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Highlights
e Bidirectional glutamatergic communication between neurons and astrocytes during post-
natal development are poorly understood
e mGlu5-mediated signalling may be important for developmental maturation of astrocytes

e Astrocyte maturation may be important for a proper neuronal development

Abstract

Astrocytes, the largest glial population in human and murine brains, are crucial to the regulation
of synaptic connectivity. During the first three weeks of post-natal development, immature
astrocytes express mGlu5 and expands several fold while undergoing a transition towards their
mature phase. Although mGluS-mediated signalling in astrocyte functions has been extensively
studied in the last decades, whether this signalling is implicated in the mechanisms governing their
development, as well as the effects of dysregulated astrocytic development on neurodevelopmental
disorders, are still unclear. The aim of this review is to examine what is known about the mGlu5-
mediated signalling in the developing astrocytes and its possible contribution to the

pathophysiology of autism spectrum disorders.

Overview

Mature astrocytes are integral components of the “tripartite synapse” [1] in which perisynaptic



astrocyte processes regulate neurotransmitter homeostasis and recycling, provide basic substrates
for neuronal metabolism, sequester ions, promote synaptogenesis and synaptic remodelling, and
modulate synaptic activity and plasticity [2,3]. Immature astrocytes express high levels of
metabotropic glutamate receptor 5 (mGluS) [4] and with their numerous small peri-synaptic
processes are in strategic position to monitor and, eventually, influence developing synaptic
activity. Number of studies in the last decades established a bidirectional glutamatergic
communication between neurons and astrocytes [2,5]. The interaction of synaptically released
glutamate with G-protein-coupled receptors (GPCRs) in astrocytes, in particular with group I
mGlu, leads to transient elevations of intracellular calcium (Ca?") levels [6,7,8] which have been
linked to the release of neuroactive substances called gliotransmitters [2] that in turn can modulate
diverse physiological phenomena [9,10], including synaptic transmission and plasticity [5].
Despite the putative importance of mGluS-mediated signalling on post-natal maturation of
astrocytes and the associated synapses, surprisingly little is known about this astrocytic signalling
on the cellular and molecular mechanisms regulating post-natal maturation phase of astrocytes and

the associated neuronal circuits.

Excellent reviews have recently explored the role of astrocyte-secreted or —expressed factors on
the formation and maturation of synaptic circuits [*11,12,13,14], therefore in this review we intend
to examine what is known about the glutamatergic signalling on developing astrocytes and to

discuss the involvement of this signalling in the pathophysiology of autism.

mGlu5-mediated signalling in the post-natal developmental of astrocytes

Even though peak gliogenesis occurs about E17-18 [15], astrocytes are mainly generated during
the post-natal period, when they expand 6-8 fold [16, 17]. A recent study has shown that the local
proliferation of already differentiated astrocytes is the major source of astroglia in post-natal cortex
[16]. The fact that early astrocytes continue to divide while differentiating and maturing during the
second and the third post-natal week implies that they may have progenitor status and, during the
first three post-natal weeks of their maturation, they undergo dramatic molecular and structural
changes (Fig 1). For example, genes regulating proliferation such as MKI67 are progressively
down-regulated whereas a number of important astroglial genes, including those coding for
glutamate transporter GLT1, GABA transporters (GATs), connexin 30 and 43 (Cx30 and Cx43)

and the inwardly rectifying potassium channel Kir4.1, are progressively up-regulated [18,**19].



These astroglial genes represent some of most characteristic and important functions of astrocytes
in the central nervous system (CNS): GATs and GLT1 are crucial for maintaining the proper
termination of GABA or glutamate signalling at synapses, and Kirl.4 is critical for maintaining
the K* gradient for glutamate uptake and buffering activity-dependent K* release. The induction
of these genes during post-natal development suggests that astrocytes undergo developmental
maturation from the first week to the second and third weeks after birth.

The genes that are developmentally regulated in immature astrocytes also include those controlling
glutamatergic signalling. The expression of GRMS5 and HomerI genes, which respectively encode
metabotropic glutamate receptor 5 (mGlu5) and the Homerl scaffold proteins, is high in
developing astrocytes during the first post-natal week but have dramatically decreased by the third
[18,**19,4]. It has recently been found that Homerl proteins modulate mGlu5 calcium (Ca®*)
signalling in developing astrocytes [*20]. Given the close association of astrocytes with synapses
from the early post-natal phase, the expression pattern of mGlu5 Ca?" signalling indicates that
developing astrocytes sense neuronal activity during their post-natal maturation. This is
particularly intriguing because it indicates that astrocytes can detect neuronal activity even before
the major wave of synaptogenesis occurs (i.e. during second and third post-natal week), and
suggests that the activity-dependent induction of astroglial genes may take place from the early
stages of post-natal development. The importance of synaptically released glutamate in the post-
natal maturation of astrocytes is not clear, but several papers have shown that neuronal activity has
an important role in the regulation of astrocyte morphology [21], specification [22] and function
[23]. For example neurons can induce the classic stellate morphology in astrocytes, resembling
their appearance in vivo [21] and neuron-derived Notch signalling is necessary and sufficient to
promote the expression of several plasma membrane transporters, including GLT1 [23]. Many of
these results have been obtained in cultured cells and the cellular mechanisms by which early
formed synapses signal to immature astrocytes to regulate their development in vivo remain,

however, poorly understood.

The role of mGlu5-mediated signaling on the post-natal maturation phase of astrocytes, at the
moment, has never been investigated. Interestingly, Homer1 proteins have been recently found to
modulate the mGlu5 Ca?* signalling in cortical astrocytes since the second post-natal week [*20].

The long form Homer 1b/c is constitutively expressed in immature astrocytes; its



immunoreactivity is visible in the soma and main processes as well as in the perivascular end feet
of astrocytes, emphasizing the widespread distribution of this scaffold protein across cellular
compartments. At the subcellular levels Homer1b/c has a punctate distribution and clusters with
mGlu5 and endoplasmic reticulum (ER) tubules to form sub-plasmalemmal microdomains. Ca?*
events in astrocytes may occur both in the form of global cytoplasmic increase and of local events
along astrocytic processes [24,25] and the expression of Homerlb/c in astrocytic processes
facilitates both [*20]. Indeed, when Homerlb/c is replaced by the short form Homerla, the
physical link between mGlu5 and ER is lost and the drop in localized events leads to a strong
reduction of global cytosolic Ca?" signalling [*20]. Regulation of the global levels of Ca*" by
Homerl proteins may have a crucial importance in developing cells where cytosolic Ca?" signaling
plays a key role in the regulation of both proliferation and differentiation [23].

The existence of localized Ca?" events in astrocytic process suggests the presence of a subcellular
specialization controlling the spread of cytosolic Ca?" within individual astrocytic compartments.
Electron microscopy studies have indeed indicated that astrocyte architecture is characterized by
the prevalence of processes containing ER tubules and mitochondria [25,2]. This architecture
could favour the organization of subcellular structural domains where the close interaction among
ER and mitochondria may have a crucial role in the modulation of cytosolic Ca?* signals or in the
regulation of mitochondrial activities, as already reported in a number of cells including neurons
[26]. Given that mitochondrial Ca?" handling through the mitochondrial Ca** uniporter (MCU) can
impact diverse aspects of cellular physiology including mitochondrial metabolism [26, 27, 28] and
the expression of MCU gene is particularly high in immature astrocytes [**19], investigate the
role of MCU in the modulation of astrocytic Ca** signals would be an important next step to
understand the role of mGlu5-mediated Ca?" signaling in the post-natal maturation of astrocytes.
The gene of fragile mental retardation 1 (FMR1I), which encodes the fragile X mental retardation
protein (FMRP) [29], is also part of group I mGlu signalling. Like mGlu5 and Homerl, FMR] is
highly expressed in the first post-natal week but its expression decreases over the next two weeks.
It has been reported that FMRI has many physiological functions, including the control of local
protein translation [30]. Accumulating evidence suggests that it plays a central role in regulating
GLTI expression in developing astrocytes [31], thus indicating that it also plays a role in post-
natal astrocyte maturation. The functional role of GLT1 transporter occurs at perisynaptic

processes of astrocytes. Developing astrocytes sprout cellular processes during the first week of



postnatal development, and most processes appear filopodial (i.e. actively growing) in nature.

At this developmental time, astrocyte borders are quite ragged and long processes extend well
beyond them but, during subsequent weeks, the developing processes become ramified and there
is an increasing formation of fine distal processes [32], also known as peripheral astrocyte
processes (PAPs) [33], which express a number of proteins including plasma membrane
transporters. Although a significant number of astrocytes are generated during the first post-natal
week, PAPs are not induced in until several weeks later, thus suggesting that a sort of
morphological maturation also occurs during the first 3-4 postnatal weeks. As perisynaptic
processes are responsive to neural activity, it is likely that synaptic activity drives the
morphological development of astroglial PAPs towards newly-formed synaptic contacts, although
the role of neuronal activity in the formation and modulation of PAPs in developing astrocytes has
never been investigated directly. Indeed, the synapse association of astrocytic peri-synaptic
processes is known to be a dynamic process that can be altered by neuronal activity [34,35,36]
and, in agreement with this possibility, astrocyte coverage of synaptic contacts is altered during
development, in response to injury and in various physiological conditions, such as partition,
starvation, and satiety [*11,37,38]. Most of these structural changes occur over a slow timescale,
and it is likely that the cue for altered astrocyte-synapse interaction is a direct sensing of alterations
in neuronal activity rather than an additional signal released by neurons. Despite, these indications,
the role of glutamatergic signalling in the formation and modulation of PAPs in developing
astrocytes, however, has never been investigated directly. A recent study of the role of Cx30 in
modulating behavioural and cognitive processes has proposed a new role for this channel in the
modulation of glutamate signalling and astrocyte morphogenesis. Cx30 is one of the two main
astroglial gap-junction subunits, and seems to control excitatory synaptic transmission through
modulation of astroglial glutamate transport, which directly laters synaptic activity [*39].
However, unexpectedly, the role of Cx30 in modulating glutamate transport is mediated by its
ability of keeping astrocytic PAPs restricted to perisynaptic regions and is independent of its
channel function. Cx30 seems indeed to be very similar to that of a cell adhesion protein. Thus, by
controlling the migration of processes towards the clefts of developing excitatory synapses, Cx30

regulates the efficacy of glutamate transport and, consequently, the strength of excitatory synapses.

Possible involvement of post-natal astrocytes in the pathogenesis of autism spectrum



disorders

Over the last ten years, growing evidence has emerged to suggest that astrocytes may play an
important role in the pathophysiology of autism spectrum disorders (ASDs) [40]. The genes
associated with ASDs are highly expressed during development [41] and many of those whose
variation confers susceptibility to ASDs play a fundamental role in brain development [42].
Unfortunately, there is still a lack of detailed molecular studies of developmental events within the
brain areas involved in the etiology of ASDs, and very little is known about the characteristics of
astrocytes in ASDs, although recent transcriptome analyses have indicated that they contain many
of the genes associated with ASDs [18,**19].

As mentioned above, developing astrocytes highly express mGlu$ signalling, a pathway that plays
an important roles in normal brain development and in disorders such as Phelan-McDermid
syndrome [43], fragile X syndrome [44] and some other isolated ASDs [45]. In neurons and
developing astrocytes, the mGlu5 Ca®" signalling generated by inositol 1,4,5-trisphosphate
receptor (IP3R) is regulated by the expression of Homerl scaffolding proteins [*20,46], whose
rare variants have been associated with autism [47]. These proteins act by modulating the physical
link between the plasma membrane of mGlu5 and IP3R located in the endoplasmic reticulum, thus
governing the local and global cytosolic IP3R-derived Ca®*. It is generally accepted that IP3R-
mediated Ca®" signals in astrocytes is coupled to the release of neuroactive compounds called
gliotransmitters [2,3,5]. The functional role of Homer1 proteins by regulating intracellular Ca** go
beyond a simply permissive effect on the detection of neuronal activity. The organization of
structural microdomains could effectively transduce specific and localized signals to tailored
outputs, such as the release of gliotransmitters. In fact, Homerl proteins while extering a tight
control on Ca?" signaling, influence astrocytic glutamate release [*20]. The existence of a mGlu5-
and Ca*'-dependent glutamate secretion process in the developing astrocytes suggests the
competence of astrocytes to interact with synaptic activity during assembly of synaptic circuits, as
already reported [6,8]. It is therefore possible that glutamatergic gliotransmission plays an
important role in the stregthening of synaptic connections and the establishment of neuronal
pathways during post-natal development. Consistent with this idea, by manipulating secretion of
a specific gliotransmitter, notably D-serine [48], it is possible to direct modify crucial steps of the
development of new neurons beyond the stem or progenitor cell stage [49]. In particular, inhibition

of vesicular release of D-serine from astrocytes in the hippocampal dentate gyrus has been reported



to reduce synapse formation and network integration of adult-born neurons, which in turn affect
neuronal survival and net adult neurogenesis [49]. In addition to astrocyte-secreted
gliotransmitters, immature astrocytes can control the formation and maturation of synaptic circuits
by a number of secreted and contact-mediated factors [*11,12,13,14]. Despite the fact the initial
data have been obtained mainly in culture models in vitro [50,51], the role of glial cells in the
regulation of synapse formation and maturation of synapses has been replicated across species,
such as in C. elegans [52], Drosophila [53], Xenopus [54], and human [55], thus indicating that
cultured cells can be a valuable model to study the contribution of glial cells on mechanisms
regulating synaptogenesis.

Homer1 proteins in neurons act synergistically with SH3 and multiple ankyrin repeat domain
proteins (Shanks) in functionally linking mGlu5 and IP3R [56,57], and the SHANKI, SHANK?2
and SHANK3 genes that encode Shankl, 2 and 3 post-synaptic scaffolding proteins are also
expressed by astrocytes according to the recent transcriptome analysis [18,%*19]. Interestingly,
mutations in SHANK family genes have been associated with syndromic and idiopathic ASDs and
other neurodevelopmental disorders [56, 57,**58], and mutations in these genes in mice often give
rise to marked behavioural phenotypes resembling those found in some human neuropsychiatric
disorders [59]. Pharmaceutical treatments that increase mGlu5 activity ameliorate several
behavioral deficits in mouse models of ASDs [56,57,60]. Although treatments have been
performed in adult animals it is likely that they will show similar beneficial effects when
administered during post-natal development. According to the recent transcriptome analysis
SHANK 2 and 3 expression is particularly high in immature astrocytes [**19], thus suggesting that,
like Homer1, the Shank2 and 3 coding scaffold proteins may be important in regulating post-natal
astrocyte maturation. Given the role Homerl and Shank proteins play in regulating cytosolic Ca**
signalling, it is not surprising that alterations in the activity of this IP3R/Ca®* signalling system
contribute to the onset of ASDs [61,62]. The IP3R-mediated Ca*" signalling modulated by scaffold
proteins may be important also in the modulation of mitochondrial Ca** homeostasis.
Mitochondrial Ca?* entry of IP3R-released is mediated by a macromolecular complex composed
by the pore forming subunit, the MCU, and several regulatory subunits including MICU1, MICU2
and EMRE [26,27] and is a fundamental step to support oxidative phosphorylation and ATP
production necessary for cell metabolic needs during proliferation and maturation of

differentiating cells [63,64,65]. A fascinanting aspect surrounding mitrochondrial Ca?" entry



supporting a possible involvement of this mechanism in the regulation of post-natal maturation of
astrocytes and of associated neural circuits is the observation that human patients carrying loss-of-
function mutations in MICU1 or null mutation in MICU2 exhibit learning disability and a sever
neurodevelopmental disorder [66,67].

Significant progress in our understanding of the role of astrocytes in ASDs has been made using
mouse models of fragile X syndrome (FXS), which is caused by the transcriptional silencing of
FMRP expression [68,69]. Astrocytes from FMRI knock out (KO) animals induce development
delays in the dendrite maturation of hippocampal neurons [70,71], and many studies of the same
animals have identified an abnormal increase in mGlu5 signalling [72] that mirrors the typical
abnormalities observed in patients with FXS [73]. Interestingly, genetic or pharmacological
inhibition of mGlu5 activation significantly reduces the phenotypes of FMRI KO mice [74,75],
thus suggesting that abnormal mGlu$5 signalling may contribute to the etiology of ASDs, but it is
not clear whether mGlu$5 signalling is dysregulated in developing astrocytes. However, it is likely
that abnormal astrocyte maturation occurs in the absence of FMRI.

Recent findings have shown the down-regulation of GLT1 expression and reduced glutamate
uptake in the astrocytes of FMRI KO mice during post-natal development [31]. As it is known
that the proper expression of GLT1 is essential for normal brain development [76], it is not
surprising that GLT1 KO mice experience severe seizures from the second post-natal week and

show behavioural phenotypes often observed in ASDs [77].

Conclusions and perspectives

Astrocytes have recently emerged as critical regulators of neuronal development and synapse
formation [*11,12,13,14] and an increasing number of studies show that astrocytes are likely
contributing to the neuronal and synaptic deficits reported in ASDs. However, despite the
importance of the post-natal maturation of astrocytes, very little is known about the cellular and
molecular mechanisms regulating the transition towards the mature phenotype, or the reciprocal
mechanisms by means of which developing synapses might signal to developing astrocytes in
order to ensure proper neural circuit formation, which therefore remain crucial challenges in the
field. A more in depth and unbiased analysis and description of alterations/dysfunctions in
astrocytic features during post-natal maturation of neuronal circuits will be of fundamental

importance not only for deepening our understanding of the mechanisms governing astrocyte-



controlled synaptogenesis, but also for developing new and unexplored therapeutic strategies for
ASDs.
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Fig 1. Astrocytes in the post-natal phase of development undergo dramatic molecular and
structural changes. Genes regulating proliferation (i.e. MKI67) are progressively down-regulated
whereas the so called “astroglial genes” (i.e. SLC1A42, Cx30 and Cx43, KCNJ10 and SLC6 coding
for GLT1, Cx30 and 43, Kir4.1 and GABA transporter, respectively) are progressively up-
regulated. Other genes such as GRMS5, FRM1, SHANK1,2,3, HOMERI and TSPI respectively
coding for SHANK1,2,3, Homerl and thrombospondinl, are also progressively down-regulated.
During the first post-natal week astrocytes start of developing peripheral astrocyte processes that
become progressively ramified three weeks later. Many cellular and molecular mechanisms
regulating post-natal maturation phase of astrocytes are still to be established.
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