise, a human designer gives the robot a head-start into
how to perform a task on a very general level. It then explores its environment while following
its duties, getting better over time at tasks it performs.

5.4 Anatomy of Episodic Memories

An Episodic Memory consists of a symbolic and a subsymbolic part. The symbolic part, mainly
representing a hierarchical task tree, is strongly linked to an ontology describing all action classes,
entities, and properties used in an EM. This ontology is orthogonal to the task tree, allowing
reasoning in two dimensions: Based on task structure, and based on an entity-conceptual level.
Figure 5.1 depicts these structures and gives an example of how a reasoning process incorpo-
rates these dimensions. The task tree is encoded as strongly-structured OWL data, holding all
symbolic annotations relevant during execution. An example of how the task tree is stored is
shown here:

<owl:NamedIndividual rdf:about="&log;CRAMAction_xSG6XCCFq3ptV06o">
<rdf:type rdf:resource="&knowrob;CRAMAction"/>

93

4. Anatomy of Episodic Memories

<knowrob:taskContext rdf:datatype="&xsd;string">GRASP</knowrob:taskContext>
<knowrob:taskSuccess rdf:datatype="&xsd;boolean">true</knowrob:taskSuccess>
<knowrob:startTime rdf:resource="&log;timepoint_1461715200.813"/>
<knowrob:endTime rdf:resource="&log;timepoint_1461715232.819"/>
<knowrob:objectActedOn rdf:resource="&log;object_Xo2qWwmXaJlxVH"/>
<knowrob:arm>right</knowrob:arm>
<knowrob:graspDetails rdf:resource="&log;action_tAQ9QHrud0Pee6"/>
</owl:NamedIndividual>

The above excerpt describes a node in the task tree of type GRASP — grasping an object.
Here, the most important data is:

taskContext: String identifier, describing the type of node
taskSuccess: Boolean flag, signifies whether the task was successful

startTime: Time at which this node was entered (when the task started)

objectActedOn: Which object was grasped /manipulated

(©)
(0)
(0)
(o) endTime: Time at which this node concluded (when the task ended)
(©)
(o) arm: Which arm was used for grasping

(0)

graspDetails: Additional information (relative pregrasp poses, force applied, etc.), stored
as a hierarchical tree of key/value pairs

Generalized plans can annotate the currently active node with any type of information:
Atomic data (such as arm), larger, hierarchical records (such as graspDetails) or time points
and time periods for marking portions of subsymbolic sensor data.

The subsymbolic part of an EM represents all continuous and binary data that cannot be
represented symbolically. Its semantic meaning is defined in the symbolic data part, and the
link between the two is established by filenames, time points, time periods, and kinematic link
names. By its nature, this data comes in a much higher volume — in manners of magnitude
— and requires special handling when storing it. The two most complex objects in terms
of space consumption are camera image streams and still images, and kinematic robot link
transformations. The former is addressed by using compressed versions of the image streams,
at the cost of quality. This is passable as long as image processing algorithms can still properly
analyze the data. The latter is stored by employing a throttling mechanism: Only significant
changes in any one relative cartesian transformation are stored [105]. If the robot is not moving,
virtually no data is stored. “Virtually” because — as the algorithms using this data interpolate
in between data points — the transformations get stored every other second even if they did
not change in order to have up to date data between interpolation points. Besides binary image
data, the remaining subsymbolic portion of EM data is stored as JavaScript Object Notation
(JSON) files. Every EM JSON file contains a distinct part of recorded data. In its default
configuration, my experience collection mechanism records the following two parts:

(o) tf.json: All kinematic configurations of involved robots and known articulatable furniture
(drawer joints, fridge doors, etc.); in their purest form (an identity transformation between
the coordinate systems “world” and “robot_base” at time 0), these assets have the following
format:

{header: {frame_id: "world", stamp: {$date: 0}},

child_frame_id: "robot_base",

transform: {translation: {x: 0, y: 0, z: 0},
rotation: {x: 0, y: 0, z: 0, w: 1}}}

o4

Data Collection and Experience-Based Learning

(Some Object A .
TYPE [CONTAINER . w
b
NAME [OBJECT ;
frame-id ["head_mount_kinect_rgb_optical_frame" ‘ I ‘
x [0118927 GOAL-ACHIEVE {/
position y [448207 NAME [ACHIEVE
z [1.37835 PATTERN [((OBJECT-IN-HAND ?0B}))
POSE
x 0 DECLARATIONS | NIL robot/pose]
y 0 g
orientation Vs ~ s h; =
z 0 GOAL-PERCEIVE-OBJECT | (AT-LOCATION) - {mage e~
L w 1)| NAME | PERCEIVE-OBJECT | POSE [.. J o
detected|object PATTERN [(A 70BJ-DESIG) (,/
camera image DECLARATIONS | NIL
UIMA-PERCEIVE GRASP

Y
o
| =W e [omeer
v TYPE [CONTAINER
i ’ ar
e HANDLE | .
DIMENSIONS | ...

Figure 5.2: Example task tree visualization from the Graphviz DOT file generated for every
recorded experience. It includes the task hierarchy, camera images, robot poses, and object
details as applicable.

(o) logged designators.json: Hierarchical parameter configurations (trees of key/value
pairs) for task parametrizations, descriptions of perceived objects, request/response pairs
of communication with external components (e.g. perception system), etc. The stored
format is similar to the above, but describes different entities.

To give a first impression of any recorded experience, the task tree is additionally stored as
a Graphviz DOT file, which in turn can be used to create PDF files showing the hierarchical
tree. Figure 5.2 gives an impression of that visualization. For key moments, such as before and
after grasping, or when requesting information from the perception system, camera images and
robot poses are annotated as applicable. Whenever available, object annotations are added for
tasks supplying them.

5.4.1 How Episodic Memories are Recorded

To efficiently and reproducably generate robot experiences in a standard format, I designed and
implemented the Semantic Hierarchy Recorder (SEMREC)! software, and added vital extensions
to the mongodb_log2 software.

SEMREC offers input interfaces for cognition-enabled architectures to report the actions that
are performed, collects and organizes this data in a hierarchical tree, and is able to generate a
number of output formats. Using its plugin system, SEMREC can be extended with any input,
output, or processing components necessary. A number of plugins is already available?, covering
all needs of household robot experiments. The symbolic part of any of my robot experiences is
constructed using this software. For a cognition-enabled architecture to make use of SEMREC,
it needs to notify the logging system about tasks it begun, finished, their parametrizations,
and any other data the final EMs should contain. Using an Remote Procedure Calling (RPC)
interface, any client can add information to the recorded log. The most prominent and most
used calls are shown in Table 5.1. Its asynchronous nature allows SEMREC to process all data
from an architecture in the correct order without slowing down plan performance (no wait time
for the caller).

"https://github.com/fairlight1337/semrec
*https://github.com/fairlight1337/ros-mongodb_log
*https://github.com/fairlight1337/semrec_plugins

95

https://github.com/fairlight1337/semrec
https://github.com/fairlight1337/ros-mongodb_log
https://github.com/fairlight1337/semrec_plugins

4. Anatomy of Episodic Memories

Signal Type Description
begin-context Starts a new task context, with start time and parameters
end-context Ends a running task context, with end time, result, ending all children
add-designator Adds a designator reference to the current task, optionally with a purpose
(e.g. “perceptionRequest”, “perceptionResult”)
equate-designators Equates two designators, linking them together in a linear list
annotate-parameter Adds a symbolic, named parameter value to the current context
add-failure Adds a failure instance to the currently active task context
catch-failure The current context caught a failure and tries to handle it
rethrow-failure The current context was not able to handle a caught failure, rethrowing it
add-object Adds an object to the current context, optionally with a purpose
(e.g. “objectActedOn”, “perceptionRequest”)
add-image Captures an image from the robot’s camera, adds it to the context
start-new-experiment Clears all of SEMREC’s buffers, and creates a new experiment space
export-planlog Triggers all output plugins to create files based on the recorded data;
this command creates resulting OWL and DOT files
set-meta-data Sets optional meta data fields that are included in output files

Table 5.1: The most prominent RPC calls offered by SEMREC for recording symbolic data. This
interface is called by a robot’s executing architecture.

The very idea of the Generalized Plans from Chapter 4 is that as little information as
possible should be supplied to achieve a maximum of autonomous behavior. The same principle
applies to automatic experience collection from executing these Generalized Plans: Beginning
and ending contexts, annotating them with arguments, and adding objects created within are
not part of the robot’s plan tasks. I designed and implemented a transparent interface for the
CRAM architecture that seemlessly integrates with any active SEMREC instance. This interface
is implemented as the native CRAM package cram_ beliefstate*. When this package is added
to any CRAM project, all relevant CRAM functionality is automatically equipped with the
necessary calls and data transformations. A developer designing generalized robot behavior has
no notion of its presence beyond including it in the project. Algorithm 5.1 shows a simplified
example implementation of a logging supported plan definition macro. The logging related
functions therein are marked in red, and begin a new context, add their respective information
to the currently active context, and end the context again. An example use-case of this macro
is given below the macro. All nested plans (fetch, search, approach, and grasp) make up a
hierarchical context structure — the symbolic task tree.

mongodb log was originally presented by Niemiiller et al. [61]. It is used for recording ROS
topic data streams into a MongoDB database and features both, generic logging mechanisms
for arbitrary data as well as fast, specialized loggers for individual topic types. I extended®
this software by means of fast, structured designator logging (resulting in the content of the
logged designators.json files) and data throttling mechanisms when recording kinematic
transformation data. As in practice I use ROS for communication between robot components,
this software is a natural fit. The same experience data can be recorded for other systems too,
though. The low level JSON data format contained in EMs is easily reproducable from any
source with the same information content.

An example of the data included in EMs is shown in Figure 5.3. Shown therein is the hier-
archical task tree, annotated Relevant Task Parameters (RTPs), meta data, and task outcomes.
Especially important is the information about failure handling: Which task failed due to what

*https://github.com/fairlight1337/cram_beliefstate
Shttps://github.com/fairlight1337/ros-mongodb_log

o6

https://github.com/fairlight1337/cram_beliefstate
https://github.com/fairlight1337/ros-mongodb_log

Data Collection and Experience-Based Learning

Algorithm 5.1 Example implementation of a plan definition macro that automatically adds
logging capabilities. A simplified example for fetching an object is given below the macro.

(defmacro def-plan (name arguments &body code)
¢(defun ,name (&rest argument-values)
(let ((log-id (begin-context ,name))) ;; Begin the logging context
(annotate-argument-list ’,arguments) ;; Annotate the original argument list
(mapcar (lambda (argument value)

(annotate-call-parameter argument value) ;; Annotate argument values
’ ,arguments argument-values))
(unwind-protect ;; Moke sure ‘end-context’ is called even when a failure occurs

(let ((result (progn ,@code)))
(annotate-result result) ;; Annotate result
result)
(end-context log-id))))) ;. End the logging contewxt

(def-plan fetch (object) ;; Plan for fetching an object using sub-plans
(let ((found-object (search object)))
(cond (found-object (approach found-object)
(grasp found-object))
(t (throw-failure :object-not-found)))))

(def-plan search (object) [...]1) ;s Plan for searching an object
(def-plan approach (object) [...1) ;; Plan for approaching an object for interaction
(def-plan grasp (object) [...]) ;5 Plan for grasping an object

failure, what was the reparametrization, and which task handled the problem? In the example,
a navigate task for manipulation failed, was retried, and succeeded. This information helps
generating Experience Models — mainly for action effect prediction.

5.5 Generating Experience Models from Episodic Memories

Experience Models are the results of any algorithm processing EMs for the sake of improving a
robot’s behavior. While any type of processing algorithm could achieve this, I concentrate on
machine learning techniques that create models correlating a robot’s behavior and the observed
action effects. These models serve the main purpose of making predictions about a task’s course
of action, and extracting generalized knowledge about causal relationships between a task’s
context, parametrization, and outcome. In general, the more experiences used for creating a
model, the more generalistic and versatile the model becomes.

In this section, I present three concepts for (1) increasing a task’s success rate and overall
performance, (2) generalizing a task’s course of action, thus allowing a robot to explore alter-
native task approaches in an informed way, and (3) learning new, complex PDDL actions based
on experience and primitive actions. Additionally, I give an overview of common pitfalls when
generating experience models, and discuss how to avoid them.

5.5.1 Expectation Models: Task Outcome Prediction

Expectation Models (ExMods) are generalized representations of robot experiences that allow
prediction of task success [103]. They also allow suggestion of parameter ranges suitable for
reaching a desired task outcome — be it success or a specific type of failure. The more experiences
a robot collects and the more corner cases and regions of the parameter search space it explores,
the more precise and elaborate ExMods become. They form an “ntuition” for robots, giving
them informed priors when parametrizing their actions. The overarching prediction framework
in which ExMods play the central role is shown in Figure 5.4. It closes an information feedback

o7

5. Generating Experience Models from Episodic Memories

|=| Meta Data
Robot: PR2 Task: Pick and Place
Task: Pick and Place Parameters:
Time: 2014-07-10 10:33:52 Object
Description: The task was challenging, because ... - Destination
Task: Pick Task: Place
Parameters: Parameters:
- Object - Object
- Destination - Destination
Task: Navigate Task: Navigate Task: Mavigate Task: Navigate

Parameters: Parameters: Parameters: Parameters:

- Location "to see" - Location "to reach - Location "to reach’ - Location "to reach”
Task: Perceive Task: Grasp Task: Grasp Task: Put Down
Parameters: Parameters: Parameters: Parameters:

- Object - Object - Object - Object
Sensor Readings: Infered: Infered: Infered:

- Object Properties - Arm Used - Arm Used - Object Orientation

- Object Pose - Grasp Type Used - Grasp Type Used

Sensor Readings: Sensor Readings:
- Fingertip Pressure - Fingertip Pressure

v v ! v

| Success | | Not Reached [| Success | | Success |

Repeat due to Failure

Figure 5.3: Structure and Content of a single Episodic Memory instance, consisting of meta
data, semantic task tree, thrown and caught failures, task parameterizations, and outcomes.

loop for improving plan performance:

1. Robot plans are annotated with RTPs, the parameters considered (tracked and suggested)
by ExMods.

2. EMs recorded from performing these plans are used as the basis for creating ExMods.

3. ExMods allow a performing robot to do two things: (1) Track its current progress of the
task at hand, and (2) make informed choices for parameter ranges that lead to a desired
task result.

4. The original plans are executed again with improved — more informed — plan perfor-
mance.

Multiple EM records of the same plan, or even structurally different plans, can be successively
added to an existing model. In the remainder of this section, I describe the anatomy of an
ExMod, how it is created from EMs, how it is applied to generalized robot plans, and what
predictions it allows. I offer code examples where possible and draw links to the preceding
chapters where I see fit.

Anatomy of an Expectation Model

Expectation Models consist of two elements: A task tree reflecting the combined structure of
all source EM’s task trees, and a collection of decision trees — one per task type encountered,
describing the observed effects of experienced parametrizations. Figure 5.5 shows a schematic
example of a generalized task tree and what it is composed of: Two EMs of different tasks
(setting a table and loading a dishwasher) are represented by structurally different, although
partially similar task trees. Based on their similarity in paths from the root node, they are
combined into a more general, compound model. The resulting task tree, if traced from the root
node, can now be used to track both tasks, recalling specific experience details for each — e.g.

o8

Data Collection and Experience-Based Learning

Expectations of | :7 7|;x7p7e;t7agic7>r; 7777777
Failures, Sensor Diagnosing Predicted Behaviour I Model IH]

Values, Durations | |
I
I
I

Compound Model

... Parameterization Tracking Active State via Context Change

Logged

g I
= ... Sensor Readings : o
[} ! Episodic Memories D
o | —a
8 : Symbolic plan events Continuous sensor data : |
| !
1
o 1 q
. 1
Logging { Sympollc Plan Events , 14 Learning IV!ong
Continuous Sensor Data . 1and Generalization
Modelling Internal ! Task-N*avwgate Task-Perceive Task;irasp : :
1l
Plan Structure With-Designators With-Designators : :
[
[
(|

Data Collection'!

Figure 5.4: The architecture of a robot’s prediction capabilities, based on ExMods. This figure
highlights their distinct role in the overall architecture.

possible next steps, prior parametrizations, past outcomes, etc. Using these stored correlations,
decision trees are calculated that identify the most prominent relationships.

Figure 5.4 shows the principle role of ExMods in their prediction framework. Their input
is a set of logged EMs. After generating the models, they offer two types of functionality: (1)
Tracking the current task execution, such that the performing robot knows where in the task’s
course of action it currently is, and (2) what the outcome of a given parametrization is or which
ranges of values to choose every parameter from in order to reach any desired outcome. All of
these will be addressed in detail later in this section.

Creating Expectation Models from Episodic Memories

ExMods are created from (and for the purpose of supporting) decision making processes based
on volatile information (see also Section 4.4.2). In order to create ExMods for robot plans, the
following steps are required:

(o) Identifying a plan’s RTPs: Relevant Task Parameters are significant factors for decision
making when performing a plan. As every sub-plan in a hierarchical task tree has a
semantically well-defined purpose, these modularized plans can annotate any parameter
or assumption that is required for their task and is not a pure flow-control operator (loop
variables, while conditions, etc.). Compare also Section 4.1.2 for parameters influencing
strategy selection in generalized plans. Examples of meaningful parameters are which
hand to use for grasping, the current distance between a robot and an object during visual
examination or manipulation, or the order in which objects are placed on a table. Plans
need to mark parameters as relevant when recording EMs. Beyond this, no additional
annotation is required. Algorithm 5.2 shows a simplified example of this process — note
here that the annotated RTPs are not correlated beyond the fact that they belong to the
same task.

99

5. Generating Experience Models from Episodic Memories

Figu

Set Table Load Dishwasher Compound Model

ke e

re 5.5: Generalized task tree from Episodic Memories, combining two structurally different

tasks: Setting a table and loading a dishwasher.

Algorithm 5.2 Simple plan for annotating RTPs during a decision making process for object
search. The exemplified ‘def-plan’ macro from Section 5.4.1 ensures that all information is

prop

erly recorded into EMs.

(def

-plan probable-object-residence-location (object-type)

; To be more versatile, the actual locations should be read from a knowledge base

a

et ((location (cond ((string= object-type "Milk") "fridge")
((string= object-type "Bowl") "cupboard")
((string= object-type "Fork") "upper-drawer")
(t "table"))))
(annotate-rtp :object-type object-type) ;,; Annotate ‘object-type’ RIP
(annotate-rtp :location location) ;; Annmotate ‘location’ RTP
location))

()

Performing a plan under parameter variance: After equipping a plan with RTP
annotations, it must be performed a number of times to explore the available parameter
search space. The more variance the recorded EMs contain, the more precise and versatile
the resulting ExMod becomes. Parameter variance marks changes in the plan’s RTPs,
which may initially be random to ensure an even exploration of their possible value ranges.

Generalizing task trees of all EMs: Two or more EMs may be condensed into a
generalized task tree. As introduced in Section 5.5.1, structural similarity is of minor
importance, and any two EMs independent from their task can be combined. Algorithm 5.3
shows a Pseudo-code representation of the generalization algorithm. A common root node
is created from which any start nodes of the task trees to combine branch off. Already
existing node paths are reused when adding a new EM task tree, and new nodes are added
where necessary. Every node additionally contains a combination of past input/outcome
pairs together with the “active” RTPs handed down from parent nodes — the context in
which any pair was recorded.

Generating decision trees for outcome predictions: The plan conglomeration from
Algorithm 5.1, when equipped with the respective RTPs for current global robot x and
y position and its relative distance to the object of interest, produces EM data similar
to what is shown in Table 5.2. This data is extracted from stored RTP annotations
within any node in the generalized task tree. Each of the three plans shown here can
either be successful or yield a distinct failure. Additionally, the obj-dist parameter is only
available in the grasp plan. The ExMod decision trees are computed using the J48 classifier
implemented in Weka [42]. J48 is an open source implementation of the C4.5 algorithm
[73], which supports pruning of learned decision trees to a set of majority classes. The

60

Data Collection and Experience-Based Learning

Algorithm 5.3 Task Tree Generalization

1: function COMBINETREES(treeList) > Common root node structure

2: return {ctx : Toplevel, trees : treeList}

3: end function

4: function UNIFYTREE(tree) > Unify into a single tree

5 for sub-tree in tree do

6: uni fied-sub-tree < UnifyTree(sub-tree)

7 sub-tree <— CombineTree(uni fied-sub-tree)

8 end for

9 return tree > tree is mutable
10: end function
11: function COMBINETREE(¢ree) > Collect Information from task tree instance tree
12: ctxTree + {} > Dictionary (key: The current task type)
13: for sub-tree in tree do
14: for ctx in sub-tree do > ctx is the task type, or "context”
15: gParams|ctz] < ctx[param)] > Collect RTPs
16: gTrmnls[ctz] < ctztrms)] > Collect terminal states (no child nodes)
17: ctxTree[ctz] & sub-tree > Append this subtree to dictionary by task type
18: end for
19: end for
20: return ctxT'ree

21: end function

Task Ty obj-dist Result

Search 7T 95 Success

Search 8 9 ObjectNotFound
Approach 4 0 ? Success

Approach 8 5 ? LocationNotReached
Grasp 5 4 2 Success

Grasp 2 3 3 ManipulationFailure

Table 5.2: Example training data for decision trees, fitting the plan structures in Algorithm 5.1.

training features I use herein are: (o) The task type, (o) all RTPs, and (o) the task result
(success vs. failure class). The latter becomes the set of majority classes in the decision
tree. Missing parameters, such as obj-dist for non-grasp tasks are replaced by J48 using
appropriate values from other classes to minimize their influence and thus the resulting
error.

One possible resulting decision tree from the training data in Table 5.2 is shown in Al-
gorithm 5.4. Parameter ranges are identified for all task types that lead to their specific
failure classes. If none of these are met, the task is implicitly marked as successful. One
major advantage of this model element is its interpretability: The generated rules can
easily be judged by humans, identifying anomalies or just for understanding the intrinsics
of the system.

The generated ExMod is then stored in JSON format for easy reuse in the prediction frame-

work, and for manual inspection. ExMods can either be created (1) per task to specialize on
its distinct intrinsics, or (2) in a compound task model, generalizing over all different tasks
experiences. The former has an advantage in only including parameter ranges that actually fit
that task at hand, while the latter can make use of synergies in structurally semi-equal task

61

5. Generating Experience Models from Episodic Memories

Algorithm 5.4 ExMod decision tree generated from EMs, partially based on the training data
in Table 5.2.

1: Result < Success > Implicit Success
2: if task = Search and (x > 7 or y > 7) then

3: Result < Object N ot Found > Failure
4: else if task = Approach and (z > 7 or y > 5) then

5: Result < LocationN ot Reached > Failure
6: else if task = Grasp and obj-dist > 3 then

T Result < ManipulationFailure > Failure
8: end if

trees. Depending on the use-case, a plan designer has to choose which strategy suits her needs
the most.

Applying Expectation Models to Robot Plans

Given a current parameterization and an ExMod’s decision tree, the prediction framework can
make educated guesses about the most probable outcome of the current situation. A robot then
knows which failures, sensor values, task durations, and results to expect, and can decide to
reparameterize its plans if necessary. To make use of ExMods for predicting action effects in
generalized plans, I introduce four robot plan language constructs:

(o) with-expectation-model: Overarching, nestable environment that initializes a new, or
loads an existing ExMod. The subordinate language constructs use this model for their
respective functionalities. Example for loading (or creating) an ExMod by the name ta-
blesetting:

(with-expectation-model tablesetting

[...D
Different tasks can be parametrized with separate ExMods:

(with-expectation-model picking (with-expectation-model placing
(achieve ‘(object-in-hand 70))) (achieve ‘(object-placed-at 7o 7d)))

(o) with-tag: Helper-environment giving code segments in plans semantic names. These
names are directly reference-able during effect prediction (e.g. "What would be the outcome
of subtask grasp with this particular parametrization?"). Example:

(with-tag fetch
(with-tag search [...])
(with-tag approach [...])
(with-tag grasp [...]1))

(o) predict-behavior: Given the current position in the known, tracked task tree and the
currently active parametrization, a list of probable outcomes of the current task is gener-
ated; they are returned along with, and ordered by their relative probability. Example for
predicting the current task’s outcome:

(predict-behavior)

Or, when referencing a particular subtask "grasp”:

(predict-behavior grasp)

Embedded in a larger plan, it can be used to signal a failure when failures are predicted:

62

Data Collection and Experience-Based Learning

Algorithm 5.5 Example plan using the choose operator for selecting parameters from ranges
proven suitable by experience. The chosen parameters are the arm to use for grasping an object,
and the grasp type to apply.

(def

-plan grasp (object)

(with-tag grasp-object ;; Allow targetted predictions for this task

;; Annotate all relevant RTPs, allowing the EzlMod framework to generate
;5 correlations between them and the chosen parameters
(annotate-rtp :object-type (get-value object :object-type))
(annotate-rtp :object-orientation (robot-object-orientation object))
(annotate-rtp :object-distance (robot-object-distance object))
(choose ((arm (any-of-random ‘(:left :right)))
(grasp-type (any-of-random ‘(:push-grasp :top-grasp
:power-grasp :pinch-grasp))))
:satisfying ((manipulation-failed 0.2) ;; 20/ manipulation failure 0K
(pose-unreachable 0.15)) ;; 15/ pose unreachable failure 0K
rattempts 5 ;; Try 2t 5 times before giving up
(with-context ((:grasp-with-arm arm) (:grasp-type grasp-type))
(execute-grasp object))))) ;; Starting the physical grasp

(def-plan fetch-and-place (7o ?7d)
(unless (success? (predict-behavior))
(fail ’failure-predicted))
(achieve ‘(object-in-hand 70))
(achieve ‘(object-placed-at 7o ?d)))

choose: Variable-binding environment that consults the active ExMod for suitable param-
eter ranges to successfully perform the current task. Example:

(choose ((p; fnecy) (pz fncz), ...)
:satisfying ((f; t;) (fz ta), ...)
:attempts n
code)

This operator generates task parameter values for the variables p; using the functions
fne;. After all p; have been generated, this parameterization is used for predicting the
current task’s outcome. If the outcome satisfies the failure tolerances (maximum relative
occurences of failures) specified as (f; (failure) t; (tolerance)), code is executed with these
parameters. If tolerances are violated, new parameters are generated and checked. This
process happens at most n times to avoid deadlocks in impossible situations, signalling a
failure when exhausted. Once the task code gets executed, choose automatically annotates
all p; as RTPs in the Episodic Memory of the current execution.

An example plan describing how to use the choose operator when grasping an object is
shown in Algorithm 5.5. Therein, the robot/object relative orientation and distance as well as
the object type are annotated as RTPs, while the choose operator decides on which arm to use
for grasping and which grasp type to apply. The chosen parameters are then included in the
grasp context using the with-context environment, as described in Section 4.4.1.

Tracking and Prediction in Unknown Tasks

An ExMod serves as a blueprint showing what the course of action of a known task should look

like.

During execution, the plan language structures that record task hierarchies into EMs are

the same ones that track the position of the current execution in the compound task tree. The
mechanism descends into the hierarchical model tree when new tasks are entered and ascends

63

5. Generating Experience Models from Episodic Memories

Algorithm 5.6 Computing Task Result Probabilities

1: function RECURSESUBTREE(node, params)

2 probs < DTreeProbabilities(node, params)

3 for subnode in node[subnodes] do

4 subprobs < RecurseSubTree(subnode, params)
5: for p in subprobs do
6

7

8

9

probs[p] <= subprobs|p] - probs[success]
end for
end for
return probs
10: end function

11: function DTREEPROBABILITIES(node, params)
12: probabilities < {}

13: numlIndivs < count(nodelindividuals))

14: for individual in nodelindividuals| do

15: dTreeResult + EvaluateDTree(params)
16: probabilities[dTreeResult] <= 1/numIndivs
17: end for

18: return probabilities

19: end function

Known Find object Search Table Place Object
Model ;;Q
Descending into Ascending out of
Virtual Branch Virtual Branch
Virtual
Branch Open Drawer Pick Object Close Drawer

Figure 5.6: When unknown task types are encountered, a virtual branch is opened and the
known ExMod is left. No predictions are possible until the known model is re-entered.

out of subtrees when the tasks finish. As generalized models can include multiple structurally
different task types, their common tree diverges at some point. The tracking mechanism will
descend into the subtree fitting the type of the task currently being performed, allowing models
of diverse task hierarchies, without intermixing their distinct structural features.

When new tasks are faced, the tracking mechanism might encounter tasks not present in the
known model, as they were not part of prior executions. In this case, it keeps track of where it
left the known model and descends into a virtual branch, denoting task types along the way. In
practice, the tracker creates a new sub-branch every time a new context is entered when in a
virtual branch, accepting any kind of task (see Figure 5.6). When ascending out of the unknown
subtree, the virtual branch is resolved until the known model is re-entered. While outside of the
known task model, prediction only yields that the current task is not known.

Predictions Based on Relevant Task Parameters

To predict the outcome of a task, its sub-tree in the ExMod is selected and all of its branches are
traversed. For each node, the model’s decision tree is used to compute the potential outcomes
based on the given parameters. The result is a table of potential failures, their joint probability
over all subtasks, and the overall assumed chance for success. Algorithm 5.6 shows a pseudo
code version of this. RECURSESUB is called with the task node node to start predicting for, and

64

Data Collection and Experience-Based Learning

Algorithm 5.7 Inverted decision tree for choosing parameters using the choose operator

: Rule + {}
if Result = Object NotFound then
if task = Search then
Rule < (x >T7ory>7)
end if
else if Result = LocationNotReached then
if task = Approach then
Rule < (z > 7 or y > 5)
end if
else if Result = ManipulationFailure then

© 00~ O U b W N

—
o

11: if task = Grasp then

12: Rule + (obj-dist > 3)

13: end if

14: else if Result = Success then

15: if task = Search then

16: Rule + (r <=T7and y <=7)
17: else if task = Approach then
18: Rule < (z <=7 and y <=5)
19: else if task = Grasp then

20: Rule + (obj-dist <= 3)

21: end if

22: end if

the current parameters params. The function EVALUATED TREE evaluates the model’s decision
tree using these parameters.

An explicit parameter to outcome relation model cannot only be used for value validation
(such as in choose). By inverting the decision tree in Table 5.4, we get a decision tree for
value ranges to pick parameter values from, as shown in Algorithm 5.7. The task variable is not
used as a relevant task parameter during the inversion, as the robot cannot alter it during plan
execution. By inverting the tree, parameters can be chosen much more efficiently from a range
that has proven useful, as opposed to randomly choosing a parametrization and validating it.

To predict task characteristics other than task results, decision trees can be computed and
evaluated in the exact same way, just changing the target class. This can be for example
the expected duration of a task based on parameters. J48 only computes decision trees for
nominal classes. For numeric classes, such as the duration, we use the REPTree classifier, also
implemented in Weka. Virtually any parameter represented by a nominal or numeric class can be
predicted this way, including sensor readings, e.g. robot gripper forces, as long as it is annotated
as an RTP.

5.5.2 Prototypical Experiences: Informed Strategy Exploration

Prototypical Experiences (yellow in Figure 5.7) are generalized representations of all memorized
situations of performing a task. Figure 5.8 shows the Prototypical Experience (PE) of a Fetch
and Place activity in which a robot was to find and pick up objects, take them out of drawers,
fridges, and from tables, and place them at similar places. In principle, these tasks and their
experiences all have the same structure: Find an object (possibly opening containers to look
into), pick the object, go to where it should be placed, potentially open a container to put it
into, and place it there. Whether a container needs to be opened solely depends on the context,
the object, and the task description (“put the milk into the fridge”). Given enough memories of
different situations while performing this task, the depicted Prototypical Experience is obtained:
All tasks share a common “root” of going to a place at which the object is expected, sometimes
opening a container (denoted by “optional” steps in the PE), picking the object, possibly closing

65

5. Generating Experience Models from Episodic Memories

CRAM Plan Library top-level task

high-level plans

. fetch
reasoning
about vague from drawer - - - -
parameters
. using 1 hand
Execute
v
. Log Robot . . Condense | Prototypical
Environment _9—)Behavior Episodic Memories into PE > Experiences
TExecute % §
. Expand all
Task Selection 9 2 possible Plans
O O o)
Examine|Reconstructed Plan Plans, including Statistics
(failures, durations, etc.)
Plan Reconstruction ,Generate Plan from Plan Server ¢ Save to Expanded
From Experiences ~ Expanded PE Database Possible Plans

Figure 5.7: Architecture embedding Prototypical Experiences as a generalized representation
for performed tasks. PEs are shown in yellow

?0bject ?destination ©P055|ble Terminal State

v

| FETCH-AND-PLACE |

REPEATABLE-FETCH PLACE
?0bject ?object ?destination @ @
]]
optional ! optional !
FETCH (5/10) NAVIGATE OPEN-LOCATION PUTDOWN CLOSE-LOCATION
OBJECT ?destination ?location Pobject ?destination ?location
¢ optional
FIND-OBJECT NAVIGATE PICK CLOSE-LOCATION
?object ?destination ?object ?location
T T
I I
INSPECT-OBJECT-LOCATION @ @
?0bject @ @
¢ optional ! optional !

GENERATE-LOCATION NAVIGATE OPEN-LOCATION PERCEIVE CLOSE-LOCATION
?object ?destination ?location ?object ?location ?location

Figure 5.8: PE showing the structure of a fetch and place task. The PE is the result of multiple
episodes under task variance and combines multiple execution paths and terminal states.

the container, and continuing to place the object.

The purpose of PEs is to serve as a blueprint describing all memorized variants of performing
a task. It therefore can reconstruct all source memories in a loss-free manner, effectively storing
a compressed version of all relevant memories. New memories are compared to the PE, resulting
in either an extension of the model, by adding new nodes and links if the new memory is not
yet represented by the PE, or in using the new memory simply to update the collected statistics
about its corresponding path through the PE. A special property of PEs is that they can produce
new strategies for achieving a task that were not part of the original source memories, based on
optional steps. These combinations do not always make sense, but serve as a semantically intact
search space for an autonomous robot that tries new, non-predefined strategies. In the given
example, leaving containers open after picking objects from them is a legit strategy, although
the original plans always closed them when an object was stored in a container. Based on the
cost function to optimize (“do it as fast as possible”), this can result in more performant plans.

66

Data Collection and Experience-Based Learning

Algorithm 5.8 Recursively creating Prototypical Experiences from raw, unprocessed experience
sets as in openEASE [13]

1: function CREATEPROTOEXP(Raw-Exps)
2: PE + {} > Initialize Empty PE

3: for Ezp in Raw-FExps do

4: InjectExperienceNode(PE, Exp)
5: end for

6: return PFE

7

end function

8: function INJECTEXPERIENCENODE(PE, Node)
9: T < Node.taskType
10: if not T in PFE then

11: PE([T).optional < No

12: PE[T).termState < No

13: PE[T).startState < not Node.previousAction
14: end if

15: PE|T).invocations ¢~ Node.parameters

16: PEI[T).outcomeData < Node.outcomeData
17: PE[T].updateOutcomeStatistics()
18: if not (Node.nextAction or Node.subNodes) then

19: PE[T).termState < Yes

20: else

21: for Sub-Node in Node.subNodes do > Depth
22: Inject ExperienceNode(PE[T], Sub-Node)

23: end for

24: Next-Node < Node.nextAction

25: while Next-Node do > Breadth
26: PE[T).nextActions ¢~ Next-Node

27: p < Next-Node.parameters

28: PEIT].nextActions[Next-Nodel].invocations < p

29: Nezxt-Node < Next-Node.nextAction

30: end while

31: end if

32: end function

Creating Prototypical Experiences from Episodic Memories

Algorithm 5.8 depicts a pseudo-code version of how to generate PEs from raw, unprocessed
memories. The algorithm is implemented and available as open source software®. It recursively
inserts nodes it finds in the hierarchical task tree of the EMs into the PE, and distinguishes
between them by their task type, creating an incomplete n-ary tree. Task types can be as
general as grasp, navigate, perceive, etc. Every occurrence of a task is appended to its respective
task type node as an invocation, denoting the parameters that were used to start this task, and
the node trace that lead to this invocation, preserving the original execution path. Nodes have
hierarchical children, and can have horizontal previous and next actions. When no previous
action is present, a node is a start node on this level. When no children and no next actions are
present, it is a terminal node. Terminal nodes finish the current parent-task without evaluating
further siblings. When a node is present in only some source memories but not all, it is optional.
Optional nodes are branching points for experience reconstruction (discussed further below).
Nodes can therefore have multiple terminal child nodes. Refer to Figure 5.8 for the final form of
a PE, using Fetch and Place as an example scenario. Note that some non-relevant intermediate
states were left out for the sake of clarity and brevity.

Shttps://github.com/fairlight1337/planning_graph_node

67

https://github.com/fairlight1337/planning_graph_node

5. Generating Experience Models from Episodic Memories

fetch
object

\
/ \
A

fetch
object

~

Source
Experiences

ick
ject

\
pi
ob

avigated
\to reac

Prototypical Experience

One Reconstructed
Execution Path

Figure 5.9: Source Experiences (1), generated Prototypical Experience (2), and one of the
possible reconstructed plans from the PE (3).

During construction of a PE one also annotates characteristics of the experiences such as
the amount of time needed for a task, or whether the run was successful, and associates such
records with each node in the PE. A branch of the PE will in fact contain information about
more experiences, because different plan runs may have pursued the same sequence of tasks. In
that case, one can aggregate statistics such as the number of failures vs. the number of attempts
(an estimate for the probability of failure), or average and standard deviation values for the time
taken for execution.

Reconstructing Original Experiences

By performing a depth-first search on a PE and considering optional nodes (that expand into
multiple paths), a list of possible execution paths through the PE graph is constructed. A step
in a path is to be understood as a request to achieve some goal (for example, fetching an object,
opening a container, or picking an object). Each step also contains information about which is
the parent goal for this step (for example, an open-container step would know it is a subgoal of
a fetch-object goal).

Since every node in a PE has a notion of the individual traces and parameterizations leading
towards it, each individual experience can also supply possible parameterizations valid for its
individual strategy for the represented task. The more optional nodes present, the more possible
explanations for how to resolve a task are generated. The number of possible paths reconstructed
from a PE is:

Number of Paths = 2Number of optional nodes

With five optional nodes, the PE in Figure 5.8 can reconstruct 2° = 32 execution paths from
its 10 source experiences, resulting in 22 hypothetical, structurally unique strategies to perform
the PE’s task. This way, it generates new — partially physically valid — solutions to the task’s

68

Data Collection and Experience-Based Learning

Metric Feature Aggregator

Optimistic Shortest Projected Time (OSPT) .
Pessimistic Shortest Projected Time (PSPT) Time SUM
Least Projected Failure Occurrences (LPFO) Failures MAX

Table 5.3: Implemented Plan Scoring Methods; For each plan request, one or more metrics for
scoring can be chosen. Default is OSPT+LPFO. The metrics each make use of a feature of the
plan steps, and either use their sum, or the max value.

Cl, = [X_ZI*%&XVX"’_ZI*%&X}

N L (1-2)

°x = n N

s = LS (- x)?
n—1 — ‘

Equation 5.10: Calculation of confidence intervals for expected task time consumption. « is the
error probability, X are the known time values for all tasks, X their mean value, n is the number
of samples considered (usually > 30, so I heuristically assume a normal distribution), and N is

the absolute number of known task instances. zi—g is the normal distribution value.

problem that a robot can use to explore the solution search space.

Generating New Strategies from Known Task Structures

As mentioned in Section 5.5.2, PEs can combine known task strategies to form novel and possibly
more performant approaches to solve a task, because the path enumeration procedure through a
PE can generate paths that do not correspond to a previously seen experience. In the example
from Figure 5.8, the PE can generate a plan that fetches an object from a container after opening
it, but leaves the container open. The same happens for placing objects: Opening but not closing
the container saves time and, if no other constraints forbid such shortcuts (like not leaving fridge
doors open), they result in more performant plans.

The whole process of transforming source experiences into hypothetical strategies is shown
schematically in Figure 5.9. Two different episodes of a fetch object task are combined into a
PE. Then, one possible strategy — leaving a drawer open after picking an object from it — is
generated.

Ranking Solutions Generated from PEs

How "good" a solution generated from an existing PE is depends on the criteria used. Table 5.3
shows three common metrics I defined for measuring a PE’s quality: The projected time required
when (1) being optimistic, or when (2) being pessimistic, and (3) the projected number of
failures. For example to determine how long a task usually takes to complete, the confidence
interval of all known times of this task type is calculated as shown in Equation 5.10. As the
PE is a hierarchical tree and only leaf nodes actually consume time, non-leaf nodes’ duration
intervals consist of the sum of their child nodes’ intervals. The result for the top level node is an
interval denoting the lower and upper boundary of probably necessary time to perform the task,
according to the confidence interval formula. For this, I use a = 5%, resulting in zi-g = 1.96,
as a default setting.

69

6. Multi-modal Analysis of Robot Experiences

Results

Z| P]

f(x) f g

| PredictiofCostmap

i Function
[}

SVM PDM Probability|
Map '
ARPlaces approach

1
\ 1
h]l\)/}:(r)r?_lc Training :

. Data |
ories !
1

1

1

1

1

Figure 5.11: Processing pipeline to generate prediction functions from EMs using multi-modal
analysis techniques. Green shows my MMVG approach, compared to the ARPlaces approach in
orange.

5.6 Multi-modal Analysis of Robot Experiences

As extensively described in Chapter 4, the main point of generalized plan design is to abstract
and generalize two elements: Robot action plans, and the information to parametrize them.
While the former results in highly abstract static plan constructs, the latter results in a lack
of information actually required to perform a task. To ground the abstract task description
in the current situation and context — and to make it executable — these semantic, vague
descriptions need to be formulated in a language low level robot components understand: Poses,
velocities, distances, etc. Manually specializing every possible situation based on known pairs of
task description/context information would ultimately undo the plan generalization (and again
produce non-scaling, major effort for human plan designers). Instead, I propose a multi-modal
analysis of Episodic Memories to automatically determine which parameters fit any particular
situation well, including inter- and extrapolation of arguments if necessary.

Finding the correct correlations from these EMs and transforming them into actionable
parameters for an autonomous robot is hard and effort-prone in itself due to the sheer amount
of data a robot produces, and the often non-obvious relations between intentions and effects.
To ease this process, I propose a novel approach for multi-modal data analysis on the basis of
Gaussian distributions [104]. In particular, I concentrate on non-deterministic environments and
deduce multivariate, mixed Gaussian distributions for parameter ranges to help an autonomous
robot in making informed decisions.

In the remainder of this section, I will give an overview of the approach together with
a comparison to a strongly related technique by Stulp et al. |90], will explain in detail how
correlations are determined, and discuss their use-case in generalized robot action plans.

5.6.1 Approach and Comparison

I demonstrate the multi-modal, experience-backed learning process at the example of mobile ma-
nipulation, and more specifically object fetching tasks in a kitchen environment. The processing
pipeline of the approach is shown in Figure 5.11. More concretely, a mobile robot parametrizes
its own plans of where to position itself for picking up objects based on its own experience data,
processed using a Gaussian regression technique. In the following, I give an overview of the steps
taken to present a distribution of possible parametrizations to a learning robot:

First, recorded Episodic Memory data is transformed into a suitable format for machine
learning. This is the decision point for the characteristics a plan designer wants to take into
account when learning correlations. Any data extractable from the EMs can be used, be it either
nominal or numerical values. The n-dimensional training data is then clustered using a K-Means
algorithm, and for each of the resulting clusters an n-dimensional Multivariate Gaussian Distri-

70

Data Collection and Experience-Based Learning

bution (MVG) is calculated. Using all resulting MVGs, an equally weighted, normalized Mixed
Multivariate Gaussian Distribution (MMVG) is calculated. The MMVG now acts as a non-
linear multivariate interpolation mechanism between all the prior experiences’ parametrizations
and can be queried for a probability value at any point in the n-dimensional parameter space.
From this distribution, costmaps are generated that a robot control program can sample from.
Examples for these costmaps are robot base locations most suitable for grasping an object, or
for opening a drawer.

A similar goal, but with a completely different approach, was pursued by Stulp et al. [90].
They used a Support Vector Machine (SVM) based learning approach to generate Point Dis-
tribution Models (PDMs), and finally generate a probability map of the regions well-suited for
grasping using a Monte Carlo Simulation. I compare my approach to theirs, and show how my
approach extends the type and dimensionality of source data that can be used, at the cost of
precision. I also show that, given the use-case of producing costmaps for location selection, the
loss in precision is negligible. Their processing steps are parallel to mine, and are shown in
Figure 5.11 as well.

5.6.2 Multi-modal Data Analysis

One of the main advancements of this work over previous approaches is the increase in search
space dimensions. While previously the only features used to determine whether a position to
perform, say, a grasp action was well-chosen were the numerical relative distances in and y
direction, I introduce MVGs over an arbitrary number of task parameters. My multi-modal data
analysis covers both, real and nominal values: Real values are measured based on their actual
numerical value, while nominal values are assigned an index number in their category. This
approach is well-formed, as nominal values are not interpolated while querying for probabilities,
but their exact indices are used.

Clustering of Source Data using K-Means

Robot EMs contain local areas of interest in a global context. In this concrete case, these are
collections of poses around an object where the robot tried to place itself for grasping. Given
that these local areas are scattered throughout a larger area, they need to be clustered according
to their n-dimensional feature vector.

To arrive at a sensible number of clusters, K-Means clustering is performed up to a given
maximum number of clusters. Their average silhouette value [76] is calculated, and the cluster
amount with the lowest average is used. This results in an optimal point distribution over all
clusters. I use the Euclidean distance measure for n-dimensional data.

Multivariate Gaussian Distributions

Based on clustered source data, an MVG is calculated for each cluster. To this end, for cluster
1, the covariance matrix C; is calculated:

Ci=Y (Xip—Xi)" (Xip —Xi) (5.1)
k=1

While any number p < n of aspects can be included from the source data, the amount of
data actually stored in the MVGs is minimal: For each MVG (i.e. per data cluster) only its
covariance matrix C; € RP*P and the source data’s mean value X; € RP are stored, resulting
in a space complexity of O(p?) per cluster. The density function f;(X) allows to evaluate the
distribution at any one particular point X € RP for the MVG around cluster ::

71

6. Multi-modal Analysis of Robot Experiences

fi(X) = exp <—; (X_Xi)TCi (X_Xi)> (5.2)

Gaussian Mixture Models from Overlaid MVGs

Given the MVGs from the source data, I form an MMVG by applying the same weight % to
every one of the m clusters involved. To sample from the overall distribution, the mixture’s
density function F'(X) needs to be evaluated:

FX) =Y wifi(X) wi—— (5.3)
=1

m

The weight w; could be chosen differently, for example using the relative amount of points
involved in the cluster . Since I assume that the experience data can include isolated clusters
with only a few occurrences that still play an important, legitimate role (compare case 1 in
Figure 5.12), I decided to use equal weights.

5.6.3 Evaluation

I have implemented the presented parametrization learning framework” and applied it to a
scenario in which a mobile robot performs object fetch tasks in a kitchen environment. It picked
up objects from three tables, multiple times. A manually defined heuristic based on Euclidean
robot/object distance and orientation was used to collect the training data.

In total, around 40 pick trials were recorded. Figure 5.12 shows the extracted feature points
(green) as well as the resulting MMVGs, shown as gradient heatmaps. The distributions reflect
the probability of success in the given task based on the relative position of the robot w.r.t. the
object, as well as their relative orientation to one another. It is important to note here that the
learned model does not include characteristics about the environment itself; the coordinates used
for training and results retrieved afterwards are purely relative. From top to bottom, the relative
orientations between robot and object in the Figure’s plots are —230°, —90° and +300°. Except
for the last plot, the resulting distributions reflect the source data very well. My assumption is
that the number of data points (given three independent variables, z, y, and) in that region
is too low (and scattered too much) to generate a properly aligned distribution. A statistically
significant amount of source data would mitigate this problem. Besides this, the distributions
give a very good prior of where to stand in order to grasp an object, before falling back to the
manually designed heuristic, even for the suboptimal last case.

The EMs used in this evaluation were recorded using the robot memory system SemRec
[105] and include both, high-volume low level sensor data and low-volume high level semantic
plan data. Therein included are object descriptions, exact robot motions, grasp details, and
kinematic poses at all times. These are the source for the training data used.

The maximum expected cluster count depends on the task performed, the size of the envi-
ronment, and the number of experiences involved. It is safe to say that — for this example case
— the number of involved objects gives a hint towards that maximum. I decided to use ten
clusters at maximum, while having five objects involved in the pick and place task. Most of the
time, this would result in two to three clusters, but leaves room for situations in which objects
are cluttered in the same space.

"https://github.com/fairlight1337/MultiVarGauss

72

https://github.com/fairlight1337/MultiVarGauss

Data Collection and Experience-Based Learning

Sk area courter_top
sink_area_counter_top i HHH
[I | I [=
v 2 4 Kitchen stand cartertcp , 2
:
g
o -
. "
X g .
10m d : kitchen idend. courtertop

oraxnRRer Y

kitchen idand counter top

do) BNcDD|gey [

dorBRRRRT

Figure 5.12: Learned probability distributions for successful grasping, depending on relative
distance and orientation between robot and object. The right three plots show regions of high
success probability for grasping the objects on the table near them, as a density function f :=
f (relative-position, relative-orientation); chosen relative orientations from top to bottom: —230°,
—90°, and +300°. The pure experience data points are shown in the left plot.

5.7 Learning PDDL Domain Knowledge from Experience

Service robots are becoming an ubiquitous sight in different, often labor intensive areas of
everyday life. From vacuuming living rooms [34] and mowing the lawn [78] to weeding fields [72],
relatively simple robots perform specialized tasks in very defined and quasi-static environments.

A current development is the introduction of service robots into human households [87].
Initially, their tasks are limited to predefined activities such as cooking [16], cleaning windows
[55], or acting as a watchdog [56]. Each of these activities in itself requires different robot skills
and action descriptions, and can fail for various different reasons. Fluent behavior is achieved
by the reactive nature of the robotic systems: They select one of a few known responses, as
appropriate to the situation at hand, and fail for all domain unrelated tasks. Often, to simplify
the tasks performed, they make explicit use of the Closed World Assumption.

With a growing number of robot tasks, defining and maintaining a library of known responses
manually has two major drawbacks: (1) When tasks are interleaved, the effort to handle all
situations in all contexts grows exponentially, and (2) there are no synergies between already
known and new tasks. On the other hand, generalizing these activities into one large hand-
designed robot action plan that can perform all of them still lacks scalability for both new
activities and slight changes to existing ones. With new robot platforms and chores surfacing
rapidly, today’s robot architectures still lack an important skill: Learning new behaviors and
applying them according to the current situation and their best knowledge about the background
information and already known activities.

Traditional Al planning offers a set of tools for combining known primitive actions into
solutions to new problems. Classical planning, such as formalized by the STRIPS, or more

73

7. Learning PDDL Domain Knowledge from Experience

Cascaded Planning/Learning Architecture

___________________________________ Outer Loop

\
:f (}:;r?gsgr ’ Initial, static plans ‘ . . i
e =T ! met Loop |
! | PDDL Domain | !unachieve Planner plan Execution world__! :
! + Problem ! Tgoals steps state TE_‘ :

1
I . - - - - - - - s
] extracted plannin episodic :
:)

- : Interpreter
domain actions memory

| I

.. . Goal Con- \
: Initial Domain dition , Inputs
| |

Figure 5.13: Architecture overview for cascaded planning (inner loop) and learning from expe-
rience (outer loop). Problems are generated for an evolving PDDL planning domain, based on
robot EMs. Goal conditions can be “meal table set”, “pizza cut into pieces” and the like. The

initial domain only contains robot primitives such as “perceive”, “pick”, “place”, and “navigate”.

generally as a PDDL domain, selects actions based on their preconditions and effects coupled
with a global start and goal state. However, PDDL action atoms have to be defined manually
in the respective planning domain, which suffers from the same limitations as mentioned above.
Also, classical task planning has difficulties when handling incomplete information about the
world state and actions with continuous parameters, which — due to sheer planning problem
intractability — has resulted in its limited adoption in robots working in realistic environments.

To make the management of different action primitives tractable, allow automated identifi-
cation of new primitives, and enable planning for real world domains accordingly, I introduce a
knowledge acquisition and activity identification framework for robot tasks. Herein, I use EMs
to identify actions a robot performed using initial, static plans. These are then transform into
sets of PDDL actions along with their perceived preconditions and effects. Given enough robot
experience from manually designed plans, the resulting action library can ultimately solve the
tasks of the original plans while sharing action primitives with all other known activities. This
makes the robot’s behavior more versatile and takes advantage of synergies while at the same
time addressing the problems traditionally associated with classical planning in real world envi-
ronments (see above). As an additional plus, the resulting PDDL domain allows human-readable
inspection of the learned actions.

5.7.1 Identifying PDDL Actions from Experience

The overall architecture for learning PDDL actions from EMs is shown in Figure 5.13. It consists
of two cascaded control loops: An inner loop that uses a parametrized PDDL planner to generate
plan steps for reaching a given goal state, and an outer loop that — through means of Episodic
Memories — interprets the executed actions’ structure and characteristics, formulates them as
new actions in the PDDL planning domain, re-parametrizes the inner planner and generates a
new problem for execution. The inner loop runs at a much higher frequency than the outer loop
(n plan steps per generated problem). At its core, this requires four components to be closely
integrated:

(o) Sensors: Perceiving the world state before and after performing actions, measuring rele-
vant aspects of their effects

(o) Planner: Generating action steps to move towards a given goal, based on the current
world state

(o) Episodic Memories: Recorded assets of executed tasks, action dependencies and param-
eters, perceived effects, and RTPs

74

Data Collection and Experience-Based Learning

(o) Memory Interpreter: Extracting actions from EMs and formulating them as new can-
didates for planning

In its implementation®, the Planner component relies on an initial, simple PDDL domain
description requiring a robot platform to implement atomic actions such as navigation, perceiv-
ing the environment, and picking and placing objects. This is accompanied by sensor-backed
monitoring of the actions’ effects. The planner component then provides the problem solving
ability of the system — generating the next plan step for the robot to execute, and record into
an EM. It is based on STRIPS and after executing each plan step updates its internally believed
world state if necessary. This measure alleviates traditional constraints from the Closed World
Assumption. The EMs generated from these task executions precisely reflect what actions the
robot performed, what their parametrizations were, and what the hierarchical structure of parent
and child tasks was.

Finally, this memory data is processed by the Mlemory Interpreter component, extracting
tasks and formulating their PDDL action equivalents, composing sets of known (primitive)
actions into new action complexes. This enables the planner to use not only its primitive atomic
actions, but also more complex, constructed actions composed of primitive and other constructed
actions.

Static Planning Domain Knowledge

To generalize over and plan for multiple hierarchical tasks, they must ultimately consist of basic,
static building blocks. In the case of mobile manipulation robots, these need to be defined per
robot platform and include

(o) 2D navigation (given a 2D goal pose for the robot’s base)

(o) Perception (localization and identification of objects)

(o) Grasping objects (including constraint-aware motion planning)
(o) Putting down objects (including free space checking)

for covering tasks from the household domain. Their definition consists of two parts: A
description of the symbolic action in PDDL (necessary once per domain) and the actual imple-
mentation attached to this action (necessary once per platform). Each action is associated with
a set of preconditions and effects. (1) Navigation requires the goal to be reachable, resulting in
the robot being at the new goal pose. (2) Perception yields new object instances. (3) Grasping
needs enough hands to be free and the object to be reachable, afterwards having the grasped
object in hand. (4) Putting down the object reverts this process.

Learning new Actions

To identify new actions in an experience’s task tree, it is traversed recursively. New (constructed)
actions consist of only known primitive and constructed actions. Their structure and signatures
are extracted from the tree, and the backtracking algorithm continues on the parent level until
all levels are covered. It was necessary for me to write PDDL descriptions for the basic actions
of the plan execution architecture I use, because it was not originally designed to work with
PDDL planning.

Actions within the task tree take on the form shown in Figure 5.14. The tree yields three
new constructed actions: fetch, place, and the overarching fetch-and-place. Exemplarily,
(fetch 7obj) consists of the primitive actions to find, approach, and grasp an object. These
all share the same parameter 7obj, which thus is the only parameter identified for fetch.
Primitive actions have well-defined preconditions and effects, which ultimately make up the
overall preconditions and effects of the newly constructed action fetch.

®https://github.com/fairlight1337/GDAPlanner

75

https://github.com/fairlight1337/GDAPlanner

8. Automated Experiments for Data Collection

(fetch-and-place ?0bj ?loc)

=

(fetch ?0bj) (place ?0bj ?loc)

4
(find ?0bj) (approach ?0bj) (grasp ?obj) (approach ?loc) (put ?0bj)

e e e e e

Figure 5.14: Task tree of a robot experience. Primitive actions are encoded per robot platform
and must be properly annotated. Constructed actions consist of primitive and other constructed
actions. Ignored actions are omitted here for the sake of clarity.

To keep the constructed actions semantically meaningful, any control flow structures gener-
ated by the plan execution architecture that are present in the hierarchical task tree are black-
listed. According to any EM, its recorded control flow was identified to lead to the perceived
and annotated result, so this concrete instantiation of the intermediate control flow operators is
directly associated with the input parameters and outcome. An overarching control flow thus
becomes superfluous when using this constructed action with the currently active preconditions.
This, again, is a prior for planning — upon failure, the new situation requires a new plan based
on new preconditions.

Theoretically, a complete snapshot of the plan execution architecture’s characteristics would
allow code inspection and analysis to make constructed actions more complete and possibly more
fine-grained. Since robot experience can be generated by a multitude of architectures different
in strategies and programming languages, individual code inspection becomes too efforteous and
error-prone in comparison. The above architecture is applicable to any platform that follows
the simple rules stated above: (1) Implement the basic actions and (2) annotate their use and
parametrization in EMs. This way, it becomes very easy for the Memory Interpreter to decide
whether an experience is valid (and interpretable) or not.

5.8 Automated Experiments for Data Collection

Due to the sheer amount of data required for statistically significant machine learning scenarios,
the process of generating EMs is very mundane, time-consuming, and prone to user error during
data collection and processing. The obvious solution is to automate at least the former of the
two, given that the experiments considered are just variations of one prototypical scenario. This,
of course, requires a very good understanding of the experiment to automate: A trained operator
spots undesired anomalies early and in general can judge corner cases, and decide on required
next steps.

To ease the especially time-consuming process of simulated, physics-enabled longterm robot
experiments, I developed and implemented an experimentation system that satisfies the above
requirements:

(o) Complete, automatic bootstrapping of experiment environment

(o) Monitoring for correct startup, approving individual steps based on their output before
continuing

(o) Consideration of output-based failure conditions and timeouts

(o) Automated parameter variance to randomly customize every experiment episode in given
bounds

76

Data Collection and Experience-Based Learning

I will outline the requirements for automating this process, introduce a new set of tools for
conducting automated experiments, and describe the flow of execution of the final system.

5.8.1 Requirements for Experiment Scenarios

The most basic requirement for automating the execution of an experiment scenario is that it is
non-interactive. This means that at no point user decisions are required to perform the actual
experiment, its setup, or its teardown. There are three program states in which user interaction
is usually required:

(o) Configuration: The program’s work schedule must be set up and execution variance
parameters must be chosen.

(o) Handling Exceptions: The program’s failure handling capabilities are exhausted and
user intervention is required to return to a normal state of execution.

(o) Post Processing: If any, the resulting output data must be post processed, stored,
labelled, etc.

All three can be addressed by automation, but require extra effort and thought. For statistical
data analysis, an experiment’s configuration and variance usually does not change qualitatively,
but quantitatively. This means that an external configuration script that has knowledge about
parameter bounds and special cases can set up the experiment while exploring the whole allowed
parameter space. When the program’s failure handling capabilities run out during execution,
meaning an exception comes up that cannot be handled, this is usually escalated to the user.
When automating such a process, a wrapper script or popular “try { ... } catch(...) {

.}’ construct needs to detect this case, and perform e.g. a shutdown and restart of the whole
experiment. After successful execution, data processing often involves external applications that
are not part of the actual experiment. A sequential execution of applications is therefore required,
going forward in the sequence only if the prior steps concluded successfully.

When these requirements are met, and all residual processes are torn down completely after
finishing, an experiment can be repeated any given number of times. In the following section,
I will present a tool that implements those requirements and performs experiments arbitrarily
often: The AutoExperimenter.

5.8.2 AutoExperimenter: A tool for generating meaningful data

To automatically conduct experiments and collect significant amounts of EM data, I designed
and implemented the AutoExperimenter tool®. It accepts an experiment description and offers
all required functionality to fully start, parametrize, conduct, and tear down any experiment
performable using software. For my work, I developed a simulation environment for a PR2 robot
that performs household tasks in a kitchen setting, mainly setting a meal table with varying
requirements.

To define an experiment, I designed a very abstract description language that controls the
AutoExperimenter instance’s behavior. The definition is written in Yet Another Markup Lan-
guage (YAML) format, and thus both easily readable by humans and interpretable by program
code. In the following, I highlight the most important features.

Workers are the main element for any AutoExperimenter instance. They represent any pro-
gram started to perform an experiment. This ranges from making instantly returning calls to
external components down to processes that run throughout the full lifetime of the experiment.
Their syntax is as follows:

“https://github.com/fairlight1337/auto_experimenter

7

https://github.com/fairlight1337/auto_experimenter

8. Automated Experiments for Data Collection

workers: ;; Includes all workers
- command: roslaunch ;; Starts worker with the executable ‘roslaunch’
parameters: [ltfnp_executive, ltfnp_simulated.launch] ;; Arguments
checklist: ;; Must match all for successful startup
- name: moveit ;; Internal identification name
matchmode: contains ;; How to match ‘template’
template: "All is well!"
message: '"MovelIt! launched successfully" ;; Print this upon success
- name: reasoning
matchmode: contains
template: "ltfnp_reasoning/prolog/init.pl compiled"
message: '"Reasoning started successfully"
quithooks: ;; If any of these match, tear down experiment
- name: failed_to_load
matchmode: contains
template: "failed to load"
message: "A component failed to load"
timeout: 120 ;; Optional timeout; 0 for wnfinite wazrt
append-variance: true ;, Optionally append task variance to process

The command signifies which executable to start a new process for, followed by its parameter
list as command line arguments. From then on, AutoExperimenter checks for the presence of
all checklist items. If all items were detected, the worker was started successfully. If one or
more were not met within timeout seconds, the whole experiment is torn down. A checklist
item is matched /found when any of the worker’s output lines coincides with its template. The
matching methods available are:

(o) match: Full match of both strings
(o) contains: The output line contains the template string

(o) beginswith: The output line begins with the template string

The quithook entries are the exact negative of checklist items: Whenever one or more match,
the process is deemed unsuccessful and the experiment is torn down. Syntactically, they function
exactly like their checklist counterpart.

Optionally, a worker can have the current task variance appended to the parameter list
when the append-variance switch is present and set to true. How task variance is defined is
described further below. All items in workers are started sequentially.

Cleaners are clearing up any leftover resources or intermediate changes the workers did. Syn-
tactically, they are equivalent with workers:

cleaners: ;; Includes all cleaners
- command: kill_processes.sh ;; Start an external script
parameters: [] ;; Vo arguments given
checklist:
- name: killed
matchmode: match
template: "Finished killing processes"
message: "Processes killed"

Other than workers, cleaners have no notion of quithook elements, timeout, or append-variance.
Like workers, cleaners are executed in sequence.

78

Data Collection and Experience-Based Learning

Task variance allows the AutoExperimenter to automatically re-parametrize an experiment
in-between runs. To this end, different types of parameters can be defined:

task-variances: ;; Includes aoll wartance parameters

attendants: ;; Parameter name: ‘attendants’
label: "Meal attendants" ;; 4 descriptive label
value-type: [multiple-choice] ;; Choose a random number of items

items: [["Mary", mary], ["Tim", tim]]

allow-empty: false ;,; 4Allow empty list?

default: [tim] ;; Defoult walue ©f not sampling
object-availability-factor:

label: "Percentage of objects spawned based on how many are required"

value-type: [percentage, rangel ;. Return a percentage

value-range: [0, 2]

default: 1
distribution: normal ;; Distribution type
mealtime:

label: "Meal time"

value-type: [choicel ;; Choose one random item

items: [["Breakfast", breakfast], ["Lunch", lunch], ["Dinner'", dinner]]
default: [breakfast]

Each variance parameter consists of a variable name, a descriptive label, a default value, and a
set of variable type dependent fields. The following variable types are allowed:

(o) multiple-choice: Choose a random number of items from the items field. The switch
allow-empty marks whether an empty list is valid. Every item is a pair of a descriptive
label and an interpretable symbol.

(o) choice: Choose a single element from the items field (similar to multiple-choice).

(o) [percentage, rangel: Return a floating point value from within the boundaries given in
the value-range field. The distribution field defines the distribution type used.

(o) [integer, rangel: Similar to [percentage, rangel, but works with integer values rather
than floating point values.

Should parameter variation be deactivated in the AutoExperimenter instance, the respective
default value will be assumed for every task variance parameter.

Meta Information describes who is responsible for the experiment definition, and what ver-
sion of the experiment is described in the respective YAML file. Valid fields are:

meta-information:
author: <firstname lastname>
email: <email@domain.com>
website: <url>
version: Xx.y.z

Changelog data shows who changed which element when. Every item denoted here includes
an author, their email address, a date, and a changeset describing the changes:

changelog:
author: <firstname lastname>
email: <email@domain.com>

79

9. Summary

date: YYYY-MM-DD

changeset:

- Moved to new YAML format for experiment description
- Added meta information and task variances

Running an experiment for a fixed maximum number of times follows a strict order of events:

1. Load experiment description.

2. Generate task variance parameters.

3. Run all workers in order. Should any fail, run cleaners, tear down experiment and go back
to step 2 until maximum number of experiments reached; quit when exhausted.

4. TIf all workers started successfully (all checklists complete) mark the experiment as success-
ful.

5. Tear down experiment, running all cleaners in order.

6. Go back to step 2 until exhausted.

To actually record EMs for every experiment, SEMREC needs to be run as a worker before
the actual experiment starts. This is achieved with this worker definition:

- command: rosrun

parameters: [semrec, semrec, "-q", "-s"]

checklist:

- name: initialize
matchmode: contains
template: "Signify: semrec init complete"
message: '"Semrec Initialized"

timeout: 15

A live example with all required steps for the experiments described in my work is available
online!?.

5.8.3 Adaptation to other Scenarios

While I present example experiment setups in the context of the fetch and place scenario, the
concepts described here are by no means fixed to this scenario. Any experimental setup that
can be conducted unsupervised and can automatically be restarted, such as in simulation, can
be performed using my approach. Additionally, the task variance parameters are — albeit
being completely optional and can be left out — fully customizable to fit other experiments’
requirements.

5.9 Summary

In this chapter I introduced robot EMs, a persistent storage for all relevant data available during
task execution. Subsequently, I presented three areas that make use of EMs: (1) Generating
experience models that allow prediction of task action effects, (2) multi-modal analysis and
extrapolation of subsymbolic parameters from experience, and (3) learning of PDDL domain
knowledge from experienced tasks.

Finally, to enable the methods above, I presented the requirements of, and a working and
tested implementation for experiment automation for simulated robot activities. These produce
statistically significant amounts of EM data supporting the many probabilistic methods used
in my work. I show how generalized plan scenarios are automated, and how the automation

Ohttps://github.com/fairlight1337/longterm_fetch_and_place/tree/master/ltfnp_executive/assets

80

https://github.com/fairlight1337/longterm_fetch_and_place/tree/master/ltfnp_executive/assets

Data Collection and Experience-Based Learning

approach automatically varies parameters to produce both, qualitatively and quantitatively dif-
ferent EMs.

The present chapter is an explorative conglomeration of possible uses for EMs in order to

parametrize generalized plans, and to improve their performance. The amount of untapped
information in robot EM data allows for more use-cases which I did not pursue here.

81

9. Summary

82

Chapter 6

Embodiment of Autonomous Robot Control Programs

“We categorize as we do because we have the brains and bodies we have
and because we interact in the world as we do.”

— George Lakoff [50]

Embodiment can be seen as the act of manifesting virtual systems in a real world environ-
ment. In the case of Al, and more particularly robots, this means establishing an information
flow from the environment towards the Al system via its sensors, and at the same time allowing
the system to enact actions using its actuators, changing the environment’s state. All of this
must be done while accounting for the differences between an internal world model and the real
world — as any assumption about what will happen next can lead to failures in enacting a plan’s
intentions. According to Vernon et al. [96], cognitivist architectures “do not need to be embodied,
in principle”, as the physical form is independent from the functional one. For controlling a real
world robot though, embodiment is essential.

In this chapter, I present a failure taxonomy approach for robot plans, and the most impor-
tant sensing and acting interfaces for a mobile manipulator in everyday human environments.
More particularly, I will go into detail about how semantic perception is used within my high
level behavior control programs, and how static and dynamic knowledge is used to appropriately
parameterize a robot’s manipulators. I showcase particularly difficult areas I worked on in object
manipulation and interpreting a sensed world state, such as dual arm manipulation, and object
identity resolution. To counter any failures, I go into failure handling and recovery strategies.
Finally, I will explain the different semantic layers that need to be bridged between physically
manifested sensor and actuator systems, and abstract control entities such as generalized plans.

Execution Learning

Generalized Expectation
Robot Plans Models

S N

Episodic

Embodiment—>» Memories

6.1 Failure Handling and Recovery in the Real World

While an autonomous robot performs tasks, two classes of failures can occur: First, anticipated
failures that the robot has explicit knowledge about encoded in its plans. These failures include
being unable to reach a cartesian pose with a kinematic arm, or not finding an object in the
field of view. Anticipated failures are expected to happen and have definite recovery strategies,
as they are part of the normal flow of operation during the task execution. This class also
includes checks for whether all preconditions hold when executing a task (e.g. having a free
hand before grasping an object) — while these “failures” are not always recoverable, they belong
to the class of expected problems. The second class covers all unanticipated failures: Problems

83

1. Failure Handling and Recovery in the Real World

Algorithm 6.9 Example CRAM grasping code: Failure checking (red), purely task-related
code (black), and comments (brown). A BT version of the plan is depicted in Figure B.1.

(def-plan get-object (arm object)
(when (is-arm-free? arm)
(when (is-object-reachable? object)
(let ((traj (calculate-trajectory arm object)))
(when (is-trajectory-valid? traj)
(execute-trajectory traj)
(when (grasp-location-reached? object)
(grasp arm object) ;. Upen hand, enclose object, close hand
(when (object-in-gripper? object)
t))))))) ;; Success

during task execution that the robot can neither properly detect, nor (commonly) recover from
appropriately — even in case of a proper detection.

The former class of failures is straight-forward, although mostly labor-intensive to implement.
The base (non-generalized) plan for the task is implemented (or planned symbolically), and then
all possible failures a programmer can think of are explicitly checked for. These checks ensure the
executability of the program, as far as predictions are possible, before executing it and running
into failures.

The latter class of unanticipated failures requires heuristic checks on the results of performed
actions, and possibly concurrent monitoring of variables. The difference between these and the
former failure class is that when no failures are anticipated, the program is expected to run fine.
Unanticipated failures can still disrupt a robot’s plans without being noticed. Their detection
commonly indicates that something went wrong, but not necessarily why and what exactly did
not work as expected. Heuristic detection mostly detects secondary failure effects rather than
the actual problem. Cognition-enabled architectures executing Generalized Plans are expected
to handle both failure classes to some sensible degree. As Vernon et. al [96] elegantly put it,
being able to react to these unanticipated, unexpected issues is a major part of cognitive systems:

“The hallmark of a cognitive system is that it can function effectively in circumstances that
were not planned for explicitly when the system was designed. That is, it has some degree
of plasticity and is resilient in the face of the unexpected.”

An example for the difference between the two failure classes is the execution of a trajectory:
A valid motion trajectory might have been calculated (although reasons for an invalid result could
have been anticipated), but the execution fails due to an unknown reason. All the information
the control program has at its disposal is the failure itself and the intended motion; possible
recovery strategies include either retrying the action with different parameters, or heuristically
trying to isolate the problem source and work around it. At the same time, unanticipated failures
can have lasting effects on the surrounding environment, such as pushing objects off tables or
destroying a piece of furniture (in case of a wrongly executed trajectory, say due to a controller
failure, wrong collision model of the environment, or imprecise perception).

The most important difference is therefore: For anticipated failures, a set of reasons is
known that can be checked for. Trajectory calculation fails due to an unreachable goal pose,
either because it is too far away, or no path could be found among the collision environment.
These can be validated by the control program a priori. Trajectory execution on the other hand
can fail due to a multitude of exogenous reasons, such as someone holding the robot’s arm,
motor failure, or sensor drift (and subsequent controller failure during movement). The control
program does not have access to the necessary information for validating these reasons, and can
only try to recover from them heuristically, if at all.

Failure handling can make up most of a program’s code, as shown in Algorithm 6.9. Task-

84

Embodiment of Autonomous Robot Control Programs

Algorithm 6.10 Concurrently monitored object transport task: Moving towards destination
until arrival or interruption, the latter resulting in re-grasping. A BT version of this plan is
shown in Figure B.2.

(def-plan transport-object (object destination threshold)
(let ((initial-object-pose (get-object-pose-in-hand object))
(interrupted nil))
(par ;5 Exzecute in parallel
(while (not (at destination))
(when (not interrupted)
(pursue ;; Until one finishes
(progn (move-to destination)
(return-from par)) ;; Reached destination
(until interrupted))))
(whenever (> (distance initial-object-pose (get-object-pose-in-hand object))

threshold)
(setf interrupted t) ;; Interrupts navigation
(regrasp-object object)
(setf interrupted nil))))) ;. Restarts navigation

related code is separated from failure handling-related code. For the sake of simplicity, the
example signifies a detected failure by not returning the success flag “t”. More elaborate failure
handling and recovery strategies would be retracting the arm, checking whether the object was
moved during the motion, or calculating a different trajectory and relaxing constraints when no
trajectory could be calculated. These are plan repair measures, being part of failure recovery
strategies, and in general try to leave the scene in an expected, clean, and safe state after
finishing execution.

For tasks that are active for longer periods of time, such as holding an object and trans-
porting it across the room, the classes of anticipated and unanticipated failures interleave: The
object might slip from the hand, but the time window for this to happen is the whole task of
transportation. So it is an expected failure that needs checking, but its not clear at which point
in the given time interval it will appear. In order to properly detect and possibly circumvent this
problem, a concurrent monitoring process needs to regularly check the state of the object in the
robot’s hand. If irregularities are detected, this monitor is supposed to interrupt the main trans-
portation task and take countermeasures, such as signalling a re-grasping action. Algorithm 6.10
depicts an example of this strategy in code. Of course this example does not take into account
that re-grasping can fail, a very real and legit situation, which would possibly require the robot
to stop its current task altogether.

When defining robot plan failures more generally, they can be formulated as:

“Circumstances that prevent the robot in its current state and configuration
from achieving some or all of its currently pursued goals.”

Given this definition, robot plan failures can be categorized in a second dimension: They
are either platform-dependent and can be addressed locally (such as restarting a controller,
switching perception routines, or trying a different arm for grasping), or are task-related and
require specialized methods based on domain knowledge (there is no glass in the cupboard, so
look into the dishwasher). Table 6.1 shows how failures are categorized using both dimensions,
and all four cases are explained in more detail in the following.

(a) Anticipated, Platform Dependent: Action effects significantly differ from the expected

results. This can be failed grasps, objects not being seen in the field of view, and missing
space for putting down an object. These failures can be explicitly checked for at appro-

85

1. Failure Handling and Recovery in the Real World

Platform Dependent Task Related

Anticipated Outcome differs from Expectation Planned Uncertainty triggered
Unanticipated Robot Component failed Task Preconditions violated

Table 6.1: Two dimensions for categorizing robot plan failures: Anticipated vs. Unanticipated,
and Platform Dependent vs. Task Related failures

priate times (check grasp after grasping, scan table for space before putting down object)
and are in general recoverable.

(b) Anticipated, Task Related: The “recipe” for performing a task cannot be completed
without extra steps. This can include required tools not being mentioned in the action
description, or no glass being in the cupboard when looking for one. In general, pre-
conditions for task steps are not met. These failures can be taken care of by planning
under uncertainty, and by postponing resolution of symbolic action, object, and location
descriptions.

(c) Unanticipated, Platform Dependent: Preconditions are retracted abruptly and with
no prior evidence. This can include controller failures, a breakdown of the plan execution
system, or very sudden changes in lighting conditions (thus hindering perception). In
general, these failures have crucial effects on the task execution and would normally require
human intervention to overcome.

(d) Unanticipated, Task Related: Preconditions for task steps are permanently not met
and cannot be substituted. Starting with the assumption that in some way the task is
performable, a robot can only fail in these cases. Failures of this kind include no glass at
all being found in a kitchen when it is required (and not substitutable) for the task, or all
paths to a vital room being blocked.

To act robustly, generalized plans need to address detection and (possible heuristical) re-
covery of issues (a) and (b). They also need to be able to detect occurrences of issue (d), and
act accordingly (e.g. gracefully cancelling the task, notifying a human operator). Issue (c) is
beyond the capabilities of abstract generalized plans: Detection of these situations falls under
the jurisdiction of the underlying middleware, and must be communicated to a human operator
independent from the currently active task.

6.1.1 Exhaustingly Repeating Actions as most Naive Handling Strategy

Definitions of expected failures make a common assumption: Once their failure condition is
known, strategies can be applied to solve the underlying problem. While failure handling strate-
gies usually do not guarantee a 100% success rate (often also due to their heuristic character)
they are — in theory — commonly assumed to be the best action to take. In purely deterministic
systems — assuming that they allow failures to happen — this is always true. In reality, which is
non-deterministic in at least the area of mobile manipulation for robots, this simple assumption
does not hold — see Section 6.1.3 about uncertainty in the real world. This uncertainty can
lead to false positives: Objects not found on a tabletop can be caused by lighting conditions,
and a control failure can happen due to a modeling error in object data (object mass in the
description is different from its actual mass, changing the executed motion due to inertia).
The simplest and most applied naive approach to a failure is retrying the same action again,
with exactly the same parameters. For all sensors that suffer from drift, noise, and interfer-
ences (vision, odometry, fingerprint force, etc.), retrying the action some n times yields a good
chance of succeeding if the problem was related to a misdetected failure. To apply this to

86

Embodiment of Autonomous Robot Control Programs

Root Task

T

Fetch Place Search Object

RN /N |

Search Pick Perceive

L Object Not Found iy Reparametrize
(cup (color red)) (cup (color any))

Figure 6.1: Global Failure Taxonomy: Failures are organized in a hierarchy of tasks in which
they occur, and each task can fail due to a multitude of failures. If a new failure is not found in
the taxonomy, a leaf is added. If one is found, its associated failure handling strategy is tried;
and upon failure, the parent’s strategy is selected.

my generalized plans, I make use of CRAM’s specialized facilities for exactly this purpose:
with-retry-counters and do-retry. A minimal example is shown below (BT version in Fig-
ure B.5):

(def-plan grasp-object (object)
(with-retry-counters ((grasp-retry 2)) ;; Initialize retry counters

(with-failure-handling ((manipulation-failed ;; Manipulation failed
(do-retry grasp-retry))) ;; Retry until ezhausted
(perform-grasp-object object)))) ;; Perform some failure-prone function

For every do-retry that is met, grasp-retry is decreased by one. Once it reaches zero
and do-retry is called, the activity is not retried and the failure is escalated to the parent
plan. How often an individual activity is retried depends on the average relative occurrence of
false positives when detecting failures. This information comes from either (1) a human plan
designer’s experience, or (2) the robot’s EMs. To keep generalized plans abstract and free of
explicit task and domain knowledge, the latter is preferrable. In the present work, I did not yet
use EMs to decide on these counter values, although I think extracting that kind of knowledge
from the EMs and generating retry amounts from it should be straight forward.

6.1.2 Global Failure Taxonomy

In order to not fixate specific failures in plans where they are expected, I define a failure taxon-
omy. In this taxonomy, failures are identified by the situations in which they occur, and what
good handling practices are to deal with them. If a known failure occurs (or is predicted), more
information about why it happens and how it can be prevented or handled can be read from
the taxonomy. If a new failure (one that does not match any in the taxonomy) is identified, it
is added alongside all information known about it. An example failure taxonomy is shown in
Figure 6.1.

The starting point of identifying failures is a divergence between an expected path of action
and an actual one. If at any point a generalized plan detects a failed sub task, this means the
aspired action failed. Based on its context, and the implicit and explicit parametrization this
plan knows the circumstances in which this failure appeared.

The taxonomy itself starts at a very crude level: Any failed task matches the root node. From
there on, child nodes are matched until either (1) a node is a perfect match or (2) a new leaf is
created. Nodes are identified by: A parent task, a failed sub task, a primitive failure symbol,

87

1. Failure Handling and Recovery in the Real World

and any information valid for that failure symbol (reaching motion failed: which arm was used;
grasping object failed: used arm, object type; location unreachable: symbolic description of the
location; etc.).

When a failure occurs and a failure handling strategy for a specific node in the taxonomy is
required, the following situations can lead to one:

(o) A strategy is mapped to the node: Use that strategy
(o) No strategy is mapped to the node: Move up one parent and try their strategy

Ultimately, when no parent is left to try, the plan control is escalated to the next higher plan.
This plan now has a broader view on the task that is performed and uses the same approach as
the sub plan, but with a different failure: Now the originally failed plan is the failed sub plan.
If all plans along an execution depth failed and the control is handed up beyond the root plan,
user intervention is required. In the example in Figure 6.1 the “Search Object” plan does not
have any failure handling associated for failures occuring in the “Perceive” sub plan. It escalates
into the more general “Fetch” plan it is part of. The original failure — “Object not found” — is
now present in the node, and has a handling strategy available: Reparametrizing the object to
look for. The sub plan is then re-executed with the new parameter.

Initially, nodes have no failure handling strategies mapped to themselves. As described for
Episodic Memories above, failures and successful retries of actions after reparametrizing them
can be recorded and extracted from robot experience data. These reparametrizations make up
the valid failure handling strategies for failed plans — and if they fail, the second of the above
rules applies.

6.1.3 Uncertainty for Mobile Robots in the Real World

When operating in the real world, uncertainty is an omnipresent constraint for robots. In this
section, after discussing the principle types of uncertainty that robot plans commonly encounter,
and briefly commenting on other approaches, I will show how my generalized plans resolve, or
effectively work around different types of uncertainty.

Regan et. al [74] separated uncertainty into seven distinct classes, which were later described
in more detail and compared to one another by Uusitalo et. al [95]: (1) Inherent randomness,
(2) Measurement error, (3) Systematic error, (4) Natural variation, (5) Model uncertainty, (6)
Subjective judgement, and (7) Linguistic uncertainty. Of these, I deem the following three
relevant for generalized plans:

Measurement error Sensor systems as a prime source of continuous data from the environ-
ment are prone to noise, drift, interference, and discretization errors (Nyquist-Shannon sampling
frequency dilemma [80]). Especially perception (2D, 3D) systems suffer from pertubations in
data (lighting, motion blur) and require specialized, probabilistic algorithms to even them out.

Model uncertainty All models derived from realistic environments inherently abstract from
irrelevant details, let alone to overcome the Frame Problem’s intractability issues. These ab-
stractions can eliminate not yet identified vital process variables. If gone unnoticed, this results
in cause and effect relationship errors that are very difficult to spot or even quantify.

Subjective judgement Judgemental algorithms rely on known structures in data, and are
easily mislead by data containing new characteristics, producing wrong results. The scope,
range, and distribution of models and raw input data are especially difficult to predict and

judge for scarce and error prone data.

For symbolic, ambiguous parametrization of generalized plans, I add a fourth class:

88

Embodiment of Autonomous Robot Control Programs

Uncertainty Type Symbolic Subsymbolic

Measurement error v’
Model uncertainty v’ v’
Subjective judgement v’ v’
Description vagueness v’

Table 6.2: Different types of uncertainty and their categorization by applicability to symbolic
and subsymbolic aspects of a robot’s cognitive architecture

Description vagueness Symbolic entity descriptions for objects, locations, and actions are
specified in varying degree of detail. For descriptions referencing real world entities, vague de-
scriptions must be disambiguated before resulting in actionable items usable by robot plans.
The quality of these results strongly depends on the knowledge available to the robot. I enlist
this category as uncertainty since a description’s meaning — and thus a plan’s course of action
— can change drastically based on its content and resolution, of which both are not necessarily
known at design time.

These four classes can further be distinguished by whether they apply to symbolic, subsym-
bolic, or both aspects of a robot’s cognitive architecture, as shown in Table 6.2. The Description
vagueness uncertainty per se only applies to symbolic task aspects. It should — rather than
being treated as a problem — be seen as a degree of freedom, enabling “opportunities” for how
a robot solves its task. Before being actionable, it ultimately still requires full resolution.

To alleviate uncertainty, most planning approaches, learning methods, and perception algo-
rithms avoid the open world paradigm and implicitly assume a closed set or narrow range of
possible solutions [26, 29, 106]. Talamadupula et al. [92] present an approach of how to apply
a closed world planner to an open world environment by dynamically reconfiguring the plan-
ner based on observations made in the open world. Their approach is tailored precisely to the
requirements of their scenario, and planners in general lack this functionality completely.

Generalized plans use two strategies for dealing with uncertainty: (1) Exhaustible backtrack-
ing over the search space, and (2) Experience-based search space constrainment.

(1) Exhaustible backtracking: Probabilistically sampling from a linear search space or
traversing over a set of discrete solution candidates until either a sufficient amount of
valid solutions is found, or a frustration limit is reached and the search is cancelled due to
exhaustion.

(2) Search space constrainment: Explicitly valid and invalid parameter ranges are iden-
tified from Episodic Memories, resulting in Expectation Models. Inverting these models
allows identification of viable parameter ranges for desired task outcomes, constraining the
search space to proven to work priors. This is elaborated on more in Section 5.5.1.

Initially, without prior experience from EMs, only (1) applies to any generalized plans. Static
rules may be present in an external knowledge base, but the executing robot explores the full
(accessible) search space. For any uncertainty that is encountered, generalized plans feature
heuristic fallback solutions as per Section 4.1.2. The solutions attempted are ranked based on
their reciprocal generality. For the symbolic case, an example PROLOG implementation using
the CRAM architecture for — if unspecified — determining which hand to use for grasping
looks like this:

;5 Prolog rules determining hand to use for grasping

(<- (use-hand 7task 7object 7hand)
(desig-prop ?task (hand ?hand))) ;; Is the task defining o hand?

89

2. Raw Interfaces to the External World

(<- (use-hand ?task 7object 7hand)
(desig-prop 7object (hand %hand))) ;; Is the object defining o hand?

(<- (use-hand 7task 7object 7hand)
;5 Is a rule defined in the gemeral knowledge base for ..
(or (kb-triple ?task Pobject ?hand) ,; .. the task/object combination?
(kb-triple 7task ?_ 7hand) ;5 .. just the task?
(kb-triple ?_ 7object 7hand))) ., .. just the object?

(<- (use-hand ?task 7object 7hand)
;5 Fallback solution: Use whatever hands are free, or fail if mone available
(free-hand 7hand))

The rules stated herein are processed top-down: Hands defined in the task description take
precedence over hands defined in the object description; after that, rules defined in a knowledge
base are considered (from specific to general), and finally, if no other rules apply, whatever hand
is free is considered. Should none of these rules yield results, there is no valid solution for the
required information and the calling task should reconsider its requirements, change its strategy,
or fail gracefully and hand control back to its parent task.

In CRAM, a function that calls upon these PROLOG rules can have the following form:

(defun available-hands-iterator (task object)
(lazy-mapcar ;; Create lazy ‘just-in-time’ list iterator over all solutions
(lambda (bindings) (with-vars-bound (?hand) bindings ?hand))
(prolog ‘(use-hands ,task ,object 7hand)))) ,; Call Prolog

This function iterates over all possible solutions if any previously returned solution turns
out to be infeasible. The prolog call returns a lazy list of solutions: Each solution contains one
binding for the ?hand parameter.

Once significant amounts of EMs are collected, ExMods as described in Section 5.5.1 can be
generated. This enables (2), allowing the robot to learn how to handle the intrinsic uncertainties
of any task it performs. This strategy allows synergies between different (sub)tasks with similar
structure. The constrainment does not rule out regions of the search space indefinitely though.
The same rules as for (1) apply: If the learned, more specialized solution yields no feasible
results, the more general solution fallbacks and heuristics are used. This allows to explore new
tasks that have different characteristics than previous ones, creating new specializations.

Based on the abstract and underspecified nature of generalized plans themselves, the notion
of unknown solutions and insufficient descriptions of tasks, objects, or locations as in Description
vagueness is a vital component: It identifies where situational or inferred knowledge needs to
be assumed, or (in the case of still too little information to perform a task) when to query a
human operator for more information. This is a major strength of plans designed with this
principle in mind — they can be defined very generically and can then be applied to a large
variety of situations. Fetching a glass from the kitchen (which possibly resides in a cupboard) is
— speaking in general terms — not very different from fetching the newspaper from the lawn.

6.2 Raw Interfaces to the External World

While pure cognitivist systems do not need to concern themselves with an outer, external world,
robots require means for perceiving their environment and acting upon it. Many interfaces exist

90

Embodiment of Autonomous Robot Control Programs

for exactly these purposes — for my work, I chose two distinct frameworks on which I build
the embodiment of generalized plans: (1) ROBOSHERLOCK as a semantic perception system,
and (2) Movelt! as an abstraction framework for motion planning under physical constraints. I
consider both components raw in terms of the semantic connection between them and generalized
plans as they per se have no means of understanding the abstract, vague set of descriptions
that my approach uses. After introducing the components themselves, I will explain which
transformations from a generalized plan’s knowledge content are necessary to parametrize them,
and how to interpret the results they return.

6.2.1 ROBOSHERLOCK: Semantic Perception

ROBOSHERLOCK is a UIMA [30] based ensemble of Computer Vision (CV) expert algorithms
that, based on a majority voting mechanism, identifies features in captured image data [7]. Ex-
amples for available CV experts include cluster segmentation in 3D point clouds, shape detection
(2D, 3D) using RANSAC, color segmentation, template matching, SIFT feature matching, and
CAD model fitting. ROBOSHERLOCK accepts object descriptions based on a number of crite-
ria, and tries to find a match between currently visible objects and the supplied description.
If a match is found, all known characteristics from all experts (whether asked for or not) are
returned. Common queries have the following form:

(an object ((color red) (shape cylinder) (size small)))

Based on this query, the perception system would return all object instances that are pre-
dominantly red, cylindrical, and relatively small. The last criterion is highly subjective, but
since ROBOSHERLOCK is also developed in, and specialized on the household domain, its under-
standing of object sizes coincides with that of my own generalized plans.

The expected return value when querying a robot perception system depends on the pur-
pose of the result data. High level control programs — and cognitive architectures at large —
mostly operate on a symbolic and conceptual level, and therefore expect a perception system
to return symbolic information. Depending on the task, this can involve either exact 6-DOF
poses of objects in vicinity, their qualitative characteristics (shape, size, primary color, etc.), or
only whether they are located on a particular table. Besides the granularity of the contained
information, semantic perception systems should carry intelligence on their own. Instead of just
returning whatever information they have at their disposal, a high level control program might
query for particular types of objects, of a certain color, all objects in a drawer but not around
it, or objects in the robot’s hand. To answer these queries, that system requires knowledge it-
self, elaborate filtering mechanisms, and ideally a set of algorithms that help reduce uncertainty
about the results by — as in ROBOSHERLOCK— applying e.g. a majority vote over different
experts for the same purpose in case of ambiguity.

To interface ROBOSHERLOCK with the CRAM plan language, I implemented a set of modules
that abstracts away from ROBOSHERLOCK’s expected input and output format and automat-
ically translates all data into CRAM compatible high level information: cram_uima and the
robosherlock_process_modulel.

6.2.2 Movelt!: Abstract, Constrained Motion Planning

Movelt! is a framework that combines the motion planning algorithms from The Open Motion
Planning Library (OMPL) with a managed, persistent planning scene, sensor integration for
reactive perception, and interfaces to common programming languages. It ties all components
together into a streamlined pipeline that receives motion (planning) requests and can return
a multitude of outcome codes. Of the included components, I mostly make use of the first

"https://github.com/fairlight1337/cram_perception

91

https://github.com/fairlight1337/cram_perception

2. Raw Interfaces to the External World

two: T use OMPL’s motion planning capabilities while populating Movelt!’s planning scene with
information about the current collision environment.

For a seamless integration with high level control programs, both the motion requests and
the final outcome need to be translated between symbolic and subsymbolic representations.
Requests for motion planning or execution are either (1) 3-DOF or 6-DOF poses relative to
the manipulator’s root link, or (2) trajectories to be executed by the joint controllers of the
controlled kinematic manipulator. In the case of Movelt!, the former is able to generate the
latter. Optionally, a planned trajectory can be executed right away, but if post-processing is
necessary — as in dual arm motion described below — the generated trajectory can be returned,
altered, and executed at a later stage. Likewise, the result codes returned by a motion planning
framework can only consist of the knowledge the framework actually has: Planning succeeded,
planning failed (e.g. due to collision, no IK solution found, time limit exhausted, or out of
memory), motion execution succeeded, motion execution failed (e.g. controller failure), or a
multitude of internal problems (no planner loaded, framework not initialized, etc.). Both, the
input and output data need to be translated, which I discuss in more detail in Section 6.3.

I implemented a comprehensive interface module for the CRAM plan language to control
Movelt!’s motion planning and collision environment management functionalities, as well as to
interpret its result codes appropriately: cram_moveit?.

Dual-Arm Motion Planning

Wielding two or more arms simultaneously is necessary for manipulation tasks in which objects
are either too heavy for one manipulator, or the object dimensions are too bulky for single-
handed manipulation. Examples are trays, and heavy pots or plates. Another area that benefits
from simultaneous (or even asynchronous) motion planning is motion blending — beginning the
next motion while the current one it not yet finished. While this can save time and resources,
it is beyond the scope of my work and I leave it open for further research.

OMPL uses randomized motion planners. This — and lots of practical experience while us-
ing it — nurtures the assumption that heuristics such as "Try a straight line in cartesian space
first"” are not used. Thus, planning motions for multiple arms for manipulation poses a number
of challenges:

(o) High search space complexity: Since both arms are independent from one another,
every solution for one arm must be cross-validated against every other arm. When a
complexity for n links per arm is assumed as O(n) and k arms are involved, the overall
complexity rises to O(n*). This results in a very long planning time which possibly violates
any given timeouts.

(o) Non-optimal solutions: Due to the fact that generating a single solution is very com-
plex, the planning algorithm would not have much time left to find a more optimal one.
Additionally, since the initial motion found (if any) has a high chance of being strongly
entangled, path simplification would not be able to deskew it. The resulting motion when
executed on a robot would look rather odd and use a large part of the available workspace.

(o) Long execution time for entangled trajectories: Based on the points above, the
resulting trajectories take very long to execute compared to their separated individual
trajectories, prolonging the overall task time.

Motion planning — especially when considering multiple end effectors and separate kinematic
chains — is a research field on its own. To still be able to manipulate with both arms on a
household robot, I circumvent the above problems by separating the available work space into

*https://github.com/fairlight1337/cram_moveit

92

https://github.com/fairlight1337/cram_moveit

Embodiment of Autonomous Robot Control Programs

a left and a right part, relative to the robot’s base. This way, each arm is only allowed to
stay on one side of the robot’s coordinate system, implicitly preventing entangled or colliding
trajectories. The complexity rises by a mere constant factor, O(2 - n) which, again, is O(n).
This heuristical solution makes some — very rarely used — motion trajectories impossible, but
ultimately enables dual-handed manipulation without paying for it in complexity.

Another important remark to make here is that when dual-wielding objects, a closed kine-
matic chain is created. Motions of any link must be synchronized with all other links in the
chain, as otherwise either part of the kinematic chain gets damaged, or the transported object
is lost. Again, this is beyond the scope of my work and is left here as a side note.

6.3 Translating Symbolic and Subsymbolic Information

Both, object perception and object manipulation must be parametrized using object information
available to the cognitive architecture. In my work, I use the knowledge processing system
KNOWROB to encode that information in OWL. A sample encoding for an object “Fork” is
shown in Figure 6.2. At the example of this object, I will explain the translation process for
each interface.

6.3.1 Perception Queries and Results

Based on the object definition in Figure 6.2, a query to ROBOSHERLOCK via my CRAM interface
(the robosherlock_process_module) takes on the following form:

(an action ((:to :perceive)
(:obj (an object ((:shape :box) (:color "d3d3d3") (:type "Fork"))))))

The details :shape, :color, and :type are read directly from KNOWROB’s knowledge base
interface to CRAM. To translate between the available and the expected information is part of
the process module’s tasks. The return value of this query would be similar in structure and
content to the following example:

(an object ((:pose <6-DOF pose>) (:colors ((:red 0.82) (:green 0.82) (:blue 0.82)))
(:shape :box) (:dimensions ((:x 0.05) (:y 0.03) (:z 0.12)))
(:detection ((:clusterid 0) (:objectid 3))) (:timestamp 1421539200)))

Parts of the results can be interpretet as they are, others need to be transformed: Is the
:pose related to any particular piece of furniture — on a table, inside a drawer, on the ground?
The cognitive architecture takes the burden of checking all furniture of interest to see whether
this object is above its supporting surface (plus some threshold margin to account for perception
errors).

6.3.2 Motion Planning Queries and Results

To manipulate an object like the one described in Figure 6.2, the appropriate manipulation poses
relative to the kinematic chain’s root link of the end effector in use need to be determined. In
terms of e.g. grasping the object, this means calculating the correct end effector pose relative
to the global object pose, taking into account all applicable offsets.

Figure 6.3 depicts this situation. A cup-like object with a handle on its side must be grasped.
The end effector controllable (in world coordinates) through motion planning is the robot’s wrist.
The origin of the object in world coordinates is known. The object’s handle has a pose relative
to the object’s origin. The robot’s Tool Center Point (TCP) has a pose relative to the wrist.
I formulate a homogeneous transformation between two coordinate systems as Tf where A is
the reference coordinate system and B the coordinate system whose origin is described by T,

93

3. Translating Symbolic and Subsymbolic Information

<owl:Class rdf:about="&knowrob;Fork">
<rdfs:subClass0f rdf:resource="&knowrob;LTFnPObject"/>

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;pathToURDFModel"/>
<owl:hasValue rdf:datatype="&xsd;string">
package://ltfnp_models/models/fork/fork.urdf
</owl:hasValue>
</owl:Restriction>
</rdfs:subClass0f>

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;boundingBoxSize"/>
<owl:hasValue rdf:datatype="&xsd;string">0.09 0.07 0.19</owl:hasValue>
</owl:Restriction>
</rdfs:subClass0f>

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;primitiveShape"/>
<owl:hasValue rdf:datatype="&xsd;string">box</owl:hasValue>
</owl:Restriction>
</rdfs:subClass0f>

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;color"/>
<owl:hasValue rdf:datatype="&xsd;string">d3d3d3</owl:hasValue>
</owl:Restriction>
</rdfs:subClass0f>

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;semanticHandle"/>
<owl:hasValue rdf:resource="&knowrob;Fork_Handle_laok8b26"/>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>

<owl:NamedIndividual rdf:about="&knowrob;Fork_Handle_laok8b26">
<rdf:type rdf:resource="&knowrob;SemanticHandle"/>
<knowrob:handlePose rdf:resource="&knowrob;Fork_Handle_laok8b26_pose"/>
<knowrob:graspType rdf:datatype="&xsd;string">push</knowrob:graspType>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="&knowrob;Fork_Handle_laok8b26_pose">
<rdf:type rdf:resource="&knowrob;Transformation"/>
<knowrob:quaternion rdf:datatype="&xsd;string">0.5 0.5 -0.5 0.5</knowrob:quaternion>
<knowrob:translation rdf:datatype="&xsd;string">0.0 0.0 0.03</knowrob:translation>
</owl:NamedIndividual>

Figure 6.2: Excerpt of object information about an object “Fork” encoded in KNOWROB. The
full file is available here: https://github.com/fairlight1337/longterm_fetch_and_place/
blob/master/ltfnp_models/owl/objects.owl

94

https://github.com/fairlight1337/longterm_fetch_and_place/blob/master/ltfnp_models/owl/objects.owl
https://github.com/fairlight1337/longterm_fetch_and_place/blob/master/ltfnp_models/owl/objects.owl

Embodiment of Autonomous Robot Control Programs

Handg>

- -
~-~a .

Object
Figure 6.3: Relevant coordinate systems for grasping an object by its handle: Robot wrist, tool
center point, object origin, and relative object handle

relative to A’s origin. In general, (Tf)_1 =T g‘. Two transformations Tf and Tg are appended
by multiplying them: T§ = Tf . Tg. The transformations used in this example thus are:

™ world — Wrist Tg world — Object
T Wrist — TCP T4 Object — Handle

TH TCP — Handle

The transformation in question is 7} : How to place the wrist such that the TCP correctly
grasps the object’s handle. Any required offset between the TCP and the handle is defined by
T:ﬁ — commonly this is the identity transformation for grasp poses, and an offset for pregrasp
poses. According to Figure 6.3, the straight forward solution (starting from the wrist) is:

TV ~Tf Tf TG T
Taking into account that only TVY;,, ij[, Tg , and T9 are known, the solution changes to:
W =1h T (T (19) 7

The transformations TVTV and Tg are static. The final formulation for where to place the robot’s
wrist after detecting and then trying to grasp an object by its handle thus becomes a function
of the object pose and the desired grasp offset:

Ty =Ty (T3, Tf)

The former is the result of a successful perception query, the latter is available from the task
being executed. The static transformations are supplied by the knowledge base — the robot’s
knowledge about itself for TVTV, and the object description for Tg . The parametrization of the
motion framework therefore becomes a product of other components’ output, properly directed
by the plan execution architecture.

After issueing a motion planning or execution request, the motion planning framework returns a
result code depending on its success — see Section 6.2.2. This result needs to be translated into
failure classes the overarching plan execution architecture can understand and handle. From all
possible result codes Movelt! can return?, I reduced all cases to the following four that convey
semantic meaning for the controlling robot plans:

(o) :success: The request was fulfilled successfully.

(o) :planning-failed: The motion planning request failed (no collision free path exists be-

*https://github.com/fairlight1337/cram_moveit/blob/master/cram_moveit/src/failures.lisp

95

https://github.com/fairlight1337/cram_moveit/blob/master/cram_moveit/src/failures.lisp

4. Maintaining a Dynamic Planning Scene for Manipulation

tween start and goal pose).

(o) :no-ik-solution: No valid IK solution could be found (the goal pose is unreachable or
in collision)

(o) :control-failed: During motion execution, the motor controllers did not move as ex-
pected.

With these result types, a generalized plan can distinguish between failures it can handle
(:planning-failed, :no-ik-solution) or needs to escalate eventually (:control-failed); see
also Section 6.1 for handling failures of both classes. Also, every plan can decide which measures
to take: Upon :no-ik-solution, a grasping plan can try a different handle on the object
if available; a putdown plan needs to reposition the robot’s base or find a new place to put
the object down at. For :planning-failed, a heuristical approach works well when using
randomized motion planners: Retrying n times, then transforming the failure to a different class
for alternative handling (such as :no-ik-solution).

6.4 DMaintaining a Dynamic Planning Scene for Manipulation

The planning scene is the motion planning framework’s central data structure for maintaining
information about the collision environment. Whenever a robot changes the state of the world
around it, or detects such changes, the planning scene must be updated to reflect this accordingly.
An intact planning scene is the prime requirement for a properly functioning motion planner in
constrained environments. If this is violated, plans start off on wrong assumptions on why a
problem during manipulation comes up, which actions they have available (based on reachability
of objects and furniture), and produce behavior totally out of sync with what a plan developer
expects to happen. The events after which the planning scene must be updated include, but are
not limited to:

(o) Detecting an object: Add a collision model for the detected object to the environment

(o) Picking up an object: Attach the object to the robot’s end effector(s), remove it from
the environment

(o) Putting down an object: Detach the object from the robot’s end effector(s), add it to
the environment at the destined putdown pose

(o) Opening or closing a container (drawer, fridge, dishwasher, etc.): Reposition the

door’s/drawer’s collision model accordingly

To manipulate collision objects in CRAM, I developed a number of functions that interface with
Movelt!’s planning scene management functions:

(o) register-collision-object: Takes an object designator as its parameter. The desig-
nator should include the object’s name, its (bounding box) dimensions, and its shape. A
respective collision model is created, but not yet added to the planning scene. Example:

(register-collision-object
(an object ((:name "cupO") (:shape :box)
(:dimensions ((:w 0.03) (:d 0.05) (:h 0.21))))))

(o) add-collision-object: Takes an object name and a pose as its parameters. The collision
object identified by the name is added to the planning scene at the given pose. Example:

(add-collision-object "cupO" <6-DOF pose>)

(o) remove-collision-object: Takes an object name as its parameter. Removes the named
collision object from the planning scene. Example:

96

Embodiment of Autonomous Robot Control Programs

(remove-collision-object "cupO")

(o) without-collision-object: Environment that temporarily removes a named collision
object from the planning scene. Example:

(without-collision-object "cupO"
;5 Force grasps penetrate objects; collision checking would forbid that
(perform-force-grasp "cup0"))

For removing multiple objects simultaneously, without-collision-objects exists that
uses a list of object names.

(o) clear-collision-environment: Removes all known collision objects from the planning
scene and purges the registered collision objects. Example:

(clear-collision-environment)

(o) attach-collision-object-to-link: Takes an object name and a target link as its pa-
rameters. The named collision object is removed from the planning scene and is attached
to the given link, extending the link’s collision model. Example:

(attach-collision-object-to-1link "cupO" "left_hand")

(o) detach-collision-object-from-link: Takes an object name and a target link as its
parameters. The named collision object is added to the planning scene at its current pose
and is detached from the given link. Example:

(detach-collision-object-from-link "cupO" "left_hand")

All functions can be called by any plan at any abstraction layer. Reasons for managing the
collision environment can have their origin in high level plans that decide which objects to ignore
for planning reasons (simplifying a too complex collision scene), or in lower level plans that for
example enable force or push grasps that would penetrate the object’s collision model.

6.5 Navigation in Semantically Known Environments

Besides primary sensing and acting interfaces, a mobile manipulation robot needs navigational
capabilities. The basic mode of operation for robot bases is movement in two-dimensional
cartesian space in relative coordinates. In my scenario, I rely on a static ground map that never
changes during operation of the robot, and that is known at all times (see Figure 1.4). This
map introduces a reference coordinate system for the robot’s base. To make use of global (map
relative) coordinates ("In front of fridge", "Close to meal table"), the navigating robot requires
two prerequisites: (1) Localization, and (2) a coordinate system transformation framework.

(o) Localization: A robot knowing its own pose in a reference coordinate system is the result
of a localization process. While a large variety of localization algorithms and approaches
exists [69], I rely on the Adaptive Monte Carlo Localization (AMCL), a probabilistic
localization system for moving a robot in 2D [35]. It uses a particle filter for tracking a
robot’s pose against a known map. For all robot platforms I use, a properly configured
AMCL implementation exists.

In ambiguous environments, localization can resort to a wrong local feature match max-
imum, resulting in the Kidnapped Robot Problem [27]|. The kitchen environment in my
scenario does not suffer from this effect.

97

6. Summary

(o) Coordinate System Transformation Framework: Often, target coordinates for nav-
igation tasks are specified in coordinate systems other than global (map) coordinates.
Examples are: "One meter in front of the fridge, facing the fridge door” or "Left of the
table”. With every piece of furniture being grounded in global map coordinates, the kine-
matic transformations from such relative coordinates to the global frame are known. To
efficiently transform poses between these representations, I use Tully Foote’s The Trans-
form Library (TF) [33]. I use the same library for coordinate transformations during
manipulation activities, especially for grasp planning — see Section 6.3.2.

Resolving symbolic descriptions of locations (e.g. "In front of fridge") is done by the plan
execution architecture. The main means for describing a location are location designators. These
can contain either fully qualified 6-DOF poses, or symbolic descriptions. Common location
designators are:

;; Global 6-DOF pose
(a location ((:pose <6-DOF pose>)))

;; Relative pose in gripper
(a location ((:in :gripper) (:side :left) (:offset <6-DOF pose>)))

;; Relative pose on a counter top
(a location ((:on :countertop) (:name "meal_table") (:offset <6-DOF pose>)))

;5 Floor pose relative to a piece of furniture
(a location ((:relative-to "meal_table") (:offset <6-DOF pose>)))

Transforming these descriptions into actual numerical values for positioning the robot base
(z, y, 0), I make use of CRAM’s costmap feature. Costmaps are areas of discretely distributed
probability from which a random sample is chosen. Each region can have a different probabil-
ity weight, resulting in maps of interesting points with adjacent, less interesting areas around
them. Typical probability distributions used in costmaps are Gaussians. Costmaps are either
heuristically defined by describing the area in question with mathematical formulations, or are
learned as described in Section 5.6.1.

6.6 Summary

In the current chapter, I discussed the vital interfaces necessary between a robot and its sur-
rounding world, and how a robot’s architecture uses them for embodiment in the real world. T
presented the following three most important interface types: (1) Visual perception for inter-
preting the state of the world, objects, and furniture around the robot, (2) physical, constrained
manipulation using one or more robot arms, and (3) navigation around a relative or a global
coordinate system. Additionally, I went into detail about occurring failures in the real world,
and how they can differ from the theoretical foundations in earlier chapters.

For all interface types, I described how symbolic high level knowledge is translated into sub-
symbolic information used by low level systems, and how their result values are interpreted.
Overall, this chapter enables the implementation and operation of all previously presented top-
ics on actual robots, be it simulated or on actual hardware. It thus poses a vital component in
my overall reasoning as implementing and executing puts theoretical concepts to test, validating
or falsifying their purpose.

98

Chapter 7

Evaluation

“There are three principal means of acquiring knowledge: Observation of nature, reflection,
and experimentation. Observation collects facts; reflection combines them;
experimentation verifies the result of that combination.”

— Denis Diderot [24]

For the majority of the presented topics, I have shown comprehensive evaluations in my
previous publications. These include A" based planning for generalized plans [100], knowledge-
enabled plan parametrization [101], design principles of generalized plans [102], action effect
prediction and task models [103], and the recording, detailed characteristics, and general use
of Episodic Memories [105|. Additionally, where I saw fit, I added an evaluation section to the
respective topic in this thesis in form of concrete examples. This includes:

@]

(o) Plan Design for Reactive Task Monitoring in Mobile Manipulators (Section 4.3.4),
(o) An A"-based Planner for Generalized Actions (Section 4.5.1),

(o) Expectation Models: Task Outcome Prediction (Section 5.5.1),
()
()

(¢]

Prototypical Experiences: Informed Strategy Exploration (Section 5.5.2), and

o) Multi-modal Analysis of Robot Ezperiences (Section 5.6)

In this evaluation chapter, I will concentrate on the remainder of the topics from the previous
chapters: (1) Contextual parametrization of abstract generalized plans with a strong dependency
on external knowledge, (2) embodiment of an autonomous robot in a household environment
with specialized as well as heuristic failure handling, and (3) automated experiment conduct with
a strong focus on EM generation and variation of parameters to create diverse robot experience
data.

The structure of this chapter is as follows. First, I apply the experiment scenario motivated
in Section 1.2 to an actual problem setting, describing the importance of contextual reasoning
and external knowledge in an actual working environment. To this end, I use a simulated
environment featuring a PR2 robot that performs meal table setting tasks in a human household
kitchen. I will then show the role of generalized plans in this scenario, and what their pros and
cons are, in relation to Chapter 4. Finally, I go into generation of variation-rich, automated
experiments using my AutoExperimenter (AE) tool as introduced in Section 5.8.2. The product
of these experiments are Episodic Memories that serve as a source for all concepts described in
Chapter 5.

The whole experiment environment as used during the development of the derived concepts
in this thesis is available online'.

7.1 Experiment Scenario

The scenario on which I will enlarge is based on the experiment context from Section 1.2.
More precisly, I generate concrete problem instances of the table setting scenario along three
dimensions: (1) The number and identity of meal participants, (2) the time of the day — and
thus the type of meal prepared, and (3) the day of the week.

"https://github.com/fairlight1337/longterm_fetch_and_place

99

https://github.com/fairlight1337/longterm_fetch_and_place

1. Experiment Scenario

Guests ————— > O
Mary
S Plate) Cup
. Bread |Required =
Meal Time ——— | Pref ! > c
Breakfast references Objects | Butter Knifé | ¥
Coffee £
offee ———>» bt
Week Day ————— > C =)
Y Wednesday up m

Figure 7.1: Problem inference for Mary as the only guest on a Wednesday breakfast. It results
in having a plate in the center of the seat area, a butter knife to the left of it, and a cup to the
back right.

Algorithm 7.11 Problem generator for table setting tasks. Guests, week day, and time of
day (meal time) are chosen. The generator follows a simple set of rules to give the tasks more
semantic meaning.

1 (defun generate-table-setting-problem ()

2> (let* ((pool-guests ‘(:mary :tim))

3 (pool-meal-times ¢ (:breakfast :lunch :dinner))

4 (pool-week-days

5 ¢(:monday :tuesday :wednesday :thursday :friday :saturday :sunday))
6 (week-day (nth (random (length pool-week-days)) pool-week-days))

7 (meal-time (nth (random (length pool-meal-times)) pool-meal-times))

8 (guests (if (and (not (weekend-p week-day))

9 (eql meal-time :lunch))

10 “(,(nth (random (length pool-guests)) pool-guests))

11 (let ((temp-guests

12 (loop for guest in pool-guests

13 when (>= (random 10)

14 (if (weekend-p week-day) 2 5))

15 collect guest)))

16 (if (= (length temp-guests) 0)

17 ‘(,(nth (random (length pool-guests)) pool-guests))
15 temp-guests)))))

19 ‘(,guests ,meal-time ,week-day)))

An example problem inference is shown in Figure 7.1. Therein, a guest named Mary has
breakfast on a Wednesday. Through the use of external knowledge about Mary’s preferences
(learned, dynamic knowledge), the types of tableware and consumables required for her meal
(static knowledge) and where each type goes on the table (situationally dependent knowledge),
a complete set of fetch and place activities is defined. To cover all dimensions of the problem’s
search space when generating instances, Algorithm 7.11 shows an example implementation of a
problem generator. It follows a set of very simple rules, applies the reasoning steps described in
the experiment scenario, and produces a list of required objects — and where they should be
placed — for each problem instance.

The rules used in the generator are:

(o) The potential guests tim and mary never have lunch together on workdays.

(o) On workdays, tim and mary have a 20% chance of meeting during breakfast or dinner,
and 50% on the weekend.

(o) At least one guest is present during every meal.

In Mary’s example given above, she likes to have bread and coffee for breakfast during the

100

Evaluation

Object Destination

(an object ((:type "Plate")) (a location ((:centerof :seat)))
(an object ((:type "Knife")) (a location ((:leftof :seat)))
(an object ((:type "Cup")) (a location ((:rightof :seat) (:behind :seat)))

Table 7.1: Resulting set of fetch and place tasks from the example problem instance in Figure 7.1.

Figure 7.2: Selection of final experiment states for table setting

week (according to Table 1.1a). Based on the data shown in Table 1.1b, bread requires a plate
and a (butter) knife while coffee just needs a cup. The resulting objects then need to be placed
according to the knowledge from Table 1.2. The meal objects need to be placed on the meal
table shown in the lower right of Figure 1.4. The surrounding kitchen — on counters, in drawers,
in the fridge — contains the objects required. The operating robot now has a set of tasks to
achieve, as shown in Table 7.1.

Two principle types of knowledge are used here, as already described in Section 4.1.2 and 4.4:
Static knowledge (object places on the table; also quasi-static knowledge: Mary’s preferences),
and situational context (where does everyone sit, what needs to be placed). Both types may not
be part of the robot’s internally encoded plans, but must be fed from an external knowledge base
or must be dynamically inferred. The reason is simple: Static knowledge changes in-between
tasks, and where which piece of tableware goes absolutely depends on the current situation.

I performed a number of experiments represented by roughly 800 EMs of table setting in-
stances. Figure 7.2 shows a selection of their final states. Two different characteristics become
apparent here: There are qualitative differences (completely different meal set) and quantitative
ones (same meal type — plate and cup — but different locations). This is directly in line with
the concepts presented in Chapter 5. All objects are collected from the surrounding kitchen,
and multiple objects of the same type can be present — the robot chooses the first matching
object instance it finds.

7.1.1 Experimental Data

To underline the importance of data collection from Generalized Plans, I collected a set of 425
experiments that have shown representative characteristics of the tasks I examine:

(o) They give an idea of how central each task is, based on its number of occurrences.

101

2. The Role of Generalized Plans

sink_area_counter_top

v 2 4 Kitchen stand cartertcp , 2
:
g

o -

Lﬂm : -

S g .
10m o : Kitchen idand courtertop. %
:
8
kitchen idand counter top

do) BNcDD|gey [

dorBRRRRT

Figure 7.3: Reiteration of Figure 5.12 to make the point at hand clear.

(o) They display the time required for individual tasks, confirming intuition.

(o) They show the sensitivity of certain tasks to failures.

Table 7.2 shows the numerical analysis of these 425 experiments. For each task, its total
number of occurrences is shown, alongside a time histogram and the number of failures that
were recorded for this task type. The histogram takes on the format of minimum value in
seconds, distribution in 10 steps between minimum and maximum value, and the maximum
value in seconds. Each “bar” shows the fraction of tasks that took an amount of time between
two discrete steps of the histogram:

i - stepsize < x —min < (i + 1) - stepsize stepsize = (max — min)/10 (7.1)

From the table, it becomes apparent that failure handling plays a major role even on a
global scale over so many experiments: 164296 individual occurrences of WithFailureHandling
outnumber any other task type by far. It is to be noted here that the actual failure was mapped
to the higher level task using the WithFailureHandling construct to make their reason more
clear. As described above, this kind of data is the source to construct prediction models of a
task’s probability to fail due to a certain failure, or even how long a task will probably take,
using confidence intervals.

This data and the task’s individual parametrizations are also the source for the gaussian
distribution shown in Figure 5.12 in which base positions to stand at were evaluated when
grasping an object. Here, I reiterate Figure 7.3 to make the point clear.

7.2 The Role of Generalized Plans

Generalized plans are meant to be as abstract as possible, but must still lead an autonomous
robot to successful actions in the real, very non-abstract world. For example, a robot that needs

102

Evaluation

2
o
A
S 3
58 ~
= g g
=33 © 9
28 =
s £ g g
g = o <
Task Occurrences | Time Histogram (sec) = = A
LiftingAnObject 728 1.44 || 15.70 0 0
WithFailureHandling 164296 0.00 | 613.08 0 0
MotionPlanning 8831 0.07 I 18.08 200 0
PerceivingObjects 3074 0.16 i 0.77 0 0
M | | P
CarryingAnObject 933 0.03 I 38.20 0 0
] PSR
PickingUpAnObject 2205 0.07 I 37.25 1526 0
el
Closing AGripper 197 0.00 Il 0.10 0 0
ArmMovement 8831 0.08 I 18.11 4 0
Bam______
FindingObjects 1821 0.02 I 34.91 0 0
PuttingDownAnObject 2073 0.95 | 568.71 12743 0
Navigate 9188 0.00 I 35.11 0 2708
[| SRR
HeadMovement 9392 0.00 I 3.10 0 0
MotionExecution 2818 1.40 ! I 13.09 0 0
El=_____°LC
OpeningAGripper 948 0.00 | 0.57 2 0
ParkingArms 1661 0.00 I 28.01 96 0
]

Table 7.2: This numerical analysis of 425 experiments from simulation and from the real robot
show the distribution of single task occurrences, their time consumption on a global scale, and
their suspectibility to failure of two kinds: Unreachable manipulation poses and unreachable

navigation goals.

103

2. The Role of Generalized Plans

Fetch Object from Container

Fetch Object

Inspect Area Close Drawer

Open Drawer

Grasp Object

Figure 7.4: Composition of hierarchical generalized plans for fetching objects from containers.
Here, a piece of cutlery of grasped from a drawer that was previously opened.

entry: (

1
o i I Ke 1
. problemsettlng] table-setting i y Generalized Plan :
| |
................ A / i "”l’n'fér'b;a’"”'i
generate-tasks ~ —> proceosgj-nggstgtask: l e :J
A y e b
i search: > place: I
I obj obj, dest :
! I
: I"_________' __________?:::::::::::::::::::_ ___________________ "I :
: ! ¥ | Fetch Object } l
Deeen. e e e | _ _ , i |
| - possible-locations: . |y [access next location: b inspect contents: [y leave location: !
! obi, ™ loc | loc i loc ¥
I I I I
I I ! I I
! ! | \ 4 ! ¥
I I Fetch Object f | S | I |
H |
| Fetch and Place | Fexc ject from l obj ' i
I I I I
| one Object LI_‘EIE'_t'_'a_r_y_I_'t_’fft_'ff______‘:::::::::::::::::::’_ ____________________ ¥

Figure 7.5: Typical phases visited during table setting using my generalized plans. This hierarchy
puts the process shown in Figure 7.4 in a larger context.

to set a table according to the objects and destinations shown in Table 7.1 needs to achieve the
following high level task for every pair of object obj and destination loc:

(achieve ‘(object-placed-at ,obj ,loc))

This task description is highly underspecified. For example, no notion is given of where the
object is found, or at what precise coordinates it needs to be placed on the meal table. To enable
a robot to perform the tasks, generalized plans make use of (1) their abstract structure, and (2)
a fair amount of external knowledge.

(1) My generalized plans for table setting largely make use of generalized sub plans for fetch-
ing and placing objects. Figure 7.4 shows the hierarchical composition of a task fetching
objects from a drawer. The top level plan fetches objects from containers. It first opens
the container, then calls the sub plan for fetching objects, and closes the container af-
terwards. These plans strictly follow the principles introduced in Chapter 4: Plans solve
local problems and are unaware of the parent plan’s semantics, but can be contextually
constrained using the with-context environment. A (simplified) example based on the

104

Evaluation

actually executed plans is the handling of an open drawer’s altered collision environment
during manipulation:

(with-context ((:with-collision-objects (walls-of "drawer_top")))
(fetch-object obj))

Figure 7.5 shows typically visited phases during a table setting instance.

The generalized plans make use of external knowledge to realize a concrete parametrization
based on vague descriptions. A common task is to open a container: Drawers open pris-
matically, fridge doors have revolute joints. To cover both cases (and thus almost all cases
a robot might encounter in human environments) I developed a mechanism for generating
trajectories based on the knowledge available about the joint to actuate:

(let* ((joint-to-actuate '"drawer_joint")
(current-opening-degree (current-degree joint-to-actuate))
(opening-trajectory (create-opening-trajectory joint-to-actuate
:from current-opening-degree :to 1.0)))
(when opening-trajectory
(execute-trajectory opening-trajectory)))

The "degree" of a joint is the normalized amount to which it is opened between its lower
and upper actuation limits. The function create-opening-trajectory generates a tra-
jectory that reaches from the current degree up to the desired degree. It is based on
information about the joint, stored in the knowledge base: Its rotation axis ff, the po-
sition and orientation of the rotation axis M relative to the parent object, the pose of
the grasped handle H relative to the rotation axis, and the type of the joint (prismatic,
revolute). This results in a function that defines the exact pose (position and orientation)
of a robot gripper for every opening degree of a joint. With a given granularity, this func-
tion is then sampled in equidistant steps, the resulting poses validated for existing Inverse
Kinematics (IK) solutions, and executed on the robot.

A second important example of knowledge necessary for generalized plans are possible
residence locations of an object. The naive fallback solution is to search all available
locations (counter tops, drawers, fridge, dishwasher, oven, etc.). My plans follow a more
informed approach before falling back:

(o) Was the object found in the past? — Search at that location again.
(o) Does the object have a default place associated with it? — Search at that location.

(o) Does the object category belong at a specific place (or class of places)? — Search
at those locations.

This is aligned with the knowledge priority list discussed in Section 4.1.2.

As a default strategy in this scenario, if any unhandleable failure occurs in a generalized

plan,

7.3

it is escalated to its parent.

Insights about what did not work

While my experiments validate my claims about generalized behavior in robots that self-improve
over time and through experience, I encountered a series of crucial learning steps that required
me to develop new strategies and refine my approach. I present the most important ones here:

(o) Learning high level flow control operators in plans fosters overfitting: It is

tempting to let a learning algorithm make its decision based on all encountered plan

105

3. Insights about what did not work

(def-plan set-table (required-objects table)
(loop for object in required-objects

as fetched-object = (fetch-object object)
do (progn
(if (object-found? fetched-object)
(place-object fetched-object table)
(progn
(find-substitute fetched-object)
[...1)))))

(def-plan load-washing-machine (clothes-pile washing-machine)
(loop for piece in clothes-pile

as picked-piece = (fetch-object piece)
do (progn
(when (cloth-dirty? picked-piece)
(place-object picked-piece washing-machine)))))

Table 7.3: Example of two simple plans where resulting experience models from both help benefit
both plans by ignoring flow control operators such as if and when.

language elements. While flow control is important (and is correlated to the context’s
parameters), ignoring it and only learning the higher level course of plans yields much
better results. When considering every if, unless, or case, the resulting decision trees
are only valid for behavior generated by action plans that actually feature these operators.
I decided to carefully ignore them — and found that now plans similar in structure but
different in intention can benefit from each other. For a simple example, see Table 7.3.
Here, simplified plans of setting a table and loading a washing machine are similar in
structure but differ in flow control operators. Ignoring them lets the experience models
concentrate on the actual contextual and task parameters and the functional structure of
the plans.

Generality and Efficiency require a tradeoff consideration: The untold expectation
when letting robots perform tasks is that they should find the best (or near best) possible
solution and apply it efficiently. This is not generally easy or possible: Finding the best
solution requires comparison of all (or at least a significant amount of all) solutions. When
describing the action itself symbolically, actually producing a solution that is actionable in
the real world can be computationally expensive. An example: Grasping an object with
one hand should be done as fast as possible. If the robot has two hands, the one that has
the shortest travel path (considering collision environment) should be used. Calculating
this solution can easily take seconds, and if all solutions are generated (let’s say the object
can be grasped from the front, left, right, and top), the comparison between all costs
takes longer than just executing the first possible, which might not be the most optimal.
Equations 7.2 and 7.3 show the amount of grasps possible when using one grasp point,
and when using multiple grasps simultaneously.

Ngingle-grasp =MNpossible-grasp-points * T*hands = O(n) (72)

Npossible-grasp-points!
Nmultiple-grasps — P e T = (’)(n') (73)
(npossible—grasp—points - nhands—to—use)-

Grasping an object with four different grasp points with one hand results in four different

106

Evaluation

7.4

solutions; using two hands already produces 12 solutions.

Reality and Simulation have their own failures: In both scenarios, the real world
and simulation, a robot can encounter failures that do not exist in the other scenario. In
simulation, physics can act differently that in reality, and for me in some cases caused
the PR2 robot to stick to its environment upon collision. This is a difficult to detect
situation, and basically destroys the task execution. I added a specialized detector to my
simulator that restarted the scenario when this situation came up. On the other hand,
in the real world a wrong belief model fundamentally destroyed a robot’s understanding
of the current situation. Wrong (due to drift, etc.) sensor measurements caused a grasp
detector to believe a grasp went OK for thin objects, and undetected in-hand-slippage of
objects repositioned them without updating their collision model — upon putting down
the object onto the table, this destroyed the whole scene. These difficult border cases
of failures a robot is not able to detect itself required special handling to make sure the
overall task actually worked.

Automated Experiments

As mentioned above, I use the AutoExperimenter as introduced in Section 5.8.2 to run my
experiments and collect EM data. For my scenario, I developed an AE experiment description?,
complete with task variance parameters:

attendants:
label: ¢‘Meal attendants’’
value-type: [multiple-choice]
items: [[‘‘Mary’’, mary], [“‘Tim’’, tim]]
allow-empty: false
default: [tim]

dayoftheweek:
label: ‘‘Day of the week’’
value-type: [choice]
items: [[‘‘Monday’’, monday], [¢‘Tuesday’’, tuesday],

[¢‘Wednesday’’, wednesdayl, [¢‘Thursday’’, thursday],
[¢‘Friday’’, friday], [‘‘Saturday’’, saturday], [‘‘Sunday’’, sunday]]

default: [monday]

mealtime:
label: ¢‘Meal time’’
value-type: [choice]
items: [[¢‘Breakfast’’, breakfast], [‘‘Lunch’’, lunch], [‘‘Dinner’’, dinner]]
default: [breakfast]

For every instance of the n experiments run, the AE thus produces a new experiment
parametrization, ultimately resulting in a different set of manipulation tasks for the controlled
robot — see Section 7.1. Running multiple — sometimes time consuming and feature rich —
instances (1) shows the robustness of the approach, and (2) helps collecting data for analysis
and machine learning.

Using my setup, I collected around 800 episodes that reflect the robot’s activities during table
setting in different situations from varying states of the environment’s development. Their use

Zhttp://bit.ly/2iuvj3m

107

http://bit.ly/2iuvj3m

4. Automated Experiments

and validity were evaluated previously in [103, 105|. When run continuously, with the current
scope of the simulated environment, up to 100 EMs can be generated in one day.

7.4.1 Simulated vs. Real Experiments

Obviously, in real experiments, the AE cannot (and should not, due to security concerns) be
used on an actual, physical robot. I conducted a number of experiments manually, as part of the
evaluations of said prior publications, and to test whether the respective current version of the
scenario works in both, simulation and reality. The plans use an abstraction layer towards the
low level components: Process Modules (PMs). Every plan needs to be executed in the context
of a set of process modules that are "active"”, supplying the necessary low level functionality
for perception, manipulation, and navigation. When replaced by different ones with the same
interfaces, PMs can control for example a real robot rather than a simulated one. These topics
are covered in detail in [101].

I use two macros to distinguish between the two cases:

(with-process-modules ;; Interface to real robot
(tablesetting-scenario [...]))

(with-process-modules-simulated ;; Interface to simulated robot
(tablesetting-scenario [...]))

In both cases, the executed plan stays absolutely identical (with some minor additional checkups
and context additions for object spawning and memory cleanup for simulation).

Given that the simulated PR2 robot I use in the Gazebo simulator is modeled to closely
resemble the real PR2 robot I use, the Episodic Memories resulting from the experiments are
identical, with the exception of the following details:

(o) Recorded camera images show a real, not a simulated environment
(o) Perceived object poses in Gazebo are exact, and are subject to uncertainty in reality

(o) Collision bodies in the simulation can differ from the visual models, not so much in reality

Besides these points, all other vital details are identical: Task structure, poses, robot posture
over time, etc. I therefore make the point that my simulated experiments (due to being modeled
very realistically and based on a very elaborate physics engine) reflect effects observed in reality
as well — at least very closely.

108

Chapter 8

Conclusion

I conclude my work with a summary of the presented topics and a discussion of how my gen-
eralized plans in conjunction with robot experiences help solving the challenges stated in the
Introduction. Afterwards, I elaborate on possible future research.

8.1 The Need for Abstract Activity Descriptions

With a growing need to control very different robot platforms and architectures, formulating
very generic, abstract, and strongly underspecified activity descriptions is a logical next step
after identifying the required actions for an activity. This leads to two necessities for making
these activity descriptions perform their task well: (1) A suitable set of plan language constructs
with the required expressiveness, and (2) a way to implicitly fill in the left-out parametrization
once it is needed. Both pose significant challenges:

(1) must be the result of encapsulation and modularization of robot control elements, and
requires step-by-step formalization and subsequent analysis of tasks a robot should be able to
perform. Domain and task related knowledge must be removed (or made vague) from these
steps, and the resulting actions are synthesized into the new abstract activity description.

(2) draws its requirements from the results of (1): The knowledge removed from every step
needs to be accessible to the performing robot once needed. It must either be encoded in a
generic knowledge base, or be inferrable from already available information. Thus, a knowledge
formalization and fitting access functions from the plan language must be developed, and finally
the knowledge must be encoded in a way as generic as possible to prevent overfitting.

8.1.1 Human Household Scenarios

Robots that perform tasks in human household scenarios — and, as in the case of this thesis,
a kitchen — face a variety of tasks very easy for humans: Searching for objects in drawers, in
the fridge, on tables, and implicitly knowing how to access these locations, and what the odds
are that an object resides there. Also, objects — cups, plates, muesli boxes, cutlery, etc. — are
handled much differently when grasped. Finally, when setting a table for a meal, humans know
from experience and cultural background where on the table each piece should be.

Besides the domain-level intrinsics from above, a robot needs to have at least very basic (at
least for humans) manipulation skills: Avoiding collisions when driving around a kitchen and
when reaching for objects, only placing objects where there is free space, and properly position
itself to be able to both see and reach objects.

Finally, such a robot needs to be able to deal with failures. Objects being unavailable or
unreachable, the robot being unable to drive to a goal pose, cluttered objects that are not
graspable — these constitute very common situations for humans, but need to be explicitly
addressed by an autonomous robot.

8.2 Summary of the Approach

I propose the concept of vague generalized plans drawing from experience to approach the
challenges described above. In my generalized plans, all explicit parametrizations are vague and
underspecified, leaving leeway in decision-making and interpretation, and allowing a robot to
improve itself over time.

For generalizing plans, I propose a number of concepts and language constructs introduced
in this thesis, most notably being the with-context environment, plan extensions to record

109

2. Summary of the Approach

comprehensive Episodic Memories, and the Expectation Model functions. These constructs
allow the implicit parametrization of abstract plans without explicitly forwarding parameters
into them. They are used to create robot experience models, and allow success prediction and
informed exploration of the parameter space for any task involved. Additionally, the recorded
EMs enable a level of plan introspection for a robot that code level analysis does not allow:
Direct access to the semantic meaning and relevant hierarchical structure of plans rather than
their syntactical meat and bones.

Generalized plans draw every parameter that is vague or unknown from either the current
context, extrapolated experience of a similar, past situation, or an external knowledge base. If
none of these yield usable information, a heuristic fallback is used (in the worst case, choosing a
parameter at random). After each plan execution, a new experience model of which parameters
in what context lead to which outcome is stored and becomes available during later runs. Any
parameter that is either a designator, an explicit plan parameter, part of the context, or manually
annotated inside a generalized plan is included into the model, available to arbitrary reasoning
methods, and automatically used for action effect prediction.

Recording EMs without slowing down the actual plan performance requires an efficient, con-
currently running system that captures all plan events and annotated data, forms a hierarchical
tree, and adds auxiliary information: At what time did a plan start, end, what were its parent
and children, did it throw, catch, or rethrow failures? To fulfill these requirements, I introduced
SEMREC, a universal recorder architecture for plan events that produces OWL based Episodic
Memory data.

To validate the plans’ and experience models’ functionality with an actual robot platform,
I developed interfaces to all necessary low level robot components for embodiment and plan
execution: Perception, manipulation, and navigation. This came along with the challenge of
translating between the mostly symbolic, vague parametrization in generalized plans, and the
almost exclusively subsymbolic (numeric, nominal) nature of the low level components. I have
shown solutions for all embodiment components and tested my work on both, a simulated and
a real PR2 robot.

Finally, to relieve human operators from the burden of manually performing experiments and
the need to regularly check the consistency of the simulated experimentation system, I presented
a tool for automating the whole chain: Setting up an experiment, educatedly parametrizing it,
monitoring its conduct, recording an EM, cleanly shutting down the experiment, and archiving
the EM. This opens up the possibility to generate vast amounts of distinctively different data
as a valueable source for machine learning applications.

8.2.1 Discussion

[have evaluated my approach in a simulated as well as a real kitchen environment using a Willow
Garage PR2 robot. The robot was supposed to set a meal table under different circumstances
(number and identity of participants, time of the day, day of the week). For the majority
of experiments I used the simulated environment due to the sheer complexity of real world
experimentation. I could show the feasibility of my approaches and underline the necessity of
self-improvement in autonomous robots.

My prior evaluation of action effect prediction has shown that an experience-backed robot
can not only avoid problematic situations, but make more informed decisions when choosing
parameters according to what it experienced earlier. While a manually encoded plan for an
individual situation would have shown a much higher performance from the first run already,
an experience-based generalized plan for the same task is able to scale beyond manual efficiency
tuning and can self-adapt to the task’s hidden relationships and nuances. Using my EMs, I
developed techniques for extrapolating between multi-modal numerical and nominal parameter
spaces from experiences, allowing a robot to guess a good parametrization from a continuous

110

Conclusion

value range, derived from discrete experience data points. This eases knowledge transfer for the
robot between vaguely similar, but still different tasks or task parametrizations.

8.3 Future Research

I have presented a complete framework for defining generalized plans and running them on an
actual robot, recording Episodic Memories, and building experience models from them. Although
all components are implemented completely already, a number of improvements, prospective uses
for EMs, and promising additions stand out to be pursued.

8.3.1 Significant Amounts of Episodic Memories on Real Robots

I have presented the results of my experiments, which were for the largest part conducted in a
comprehensive simulation environment. Although modeled very carefully and using state of the
art robot simulation technology, simulation can only ever be an abstraction of reality. While I
verified at every development stage that my developed plans and interfaces work as well on real
hardware, I collected most of the data used to train my experience models in simulation.

Therefore, a great enhancement would be to perform a major amount of experiments on
the actual PR2 robot (or comparable). An actual formal verification that e.g. the resulting
Expectation Models between both experience sources are identical is still missing. This would
greatly help to identify key differences between both, but also what they have in common and
what knowledge can be transferred between reality and simulation.

8.3.2 Plan Verification for Generalized Plans

Generalized plans, although vague in their parmetrization, have some structure that describes an
abstract task that has to obey causality. Based on statically available knowledge, the structure
of the plan, and possibly known parameter ranges that will be used as inputs, a verification
mechanism could be derived for verifying the plan’s fundamental validity. Right now, no such
verification mechanism exists for my plans, but since they are more difficult to debug than
straight forward action sequences, such a mechanism would (1) relieve the development cycle
of lengthy iterations, and (2) make assurances about which parameter ranges actually make
sense for which plan. While (1) speeds up writing the plans, (2) prevents exploration of invalid
parameter space regions during runtime, ultimately lowering the amount of experiments run to
improve a robot’s performance from experience.

8.3.3 Generalizing over Multiple Domains

In my work, I focussed on a well-understood household scenario, with a statically defined kitchen
environment. All developed plans and generated Episodic Memories were validated against this
setting.

Extending the experimentation setting to more, different domains would show new require-
ments for robot action plans and produce new problematic situations a robot would need to deal
with. For starters, this would mean a different kitchen with different furniture and room setup.
Afterwards, new rooms (living room, bedroom) pose even more tasks a robot could perform
(switching off the TV, watering the flowers, making the bed) that require new knowledge and
generalized plans. This would lead to (1) more generality in plans that can act e.g. in many
different types of kitchens, (2) a larger number of generalized plans for structurally different
tasks, and (3) an extensive collection of knowledge about objects encountered, tasks performed,
and problems seen, from which all generalized plans would benefit.

111

3. Future Research

8.3.4 Experience Transfer between Different Robots

During my development and experiments, I focussed solely on the PR2 robot. All generated
EMs and configurations of low level components (e.g. kinematic model of the robot for motion
planning) are aligned with that robot’s characteristics.

A valueable addition to the experience system would be making sure that experiences can
be transferred between robot architectures. A robot that has only one arm cannot make use
of experiences from robots that grasped objects with two arms, and a robot with a larger base
might not be able to navigate to all places while a smaller one can. Thus, the validity of parts of
EMs needs to be checked for a robot making use of experiences for action effect prediction. At
the same time, experiences need to store all these identifying intrinsics of the performing robot
platform.

Enabling robots to transfer experience between each other would allow them to pool their
insights, ultimately increasing the speed of performance improvement.

8.3.5 New Machine Learning Methods

For all experience models, I used one or more machine learning algorithms on collected Episodic
Memory data. These include calculation of decision trees, computation of gaussian probability
models, and graph generalization.

There exists a plethora of other algorithms fit for analyzing this data, generating qualitatively
different models. A possible improvement of the presented learning techniques could be achieved
by using different classification (e.g. K-Nearest Neighbors, Random Forests, Naive Bayes), or
reinforcement learning algorithms (e.g. Q learning). Additionally, since the data stored tends
to grow with more features in the environment and tasks performed, there is a strong need for
dimensionality reduction, identification of significnt variables, and statistical tests for parameter
correlation. These would make identification of causal relations in the data as well as anomalies
much easier to conduct.

112

Appendix A

Research Platforms

To develop and test my generalized plans and experience models, I used two platforms for
embodiment of the defined behavior: A real Willow Garage PR2 in an experimentation kitchen
environment, and a simulated replica of both using the Gazebo robot simulator. In this chapter,
I describe both in sufficient detail for this thesis.

A.1 The Willow Garage PR2: A Capable Mobile Manipulator

For development, testing, and verification of my concepts and robot pland, I use the Willow
Garage PR2 (Personal Robot 2) robot platform. The PR2 is a mobile manipulator on an
omnidirectional base, featuring two compliant 7-DOF arms and a PTU head on which a Kinect
depth sensor resides. Furthermore, it has a number of laser scanners helping in localization and
collision avoidance, and a series of cameras which I did not use. The arms are each equipped
with a jaw gripper capable of firm grasps with diameters of 0-8cm and parameterizable force.
A brief depiction of the PR2 and its grippers is shown in Figure A.1.

BT T g
LT E
P11 11T L

(a) The Willow Garage PR2 Robot. (b) Gripper of the PR2 Robot, featuring a wrist cam-
era and fingertip pressure sensors.

Figure A.1: The Willow Garage PR2 Robot and one of its grippers. Photo by Luke Fisher
Photography.

I chose the PR2 platform for my work as it unites many typical architectural details found
in today’s robots, and resembles humans in terms of manipulation ranges and general figure. It
is well supported and component drivers are widely available and well integrated. Besides this,
a precise physics simulation model with an identical driver interface is available for the PR2 (see
Section A.2), making initial testing possible without having to deal with all of reality’s quirks
in early development stages, and allowing automated experiment conduct later on. For my
research, I used an actual PR2 as well as a simulated one for different scenarios and continuous
integration.

Since I am not concerned with low-level perception systems, I use ROBOSHERLOCK |[7] for

113

2. Gazebo: Simulation-based Manipulation

Figure A.2: Different manipulation tasks as performed by a PR2 in the Gazebo simulator. From
left to right: Picking objects with one hand from a table; placing objects in a shelf; picking
objects with two hands

estimating poses and visual characteristics of objects in the environment when using the real
PR2. When using the simulated PR2, I use a simplified perception system I developed that
directly interprets ground truth data from Gazebo, but offers the exact same interface as on the
real robot.

Throughout my research, the PR2 has proven to be well suited for mobile manipulation tasks.
Grasping objects with one or two hands, opening and closing drawers, cabinet and fridge doors,
and performing a number of manipulation activities beyond fetch and place are well within its
physical capabilities. In my research, I focussed primarily on the fetch and place part: Fetching
objects from arbitrary places (surfaces, storage places, containers) and placing them at similar
locations again. In teleoperated demonstrations it was shown that both, the PR1 (the PR2’s
predeccessor, [85]) and the PR2 [99] robot are capable of rather agile manipulation, solidifying
my claim that one of their largest constraint is their behavior generating plans.

A.2 Gazebo: Simulation-based Manipulation

For development, testing, and automated data collection, I use the realistic robot simulator
Gazebo [47]. Gazebo offers a very concise physics simulation using the ODE physics engine,
based on multi-body collisions and physical properties such as friction or damping.

As mentioned above, the existence of a precise PR2 simulation model, added the fact that
a version of the research kitchen I perform real experiments in exists in Gazebo as well, made
the simulator a prime choice. Figure A.2 shows some examples of object picking and placing
tasks in a simplified environment. Here, I show the robot handling multiple objects in the same
scene, placing an object onto a shelf, and handling objects with multiple hands.

Gazebo is well intergated with ROS, offering interfaces for spawning, manipulating, and
removing objects. For my purposes, I had to extend Gazebo’s capabilities by writing a plugin®
for controlling and inspecting the research kitchen’s container joints (drawers, fridge door, etc.).
I also use this plugin for fixating grasped objects to the simulated robot gripper — otherwise,
grasping an object results in unexpected behavior in both the robot and the grasped object due
to numerical fluctuations. Gazebo plays a central role in performing automated experiments, as
explained in Section 5.8.

"https://github.com/fairlight1337/gazebo_attache_plugin

114

https://github.com/fairlight1337/gazebo_attache_plugin

Appendix B

Plans

| is-arm-free? | calculate-trajectory | | execute-trajectory | grasp| | object-in-gripper?

is-object-reachable? | is-trajectory-valid? |grasp—|ocation—reached?

Figure B.1: Behavior Tree version of a simple CRAM grasping plan. The source code variant
is shown in Algorithm 6.9.

£l
\

|get—object—pose—in—hand| par |

| while |whenever|
seq | until | setf || regrasp-object || setf |
| move-to return

Figure B.2: Behavior Tree version of a monitoring plan. The source code variant is shown in
Algorithm 6.10.

115

possibIe—residence—Iocations|| lazy-loop |

| with-failure-handling |

Y
| has-solutions || next-solution || approach || true | 3d-volume || look-at ||perceive—objects|| true | seq
m | seq |matched? setf |
| requires-articulation | | articulate | | negate || requires-articulation || articulate |

Figure B.3: Behavior Tree version of a search object plan. The source code variant is shown in
Section 4.3.5.

seq

£ ™

lazy-search-objects with-failure-handling

while
seq \\¢
: . context- lazy-calculate- . . .
has-solutions next-solution constraints grasps with-failure-handling

v

seq

¥\

next-solution perform-grasp

Figure B.4: Behavior Tree version of a fetch object plan. The source code variant is shown in
Section 4.3.6.

with-retry-counters

Y
with-failure-handling

Y
perform-grasp-object

Figure B.5: Behavior Tree version of a simple object grasping plan with naive failure handling
capabilities. The source code variant is shown in Section 6.1.

116

Keyword Index

Action Effect Prediction, 64
add-collision-object, 96

AMCL, see Navigation
attach-collision-object-to-1link, 97
AutoExperimenter, 77

Automated Experiments, 76

Behaviour Trees, 33

choose, 63
clear-collision-environment, 97
Closed kinematic chain, 93
Constrained Manipulation, 38
Costmaps, 98

cram_uima, 91

detach-collision-object-from-link, 97

do-retry, 87
Dual-Arm Motion, 92

Embodiment, 83

Episodic Memory, 20, 25
Expectation Model, 20, 57
Experience Models, 57

Failures
Anticipated, 83
Categories, 85
Concurrent Monitoring, 85
Recovery Strategies, 48, 83
Unanticipated, 8%

Gazebo, 114

K-Means Clustering, 71
Knowledge
Contextual, 42
Dynamic, 46
Static, 44
KnowRob, 93

Localization, see Navigation

Mixed Multivariate Gaussians, 72
mongolog db, 56

Movelt, 91

Multi-modal Analysis, 70
Multivariate Gaussians, 71

Navigation, 97
OMPL, 91

Planning

A% 45

PDDL, 73

STRIPS, 73
Planning Scene, 96
PR2, 113
predict-behavior, 62
Problem Generator, 100
Prototypical Experience, 65

Reactive Task Monitoring, 39
register-collision-object, 96
remove-collision-object, 96
RoboSherlock, 91
robosherlock_process_module, 91

Semantic Hierarchy Recorder, 55
SemRec, see Semantic Hierarchy Recorder

TF, see Navigation
Uncertainty, 88
Virtual Branch, 64

with-context, 31, 43
with-expectation-model, 62
with-retry-counters, 87
with-tag, 62
without-collision-object, 97

117

118

References

1]

[10]

[11]

[12]

Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decid-
ability theorems for infinite-state systems. In Logic in Computer Science, 1996. LICS’96.
Proceedings., Eleventh Annual IEEE Symposium on, pages 313-321. IEEE, 1996.

Omar Ahmad, James Cremer, Joseph Kearney, Peter Willemsen, and Stuart Hansen.
Hierarchical, concurrent state machines for behavior modeling and scenario control. In
AL Simulation, and Planning in High Autonomy Systems, 199/. Distributed Interactive
Simulation Environments., Proceedings of the Fifth Annual Conference on, pages 36—42.
IEEE, 1994.

R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for autonomy.
International Journal of Robotics Research, 17(4), 1998.

R. Arkin. Behavior-Based Robotics. MIT Press, 1998.

Michael Beetz. Structured reactive controllers. Autonomous Agents and Multi-Agent Sys-
tems, 4(1):25-55, 2001.

Michael Beetz. Plan representation for robotic agents. In AIPS, pages 223232, 2002.

Michael Beetz, Ferenc Bélint-Benczédi, Nico Blodow, Daniel Nyga, Thiemo Wiedemeyer,
and Zoltan-Csaba Marton. Robosherlock: unstructured information processing for robot
perception. In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 1549-1556. IEEE, 2015.

Michael Beetz, Dominik Jain, Lorenz Mosenlechner, Lars Kunze, Moritz Tenorth, Nico
Blodow, and Dejan Pangercic. Cognition-Enabled Autonomous Robot Control for the
Realization of Home Chore Task Intelligence. Proceedings of the IEEE, Special Issue on
Quality of Life Technology, 2012. To appear.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz Mésenlechner, Dejan
Pangercic, Thomas Riihr, and Moritz Tenorth. Robotic Roommates Making Pancakes. In
11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, October,
2628 2011.

Michael Beetz and Drew McDermott. Declarative goals in reactive plans. In First Inter-
national Conference on AI Planning Systems, pages 3—12, 1992.

Michael Beetz and Drew McDermott. Executing structured reactive plans. In Proc. AAAI
Fall Symposium: Issues in Plan Execution, AAAI Technical Report FS-96-01, 1996.

Michael Beetz, Lorenz Mosenlechner, and Moritz Tenorth. CRAM — a cognitive robot
abstract machine for everyday manipulation in human environments. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1012—
1017, Taipei, Taiwan, October 18-22 2010.

119

REFERENCES

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

23]

[24]
[25]

[26]

[27]

28]

[29]

Michael Beetz, Moritz Tenorth, and Jan Winkler. Open-EASE — a knowledge process-
ing service for robots and robotics/ai researchers. In IEEE International Conference on
Robotics and Automation (ICRA), Seattle, Washington, USA, 2015. Finalist for the Best
Cognitive Robotics Paper Award.

Ralf Berger and Hans-Dieter Burkhard. Modeling complex behavior of autonomous agents
in dynamic environments. Proc. Concurrency, Specification and Programming (CSE€P),
2006.

Jonathan Bohren and Steve Cousins. The SMACH High-Level Executive. IEEE Robotics
and Automation Magazine, 17:18-20, 2010.

Mario Bollini, Stefanie Tellex, Tyler Thompson, Nicholas Roy, and Daniela Rus. Interpret-
ing and executing recipes with a cooking robot. In Ezperimental Robotics, pages 481-495.
Springer, 2013.

Peter Bonasso, James Firby, Erann Gat, David Kortenkamp, David Miller, and Marc Slack.
Experiences with an Architecture for Intelligent, Reactive Agents. Journal of Experimental
and Theoretical Artificial Intelligence, 9(1), 1997.

Rodney Brooks. New approaches to robotics. Science, 253(5025):1227-1232, 1991.
Randy C Brost. Planning robot grasping motions in the presence of uncertainty. 1985.

Jaime Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph, Craig Knoblock, Steve
Minton, and Manuela Veloso. Prodigy: An integrated architecture for planning and learn-
ing. ACM SIGART Bulletin, 2(4):51-55, 1991.

Michele Colledanchise and Petter Ogren. How behavior trees modularize robustness and
safety in hybrid systems. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, pages 1482-1488. IEEE, 2014.

Mark R Cutkosky. On grasp choice, grasp models, and the design of hands for manufac-
turing tasks. Robotics and Automation, IEEE Transactions on, 5(3):269-279, 1989.

Keith S Decker and Victor R Lesser. Generalizing the partial global planning algorithm.
International Journal of Intelligent and Cooperative Information Systems, 1(02):319-346,
1992.

Denis Diderot. On the interpretation of nature, no. 15, 1753.

Edmund H Durfee, Charles L Ortiz Jr, Michael J Wolverton, et al. A survey of research
in distributed, continual planning. A7 magazine, 20(4):13, 1999.

Mahmoud El Shaikh, Andreas Koch, Bernd Eckstein, Kai Haussermann, Oliver Zweigle,
and Paul Levi. Advanced perception for robots in a closed world environment. In Intelligent
Autonomous Systems 12, pages 111-122. Springer, 2013.

Sean P Engelson and Drew V McDermott. Error correction in mobile robot map learning.
In Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on,
pages 2555-2560. IEEE, 1992.

Kutluhan Erol, James Hendler, and Dana S Nau. Htn planning: Complexity and expres-
sivity. In AAAI volume 94, pages 11231128, 1994.

Oren Etzioni, Keith Golden, and Daniel S Weld. Sound and efficient closed-world reasoning
for planning. Artificial Intelligence, 89(1):113-148, 1997.

120

REFERENCES

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

David Ferrucci and Adam Lally. Uima: an architectural approach to unstructured infor-
mation processing in the corporate research environment. Natural Language Engineering,
10(3-4):327-348, 2004.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-4):189-208, 1971.

R James Firby. Task networks for controlling continuous processes. In AIPS, pages 4954,
1994.

Tully Foote. tf: The transform library. In Technologies for Practical Robot Applications
(TePRA), 2013 IEEE International Conference on, pages 1-6. IEEE, 2013.

Jodi Forlizzi and Carl DiSalvo. Service robots in the domestic environment: a study of the
roomba vacuum in the home. In Proceedings of the 1st ACM SIGCHI/SIGART conference
on Human-robot interaction, pages 258-265. ACM, 2006.

Dieter Fox and Cody Kwok. A sample-based approach to landmark-based robot localiza-
tion.

Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability: Replanning
versus plan repair. In ICAPS, volume 6, pages 212-221, 2006.

Erann Gat. Esl: A language for supporting robust plan execution in embedded autonomous
agents. In In Working notes of the AAAI Fall Symposium on Plan Ezxecution. AAAT, 1996.

Erann Gat. On Three-Layer Architectures. In P. Bonasso, D. Kortenkamp, and R. Murphy,
editors, Artificial Intelligence and Mobile Robots, pages 195-210. MIT Press, Cambridge,
MA, 1998.

Malcolm Gladwell. Blink: The power of thinking without thinking. Back Bay Books,
January 2005.

Stuart Hart, Paul Dinh, John D Yamokoski, Brian Wightman, and Nicolaus Radford.
Robot task commander: A framework and ide for robot application development. In
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pages 1547-1554. IEEE, 2014.

Stephen Hawking. British theoretical physicist, cosmologist, and author (1941-).

Geoffrey Holmes, Andrew Donkin, and Ian H Witten. Weka: A machine learning work-
bench. In Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian
and New Zealand Conference on, pages 357-361. IEEE, 1994.

M. Ingham, R. Ragno, and B. C. Williams. A reactive model-based programming language
for robotic space explorers. In International Symposium on Artificial Intelligence, Robotics,
and Automation in Space (i-SAIRAS), Montreal, Canada, 2001.

Francois Fe’lix Ingrand, Raja Chatila, Rachid Alami, and Frédéric Robert. Prs: A high
level supervision and control language for autonomous mobile robots. In Robotics and
Automation, 1996. Proceedings., 1996 IEEFE International Conference on, volume 1, pages
43-49. IEEE, 1996.

Francois Félix Ingrand, Raja Chatila, Rachid Alami, and Frédérick Robert. PRS: A
High Level Supervision and Control Language for Autonomous Mobile Robots. In IEEE
International Conference on Robotics and Automation, pages 43—49, Minneapolis, 1996.

121

REFERENCES

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[57]

[58]

[59]

[60]

Charles C Kemp, Aaron Edsinger, and Eduardo Torres-Jara. Challenges for robot ma-
nipulation in human environments. IEEE Robotics and Automation Magazine, 14(1):20,
2007.

N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
volume 3, pages 2149-2154, 2004.

Danica Kragic and Markus Vincze. Vision for robotics. Found. Trends Robot, 1(1):1-78,
2009.

John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An architecture for general
intelligence. Artificial Intelligence, 33(1):1-64, September 1987.

George Lakoff. Philosophy in the Flesh: The Embodied Mind and its Challenge to Western
Thought. Basic Books, New York, 1999.

Karthik Lakshmanan, Apoorva Sachdev, Ziang Xie, Dmitry Berenson, Ken Goldberg,
and Pieter Abbeel. A constraint-aware motion planning algorithm for robotic folding of
clothes. In Proceedings of the 13th International Symposium on Ezperimental Robotics
(ISER), 2012.

David M Lane, Francesco Maurelli, Petar Kormushev, Marc Carreras, Maria Fox, and
Konstantinos Kyriakopoulos. Persistent autonomy: the challenges of the pandora project.
Proceedings of IFAC MCMC, 2012.

David M Lane, Francesco Maurelli, Tom Larkworthy, Darwin Caldwell, Joaquim Salvi,
Maria Fox, and Konstantinos Kyriakopoulos. Pandora: Persistent autonomy through
learning, adaptation, observation and re-planning. IFAC Proceedings Volumes, 45(5):367—
372, 2012.

Pat Langley, Kathleen B McKusick, John A Allen, Wayne F Iba, and Kevin Thompson.
A design for the icarus architecture. ACM SIGART Bulletin, 2(4):104-109, 1991.

Daniel Leidner, Alexander Dietrich, Florian Schmidt, Christoph Borst, and Alin Albu-
Schéffer. Object-centered hybrid reasoning for whole-body mobile manipulation. In 2014
IEEE International Conference on Robotics and Automation (ICRA), pages 1828-1835.
IEEE, 2014.

James NK Liu, Meng Wang, and Bo Feng. ibotguard: an internet-based intelligent robot
security system using invariant face recognition against intruder. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(1):97-105, 2005.

Drew McDermott. Robot planning. AI Magazine, 13(2):55-79, 1992.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. PDDL — the planning domain definition language.
1998.

Robin R. Murphy. Introduction to AI Robotics. MIT Press, Cambridge, MA, USA, 1st
edition, 2000.

Isaac Newton. Letter from Sir Isaac Newton to Robert Hooke. Historical Society of Penn-
sylvania. 1675.

122

REFERENCES

[61]

[62]

[63]

[64]

[65]

|66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

|76]

Tim Niemueller, Gerhard Lakemeyer, and Siddhartha S. Srinivasa. A Generic Robot
Database and its Application in Fault Analysis and Performance Evaluation. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2012,
Vilamoura, Algarve, Portugal, 2012. IEEE/RAS.

Tim Niemiiller, Alexander Ferrein, and Gerhard Lakemeyer. A lua-based behavior engine
for controlling the humanoid robot nao. In RoboCup 2009: Robot Soccer World Cup XIII,
pages 240-251. Springer, 2010.

Andrew Nuxoll and John E Laird. A cognitive model of episodic memory integrated with
a general cognitive architecture. In JCCM, pages 220-225. Citeseer, 2004.

Andrew M Nuxoll and John E Laird. Extending cognitive architecture with episodic
memory. Ann Arbor, 1001:48109-2121, 2007.

Petter Ogren. Increasing modularity of uav control systems using computer game behavior
trees. In ATAA Guidance, Navigation and Control Conference, Minneapolis, MN, 2012.

Kei Okada, Mitsuharu Kojima, Yuichi Sagawa, Toshiyuki Ichino, Kenji Sato, and Masayuki
Inaba. Vision based behavior verification system of humanoid robot for daily environment
tasks. In Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots
(Humanoids), pages 7-12, 2006.

Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. 1984.

Edwin PD Pednault. Formulating multiagent, dynamic-world problems in the classical
planning framework. Reasoning about actions and plans, pages 47-82, 1987.

Samuel Thomas Pfister. Algorithms for mobile robot localization and mapping, incorpo-
rating detailed noise modeling and multi-scale feature extraction. PhD thesis, California
Institute of Technology, 2006.

Joelle Pineau and Sebastian Thrun. High-level robot behavior control using pomdps. In
AAAI-02 Workshop on Cognitive Robotics, volume 107, 2002.

Scott Plous. The psychology of judgment and decision making. Mcgraw-Hill Book Com-
pany, 1993.

C. Potena, D. Nardi, and A. Pretto. Fast and accurate crop and weed identification with
summarized train sets for precision agriculture. In Proc. of 14th International Conference
on Intelligent Autonomous Systems (IAS-14), 2016.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Mateo, California, 1993.

Helen M Regan, Mark Colyvan, and Mark A Burgman. A taxonomy and treatment of
uncertainty for ecology and conservation biology. Ecological applications, 12(2):618-628,
2002.

Max Risler. Behavior control for single and multiple autonomous agents based on hierar-
chical finite state machines. PhD thesis, tuprints, 2010.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53-65, 1987.

123

REFERENCES

77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Thomas Riihr, Jiirgen Sturm, Dejan Pangercic, Michael Beetz, and Daniel Cremers. A
generalized framework for opening doors and drawers in kitchen environments. In Robotics
and Automation (ICRA), 2012 IEEFE International Conference on, pages 3852-3858. IEEE,
2012.

Haydar Sahin and Levent Guvenc. Household robotics: autonomous devices for vacuuming
and lawn mowing [applications of control|. IEEE Control Systems, 27(2):20-96, 2007.

Martin Schuster, Dominik Jain, Moritz Tenorth, and Michael Beetz. Learning Organiza-
tional Principles in Human Environments. In IEEE International Conference on Robotics
and Automation (ICRA), pages 3867-3874, St. Paul, MN, USA, May 14-18 2012.

Claude E Shannon. Communication in the presence of noise. Proceedings of the IRE,
37(1):10-21, 1949.

Yasuhiro Shiraki, Kazuyuki Nagata, Natsuki Yamanobe, Akira Nakamura, Kanako
Harada, Daisuke Sato, and Dragomir N Nenchev. Modeling of everyday objects for se-
mantic grasp. In Robot and Human Interactive Communication, 2014 RO-MAN: The 25rd
IEEE International Symposium on, pages 750-755. IEEE, 2014.

Reid Simmons. An architecture for coordinating planning, sensing, and action. In Procs.
DARPA Workshop on Innovative Approaches to Planning, Scheduling and Control, pages
292-297, 1990.

Reid G Simmons. Structured control for autonomous robots. IEEFE transactions on robotics
and automation, 10(1):34-43, 1994.

Siddhartha Srinivasa, David Ferguson, Casey Helfrich, Dmitry Berenson, Alvaro Col-
let Romea, Rosen Diankov, Garratt Gallagher, Geoffrey Hollinger, James Kuffner, and
J Michael Vandeweghe. HERB: A Home Exploring Robotic Butler. Autonomous Robots,
28(1):5-20, 2010.

Stanford University. Stanford personal robotics program.
http://personalrobotics.stanford.edu/, 2008. Accessed August 16, 2012.

Andreas Steck and Christian Schlegel. Smarttcl: An execution language for conditional
reactive task execution in a three layer architecture for service robots. In Int. Workshop on
DYnamic languages for RObotic and Sensors systems (DYROS/SIMPAR), pages 274-277,
2010.

Sarah Strohkorb, Chien-Ming Huang, Aditi Ramachandran, and Brian Scassellati. Es-
tablishing sustained, supportive human-robot relationships: Building blocks and open
challenges. In 2016 AAAI Spring Symposium Series, 2016.

Jorg Stiickler and Sven Behnke. Benchmarking mobile manipulation in everyday envi-
ronments. In Proc. of the IEEE Workshop on Advanced Robotics and its Social Impacts
(ARSO), 2012.

Jorg Stiickler, Dirk Holz, and Sven Behnke. Robocup@home: Demonstrating everyday ma-
nipulation skills in robocup@home. IEEE Robotics and Automation Magazine, 19(2):34-42,
June 2012.

Freek Stulp, Andreas Fedrizzi, Lorenz Mdésenlechner, and Michael Beetz. Learning and
Reasoning with Action-Related Places for Robust Mobile Manipulation. Journal of Arti-
ficial Intelligence Research (JAIR), 43:1-42, 2012.

124

http://personalrobotics.stanford.edu/

REFERENCES

[91] Tapio Taipalus and Kazuhiro Kosuge. Development of service robot for fetching objects
in home environment. In Computational Intelligence in Robotics and Automation, 2005.
CIRA 2005. Proceedings. 2005 IEEE International Symposium on, pages 451-456. IEEE,
2005.

[92] Kartik Talamadupula, J Benton, Paul W Schermerhorn, Subbarao Kambhampati, and
Matthias Scheutz. Integrating a closed world planner with an open world robot: A case
study. In AAAI 2010.

[93] Moritz Tenorth and Michael Beetz. Knowrob — a knowledge processing infrastructure for
cognition-enabled robots. International Journal of Robotics Research (IJRR), 32(5):566 —
590, April 2013.

[94] Moritz Tenorth, Lars Kunze, Dominik Jain, and Michael Beetz. Knowrob-map —
knowledge-linked semantic object maps. In Humanoid Robots (Humanoids), 2010 10th
IEEE-RAS International Conference on, pages 430-435. IEEE, 2010.

[95] Laura Uusitalo, Annukka Lehikoinen, Inari Helle, and Kai Myrberg. An overview of meth-
ods to evaluate uncertainty of deterministic models in decision support. Environmental
Modelling & Software, 63:24-31, 2015.

[96] David Vernon, Giorgio Metta, and Giulio Sandini. A survey of artificial cognitive sys-
tems: Implications for the autonomous development of mental capabilities in computa-
tional agents. IEEE Transactions on Evolutionary Computation, 11(2):151, 2007.

[97] Rob Walker. The guts of a new machine. http://www.nytimes.com/2003/11/30/magazine/the-
guts-of-a-new-machine.html, 2003. The New York Times Magazine. Accessed: 2015-11-26.

[98] Oscar Wilde. Irish playwright, novelist, essayist, and poet (1854-1900).

[99] Willow Garage, OSRF. Pr2 surrogate - immersive telepresence with the oculus rift.
https://www.youtube.com/watch?v=HOEoEyvTmiY, 2013. Accessed January 20, 2017.

[100] Jan Winkler, Ferenc Balint-Benczedi, Thiemo Wiedemeyer, Michael Beetz, Narunas Vaske-
vicius, Christian A. Mueller, Tobias Fromm, and Andreas Birk. Knowledge-enabled robotic
agents for shelf replenishment in cluttered retail environments: (extended abstract). In
Proceedings of the 2016 International Conference on Autonomous Agents €#38; Multia-
gent Systems, AAMAS 16, pages 1421-1422, Richland, SC, 2016. International Foundation
for Autonomous Agents and Multiagent Systems.

[101] Jan Winkler, Georg Bartels, Lorenz Mdsenlechner, and Michael Beetz. Knowledge Enabled
High-Level Task Abstraction and Execution. First Annual Conference on Advances in
Cognitive Systems, 2(1):131-148, December 2012.

[102] Jan Winkler and Michael Beetz. Generalized plan design for autonomous mobile manip-
ulation in open environments. In Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Istanbul, Turkey, 2015.

[103] Jan Winkler and Michael Beetz. Robot action plans that form and maintain expecta-
tions. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 2015.

[104] Jan Winkler, Asil Kaan Bozcuoglu, Mihai Pomarlan, and Michael Beetz. Task parametriza-
tion through multi-modal analysis of robot experiences. In Proceedings of the 16th Con-
ference on Autonomous Agents and MultiAgent Systems, pages 1754-1756. International
Foundation for Autonomous Agents and Multiagent Systems, 2017.

125

https://www.youtube.com/watch?v=H0EoEyvTmiY

REFERENCES

[105] Jan Winkler, Moritz Tenorth, Asil Kaan Bozcuoglu, and Michael Beetz. CRAMm —
memories for robots performing everyday manipulation activities. Advances in Cognitive
Systems, 3:47-66, 2014.

[106] Tan H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems),
page 69. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

126

	Affidavit / Eidesstattliche Erklärung
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms
	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Research Scenario
	The Challenge
	What is the Challenge?
	Why is it interesting? Why is it important?
	Why is it a hard problem? Why has it not been solved yet?

	Approach
	Contributions
	Reader's Guide

	Related Work
	Planning and Robot Architectures
	Robot Plan Design and Behavior Control
	Classical Planning Approaches
	Robot Architectures

	Behavior
	State Automata
	Task Networks
	Behaviour Trees

	Autonomy
	Episodic Memories in Autonomous Systems
	Vague Task Execution in Real World Scenarios
	Longterm Autonomy

	Overview and Foundations
	Generalized Plan Design and Representation for Robots
	Data Logging and Learning from Episodic Memories
	What are Robot Episodic Memories

	Embodiment of Autonomous Robot Control Programs

	Generalized Plan Design and Representation for Robots
	Principles of Generalized Plan Design
	Action Description vs. Goal Definition
	Knowledge-based Strategy Selection
	Experience-based Behavior Enhancement
	Implicit Modular Task Recovery

	CRAM as a Robot Plan Language
	Robot Plan Design
	Representing Robot Plans: Behaviour Trees

	Mobile Manipulation
	Common Tasks for Mobile Manipulators
	Overcoming Space Constraints when Accessing Containers
	Task Stability: Pre- and Post-Poses in Robot Manipulation
	Plan Design for Reactive Task Monitoring in Mobile Manipulators
	Example: Autonomous Object Search Tasks
	Example: Autonomous Fetch Tasks

	Contextual Knowledge in Autonomous Robot Agents
	Contextually Constraining Generalized Plans
	Static and Dynamic Knowledge

	Planning for Generalized Fetch and Place Activities
	An A*-based Planner for Generalized Actions
	Example: Re-arrangement of Objects in Retail Shopping Racks

	Context-dependent Failure Handling Strategy Selection
	Summary

	Data Collection and Experience-Based Learning
	Performance Enhancement through Experience
	Machine Learning
	Methods in AI based Robotics
	Anatomy of Episodic Memories
	How em are Recorded

	Generating Experience Models from Episodic Memories
	Expectation Models: Task Outcome Prediction
	Prototypical Experiences: Informed Strategy Exploration

	Multi-modal Analysis of Robot Experiences
	Approach and Comparison
	Multi-modal Data Analysis
	Evaluation

	Learning PDDL Domain Knowledge from Experience
	Identifying pddl Actions from Experience

	Automated Experiments for Data Collection
	Requirements for Experiment Scenarios
	AutoExperimenter: A tool for generating meaningful data
	Adaptation to other Scenarios

	Summary

	Embodiment of Autonomous Robot Control Programs
	Failure Handling and Recovery in the Real World
	Exhaustingly Repeating Actions as most Naive Handling Strategy
	Global Failure Taxonomy
	Uncertainty for Mobile Robots in the Real World

	Raw Interfaces to the External World
	RoboSherlock: Semantic Perception
	MoveIt!: Abstract, Constrained Motion Planning

	Translating Symbolic and Subsymbolic Information
	Perception Queries and Results
	Motion Planning Queries and Results

	Maintaining a Dynamic Planning Scene for Manipulation
	Navigation in Semantically Known Environments
	Summary

	Evaluation
	Experiment Scenario
	Experimental Data

	The Role of Generalized Plans
	Insights about what did not work
	Automated Experiments
	Simulated vs. Real Experiments

	Conclusion
	The Need for Abstract Activity Descriptions
	Human Household Scenarios

	Summary of the Approach
	Discussion

	Future Research
	Significant Amounts of Episodic Memories on Real Robots
	Plan Verification for Generalized Plans
	Generalizing over Multiple Domains
	Experience Transfer between Different Robots
	New Machine Learning Methods

	Research Platforms
	The Willow Garage PR2: A Capable Mobile Manipulator
	Gazebo: Simulation-based Manipulation

	Plans
	Keyword Index
	References

