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ABSTRACT 

This research investigated the relationship between teachers’ espoused 

professional knowledge, professional knowledge in practice, and student learning, 

when teaching ‘mathematics for numeracy’ in the New Zealand primary school 

classroom. The focus was on teaching within the multiplicative and proportional 

domains, as research at the time the study commenced indicated that these areas 

of mathematics were problematic for many teachers. The purpose of the research 

was to identify strengths, weaknesses, and inconsistencies in teachers’ practice; 

links between espoused views and actions; and to consider the usefulness of a 

framework for investigating teacher knowledge in practice. This study is intended 

to inform teacher reflection and professional development, and contribute to 

improvements in teaching practice and student achievement. 

A multiple-case study design, underpinned by an interpretivist paradigm, was 

used, which included four case-study teachers from two primary schools: School 

A, was a central city full primary school (Years 1 to 8) and School B, a rural town 

primary school (Years 1 to 6). The study aligned with a social constructivist 

perspective on teaching and learning. The data were obtained through four main 

sources: (1) pre-unit and post-unit student assessment tasks; (2) recorded 

observations; (3) semi-structured interviews); and (4) teacher questionnaires.  

Comparison between students’ initial and final assessment data showed little 

progress in understanding of multiplication and division, with a more noticeable 

improvement in fractional understanding. Classroom observations were analysed 

under three broad categories: content knowledge, pedagogical knowledge, and 

pedagogical content knowledge, and highlighted important issues relating to the 

professional knowledge of teachers and the contribution this made to student 

learning. Results indicated that the mathematical content knowledge of the 

teachers was stronger than their content knowledge in a pedagogical context. 

While teaching for conceptual understanding frequently challenged the teachers, 

they recognised the importance of conceptual understanding prior to procedural 

learning for their students. They struggled with on-the-spot identification of the 

next steps of learning for individual students and there was little evidence of focus 

on questioning that extended students’ thinking that might have assisted in 

overcoming misconceptions and confusions with concepts. There were times 

when the teachers’ espoused theories differed from their theory-in-practice, while 

at times they were similar to each other. 

The research concluded that in teaching practice the many facets of PCK, within 

the broader construct of professional knowledge, were more than topic-specific. 

Instead, they were person-specific and lesson-specific, with different categories 

coming to the fore in different proportions, for different reasons, including: lesson 

structure, context, problem types, the opportunities afforded students for 

conversation, and use of manipulatives. While not all categories of professional 

knowledge were evident in every lesson, they combined over a period to 



 

ii 

 

underscore the complexities of teaching and ultimately have an effect on student 

learning.  

An outcome of the study was a Wheel of Knowledge designed for teachers, 

identifying key areas of knowledge to be addressed in mathematics teaching. 

Alongside this, a more detailed Professional Knowledge Framework was created 

for researchers, based on categories identified from this research as important in 

identifying teacher professional knowledge in classroom practice. Both models 

have the potential to identify areas of teacher professional knowledge required to 

improve students’ mathematical understanding. 
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PREFACE 

A well-known Māori proverb finishes with the words, 'He aha te mea nui o te ao? 

Māku e kī atu, he tangata, he tangata, he tangata.' Translated this means 'What is 

the most important thing in the world?  I say to you, it is people, it is people, it is 

people.' As educators, we are fortunate to work with this most valuable resource 

(people) and in particular be in the luxurious position of helping to nurture their 

developing minds. To work with children is a privilege as they learn to appreciate 

the importance of lifelong learning and the value of Earth’s resources and beauty. 

 

I dedicate this research to all classroom teachers who work tirelessly to support 

their students’ learning.
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CHAPTER ONE 

INTRODUCTION  

 

1.1 Introduction 

People are besieged by numbers in every aspect of their lives. It may even be said, 

“numbers rule our life”. Numbers are at the central core of today’s lifestyle and 

modern technology, beginning when the alarm goes off each morning, computers 

are turned on, spreadsheets created, texts messages sent, appointments fulfilled, 

credit cards used, bills paid through the internet, and so on. As current primary 

school students prepare for adult life in a world that will be technologically based 

beyond current imagination, there is a need for them to know and understand 

mathematics in a manner that is appropriate to societal changes and expectations.  

Where once it was sufficient to master basic arithmetic, the requirements of 

mathematics and numeracy in today’s world are different. Being numerate 

includes thinking mathematically about situations. It is not the same as knowing 

how to calculate, it is about being able to think about and have an understanding 

of numbers using conventions (e.g., measurement systems, terminology, tools 

etc.), relevant to one’s own culture (e.g., in English the base-ten counting system), 

and use their mathematical thinking meaningfully and appropriately in different 

situations (Nunes & Bryant, 1996). Numeracy is thus an essential capability for 

individuals who wish to participate fully in a democratic society and to utilise 

knowledge and skills, and critical reasoning capabilities in everyday life (Perso, 

2006, 2007; Skalicky, 2007). “It is not enough to learn procedures: it is necessary 

to make these procedures into thinking tools” (Nunes & Bryant, 1996, p. 19).  

Therefore, given the recent reforms in mathematics education, and the current 

cultural and social aspects to primary schooling, primary school teachers could 

now be known as, teachers of mathematics for numeracy (Perso, 2006, p. 40), as 

they prepare their students for life skills beyond the classroom.  

The working definition of numeracy used in this research was the same as that 

used in the Effective Teachers of Numeracy Project (Askew, Rhodes, Brown, 

Wiliam, & Johnson, 1997): “Numeracy is the ability to process, communicate, 

and interpret, numerical information in a variety of contexts” (p. 6). Numeracy is 
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often referred to in terms of what it means to be numerate. Throughout this 

research, to be numerate is defined as: “To have the ability and inclination to use 

mathematics effectively in our lives – at home, at work, and in the community” 

(Ministry of Education, 2001, p. 1). Askew et al., built on their definition of 

numeracy, to define effective teachers of numeracy as teachers who help their 

pupils:  

“acquire knowledge of and facility with numbers, number relations and number 

operations based on an integrated network of understanding, techniques, strategies 

and application skills; learn how to apply that knowledge of and facility with 

numbers, number relations and number operations in a variety of contexts.” (p. 10).   

1.2 Education Reforms and Changing Practice as a 

Teacher 

Changing the ways mathematics is taught and learned requires considerable effort, 

and can be both demanding and challenging (Anthony & Hunter, 2005; Lamon, 

2007; Walshaw, 2014). Generally, education reform is about improving student 

performance and depends on what teachers and students do in their classrooms. In 

recent years, the role of the mathematics teacher has changed in profound ways, 

having become more complex and sophisticated in response to major societal, 

economic, cultural, technological, and political changes (Anthony, Beswick, & Ell, 

2012; Bennison, 2015; Hattie, 2003, 2009; Jorgenson, 2014; Lowrie, 2015). This 

change in role has necessitated an on-going need for teachers to continue to reflect 

on their teaching practice and make changes as required. Recent reforms in New 

Zealand have seen a change in curriculum implementation, where the emphasis 

was previously on coverage of topics, to a system of expected learning outcomes 

for all students (Ministry of Education, 2007). The current New Zealand 

Curriculum (NZC) document encourages students to be “confident, creative, 

connected, actively involved life-long learners” (Ministry of Education, 2007, p. 

4), who are able to solve problems confidently in a range of situations. This has 

resulted in a problem-solving approach to mathematics where there is prominence 

placed on teaching students how to solve problems, alongside teaching them 

about problem-solving, for problem-solving (Hunter, 2012; Lambdin & Walcott, 

2007; Zevenbergen, Dole, & Wright, 2004).  

The teaching of mathematics in schools has at its core three components, which 

are necessary for quality teaching programmes: knowledge of mathematics and 
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associated learning theory; mathematical and pedagogical skills; and practical 

wisdom and activity (Grootenboer & Edwards-Groves, 2014). In order for 

teachers to implement these three components, they need to understand the 

mathematics they teach in a way that results in them developing an identity as a 

teacher of numeracy (Bennison & Goos, 2013).  

One contributing factor previously cited by researchers (Ball, 1992; Burns, 1998; 

Skemp, 1976) as part of the reason for poor mathematics proficiency, was the 

focus on developing procedural knowledge at the expense of conceptual 

understanding. A procedural approach to learning was referred to by Skemp as 

“instrumental understanding”, while conceptual understanding was referred to as 

“relational understanding”. Effective teachers of mathematics facilitate learning 

opportunities that emphasize conceptual understanding, strategic competence, and 

adaptive reasoning, alongside the traditional mathematics education focus of 

procedural fluency (Kilpatrick, Swafford, & Findell, 2001). Developing 

conceptual understanding during instructional time is essential if mathematics is 

to be learnt with understanding and is a key component of numeracy. Something 

is only understood if one can see how it is related or connected to other things that 

are known (Hiebert & Carpenter, 1992; Skemp, 1989). This approach allows 

students the opportunity to implement ways of solving problems that make sense 

to them by developing their number sense, reasoning, and operation sense.  

Teachers are required to anticipate and understand a range of computational 

strategies that students might use (Hartnett, 2015), by planning and preparing for 

students’ responses (Smith & Stein, 2011). As a result, for many teachers there 

has been a shift from teaching standard algorithmic procedures for calculating, to 

allowing students to observe patterns and relationships, and make connections 

within and between concepts, in order to develop a feel for numbers (Hartnett, 

2015; Mulligan, 2013; Mulligan & Mitchelmore, 2009).  

1.3 Teachers and Teaching 

It has been argued that the most productive option for improving classroom 

instruction is to focus directly on improving the teaching rather than the teachers 

(Hiebert & Morris, 2012; Stigler & Hiebert, 2004). Hiebert and Morris maintain 

that improving teaching and gaining better results, begins by improving the 
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instructional methods that are implemented in the classroom. However, setting up 

a choice between teaching and teachers and differentiating between the two can be 

problematic, as teaching is generally simultaneously linked with the improvement 

of teachers (Chick, Baker, Pham, & Cheng, 2006; Davis & Renert, 2014; Lampert, 

2012; Stigler & Hiebert, 1999), and may sometimes even be used interchangeably 

(Hiebert & Morris, 2012).  

Attempts at defining quality teaching have systematically explored the nature of 

teachers’ work, and the relationship between teacher knowledge and student 

achievement (Gess-Newsome, 1999b). Recently Blazer (2015) researched the 

unique contribution of specific teaching dimensions to student outcomes, by 

focusing on teacher characteristics, practices, and skills. He argued that research, 

which combined background characteristics of teachers (education and teaching 

experience), teachers’ knowledge (mathematical content knowledge and 

knowledge of students’ performance), and non-instructional classroom behaviours 

(preparation for class) was new to the mathematics research and went beyond 

what existed in the field of previous mathematics research. Blazer reasoned that 

the combination of a teacher’s characteristics, practices, and skills, would 

ultimately be reflected in their students’ achievement. 

If student learning is to improve then ways to improve teaching must be explored 

and it is classroom-based research that examines the reality of what occurs in 

teaching practice. An example of such research is that of Stigler and Hiebert 

(1999), who conducted video-recorded, classroom-based research in several 

countries. The teachers were asked if they had read mathematics education reform 

documents, (e.g., those published in the National Council of Teachers of 

Mathematics) and whether they used the reform ideas in their classroom practice. 

Stigler and Hiebert concluded (after observation of the videos) that even when 

teachers acknowledged reading the reforms and believed that they implemented 

reform ideas in practice, there was little evidence of the teaching actually 

reflecting the goals of the reforms. After analysing the research from several 

countries, Stigler and Hiebert also determined that teaching is a culturally-based 

activity, with much homogeneity of methods within a country, and that one of the 

key attributes to teaching is the relationship between teachers and students as they 

work through problems. It is this relationship between teachers and students that 
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informed Blazer’s research, and became the focus for Hattie’s (2003) New 

Zealand based research.  

As with any subject area, the individual teacher makes a difference to student 

achievement in mathematics. Research undertaken by Hattie (2003) considered 

the attributes of excellence in teaching and concluded that approximately 30% of 

the variance in student achievement was the direct influence of the individual 

teacher. Hattie advocated that it was what teachers know, do, and care about, that 

makes the difference to student learning. Researchers have thus advocated that 

more attention be directed at higher quality teaching and higher expectations, so 

that students can meet appropriate challenges (Hattie, 2003; Rubie-Davies, 2007, 

2010). Teachers require knowledge about how mathematics is learned, how topics 

are sequenced for learning, where conceptual blockages occur, and where 

misunderstandings are likely, in order to carry out quality teaching (Barton, 2009). 

Capturing the essence of teaching by studying what it is a teacher knows, what 

they do, why they do it, and what effect it might have on student learning, is 

therefore an on-going topic of research and discussion. 

Currently there is limited research, and insufficient associated theories, to inform 

teachers about why it is that some highly mathematically qualified and motivated 

teachers are unsuccessful, and why it is that the students of some mathematically 

unqualified teachers receive top results (Barton, 2009). Effective teachers work 

hard to build trusting classroom communities and the relationships formed within 

those communities become the basis for developing students’ mathematical 

competencies and identities (Walshaw, 2014). Many students struggle with 

mathematics as they encounter obstacles when engaging with it as a subject. It is 

therefore imperative that educators understand what effective mathematics 

teaching looks like and what can be done to break the pattern of struggle 

(Anthony & Walshaw, 2009a; Boaler, 2013). There is a need for teachers to have 

and to maintain a sound knowledge of mathematics to underpin the structural, 

material, and intellectual choices that they make in their classrooms (Anthony & 

Walshaw, 2008). Teachers must be mathematicians and must know how to make 

the classroom a place in which mathematics is accomplished (Barton, 2009). 

Knowledge for the twenty-first century suggests a need to shift from many of the 

former traditional roles of teachers and learners (Bolstad & Gilbert, 2012; Gilbert, 
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2006; Hattie, 1999a) towards an inquiry-based programme (Ministry of Education, 

2007). Bolstad and Gilbert suggested that if the purpose of schools is no longer to 

transmit knowledge, then the teacher’s roles must be reconceived. Alongside this 

is the notion that if students are no longer merely to absorb and store up 

knowledge, then their roles also need to be reconceived. It is argued therefore, that 

rather than hypothetical learning, teaching should support students to engage in 

knowledge-generating activities, in authentic contexts (Bolstad & Gilbert, 2012; 

Fraivillig, Murphy, & Fuson, 1999; Ministry of Education, 2007, 2008a). 

Teachers need to get to know their students, their interests, their extra-curricular 

activities, their families, their cultural background, as these are important 

attributes to contextualising mathematics learning (Higgins & Averill, 2010).  

Professional development has a vital role to play in changing the knowledge and 

practice of teachers (Borko, 2004; Cohen & Ball, 1990). The notion of 

professional development, which typically tells teachers what to do, has been 

challenged by Loughran (2010), who preferred to highlight the importance of 

“professional learning” which he saw as supporting teachers in their growth. As 

teaching comprises many competing demands, understanding teaching has often 

been seen as problematic (Hattie, 1999a; Loughran, 2010). Loughran argued that 

the term “problematic” should not be viewed in a negative sense, but rather as 

dilemma based. He claimed that if teaching is understood as problematic, then it 

stands to reason that one aspect of learning about teaching is embedded in the 

journey of development and growth, and is guided by what individuals see as 

important to their (teaching) practice through their experiences. Teaching is a 

never-ending process of learning and part of the professional learning must 

involve new ways of seeing situations, testing out alternative approaches, and 

learning to see practice from both a teacher’s and a learner’s perspective 

(Loughran, 2010).  

Inquiry and sharing the outcomes of that inquiry are central to the teaching 

profession (Romberg & Carpenter, 2005). While it is recognised that classroom 

instruction has the most direct effect on student learning (Hattie, 1999; Hiebert & 

Wearne, 1993; Romberg & Carpenter, 2005), in order to develop high-quality 

instructional programmes in mathematics, teachers need to “share learning goals, 

take collective responsibility to reach them, jointly address the challenges that 
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arise, and share in developing methods to respond to those challenges” (Romberg 

& Carpenter, 2005, p. 325). Teaching and learning must be supported by 

opportunities for teachers to engage in dialogue within professional learning 

communities.   

1.4 Teachers’ Professional Knowledge  

When addressing the complexity of the knowledge required for teaching, Shulman 

(1987) proposed that if teachers’ professional knowledge was to be organized into 

a handbook, the categories might include: “content knowledge; general 

pedagogical knowledge; curriculum knowledge; pedagogical content knowledge; 

knowledge of learners; knowledge of educational contexts; and knowledge of 

educational ends, purposes, and values” (p. 8). Shulman recognised that there was 

a balanced interaction achieved between the three categories of general 

pedagogical knowledge, knowledge of curriculum, and knowledge of subject 

matter, which would provide teachers with specialised teaching knowledge, to 

which he gave the phrase Pedagogical Content Knowledge (PCK). In Shulman’s 

view, PCK is a form of practical knowledge used by teachers to guide their 

actions in contextualised classroom settings.  

Research has shown there is interplay between general pedagogical knowledge 

(derived from research and scholarly literature) and personal pedagogical 

knowledge (fuelled by personal beliefs and practical experiences) (Ball, Thames, 

& Phelps, 2008; Morine-Dershimer & Kent, 1999). Subject matter and beliefs, 

pedagogical knowledge and beliefs, and knowledge and beliefs about context are 

all influences on PCK (Magnusson, Krajcik, & Borko, 1999). Efforts to help 

teachers make substantial changes in their teaching must allow them to acquire 

both new knowledge and a change in beliefs. The many competing and at times 

confusing ideas associated with PCK, teacher beliefs, and student outcomes, have 

led in recent times to greater use of the term professional knowledge (Gess-

Newsome, 2015). Many educational researchers have thus explored PCK, its 

place within professional knowledge, and its influence on quality teaching 

practice (Anthony & Walshaw, 2009a, 2009b; Ball 2000a; Ball et al., 2008; 

Campbell et al., 2014; Chick & Beswick, 2013; Chick et al., 2006; Gess-

Newsome, 1999a; Hill, Ball, & Schilling, 2008; Lewis, 2014; Loughran, Berry, & 

Mulhall, 2012; Ma, 2010; Schoenfeld, 2013; Walshaw, 2014). The combination of 
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PCK, teacher beliefs, and student outcomes, has resulted in a shift in thinking 

around PCK by researchers. Subsequently, the development of a model of 

Teacher Professional Knowledge and Skill (TPK&S) has recently been produced 

(Gess-Newsome, 2015). The TPK&S model includes PCK and the influence it has 

on classroom practice and student outcomes. The model acknowledges 

weaknesses and limitations of original PCK thinking identified by Shulman 

(2015), including the non-cognitive attributes (emotion, affect, feelings, and 

motivation) and pedagogical action associated with teaching.  

Subject matter knowledge and PCK are inextricably intertwined and are key 

elements of teachers’ professional knowledge (Ball et al., 2008; Shulman, 1986). 

However, understanding the subject matter of mathematics sufficiently well to 

teach it is not just about being able to do the mathematics. The difference between 

demonstrating content knowledge and teaching content knowledge, has been 

questioned along with what content knowledge and pedagogical content 

knowledge is necessary and sufficient, for the teaching of mathematics in the 

primary school classroom (Ball, Lubienski, & Mewborn, 2001; Hill, Sleep, Lewis, 

& Ball, 2007; Moch, 2004). Knowledge relies on the teacher’s understanding of 

the content that they share with their students and the ability to transform that 

content into a context, which the students will understand (Chick & Baker, 2005; 

Moch, 2004). In mathematics, the term Mathematical Knowledge for Teaching 

(MKT) is often used alongside subject matter knowledge (Ball et al., 2008; Barton, 

2009; Davis & Renert, 2014). As well as general pedagogy and pedagogical 

content knowledge, MKT includes pure mathematics content knowledge with a 

focus on both what a teacher must know, as well as how one teaches it, 

encompassing the mathematical environment that a teacher must create in order to 

combine the two dimensions. It is more than book knowledge and requires 

teachers to be flexible with in-the-moment responsiveness (Davis & Renert, 2014). 

Frameworks of teacher knowledge 

Ever since Shulman introduced PCK into research terminology, many frameworks 

have been developed depicting the components deemed necessary by their writers. 

When discussing effective science teaching, Magnusson, Krajcik, and Borko 

(1999) suggested that PCK could be described as the transformation of several 

types of knowledge (including subject matter knowledge). Magnusson et al., saw 
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PCK as including five components: (1) orientation to teaching the subject; (2) 

knowledge of the curricula; (3) knowledge of assessment; (4) knowledge of 

instructional strategies; and (5) knowledge of students’ understanding of the 

subject (p. 99).  

The original ideas of Shulman, and the five components of the science framework 

developed by Magnusson et al., are similar to those instigated by Ball et al. (2008) 

in their mathematics framework. Ball et al. developed a framework of 

Mathematical Knowledge for Teaching (MKT), which is divided into two main 

sections: subject matter knowledge and pedagogical content knowledge. Subject 

matter knowledge considers the overlap between common content knowledge, 

specialised content knowledge, and horizon content knowledge. The framework 

breaks PCK down by examining the relationship between knowledge of content 

and students, knowledge of content and curriculum, and knowledge of content and 

teaching.  

Schoenfeld (2002) created a framework of knowledge based on theories 

associated with the mathematical knowledge required for teaching. He then 

applied his theoretically-based framework to videos he had recorded of actual 

teaching practice. The framework incorporated Knowledge, Orientation, and 

Goals (KOG). He used the framework to explain teacher actions and decisions 

made in the classroom according to the KOG of the teacher.  

As a result of research associated with teaching mathematics, Chick et al. (2006) 

developed a mathematical framework based on an identified range of component 

knowledge areas that captured Shulman’s three main aspects of PCK: subject 

matter knowledge, pedagogical knowledge, and knowledge of curriculum. The 

framework is divided into three sections: Clearly PCK, Content Knowledge in a 

Pedagogical Context, and Pedagogical Knowledge in a Content Context. Chick et 

al. based their framework categories on literature with the intention that it could 

be applied to data collected from discussions and interviews, written data (for 

example questionnaires), and teaching events (Chick et al., 2006).   

1.5 The New Zealand Context 

The national curriculum for schools in New Zealand is the result of the 1877 New 

Zealand Education Act, which made primary education free, secular, and 
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compulsory for all (Shuker, 1987). All New Zealand state schools are now 

expected to provide learning and teaching programmes based on the national 

curriculum statements in either The New Zealand Curriculum (NZC) (Ministry of 

Education, 2007), or Te Marautanga ō Aotearoa (Ministry of Education, 2008c).  

If the learning environment is not favourable for students, the chances are that 

new knowledge will not be built, there will be no connections made with existing 

knowledge, misunderstandings will occur, and learning will not reach its full 

capacity. The New Zealand Tertiary Education Commission (TEC) likens learning 

to the koru (New Zealand fern frond):  

Its natural and gradually unfolding growth pattern could be seen to reflect the process 

of successful learning, or ako. As fronds mature, new fronds begin to grow, 

nourished and sheltered by the work of existing fronds, the plant’s root system and a 

favourable environment. (Tertiary Education Commission, 2008, p. 5). 

As educators today are facing the immense challenge of meeting the needs of a 

rapidly changing society, the NZC endeavours to meet these demands. Schools 

are given autonomy to create a broad, balanced programme suited to their 

students’ needs and interests, that covers a selection of carefully considered 

objectives which may be explored in depth, within a two-year period (Ministry of 

Education, 2007).  

For the first time, the NZC document includes a section specifically related to 

teachers’ practice, entitled “Effective Pedagogy” (Ministry of Education, 2007,    

p. 34). This provides guidelines for teacher actions leading to quality classroom 

programmes, requiring teachers to regularly reflect on, and inquire into, the 

impact of their teaching practice on students’ learning. This is seen as a cyclical 

process, resulting in quality teaching and referred to as the “Teaching as Inquiry” 

process (Alton-Lee, 2003; Ministry of Education, 2007). This is a process where 

teachers become researchers of their own practice and could be described as a 

form of action research, where they bridge the gap between research and practice 

(Ball, 2000a; Cohen et al., 2000; Stigler & Hiebert, 2004). Effective curriculum 

implementation needs to take into account the individual teacher’s mastery of the 

subject matter being taught, along with expertise in how to teach it. The depth of 

subject knowledge a teacher possesses will be directly reflected in the programme 

developed in the classroom.  
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In more recent times it has been acknowledged that a limitation of earlier work on 

PCK was insufficient recognition of the significance of the broader social and 

cultural context within teaching (Shulman, 2015). Shulman determined that PCK 

must not only be pedagogical content knowledge, but also pedagogical culture 

knowledge and pedagogical context knowledge. Aligned to the notion of 

pedagogical culture knowledge, the NZC has embedded Principles, relating to 

cultural diversity and the Treaty of Waitangi (Ministry of Education, 2007, p. 9), 

which teachers are expected to adhere to in their daily teaching practice. This also 

aligns with Stigler and Hiebert’s (1999) research, which determined that teaching 

is a culturally-based activity, with much homogeneity of methods within a 

country, and that one of the key attributes to teaching is the relationship between 

teachers and students. 

The Numeracy Development Project 

On-going teacher professional development is an expectation of the New Zealand 

Ministry of Education and a criterion requirement of registered teachers with the 

New Zealand Education Council. A substantial amount of mathematics 

professional learning in New Zealand during the years 2000 to 2010, was related 

to the implementation of the Ministry of Education-led Numeracy Development 

Project (NDP), which saw most teachers received approximately 20 hours of 

support. The NDP was initiated as a result of poor performance by New Zealand 

students on the Third International Mathematics and Science Study (TIMSS) 

(Ministry of Education, 1997). The results of that study showed poor 

understanding by students in number (place value, fractions, and computation), 

measurement, and algebra concepts (Ministry of Education, 1997). As a result of 

the TIMSS study, the Minister of Education established the Mathematics and 

Science Taskforce to provide the kind and level of support classroom teachers 

required to implement curriculum reforms. Among the many recommendations, 

the report emphasised: the need for teacher support material, accompanied by 

some form of teacher development in mathematics; an initial focus on number 

concepts and then a move to other areas; and that the professional support needed 

to be school based and provided over a period of time (Ministry of Education, 

1997).  
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The goal of the NDP was to promote high-quality mathematics teaching. Three 

key themes emerged from the findings of the Literacy and Numeracy Strategy 

(Ministry of Education, 2001, 2002) and the Taskforce Report (Ministry of 

Education, 1997) and these formed the main purposes of the NDP: 

1. Improve the achievement of students in Number and Algebra and in the other 

strands of the mathematics and statistics learning area. 

2. Develop the pedagogical and content knowledge of teachers to enable them to 

meet the learning needs of all their students. 

3. Inform schools and communities about the significance of numeracy to the future 

lives of their students. 

(Ministry of Education, 2001, p. 2) 

A key feature of the NDP was the individual task-based diagnostic interview, 

known as the Numeracy Project Assessment Tool (NumPA) (Ministry of 

Education, 2008d). A diagnostic interview has elements of what has been termed 

a “smart tool” (Robinson & Timperley, 2007). Robinson and Timperley report 

that a smart tool incorporates a valid theory of the task for which it was designed, 

and that the tool itself is well designed. Although individual interviews are clearly 

demanding of teaching time, the experiences of teachers involved in NDP 

professional development, indicated that the benefits of NumPA were 

considerable in assessing understanding of what students knew (and did not 

know), and could do in mathematics (Bobis et al., 2005). The diagnostic interview, 

as well as the data generated from its use, contributes to implementation of the 

NDP into the mathematics classroom (Higgins & Bonne, 2009). NumPA results 

from the orally assessed tasks were often combined with those of written tasks 

from such tools as the Progressive Achievement Test (PAT) (New Zealand 

Council for Educational Research, 2006), as they both informed teachers’ 

planning and assisted in the development of students’ mathematical thinking. 

A key theoretical component of the NDP was the introduction to teachers of a 

Number Framework which outlines the progressions students make through stages 

of strategy and knowledge application (Ministry of Education, 2008a). The 

strategy section of the NDP Framework, describes the mental processes students 

use to determine an answer to any given mathematical problem, while the 

knowledge section outlines what the students need to know in order to solve those 

problems. Both sections of the Number Framework are set out in stages of 

increasing complexity, requiring greater understanding of number, as learners 
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progress through them (Bobis et al., 2005; Higgins & Parsons, 2011; Wright, 

2014). Gaps in understanding previous stages can have a compounding impact on 

low student achievement and create self-perpetuating cycles of underachievement 

as they progress through the school years (Allsopp, Kyger, & Lovin, 2007). 

The teaching and learning sequence for introducing new strategies and concepts is 

referred to in the NDP material as the “teaching model” (Ministry of Education, 

2008b; Wright, 2014). The model was based on the work of Pirie and Kieren 

(1989, 1994) and is derived from constructivist learning theory. The strategy 

teaching model is a subtle tool that should not be interpreted as a set of 

mechanical rules, but rather is the basis for teachers to see their teaching as 

experimental and always in the process of development. The critical idea is that 

rather than teachers telling students how to solve problems, problems are given to 

the students so that they grapple with them in order to construct meaning for 

themselves (Ministry of Education, 2008b). In engaging with new concepts the 

teaching model suggests that students will progress through three stages: using 

materials; solving problems through imaging; and using number properties. The 

importance of the phases of concrete, to representational, to abstract has been 

emphasised in research and is referred to it as the Concrete Representational 

Abstract (CRA) model (Flores, 2010). Moving through these phases demonstrates 

greater degrees of abstraction in a student’s thinking. At times students fold back 

to previous phases of the model, as it is critical that they attempt to connect 

mathematical abstraction, with the actions on materials and increased complexity 

of numbers (Ministry of Education, 2008b; Wright, 2014). There is a complexity 

associated with using number properties and the gap between the use of materials 

and abstraction (called Using Number Properties in this model) can at times be 

difficult for students to bridge (Ministry of Education, 2008b). Using visual 

imagery prior to the introduction of more formal procedures assists in the 

transition between using materials and the abstraction process (Bobis, 1996; 

Flores, 2010). In the NDP model this visualising process is referred to as “using 

imaging”.  

The NDP changed the way mathematics was taught in New Zealand primary 

schools, putting more emphasis on encouraging students to have multiple mental 

strategies for solving problems with conceptual understanding (Wright, 2014). 
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Attention was given to developing students’ mathematical thinking through 

targeted questioning in order to achieve a higher level of mathematical thinking 

(Higgins & Parsons, 2011). A modelling book was frequently used as a shared 

recorded history of learning, and provided the teacher and students with a means 

of informing discussion through linking back to previous mathematics sessions 

(Higgins, 2006).   

Facilitators worked alongside teachers in their classrooms using a contextual 

approach to teaching, which focused on students’ strategies, meaningful activities, 

and multiple representations (Higgins, 2005a; Higgins & Parsons, 2011). A 

school-based lead teacher appointed in each school worked under the guidance of 

an external facilitator (Higgins, Sherley, & Tait-McCutcheon, 2007). Lead 

teachers were responsible for undertaking administrative tasks (for example 

collecting school-wide NumPA data), communicating information throughout the 

school, and assisting in professional development. As time progressed, 

sustainability of the change in practice brought about in schools as a result of the 

NDP professional learning, meant the lead teacher’s role became increasingly 

important within the school. There was a need to develop a positive learning 

community between the principal, lead teacher, and classroom teachers (Higgins 

et al., 2007).   

1.6 Rationale for this Study 

The purpose of this study was to further understand the relationship between the 

espoused professional knowledge of teachers, their professional knowledge in 

practice, and the contribution it makes to student learning, when teaching 

mathematics for numeracy in the New Zealand primary school classroom. 

Professional knowledge required for teaching is complex and multi-layered, 

covering many different aspects of knowledge required by teachers in relation to 

the subject they teach, the manner in which they teach, and the students they teach. 

This research investigated the attributes that are associated with the many 

categories of teachers’ professional knowledge, that allow some teachers to be 

more successful in supporting and engaging their students to achieve the 

mathematical understanding required, when solving problems competently and 

confidently. In identifying the strengths and weaknesses, it was envisaged that 

these could be utilised in future reflection by teachers and in professional learning 
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opportunities, to improve teaching practice. An outcome of the research was to 

compile a model that would assist teachers to reflect on their professional 

knowledge in practice to assist in raising the level of achievement of their students.   

This study focused on teaching the multiplicative and proportional domains as set 

out in the Numeracy Framework, as longitudinal numeracy data at the time the 

study commenced, indicated that students were underachieving in these two 

important areas (Young-Loveridge, 2009, 2010). Young-Loveridge aggregated 

data from over thirty-three thousand students, from 2003 to 2007, and found that 

at the end of Year 6 just over half (53%) of the students were meeting the 

Ministry’s numeracy expectations in the multiplicative domain (Young-Loveridge, 

2010, pp. 21-22) as outlined in the Mathematics Standards (Ministry of Education, 

2009, 2010). The longitudinal data also showed that in the proportional domain, 

by the end of Year 5, 29% of the students were meeting expectation (Stage 6 or 

higher), and by the end of Year 6, 44% of the students were achieving at this level 

(Young-Loveridge, 2010). This data was collected from teachers who had 

completed one year of the NDP, and during that time received twenty hours of 

professional learning and in-class support from a numeracy facilitator. Subsequent 

National Standards data (Ministry of Education, 2015b), confirms the earlier data, 

that there are still issues with achievement in mathematics, particularly for Māori 

and Pasifika students.  

Part of the reason for the low achievement might be attributed to the relatively 

short length of time each teacher was given to implement the change in their 

teaching (Higgins & Parsons, 2011; Knight, 2005). Research has clearly shown 

that change takes time (Darling-Hammond, 2010; Gilbert, 2006; Ma, 2010; 

Schoenfeld, 2011). Another part of the reason for low student achievement might 

be due to the lack of teacher knowledge (Patterson, 2015). Patterson suggested 

that teachers’ mathematics abilities are even more important today, when teaching 

mathematics with conceptual understanding, than in the “olden days” when they 

relied on rote-learned facts and procedures. Students’ understanding of 

mathematical concepts emphasised in mathematics teaching in today’s classrooms, 

depends on teachers understanding mathematical concepts themselves.  

While Young-Loveridge’s research showed that students were under-achieving in 

the proportional domain, other research suggested New Zealand teachers’ PCK, in 
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particular their content knowledge was also lacking in this area (Ward & Thomas, 

2007; Ward, 2009). Very little in-school, classroom-based research associated 

with the teaching of the multiplicative and proportional domains has been carried 

out in New Zealand primary schools, possibly due to the difficulty it imposes. 

Recent New Zealand-based research completed by Ward (2009) on teachers’ 

knowledge of fractions, utilised data collected anonymously from questionnaires 

and surveys. This meant that the data was based on the teachers’ opinions of their 

teaching rather than their actual classroom practice. While observations can be 

time consuming and intrusive, they put the researcher right where the action is, 

where the reality of what is going on can be noted (Corbin & Strauss, 2008; 

Stigler & Hiebert, 2004). Hence, this study focussed primarily on in-class 

research and combined this with questionnaires to gain a more accurate overall 

representation of teachers’ professional knowledge. The research studied the 

relationship between the teachers’ espoused professional knowledge, professional 

knowledge in action, and student achievement.  

1.7 Researcher’s Positioning 

At the time this study commenced, I worked in a dual role as a numeracy adviser 

to primary school teachers, and as a mathematics education teaching fellow at a 

university. This meant that I was in the unique position of supporting teachers 

currently working within the classroom, as well as preparing pre-service students 

for their role as a teacher. The Ministry of Education funded NDP was nearing 

completion of its initial phase, during which most teachers in New Zealand 

primary schools had been involved in intensive support, focused on making a 

difference to the instructional practices of their mathematics programmes. As 

previously noted, the NDP data presented at the time showed that students were 

not achieving at the expected Standard (Ministry of Education, 2009a, 2010; 

Young-Loveridge, 2009, 2010). Primary school teachers around New Zealand had 

devoted much time and energy to their professional learning and development in 

mathematics over this period, many also completing university papers that had 

been set up alongside the NDP programme. Of particular interest and concern to 

me was the question, “Why was it that after eight years of the NDP, did research 

data still indicate that the majority of students were not achieving at their 

expected curriculum level?” I wanted to gain insight about why the progress that 
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students were expected to have made was not occurring as anticipated, 

particularly at the senior level of the primary school. The Government, schools, 

and teachers, had spent large amounts of money and many hours of time on 

professional learning and development. Therefore, another niggling question was, 

“What was it that had been overlooked in the NDP process?” These questions 

concerned me as I searched for ways I could further help in-service teachers and 

pre-service students I worked with, improve their teaching practice and raise the 

level of student achievement. I wished to find out more about teachers’ 

professional knowledge associated with the teaching of mathematics, the impact 

this knowledge had on their mathematics teaching practice, and how it contributes 

to student learning. 

At the end of Year 6, many New Zealand students move from their current 

primary school to intermediate school. If they are to progress to intermediate 

school (Years 7 & 8) at the expected level of achievement, they should be ready to 

work at Stage 7 on the Number Framework (Ministry of Education, 2008a), or 

Level 4 within the NZC (Ministry of Education, 2007, 2010). With Young-

Loveridge’s data indicating that less than half of the students were achieving at 

Stage 6 by the end of Year 6, as an advisor and researcher I was curious to 

understand why this was so. I discussed the data with my colleagues in an effort 

to find an answer. Some believed it was lack of content knowledge on the part of 

the teacher, and students would not progress in their mathematics if their teachers 

did not understand it themselves, while others argued that it was the way the 

teachers taught the mathematics as one can have limited subject matter knowledge 

and still be a good teacher. Others argued that the teachers had participated in the 

NDP professional development, had plenty of resources and support, but found it 

difficult to change the way they were currently teaching. Therefore, [friendly] 

arguments and discussions among my colleagues continued. All ideas seemed 

valid and if progress was to be made by the teachers and an increase in student 

achievement to be made, then constraints and enablers needed to be identified, so 

that constructive support could be given. This concern became the basis for this 

research. 
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1.8 Aim of the Study 

The aim of this research was to investigate key factors that enable teachers to put 

effective teaching of mathematics for numeracy into practice in the primary 

school mathematics classroom, in order to improve student achievement.  

Three specific questions framed this research:  

1) What professional knowledge is evident when teaching mathematics for 

numeracy in (a) the multiplicative domain and (b) the proportional domain? 

2) What relationships are there between teachers’ espoused professional 

knowledge, professional knowledge in practice, and student learning, 

when teaching mathematics for numeracy in (a) the multiplicative domain 

and (b) the proportional domain? 

3) How does the use of a framework assist in the investigation of teachers’ 

professional knowledge in practice?  

1.9 Structure of the Thesis 

The thesis began with an introduction highlighting key concepts and background 

contexts of the study, along with the rationale and aim of the study. It continues in 

Chapter Two, with a review of the background literature and research relevant to 

developing the professional knowledge of primary school teachers. It examines 

theories associated with mathematics learning, the impact of education reforms on 

teaching and learning, and the influence these have had on current teaching 

practices. The study explores teachers’ professional knowledge by highlighting 

the role of pedagogical content knowledge (PCK) and the term numeracy in 

relation to mathematics education. Relevant literature related to key knowledge 

required when teaching the multiplicative and proportional domains is explored. 

Some of the frameworks available for investigating mathematics teaching are 

critiqued in relation to teaching practice. Chapter Three outlines the 

methodological approach taken and describes the theoretical perspectives that 

underpin the research. It outlines the case-study teachers involved in the research, 

data-gathering methods, tools used in analysis of the research, along with ethical 

considerations including the researcher’s dual roles and possible conflict of 

interest. Chapters Four, Five, Six, and Seven present the results and analysis of 

teacher espoused professional knowledge, teacher practice (in the multiplicative 
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and proportional domains) and student learning. Chapter Eight presents a 

discussion relating to the multiplicative domain results, while Chapter Nine 

presents a discussion of the proportional domain results. Chapter Ten discusses 

the relationship between espoused professional knowledge, professional 

knowledge in action, and student learning. The final chapter (Chapter Eleven) 

presents conclusions in relation to the research questions, consideration of 

limitations of the study, and implications of the findings for both teaching and 

further research. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter presents a review of literature around the topic of this research: The 

relationship between primary school teachers’ professional knowledge, their 

teaching practice, and student achievement, when teaching mathematics for 

numeracy in the multiplicative and proportional domains. Chapter 1 set out the 

use of the term Professional Knowledge, based on the seminal work of Shulman 

(1986), to describe the ways in which teachers construct and reconstruct the 

knowledge required for teaching (Beattie, 1997; Bobis, Higgins, Cavanagh, & 

Roche, 2012; French, 2007; Ponte, 1994; Schoenfeld, 2011). Understanding what 

a teacher’s professional knowledge really is, what it looks like, and how it might 

be used during classroom instruction can be exceptionally difficult (Loughran, 

2010; Ma, 2010).  

The literature review initially considers theories associated with mathematics 

teaching and learning along with mathematics education reform throughout recent 

decades. Following this is a critical examination of teachers’ professional 

knowledge, including PCK, content knowledge, and mathematical knowledge 

required for teaching. This is followed by distinction between use of the terms 

mathematics and numeracy and the place of professional learning and 

development in the implementation of these in classroom practice.  

It is evident that mathematics teaching differs somewhat from one country to 

another (Delaney, Ball, Hill, Schilling, & Zopf, 2008; Ma, 2010; Roche & Clarke, 

2011; Stigler & Hiebert, 2004), and that the PCK required is subject specific and 

context specific (Gess-Newsome, 1999a, 2015; Hill et al. 2008; Shulman, 2015; 

Steele, 2005). The next section of this chapter examines the teaching of the 

multiplicative and proportional domains in the New Zealand context. The chapter 

concludes with an analysis of frameworks of teacher knowledge available to 

researchers. 
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2.2 Theories Associated with Mathematics Learning 

While there are many theories associated with research, two main theories 

currently dominate mathematics education: Piaget’s constructivism and 

Vygotksy’s socio-cultural theory (Confrey & Kazak, 2006; Lambdin & Walcott, 

2007). Whilst there are distinctions between the ideologies associated with these 

two theories, some theorists combine key aspects to form a third theory, known as 

social-constructivist theory (Lambdin & Walcott, 2007).  

Constructivism 

One of the bases for the development of constructivist theories in education can 

be attributed to the work of psychologist, Jean Piaget. Piaget developed ideas of 

children progressing through particular stages in their thinking patterns and 

creating knowledge in an active way. Central to constructivism is the notion that 

learners are not blank slates but instead creators (constructors) of their own 

learning. The networks within which they associate, are both the result of the 

already constructed knowledge and a tool from which new knowledge can be 

formed (Yackel & Cobb, 1996). Hence, children do not simply absorb new 

knowledge but create it for themselves based on networks, which are continually 

modified. Constructivism recognises that mathematics must make sense to the 

students if they are to retain it.  

It has been argued that constructivism is a theory of learning, rather than a theory 

of teaching, and is said to have developed in mathematics education to counter the 

effects of behaviourism (Confrey & Kazak, 2006; Lambdin & Walcott, 2007; 

Simon, 1995; Steffe & Kieren, 1994). As such, constructivism has influenced 

teachers’ understanding of how children learn mathematical concepts of 

numeration, quantification, space, logic, chance, and data (Confrey & Kazak, 

2006). Teaching recognises constructivist theory and strategies used in the 

teaching process will focus on the strengths and resources children bring to tasks, 

that makes their involvement and participation central to the learning (Cobb, 2007; 

Confrey & Kazak, 2006; Lambdin & Walcott, 2007). The introduction of 

constructivism has thus helped educators think about what mathematical 

knowledge is, how it is acquired, and what the implications are for teaching. 
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In the modern mathematics classroom, teachers generally utilise a questioning and 

facilitating role, and learning is seen as an activity where shared mathematical 

meanings are constructed with others, and drawn from the mathematical learning 

environment (Fraivillig et al., 1999; Hansen, 2005; Tout & Motteram, 2006; Way, 

2008). Whether a child is listening passively to a teacher or peer, or actively 

participating in discussion, his or her brain is applying prior knowledge to make 

sense of new information: it is constructing meaning to the things he or she is 

thinking about (Cobb, 1994). 

The notion of constructivism is recognised in NZC (Ministry of Education, 2007) 

where “making connections to prior learning and experience” are emphasised 

(p.34). The NZC acknowledges that students learn best when they integrate new 

learning with what they already understand. This also allows teachers to make 

connections across learning areas.    

Socio-cultural theory 

In more recent years, theories related to teaching and learning in mathematics 

have placed an increasing importance, and emphasis on factors relating to social 

factors at a macro level (Cobb, 1994; Cobb & Steffe, 1983; Griffiths, 1998). This 

has resulted in an increase in interest on the sociocultural aspects of mathematics 

education and their impact on students’ learning (Jorgensen, 2010; Rubie-Davies, 

2010; Rubie-Davies, Peterson, Sibley, & Rosenthal, 2015; Seah, Atweh, Clarkson, 

& Ellerton, 2008). From a sociocultural perspective, the classroom is comprised 

of students from varying cultural and social backgrounds, with varying beliefs and 

expectations of education. Learning is carried out through active engagement and 

participation in activities in particular contexts, and in the mathematics classroom 

is the basis of the interplay between who they are, those with whom they are 

working, and the mathematics context they are addressing (Bruner, 1986; Cobb & 

Bauersfeld, 1995; Lerman, 2006; Op‘t Eynde, 2004; Op’t Eynde, De Corte, & 

Verschaffel, 2002).  

Central to sociocultural theory is the work of Vygotsky. Vygotsky suggested that: 

“Every function in the child’s cultural development appears twice: first, on the social 

level and, later on, on the individual level; first, between people (inter-psychological) 

and then inside the child (intra-psychological). This applies equally to voluntary 

attention, to logical memory, and to the formation of concepts. All the higher 

functions originate as actual relationships between individuals.”  
  (Vygotsky, 1978, p. 57). 
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Vygotsky (1978) introduced the term Zone of Proximal Development (ZPD), as a 

symbolic space created through the child’s interaction with more knowledgeable 

learners (Vygotsky, 1978). When working in the ZPD, particular attention is 

given to the language being used, as the language of students influences how they 

will interpret situations and strategies, and build understandings (Bell & Woo, 

1998). This includes learning, which is guided by effective, analytic questions 

posed by the teacher.  

Socio-cultural theorists report that collaboration and conversation is crucial to the 

transformation of external communication to internal thought (Cobb & Bauersfeld, 

1995; Op‘t Eynde, 2004). This clearly exists in the mathematics classroom as 

students and teachers interact and work in partnership with each other in groups. 

When a learning environment is constructed in which students are required to talk 

and act like mathematicians this becomes as much of a priority as the lesson 

learning outcome (Askew, 2007; Hunter, 2012). Teachers encourage discussions 

and provide opportunities for the sharing of ideas, explanations, and opinions, so 

that common understanding is reached by all of the students participating in the 

learning (Cobb, 1994). When children present their ideas and verbally present 

their rationale for their actions, argumentation becomes part of the social 

interaction (Bruner, 1990; Cobb & Bauersfeld, 1995). Bruner refers to this as 

“folk psychology” of classroom learning. 

As early as the first year at school, children learn to listen to other children, and to 

talk about their solutions to problems (Cobb, Wood, & Yackel, 1990; Wood, 

Cobb, & Yackel, 1995; Yackel & Cobb, 1996). Different types of interactions the 

students are involved in influence the learning opportunities for them. There are 

times when the conversation becomes univocal (when the perspective of one 

student dominates), and one student explains their solution to a problem while the 

other student(s) listen to and makes sense of the problem (Cobb & Bauersfeld, 

1995). At other times the conversation is multivocal (when both [all] students 

voice their opinions) and both students involved express their ideas and challenge 

each other’s thinking (Cobb & Bauersfeld, 1995). Case studies carried out by 

Cobb and Bauersfeld concluded that the multivocal conversations were usually 

the more productive and provided a basis for mathematical communication.  
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Social-constructivism 

Some theorists posited that elements of constructivism and socio-cultural theory 

can be combined, and so it is unnecessary to choose between the two paradigms 

(Cobb, 2006; Norton & D’Ambrosio, 2008). Hence, Piaget’s constructivism and 

Vygotsky’s socio-cultural theory, morphed into enthusiasm for modern-day 

constructivism (Lambdin & Walcott, 2007, p. 15). The sense-making and process 

that children undergo as they construct their own knowledge are drawn from 

constructivism and combined with the social and cultural interactions of the 

classroom.  

Mathematics education over the last few decades has been based around the 

alternatives to the traditional perspectives on what it means to learn and to know 

mathematics (Lambdin & Woolcott, 2007) and is now seen as a cognitive activity, 

influenced by social and cultural processes (Wood et al., 1995; Wood, Williams, 

& McNeal. 2006). The Numeracy Development Project (NDP) teaching model 

used in New Zealand primary schools, reflects a social-constructivist perspective 

(Wright, 2014).The teaching model acknowledges both the social setting created 

in the mathematics classroom and the personal construction of knowledge as 

children progress through the materials, to imaging, and then to the number 

properties phases. The NDP teaching model also reflects constructivist ideologies 

in that the children’s prior learning practices and understandings impact on how 

they interpret and engage with new situations. 

2.3 Reforms in Mathematics Education 

Teacher education programmes, professional development, and curricula have 

changed the approach to teaching mathematics, as a result of on-going reforms in 

education. While reforms in schools may differ from country to country in content, 

direction, and pace, they generally have five common factors: (1) Governments 

intervene to change conditions under which students learn in order to accelerate 

improvements and raise standards of achievement. (2) They address implicit 

worries of governments concerning fragmentation of personal and social values in 

society. (3) They challenge teachers’ existing practices. (4) They increase the 

workload for teachers. (5) Inattention is given to teachers’ identities – including 

commitment, job satisfaction, and effectiveness (Day, 2002).  
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Reform in mathematics education takes considerable time due to the many steps 

from government policy, to changes in an individual school or classroom (Day, 

2002; Lamon, 2007). The most frequently cited reasons for education reform have 

to do with the impact on learning outcomes for students (Levin, 2001). Although 

education reforms are often framed in terms of student outcomes, the approach to 

changing student outcomes usually involves attempts to alter the way that 

individual teachers work in their classrooms, and the way that schools work as 

institutions.  

The teaching of mathematics in schools throughout the twentieth century saw six 

identifiable phases, each with its unique emphasis: drill and practice, meaningful 

arithmetic, new mathematics, back to basics, problem solving, and standards and 

accountability (Lambdin & Walcott, 2007). Each of these phases introduced what 

was seen as new and innovative practices, for that particular period of time. For 

example, the drill and practice era of the 1920-1930 period was based on rote 

memorisation of facts and frequent practice of algorithms. Following the Great 

Depression of the 1930s, mathematics education saw a swing from meaningless 

rote learning, to a new emphasis on developing mathematics in a more meaningful 

way. Many mathematics educators of the time struggled with the merits of 

incidental learning and it was soon claimed that to learn arithmetic meaningfully, 

it was necessary to understand it systematically. This meant that while it was 

acknowledged that the significance of number was functional, the meaning of 

number was mathematical (Lambdin & Walcott, 2007).  

The 1960s saw one of the greatest changes in education, as a result of the 

introduction of the space age. It was thought that schools were no longer 

preparing students sufficiently to be capable of understanding the concepts 

necessary to compete in the new technology-driven workforce (Lambdin & 

Walcott, 2007; McQueen, 2006; Skemp, 1989). The 1960s became known as the 

“new mathematics” phase (Brown, Askew, Baker, Denvir, & Millett, 1998; 

Lambdin & Walcott, 2007). Mathematics was taught in sequential topics which 

became increasingly more complex and were often returned to, again and again. 

Before long, concerns were expressed about whether students were learning what 

was required for the workplace and life in general and in the 1970s mathematics 
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teaching returned to drill and practice. This was labelled the “back-to-basics” 

phase (Brown et al., 1998; Lambdin & Walcott, 2007; Perso, 2007).  

The 1980s saw many educators believe that the pendulum had swung too far in 

returning to the basic facts drills and the “problem-solving” phase was introduced 

(Lambdin & Walcott, 2007). During this era, lessons on problem-solving 

strategies included drawing pictures, working co-operatively in groups, and 

verbalising thinking. The emphasis was on teaching mathematics in ways that had 

continuity between school and the outside world and in a manner, which enabled 

learners to bring their intelligence, rather than rote learning, into use when solving 

their mathematics problems (Skemp, 1989).  

The problem-solving approach introduced during the 1980s became further 

refined in the 1990s, when a distinction was made between the original idea of 

teaching students how to solve problems, to teaching them about problem-solving 

and for problem solving (Hunter, 2012; Lambdin & Walcott, 2007). This resulted 

in action to address the standard of mathematics education, through changes in 

teachers’ qualifications, classroom instruction, accountability, and mandated 

assessments (Lambdin & Walcott, 2007). The New Zealand mathematics 

curriculum of this era (Ministry of Education, 1992) was written in five strands, 

number, algebra, geometry, measurement, and statistics. These were subsequently 

amalgamated into three strands: number and algebra, geometry and measurement, 

and statistics (Ministry of Education, 2007). Along with a reduction in the number 

of mathematics strands, the NZC (Ministry of Education, 2007) included sections 

on vision (what is wanted for the young people of New Zealand), principles 

(foundations of curriculum decision making, values (to be encouraged and 

explored), and key competencies (capabilities for living and lifelong learning).  

Since the 1990s accountability and assessment expectations have come to the fore. 

NZC promotes assessment as a relationship between teachers and students and 

teaching and learning:  

“The primary purpose of assessment is to improve students’ learning and teachers’  

teaching, as both student and teacher respond to the information that it provides.  

It involves the focused and timely gathering, analysis, interpretation, and use of  

information, that can provide evidence of student progress”  

(Ministry of Education, 2007, p. 39).  
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Many countries have seen the development of numeracy standards, and standards-

based curricula. For example, New Zealand has The New Zealand Curriculum 

Mathematics Standards for Years 1– 8 that require teachers to twice-yearly report 

on student progress against (end of year) curriculum expectations (Ministry of 

Education, 2009a). Australia has The National Assessment Program – Literacy 

and Numeracy (NAPLAN) which is an annual assessment for students in Years 3, 

5, 7, and 9, and has been an everyday part of the school calendar since 2008 

(Australian Curriculum and Reporting Authority, 2011, 2015). The United States 

has the National Council of Teachers of Mathematics (NCTM) Principles and 

Standards for School Mathematics (National Council of Teachers of Mathematics, 

2000) and the Common Core State Standards (CCSSI) (Common Core State 

Standards Initiative, 2010).  

2.3.1 Factors Contributing to Current Mathematics Education 

Reforms 

Mathematics lessons need to allow students to see the relevance it has to them by 

making connections between what they are learning inside the classroom and the 

things they care about in the world around them (Boaler, 2008; Davis & Renert, 

2014; Skemp, 1989; Steen, 1999). This has required a change in teaching style for 

many teachers, with a shift from the more traditional didactic model that focused 

on students’ proficiencies in reproducing existing solution methods and strategies, 

to one that encourages students to construct their own meaningful mathematical 

concepts through an inquiry-based model (Boaler, 2008).  

The current standards-based education system supports a curriculum that 

emphasises concepts and meanings, rather than rote learning, and promotes 

integrated, rather than piecemeal usage of mathematical ideas (Howley, Larsen, 

Solange, Rhodes, & Howley, 2007; Stigler & Hiebert, 2004). Two key factors 

have been identified when solving mathematics problems: the concepts and the 

processes (Hull, Balka, & Miles, 2011; Ma, 2010). In today’s mathematics 

classroom concepts are taught first and foremost. Procedures are also learnt, but 

not without first acquiring a conceptual understanding (Schwartz, 2008).  

Developing procedural knowledge at the expense of conceptual understanding has 

often been cited as part of the reason for poor mathematics proficiency (Ball, 1992; 

Burns, 1998; Kazemi & Stipek, 2001; Scharton, 2004; Skemp, 1976). As 
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explained in Chapter 1, the procedural approach to teaching was referred to by 

Skemp as “instrumental understanding” or “rules without reason”, while 

conceptual understanding was known as “relational understanding”. When 

students are drilled in methods and rules that do not make sense to them, it is not 

only a barrier for their mathematics understanding, but it also leaves the students 

frustrated, and with a negative disposition towards mathematics in the long term 

(Boaler, 2008; Davis & Renert, 2014; Yackel, 2001).  

Conceptual understanding in mathematics develops when students see the 

connections between procedures and concepts, and can explain the relationships 

between facts, based on structures and patterns (Rittle-Johnson, Siegler, & Alibali, 

2001).  One of the benefits of emphasising conceptual understanding to students is 

that they are less likely to forget concepts than procedures, and once conceptual 

knowledge is gained they can use it to reconstruct a procedure they may have 

otherwise forgotten (Schwartz, 2008). Conceptual understanding is intertwined 

with procedural knowledge (Wong & Evans, 2007) and the combination is much 

more powerful than either one alone. Rittle-Johnson et al., concluded that 

conceptual understanding was a prerequisite for students to select appropriate 

procedures to use when solving mathematical problems, and that developing 

procedural knowledge had effect on conceptual understanding. However, as 

Schwartz has asserted, for teachers to focus on the conceptual teaching of 

mathematics, they must first have conceptual understanding themselves and one 

of the biggest challenges in moving from a procedurally oriented way of teaching 

to conceptually oriented teaching, has been ensuring that teachers have the 

necessary mathematical understandings. Once conceptual understanding is 

developed, it becomes conceptual knowledge to sit alongside procedural 

knowledge (Rittle-Johnson et al., 2001). 

In order for students to progress in their mathematics learning, teachers need to 

engage in classroom practice that encourages students to make connections 

between mathematical ideas and concepts (Askew, 1999, 2007, 2013; Schwartz, 

2008; Skemp, 1976; Stigler & Hiebert, 2004; Treffers, 2001). Developing 

conceptual understanding is essential if mathematics is to be learnt with 

understanding and something will only be understood if one can see how it is 

related or connected to other things that are known (Ball & Bass, 2003; Hiebert & 
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Carpenter, 1992; Kazemi & Stipek, 2001; Skemp, 1989). Connections need to be 

made between different aspects of mathematics (for example division and 

fractions), between different representations of mathematics (between symbols, 

words, diagrams, and objects), and with children’s methods (valuing children’s 

thinking and sharing their methods) (Askew, 1999). Skemp (1989) advocated that 

to understand something means to have the capacity to be able to transfer it into 

another similar situation, theory, or strategy (relational understanding). If mental 

models are to be of any use, they must be remembered not as single experiences 

from a range of past events, but for the commonalities of these experiences, which 

can be recognised on future occasions (Burns, 1998, Hiebert & Carpenter, 1992; 

Skemp, 1989). These commonalities form connections, or a large web of number 

relationships with an interaction between numbers and operations (Treffers, 2001). 

According to Treffers, the ability to see relationships as something tangible, in 

spite of their abstract nature, should make it possible for students to progress into 

higher levels of mathematics study at a later stage. 

Alongside the experiences of their students, teachers need to consider the 

appropriateness of the problems and tasks they assign their students. A 

mathematical task may be described as “a classroom activity, the purpose of 

which is to focus students’ attention on a particular mathematical idea” (Stein, 

Grover, & Henningsen, 1996, p. 460). Stein et al., categorized mathematical tasks 

in terms of the cognitive demand they necessitate. They defined “memorization 

and procedures without connections” tasks as lower-level tasks. These tasks 

require students to solve a problem by remembering memorized information and 

applying a procedure, without understanding its meaning. “Procedures with 

connections” and “doing mathematics” tasks were identified as higher level.  

These tasks require students to choose and apply suitable procedures make 

connections within and between multiple representations, in order to find the 

reasonable solution. Higher-level tasks have a greater impact on students’ 

thinking and understanding. It is important for teachers to anticipate how students 

may perceive a task mathematically by examining the task from the students’ 

perspective (Smith & Stein, 2011; Stein et al., 1996).  

Associated with the importance of conceptual understanding in mathematics is the 

use of tools and manipulatives. A tool refers to any object, drawing, or picture, 
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which represents that concept (Perry & Howard, 1997; Suh, 2007; Swan & 

Marshall, 2010; Thompson, 1994). For example, drawings may be used as a tool 

for emerging ideas, as sometimes it is difficult for students to think about and 

understand abstract relationships if relying only on words and symbols. A 

mathematics manipulative is defined as, “any object that can be handled by an 

individual in a sensory manner during which conscious and unconscious 

mathematical thinking will be fostered” (Swan & Marshall, 2010, p. 14). 

Manipulatives are frequently used in mathematics lessons with the claim that they 

extend students’ learning of mathematical concepts and operations, as they make 

them more comprehensible (Burns, 1998; Ma, 2010; Nührenbörger & Steinbring, 

2008; Ross, 1989; Schoenfeld, 2011; Swan & Marshall, 2010; Wright, 2014). 

Manipulatives can be used to represent the mathematical concepts underlying the 

procedure, and that connections need to be made between the two – the 

manipulative and the mathematical idea (Carbonneau, Marley, & Selig, 2013; 

Clement, 2004; Clements & McMillen, 1996; Fennell & Rowan, 2001; Ma, 2010; 

Pape & Tchoshanov, 2001; Zevenbergen et al., 2004). However, simply taking 

manipulatives, picking them up and using them, will not magically impart 

mathematical knowledge and understanding (Swan & Marshall, 2010). 

Appropriate discussion is required alongside the use of manipulatives to make the 

links to the mathematics explicit or the students may end up with misconceptions. 

Teachers often require professional development on the incorporation of 

manipulatives into their teaching, to give insights into how they can assist with 

children’s learning (Stein & Bovalino, 2001).   

Social-constructivism occurs in the manner in which the teacher and children 

interact during discussions that sit alongside the use of manipulatives. It is central 

to the learning that teachers have a discussion with their students following the 

use of manipulatives, so that students can explain their solutions to problems 

(Gould, 2005a, 2005b; Ma, 2010). The intention for using the manipulative must 

be clear and the teacher needs to be aware of what interpretation the students are 

making of them (Yackel, 2001). If the students do not explain their use of the 

tools and/or manipulatives, then teachers are in jeopardy of replacing verbal rules 

and procedures, with rules and procedures for using them. Discussion means that 

understanding the link between the manipulation of the objects and the related 
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symbolic representation (the mathematical equation), can be established (Hiebert, 

1984; Ma, 2010; Yackel, 2001). The relationship between the manipulative and 

mathematical understanding and insights is developed when students use the 

equipment to construct a model and interpret its meaning. Recent research of 

Flores (2010) indicated that when using the Concrete to Representational to 

Abstract (CRA) model (manipulatives, to pictures or drawings, to numbers only), 

students seldom made errors in basic mathematics computation, which resulted in 

improved confidence and assessment scores.  

Current teaching focuses on the structure underlying numbers and number 

operations (Anghileri, 2006; Mulligan, 2013; Mulligan & Mitchelmore, 2009, 

2013; Mulligan, English, Mitchelmore, & Crevensten, 2013). Curriculum reforms 

have led to a shift from teaching standard procedures for calculating, to allowing 

students to observe patterns and relationships, and make connections, in order to 

develop a feel for numbers. The classroom setting should allow for multiple 

solution methods, and teachers need to anticipate a wide range of possible 

strategies students might utilise to solve these, rather than reliance on the 

traditional algorithmic method (Anghileri, 2006; Smith & Stein, 2011), while 

simultaneously scaffolding students’ use of mathematical language and 

knowledge (Ball, 2002; Chick, 2015). 

The emphasis on teaching concepts and meanings positions mathematical 

knowledge as a social process (such as advocated by Vygotsky), whereby students 

construct mathematical ideas together, based on their understanding and 

experiences of the world in which they live (Ross, 2005). Teachers take a less 

central role, acting as facilitators for student-led exploration of mathematics, 

discussions, and development of mathematical ideas, allowing students to take a 

more active role in their learning (Boaler, 2008; Hunter, 2009; Stigler & Hiebert, 

2004; Vosniadou, 2001; Wiliam & Bartholomew, 2004). Open-ended tasks based 

on students’ interests and mathematical strengths are effective in engaging 

students, promoting mathematical justification, and developing conceptual 

knowledge (Anthony & Walshaw, 2009b; Nardi & Stewart, 2003). The teacher’s 

role is not simply to accept the methods used by students, but to help them adopt 

better ones.  
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Productive mathematical inquiry and argumentation should be part of classroom 

discourse (Brown & Renshaw, 2006; Hunter, 2006; Walshaw & Anthony, 2007), 

as students reconstruct their thinking and build stronger explanations (Whitenack 

& Yackel, 2002). Discourse “reflects an enterprise and the perspective of a 

community of practice” (Wenger, 1998, p. 86). Individuals participate with 

varying levels of expertise across a range of speech genres, using an individual 

voice (Bakhtin, 1994). During the dialogic nature of discourse, students use the 

language of inquiry and argumentation and learn to question, argue, explain, 

justify, and generalise (Hunter, 2006). 

Teachers need to develop working environments and practices that encourage 

students to work in groups (Vosniadou, 2001). The teacher acts as a co-ordinator 

providing guidance and support in mathematics content learning, alongside the 

development of skills that allow the students to work together. Critics of this 

change in approach to teaching mathematics, maintained that mathematical rigour 

was being threatened because students were no longer taught standard methods 

and they were wasting time chatting to friends in groups (Boaler, 2008). The 

repercussion this had among communities meant that some teachers were afraid to 

try new ideas and methods in their teaching and returned to the more traditional 

methods (Boaler, 2008). However, the ability to work together is a skill that needs 

to be taught. Once achieved, it allows students to help each other and utilise 

mathematical reasoning when explaining their ideas to others (Bragg, Herbert, 

Loong, Vale, & Widjaja, 2016; Hunter, 2009, 2010; Vosniadou, 2001).  

Determining and specifying a mathematical goal that clearly identifies what 

students are to know and understand about mathematics as a result of participation 

in a lesson, is an important starting point when planning and teaching a lesson 

(Smith & Stein, 2011). A specific goal provides the teacher with a clear outcome 

that guides the learning and selection of activities that takes place. The goals assist 

in formative assessment and feedback to students (Black, Harrison, Lee, Marshall, 

& Wiliam, 2004; Black & Wiliam, 1998). Smith and Stein emphasised the 

significance of selecting appropriate activities or tasks, based on the learning 

goals. Goals with higher-level demands, allow students to engage with and make 

connections between concepts, while those with lower-level demands lead to 

limited opportunity for student thinking. Without specific learning goals, 
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determining what learning has occurred as a result of the instruction and activities 

can be problematic. Setting appropriate goals and associated tasks should assist in 

constructive discussion around the key mathematical ideas of the lesson (Hiebert, 

Morris, Berk, & Jansen, 2007).  

2.4 Teachers’ Professional Knowledge  

In any profession, there is a specialised professional knowledge that makes it 

unique and distinct from other professions; the teaching profession is no exception 

(Shulman, 2010, 2015). As a result of on-going reforms, the role of the teacher 

has changed in profound ways in recent years and teaching in today’s classrooms 

requires professionalism, skills, and knowledge that teachers of previous years did 

not require (Hattie, 2003; 2009). Linking the professional knowledge of teachers, 

to the relationship between classroom practice and student understandings as a 

result of those practices, has thus been a focus of researchers in recent times 

(Anthony & Walshaw, 2007, 2008, 2009a; Ball, 1991, 2002; Ball et al., 2008; 

Chick, 2007; Chick et al., 2006; Hattie, 2009; Hill et al., 2008; Patahuddin, 2008; 

Schoenfeld, 2011, 2013). Hattie acknowledged that the role of the teacher is more 

complex and sophisticated, and has changed in response to the major societal, 

economic, cultural, and political changes that have taken place. Hattie emphasised 

that today’s teachers must be reflective, analytical, and literate; they must be 

creative, imaginative, knowledgeable, and sensitive to the diverse needs of the 

children in today’s classrooms. If teachers are to create classroom experiences and 

conditions, which prepare the children for tomorrow, they also need to promote 

the skills of student inquiry and reflective thought (Alton-Lee, Hunter, Sinnema, 

& Pulegatoa-Diggins, 2012).  

Concern over the mathematical knowledge of primary school teachers, has been 

expressed by researchers for many years (Askew, 2008; Baker & Chick, 2006; 

Ball, 1991; Ball et al., 2001; Chick & Beswick, 2013; Hill, Rowan, & Ball, 2005; 

Ma, 2010; Schoenfeld, 2013). It has become both politically and educationally 

necessary to provide evidence about why knowledge of mathematics content by 

itself is insufficient for effective teaching of mathematics (Bobis, Mulligan, & 

Lowrie, 2013). While knowledge of mathematics content is important, and 

specific content knowledge is required, the special type of knowledge required by 

teachers referred to as pedagogical content knowledge is considered to be the 
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most important (Shulman, 1986). Therefore, attention has moved beyond merely 

examining what knowledge matters, to also including why different types of 

knowledge are important for teaching mathematics (Ball et al., 2008; Barton, 

2009).  

Today, professional knowledge may be seen in terms of knowledge for practice, 

knowledge in practice, and knowledge of practice (Loughran, 2010). Schoenfeld 

(2011) attempted to identify what classroom interactions, and what pedagogies, 

result in students’ “robust understanding” of important mathematics. He defined 

an individual’s knowledge as “the information that he or she has potentially 

available to bring to bear, in order to solve problems, achieve goals, or perform 

other such tasks” (p. 25). He further noted that according to this definition, a 

person’s knowledge is not necessarily correct in the mind of others, but it 

provides a part of that individual’s knowledge base.  

2.4.1 Pedagogical Content Knowledge (PCK) 

Teachers have implicitly combined two key areas of knowledge during their 

teaching practice: the knowledge of the subject they teach, not only the facts, but 

how they know what they know; and knowledge about the practice of teaching, 

how to communicate the subject to the students, and how they learn (Shulman, 

1986). The third area of teacher knowledge referred to as pedagogical content 

knowledge (PCK), became a widespread part of education terminology as a result 

of Shulman’s seminal address to the American Educational Research Association 

in 1986. He described PCK as, “that special amalgam of content and pedagogy 

that is uniquely the province of teachers, their own special form of professional 

understanding” (Shulman, 1987, p. 8). PCK is the particular knowledge teachers 

develop over time and through experience, about the teaching of content in 

particular ways in order to lead to enhanced student understanding. PCK is not 

only about what we teach, but how we teach, in order to maximise student 

learning and understanding (Loughran et al., 2012). 

The introduction of the term PCK by Shulman (1986) was thus responsible for the 

focus within teaching and research on teacher knowledge of content, pedagogy, 

students, and the connections between the three. Shulman expanded on these three 

broad groupings, and the following definition of PCK has become accepted by 

many educationalists: 
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The most regularly taught topics in one’s subject area, the most useful forms of 

representation of those ideas, the most powerful analogies, illustrations, examples, 

explanations, and demonstrations – in a word, the ways of representing and 

formulating the subject that make it comprehensible to others… and understanding of 

what makes the learning of specific topics easy or difficult: the conceptions and 

preconceptions that students of different ages and backgrounds bring with them to the 

learning (p. 9). 

Teachers must have a strong appreciation of the importance of pedagogical 

understanding, and of subject matter knowledge required for the quality teaching 

of mathematics (Ball et al., 2008; Chick, 2007; Hill et al., 2008; Loughran et al., 

2006). PCK is not a single entity that is the same for all teachers: it may be the 

same or similar for some teachers, but it will be different for others (Loughran et 

al., 2012). The recognition of PCK may be difficult at times due to the amalgam 

of its inextricably linked components - knowledge of pedagogy, and knowledge of 

content (Magnusson et al., 1999).  

PCK is about effectively communicating a subject to people for whom the content 

may be new (Loughran et al., 2012). While it requires knowledge of what is 

taught and how it is taught, it also requires knowledge of how students think and 

what they understand before they learn the subject matter, as well as how they 

think while they are learning. Hence, teachers must have knowledge about how 

mathematics is learned, how topics should be sequenced for learning, where 

conceptual blockages may occur, and where misunderstandings are likely (Barton, 

2009). There is a foundation of pedagogy within PCK which is general across 

curriculum areas and should be developed by all teachers (Loughran et al., 2012; 

Shulman, 2015). These include planning, teaching methods, group work, 

individual work, questioning, wait time, feedback, modelling, and evaluations. 

However, like content knowledge in general, knowledge about how people learn 

the content is specific to a particular subject.  

The understanding of content as it relates to one’s subject area is crucial and PCK 

in its entirety cannot simply be ‘imported’ from one subject area to another (Gess-

Newsome, 2015; Hill et al., 2008; Loughran et al., 2012; Magnusson et al., 1999; 

Shulman 2015). For example, mathematics teachers require an understanding of 

how and why a particular mathematical procedure works, while effective science 

teachers need to know how to best design and guide learning experiences under 

particular conditions and constraints, in order to help their students to develop 
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scientific knowledge and understanding (Magnusson et al., 1999). PCK is a 

dynamic construct that describes the process a teacher employs when teaching 

particular subjects, to particular learners, in particular settings (Ball et al., 2008; 

Shulman, 2015). More recently it has been acknowledged that PCK is domain 

specific and contextualised (Shulman, 2015). It is not only subject specific, but 

within a subject it is topic specific, and is referred to as Topic-Specific 

Professional Knowledge (TSPK), (Gess-Newsome, 2015). While this knowledge 

is specific to a particular topic being taught (for example multiplicative thinking 

or proportional thinking), it is also related to the students’ developmental level. 

More recently, Shulman (2015) has acknowledged that early research on PCK 

overlooked some important elements of teaching. He identified four weaknesses 

and limitations of his initial PCK research as: lacking in attention to emotion, 

affect, feelings, and motivation (the non-cognitive attributes); focussed on PCK 

intellectually with emphasis on teacher thinking and insufficient recognition given 

to pedagogical action; insufficient attention given to the broader social and 

cultural context; and limited in terms of outcomes of teaching, including a 

teacher’s vision and goals for education, and the relationship of PCK to students’ 

outcomes, including the minds and hearts of students. Originally, PCK gave 

meaning to the thinking that was apparent at the time. “PCK is an attribute that 

teachers develop, and it cannot be found among mere subject matter or among 

those who are good with kids. It was a policy claim about how special teachers 

were and how they ought to be regarded and respected” (Shulman, 2015, p. 11).   

2.4.2 Content Knowledge and Mathematical Knowledge for 

Teaching 

Research has shown that each subject and associated topics are taught differently 

depending on the depth and quality of a given teacher’s understanding of both the 

content and associated pedagogy of the topic concerned (Shulman, 2015). When 

relating content knowledge to the practice of teaching, Ball et al. (2008) referred 

to this specialised content knowledge as the “distinct bodies of identifiable 

content knowledge that matter for teaching” (p. 389). As indicated in Chapter 1, 

this special knowledge is an essential requirement of the classroom and is referred 

to as Specialised Content Knowledge (SCK), as opposed to Common Content 
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Knowledge (CCK), the knowledge held or used by an average mathematically 

literate citizen (Ball et al., 2001, 2005, 2008; Hill et al., 2008).  

As a result of research into primary school teachers’ practices, the mathematical 

knowledge for teaching (MKT) construct was developed, combining CCK and 

SCK (Speer et al., 2015). MKT is often used alongside subject matter knowledge 

(Ball et al., 2008; Barton, 2009; Davis & Renert, 2014) and has been described as:  

“a way of being with mathematics knowledge that enables a teacher to structure 

learning situations, interpret students’ actions mindfully, and respond flexibly, in 

ways that enable learners to extend understandings and expand the range of their 

interpretive possibilities through access to powerful connections and appropriate 

practice” (Davis & Renert, 2014, p. 4).  

As well as general pedagogy and pedagogical content knowledge, MKT includes 

a pure mathematics content knowledge (mastery of mathematics a minimum of 

four years above the level being taught) with a focus on both what a teacher must 

know as well as how it is taught, along with the mathematical environment that a 

teacher must create (Davis & Renert, 2014). It is more than book knowledge and 

requires teachers to be flexible with in-the-moment responsiveness, and to 

understand an issue from a learner’s perspective (Schoenfeld, 2011). There are 

times when a student provides an unexpected response to a question or an 

unanticipated idea within a discussion and the teacher has to decide how to 

respond and whether to explore the idea further. The teacher must decide on their 

feet, whether to deviate from the planned lesson or pause and respond to the 

student’s ideas. This knowledge required for in-the-moment actions and 

interactions in the classroom and the unpredictability of what follows is 

sometimes referred to as contingency knowledge (Rowland, Turner, Thwaites, & 

Huckstep, 2009). Contingency, or being able to “think on one’s feet” (p. 33), is an 

important aspect of MKT and involves a combination of all seven of Shulman’s 

categories of knowledge: subject-matter knowledge; knowledge of pedagogy; 

pedagogical content knowledge; knowledge of curriculum; knowledge of learners; 

knowledge of context; and knowledge of purpose. 

The construct MKT, has become a focus of research in recent years (Barton, 2009; 

Ball et al., 2008; Ball et al., 2009; Clark, Clarke, & Cheeseman, 2006; Davis & 

Renert, 2014; Hill et al., 2008; Roche, Clarke, Clarke, & Chan, 2016; Speer et al., 

2015) as understanding of the knowledge required to teach mathematics is sought. 
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Understanding the specific mathematics subject matter that is required for 

teaching is necessitated by all teachers, regardless of the level at which they teach. 

Teachers need to see into the subject matter through the eyes, hearts, and minds of 

learners, as their task is to transform the content in ways that make it accessible to 

the learners while maintaining its integrity (Ball, 1993; Shulman, 2015). Recent 

research has emphasised the content-specific nature of MKT and PCK in relation 

to mathematics teaching (Roche et al., 2016) and emphasised the incremental 

nature of teacher learning. 

While knowing mathematics is essential, it is not enough to be able to teach it 

effectively (Moch, 2004). There is a difference between having content 

knowledge and being able to teach a subject. It is easy to recognise when a student 

makes a mistake, but more difficult to interpret why they have gone wrong (Hill et 

al., 2008; Ma, 2010). While a certain amount of mathematical content knowledge 

is required for effective teaching, having this knowledge is not sufficient on its 

own (Askew, 2008; Begg, 2005; Goya, 2006). Enhancing students’ understanding 

is an ultimate goal of school education (Darling-Hammond & Ducommun, 2010) 

and special features associated with a teacher’s MKT are connected to student 

learning and achievement (Hill et al. 2004, 2005, 2007; Ma, 2010). Goya 

questioned whether teachers who do not fully understand basic mathematical 

operations can be expected to help their students build understanding and 

reasoning skills. Hence, a key question often considered based around this notion 

is: “Is a teacher knowing how to do mathematics, sufficient for effective teaching 

of mathematics?” Researchers have agreed that being a good mathematician is 

insufficient, as teachers also need to understand how they can support students in 

their learning through their PCK (Askew, 2007; Ball et al., 2005; Goya, 2006; 

Moch, 2004; Shulman, 1986; Ward, 2009). Within the complexity of PCK, 

teachers need to demonstrate a range of mathematical knowledge, including: 

procedural knowledge, procedural fluency, conceptual knowledge, and 

mathematical connections (Ball & Bass, 2003; Ball, Sleep, & Bass, 2009). 

To facilitate learning, teachers need to emphasise and promote the connections 

between, and among, ideas and topics (Ma, 2010). Ma described these as well-

developed, interconnected, knowledge packages, made up of a thorough 

understanding of mathematics, having breadth, depth, connectedness, and 
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thoroughness, and referred to this as profound understanding of fundamental 

mathematics (PUFM). The term profound is often considered to mean intellectual 

depth with its three interconnected connotations deep, vast, and thorough. 

Understanding a topic with depth means connecting it with more conceptually 

powerful ideas of the subject, while understanding a topic with breadth, is to 

connect it with those ideas of similar or less conceptual power (Ma, 2010). Ma 

concluded that there is an important depth to seemingly basic concepts and 

teachers require this profound understanding to be truly effective in the classroom. 

A teacher with PUFM is aware of the conceptual structure of mathematics as 

PUFM goes beyond being able to compute correctly, to giving a rationale for the 

computational process. In planning lessons and orchestrating discussion among 

students, a teacher with PUFM draws on the knowledge of how to teach 

(pedagogy), but in understanding the student’s responses, the teacher also draws 

on subject matter knowledge. 

Within PUFM is the need for a strong number sense (Ma, 2010). Number sense is 

the “well-interconnected knowledge about numbers and how they operate or 

interact” (Baroody, 2006, p. 22) and utilises an ability to improvise and use 

creativity with numbers while finding sensible ways to make computation easier 

(Briand-Newman, Wong, & Evans, 2012). Number sense, or the capacity to make 

sense of numbers, is recognised as foundational knowledge required by teachers 

and students to understand and link quantities to numerical constructs and 

mathematical strategies. Number sense begins with counting when preschool 

children learn the one-to-one principle and includes number knowledge, number 

transformation, counting, estimation, and number patterns (Berch, 2005; Jordan, 

Kaplan, Ola’H, & Locuniak, 2006). A person with well-developed number sense 

has developed a meaning for numbers and their relationships (Briand-Newman et 

al., 2012) and can often find an answer more quickly using basic computational 

techniques, rather than using a calculator (Ma, 2010; Schwartz, 2008).  

The significance of PUFM as described by Ma (2010) can be aligned to Hattie’s 

(1999, 2003) notion of surface and deep learning. Hattie suggested that surface 

learning is more about the content (knowing the ideas and doing what is needed), 

and deep learning is more about understanding (reacting and extending ideas, and 

an intention to impose meaning). He concluded that expert teachers are more 
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successful at both types of learning and exhibit these in their classroom practice. 

While content knowledge is important in teaching, it is the application of this 

within pedagogical content knowledge that is of greater importance. 

The notion of Profound Understanding of Emergent Mathematics (PUEM) was 

later introduced to mathematics by Davis (2012). PUEM is a category of knowing 

or a way of being with mathematics, that includes elaborate formal content 

knowledge, specialised content knowledge, and the content knowledge required in 

the work of teaching (Davis, 2012; Davis & Renert, 2014). Davis argued that a 

teacher’s disciplinary knowledge is vast, intricate, and evolving. He asserted that 

no teacher could be expected to be aware of the whole range of understandings 

included in primary school mathematics. Rather than this knowledge being 

thought of as a discrete body of foundational knowledge, which is a clear-cut and 

well-connected set of basics, it is sophisticated and emergent. Therefore, the 

knowledge needed by teachers is a complex mix associated with various 

realizations of mathematical concepts. The term realizations was mooted by Sfard 

(2008) and is used to refer to associations a learner might use to make sense of a 

mathematical construct. 

Teaching is complex and teachers cannot be expected to attend to and respond to 

everything that arises in a lesson (Roche et al., 2016). However, experienced 

teachers have been found to be more likely to recall students’ strategies than 

novice teachers and more likely to interpret them appropriately (Jacobs, Lamb, & 

Philipp, 2010; Roche et al., 2016).  

2.5 Mathematics for Numeracy 

Recent reforms have seen more use of the term numeracy in education (Askew et 

al., 1997; Bennison, 2015; Coben 2000, 2003; Goos, Dole, & Geiger, 2011; Goos, 

Geiger, & Dole, 2010; Perso, 2006; Skalicky, 2007). Often the terms mathematics 

and numeracy are used interchangeably, and yet some argue that there is a 

difference in meaning (Coben, 2000, 2003; Hogan, 2002; Perso, 2006; Steen, 

1999). Mathematics is about the exploration and use of patterns and relationships 

in quantities, space and time; representing and symbolising these ideas, and 

eventually learning to abstract and generalise (Ministry of Education, 2007, p. 26). 

The definition of numeracy was described in Chapter 1 as: “the ability to process, 
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communicate and interpret numerical information in a variety of contexts” 

(Askew et al., 1997, p. 6). The development and conceptualisation of the term 

numeracy has been an important influence on the teaching of mathematics and 

was first attributed to the United Kingdom’s Crowther report in 1959, where 

numeracy was described as the mirror image of literacy (Tout & Motteram, 2006). 

Prior to the 1950s, school mathematics focussed on computation, but with the 

introduction of computational tools and the associated requirement for higher-

order thinking skills, the need for people to be able to transfer their mathematics 

understandings to everyday life increased and alongside this, use of the term 

numeracy (Perso, 2006).  

The terms mathematical literacy and quantitative literacy are used consistently in 

the United States when referring to mathematics education (Madison, 2007; Steen, 

1999). It has been suggested that the ultimate goal of mathematics education 

should be the development of numeracy or mathematical literacy. Teaching 

should stimulate learners to develop the ability to give meaning to numbers and 

numerical facts in everyday life (Commonwealth of Australia, 2008; Ministry of 

Education, 2007, 2008c; Perso, 2006; Steen, 1999; Tertiary Education 

Commission, 2008; Tout & Motteram, 2006). Thus, the concept of numeracy is 

closely related to that of functional mathematics, where numeracy is often 

described as applying mathematics in context (Coben, 2003; Tout & Motteram, 

2006). While Mathematics and Statistics is the name given to the learning area in 

the NZC (Ministry of Education, 2007), the term numeracy has more recently 

become a term used in schools, as well as in adult tertiary education. 

Professor Gordon Stanley, who chaired the Australian National Numeracy review, 

reported that clarification of the numeracy/mathematics distinction is essential if 

national consistency in curriculum and outcomes is to be achieved 

(Commonwealth of Australia, 2008, preface vii). Stanley noted that an accepted 

interpretation of numeracy, which should inform work in education, was that 

described by the Australian Association of Mathematics Teachers (AAMT) as: 

involving the disposition to use, in context, a combination of underpinning 

mathematical concepts and skills from across the discipline (numerical, spatial, 

graphical, statistical and algebraic); mathematical thinking and strategies; general 

thinking skills; and grounded appreciation of context (AAMT, 1997, p. 15).   
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Numeracy is often referred to in terms of what it means to be numerate and was 

defined for New Zealand schools as “the ability and inclination to use 

mathematics effectively – at home, at work and in the community” (Ministry of 

Education 2001, p. 1). Perso (2006), similarly defined numeracy as “the 

disposition and capacity to use mathematics to function effectively and fully at 

home and in society” (p. 36). She further suggested that although numeracy is 

seen as being about the mathematics you know, it is also about having a 

disposition and a confidence to use it. “Knowing some mathematics is essential 

but not sufficient for numeracy. However, knowing some mathematics must 

precede the choice to use it or not” (Perso, 2006, p. 37). The New Zealand 

Tertiary Education Commission (2008) argued similarly, that when it came to 

solving real-life problems, being able to do mathematics did not necessarily mean 

being able to use mathematics.  

The mathematical skills one requires in life are constantly changing as societal 

expectations change. Coben (2000) works in the field of adult education and has 

defined being numerate as: 

to be competent, confident, and comfortable with one’s judgement on whether to use 

mathematics in a particular situation and if so, what mathematics to use, how to do it 

and what degree of accuracy is appropriate, and what the answer means in relation to 

context (p. 35).  

Coben stressed that if adults are to become more numerate, then as individuals 

they need to utilise their many strengths in various areas, in different ways, in 

different contexts, and for different purposes.  

Numeracy builds on number sense, which means that working with numbers and 

numerical problems is based on a feeling for numbers and insight into number 

relationships (Dehaene, 2011; Nunes & Bryant, 1996; van den Heuvel-Panhuizen, 

2001d). “It encompasses being able to make a sensible choice between using 

mental arithmetic, estimation, column calculation and algorithms, or using a 

calculator” (van den Heuvel-Panhuizen, 2001e, p. 246). “Estimation makes an 

important contribution to attaining the general aim of numeracy” (van den 

Heuvel-Panhuizen, 2001c, p. 174), with the process of rounding off providing a 

path to a greater understanding of our number system. Making estimations allows 

students to develop the ability to deal sensibly with numbers in both their daily 

life and in a purely mathematical context ((van den Heuvel-Panhuizen, 2001c). 
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Numeracy is more than mathematics, and may be seen as making sense of 

mathematics, as it builds bridges between mathematics and the real world. Given 

the current cultural and social context of schooling, Perso (2006) argued that no 

longer are educators purely teachers of mathematics, but instead teachers of 

mathematics for numeracy. She suggested that there needs to be a focus on 

mathematics as the fundamental prerequisite for numeracy for all students 

throughout their schooling, as they prepare for life skills in the world beyond the 

classroom (Perso, 2006).  

Effective teachers of numeracy are those who help their pupils: “acquire 

knowledge of, and facility with numbers, number relations and number operations 

based on an integrated network of understanding, techniques, strategies and 

application skills; and learn how to apply this knowledge in a variety of contexts” 

(Askew et al., 1997, p. 10). Askew et al. found that teachers of numeracy utilise 

teaching approaches that: connect different areas of mathematics and different 

ideas in the same area, using a variety of words, symbols, and diagrams; use 

pupils’ descriptions of their methods and reasoning to help establish connections 

and address misconceptions; emphasise the importance of using mental, written, 

or electronic methods of calculation, that are most appropriate for the problem at 

hand; and particularly emphasise the importance of mental skills. This supports 

Perso’s notion that numeracy is about the mathematics you know and about 

having a disposition and a confidence to use it.  

2.5.1 Numeracy Development Project and Student Achievement  

Much of the Numeracy Development Project (NDP) research was centred on 

progress in student achievement measured against the Number Framework 

(Ministry of Education, 2008a) in terms of the frequency and sophistication of the 

numeracy strategies and mathematical knowledge (Young-Loveridge, 2005, 2006, 

2007, 2008a, 2009, 2010; Thomas & Tagg, 2006, 2007, 2008). Over the period of 

the NDP professional development programmes, students made substantial gains 

in terms of progress on the Framework (Young-Loveridge, 2010). Data from the 

years 2003, 2005, and 2007 were analysed in terms of effect size. Effect size 

measures the magnitude of difference between two sets of data. A small effect 

size ranges from 0.0 to 0.20, a medium effect size from 0.20 to 0.50, and a large 

effect size is any value above 0.50 (Cohen, 1988). It has been argued that in 
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education, a score between 0.20 and 0.40 is considered average, and more than 

0.40 above average, and greater than 0.60 excellent (Hattie, 2009, p. 17). Young-

Loveridge (2010) reported that in terms of the additive domain, between the initial 

assessment at the beginning of the year and final assessment at the end of the year 

(in relation to the Number Framework stage of the students involved) average 

effect size gain of those students in Years 5-6 was more than half a standard 

deviation (0.57 and 0.52), and in Years 7-8 was close to half a standard deviation 

(0.48 and 0.51). On the multiplicative domain, average gains by those students in 

Years 5-6 were well over half a standard deviation (0.66 and 0.61) while at Years 

7-8 average gains were a little over half a standard deviation (0.55 and 0.53).  

As teachers reflect on student achievement and schools design and review their 

curriculum, they are expected to refer to the New Zealand Curriculum 

Mathematics Standards (Ministry of Education, 2009). The Mathematics 

Standards were introduced into New Zealand primary schools in 2009, the prime 

purpose being “to promote quality teaching and learning in every New Zealand 

classroom and success for all students” (Ministry of Education, 2009, p. 6). The 

Mathematics Standards were designed to help teachers of students in Years 1 to 8, 

set clear expectations for the mathematics knowledge and strategies students 

require to achieve Levels 1 to 4 of the New Zealand Curriculum. The Ministry of 

Education (2009) emphasised that the two documents (The Mathematics 

Standards and The New Zealand Curriculum), were designed to complement each 

other. The NZC drives the teaching, while The Mathematics Standards support 

teachers to assess their students’ achievement, in relation to the curriculum. It is 

intended that The Standards would assist teachers and schools to monitor student 

progress and the success of teaching and learning programmes. They support 

decisions about next steps for learning with students, enabling teachers to make 

judgements about their students’ progress, so that clear learning goals can be set 

(Ministry of Education, 2009).  

Research undertaken by Young-Loveridge (2009, 2010) compared the 

achievement of students with the Ministry of Education curriculum expectations 

as indicated in the Mathematics Standards (Ministry of Education, 2009, 2010). 

Findings indicated that at the end of Years 6-8, student achievement was well 

below the expectations set by the Ministry (e.g., less than 50% of the Year 6 
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students were at, or above, Stage 6 on the additive domain of the Number 

Framework, Ministry of Education, 2010), which is well short of the majority 

expected to have reached the Level 3 objective. Likewise, less than half of the 

Year 7 students were at Stage 6 on the additive domain, while over a third were 

categorised as cause for concern.  

2.5.2 Developing Mathematical Discussions 

The New Zealand curriculum document, refers to the potential value of outcomes 

for student learning when interacting with each other (Ministry of Education, 

2007), which aligns with Vygotsky’s socio-cultural theory. A classroom’s norms 

for determining whose turn it is to talk can follow different kinds of patterns and 

actions. One norm established during classroom discussions is the teacher 

initiation-student response-teacher evaluation (IRE) model (Flores, 2010), or the 

IRF model where the ‘F’ stands for feedback (Cazden, 2001). However, teachers 

who are more inclusive of all students in conversations create “negotiation-rich 

opportunities” (Waring, 2009, p. 796). It has been argued that in mathematics 

classrooms both explanation and justification have important roles, as students 

develop arguments during discussion (Ball, 1993; Forman & McPhail, 1993; 

Goos, 2004; Hunter, 2005, 2006, 2010; Lampert, 1990; Stein, Engle, Smith, & 

Hughes, 2008; Whitenack & Yackel, 2002; Wood et al., 2006; Yackel & Cobb, 

1996). A key part of Piaget’s notion of constructivism, is contained within the 

forthcoming expectation of challenge, or disagreement from listening to group 

members. The resulting discussion is what extends explanation of challenge to 

justification (Bruner, 1990; Hunter, 2006). At times, a student may explain an 

idea to clarify their own thinking to others, while at other times they may make an 

argument to validate their own thinking or to justify an activity. While explaining 

and justifying are important aspects of reasoning about mathematical ideas, sense-

making evolves from questioning and challenging the thinking of others (Hunter, 

2006, 2012).  

The idea of making mathematics problematic for learners is well supported by 

research (Boaler, 2003; Fennema, Franke, Carpenter, & Carey, 1993; Hiebert, et 

al., 1996; Hunter, 2010). Hiebert et al. claimed that mathematics instruction 

should begin with problems, dilemmas, and question for students, allowing the 

students to wonder why things are and to search for solutions. The term 
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problematic does not mean that students become frustrated and find the situation 

difficult. Instead, it has been argued that students should be encouraged to 

problematize the mathematics they study by constructing a community of 

mathematical inquiry. The community of mathematical inquiry allows students to 

solve problems and explain, and examine their explanations, leading to the 

construction of understanding (Hiebert, et al., 1996; Hunter, 2006, 2010; Stein et 

al., 2008). From a functional perspective, understanding means participating in a 

community of learners and allowing the classroom activity to involve 

participation and discussion. These interactive processes may also be termed 

visible thinking (Hull et al., 2011). With visible thinking there is a heightened 

level of awareness by a participant of their own thoughts and thought processes, 

as well as those of the individuals with whom they are working.  

The inquiry-based approach to group work when teaching numeracy and 

promoted in the NDP, is aligned to power-sharing interactions between teachers 

and students (Higgins, 2005b, Higgins & Averill, 2010). Mathematical 

discussions are now considered a key component of mathematical inquiry and 

effective mathematics teaching (Kazemi & Stipek, 2001; Hunter, 2009, 2010, 

2012; Stein et al., 2008). Effective teachers are responsive, in that they constantly 

elicit, monitor, and respond spontaneously to their students’ thinking (Franke & 

Kazemi, 2001). The role of the teacher in managing discourse was also 

emphasised in Fraivillig et al.’s (1999) Advancing Children’s Thinking (ACT) 

model, which differentiates between eliciting, supporting, and extending concepts, 

in response to children’s actions and explanations. The teacher has the 

responsibility for developing a community where students share ideas about 

mathematics, while searching for solutions (Hiebert et al., 1996), and develops 

and builds on individual and collective sense making of the students rather than 

merely acknowledging they are correct (Stein et al., 2008). Such discussions 

support students’ learning of mathematical discourse practices, so that they can be 

guided and encouraged to construct their own mathematical ideas. The teacher 

needs to guide the students in discussion by eliciting methods of solution and 

analysing their features (Fraivillig et al., 1999; Hiebert et al., 1996).  

Reasoned argument within mathematics education has implications for the 

knowledge teachers require and their role in a child’s learning process. Teachers 
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need to be skilled in supporting students to describe their reason for a given 

answer in class discussion, and to do this effectively need to scaffold students’ use 

of mathematical language and knowledge (Ball, 2002). The teachers also need to 

be able to understand and interpret their students’ reasoning and be in a position 

to support and extend their thinking (Fraivillig et al., 1999). The more frequently 

teachers ask students to describe their solution strategies and explain their 

responses, the more students engage in class, and the higher their gains are in 

mathematics achievement (Hiebert & Wearne, 1993).  

2.6 Teaching the Multiplicative Domain 

Thinking multiplicatively encompasses many different mathematical ideas and 

according to the support material for New Zealand’s NDP involves: 

Constructing and manipulating factors (the numbers that are multiplied) in response to a 

variety of contexts…having key items of knowledge (for example basic facts), [and] 

deriving from known facts using the properties of multiplication and division 

[commutative, associative, distributive, inverse] (Ministry of Education, 2008f, p. 3).  

Being able to recite and/or recall basic facts is insufficient to be a multiplicative 

thinker. It requires the capability to be able to work flexibly with concepts, 

strategies, and representations of multiplication and division in a wide range of 

contexts (Clark & Kamii, 1996; Siemon, Breed, & Virgona, 2005). Multiplicative 

thinking is considered a big idea of mathematics that underpins mathematical 

thinking beyond primary school years (Hurst & Hurrell, 2014; Siemon, Bleckley, 

& Neal, 2012). It is characterised by: a capacity to work flexibly and efficiently 

with an extended range of numbers including larger whole numbers, decimals, 

common fractions, ratio, and percent; an ability to solve a range of problems 

involving multiplication and division; and the means to communicate this 

effectively in a variety of ways (Siemon et al., 2005). Multiplicative thinking can 

be based on varying processes which can include: grouping; number line hopping; 

number line stretching or compressing; folding and layering; branching; grids or 

arrays; area, volume, and dimension; steady rise or slope; number line rotation 

(for integer multiplication); and proportional reasoning (Davis, 2008). 

Understanding multiplication and division is considered to be central to knowing 

mathematics and to problem solving in other mathematical areas (Carpenter, 

Fennema, & Franke, 1996; Carpenter, Fennema, Franke, Levi, & Empson, 2015), 

including algebra (Baek, 2006).   
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Learning mathematics in primary school includes developing an understanding 

about the connections and distinctions between numbers, quantities, and relations 

(Nunes, Bryant, Sylva, & Barros, 2009). A quantity can be represented by a 

number, although it does not necessarily need to be measured and represented by 

a number: for example, two people can compare their height with each other, 

without any numbers (Nunes et al., 2009). Understanding the connections 

between quantities and relations may be seen as part-whole relations, or additive 

relations. Additive reasoning is about occasions in which objects (or sets of 

objects) are put together or separated (Carpenter et al., 2015; Nunes & Bryant, 

1996; Nunes et al., 2009). For example, when comparing the number (quantity) of 

books one child has to another child, if there is a difference of 12 this is seen 

additively. While there are links between additive and multiplicative reasoning, as 

multiplication and division sums can be solved through repeated addition and 

repeated subtraction (Carpenter et al., 2015), there may also be a one-to-many 

relationship between two sets (Nunes & Bryant, 1996). For example, one dog has 

four legs (1-to-4) or one child has two eyes (1-to-2). This reasoning leads to the 

idea of replication (Kieren, 1994; Greer, 1994) in the understanding of ratio, so 

that the one-to-many correspondence is maintained (Nunes & Bryant, 1996). For 

example, in a set where there are three dogs there are 12 legs, the 1-to-4 ratio has 

been replicated three times. 

Six problem structures of practical situations that involve multiplication or 

division of whole numbers have been identified: equivalent groups (3 cars have 4 

people in each); multiplicative comparison (Laura has 3 times as many books as 

Luke); rectangular area or arrays (3 rows of 4 children); rate (a car travels for 3 

hours at an average speed of 80km per hour); ratio (a ratio of 3 boys to 4 girls in 

the class); and Cartesian product (the number of different possible combinations 

of 3 shirts and 4 skirts), (Baek, 2006; Nunes & Bryant, 1996). It is important 

young students are exposed to the different problem types, as it is the 

understanding of abstract relationships between numbers that will encourage the 

use of efficient approaches.  

To be able to use multiplication and division to solve problems, students should 

know most of their times table facts, and be able to derive new ones from known 

facts (Suggate, Davis, & Goulding, 2010). Some students continue to use counting 



 

50 

 

facts to solve problems for some time and it should not be assumed that they 

know facts from memory simply because they obtain answers quickly (Carpenter 

et al., 2015). The most important aspect when learning multiplication facts is the 

way in which each one is related to others (Anghileri, 2006; Carpenter et al., 2015; 

Nunes & Bryant, 1996). Students need firstly to understand how these facts can be 

obtained from first principles (repeated addition or skip counting), secondly to 

recognise patterns, and thirdly to understand the commutative nature of 

multiplication (Baroody, Bajwa, & Eiland, 2009; Carpenter et al., 2015; Suggate 

et al., 2010). When these ideas are consolidated through repeated practice, the 

facts become known by heart, often referred to as “basic facts”, and are then 

available for rapid recall.  

Number facts, or basic facts, are learned at a recall level over a much longer 

period of time than has been previously assumed, and develop through the 

experience of solving problems and reflecting on strategies (Carpenter et al., 2015; 

Perso, 2007). Recent research of Hurst and Hurrell (2016) indicated that students 

are often taught certain procedures for solving multiplication problems (including 

use of algorithms, using properties of multiplication including commutativity, and 

the inverse relationship) before they have developed a conceptual understanding 

of the mathematics involved. The students struggled to explain why they carried 

out certain strategies in their problem solving beyond a procedural level (such as 

switching the numbers for the commutative property).   

The initial idea developed with young students is generally the groups of idea 

(Baek, 2006; Davis, 2008; Greer, 1994; Siemon et al., 2005; Nunes & Bryant, 

1996), and the acquisition of an equal-grouping structure is at the core of 

multiplicative thinking (Clark & Kamii, 1996; Sullivan, Clarke, Cheeseman, & 

Mulligan, 2001). Mulligan and Mitchelmore (1997) found that counting strategies 

were integrated into repeated addition and subtraction processes, and then later 

generalized into multiplication and division through the use of the rectangle. 

Davis (2008) believed that “the most flexible and robust interpretation of 

multiplication is based on a rectangle” (p. 88). Rectangular arrays are important 

images associated with the understanding of multiplication as the image portrays a 

set of objects arranged in rows and columns in the shape of a rectangle (Carpenter 

et al., 2015; Davis, 2008; Haylock, 2010; Young-Loveridge & Mills, 2009a, 
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2009b, 2010). The rectangular array representation shows the link to replicated 

units utilised in repeated addition and skip counting, and to finding the total 

number of objects within the rectangle. The array is an effective model for 

understanding multiplication of larger numbers (Young-Loveridge & Mills, 2009a) 

and is also closely linked to calculating the area of a rectangular region. Students 

might draw a picture or construct an array model of the rectangle and then count 

each of the squares, thus showing the relationship between the array and area. The 

area-based model also shows how and why the algorithm for whole-number 

multiplication works and can later be extended to multiplication of decimals 

(Davis, 2008). 

The mathematical property relating to the commutative law of multiplication       

(a × b = b × a) is the generalization that the multiplier and multiplicand can be 

interchanged without changing the result (Baroody, 1999; Carpenter et al., 2015; 

Steffe, 1994). However, the commutative property of multiplication is harder for 

children to understand than the commutative property of addition (Carpenter et al., 

2015). Unlike addition, in multiplication representation of the two different forms 

of the equation is quite different (Carpenter et al., 2015; Steffe, 1994; Suggate et 

al., 2010) and children do not immediately understand that that the two numbers 

can be interchanged to solve problems (Carpenter et al., 2015). For example, in 

the context of equal groups problems, it is not always obvious why 30 groups of 2 

items has the same number of items as 2 groups of 30 items. The understanding of 

commutativity in multiplication involves partitioning and recombining the groups 

of objects in a different way (Steffe, 1994). The understanding of the commutative 

rule is also important in establishing the flexibility needed to find the most 

efficient strategy for any given problem, especially at a later stage in mathematics 

(Anghileri, 2006; Baroody, 1985, 1999; Carpenter et al., 2015).  

In English-medium classes in New Zealand schools, as with most other English-

speaking systems, the first number in a multiplication expression represents the 

multiplier and the second number the multiplicand. Hence: in the expression 3 × 6, 

the number 3 shows the number of sets (multiplier), while the number 6 is the size 

of each set (multiplicand). This is the everyday interpretation of the multiplication 

symbol as times, thus 3 × 6 could be interpreted as three times 6, or three groups 

of 6, or 6 replicated 3 times (6 + 6 + 6). It is the elementary idea interpreted by 
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many, that multiplication means so many sets of, or groups of (Anghileri, 2006; 

Haylock, 2010; Skemp, 1989; Suggate et al., 2010) and is the interpretation 

utilised throughout this study. However, this convention is not necessarily shared 

across all countries (Haylock, 2010; Suggate et al., 2010), or across all cultures or 

languages (Ministry of Education, 2008f). For example, in many Asian countries 

and in te reo Māori classes in New Zealand schools, 3 × 6 is regarded as               

3 replicated 6 times (3 + 3 + 3 + 3 + 3 + 3) (Ministry of Education, 2008f).  

A range of different strategies for solving multiplication and division problems is 

taught in many classrooms in New Zealand schools (Crooks, Smith, & Flockton, 

2010; Ministry of Education, 2008f). The New Zealand National Education 

Monitoring Project (NEMP) assessment results indicated that between 2005 and 

2009, there was a decline in performance for Year 8 students on multiplication 

problems (Crooks et al., 2010). Crooks et al. reported that strategy explanations 

when solving multiplication problems showed a major decline in vertical, 

algorithmic strategies, and an increase in horizontal strategies. NEMP results also 

indicated a lack of understanding of division problems, in particular those with 

remainders.  

When teaching division, students need to realise that when sharing takes place the 

number of objects to be shared out (dividend) is not necessarily a multiple of the 

number between which the sharing is to take place (divisor), and so there is a 

remainder. How the remainder is dealt with depends on the context of the problem 

(Anghileri, 1999; Carpenter et al., 2015). For example, should 16 pencils be 

shared equally between 5 people, or 25 children put into 6 cars for a school trip, 

the remaining pencils or people would not be cut into smaller bits. Research has 

shown that students often complete the calculation to such problems correctly, but 

have difficulty giving a solution to the problem that is consistent with the meaning 

of the problem (Buys, 2001; Lamberg & Wiest, 2012; Roche et al., 2016; Silver, 

Shapiro, & Dentsch, 1993; Suggate et al., 2010). Understanding that the 

remainder of a problem can sometimes be shared out equally, leads to the world 

of fractions (Buys, 2001). Whole-to-part comparisons can be made that involve 

comparing a whole object to part of an object (continuous) or set of objects 

(discrete). Examples of this may be where 25 metres of rope can be cut into 4 
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equal lengths (each will be 6.25 metres long), or 5 pancakes can be shared out 

equally between 4 people (each person gets 6 and one-quarter piece).  

In multiplication and division problems, there are three elements to be considered: 

the size of the whole, the number of parts, and the size of the parts (Nunes & 

Bryant, 1996). In a multiplication problem, it is generally the product (the total 

number, or the size of the whole) that is missing. If either the multiplier (the 

number of parts) or multiplicand (the size of the parts) is missing, then the 

problem involves division. This leads to understanding two different problem 

types in division: the sharing model (partitive) and the grouping model (quotitive) 

(Anghileri, 2006; Carpenter et al., 2015; Ministry of Education, 2008a; Mousley, 

2000; Nunes & Bryant, 1996; Roche & Clarke, 2009; Roche et al., 2016; Small, 

2013; Suggate et al., 2010). In the partitive model, the divisor is a number of parts 

or sub-collections and the quotient is the size of each part. For example, in 

15 ÷ 3 = 5, 15 objects are shared into 3 equal groups and there are 5 in each group. 

In the quotitive model, the divisor shows the size of each part or sub-collections 

and the quotient is the number of equal-sized groups. For example, in 15 ÷ 3 = 5, 

15 is divided into groups of 3, and 5 is the number of equal-sized groups. It is 

important that students are exposed to both types of division problems (Anghileri, 

1999; Carpenter et al., 2015; Ministry of Education, 2008f; Mousley, 2000; Nunes 

& Bryant, 1996; Roche & Clarke, 2009; Roche et al., 2016).  

Research undertaken in Australia has shown that teachers’ understanding of 

division is poor (Roche & Clarke, 2009; Roche et al., 2016). Indications from 

Roche and Clarke’s research, were that a little over half of the teachers, 47 out of 

92 (51%), correctly represented partitive division, while a total of 23 (25%) 

correctly represented quotitive division. Of the 23 who represented quotitive 

division correctly, 10 (11%) could describe quotition but could not transfer this 

understanding to division with decimals. In order to help students, solve division 

accurately there is a need for teachers to spend time modelling with materials and 

pictures and to consider a range of word problems to help differentiate between 

partitive and quotitive problem types (Carpenter et al., 2015; Mulligan & 

Mitchelmore, 1997, 2013; Roche & Clarke, 2009; Roche et al., 2016). With the 

support of appropriately designed tasks, young students have the cognitive 

capacity to explain and reason solutions to division problems (Clarke, et al., 2006). 
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However, choosing appropriate tasks can be difficult (Chick & Harris, 2007) and 

modifying a task to make it simpler (or more difficult), while still illustrating the 

general principle required, is a critical issue for teaching (Ball, 2000b). Designing, 

selecting, and implementing appropriate tasks is related to a teacher’s PCK and 

content knowledge (Charalambous, 2010). 

There are many language issues and misconceptions associated with the teaching 

and learning of multiplication and/or division. One language issue arises in the 

difficulty associated with the wording of problems given to children (Nunes & 

Bryant, 1996). For example, the wording of a scenario in quotitive and partitive 

division problems, along with the context given in problems with remainders, will 

dictate the construct of the particular problem (Greer, 1994; Roche et al., 2016). 

Understanding of division in the quotitive form with whole numbers becomes 

important with fractions. For example, understanding 20 ÷ 4 can mean ‘how many 

groups of 4 are in 20’ carries over into expressions  such as 2 ÷ ¼, which may be 

interpreted as, “How many groups of one quarter (usually said as how many 

quarters) are in two?” Similarly, understanding the language associated with the 

multiplication symbol (×), in relation to use of the term “of” used in “groups of” 

or “sets of”, becomes important when understanding multiplication of fractions. 

With multiplication of fractions, the “of” idea is needed to read sentences such as 

¼ × 8 as “one quarter of eight” (Greer, 1994; Suggate et al., 2010). There is often 

a need to construct the representation of the situation described in the problem to 

understand a strategy required to solve the problem (Greer, 1994).  

Much of the teaching in the multiplicative domain, which later extends into the 

development of algebraic thinking, relies heavily on recognition and a strong 

understanding and appreciation of basic pattern and structure of number (Haylock, 

2010; Mulligan & Mitchelmore, 1997, 2009, 2013; Papic, Mulligan, & 

Mitchelmore, 2011; Sophian, 2007). Mulligan and Mitchelmore (2013) define 

pattern as “any predictable regularity involving number, space, or measure, and 

structure as the way in which the various elements are organised and related”      

(p. 30). Recent research has shown that appreciation of structure and pattern may 

be one of the main differences between high and low achievers in mathematics 

(Mulligan, 2013; Mulligan & Mitchelmore, 1997, 2013). Early experiences with 

number operations provide important links across many structures that ultimately 
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underpin children’s understanding of mathematics (Anghileri, 2006) and allow 

children to later use patterns to generalise rules (Hansen, 2005; Schoenfeld, 2011). 

Patterns such as subitized patterns, one-more patterns, numerical patterns, spatial 

patterns, and array structures, are typical foundational patterns used in primary 

school mathematics (Wu, 2007) and contribute towards the understanding related 

to multiplicative thinking. 

2.7 Teaching the Proportional Domain 

Multiplicative thinking is the basis of proportional thinking and reasoning (Behr, 

Harel, Post, & Lesh, 1992; Lamon, 2007; Van Dooren, de Bock, & Verschaffel, 

2010) and a necessary prerequisite for understanding algebra, ratio, and rate, 

interpreting statistical and probability situations, and understanding and reading 

scale (Harel & Confrey, 1994; Lamon, 1996; Siemon et al., 2005). Proportional 

reasoning means having the ability to understand the multiplicative relationship 

inherent in situations of comparison (Behr et al., 1992). Lamon (1993) expands on 

this notion when she writes, “Proportional reasoning involves the deliberate use of 

multiplicative relationships to compare quantities and to predict the value of one 

quantity based on the values of another” (p. 41). The term deliberate is used to 

clarify that proportional reasoning is more about the use of number sense than 

formal, procedural solving of proportions.  

It is estimated that more than half of the adult population cannot be viewed as 

proportional thinkers (Lamon, 1993). In the early years of schooling, proportional 

reasoning begins with multiplication and division and is developed through the 

study of fractions and decimals, and later extends to ratio and proportion (Chick, 

2010; Lamon, 2006, 2007; Sowder, 2007). Ratios describe a part-to-part or a part-

to-whole comparison where equal parts of one “thing” are combined with parts of 

a different “thing” (Lamon, 2006) and build on fractional relationships understood 

during early fraction and decimal learning. An understanding of fractions provides 

a foundation for learning in mathematics, including place value, measurement, 

ratios, proportions, scale, algebra, probability, percentages and decimals. It is 

applied in real-life contexts including reading maps, calculating the best deal of 

purchase when shopping, increasing and decreasing the size of mixtures from 

recipes when baking, enlarging documents on the photocopier, predicting 

outcomes, and fair sharing (Dole, 2010). 
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Whilst proportional reasoning extends beyond the knowledge of fractions and 

decimals, in this study teaching in the proportional domain focused on fractions 

and decimals. Fractions is a topic that many teachers find difficult to understand 

and teach (Chick, 2010; Clarke, Roche, & Mitchell, 2007; Gould, 2005a, 2005b; 

Post, Cramer, Behr, Lesh, & Harel, 1993; Smith, 2002; Watson, Callingham, & 

Donne, 2008; Way, Bobis, & Anderson, 2015). Consequently, many students 

struggle with learning basic fraction concepts at the primary school level 

(Anthony & Walshaw, 2007; Davis, Hunting, & Pearn, 1993; Young-Loveridge, 

Taylor, Hāwera, & Sharma, 2007), which results in proportional reasoning 

causing difficulty for many middle-school students (Lamon, 2007, Watson et al., 

2008). Difficulty with fractions was also exemplified in the National Education 

Monitoring Project assessment results, which indicated that both Years 4 and 8 

students scored poorly on tasks involving fractions, especially fractions other than 

halves and quarters (Crooks et al., 2010).  

As discussed earlier, an important consideration for teachers is ‘connectivity’ and 

a central feature of learning with understanding is that knowledge is connected 

rather than consisting of bits of isolated information. As many of the 

mathematical topics covered are complex, not only do they require understanding 

of prior domains, but they also need to be able to be related to each other (Lamon, 

1994; Pitkethly & Hunting, 1996). Interconnections make knowledge less likely 

to be forgotten, to be accessed in many different ways, and to be used for solving 

unfamiliar problems (Lesh et al., 1987). In general, sense is made of new ideas by 

relating them to something which is already known. Difficulties with fractions are 

greatly reduced if instruction involves providing students with opportunity to 

build on known concepts, as they engage in mathematical activities that promote 

understanding (Olive, 2001). To connect understanding of fraction magnitude 

with whole number properties, students must initially have a foundation of 

multiplicative thinking. Students extend this knowledge to think relatively, and 

unitise and understand the ratio between the numerator and the denominator 

(Boyer & Levine, 2012; Gould, 2005b; Lamon, 1994).  

Teaching fractions and proportionality, includes the exploration of concepts not 

accessible with whole numbers (Siegler, Fazio, Bailey, & Zhou, 2013) and at the 

same time contradicts many characteristics of previously learnt whole number 
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properties (Bailey, Siegler, & Geary, 2014, Siegler et al., 2013; Smith, 2002). 

This means that operations with fractions are difficult for many because the rules 

associated with whole numbers do not work with fractional numbers (Bailey et al., 

2014; Gould, 2005a; Ma, 2010, Roche, 2005; Smith, 2002). When whole number 

reasoning is applied to fractions, it is known as whole number bias (Ni & Zhou, 

2005) and common misconceptions occur, such as the add across error (Siegler, 

Thompson, & Schneider, 2011; Young-Loveridge et al., 2007). The add across 

error occurs when the numerator and denominator are treated as discrete whole 

numbers and students will incorrectly calculate expressions such as 3

1
+ 5

2
as 8

3
, 

their reasoning that 2 + 1 = 3 and 3 + 5 = 8 (Siegler et al., 2011). This 

misconception disregards the basic number property that the sum of two positive 

numbers must be greater than either addend. However, much of the confusion in 

teaching and learning fractions appears to arise from the many different 

interpretations and representations (Clarke et al., 2007). Students might overcome 

some of this difficulty, if they are encouraged to represent the mathematical 

knowledge they learn in various ways using elements such as spoken language, 

written language, manipulatives, pictures, and real-world situations (Chick, 2015; 

Lesh, Landau, & Hamilton, 1983; Lesh, Post, & Behr, 1987; Miheso-O’Connor, 

2011).  

There appears to be a difference between teachers’ conceptual and procedural 

understanding of fractions (Way et al., 2015), and being able to connect intuitive 

knowledge and familiar contexts with symbols and formal classroom instruction 

(Hasemann, 1981; Smith, 2002). Conceptual knowledge of fractions includes, 

“understanding of the properties of fractions: their magnitudes, principles, and 

notations” (Siegler et al., 2013, p. 14). This knowledge underpins procedural 

knowledge, which Siegler et al. describe as including, “fluency with the four 

fraction arithmetic operations” (p. 14). Insufficient conceptual understanding of 

mathematics concepts and relationships increases a teacher’s reliance on 

procedural knowledge (Way et al., 2015).  

There are correlations between visualisation skills and students’ abilities to 

understand mathematics, as visual models provide a scaffold for students to 

develop an image and visualisation of mathematical concepts. This correlation 

assists students in problem solving situations, as there is a link between the use of 
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static visual models and the success of written problems (Anderson-Pence, 

Moyer-Packenham, Westenskow, Shumway, & Jordan, 2014). Anderson-Pence et 

al. describe a static visual model as, “a still picture that is either printed or drawn 

on a page, to represent mathematical concepts” (p. 3), and concluded that the 

models students experience, and the ability to interpret and represent visual static 

models of fractions, is a precursor to understanding proportional concepts. 

Traditionally, instruction in fractions has not encouraged meaningful 

representation, but when students have been taught for understanding, they are 

later able to solve problems involving more complex fractions (Hansen, 2005; 

Suggate et al., 2010). Students need to visualise mathematical concepts and 

engage in real-world mathematics in order to develop a meaning of mathematics 

and apply new knowledge to a range of problem solving situations (Anderson-

Pence et al., 2014; van Garderen, 2006). 

2.7.1. Constructs of Rational Number  

A rational number is a number that can be written as a ratio. That means it can be 

written as a fraction, in which both the numerator and the denominator are whole 

numbers (Kieren, 1976).  Kieren originally identified seven sub-constructs of 

rational number: fractions, decimal fractions, equivalent fractions, ratios, 

multiplicative operators, quotients, and measures. Kieren identified that the part-

whole construct was the foundation to students’ learning about rational number 

and later revised his seven sub-construct to four, based on the part-whole notion 

(Kieren, 1980; 1988): “multiplicative operators” (a fraction is used to act on 

another number e.g., 3

1
 of 12 or 3

1
 × 12); “quotients” (answers to sharing division 

problems e.g., 2 pizzas shared among 3 students gives 3

2
each); “measures” (how 

many times a fraction fits into a given fraction or whole number e.g., 4
3 is the 

same measure as 2 lots of 8

3
); and “ratios” (relationship between two things of the 

same attribute e.g., 1 litre of cordial to 4 litres of water) and “rates” (relationship 

between 2 different measurements e.g., 90km per hour [distance and time]). 

Kieren emphasised that the sub-constructs were not complete, or to be viewed in 

isolation or independent of each other, and there was the need for students to 

integrate the sub-constructs as they combined to create a generalisation of rational 

number.  
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Young students’ fraction knowledge often begins with the teaching of the part-

whole concept where, for example, it is understood that 4
3 is three parts of a whole 

that has been partitioned into four equal parts (Steffe & Olive, 2010). However, 

research on fraction learning has identified the need for school experiences to 

support student conceptions beyond the part-whole construct (Steffe & Olive, 

2010; Way et al., 2015). Therefore, it has been suggested that Keiren’s sub-

constructs of fractions need to be taught in order of conceptual challenge, for 

long-term understanding to occur (Hansen, 2005). Both Hansen and Kieren (1980) 

make explicit the core conceptual structure people use when applying rational 

number thinking to given situations. Each of these types of fractional 

understanding brings with it misunderstandings which are frequently seen in use 

by students, and even more disturbingly as the research of Ward and Thomas 

(2007, 2009), and Young-Loveridge (2008b) indicated, by some of their teachers.  

The suggested order of conceptual challenge for teaching fractions advocated by 

Hansen (2005), in relation to Kieren’s (1980) four sub-constructs is: 

1. Fractions as part of a whole: A child requires experiences of dividing an object 

into equal parts where the parts can be directly compared to each other. The key 

idea of a whole unit being equally divided into smaller parts relates to Kieren’s 

notion of rational number as being based on part-whole relationships. Depending 

on the type of unit being sub-divided, parts must be equal in number, length, area, 

or volume (Kieren, 1988; Lamon, 2007). Where parts are equal in number, 

representations can be described as discrete; where parts are equal in area or 

length, representations can be described as continuous (Lamon, 2006). 

Understanding the continuous model is important, with teachers giving students a 

number of different shapes for further variation, to enable them to understand the 

value of a fraction and its fractional unit (Ma, 2010). In some instances, when a 

child is asked to divide a semicircle into quarters, or a circle into thirds, they may 

divide them into four pieces, or three pieces, with no regards to equal-sized 

portions (Hansen, 2005; Ma, 2010; Smith, 2002). The child may have been used 

to dividing squares, rectangles, and circles into pieces, so may incorrectly 

generalise that the same method works for all shapes (Ma, 2010).  

Fractions as part of a whole includes Kieren’s (1976) original sub-construct of 

fraction equivalence. Fraction equivalence has often been reduced to the mastery 
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of the rule, “multiply or divide the numerator and denominator of a fraction by the 

same number” (Ni, 2001, p. 413). As a result of rule-based learning, many 

students are unable to identify, construct, and understand equivalent fractions 

(Behr, Wachsmuth, Post, & Lesh, 1984; Gould, 2005b; Pearn 2003; Siemon, 

Virgona, & Corneille, 2001; Way et al., 2015; Wong, 2010; Wong & Evans, 

2007). To assist teachers in advancing students’ understanding of fraction 

equivalence, Wong developed a learning pathway. The pathway was built on 

research, which concluded that students with a conceptual understanding of 

fraction equivalence have an integrated knowledge. This knowledge includes 

understanding that: equivalent fractions can be constructed from manipulatives or 

pictorial representations by repartitioning or chunking; equivalent fractions can be 

constructed using symbolic notation; and a fraction quantity is part of an 

equivalent group in which all fraction numerals represent the same quantity 

(Siegler et al., 2013; Wong, 2010).  

2. Fractions as part of a set: Following on from the continuous model of fractions, 

students need to become comfortable reasoning and talking about parts of discrete 

quantities (collections of objects) as fractions (Hansen, 2005; Smith, 2002). This 

idea is built on the understanding that you can have three-quarters of a bag of 20 

marbles, just as you can have three-quarters of a cake. A whole is not always 

represented by a single object such as one cake, or a rectangle, and may be a 

collection of objects, such as a bag of apples (or marbles), or a class of students. 

Misconceptions can occur when students fail to understand the concept of whole 

and do not recognise the complete set of objects as the whole unit (Ma, 2010). 

This idea is similar to Kieren’s (1980) construct of fractions as multiplicative 

operators where a fraction is used to operate on another: in this instance 4

3
of 20 

(marbles) or 4

3
× 20. 

3. Fractions as numbers on a number line: When students are introduced to 

fractions, they usually begin with unit fractions such as one-half ( 2
1 ), or one-

quarter ( 4
1 ) (Hansen, 2005; Ministry of Education, 2008a). The student may then 

believe that a fraction is a number smaller than one and always comes between the 

numbers 0 and 1, and when the number line is extended to numbers greater than 

one, difficulty may arise (Hansen, 2005). There may be confusion between 
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knowing where to place the numeral 2
1  (one-half), and where to find one half of a 

given quantity or number (place something half-way along a given part of the 

number line e.g., half-way between 0 and 4). This misconception is connected to 

understanding the difference between counting-based understanding (in this 

instance recognising 2
1 as a number on the number line) and collections-based 

conception ( 2
1 of a number of objects, or in this instance half of the measure of the 

space between 0 and 4) (Yackel, 2001). This idea also relates to Kieren’s (1980) 

construct of fractions as a measure of a quantity, relative to one whole unit. 

Lamon (1996) explained that continual partitioning allows measurement with 

precision. The measurements are also known as “points”, and the number line 

provides a model to demonstrate the points. The measure interpretation is 

different from other constructs in that the number of equal parts in a unit can vary 

depending on how many times you partition it (Lamon, 1996).  

4. Fractions as operators: This is where a fraction can be used as an operator to  

shrink and stretch a number such as 4
3 × 12 = 9, or 4

3 of 12 = 9 (Clarke et al., 

2007), and is where the link between division and fractions is strongest (Clarke et 

al., 2007; Hansen, 2005; Lamon, 2006, 2007; Suggate et al., 2010). For example, 

if 20 marbles are divided equally between 4 children, each child gets 5 marbles, or 

each child’s share is 4
1  of the total marbles. This means that 20 ÷ 4 = 5, or 4

1 of 20 

is 5. Hansen’s progressions do not make a clear distinction between fractions as 

multiplicative operators and fractions as quotients as identified in Kieren’s 

constructs, although the link with division is very clear in this instance. The 

fraction ( 4
1 ) behaves like an operator (the 4

1 operates on the number 20) while at 

the same time may be seen as 20 ÷ 4 = 5. A fraction may also be seen as 

equivalent to the result of division, for example 4
1 = 1 ÷ 4 (Ma, 2010). When one 

whole object is divided into 4 equal pieces, the result will be 4
1 . 

5. Fractions as ratios: This is when numbers are used to compare one quantity 

with another (Hansen, 2005). Ratio is a multiplicative relationship, although a 

child who is at an early stage of number understanding may see it as an additive 

one. For example, if in a group of students at school there were 3 girls and 6 boys, 

the ratio of girls to boys is 1 to 2 (usually written as 1:2). However, Hansen 
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suggested that a student drawing on early knowledge of mathematics when 

comparing the two sets may say there are fewer girls than boys and the difference 

is 3. The relationship is seen in this instance as one of difference between the 

numbers, rather than one of ratio, or proportionality. 

The above models, or views of fractions presented by Hansen (2005) are based on 

progressively increasing levels of complexity and are required to carry out 

operations on, and with fractions. Although these constructs can be considered 

separately, they are unified by three big ideas: identification of the unit, 

partitioning, and the notion of quantity (Carpenter et al., 1996). Equi-partitioning 

allows a student to share or partition a whole into a number of equal parts to 

create unit fractions, such as one-half, or one-quarter (Steffe, 2004). Iterative 

fractions result from the repetition of unit fractions, which produces a new 

fraction, or quantity (Olive & Steffe, 2002). For example, one-quarter can be 

iterated four times to create four-quarters or a whole. This precedes understanding 

of the multiplicative relationship between part and whole.  

The operations of addition, subtraction, multiplication, and division of fractions, 

must ultimately be understood (Suggate et al., 2010). Addition and/or subtraction 

of fractions with un-like denominators cannot take place until equivalence is used 

to change one or both of the fractions, to make the denominators the same. 

Multiplying fractions appears to be much simpler than addition, but understanding 

the concept is not so easy. Both multiplication and division of fractions depend on 

understanding the concepts that have been taught with whole numbers prior to 

fractional representation (Ma, 2010; Suggate et al., 2010).  

Decimal fractions 

Fractions may also be represented in decimal form. Decimal numbers are an 

extension of the whole-number place-value system and are symbolic 

representations of units less than one (Hansen, 2005). The concepts underpinning 

decimals are the similar to the constructs and models outlined above for 

underpinning fractions. These include: part of a whole; part of a set; numbers on a 

number line; decimals as operators; and quotients. Student errors in the use of 

decimals are likely to have originated in misunderstanding of place value and 

fractions (Hansen, 2010; Ma, 2010). Misconceptions students have related to 

decimals include: the more digits there are to the right of the decimal point, the 
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larger the number (based on whole number thinking, e.g., 3.2468 is larger than 

3.28); and conversely the fewer digits to the right of the decimal point, the smaller 

the number (e.g., 3.5 is less than 3.468); misunderstanding between place value 

columns and the number line; decimal numbers are negative numbers (less than 

zero e.g., 0.25 must be less than 0); the decimal point separates two numbers (e.g., 

3.5 is 3 r5, or 3.50pm when used in time to separate hours and minutes), decimals 

are finite; and zeroes do not matter (Ma, 2010; Steinle & Stacey, 1998, 2004).   

Through experience with decimals, students realise that the more digits there are 

after the decimal point, the more precise the number (Ma, 2010). Students also 

learn to realise that decimals can be rounded (to nearest tenth, or hundredth, etc.) 

for calculations. However, students must also be taught when it is inappropriate to 

round decimals in the real world, for example: in medical contexts this might 

cause risk to patients, or in the building industry incorrectly calibrated machines 

could damage equipment (Coben et al., 2010). Research undertaken by Coben et 

al. concluded that it is important students understand estimation as part of decimal 

place value, to recognise when errors are made in calculations.  

2.7.2 New Zealand Teachers’ Knowledge in the Multiplicative and 

Proportional Domains 

A teacher’s knowledge of mathematics makes an important contribution to his/her 

effectiveness as a teacher (Ball et al., 2005; Goya, 2006; Ma, 2010; Shulman, 

1986). One of the goals of mathematics instruction is to enhance student learning 

(Baumert et al., 2010) and help students understand the structure of mathematics 

(Lambdin & Walcott, 2007). Coming to understand the underlying structure of the 

mathematics is vitally important for effective teaching and learning, as the 

difference between high and low achievers in mathematics may be attributed to 

their appreciation of structure and pattern (Bobis, Mulligan, & Lowrie, 2008; 

Mulligan & Mitchelmore, 1997). Multiplicative reasoning is complex, 

multifaceted and a pre-requisite for fractional thinking. Being in a position to 

respond effectively to students’ fractional thinking relies on an understanding of 

the development of conceptual knowledge of fractions (understanding fraction 

properties, magnitude, and notations) and procedural knowledge of fractions 

(fluency in the four operations) (Siegler et al., 2013).  



 

64 

 

Research undertaken alongside the NDP showed that PCK of New Zealand 

teachers was not at a very advanced level (Ward & Thomas, 2007; Ward, 2009; 

Young-Loveridge & Mills, 2009a). There are many challenges for teachers to 

understand the many aspects of multiplicative thinking, in order to support 

students’ conceptual understanding. Young-Loveridge and Mills identified a 

weakness in teachers’ understanding related to number properties that underpin 

multiplication (commutative, distributive, associative, and inverse), and 

emphasised the importance of this aspect of subject matter knowledge to 

multiplicative thinking. Similarly, Ward and Thomas’ research generated poor 

responses to the PCK questions, which emphasised some teachers’ lack of depth 

in understanding and in associated misconceptions, related to knowledge for 

teaching fractions. Ward and Thomas’ study contained seven questions based on 

scenarios involving the teaching and learning of fractions. Results of the 

assessment from the 44 teachers involved showed a full range of scores, with one 

teacher receiving the possible 17 points and one teacher scoring zero. In general, 

teachers scored more highly on questions based on content knowledge, than those 

that required a description of the key ideas involved, or the actions they would 

take with a student. Overall, 32% of teachers involved in the research were unable 

to answer proportional reasoning problems correctly, suggesting that teachers may 

lack knowledge in this domain.  

Further research by Ward and Thomas (2008, 2009) with teachers who had 

participated in the NDP project, aimed to identify whether there was a link 

between teacher PCK and student achievement in fractions. The teachers 

completed a pencil-and-paper assessment, while the student achievement data was 

collected from results of the NumPA interview. Ward and Thomas (2009) 

concluded that there was a relationship between teacher scores on the assessment 

and the student gain scores from initial and final assessments: students of teachers 

with high content knowledge (CK) made 20% more than average gain, compared 

to that made by students of low-scoring CK teachers. The teachers’ CK was more 

pronounced the higher the year level they taught. Students in Years seven and 

eight classes of high scoring CK teachers made on average 42% more progress 

than those of lower scoring CK teachers.  
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Research conducted by Young-Loveridge (2008b) found that teachers’ limited CK, 

combined with their personal misunderstandings about fractions, meant that in 

some instances teachers were in fact teaching concepts incorrectly. For example, 

one teacher was observed asking a child, “What is half of a quarter?”  The child 

responded, “an eighth.”  The teacher (supposedly) corrected the child by saying, 

“No, half of a quarter is two-eighths,” and went on to say, “Half of a third is two-

sixths”. This exemplifies some of the challenges teachers have with fraction 

understanding and also emphasises the importance of teachers modelling correct 

language when expressing some of these challenging ideas (Chick, 2015; Young-

Loveridge, 2008b). 

2.8 Frameworks of Teacher Knowledge  

The various components of teacher knowledge and their importance for the 

teaching process (as identified by Shulman in his seminal paper in 1986), have 

provided the basis for knowledge frameworks in mathematics that gauge the 

mathematical knowledge required for teaching (Ball et al., 2008; Bobis et al., 

2012; Hill et al., 2008; Roche & Clarke, 2009).  Many decades after Shulman first 

proposed the idea of PCK, one might think that a comprehensive theory of 

decision-making could provide a base for a usable classroom observation scheme. 

However, producing a workable framework for classroom observations that is 

theoretically grounded is more difficult than one would expect. As Schoenfeld 

(2013) explained: 

although the theoretical and practical enterprise are in many ways overlapping, the 

theoretical underpinnings for the observation [scheme] are sufficiently different 

(narrower in some ways and broader in others) and the constraints of almost real-time 

implementations so strong that the resulting analytic scheme is in many ways 

radically different from the theoretical framework that gave rise to it (p. 607).  

Creating a classroom-based workable framework to explore the professional 

knowledge of teachers has thus become an ongoing interest of many researchers 

(Ball et al., 2008; Chick et al., 2006; Gess-Newsome, 1999a, 2015; Magnusson et 

al., 1999; Roche & Clarke, 2009; Schoenfeld, 2013). Many hours have been spent 

formulating knowledge frameworks against which the attributes of PCK and other 

key knowledge areas important for teaching, can be observed. Capturing the many 

dimensions associated with teaching into a manageable observation scheme poses 

many challenges, and those utilising such a scheme seldom get to see the “twists 

and turns of plausible, but unworkable ideas, that precede the presentation of the 



 

66 

 

clean final product” (Schoenfeld, 2013, p. 607). Categorising teacher knowledge 

into suitable headings for eliciting information about teacher action in practice has 

often been contentious. Thus, to develop a framework that is applicable to the 

teaching of all mathematics content is difficult. 

As a result of many years of research into mathematics teachers’ knowledge (Ball, 

1990, 1991, 1993, 2000b; Ball et al., 2005), Ball et al. (2008) developed a 

framework of Mathematical Knowledge for Teaching (MKT), providing a basis 

for the different types of knowledge required of teachers. Ball et al. suggested that 

in order to be effective and to give meaningful feedback to students, two main 

types of knowledge are utilised: Subject Matter Knowledge (SMK) and 

Pedagogical Content Knowledge (PCK). They claimed that teachers need to 

incorporate the sub-constructs of these two types of knowledge into their teaching 

and divided SMK into three components: (1) “common content knowledge” of 

mathematics (knowledge of a kind used in a variety of settings, not necessarily 

confined to teaching); (2) “specialised content knowledge” (the mathematical 

knowledge, and skill, unique to teaching); and (3) “horizon knowledge” (shows 

how mathematics topics are connected over the span of mathematics included in 

the curriculum). Teachers of mathematics have to do a particular kind of 

mathematical work that is not necessary in other fields. This work involves an 

unpacking of mathematics that is not required in settings other than teaching. The 

PCK section in the Ball et al. (2008) framework, consists of three components 

origianlly emphasised by Shulman (1986, 1987): (1) “knowledge of content and 

students” (combines knowing about mathematics and knowing about students); (2) 

“knowledge of content and teaching” (combines knowing about mathematics and 

knowing about teaching); and (3) “knowledge of content and curriculum” (related 

to knowing about mathematics and understanding curricular knowledge).  

A Recent ‘Professional Knowledge’ Model  

There has been a shift in mathematical research in recent years away from 

“knowledge as a substance” to “knowledge as an activity” (Settlage, 2013). In 

recent times, a framework of teacher professional knowledge was developed as a 

result of a PCK summit held in Colorado, which brought together 22 active 

science educator researchers (Gess-Newsome, 2015). The new framework is 

referred to as a model of ‘Teacher Professional Knowledge and Skill’ (TPK&S) 
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and recognises the role of PCK within professional knowledge, while 

acknowledging four weaknesses and limitations of Shulman’s earlier PCK 

understanding and models (Gess-Newsome, 2015). These included: an absence of 

the non-cognitive attributes including emotion, feelings, and motivation; an 

emphasis on the pedagogical mind rather than the pedagogical practice (including 

the effect of teaching on the hearts and minds of students); insufficient evidence 

given to the broader social and cultural context; and insufficient evidence of goals 

and outcomes of learning. The model of TPK&S acknowledges the connections 

between teacher professional knowledge bases (assessment knowledge, 

pedagogical knowledge, content knowledge, knowledge of students and curricular 

knowledge), topic-specific professional knowledge, classroom practice, and 

student outcomes (Gess-Newsome, 2015). Shulman (2015) acknowledged that it 

is in classroom practice that PCK should be examined and the TPK&S model is 

unique, in that it acknowledges the significance PCK as both a “knowledge skill” 

within topic-specific instruction and as a skill within the “act of teaching” (Gess-

Newsome, 2015).   

2.8.1 Frameworks of Teacher Knowledge and Classroom Practice 

The theoretical underpinnings of PCK frameworks used by researchers, have led 

recently to the development of frameworks based on categories and dimensions 

used within classroom practice, (Schoenfeld, 2013), principles of practice (Smith 

& Stein, 2011), and powerful ideas (Askew, 2013; Schwartz, 2008). Schoenfeld 

focused on what teachers need to know in order to explain on a moment-by-

moment basis, the decision made by a student in the midst of a well-practiced 

activity. As a result of Shulman’s work, Schoenfeld acknowledged the three 

categories of knowledge generally accepted as being, content knowledge, general 

pedagogical knowledge, and pedagogical content knowledge. However, he 

suggested that they might be better used when part of a seamless whole and 

argued that the distinctions researchers and professional developers make between 

these three categories (when used in research) becomes to some extent 

inconsequential in classroom practice. He proposed four categories of knowledge 

and activity that are required to construct a model of a person’s decision making 

in teaching as: resources (most centrally, knowledge); goals; orientations (beliefs, 

values, preferences); and decision-making (Schoenfeld, 2013).  
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The shift by mathematics education researchers towards the study of teaching 

practices is exemplified in the framework of five practices for productive 

mathematics classrooms developed by Stein et al. (2008). The five practices 

identified include: anticipating (teachers do the problem in as many ways as they 

can, in order to anticipate how students might mathematically interpret a problem); 

monitoring (paying close attention to students’ actual responses to tasks, 

observing their mathematical thinking and solution strategies as they are working); 

selecting (particular students are selected to share their work with the class); 

sequencing (the teacher makes a decision about how to sequence the presentations 

or sharing of ideas); and connecting (the teacher helps the students draw 

connections between their solutions and other students’ solutions, as well as the 

key mathematical ideas of the lesson). Stein et al. indicated that these practices 

were designed to help teachers use students’ responses to advance the 

mathematical understanding of the class as a whole, by allowing teachers to have 

some control over what could happen in the discussion as well as providing an 

opportunity to shift some of the decision making to the planning of the lesson. 

The goal is to have student presentations and sharing of ideas build on one 

another, to develop powerful mathematical ideas. 

Good questioning is central to quality teaching and learning (Fraivillig et al., 1999; 

Sullivan & Clarke, 1991; Sullivan & Lilburn, 2004; Way, 2008). The importance 

of questioning techniques is a category that does not appear on most frameworks 

of teacher knowledge and yet the results of research by Fraivillig et al., indicated 

that the manner in which questions are formed influences student achievement. 

Research has shown that most questions posed are lower-order questions and 

greater attention needs to be given to higher-order questions that encourage higher 

levels of cognition (Fraivillig et al., 1999; Francis, 2015; Hunter, 2012; Sullivan 

& Clarke, 1991, Way, 2013; Wimer, Ridenour, Thomas, & Place, 2001). Hence, 

Fraivillig et al., developed the ACT framework which focussed on the ability to 

establish a community of learners supporting questioning, enquiry, and 

elaboration by creating conversations between the teacher and students, and 

among students. This occurred through the facilitation of what Fraivillig et al., 

described as three overlapping components: eliciting, supporting, and extending. 

In order to advance students’ thinking, teachers must find out the students’ current 
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knowledge and the strategies they use for mathematical problem solving. 

Encouraging students to express themselves in a variety of ways will assist 

teachers to elicit information that can be used to direct learning goals and desired 

outcomes, as well as assessing the individual student’s knowledge and thought 

processes (Fraivillig et al., 1999).  

The teacher’s actions and responses to eliciting is then used to support students’ 

conceptual understanding within the framework of their cognitive abilities 

(Fraivillig et al., 1999). Supporting the student who has described his/her strategy 

by giving examples of similar work previously covered, is expected to assist with 

understanding by providing clarity to the already learned knowledge. The other 

students are also supported because they are being exposed to strategies and 

thought patterns to which they may not have previously been exposed (Siegler, 

1988). In extending students’ mathematical thinking, teachers should maintain 

high expectations by constantly shifting the aims, so that students strive to extend 

themselves and rise to challenges. This is best learned in a safe environment 

where students are able to take risks, try alternative methods and strategies, and 

learn from each other. The teacher facilitates this learning, by knowing just how 

far they are able to extend each student.   

2.8.2 The Framework used in this Research 

The PCK framework developed by Chick et al. (2006) (Figure 2.1) was the basis 

for the analysis of classroom observations of this research. It was a framework 

developed by mathematics researchers, for use when exploring teachers’ 

mathematical knowledge. In-depth analysis was instrumental to this research and 

Chick et al.’s framework provided categories for the researcher to carry out a fine-

grained analysis of the teachers’ classroom practice. The breakdown of three 

broad areas into sub-categories, aligned to the three main areas of professional 

knowledge originally mooted by Shulman (1986, 1987) based on content 

knowledge, general pedagogical knowledge, and pedagogical content knowledge. 

Chick et al. incorporated the need for students’ prior knowledge, student problems, 

relevant representations, teaching strategies, student activities, student thinking, 

and curriculum knowledge into three parts considered to be necessary for PCK: 

Clearly PCK, Content Knowledge in a Pedagogical Context, and Pedagogical 

Knowledge in a Content Context. 
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Figure 2.1 Framework for Analysing Pedagogical Content Knowledge  (Chick, Baker, Pham, 

& Cheng, 2006) 

 

The first category, Clearly PCK, shows aspects where both pedagogy and 

mathematics are so intertwined that the pedagogy cannot be separated from the 

mathematics (Chick et al., 2006). This includes aspects such as teaching strategies 

used, students’ thinking, varying models and representations, resources, and 

curriculum knowledge. Within this category are elements such as the cognitive 

demands of tasks, and appropriate and detailed representations of concepts. The 

second category, Content Knowledge in a Pedagogical Context, focuses on 

aspects drawn most directly from content, where the knowledge is more clearly 

PCK Category Evident when the teacher... 

Clearly PCK 

 
Teaching Strategies 

Discusses or uses strategies or approaches for teaching a 

mathematical concept or skill. 

Student Thinking 
Discusses or addresses student ways of thinking about a 

concept, or recognises typical levels of understanding. 

Student Thinking - Misconceptions 
Discusses or addresses student misconceptions about a 

concept. 

Cognitive Demands of Task Identifies aspects of the task that affect its complexity.  

Appropriate and Detailed  

Representations of Concepts 

Describes or demonstrates ways to model or illustrate a 

concept (can include materials or diagrams). 

Knowledge of Resources Discusses/Uses resources available to support teaching. 

Curriculum Knowledge  Discusses how topics fit into the curriculum. 

Purpose of Content Knowledge  
Discusses reasons for content being included in the 

curriculum or how it might be used.                          

  Content Knowledge in a Pedagogical Context  

Profound Understanding of 

Fundamental Mathematics 

Exhibits deep and thorough conceptual understanding of 

identified aspects of mathematics. 

Deconstructing Content to Key 

Components 

Identifies critical mathematical components within a 

concept that are fundamental for understanding and 

applying that concept.  

Mathematical Structure and 

Connections 

Makes connections between concepts and topics, 

including interdependence of concepts. 

Procedural Knowledge  
Displays skills for solving mathematical problems 

(conceptual understanding need not be evident). 

Methods of Solution Demonstrates a method for solving a maths problem. 

  Pedagogical Knowledge in a Content Context 

Goals for Learning 
Describes a goal for students’ learning (may or may not 

be related to specific mathematics content). 

Getting and Maintaining Student 

Focus 
Discusses strategies for engaging students 

Classroom Techniques Discusses generic classroom practices. 
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influenced by having to know mathematical content. Key elements here include 

showing a profound understanding of fundamental mathematics, deconstructing 

knowledge into its key components, and highlighting mathematical connections. 

The third category, Pedagogical Knowledge in a Content Context, covers 

situations where knowledge is more clearly concerned with teaching skill, but 

some mathematics is still needed. It includes knowledge of classroom techniques 

as well as strategies for getting and maintaining student focus.  

By outlining the categories within each section of the Framework and specifying 

the criteria for when each is evident (Figure 2.1), the Framework provides a set of 

filters for looking at the teaching process and the associated knowledge used by 

teachers. While allowing for critical distinctions among types of knowledge, 

overlap between categories is seen as unavoidable, ensuring the many aspects of 

PCK are covered (see also Section 5.2, Figure 5.2; Section 6.2, Figure 6.1). The 

categories are not seen as hierarchical, but instead combine to form an over-all 

view of the teacher’s knowledge (Chick, 2007).  

Chick et al., had utilised the framework for research relating to teacher knowledge 

carried out via questionnaires and interviews, and acknowledged a true test of the 

framework would be the use of it in other situations, such as classroom lessons 

(Chick et al., 2006). This was the ideal opportunity to take a recognised 

framework of knowledge and implement it in observed practice. 

2.9 Summary  

It is generally acknowledged that it is no longer acceptable for students to leave 

school without the basic skills, knowledge, and dispositions they need to function 

effectively in life (Hattie, 2003, 2009). As a result of recent educational reforms, 

the New Zealand Ministry of Education has placed a priority on the teaching of 

numeracy (and literacy) at all levels of primary school education, and the 

professional knowledge required of teachers in order to be effective teachers of 

mathematics for numeracy is varied and complex. The shift in focus from reliance 

on memorisation of facts and procedures to one of conceptual understanding 

requires an understanding of the relationship between knowledge of subject matter, 

knowledge of teaching practice, and knowledge of curriculum.  
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Understanding the mathematics currently being taught, is more than knowing the 

procedures for getting the right answer. The special knowledge required of 

teachers is referred to as PCK, and is not a single entity that is the same for all 

teachers (Loughran et al., 2012). International research has shown that 

determining a teacher’s PCK is difficult (Ball et al., 2008; Chick, 2006, 2007; Hill 

et al., 2008; Loughran et al., 2006) partly due to the amalgam of its intricately 

linked components - knowledge of pedagogy, and knowledge of content 

(Magnusson et al., 1999), which can be domain specific (Shulman, 2015). 

Determining a teacher’s PCK in action in the classroom is even more difficult, 

due to the added complexities associated with in-the-moment actions and the time 

taken to gather data. 

Shulman (2015) acknowledged that early research on PCK placed little emphasis 

on emotions, affect, feelings and motivation – non-cognitive attributes; did not 

attend to pedagogical action; gave little attention to social and cultural contexts; 

and did not recognise the outcomes of instruction – the relationship between how 

teachers thought and evidence of student learning. More recently, this has resulted 

in a shift towards examining teachers’ overall professional knowledge required for 

teachers, a component of which is PCK.   

In New Zealand, studies are limited with respect to the professional knowledge 

required of primary school teachers in the mathematics classroom. Long-term 

research carried out by Young-Loveridge (2005, 2006, 2007, 2008a, 2009, 2010) 

alongside the NDP, showed that in the multiplicative and proportional domains, 

students were achieving below the levels expected by the Ministry of Education 

(2009a). During this time, research carried out by Ward and Thomas (2007, 2009) 

via written questionnaires, indicated some lack of depth in teachers’ knowledge in 

these domains.    

The purpose of this thesis is to address the relationship between teachers’ 

espoused professional knowledge, professional knowledge in practice, and student 

learning, through a critical view of the teaching of mathematics for numeracy in 

the multiplicative and proportional domains. When this research began, there was 

an identified gap in New Zealand mathematics research, exploring the relationship 

between teacher knowledge and classroom practice through observation of lessons. 

Previous research and associated literature identified a number of frameworks 
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based on Shulman’s notion of PCK. Chick et al.’s PCK framework was used as 

the basis for this study, due to the explicit categories suitable for fine-grained 

analysis. However, the researcher soon recognised that teacher practice 

encompassed a wider range of professional knowledge, thus the addition of 

further categories at the analysis stage (Figure 3.1).   

The following chapter begins by re-stating the aims and objectives of the study. It 

explores the methodology associated with this research and includes a section that 

outlines the schools and teachers who participated in the study, along with ethical 

considerations, including the role of the researcher. Data-gathering methods 

discussed include observations, questionnaires, interviews and learning 

conversations, and assessment tasks. Finally, the methods and theoretical 

framework for data analysis are outlined.  
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CHAPTER THREE 

METHODOLOGY and METHODS  

 

Section A: Theory associated with Research Methodology 

and Methods  

3.1 Introduction 

This chapter positions this study methodologically and describes the methods 

used. The aim of methodology is to help researchers understand not the products 

of the inquiry, but the process itself (Cobb, 2007; Cohen et al., 2000)) and as such 

sits between the identified research questions and the collected data (Gray, 2014).  

Section A of this chapter provides a justification for the chosen research 

methodology and methods, while Section B provides details of the research 

design. A multiple case-study approach was utilised, as this was deemed the most 

appropriate for addressing the aim and questions of this research.   

3.2 Research Questions 

Three specific questions framed this research:  

1) What professional knowledge is evident when teaching mathematics for 

numeracy in (a) the multiplicative domain and (b) the proportional domain? 

2) What relationships are there between teachers’ espoused professional 

knowledge, professional knowledge in practice, and student learning, 

when teaching mathematics for numeracy in (a) the multiplicative domain 

and (b) the proportional domain? 

3) How does the use of a framework assist in the investigation of teachers’ 

professional knowledge in practice?  

The research was situated within the context of teaching the multiplicative and 

proportional domains in New Zealand upper primary school classrooms (Years   

5-8).  

3.3 Research Methodology  

When discussing methodology in educational research Cohen, Manion, and 

Morrison (2000) described methods as, “that range of approaches used in 

educational research to gather data which are to be used as a basis for inference 
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and interpretation, for explanation and prediction” (p. 44). Methods of inquiry 

include assumptions about the nature of the reality of the topic being studied, 

what constitutes knowledge of that reality, and what are appropriate methods 

(ways) of building knowledge of that reality. These assumptions combine to make 

up the essential idea of what underpins the term paradigm in research 

methodology. The standard, everyday meaning of paradigm is exemplar, or model. 

In the context of research methodology, the term has also come to mean a set of 

philosophical assumptions about the phenomena to be studied, about how they 

can be understood, and even about the proper purpose and product of research 

(Hammersley, 2012). Cohen et al. reported that by studying paradigms (models), 

research can be moved from being regarded as a technical exercise, to recognising 

that research is concerned with understanding the world, informed by how the 

world is viewed, and what is seen as the purpose of the understanding.   

3.3.1 Epistemology and Methodological Considerations 

 “Epistemology is the theory of knowledge and is concerned with the question of 

what counts as valid knowledge” (Holloway & Wheeler, 2002, p. 3). 

Epistemology provides a foundation for deciding on knowledge possibilities. It is 

a way of explaining “how we know, what we know” (Crotty, 1998, p. 3) and is 

inherent in the chosen methodology used in any research.    

There are many epistemologies available for use. However, when studying the 

social aspects of the world, two key epistemologies that emerge are the positivist 

perspective and the interpretive perspective. Positivism is a scientific approach 

that is based on testing theories and hypotheses (Holloway & Wheeler, 2002). 

Positivist research is generally based on objectivity and there is distance 

established between the researcher and those being studied. Interpretive research 

is based on a social approach and how people make sense of their world and 

attach meaning to it. The interpretive view can be linked to Weber’s Verstehen 

approach, where reality is socially constructed and the research seeks to 

understand something in context and through the eyes of the participants (Cohen 

et al., 2000). Weber argued that the social sciences should treat people as human 

beings and access to their experiences should be gained by listening to them and 

observing them. At times, there may be a conflict between the positivist 

perspective, with an emphasis on the explanation of human behaviour, and 
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interpretive perspective, which emphasises the understanding of the behaviour 

(Cohen et al., 2000; Crotty, 1998).  

Researchers who adopt a positivist (objective) perspective to the social world, 

choose from a range of data collection methods including surveys and 

experiments, thereby taking a quantitative approach to their research (Cohen et al., 

2000). Cohen et al. proposed that this contrasts with researchers who favour the 

view that stresses the importance of the interpretive (subjective) experience of 

individuals and take on a qualitative approach to their research. 

The interpretive perspective is the methodology used in this study. The research is 

based on the real world of the participants and focuses on understanding their 

mathematics classrooms by listening to them and observing their actions. It is 

concerned with the participants’ actions and seeks to make sense of their activities 

and attach meaning to them.    

3.4 Research Methods in Education 

Empirical research is regarded as the main type of research used in education 

today (Phillips, 2011). Empirical research in education is usually subdivided into 

two main categories: qualitative research and quantitative research. However, in 

practice, research is rarely purely qualitative or quantitative and often becomes a 

combination of the two.  

Qualitative Research  

Qualitative research sits predominantly within the interpretive paradigm (Bogdan 

& Biklen, 1992) and is richer and much more open-ended than quantitative 

research. It is an approach to obtaining data by exploring traits of human 

behaviour, and social life, in natural settings where general broad questions are 

investigated (Charles, 1995; Creswell, 2008; Mertler, 2012; Yin, 2012). As the 

task of the qualitative researcher is to capture what people say and do due to how 

they view their world, the information is largely verbal and collated through 

interviewing, observation, description, and recording (Creswell, 2009; Gray, 2014; 

Poland & Pederson, 1998). The role of the researcher is to gain a deep and holistic 

overview of the context under study within the specific setting of the participants 

(Gray, 2014; Toma, 2011).  
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Qualitative research, allows the researcher to explore concepts such as thoughts, 

feelings, ideas, and experiences, whose essence is often lost in other research 

approaches (Bogdan & Taylor, 1975; Corbin & Strauss, 2008; Creswell, 2008). 

Qualitative researchers are generally concerned with the process involved in 

research and not simply with the outcomes. For this reason, there is a close 

connection between qualitative research and teaching, and many teachers gain an 

insight into new educational endeavours through this method of research (Bogdan 

& Biklen, 1992; Charles, 1995). Because the researcher is the main means of 

collecting information, the researcher’s personal skills and knowledge of the topic, 

are also important factors in the research process (Bogdan & Biklen, 1992; Miles 

& Huberman, 1994: Patton, 2002).  

Quantitative Research 

Strategies of inquiry associated with quantitative research, observe and measure 

information numerically, using instruments to collect statistical data - often 

surveys, tests, and questionnaires (Cohen et al., 2000; Creswell, 2008; Crotty, 

1998). Quantitative research utilises a deductive approach to research design 

where specific questions are asked that the research will test (Gray, 2014). 

Quantitative research turns the data collected into numbers, and its function is to 

form the basis for a variety of statistical analyses to help make comparisons (Croll, 

1986).  

3.5 Case-study Research 

One method of educational research is the case-study approach, which stems from 

the ethnographic approach (Creswell, 2008, 2009) and is now recognized as a 

method that has its own research design (Wellington, 2000; Yin, 2014). A case 

study is “a detailed examination of one setting, or one single subject, or one single 

depository of documents, or one particular event” (Bogdan & Biklen, 1992, p. 58). 

The basic idea is that one case is explored in detail, using whatever method and 

data seem appropriate, and attempts to understand the complex interrelationship 

among all that exists by focusing on an in-depth exploration of the actual case 

(Stake, 1995). Some researchers may identify a case as an object of study, while 

others consider it a procedure of inquiry (Stake, 1995). The case may be a study 

of an individual, a small group, an organization, a community, or a nation 

(Creswell, 2008, 2009; Denscombe, 2007; Lichtman, 2011; Stake, 1995). It may 
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be a study of a phenomenon, a programme, a person, or a process (Lichtman, 

2011). All case studies begin in a place of action, and ultimately the findings 

contribute back to that place.  

Case study has been a common research method associated with social sciences 

used in the fields of psychology, sociology, anthropology, social work, business, 

education, nursing, and community planning (Yin, 2014). In qualitative research, 

the case study aims to understand the case in depth in its natural setting, 

recognizing its complexity and its context (Creswell, 2009; Gray, 2014). It has a 

holistic focus aiming to understand the wholeness and unity of the case. Case 

studies are an examination of an instance in action (Bassey, 1999), or a 

phenomenon of some sort in a bounded context (Creswell, 2008; Yin, 2014). They 

need not always include direct, detailed observations as a source of evidence (Yin, 

2014). 

Different writers have categorized case-study research in various ways. Four 

broad styles of case study concerned with educational action have been identified 

by Bassey (1999): (1) the ethnographic method is usually used in the social 

sciences whereby a single case is studied in depth through participant observation, 

supported by interview; (2) the evaluative case study may be a single case or 

collection of cases, studied in depth with the purpose of providing educational 

actors, or decision makers, with information that will help them to judge the merit 

and worth of policies, programmes, or institutions; (3) the educational style is 

concerned with neither social theory, nor evaluative judgment, but with enriching 

the thinking of educators; and (4) action research case study is concerned with the 

development of the case, or cases, under study by feedback of information, which 

can guide revision and refinement of the action. A case study tends to fall into one 

of these four broad areas, a combination of them, or maybe even none of them 

(Bassey, 1999). This then tends to form a fifth category where each may be 

independent of the others, or an interlocking relationship is formed between the 

differing case-study styles. This shows the difficulty of attempting to categorize 

research specifically, as there is often a tendency for the parameters to overlap.  

Stake (1995) identified three main types of case study: (1) the intrinsic case study, 

where the study is undertaken because the researcher wants a better understanding 

of a particular case; (2) the instrumental case study where a particular case is 
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examined to give insight into an issue, or to refine a theory; and (3) the collective 

case study where the instrumental case study is extended to cover several cases, to 

learn more about the phenomenon. The collective method is also referred to as the 

comparative case method (Yin, 2003). The first two of these are single-case 

studies, while the third (collective case study, or comparative case study) involves 

multiple cases, and is also known as multiple-case study.  

This study falls within the educational style as identified by Bassey (1999) and 

the collective case study of Stake, also known as multiple-case study. 

3.5.1 Multiple-case Study Research 

Multiple-case study design refers to the investigation of more than one participant, 

where the focus is both within and across the cases (Creswell, 2008). In-depth 

understanding requires only a few cases be investigated, because for each case 

examined the researcher has limited time to devote to exploring the depths of the 

case (Creswell, 2008). The researcher seeks to develop an in-depth understanding 

of the case by collecting multiple forms of data. 

The evidence from multiple-cases is more compelling than one case and therefore 

the overall study is more robust (Yin, 2014). The idea of multiple-case design 

being more robust and efficient, builds on the scientific idea of replication of 

experiments providing accurate findings. If certain findings were uncovered in a 

single experiment, an ensuing priority would be to replicate this finding by 

conducting a second, third, and even fourth experiment (Yin, 2014). Only with 

such replications is the original finding robust. A similar logic is applied to the 

multiple-case study. The ability to conduct a number of case studies may then 

bring with it an opportunity to form some type of generalizability. If the aggregate 

provides some similarity, generalizations are made, whereas if the cases are 

contradictory the initial propositions must be revised and retested with another set 

of cases (Yin, 2012, 2014). This logic is similar to the way researchers approach 

conflicting experimental findings.  

3.5.2 Case Studies and Generalizability 

There may seem to be a paradox that lies between the study of a singular event 

and the search for a generalization. Whether a case study should even seek to 

generalize depends on the context and purposes of the particular project (Yin, 
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2003). Clearly, every case studied is both unique and similar to others in some 

way. The question is whether the focus should be on what is unique about a 

particular case, or on what is common with other cases (Yin, 2003). When 

generalizability is a goal, and focus is on the potential common elements in a case 

(or multiple cases), it is necessary for the analysis of the case-study data to be 

conducted at a sufficient level of abstraction (Bassey, 1999).  

Discovering the important features, developing an understanding of them, and 

conceptualizing them for further study, is often achieved through case-study 

research. “Generalization and application are matters of judgment rather than 

calculation, and the task of case study is to produce ordered reports of experience 

which invite judgment and offer evidence to which judgment can appeal” (Bassey, 

1999, p. 26). Yin (2014) however, suggests that a case study is not a singular 

sample of research and suggests it should be an opportunity to shed empirical 

light about some theoretical concepts or principles. This means that there will be 

interest in going beyond the specific case that will likely strive for generalizable 

findings, or lessons learned (analytic generalizations). Multiple-case studies 

should aim for analytic generalizations and the generalizations should be at a 

conceptual level higher than that of a specific case (Yin, 2014). 

Bassey (1999) treated the idea of generalization as a statement that had to be 

absolutely true, such as scientific generalizations, and argued that very few 

generalizations in education could be categorized in that manner. He 

acknowledged that two other kinds of generalization could apply to the social 

sciences: statistical generalizations and fuzzy generalizations. Statistical 

generalization arose from a quantitative measure, while the fuzzy generalization 

came from a qualitative measure, where the study of singularities made a claim 

that it is possible, likely, or unlikely, that what was found in the one instance, will 

be found in similar situations elsewhere. For this reason, rather than use the term 

generalizability, Bassey often preferred to use the term relatability and suggested 

the relatability of a case is more important than its generalizability. An important 

criterion for judging the merit of a case study is the extent to which the details are 

sufficient and appropriate for a teacher to ‘relate’ the decision making to that 

described in the case study.  
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The two categories of generalization used by Bassey (1999) have similarities with 

the two types noted by Yin (2012, 2014), who described them as statistical 

generalization and analytical generalization, and noted that for case-study 

research the latter is the more appropriate type. When explaining analytical 

generalization, Yin (2012) asserted that they depend on using a study’s theoretical 

framework, to establish a logic that might be applicable to other situations. He 

suggested the first step involves a conceptual claim, where researchers show how 

their findings have informed the relationships among a set of concepts, theoretical 

constructs, or sequence of events. The second step involves applying the same 

theoretical propositions connected with other situations outside the study. Thus, 

case studies tend to generalize to other situations based on analytical claims, as 

opposed to surveys and other quantitative methods, that tend to generalize to 

populations based on statistical claims. Yin (2014) also posited the need initially 

to decompose each case into a set of common variables. Case patterns may then 

be traced across the set of cases, which is referred to as qualitative comparative 

analysis (QCA). When carrying out analysis of this type, the unique aspects of 

each case are also taken into account through some form of qualitative analysis, 

that will complement any quantitative tallies that may have been noted (Yin, 

2014).  

3.6 Roles of the Researcher 

In case-study research, the main source for data collection and analysis is the 

researcher (Creswell, 2008; Yin, 2012). The demands of a case study rely on the 

researcher’s intellect, ego, and emotions, and are far greater than other research 

methods (Yin, 2014). There is an ongoing need for interaction between the 

theoretical issues being studied and the data being collected. The case-study 

researcher uses a range of techniques and multiple sources to collect relevant data. 

This requires a range of attributes including the ability to: ask good questions; be 

a good listener; stay adaptive; have a firm grasp of the issues being studied; avoid 

biases; knowing how to conduct research ethically including being sensitive in 

situations such as classroom observations and interviews; and have analytical 

capability to manage survey results (Creswell, 2008; Yin, 2014). The goal of the 

researcher is to cite relevant evidence, whether from interviews, documents, 
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observations, or archival evidence, in composing an adequate answer to the 

questions posed (Yin, 2014). 

During data collections and analysis of qualitative research, it is important to 

consider the methodological issue relating to reflexivity (Corbin & Strauss, 2008). 

Reflexivity is self-awareness by the researcher of the relationship between the 

researcher, the participants, and the research environment (Lamb & Huttinger, 

1989). It involves being aware of what influences the researcher’s in-the-moment 

responses, while also being aware of the researcher’s relationship to participants. 

The researcher’s feelings or emotions may be conveyed to the participants (often 

on an unconscious level), and the participants may react to the researcher’s 

responses accordingly (Corbin & Strauss, 2008). Reflexivity helps make explicit 

any moral dilemmas that might otherwise go unnoticed and assists in ensuring 

objectivity within the research process (Corbin & Strauss, 2008). 

3.7 Ethical Considerations 

A good case-study researcher will strive for the highest standards of ethical 

practice while doing research, including a responsibility to scholarship, as well as 

being honest, avoiding deception, and accepting responsibility for one’s own 

work (Cohen et al., 2000). Ethical concerns in educational research can be 

complex and subtle and can, if not carefully dealt with, place the researcher in a 

range of moral predicaments. Research ethics is about being clear about the nature 

of the agreement you have entered into with your research subjects (Bell, 2010). 

Ethical research involves getting informed consent from those you are going to 

interview, question, observe, or take materials from; protecting those who 

participate in the study from harm; protecting the privacy and confidentiality of 

those who participate; protecting vulnerable participants (for example students); 

and selecting participants equitably (Yin, 2014).  

Specific ethical considerations arise for all research involving human subjects 

(Corbin & Strauss, 2008; Yin, 2014). One main ethical concern is the balance 

between the demands of the researcher as a professional in pursuit of truth and the 

subjects’ rights and values, which may potentially be threatened by the research 

(Cohen et al., 2000). The collection and analysis of data have customarily 

required objectivity, but it is generally recognised that complete objectivity is 
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impossible (Corbin & Strauss, 2008). The researcher always comes to the research 

from some position, and brings to the research their personal paradigm including 

perspectives, training, and knowledge. The lens of the researcher becomes 

entwined in all aspects of the research process including the gathering, analysing, 

and interpreting the data (Corbin & Strauss, 2008; Yin, 2003). Background, 

knowledge, and experience, allow the researcher to be sensitive to concepts in the 

data, to see connections between the concepts, and respond accordingly (Corbin & 

Strauss, 2008). It is thus important that all research be conducted with sensitivity, 

as the researcher puts himself/herself into the research (Corbin & Strauss, 2008). 

It means having insight into and being aware of relevant issues, events, and 

happenings in the situation (the classroom) and the data collected.  

Much education research is often concerned with both teachers and children. 

There are important differences between research with children and research with 

adults, and implications for the methods of research. Researchers are usually in 

positions of authority over children and this raises the possibility that children 

may find it difficult to dissent, disagree, or say things which adults may not like 

(Yin, 2003). The researcher needs to be aware that children may say what they 

believe the researcher wants to hear. Therefore, a caring relationship is paramount 

when carrying out research with children and it is important for the researcher to 

view the research from the participants’ perspectives (Noddings, 2003). The 

researcher is encouraged to consider collaboration with the participants and to 

avoid imposition on them (Noddings, 2003).  

Confidentiality is an important issue when doing research. Researchers must 

protect the people participating in their study. Involving people as research 

participants carries ethical obligations, including ensuring that pseudonyms are 

used for real names and places (Corbin & Strauss, 2008; Yin, 2014).  

3.8 Data Gathering Methods 

As stated previously, case-study research is not limited to a single source of data 

and good case studies benefit from having multiple sources of evidence (Yin, 

2012, 2014). Data may be collected from a variety of sources including: direct 

observations, interviews, surveys, archival records, documents, and physical 

artefacts. Regardless of the sources used, case-study evidence often includes both 
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qualitative and quantitative data (Yin, 2012). The qualitative data is primarily 

descriptive data and cannot always be explained numerically, as it is the quality 

and richness of the response which should be the focus (Basit, 2003; Cresswell, 

2008, 2009; Gray, 2014). The research report frequently begins with 

microanalysis of data from which theories may be developed and/or descriptions 

of lived experiences and narrative stories created (Corbin & Strauss, 2008) and 

the end of process tends to be primarily descriptive in presentation.  

This study is a multiple-case study that uses both qualitative and quantitative data. 

However, there was a leaning towards more qualitative data being collected, in 

line with the interpretivist perspective of social methodology.  

3.8.1 Questionnaires  

Questionnaires can be of value when collecting data for case-study research, as 

they can provide both qualitative and quantitative information. There are many 

types of questionnaires, which can vary in terms of their purpose, size, and 

appearance (Denscombe, 2007). A well-designed questionnaire can be difficult to 

create in order to gain the information required, while also being acceptable to 

those participating in the research, and later ensuring there are no problems in the 

analysis and interpretation stages (Bell, 2010; Denscombe, 2007).  

Questionnaires allow for a large amount of information to be gathered in a 

relatively short space of time. There are seven question types: open or verbal, list, 

category, ranking, quantity, grid, and scale (Bell, 2010). Where quantitative data 

is required, structured closed questions are useful in that they can generate 

statistical information and enable comparisons across groups in the sample. Such 

questions may be presented using a Likert scale for the responses. They are 

usually, though not always, on a three-point, five-point, or seven-point range and 

ask the respondent to indicate or rank, order of agreement or disagreement, by 

circling an appropriate number.  Data presented is ordinal, as opposed to interval 

data, and care needs to be given when interpreting the scale, as the intervals may 

not be the same (Bell, 2010). Multiple-choice questions also allow quantitative 

data to be readily collected. However, multiple-choice items, without the 

opportunity for participants to elaborate on their decision, have limited use 

(Clements & Ellerton, 1995).  If qualitative information is required, then a less 

structured, open-ended questionnaire may be more appropriate (Cohen et al., 
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2000). Open questions allow the participant to write a response in their own 

words and to qualify and explain their reasons for doing so.  

When designing a questionnaire, many different needs and issues might be 

considered, as these may affect interpretation of the data (Bell, 2010; Creswell, 

2008). For example, care needs to be given to the wording of questions, as words 

which may appear to have a common meaning to some people, may mean 

something totally different to others, and the writer must try to avoid confusion 

and take care not to make assumptions that the reader will know or understand 

what is asked of them. Emotive language and hypothetical questions may lead, or 

possibly mislead, respondents into answering in a particular way and should be 

avoided. 

3.8.2 Interviews  

When the researcher needs to gain insights into things like people’s feelings, 

opinions, emotions, and experiences, then an interview is a method attuned to the 

intricacy of the subject matter (Corbin & Strauss, 2008; Denscombe, 2007). An 

interviewer can follow up ideas, probe responses, and investigate motives and 

feelings, which a questionnaire cannot do. One major advantage of the interview 

is its adaptability, as responses can be developed and clarified (Bell, 2010). The 

key idea of successful interviewing is to be friendly, but not too friendly. A 

balance must be struck between the warmth required to generate rapport, and the 

detachment necessary to see the interviewee as someone under question (Oakley, 

1981).  

There are many different types of interview available to the researcher, including 

structured interviews, semi-structured interviews, unstructured interviews 

(sometimes known as the ethnographic interview), one-to-one interviews (also 

referred to as individual interviews), and group interviews, sometimes known as 

focus-group interviews (Denscombe, 2007; Yin, 2012). The structured interview 

involves tight control over the format of the questions and sometimes the answers 

(Denscombe, 2007). In many ways, they are like a questionnaire where the 

questions are pre-planned and administered face-to-face with the interviewee. 

With semi-structured interviews, the interviewer is flexible in the order of 

questions and topics covered, allowing the interviewee to develop ideas and speak 

more openly. In the unstructured interview, the researcher’s role is to be as un-
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intrusive as possible. Interview questions are not pre-planned but are based 

instead on general ideas, allowing questions to emerge. They allow the 

interviewees to use their own words and develop their own thoughts. Denscombe 

argued that the most common form of semi-structured or unstructured interview is 

the one-to-one interview where the researcher only has one person’s ideas to grasp 

and question, and one participant’s voice to recognise when later transcribing.   

Interview bias may occur in research when carried out by an individual who has a 

strong view about the topic they are researching. In such an instance, the 

researcher may find it difficult to maintain a dispassionate, objective, arm’s length 

approach to the research situation (Bell, 2010). Instead, there is a need for the 

researcher to be flexible during the interview and allow the respondent to voice 

personal opinions. A successful interview has many of the characteristics of a 

prolonged and intimate conversation, minimising the difference between the 

interviewer and the respondent (Denscombe, 2007). An equal relationship will 

develop based on trust, enabling greater openness and insight.  

3.8.3 Observations 

Case-study research should take place in the real-world setting of the case, thus 

creating the opportunity for direct observation (Bell, 2010). Effective observation 

requires considerable skill and is not an easy option for the collection of data, but 

it can reveal characteristics of those studied, which would have been impossible to 

discover by other means. Observation involves orderly viewing of people’s 

actions and the recording, analysis, and interpretation of their behaviour (Gray, 

2014). Interviews, surveys, and questionnaires provide important data, but they 

only reveal how people perceive what happens, not what actually happens. 

Observations on the other hand can be useful in discovering what happens in 

reality and whether people behave in the manner, they claim to behave. 

Observations are time consuming and can be intrusive. However, observation is 

important to research in that it is not unusual for persons to say that they are doing 

one thing, but in reality they are doing something else (Corbin & Strauss, 2008). 

The only way to know the actuality of a context is through direct observation, 

which puts the researcher in the setting where they can see what is occurring.  

Direct observations occur in a field setting and can focus on human actions, 

physical environments, or real-world events, and are one of the most distinctive 



 

88 

 

features of case-study research (Yin, 2012). However, the material obtained from 

observation can lead to imposing the researcher’s own interpretation on what was 

observed (Bell, 2010). The collecting of observational data includes the taking of 

field notes and use of a recording device, in order to create a narrative based on 

what was seen and/or heard. 

Audio-visual material 

Alongside direct observation, qualitative data may also be collected with video 

and audio images. Audio-visual materials include images or sound that 

researchers collect to help them understand the study and are gathered via 

photographs, audio-recordings, digital images, and paintings (Creswell, 2008). 

Audio-visual recording may overcome the partiality of the researcher’s field notes 

and records when based on observation alone (Cohen et al., 2000). It overcomes 

the possibility of recording only those events that happen frequently and provides 

the capacity for comprehensive material and completeness of analysis. It helps to 

make explicit the implicit models teachers have of their practice and how students 

learn (Cohen et al., 2000). Verbatim recordings are an added advantage when 

used for later review and data analysis.  

Video-recorded material can capture conversations and expressions between the 

teacher and learners, as well as between and among the learners themselves. 

Insight is gained into the complexity of the intersection of a teacher’s pedagogical 

content knowledge and the application of knowledge in practice (Maher, 2008). 

Videotapes and film images provide data and examples about real life as it occurs, 

and provide an opportunity for the researcher to share their perceptions of reality. 

Audiotape recorders record conversations within the lesson, but lack the 

possibility of recording visual and non-verbal factors such as a look of surprise on 

a child’s face. However, while video recordings might provide more accurate data 

than the audiotape, they might also be more constraining due to the intimidation 

they pose to some participants. 

3.8.4 Tests and Assessment Tasks 

The field of testing is extensive in terms of variety, volume, scope, and 

sophistication (Cohen et al., 2000). By carrying out tests, researchers have 

available a documented method of collecting data that is quantitative as well as 

qualitative (Creswell, 2008). Tests in the education setting may include 
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commercially-produced, teacher-produced, and/or researcher-produced tests. 

Commercially-produced tests are not tailored to local contexts or needs, while the 

teacher-produced and researcher-produced tests will be tailored to a specific 

context. The purpose and content will deliberately fit the specific needs of the 

research.  Cohen et al. refer to this as fitness for purpose. For example, a pre-test 

provides a measure on an attribute or characteristic before participants receive 

instruction, and after instruction, a post-test can be carried out on the same 

attribute. Pre-testing and post-testing can have a potential threat to validity in 

research if participants become familiar with the questions and remember 

responses for later testing (Cohen et al.). Hence, in mathematics tests, there is a 

need to change the values in each question to reduce this possibility.  

Assessment used in New Zealand schools involves the “focused and timely 

gathering, analysis and use of information that can provide evidence of students’ 

progress” (Ministry of Education, 2007, p. 39). While formal tests may be used, 

assessment is frequently “of the moment” (Ministry of Education, 2007, p. 39). 

As stated in Section 1.5, one of the mathematics assessment tools used for 

gathering information is the Numeracy Project Assessment tool (NumPA) 

(Ministry of Education, 2008b). The NumPA assessment is carried out as an 

individual interview and contains a series of questions, which uncovers the 

student’s mental strategies used when solving problems and number knowledge.   

3.9 Transcribing and Data Analysis 

Transcription represents a translation from one system (oral) to another system 

(written) (Cohen et al., 2000; Creswell, 2008). Transcribing can be isolated from 

the dynamics of the classroom and does not necessarily capture the social, 

interactive dynamics of the lesson. As it is only the spoken word which is 

transcribed from the audio-recording, it becomes solely a record of verbal data 

with non-verbal information being omitted (Creswell, 2008). Hence, transcribed 

data is often used in conjunction with video-recorded material, which captures the 

non-verbal essence of the lesson.  

Data analysis is complex when working with mixed-method research, especially 

the qualitative data (Braun & Clarke, 2006; Creswell, 2008). The variety and 

diversity in approaches to data collection, means that there is no single right way 
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to conduct qualitative data analysis and much depends on the purpose of the 

research. Added to this complexity, is the notion that case-study analysis takes 

many forms. As Yin (2012) noted, qualitative research does not necessarily follow 

the routine procedures that exist with other research methods. What connects the 

many approaches to data analysis is a central regard to transforming and 

interpreting qualitative data in a rigorous way, in order to capture the complexities 

of the social worlds researchers seek to explain. 

Coding is the initial activity undertaken in qualitative analysis and the basis for 

what follows later (Yin, 2012). Researchers are increasingly using electronic 

methods of coding data and developed computer programmes are now available to 

support analysis of the narrative text (Basit, 2003; Lewins & Silver, 2007). They 

support the researcher’s coding and categorizing of the notes taken, or verbatim 

transcripts (Basit, 2003; Yin, 2012). Computer programmes should be seen as 

tools, which can enhance the ability of the researcher to search for, store, sort, and 

retrieve materials (Yin, 2012). As Yin noted, unlike software for analysing 

numeric data where the computer often uses an algorithm to produce data, there is 

no algorithm when analysing narrative data. The qualitative analysis begins by the 

researcher organising the data into grouped relationships (Basit, 2003). 

Qualitative approaches are diverse and complex, and thematic analysis is a 

fundamental method utilised by qualitative researchers (Braun & Clarke, 2006). 

Whether using computer software to help or not, the researcher is the one who 

must define the codes to be used and the procedures used for piecing together the 

coded evidence into themes. A researcher uses the coding process to dig beneath 

the surface to dissect the data meaningfully, while keeping the similarities within 

different parts together (Corbin & Strauss, 2008).  

There are different types of coding which may be used and among these is 

selective coding.  Selective coding is where concepts are integrated around core 

categories (Strauss & Corbin, 1990). These may include predetermined 

frameworks, which inform the selected codes. A computer programme may take 

over the arduous tasks of marking up, cutting, sorting, and reorganising, that was 

once done with scissors and paper, but the analytic work to produce new insights 

must still be carried out by the researcher (Basit, 2003; Corbin & Strauss, 2008). 

NVivo is one software package for qualitative research that is designed to help 
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researchers analyse non-numeric data and (among other things) allows them to 

collect, organize, and analyse content of transcribed material from observations, 

interviews, and discussions (Lewins & Silver, 2007; NVivo Feature List, 2014). 

In NVivo the containers for storing themes or ideas are called nodes. All the 

information about a theme is gathered together in a node using coding stripes, 

which can be printed to assist in the crosschecking and analysis of themes.  

While coding is often the first part of the data analysis process, the second is that 

of memoing. The principles with coding and memoing originated from grounded 

theory, and are now used widely in qualitative research. Creswell (2008) asserted 

that while memoing is the second important part of the process, it is not 

necessarily the second stage. The operations of coding and memoing are not 

sequential as memoing begins at the start of the analysis alongside the coding. 

Memos are notes the researcher writes, like an on-going dialogue with oneself 

throughout the research process, to elaborate on ideas about the data from field 

notes, transcripts, and coded categories (Creswell, 2008; Corbin & Strauss, 2008). 

The memos allow the researcher to explore hunches, ideas, and thoughts and take 

them apart searching for broader explanations (Creswell, 2008).  

Once the data is coded and memos made, the material needs to be interpreted. 

When searching for regularities in the social world, induction is a central 

component (Cohen et al., 2000). As concepts are developed inductively from the 

data, their relationships are then mapped out. The fact that much qualitative 

analysis requires induction has meant that the term analytic induction is often 

used: analytic induction refers to the systematic examination of similarities 

between cases to develop concerns or ideas (Creswell, 2000). While induction is 

crucial in analysis, deduction is also required, since theory generation involves 

theory verification. This sort of qualitative data analysis is a series of inductive 

and deductive steps where data-driven inductive generation, is followed by 

deductive examination for the purpose of verification (Creswell, 2000). 

Triangulation 

Triangulation of data is frequently used in case-study research. Triangulation is 

the use of two or more methods of data collection in relation to the study of 

human behaviour and is used when both quantitative and qualitative data is 

considered (Cohen et al., 2000). As data collection takes place from a number of 
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different sources, triangulation occurs in an effort to establish trustworthiness and 

reduce the likelihood of misinterpretation (Creswell, 2008; Stake, 1995). 

Triangulation involves separate collection and analysis of multiple sources of data, 

which are later merged either through data transformation, or at the stage of 

interpretation of results (Creswell, 2008). In triangulation, the research values 

both qualitative and quantitative data and allows the researcher to gather 

information that uses the best features of both types. Triangulation is suitable 

when a more holistic view of education is sought and complementary results or 

inconsistencies may emerge (Cohen et al., 2000). 

Section B: Research Methods and Design 

Introduction 

In order to answer the research questions, multiple-sources of data collection were 

used. Data collected from the complex real-world context of the classroom 

through observations and field notes, were analysed concurrently with data 

gathered from the questionnaire and assessment tasks. These were analysed in 

both a qualitative and quantitative manner. The analysis moved beyond the either-

or thinking associated with qualitative or quantitative methods alone (Cohen et al., 

2000; Creswell, 2008) as the process of collecting, analysing, and weaving 

together of data occurred. While this research is predominantly qualitative in 

nature and sits within the interpretivist paradigm (Bogdan & Biklen, 1992), 

numerical data was unpacked through a deductive process, allowing for 

relationships across cases to be identified (Mouly, 1978). Although a multiple 

case-study design was used and brought with it the features of a case study, within 

and across four cases, comparisons between individual cases were not at the 

forefront. Instead, while findings from the individual cases are acknowledged, 

they were ultimately combined to look for relatability (Bassey, 1999), by 

identifying both similarities and differences across the cases.  

3.10 Participants 

3.10.1 Case-study Schools 

Two New Zealand primary schools were invited to participate in the research 

project. Convenience sampling (Marshall, 1996) was used, as the schools were 

currently committed to participating in mathematics professional development 
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with the researcher, who was their numeracy adviser at the time (see sections 

3.10.11 and 3.11), due to mathematics support allocated and funded by the 

Ministry of Education.  

School A was a central city full primary school (Years 1 to 8) with a decile rating 

of 3 (Note: Decile rankings are allocated by the New Zealand Ministry of 

Education reflecting the socio-economic status of the community, ranging from 1 

the lowest, to 10 the highest). The school had six classes ranging from Year 1 to 

Year 8, and a non-teaching principal. The students in the school came from a wide 

range of ethnic backgrounds, with less than 10% being of New Zealand European 

descent, approximately 30% of New Zealand Māori heritage, and 50% of the 

children categorised as speaking English as a Second Language (ESOL), also 

known as English Language Learners (ELL).  

School B was a rural town primary school, with students from Years 1 to 6 and a 

decile rating of 5. The school had 22 classes, along with a non-teaching principal 

and two deputy principals. Approximately 60% of the students were of New 

Zealand European ethnicity, 28% were Māori, and the remaining 12% came from 

varying ethnic groups. The senior school syndicate (Years 5 & 6), from which two 

teachers participated in this study, were cross-grouped by ability across six classes 

for their mathematics lessons. The classes were grouped according Numeracy 

Project Assessment (NumPA) data and formative data, from the previous years’ 

teachers.  

Initial discussions were held with the principal and deputy principal(s) from each 

school, to outline the intent of the research. Copies of the principal’s agreement 

and participation agreement were shown and discussed (Appendix A), and the 

school leaders were invited to consider participation in the research. Once the 

principal gave approval, letters of information along with an outline of the 

research was presented at the first meeting with staff from each school. An 

invitation was extended to all teachers at the Years 5 to 8 levels, to participate in 

the research (Appendix B). The researcher was careful to explain fully the ethical 

considerations of the research and extra care was taken to discuss with the 

teachers any conflict of interest that may arise between the work of the researcher 

as an adviser, and that of a researcher. Two teachers from each school along with 

their students, became the case-study participants of this study. The participation 
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agreement for data to be collected and observations made of their teaching 

practice was given to each teacher (Appendix B: Additional information for case-

study teachers).  

3.10.2 Case-study Teachers and their Classes  

The case-study research focused on the senior classes of each school. Pseudonyms 

beginning with the letter appropriate to their school were chosen for the teachers, 

to show the connection between them and their school. At School A, the 

leadership team determined class combinations, generally based on each student’s 

age. The overlap of Year 7 students occurred because of the spread of student 

numbers and class sizes school wide. Classes included Andy, the teacher of the 

Year 6 (n=22) and Year 7 (n=6) class and Anna, the teacher of the Year 7 (n=10) 

and Year 8 (n=17) class (Table 3.1).  

At School B, there were six Years 5 and 6 composite classes and two teachers 

(Beth and Bob) volunteered to participate as case-study teachers. School B cross-

grouped their classes by ability for mathematics, based on the Number 

Framework strategy stage, ascertained from the NumPA data at the end of the 

previous year. The majority of Bob’s students had been identified at early Stage 5, 

while Beth’s students were transitioning from Stage 4 to early Stage 5 (Section 

3.10.1). Bob’s class (Year 5, n=15; Year 6, n=13) was third in ranking (one being 

the top class out of the six) and Beth’s class (Year 5, n=12; Year 6, n=9) the 

fourth class in ranking (Table 3.1).  

The four case-study teachers were also involved in workshops and classroom 

visits alongside the rest of the teachers at their school, as part of their school-wide 

professional development programme (Table 3.2). The timeline highlights when 

various data were collected from the case-study teachers, for this research. As the 

researcher wished to focus on the teaching of multiplication and division, the data 

gathering occurred in the second half of the year. This gave the researcher, the 

teachers, and their students, time to familiarise themselves with each other during 

previous visits to the classrooms and by the time the identified lessons took place, 

the teachers and students were used to the researcher’s presence in the room. The 

visits to the case-study teachers’ classrooms for research purposes were clearly 

identified and discussed with the teachers early in the year, and the researcher 

reminded the teachers of these during the prior visit.  
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Table 3.1  

Case-study teachers and their classes 
 

Teacher School School  

Decile 

Year Level 

(number of 

students) 

Number 

Framework 

Stage(s) 

Maths Class Teacher’s 

Experience         

(in years) 

Anna A 3 7 (n = 10)    

8 (n = 17) 

4 – 6 

4 - 6 

Regular class,   

ability grouping 
20 

Andy A 3 6 (n=22)             

7 (n=6) 

3 - 5 

4 - 6 

Regular class,  

ability grouping 
11 

Beth B 5 5 (n=12)      

6 (n=9) 

4 

4 - 5 

Cross-class       

ability grouping (4th 

out of 6 classes) 

2 

Bob B 5 5 (n=15)      

6 (n=13) 

4 – 5 

5 

Cross-class       

ability grouping (3rd 

out of 6 classes) 

1 

 

3.11 Ethical Considerations  

This research adhered to the guidelines as set out in The University of Waikato 

Code of Ethics and all material associated with ethical practice was approved by 

the Faculty of Education Ethics Committee, prior to commencement of the 

research. Determining what is ethical is situational and complex (Corbin & 

Strauss, 2008) and I was bound by the University’s requirements as well as 

personal high standards of ethics. At the initial meeting with principals and deputy 

principals, opportunity was given to discuss any issues or concerns regarding the 

study, with potential conflict of interest on the part of the researcher highlighted.  

It was made clear that the researcher would remind the teachers in advance when 

data was going to be collected for the study and discuss with them any issues they 

may have. If the teachers did not want data included in the research, they could 

choose to withdraw it, and/or themselves, at any point up until the end of that year.  

The researcher visited the case-study teachers’ classes and discussed with the 

students that their teacher had agreed to involvement in the study. It was 

explained that in order for the study to occur, they also needed to give consent to 

participate. Issues with regards to anonymity were discussed with the students and 

they were assured that their names would not be used in the findings. The students 

were given letters of information and consent for their parents/caregivers 

(Appendix D) and for themselves (Appendix E), which they took home, discussed 

with their parents/caregivers, signed, and returned to school. 
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Table 3.2 

The year’s professional development programme  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note: Highlighted sections indicate when data were collected from the case-study participants) 

 

3.12 Data Gathering Methods 

The research focussed on the relationship between the teachers’ espoused 

professional knowledge as evidenced in their questionnaire, their professional 

knowledge as observed in teaching practice, and their students’ learning, in the 

Date Meeting/Observation Brief Description of purpose 
January Staff meeting - the Number Framework  Understanding stage progressions on the Framework. 

 

Participation agreements discussed                                     
Initial questionnaires handed out 

All teachers completed agreements to participate in research. 
Senior school’ teachers invited to be case study teachers. 

February Staff meeting - assessment tools                                                                    An overview of some assessment tools available for use in 
mathematics. Introduce the use of GloSS and IKAN for diagnostic 
assessment. Teachers carry out assessment on all students.  

 

Questionnaires collected                                   
Case-study teachers identified  

Initial questionnaires completed by teachers.                                                       
Case-study teachers complete agreements. 

March Staff meeting - Getting started, where 
to now? 

Teachers encouraged to analyze data and set goals for the year. 

 

In class visit - meet children and 
discuss research 

Visit case-study classes and discuss with the children the research 
their teachers are involved in. Permission slips given to children to 
take home. 

 

In class visit - observation of teaching Each teacher observed in class. Learning Conversation followed. 

 

Staff meeting - addition & subtraction Support understanding of progressions when teaching knowledge 
and strategy in addition and subtraction.  

April In class visit - observation of teaching                                                          Each teacher observed in class. Learning Conversation followed.                                                                                    

 

Survey about Learning and Teaching 
completed 

Children and teachers complete survey about learning and 
teaching in mathematics.  

June Staff meeting - multiplication & 
division 
In class visit – observation of teaching 

Support understanding of progressions when teaching knowledge 
and strategy in multiplication and division. 
All teachers observed teaching multiplication lesson. 
Learning conversation followed. 

 

In class visit -  pre unit assessment 
tasks 

All children complete the initial multiplication and division 
assessment tasks. 

 

In class visit - observation of teaching  Each teacher observed introducing multiplication and division. 
Learning conversation followed. 

August In class visit - observation of teaching  Each teacher observed teaching towards end of unit on 
multiplication and division. Learning conversation followed.  

 

In class visit -  post unit assessment 
tasks 

All children complete the final multiplication and division 
assessment tasks. 

September Staff meeting - proportional thinking Support understanding of progressions when teaching knowledge 
and strategy in fractions and decimals. 

 

In class visit -  pre unit assessment 
tasks 

All children complete the initial fraction assessment tasks. 

October In class visit - observation of teaching  Each teacher observed teaching midway through unit on fractions. 
Learning conversation followed. 

November In class visit - observation of teaching Teachers observed teaching towards end of unit on fractions. 
Learning conversation followed. 

 

In class visit -  post unit assessment 
tasks 

All children complete the final fraction assessment tasks. 

 

staff meeting - statistics Ideas for teaching statistics & probability. 

 
 Teachers carry out GloSS assessment on students. 

December In class visit - end of year questionnaire Interview with teachers on the year. 
Students complete questionnaire on how the year has gone for 
them. 

 

  

 

Staff meeting - data analysis and next 
year 

What does the data say about your teaching and the children's 
learning this year? 
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multiplicative and proportional domains. Hence, data collection required multiple 

sources and included questionnaires, classroom-based observations, field notes, 

interviews, assessment information, and copies of student work. Validity of 

findings was assisted by triangulation between the different data sources.  

3.12.1 Observations and Recordings 

Observations were a key part of data collection, which emphasised the 

professional knowledge of teachers in action, in classroom practice. Although the 

students were familiar with the researcher being in their room, observations 

always began with her sitting at a student desk in order to be as inconspicuous as 

possible. The intention of this was to gather data of a typical mathematics lesson 

and encourage the students and the teacher to continue as they would at any other 

time. In order to validate observations of the lessons, field notes were written, 

photos taken, and lessons both video-recorded and audio-recorded.  

Video and Audio-recording  

The video-recording and audio-recording of each observed lesson (Table 3.2), 

allowed the researcher to return to specifics of the lessons and crosscheck details 

later. Each lesson was recorded on a small video camera, while at the same time 

the teachers wore a small microphone that was connected to a digital voice 

recorder. The recordings provided a permanent and accurate record of what was 

said and carried out during the lessons, and were downloaded to a computer for 

storage. While research has found there are times when having an electronic 

device may change how the students and teacher react (Morrison, 1993), this did 

not appear to be the case in this research. After each session, the teachers were 

asked if they felt having the recording devices affected their teaching, and they all 

commented that after the initial act of attaching the recorder to their clothing, they 

forgot it was even there. Lessons were transcribed from the audio-recordings and 

cross-checked against the video-recordings for accuracy. 

3.12.2 Questionnaires  

A questionnaire (Appendix C) was given to the teachers as a means of gathering 

information related to the teachers’ perceived pedagogical content knowledge 

(PCK). The questionnaire was originally compiled and utilised to determine 

teachers’ PCK as part of earlier research conducted into the teaching of 
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multiplication and division, and use of the equal addition strategy (Young-

Loveridge & Mills, 2009a, 2009b, 2010, 2011), which sat alongside the 

Numeracy Development Project professional development.     

The questionnaire was compiled in three sections: Section A included the 

teachers’ views about classroom mathematics practices; Section B was multi-

choice questions focussed on aspects of multiplicative and proportional subject 

matter knowledge; and Section C provided scenarios about teaching mathematics, 

where judgements were required in relation to mathematical understanding and 

pedagogical practice. Each scenario described how a student might solve a given 

problem and asked the teacher to explain what action they would take next with 

that student. The teachers explained how they would solve the problem and were 

asked to draw a diagram to support their thinking.  

As stated previously in relation to teacher knowledge, knowing how to solve a 

problem, recognising how a student solves a problem, and knowing where to take 

the child next, are part of a teacher’s disciplinary knowledge of mathematics, or 

mathematics-for-teaching (Davis & Renert, 2014). For these reasons the questions 

given to the case-study teachers were based on the knowledge required to teach 

Levels 3 (Stage 6), 4 (Stage 7), and early Level 5 (Stage 8) of the curriculum (for 

detail of each question given and reason for its inclusion refer to Sections 4.22 

and 4.23). Students at Level 3 are expected to “record and interpret additive and 

simple multiplicative strategies using words, diagrams and symbols” (Ministry of 

Education, 2007, Level Three chart) and it was felt that teachers should be able to 

do likewise. Hence, the teachers were asked to show how they would solve each 

problem and to use a diagram to support their thinking when explaining the 

strategy they would use to solve each scenario.   

3.12.3 Interviews and Learning Conversations   

At the end of each observed lesson, the researcher briefly interviewed the teacher. 

The interviews were one-to-one and predominantly unstructured, as they were 

based on the recently observed lesson. Originally, the researcher asked the teacher 

for an interview after each teaching session. However, during the first interview 

the researcher and teachers agreed to change the label of the dialogue to “learning 

conversation.” The change in terminology came about because while it was 

essentially an unstructured interview, the process became a conversation between 
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the researcher and the teacher. The conversations were carried out in a quiet area 

away from the classroom, where the researcher and teacher would not be 

distracted. In order to keep the conversation open and honest (for both parties), it 

was decided not to record the conversation, but instead the researcher would make 

field notes. Together the researcher and the teacher reflected on the observed 

teaching session, the impact they thought it had had on the students’ learning, and 

what this meant for future lessons. At the end of the year, a concluding semi-

structured interview took place (that was recorded), reflecting on the journey 

undertaken throughout the year in relation to their teaching practice and the 

students’ learning.  

3.12.4 Tests, and Assessment Tasks 

In this study, data included photocopying some of the students’ follow-up 

exercises from their workbooks and copies of recordings in the group modelling 

book. As the lessons progressed, the modelling book provided evidence of the 

question types given to the students, the manner in which they solved the 

problems, and threads of discussion that took place. It contained word problems, 

equations, and at times the pasted in samples of the materials used to solve 

problems. An analysis was not carried out on these data sources, but they were 

used as supporting evidence to illustrate learning that was taking place in the 

classroom lessons. 

Student achievement data from Progressive Achievement tests (PAT) and 

Numeracy Project Assessment (NumPA) tools were also collected. This was 

limited to information about the overall results for the class and did not show a 

breakdown of individual tasks for each student. Ethical approval had not been 

sought for detailed individual student’s previous assessment data, but the schools 

were happy to share collated results. The main reason for collecting background 

assessment data was to provide the researcher with some information about the 

mathematical capabilities of each class compared to their expected levels of 

achievement (Table 3.3), prior to the research taking place. 

Initial and final assessment tasks designed by the researcher, were administered in 

the multiplicative and proportional domains. The term “assessment tasks” is used 

throughout the thesis as the researcher wanted the students to regard them as 

questions given by the researcher, in order to gather data to show how their 
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knowledge and understanding changed (or not) throughout each unit of work. The 

researcher assured the students that assessment tasks data would be used as part of 

the “evidence of overall patterns of effectiveness” (Patton, 2002, p. 151) of the 

teaching that had taken place. Thus, a collation of results became the focus, rather 

than individual’s data, as it was the key aspects of learning in the class as a whole, 

that the researcher wished to focus on. The assessment tasks were to be seen as 

supporting evidence in the triangulation of achievement data, alongside observed 

lessons and modelling books.  

The assessment tasks were based on key aspects of knowledge students at Years 5 

to Years 8 are either expected to have, or are currently acquiring (particularly in 

the case of the Year 5 students), according to the NZC Levels (Ministry of 

Education, 2007), the Number Framework Stages (Ministry of Education, 2008a), 

and the National Mathematics Standards (Ministry of Education, 2009a), (Table 

3.3).  

Table 3.3 
Approximate comparisons between The New Zealand Curriculum Levels and Number 

Framework stages.  

Curriculum 

Level 

Number 

Framework Stage 

Number Framework 

Descriptor 

Class Level 

1 1-3 Count All Year 1 

1 4 Advanced Counting Year 2 

2 5 Early Additive Years 3 & 4 

3 6 Advanced Additive Years 5 & 6 

4 7 Advanced Multiplicative  Years 7 & 8 

5 8 Advanced Proportional Year 9 

   Ministry of Education (2010) 

The Numeracy Project Assessment Tools, including NumPA and GloSS, identify 

a stage on the Number Framework a student is working at, based on the strategies 

used for solving problems. For example, if a student solved the problem: “If          

3 x 20 = 60, what does 3 x 18 equal?”  by derivation, such as, “3 x 18 = 60 – (3 x 

2) = 54” the student will be categorised as working at Stage 6, or Advanced 

Additive the expected working stage for students in Years 5 and Year 6 (Table 

3.3).   
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The Numeracy Development books and planning sheets available to teachers 

through the New Zealand Mathematics website (Ministry of Education, n.d.a) 

present lessons as transitioning from one stage to the next, because while a 

student is working at one stage they are being prepared for the next stage. For 

example, students who are working at Stage 6 during Years 5 and 6 are preparing 

to move from the Advanced Additive (AA) Stage (Level 3) they are currently 

working at, to the Advanced Multiplicative (AM) Stage (Level 4). Similarly, 

during Years 7 and 8 students who are working at AM are preparing to move to 

the Advanced Proportional (AP) Stage (Level 5). While students should be 

transitioning upwards from the stage that they were assessed at, if during teaching 

gaps are identified, then use of the lower transition sheets may be required for a 

short period to support filling those gaps. 

The knowledge required for solving strategies at each of the Number Framework 

Stages is learnt at the previous stage. For example, knowledge developed whilst at 

Stage 6 (e.g., equivalent fractions for halves, thirds, quarters, fifths, and tenths 

with denominators up to 100, and up to 1 000), is used for solving problems at 

Stage 7 (Ministry of Education, 2008a, p.21).  

The assessment tasks given to the students, came from material developed for 

Levels 2 and 3 of NZC. The reasons behind inclusion of the specific initial 

assessment tasks (Sections 7.1.1 & 7.2.1) and final assessment tasks (Sections 

7.1.2 & 7.2.2) are outlined in detail alongside the results and analysis, and are 

related to the “goals for learning” and the “knowledge of assessment” categories 

of the framework (Figure 3.1). Results of the initial assessment tasks were not 

made available to the students, as the final assessment tasks were based on similar 

question types for comparison. However, they were offered to the teachers to 

assist in unit planning.   

3.13 Transcribing and Data Analysis 

The transcripts of three selected lessons for each of the four case-study teachers 

were one of the key sources of data collection and analysis for this research. A 

contracted transcriber, who had previously signed a confidentiality agreement 

(Appendix F), transcribed the lessons verbatim from the audio-recorded files. All 

teachers carried out the lessons chosen for analysis at a similar time during the 
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year (Table 3.2). The timing of these was agreed to collectively by the principal, 

mathematics lead teacher, the case-study teachers, and the researcher, early in the 

school year. They included: the initial lesson at the commencement of the unit on 

multiplication and division, a lesson near the end of the same unit, and a lesson 

mid-way through the teaching of fractions The transcribed lessons were cross-

checked by the researcher who read the transcripts, listened to the audio-

recordings, and watched the video recordings simultaneously to check the data for 

accuracy. Watching recorded lessons whilst reading transcripts allowed the 

researcher to capture the essence of the nature of each lesson.   

The complete transcriptions were exported into the computer programme NVivo 

10 for coding. The coding was managed deductively using an adapted version of 

the PCK framework of Chick et al. (Figure 3.1). This meant reading the data 

systematically, identifying the appropriate theme, and assigning the appropriate 

code from the “PCK category” and “the evident when the teacher” headings on 

the framework (Figure 3.1). 

Due to the repositioning of the framework, there were times when the 

interpretation of Chick’s framework was subtly different for analysing PCK in 

action (as opposed to Chick et al.’s original research based on questionnaires). 

Observation of the lessons highlighted the teachers’ needs to react to situations as 

they occurred in unpredictable circumstances in the classroom. Therefore, slight 

rewording under the heading “evident when the teacher” was required in two 

instances in the Clearly PCK (purpose of content knowledge and curriculum 

knowledge) and the three original Pedagogical Knowledge in a Content Context 

categories (Figure 3.1). In these instances where the framework began with the 

words discusses or describes, this was adapted to read discusses/demonstrates, or 

describes/uses (terms used by Chick et al. on other descriptors within the 

Framework). For example, in the Pedagogical Knowledge in a Content Context 

section, under the Classroom Techniques sub category, the explanation of 

“evident when the teacher discusses generic classroom practice” was changed to 

read “evident when the teacher discusses/demonstrates generic classroom 

practices”. At times, it was not the teachers’ actions that determined a category, 

but rather it was the resulting actions of the students that determined which was 
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selected. The detailed descriptors were used to identify the subcategory during the 

coding process and the appropriate coding stripe was applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Adapted framework for analysing Pedagogical Content Knowledge in action                                                                                               

(* indicate additions to Chick, Baker, Pham, & Cheng, 2006, while # indicate adpatations). 

PCK Category Evident when the teacher... 

A. Clearly PCK 

 
# 1. Purpose of Content Knowledge  

Discusses/Demonstrates reasons for content being           

included in the curriculum or how it might be used.                          

# 2. Curriculum Knowledge  
Discusses/Demonstrates how topics fit into the 

curriculum. 

3. Teaching Strategies 
Discusses or uses strategies or approaches for teaching a 

mathematical concept or skill. 

4. Cognitive Demands of Task Identifies aspects of the task that affect its complexity.  

5. Appropriate and Detailed 

Representations of Concepts 

Describes or demonstrates ways to model or illustrate a 

concept (can include materials or diagrams). 

6. Knowledge of Resources Discusses/Uses resources available to support teaching. 

7. Student Thinking 
Discusses or addresses student ways of thinking about a 

concept, or recognizes typical levels of understanding. 

8. Student Thinking - Misconceptions 
Discusses or addresses student misconceptions about a 

concept. 

B. Content Knowledge in a Pedagogical Context  

1. Deconstructing Content to Key 

Components 

Identifies critical mathematical components within a 

concept that are fundamental for understanding and 

applying that concept.  

2. Mathematical Structure and 

Connections 

Makes connections between concepts and topics, 

including interdependence of concepts. 

3. Methods of Solution 
Demonstrates a method for solving a mathematics 

problem. 

4. Procedural Knowledge  
Displays skills for solving mathematical problems 

(conceptual understanding need not be evident). 

5. Profound Understanding of 

Fundamental Mathematics 

Exhibits deep and thorough conceptual understanding   

of identified aspects of mathematics. 

C. Pedagogical Knowledge in a Content Context 

# 1. Classroom Techniques Discusses/Demonstrates generic classroom practices. 

# 2. Getting and Maintaining Student 

Focus 
Discusses/Demonstrates strategies for engaging students. 

# 3. Goals for Learning 
Describes/Uses a goal for students’ learning (may or  

may not be related to specific mathematics content). 

*4. Knowledge of Assessment 
Discusses/Demonstrates summative and/or formative 

assessment practices. 

*5. Questioning - Supporting 

Questions asked support students’ comments, assist 

students in clarifying thoughts, ask for group support, 

and/or ask others to paraphrase explanations. 

*6. Questioning - Eliciting 

Questions asked elicit different solution methods, 

encourage elaboration, and/or promote collaborative 

problem solving. 

*6. Questioning - Extending 

Questions asked encourage generalizations, consider 

relationships between concepts, allow for reflection on 

multiple solutions methods, and/or provide challenge.   
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Coding highlighted the overlap between categories on the framework, which was 

also acknowledged by Chick et al. (2006, p. 140). One example of this was the 

apparent link between the category “appropriate and detailed representations of 

concepts” and the category “knowledge of resources”: when teachers 

demonstrated an appropriate way to model or illustrate a particular concept, the 

use of concrete manipulatives (knowledge of resources) was essential. In these 

instances, when examples of the overlap become evident a double coding was 

applied (Figures 5.1 & 6.1).  

As coding began, the researcher also considered two important aspects related to 

the professional knowledge required for teaching, to be missing from the 

framework. They were knowledge of assessment and use of questioning. 

Following email communication with Helen Chick (H. Chick, personal 

communication, September 2013), the researcher decided that for the purpose of 

this research each of these aspects warranted a specific heading on the framework. 

The three questioning types added to the framework were supporting, eliciting, 

and extending, based on the Advancing Children’s Thinking Framework (ACT) of 

Fraivillig et al. (1999). Fraivillig et al. used these three headings to describe the 

actions of teachers and the methods they employ to promote quality teaching 

practice and student learning. Supporting questions were used when the teachers 

asked questions, which enabled students to clarify their own thinking, such as, 

“How do you know that?” (Section 5.2.3: C.5 & Section 6.2.3: C.5). Eliciting type 

questions promoted interaction among the students and collaborative problem 

solving, with questions such as ‘who did it another way?’ or by asking one child 

to explain another child’s previously explained strategy (Section 5.2.3: C.6 & 

6.2.3: C.6). Extending type questions were used when the teachers challenged 

students to move beyond their initial efforts, often by encouraging them to make 

generalisations, such as, “Can you explain how that be might work for all 

multiplication problems?” or “Can you justify your answer for me?” (Section 

5.2.3: C.7 & Section 6.2.3: C.7). The additional question type headings were 

added thus to the amended framework (Figure 3.1) and included in the analysis of 

data.  

Coding was discussed with a senior academic in mathematics education who was 

then given a sample to cross-check. A sample of the transcript was coded blindly 
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three months later and coding stripes cross-checked for accuracy. Recoding 

samples at a later date is recognised as an accepted system for checking coding for 

reliability (Corbin & Strauss, 2008). The recoded sample was found to be 

consistent with initial coding throughout. The coding was cross-checked for a 

third time during the analysis process.  

Once the transcribed lessons were coded, Qualitative Comparative Analysis 

(QCA) took place (Yin, 2014), as case patterns were traced across the set of cases. 

While the unique aspects of each case were taken into account, each case’s 

combination with other cases was tallied within contexts, creating a quantitative 

cross-case analysis. The cross-case analysis was carried out within the three main 

sections of the Chick et al. framework: Clearly PCK, Content Knowledge in a 

Pedagogical Context, and Pedagogical Knowledge in a Content Context. 

Quantitative tallies thus complemented the qualitative data at the forefront of 

analysis and together they allowed generalizations to be formed and provided 

information to address the research questions.  

Reviewing the purpose of Chick et al.’s framework 

As the Chick et al. framework (Figure 2.1) had not been used previously in the 

classroom, in order to determine whether it was fit for purpose, further coding of 

two lesson observations using alternative approaches (one in the multiplicative 

domain and one on the proportional domain) was carried out. The deductive 

analysis used against the named categories on the adapted Chick et al. framework 

(Figure 3.1), were compared to (i) initial analysis from an inductive approach and 

(ii) further deductive analysis against the established, recognised framework of 

Ball et al. (2008) which had been used previously to analyse classroom-based 

research (Section 11.2.3). Unlike the deductive approach used when analysing the 

data against a given framework, using an inductive approach meant that the theory 

(in this instance the themes to emerge) should not be presumed prior to the 

research, but should follow it (Glaser & Strauss, 1967). Similarly, coding against 

the categories on the adapted Chick et al. framework were compared to coding 

against the categories on the established Ball et al., framework, to see if the 

framework which had not been previously used in the classroom, was suitable for 

observations of practice. 
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It was envisaged that the coding of the categories on the adapted framework could 

be compared to themes or categories of other approaches and established 

frameworks, and similarities and differences that emerge could be paralleled to 

determine suitability of the framework for classroom use. The process of 

comparing the coding against the categories on the adapted framework to other 

approaches enabled the researcher to identify that while there are other ways to 

interpreting the data, the detailed framework used in this instance seemed fit for 

purpose for analysis of the observed lessons in this research. Refer to Section 

11.2.3 for more details.  

3.14 Summary 

This chapter was outlined in two sections. Section A began by presenting the 

general rationale and specific research questions of this study. It outlined the 

multiple case-study method chosen for this research. The roles of the researcher 

and ethical considerations of the research were presented. Different data gathering 

methods, including questionnaires, interviews, observations, and assessments 

were outlined, along with a description of types of data analysis and the use of the 

qualitative data analysis software, NVivo 10. 

In the second part of the chapter, Section B: Research Design, the methodology 

was described in action as it related to this classroom-based research. It detailed 

the settings and participants, along with ethical considerations including the dual 

role of the researcher. The collection, transcribing, and analysis of data were then 

described. Two lessons were used to compare categories used for analysis of data 

against the adapted Chick et al., framework to themes which emerged from an 

inductive, grounded approach to analysis. One lesson was coded against another 

established framework (Ball et al., 2008) and compared to the Chick et al., (2006) 

framework. These comparisons assisted in determining that the Chick et al., 

framework was fit for purpose. 

Chapter Four presents insights into teacher professional knowledge and 

understanding based on responses to a questionnaire containing scenarios and 

position statements.  
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CHAPTER FOUR 

RESULTS and ANALYSIS: TEACHER KNOWLEDGE 

4.1 Introduction 

This chapter presents teachers’ responses to a questionnaire concerning subject 

matter knowledge and pedagogical understanding, in relation to given 

mathematics scenarios and position statements.  

4.2 Teachers’ Subject Matter Knowledge and Pedagogy  

As set out in Chapter 3, the four case-study teachers completed questionnaire 

tasks (prior to the classroom observations) (Appendix C), based on multiplicative 

thinking and proportional thinking. Each scenario described how a student might 

solve a particular problem and asked the teacher to explain what action they 

would take next with that student. The teachers were asked what they thought the 

answer to the problem was and to describe how they had solved the problem, 

using a diagram to support their thinking.  

4.2.1. Multiple-choice Questions 

The total number of multiple-choice items was limited to eight, as they do not 

give teachers the opportunity to elaborate their decision-making and explain their 

reasoning. The teachers answered all of the multi-choice problems correctly, the 

only exception being Anna who when asked the best estimate for 45 × 105, 

responded from the four choices (A: 4 000; B: 4 600; C: 5 200; D: 47 250) with A 

and B. Of the eight multi-choice problems, three asked for estimated answers (1, 4, 

& 8) and it was presumed that these questions were solved through estimation and 

not by finding an exact answer.   

4.2.2 Teachers’ Understanding of Multiplication and Division  

Three of the six scenarios on the questionnaire related to the teaching of 

multiplication and division are presented.  
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Scenario 1: The teaching of multi-digit multiplication (Figure 4.1): 

 

 

 

 

Figure 4.1 Scenario 1: Multi-digit multiplication  

Students in Years 5 and 6 are expected to be working at Stage 6 on the Number 

Framework (Table 3.3), and their lessons based around transitioning from Stage 6 

to Stage 7 (Section 3.12.4). Scenario 1, was included in the questionnaire as one 

of the key ideas being developed at Stage 6 on the Number Framework is 

“rounding and compensating from tidy numbers” (Ministry of Education, 2008f,  

p. 52), which occurs alongside the learning of multiplication using multi-digit 

numbers.  

Andy and Bob recognised Jon had used an additive strategy to solve the 

multiplication problem and described a place-value partitioning (PVP) strategy 

that they would teach: “split it into parts and teach him to do (10 × 99) + (1 × 99)”. 

Anna focussed on rounding and compensating as a strategy, and added that she 

would use materials to show Jon where he had gone wrong. She explained, “One 

added to 99 makes one group of 100. You need 11 groups of 100, and you then 

take 11 away.” Beth decided she would begin by asking Jon to explain his reason 

for solving the problem that way. She wrote, “I would work through the problem 

with him, hoping he would see for himself why what he did, did not work. I would 

give him a smaller ×11 problem and go from there.” 

When asked to solve the problem and describe their solution method, Andy, Anna, 

and Beth, gave the correct answer, while Bob gave an incorrect answer. Anna and 

Beth combined PVP with rounding and compensating and explained that they 

would calculate “10 × 99, plus 1 × 100, minus 1 (990 + 100 – 1).” Andy and Bob 

solved the problem using PVP of “10 × 99 plus 1 × 99.” However, Bob multiplied 

“10 × 99 = 990 and 1 × 99 = 99,” but incorrectly gave the sum of the two numbers 

as 999.  

Beth solved the problem in a different way from how she would show Jon          

(11 × 100 – 11 × 1) and while she mentioned manipulatives, did not expand on 

Jon was given the following problem:  

What is 11 × 99 =  

Jon took one away from 11 and added one to 99; he then multiplied 10 by 100 to get an answer of 

1000. 

(a) What action would you take next with Jon? 

(b) What is the answer? Draw a diagram and explain how you would solve the problem.  
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what materials she would use and how they would be applied. Anna suggested 

giving Jon a smaller problem as a starting point and “going from there.” Anna was 

observed in class, starting with small numbers to ensure understanding of a 

concept, although there were few instances of the go from there phase and 

pushing students up to the higher numbers. 

Two division scenarios were presented, each with a different focus although there 

was a connection between the two.  

Scenario 2: The rule for divisibility by three (Figure 4.2):  

 

 

 

 

 

 

Figure 4.2 Scenario 2: Using the divisible by three rule  

At Stage 6, developing knowledge of the divisibility rules for the numbers 2, 3, 5, 

9, and 10 takes place as students transition from AA to AM (Ministry of 

Education, 2008f, p. 41), ready to use when solving problems at Stage 7 (Years 7 

and 8). This question was included in the questionnaire, as in order to develop 

understanding of the divisibility rules among their students the teachers require 

understanding of the rules themselves. However, questionnaire responses 

suggested that none of the teachers were familiar with the divisibility rule for 9 as 

presented in the NDP Book 6 (Ministry of Education, 2008f, pp. 70-73). This 

lesson unpacks why it is that when you add the digits of a given number together, 

if the sum of the digits equals nine (or a multiple of nine), then the whole number 

is divisible by nine. Understanding divisibility by 9 is then related to the rule for 

divisible by three (as three groups of 3, equals nine).  

Andy and Bob gave no response as to what they would do next with Mere. Beth 

suggested asking Mere why she had added the numbers in that manner and 

continued, “I would explain this may not work all the time. I would tell her to split 

the number into parts she knows, such as 300 ÷ 3.” Anna thought that she would 

discuss with Mere divisibility by 3, by “first breaking the 516 into two groups of 

150, plus another 150, leaving 66 to divide by three.”  

Mere was given the following problem: 

Hera owns a factory that makes tricycles. Each tricycle needs 3 wheels. She has 516 wheels. Will all 

the wheels be used to make tricycles, or will there be some wheels left over? 

Mere added the digits together (5 + 1 + 6 = 12); she knew that the number was not divisible by 9, 

because 9 does not go into 12 evenly, and concluded that it was not divisible by three, so there 

would be some wheels, leftover. 

(a) What action would you take next with Mere? 

(b) What was the answer? Draw a diagram and explain how you would solve the problem. 
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When asked how they would solve the problem, Bob and Beth said they would do 

a standard written algorithm; Anna recorded, “Use a 3 to one bike ratio, or else: 3 

by 170 = 510; plus 6 wheels left means two more bikes; equals 172 bikes”; while 

Andy claimed to use  place-value partitioning, although his recorded solution did 

not clearly show this (Figure 4.3).  

 

 

  

Figure 4.3 Andy’s recording of 516 ÷ 3 

While it is acknowledged that the strategies used by the teachers are all acceptable 

strategies to know and to implement, the teachers would be expected to recognise 

the number patterns of three and nine and be familiar with the associated lessons 

in the NDP support material.  

Scenario 3: Quotitive division (Figure 4.4):  

 

 

 

 

 

 

 

Figure 4.4 Scenario 3: Quotitive division 

 

The connection between the two division scenarios was in the use of the quotitive 

form of division, which is emphasised in lessons at Stages 5 and 6 (Ministry of 

Education, 2008f, pp. 36, 38, 54) and during proportional adjustment (p. 57). 

Anna was the only teacher who stated what she would do next and suggested 

teaching Rob about doubling and halving numbers, as it was quicker than repeated 

subtraction. However, she gave no indication as to how she would show the 

understanding of 56 ÷ 14, although this did become evident when she later 

explained how she would solve the problem.  

When asked to describe how they would solve the quotitive division problem, 

Andy used reversibility and answered the problem as a multiplication one. Andy’s 

recording did not show quotitive division and rather than 2 groups of 14 (2 × 14) 

 

Rob was given the following problem: 

Ana was packing chocolate peanuts into bags for the school fair. She decided to put 14 chocolate 

peanuts into each bag. How many full bags would she get from 56 chocolate peanuts? 

Rob subtracted 14 from 56 to get 42; he then subtracted 14 three more times. Rob worked out that 

he could subtract 14 from 56 four times, so Ana must get four bags of 14 from 56 peanuts. 

(a) What action would you take next with Rob? 

(b) What is the answer?  Draw a diagram and explain how you would solve the problem.  
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doubled to 4 groups, showed 14 groups of 2 (14 × 2). Inaccurate recording was 

further expemplified in representation of the steps required to solve the problem, 

and (mis)use of the equals (=) symbol, (Figure 4.5). Anna used a doubling 

strategy and recorded, “ Either halve and halve again, or double and double again. 

The answer would be 2 lots of 2, or 4.” Bob recorded, “I can see 14 + 14 = 28 

and 28 + 28 = 56,” while Beth wrote, “56 ÷ 14 = 4” and gave no further 

explanation as to how she got that answer. 

 

 

       Figure 4.5 Andy’s solution to 56 peanuts into bags of 14 

4.2.3 Teachers’ Understanding of Fractions and Decimals 

Three of the six scenarios on the questionnaire related to the teaching of fractions 

and decimals. 

Scenario 4: Addition of decimals to two decimal places (Figure 4.6) 

 

 

 

 

 

Figure 4.6 Scenario 4: Addition of decimals 

Students who are moving from Stage 6 to Stage 7 are learning to add and subtract 

decimals to two decimal places (Ministry of Education, 2008g, pp. 45-46). When 

asked what the next steps of teaching would include, Anna, Beth, and Bob, 

mentioned that they would work with Jenny on place-value understanding. Anna 

recorded that she would work on tenths, hundredths, and whole numbers, while 

Bob suggested tenths. Beth noted tenths and hundredths and extended her 

explanation to include, “use a number line to show where the decimal numbers 

0.45 and 0.9 belong in relation to other numbers.” Andy gave no indication as to 

what he would do next with Jenny. 

 

Jenny was given the following problem: 

1.45 + 0.9 = 

Jenny calculated the answer by adding 45 + 9 = 54, so the answer is 1.54. 

(a) What would you do next with Jenny? 

(b) What is the answer? Draw a diagram and explain how you would solve the problem. 
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All teachers solved the problem correctly: Andy took 0.1 off the 1.45 and added it 

to the 0.9 giving 1.35 + 1.0 = 2.35; Beth used a similar strategy by firstly solving 

1.45 + 1.0 = 2.45, followed by 2.45 – 0.1 = 2.35; Bob used a standard vertical 

algorithm; and Anna used place-value partitioning (Figure 4.7). 

 

 

  

    Figure 4.7 Scenario 4: Diagram showing Anna’s recording of 1.45 + 0.9 

There is an expectation that place value is understood, with whole numbers up to 

one million and decimals to two places, when working at Stage 6 on the Number 

Framework (Years 5 & 6) (Ministry of Education, 2007, 2008a). In responding to 

Scenario 4, Anna (the teacher of a Year 7 & 8 class) mentioned the importance of 

place-value understanding and the relationship between the fractional pieces and 

the whole unit, within decimal understanding. The small sticks shown in her 

diagram (Figure 4.7) are similar to the deci-pipe manipulatives she was familiar 

with and used in her observed lesson, when she taught this concept to her students.  

Scenario 5: Addition of fractions with compatible denominators (Figure 4.8).  

This scenario is an extension of a similar example given to the students in their 

final assessment tasks.  

 

 

 

 

 

 

 

Figure 4.8 Scenario 5: Addition of fractions 

Knowing equivalent fractions for halves, quarters, thirds, fifths, and tenths, is 

knowledge being developed at Stage 6 (Ministry of Education, 2008g, p. 36). All 

teachers solved Scenario 5 correctly. When asked what he would do next with 

Pete, Andy responded, “Teach him don’t add the denominators,” with no 

 

Pete was given the following problem:  

Tama and Karen buy two pizzas. Tama eats 4
3

of one pizza while Karen eats 8
7

of the other one. 

How much pizza do they eat altogether? 

Pete converted 4
3

 to 8
6

so he had 8
6

+ 8
7

; he then added 6 and 7 to get 13, and 8 and 8 to get 16, 

and gave the answer as 16
13

. 

          (a) What would you do next with Pete? 

          (b) What is the answer? Draw a diagram and explain how you would solve the problem. 
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explanation as to how he might teach this. Bob drew a diagram which implied that 

he would teach equivalent fractions, as he changed 4
3  into 8

6 and added them 

together. He gave no explanation alongside the diagram as to how he would 

approach the teaching of equivalent fractions in order to find a common 

denominator. Anna explained that she would, “consolidate fraction understanding, 

beginning with fractions must be equal sizes or portions [when adding together].” 

She would then, “back track, to ensure understanding of the denominator.” Beth 

noted that she would ask Pete to explain the thinking behind his answer and use 

this to move on. Beth also mentioned using manipulatives to consolidate 

understanding (she did not mention what these would be), and that she would 

check for understanding of the fraction (name).  

When asked how they would solve the problem, Andy, Beth, and Bob, all wrote: 

4
3 = 8

6
. This means 8

6
+ 8

7
 = 8

13  or 1 8
5 . Anna solved the problem the same way and 

supported her explanation with a diagram to explain her thinking (Figure 4.9). 

 

 

 

Figure 4.9 Anna’s diagram to explain 8
6

+ 8
7

= 1 8
5

 

Anna mentioned checking that the students understand that the denominators must 

be of equal-sized portions, before adding them together. Anna’s knowledge 

carried over into her classroom practice and 77% of Anna’s students solved 

addition of compatible fractions correctly in their final assessment tasks (Table 

7.4).  

Scenario 6: Multiplication of fractions (Figure 4.10): 

 

 

 

 

 

Figure 4.10 Scenario 6: Multiplication of Fractions  

 

 

 

 

Jo was given the following problem: 

There was 



3
4

 of a birthday cake left over after the party. Sarah took 



1
3
 of the leftover cake 

home for her brother. How much cake did Sarah take home to her brother? 

You hear Jo say “one third of three quarters; that’s the same as one third times three-quarters…” 

(a) What would you do next with Jo? 

(b) What is the answer?  Draw a diagram and explain how you would solve the problem. 
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All teachers solved the final scenario, multiplication of fractions correctly (Figure 

4.10). Multiplication of fractions begins at Stage 5 (Years 3 & 4) when students 

learn that six groups of one-half is the same as three whole objects, and record this 

as 6 × 
2
1 = 

2
6  = 3 (Ministry of Education, 2008g, p. 33). Multiplying fractions by 

other fractions is a strategy developed on the Stage 6 to Stage 7 (AA to AM) 

ratios and proportions planning sheet, which the teachers downloaded from the 

New Zealand mathematics website. The first lesson on the AA to AM planning 

sheet looks at “What would the part be called if you cut one third in to 4 pieces 

(recorded as 
4
1  × 



1
3
 = 

12
1  ).” The final lesson on the AA to AM planning sheet 

refers to the NDP Book 8 (Ministry of Education, 2008h, p. 24) and a lesson on 

“fraction times a fraction,” as the curriculum elaborations (Ministry of Education, 

n.d.c) identify that understanding multiplication of fractions is to be known at 

Level Four. While not all of the teachers had students in their class ready for this 

problem, understanding multiplication of fractions (including decimal fractions) 

would be expected teacher knowledge, for teachers of Years 5 to 8 students.   

The teachers identified that the student in the scenario had solved the problem 

correctly, although Anna, Andy, and Bob, were unable to provide any explanation 

about what the next steps of learning would be for Jo. Andy wrote, “Nothing as 

she is right”; while Anna and Bob gave no response. Beth recognised Jo was 

correct and would ensure Jo had not solved the problem procedurally: “Get Jo to 

explain her answer. Check Jo understands and make sure she is not just 

remembering rules.” No mention was made of understanding that when 

multiplying two fractions, the product is about finding a piece of a piece (in this 

instance of a cake). However, the difficulty students have in understanding 

multiplication of fractions that Beth would check is consistent with research, 

which has found that understanding multiplication of fractions is not easy and is 

often confused with division (Ma, 2010; Sowder, 1988). Sowder found that 

confusion arose for the students who noticed that when fractions or decimals are 

multiplied, the answer comes out smaller, so “it’s kind of like dividing” (p. 232).    

When asked to explain how they would solve the problem, Anna gave no 

response. Andy recorded:  

4
3

× 3
1

= 12
3

 = 4
1
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Andy gave no explanation alongside his written expression and it appears he 

wrote the factors in the same order as they were in the scenario. Andy’s written 

representation would be interpreted as 4
3

of 3
1

and is not what Jo expressed in her 

explanation. The accepted practice in New Zealand schools is that the 

multiplication symbol for fraction multiplication, is interpreted as “of” (Ministry 

of Education, 2008g, p. 63). Andy’s representation contrasts with Bob and Beth 

who correctly recorded:  

 3
1

× 4
3

= 12
3

 = 4
1

 

While Bob offered no explanation as to why he ordered the factors that way, Beth 

was explicit in the reason for her recording and noted that the problem asked for 

3
1 of 4

3
.  

4.2.4. Perceived Mathematics Practice 

In the questionnaire, teachers were asked to rank five statements relating to their 

perceived teaching practice. All responses were within the always, often, and 

sometimes categories, and none of the teachers responded with hardly ever, or 

never (Table 4.1).  

Table 4.1                                                                                                                                                               

Case-study teachers’ perceived classroom mathematics practices                                                                                                                          

 

 

 

 

 

Note: A = Always, O = Often, S = Sometimes, HE = Hardly Ever, N = Never 

 

Statement 1: I encourage students to explain their thinking to each other. 

The first statement, “I encourage students to explain their thinking to each other” 

had a response of “always” from Andy and Anna, and “often” from Beth and Bob.  

 Andy Anna Beth Bob 

1. I encourage students to explain their thinking to each other A A O O 

2. I encourage students to question the strategies of others A A O S 

3. I encourage students to justify their choice of strategy and                                    

their thinking to others A O A S 

4. I encourage students to work together on solving problems O O O O 

5. I encourage students to include in their maths books drawings,  

diagrams, or other recording methods which represent their thinking O S A S 
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Statement 2: I encourage students to question the strategies of others. 

When asked if they encouraged students to question the strategies of others, Andy 

and Anna responded “always”, Beth “often”, and Bob “sometimes” (Table 4.1).  

Statement 3: I encourage students to justify their choice of strategy and their 

thinking to others. 

When given the statement, ‘I encourage students to justify their choice of strategy 

and their thinking to others’, Andy and Beth replied with “always”, Anna “often”, 

and Bob “sometimes”.  

Statement 4: I encourage students to work together on solving problems.  

When presented with the statement, ‘I encourage students to work together on 

solving problems’, all of the teachers answered with “often”.  

Statement 5: I encourage students to include in their mathematics books 

drawings, diagrams, or other recording methods, which represent their 

thinking. 

When the teachers were asked if they ‘encourage students to include in their 

maths books drawings, diagrams, or other recording methods which represent 

their thinking’, Beth responded with “always”, Andy “often”, and Anna and Bob 

“sometimes”.  

4.3 Summary  

The questionnaire results provided an insight into the teachers’ espoused 

professional knowledge and perceptions about their classroom practice. The first 

part of each scenario asked the teachers to explain what they would do next with 

the student in each instance. This was to gauge the extent to which the teachers 

identified the current knowledge and problem-solving strategies held by the 

student in each given scenario, and what would be appropriate next teaching steps. 

In most instances, the teachers struggled to do this. The teachers often commented 

that they would teach the student the same way as the given example and provided 

no further explanation or identification of the next steps to learning. Questions the 

teachers might ask each student to check for understanding, or identify of the 

progression of learning to examples of increased difficulty, were not forthcoming. 

In particular, Bob and Andy found it challenging to identify what actions they 

would take in future lessons with each student. 
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The second part of each scenario, asked the teachers to give their answer to the 

problem and “draw a diagram and explain” how they solved it. Anna and Beth 

generally included a diagram with their explanation, while Andy and Bob 

struggled with this representation and frequently solved the problem using a 

written algorithm. The teachers seldom offered an explanation as to why they 

solved the scenario in the manner that they had. 

Chapter Five presents insights into teacher professional knowledge and 

understanding based on observed teaching in the multiplicative domain.  
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CHAPTER FIVE 

RESULTS and ANALYSIS: THE MULTIPLICATIVE 

DOMAIN 

 

5.1 Introduction 

This chapter presents an analysis of two lessons from each class (one for Anna) 

within the multiplicative domain. In line with the multiple-case study 

methodology adopted for this thesis, findings from the four case-study teachers 

are presented within their individual practice and across practices, in order to 

identify what professional knowledge is apparent both individually and 

collectively. The first lesson was the lesson taught at the commencement of a six-

week unit and the second lesson was taught towards the end of the unit.  

The students in each class were divided in half according to the complexity of the 

strategies implemented when solving multiplication problems on their GloSS 

assessment. In each of the observed lessons, half of the class carried out 

independent worksheet activities at their desks consolidating prior teaching and 

learning, while the other half was observed working with the teacher. The 

exception to this was lesson one for Bob, who worked with the whole class, for 

the whole lesson and the start of the second lesson for Andy (Table 5.1). Andy 

began his second lesson with the whole class together, a lesson format often used 

by teachers during their NDP professional learning (Ministry of Education, 2008b, 

p. 13), before working with smaller groups.  

Table 5.1 

Observed multiplication lessons 

Teacher Lesson 

Number 

Whole class 

(or) Group 

Lesson Focus 

Andy 1 Group understanding of the multiplication symbol, ‘×’ 

understanding commutativity 

Anna 1 Group understanding of the multiplication symbol, ‘×’ 

understanding commutativity 

Bob 1 Class understanding of the multiplication symbol, ‘×’ 

building on ×2, ×5, ×10 to solve problems 

Beth 1 Group understanding of the multiplication symbol, ‘×’ 

understanding commutativity 

Andy 2 Class 

(start of lesson) 

area of composite shapes on whiteboard 

Andy 2 Group arrays in multiplication and area of rectangles 

Bob 2 Group relationship between ×5 and ×10 

Beth 2 Group building on ×2, ×5, ×10 to solve problems 
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5.2 Observed Teacher Professional Knowledge in 

Multiplication 

Introducing multiplication and division to the students  

Each of the four case-study teachers began the introductory lesson for the 

multiplication and division unit in a similar manner, by gauging the students’ 

understanding of the multiplication symbol. Anna introduced her lesson by 

inviting the students to write in the modelling book what they perceived to be the 

meaning of multiplication. Anna said, “I just want you to write it down 

somewhere there (pointed to the modelling book). Just pop down, your thoughts 

about what you think multiplication is”. Each child later explained what it was 

he/she had written.  

Andy began his lesson by placing manipulatives (animal strip cards [strips of card 

showing different animals in groups from one animal on a card to 10 animals on a 

card] and Unifix cubes) in front of the students. He asked a volunteer to show 

what three times four looked like. One student constructed his interpretation of the 

equation with cards showing three groups of four (Figure 5.1 i), while another 

showed four groups of three (Figure 5.1 ii).  Andy then said, “Tell the person next 

to you what one you think is correct? When I said that I wanted three times four, 

which of those two options (Andy pointed to the cards) do you think is correct?” 

 

 

 

 

Figure 5.1 (i) Rhinoceros and (ii) Bunny animal strip cards showing  

3 × 4 and 4 × 3 respectively 

Bob acknowledged the learning intention (referred to as the WALT) which was 

written on the whiteboard, “We are learning to solving multiplication problems 

from what we know about our twos, fives, and ten.” He picked up a Slavonic 

abacus, moved two rows of seven beads across and said:  

Bob:  Can anybody tell me another way of saying [this]? Remember we are doing 

multiplication.  

Child 1: Seven times two.  

Child 2: Two times seven.  

Bob thought for a brief moment and then continued: 

 

(ii) (i) 
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 Bob:  Two times seven. What I want you to have a look at now are the two 

problems. I might be a little bit off track but I want you to see even though 

[Child 1] said two times seven, and [Child 2] said seven times two.   

 Child 2: [interrupts] Seven twos. 

 Bob:  OK. Remember what, we did before?  Equals is also equal to. What can, 

(pause), what can equals be said, as?   

 Child 3: Same as. 

 Bob:  The same as yes. OK, but what we are going to look at is that two times 

seven is actually equal to seven times two, but they are different. Does 

anybody know why they are different?   

Beth began the lesson by recording the learning intention in the modelling book 

and the students read it together: “WALT understand that the order of the numbers 

in a multiplication equation can change the meaning even though the answer is 

the same.” A discussion followed, during which the meanings of the words 

equation, equals, and factors, were unpacked. From there, Beth moved into her 

lesson based on use of the multiplication symbol, as it relates to understanding 

commutativity. 

Results and analysis of the two lessons 

Observation of the teachers’ professional knowledge during the first 

multiplication lesson is presented in depth and correlated to a lesson towards the 

end of the unit. When analysed against the PCK Framework (Figure 3.1), 

variation in frequency of times a particular category was used in each of the two 

lessons (Table 5.3) was seen as a point of difference in practice, rather than 

improvement or decline in usage (Chapter Three Section B: Introduction). The 

second lesson was recorded for three of the case-study teachers, as due to 

unforeseen circumstances, Anna was unable to complete teaching of the 

multiplication unit. A relieving teacher under Anna’s guidance subsequently 

taught the students in her class. 

The aim of the study was to see where teachers applied their professional 

knowledge in classroom practice, and it was deemed necessary to record their 

application of such knowledge against the different categories as they arose. The 

frequency of specific aspects of teacher professional knowledge often saw 

characteristics of two, or even more categories on the PCK Framework, overlap. 

An example of such overlap, was when Andy asked if there was a difference 

between four times five and five times four. The students argued amongst 

themselves and Andy said:  
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If you’ve got a good argument, let’s hear it. I could be wrong. It wouldn’t be the first 

time in my life I was wrong. So if you can justify your answer, let me know. Okay.  

This statement was categorised as a Teaching Strategy (Table 5.2: A.3) as Andy 

asked the students to justify their thinking, and it was also categorised as Getting 

and Maintaining Student Focus (Table 5.2: C.2), as it was important to 

acknowledge the use in both. An example of multiple coding is evident in the 

coding stripes from NVivo10 in Figure 5.2.  

    
    
    
    
 
 
 
 

   

 

 

 

 

Figure 5.2 Sample of multiple coding in Andy’s multiplication lesson 

In the lesson, a “supporting” question was used when Andy asked the students to 

explain what the difference in representation was between three groups of four 

and four groups of three. Andy and the students were “deconstructing the content” 

of the mathematical concept that although 3 × 4 and 4 × 3 have the same answer, 

representation of the two examples is different. Asking one student to explain 

their thinking to others was a classroom technique, or practice, he regularly used. 

At the same time the sharing of ideas became a way of “getting and maintaining” 

the students’ attention, as they knew that at any time Andy might ask them to 

reword what their peers had been saying.  

There were also times when observation by the researcher of particular actions, 

might be interpreted in different ways. For example, the use of manipulatives 

came to the fore many times and so were coded to various categories (Table 5.2). 
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Table 5.2 

Use of one manipulative coded against different categories 

Manipulative Coding Reason 
Sheet of paper with 

small squares on top 

Purpose of content 

knowledge (A1) 

Use of estimation 

 Curriculum knowledge 

(A2) 
Connection between multiplication and area 

 Student thinking – 

misconceptions (A8) 

Misconception and difficulty associated 

with skip counting in hundreds 

 Mathematical structure and 

connection (B2) 

Connection between array model in 

multiplication and square units in area 

 

5.2.1 Clearly PCK (A) 

The Clearly PCK part of the framework highlights the difficulty in separating the 

pedagogical knowledge from the mathematics content. Often these aspects are 

intertwined to the extent that neither pedagogy nor content is the dominant aspect.  

Purpose of Content Knowledge (A.1) and Curriculum Knowledge (A.2) 

Observations indicated that there was a strong overlap between the Purpose of 

Content Knowledge (an awareness of reasons for content being included in the 

curriculum) and Curriculum Knowledge (evident when a teacher shows how 

topics fit into the curriculum) as separated out on the PCK Framework (Figure 3.1 

& Table 5.3). 

Bob mentioned the curriculum during the initial lesson. Bob reminded the 

students they were currently at Stage 4 and Stage 5 (Curriculum Levels 1 and 2) 

on the Number Framework (Ministry of Education, 2008a), and that he wished to 

move them to their expected Stage 6 (Curriculum Level 3) by the end of the unit 

(Table 3.3). Although the other teachers did not specifically mention stages or 

levels, they commented on the capability of the students. For example, Anna 

stated, “Because my knowledge of you people is that you are no longer counting 

them in fives, you’re doubling the fives, or some of you even triple the fives don’t 

you? Because you’re very quick in your calculating, aren’t you?” She 

acknowledged that the current problems were easy for the students to calculate, 

but was gauging their understanding of multiplication prior to moving onto more 

complex problems. 
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Table 5.3  

Frequency of each PCK category used in the introductory multiplication lesson and final 

lesson (in brackets) and totals (excluding Anna). 
 

    
    
 
 
 
 

   

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Whereas specific reference to the curriculum was seldom observed in the 

introductory teaching session, follow-up learning conversations with the teachers 

indicated relevant curriculum knowledge and associated expectations. For 

example, when discussing their class levels during the learning conversations, 

Bob and Beth mentioned that the majority of the students in their classes were 

below the expected Curriculum Level and comparable Number Framework Stage. 

Similarly, Anna and Andy mentioned that some of their students were below 

expectation. All of the teachers mentioned that they utilised planning sheets from 

the New Zealand Mathematics website (Ministry of Education, n.d.a) and relied 

PCK Category Andy Anna Beth Bob Total 

A. Clearly PCK 

     1. Purpose of Content Knowledge  0 (0) 0 0 (0) 1 (0) 1 (0) 

2. Curriculum Knowledge  1 (5) 2 1 (1) 4 (1) 6 (7) 

3. Teaching Strategies 6 (9) 6 7 (7) 6 (2)    19 (18) 

4. Cognitive Demands of Task 3 (4) 1 1 (3) 2 (1)     6 (8)  

5. Appropriate and Detailed 

Representations of Concepts 
2 (6) 3 2 (4) 2 (0)  6 (10) 

6. Knowledge of Resources 4 (1) 1 2 (8) 5 (3)   11 (10) 

7. Student Thinking 4 (7) 6 8 (4) 10 (5)  22 (16) 

8. Student Thinking - Misconceptions 2 (3) 5 11 (1) 2 (5)    15 (9) 

B. Content Knowledge in a Pedagogical Context  

   1. Deconstructing Content to Key 

Components 
7 (5) 13 20 (8) 10 (5)    37 (18) 

2. Mathematical Structure and 

Connections 
1 (5) 0 1 (1) 2 (0)    4 (6) 

3. Methods of Solution 2 (2) 6 1 (5) 2 (1)    5 (8) 

4. Procedural Knowledge  0 (1) 4 3 (1) 4 (1)    7 (3) 

5. Profound Understanding of 

Fundamental Mathematics 
1 (1) 4 3 (1) 2 (0)    6 (2) 

C. Pedagogical Knowledge in a Content Context 

    1. Classroom Techniques 4 (4) 5 0 (1) 2 (1) 6 (6) 

2. Getting and Maintaining Student 

Focus 5 (10) 5 0 (1) 2 (1) 7 (12) 

3. Goals for Learning   7 (3) 8 8 (4) 8 (3)  23 (10) 

4. Knowledge of Assessment   0 (0) 4 2 (3) 2 (0)   4 (3)  

5. Questioning - Supporting 8 (21) 20   16 (26)  26 (21) 50 (68) 

6. Questioning - Eliciting   8 (7) 14 1 (10) 18 (9) 27 (26) 

7. Questioning - Extending   1 (6) 2 6 (4)   1 (0)   8 (10) 
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on these for lesson content guidance (relationships between NZC, the NDP books, 

and other published Ministry material are included on these plans).   

In the final lesson, the two combined areas (A.1 and A.2) again occurred with 

little frequency. Andy showed the most difference in his application of curriculum 

knowledge (from 1 instance to 5 instances) between the two lessons. In the final 

lesson, multiplication in number and area in measurement, were combined when 

he focused on the area of shapes, using the students’ understanding of 

multiplication. While Andy always emphasised correct answers, in the final 

lesson he also encouraged exploration of ideas as part of the accurate solving of 

problems. For example, in one instance, the students had a blank sheet of paper 

and a small pile of cut out squares of paper (Figure 5.3). The students began by 

estimating how many smaller squares were on the sheet of paper. This was the 

only time the word estimation was heard in any of the lessons observed. After the 

students estimated the number of squares, they worked out how many covered the 

sheet of paper by placing the small squares on top of it, to form an array (Figure 

5.3). The students made the connection between the multiplication fact and area 

when they saw that three rows of six squares (3 × 6) equalled an area of 18 square 

units.  

 

(a)             (b)     

     

 

 
Figure 5.3 (a) Small squares of paper were used to find the area by constructing (b) three 

rows of six squares 

  

In the final lesson, Andy recognised that the students were not answering 

questions using strategies for an appropriate stage on the NDP Framework (for 

their class level) and encouraged the students to use an alternative, more advanced 

strategy. For example, after Andy’s students worked out the number of small 

squares covering the larger sheet of paper by individually counting or skip 

counting the squares (Figure 5.3), he suggested that they could have worked out 

the total in a smarter way using multiplication. As his students were Years 6 and 7, 

they were expected to solve such problems multiplicatively (Stage 6) rather than 

additively (Stage 5). After some prompting, the students agreed that there were 
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three rows of six squares totalling eighteen and each square was one hundred 

square centimetres. Some of the students recognised that 18 times 100 square 

centimetres, meant that there were 1800 square centimetres in total.   

Another example of Andy’s curriculum knowledge was when he worked with the 

class in the final lesson and challenged the students to find the area of composite 

shapes, when the lengths of some of the sides were unknown (Figure 5.4a). Rather 

than giving the students all of the required measures and implementing a formula 

to find the area, he extended the students’ thinking by encouraging them to find 

the missing measures themselves. When the students were required to find the 

area of a triangle, he supported the students’ thinking by giving them a square cut 

in half diagonally, so they could see that the area of the triangle was half the area 

of the square (Figure 5.4b). 

(a)                                                           (b) 

 

 

 

   Figure 5.4 (a) some sides unknown     (b) Andy’s little clue to finding the area of the triangle 

In the final lesson, Beth encouraged the students to see the connections between 

times tables, including ×5 and ×10, and using doubles as a means of carrying out 

multiplication of 2×. At one stage the conversation went: 

 Beth: What is sixteen lots of five going to be?   

 Child: Eighty. 

 Beth: Eighty, why is it going to be eighty?   

 Child Because you are just, ah saying it in halves. [Then]You double ten it equals 

twenty and you double twenty equals forty, if you double forty it equals 

eighty. 

 Beth: OK, so what would thirty-two times five be? 

 Child Um … a hundred and … sixty. 

The child saw the connection between 2 groups of 5 equalling 1 group of 10 and 

therefore the number of groups halved, so that 16 groups of 5 became 8 groups of 

10.  

Teaching Strategies (A.3) 

Teaching strategies, or approaches for teaching a mathematical concept or skill 

(Figure 3.1), were used a similar number of times by the teachers in the initial 

multiplication lesson (n = 6 or 7), (Table 5.3). However, there was a noticeable 
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change between the two lessons in the frequency (of teaching strategies) used by 

Andy (6 to 9) and Bob (6 to 2), while Beth’s remained the same (7). The change 

in frequency was observed as being aligned to the teaching approach of each 

lesson, as outlined below.   

In both lessons, Beth spent most of the time sitting on the floor alongside her 

students, with a modelling book in the centre of the group. Questions were posed 

for the students, who recorded their ideas and explained their thinking in the 

modelling book, which was referred back to throughout the lesson. Bob’s 

introductory lesson was very teacher-directed and he taught seated on a chair with 

the class on the floor in front of him, while in the final lesson he sat on the floor 

with the students. In the initial lesson, Bob did not utilise a modelling book with 

all recording carried out on the class whiteboard. However, in the final lesson, 

Bob and the students recorded regularly in the modelling book, which was on the 

floor in front of them. 

All of the teachers began their teaching sessions by sharing the learning intention 

(WALT), the exception being Andy’s initial multiplication lesson. The WALT 

became the central focus of the lesson and was referred to regularly, especially 

when the teachers sensed that the students’ conversations were unrelated to 

mathematics and the key ideas being taught. Bob was the most conscious of the 

WALT, especially in the initial lesson where he recorded it on the whiteboard and 

referred to constantly.  

Throughout the initial lesson, the use of manipulatives played an important role 

when consolidating the students’ understanding of multiplication. Bob held a 

Slavonic abacus and occasionally invited individual students to use it while they 

explained their thinking to others. In contrast to this, Andy, Anna, and Beth, had 

sufficient equipment for all students to model their answers simultaneously. 

Andy’s students used animal array cards (Figure 5.1), while Anna’s and Beth’s 

students used Unifix cubes. The concrete manipulatives were an appropriate 

support for students in these three classes to problem solve collaboratively and 

discuss ideas in pairs.  

In the initial lesson, the teachers asked the students to discuss ideas together, in 

order to gauge understanding. However, the talk was based generally around 
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telling each other step-by-step what had been carried out, with discussion and 

justification of solutions seldom occurring. Collaborative problem solving 

encouraged by Andy, Anna, and Beth, contrasted with Bob, whose students 

seldom participated in conversations as the lesson was predominantly teacher led 

and followed the Initiate, Respond, Evaluate (IRE) pattern. Andy, who wanted the 

students to solve problems by themselves, provided minimal support during 

discussions. This was evident when Andy checked the students’ understanding of 

the difference between the written expressions, 3 × 4 and 4 × 3: 

 Andy:  Is there a difference?  Tell your neighbour. 

 Child:  Yes. 

 Andy:  Can you explain why is there a difference? 

 Child:  I think there’s …” 

 Andy:  No, no. Tell your neighbour first. Don’t tell me first. 

In the final lesson, discussion became a little more evident in Andy’s class, 

occurred to some extent in Beth’s class, and showed little change in Bob’s class 

(Table 5.3: A.3). Beth spoke regularly throughout the lesson and generally 

directed the conversation. In the final lesson, while Bob sat with the students on 

the floor, he maintained a structured, teacher-directed lesson. The IRE pattern 

generally continued with little opportunity for students to participate in thoughtful 

discussion together. At times the students talked, but observations showed that 

seldom did the students mention alternative strategies or challenge each other in 

their thinking.   

In their final lesson, Beth and Anna used word problems as a teaching strategy 

(A.3). An example of Beth’s use of word problems, was when her students 

unpacked the difference between 5 × 3 and 3 × 5:  

If you had five people in your family and you had some biscuits to distribute out, and 

you gave them three each, would that be the same as if you had three people in your 

family and you gave them five biscuits each?      

While Anna acknowledged word problems early in her lesson, the students 

continued using their equipment to solve written equations and the word problems 

never eventuated:  

“When we make up our word problems (pointing to 4 × 6 and 6 × 4 recorded  

in the modelling book) it can be quite different. And we’ll make up word problems  

later regarding our multiplication equations.”  
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Cognitive Demands of Task (A.4) 

The teachers unpacked the cognitive demands of the task when they identified 

aspects of the task that affected its complexity for their students. In the initial 

lesson, all teachers identified the same difficulty the students were experiencing 

with understanding the multiplier as the first factor in the multiplication equation 

and the multiplicand as the second factor. Understanding the commutative 

property as it relates to multiplication was used to help reinforce this idea, by 

comparing the structure of the problems (as interpreted in the New Zealand 

classroom) as reflected in the written equation, for example 6 groups of 4 and 4 

groups of 6 or, 6 × 4 and 4 × 6 (Figure 5.5). The teachers supported this 

understanding by focusing on array models, although Beth also allowed her 

students opportunities to create linear models on number lines along with cut out 

materials (when they showed repeated units additively). Bob modelled 

multiplication equations on the Slavonic abacus, while the other teachers 

encouraged the students to construct examples for themselves using Unifix cubes. 

 

 

 

Figure 5.5 Array models showing (i) 6 × 4 and (ii) 4 × 6 

The importance of using correct mathematics language associated with the 

multiplication symbol came to the fore. Andy emphasised the meaning of 

multiplication symbol as groups of and as he pointed to the written equation said:  

This × thing here [said like letter x of the alphabet], we are going to start thinking of 

as groups of. So whenever you see this × thing, I want you to start thinking of groups 

of. So [think] 6 groups of 10 (Andy pointed to the × symbol), or 8 groups of 20 (he 

recorded 8 × 20 and pointed to the × symbol). 

 

Anna stated that the size of the numbers they were multiplying would affect the 

complexity of the task. While consolidating the students’ understanding of 

equations she used simple (small) numbers, like 6 times 4. She asked, “What do 

you think about when you multiply 6 times 4, or 4 times 6?” She encouraged 

thinking with single-digit numbers, as these were easier to model and/or image, 

and later moved to larger two-digit, and three-digit numbers. She moved on to 

problems involving a two-digit factor such as 4 × 99 and 99 × 4, and alongside 

 

(i) 

(ii) 
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this discussed a range of possible strategies that could be used. These strategies 

mainly focussed on the students’ prior knowledge of commutativity and place-

value, and included place-value partitioning and rounding and compensating.   

There was little variance in frequency of awareness by the teachers of the 

cognitive demands of the tasks, between the start and end of the multiplication 

unit (Table 5.3). Andy was aware that some students experienced difficulty 

understanding the relationship between multiplication and area, such as when the 

students were finding the area of a triangle. Rather than tell the students how to 

solve the problem, he left them to see if they could use prior knowledge. Andy 

pointed to a diagram on the whiteboard and said, “I’ve given you a little clue by 

taking the same triangle and flipping it over and sticking it over there (Figure 5.4).  

It might [just] be a brain teaser for you.” 

In the final lesson, Beth’s awareness of the difficulties some students had 

understanding multiplication, meant that she referred back to key ideas taught in 

previous lessons (as evident in the modelling book). For example, when teaching 

the doubling and halving strategy using the ×5 tables, she realised that some 

students did not recognise the pattern formed. She returned to the ×10 tables 

which they had understood earlier and used this to reinforce the relationship with 

×5 tables.  

Appropriate and Detailed Representations of Concepts (A.5) and Knowledge of 

Resources (A.6) 

The two framework categories of Appropriate and Detailed Representations of 

Concepts and Knowledge of Resources in many instances overlapped with the 

Teaching Strategies identified above. Models constructed by the teachers and/or 

their students were often recorded as an equation in the modelling book. Beth was 

the only teacher who transferred the model made into a diagram and emphasised 

the multiplier and multiplicand by placing a circle around the objects within each 

set (Figure 5.6). Concepts being developed were sometimes put into word 

problems to help clarify the meaning and were aligned to the manipulatives 

available. For example, Beth represented the context of biscuits (4 packets of 

biscuits, with 5 biscuits in each packet) with Unifix cubes and Andy discussed 

groups of animals (4 burrows, with 3 bunnies in each) alongside the animal strips 
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(Figure 5.1). However, there were times when the teachers gave the students 

equations to solve without a context.  

 

 

 

 

    Figure 5.6 Diagram showing 4 × 5 as 4 groups of 5  

In the final lesson, Beth and Andy supported conceptual understanding of 

multiplication with arrays. Beth simultaneously combined the use of Unifix cubes 

with the abacus to reinforce the array context on two different models, while 

Andy made the connection between arrays and the area of different shapes with 

his class, through diagrams on the whiteboard (Figure 5.7), and when teaching a 

group through cut-out squares of paper (Figure 5.3). As the students solved the 

problems together, they discussed previously learned multiplication strategies 

amongst themselves in a manner that had not been evident in the first lesson.   

 

 

 

 

    Figure 5.7 Area problems on the whiteboard 

Student Thinking (A.7)  

In the initial lesson, Student Thinking was utilised by Beth and Bob twice as 

frequently as that of Andy and Anna (Table 5.3: A.7). This was possibly due to 

the teaching style of the lessons: Bob’s lesson was predominantly teacher-directed 

and provided opportunities for him to respond immediately to the students’ ideas; 

Beth had a semi-structured lesson, which combined giving the students time to 

solve problems themselves with the IRE model. It was during these teacher-

directed conversations that building on student thinking occurred. This contrasted 

with Andy and Anna’s students who appeared less reliant on their teacher for 

direction, spending more time manipulating materials and solving problems in 

their groups.  
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Bob’s students often mentioned ideas he had not apparently anticipated, and while 

he acknowledged the students’ thoughts, he seldom capitalised on the opportunity 

to extend their thinking. An example of this, was when he showed four rows of 

ten beads on the abacus and asked the students what problem they represented: 

 Child: [Be] cause there’s two ways. 

 Bob: There’s two ways? 

 Child: You can do two times twenty and [um] four times ten. 

 Bob: OK. Wow, this is a good one.  [Child] here said two times twenty, which is 

right, or four times ten.  Can you tell me, just by looking through it, what 

would that be? (Bob pointed to his model of four rows of ten beads on the 

abacus). 

 Child: This one would be four times ten. 

 Bob: Four times ten. OK, remember four times ten is like that. (On the abacus 

Bob showed four rows with ten beads on each). Two times twenty is like 

that. (On the abacus Bob showed two rows of beads with ten in each on one 

side of the abacus, and two rows of ten beads on the other side of the abacus). 

So we’re looking at these two and those two (he pointed to the two different 

models).  Although they give the same answer, they are different.   

 Child: That’s quicker (the child pointed to the four rows of ten beads). 

 Bob: Pardon? 

 Child: But that way is quicker to answer it. 

 

Rather than explore the student’s response and ask for further explanation of his 

reasoning, Bob returned to his pre-conceived idea and moved completely away 

from the student’s thoughts onto something else. While Bob might have 

capitalised further on the student’s initial statement, “There are two ways to solve 

the problem,” he refocused the students on the WALT for the day. Bob’s use of 

acknowledge a student’s idea and then move on, was in contrast to Anna’s way of 

utilising her students’ thinking, where she encouraged risk-taking and the sharing 

of ideas: 

Anna:  Which is easier: multiplying ninety-nine groups of four, or four groups of 

ninety-nine?  

Child:  Four groups of ninety-nine.  

Anna:  Tell us more. Share your thoughts. You’ve got good thinking I can tell….  

Share [child’s name] why you chose that one? 

 

The student then justified her thinking. Others agreed or disagreed, with respectful 

discussion often leading to non-threatening debate among the students. 

Capitalising on the students’ thoughts was less evident in the concluding lesson, 

with the exception of Andy (Table 5.3: A.7). Bob continued to maintain a 

structured lesson and rigidly adhered to his learning intention. The planned lesson 

progressed and he provided little opportunity for the students to suggest strategies 

and ideas of their own, nor did he capitalise on opportunities that arose, such as 
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understanding and using place value to solve multiplication and division by ten. 

An example of this is evident in the following conversation: 

 Bob:  How many tens are there in the number eighty? 

 Child:  Eight. 

Bob:  Well done. How many tens are there in one hundred and ten? 

Child:  Eleven. 

Bob: Eleven. 

Child (2): I know how to work it out. It’s in the number. 

Bob:  How do you work it out? 

Child:  It’s just the first two numbers, or it’s the number. 

Bob:  Okay. 

Child: Eighty, it’s eight. 

Bob:  Yes, well done. 

Child:  And with a hundred and ten, it’s eleven. 

Bob:  Okay. Does anyone know what this piece of equipment is? 

 

Bob praised the student for his knowledge and immediately moved on to his 

planned lesson. Similarly, at one stage during the final lesson, one of Beth’s 

students mentioned adding a zero, and the comment was overlooked. This 

contrasted with Anna’s initial lesson when a student stated, “If you multiply by ten, 

you just add a zero.” Anna paused momentarily, and discussed the moving of 

numbers across a place value each time ten groups of a number are made. 

In the final lesson, Andy challenged the students to move beyond their comfort 

zone and build on their understanding of finding areas of rectangles by 

multiplication (Curriculum Level 3), to finding the area of composite shapes 

(early Curriculum Level 5). He presented problems and posed questions, giving 

the students opportunities to respond to these, for example when he gave the 

students an irregular shape to find the area of (Figure 5.8a). Some of the students 

panicked because the shape did not have stated measures for all sides and Andy 

shaded part of the shape, suggesting that this might help them to solve the 

problem (Figure 5.8b).  

(a)                                                       (b)  

 

 

Figure 5.8 Finding the area of an irregular shape (a) as shown initially and (b) part of the diagram 

shaded 
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Later during discussion, a student came forward to share his thoughts using the 

squares on the whiteboard to help solve the problem. Andy asked, “If you didn’t 

have the squares, how would you know what it was?” At other times, Andy built 

on students’ thinking and used their ideas to ensure understanding, with 

comments such as: “Can you actually explain that, because that is really 

awesome”; “Now let’s see if you guys [students] are right”; “But is it different?  

Are they different, or are they the same?”  

Student thinking – Misconceptions (A.8)  

Alongside building on students’ thinking, was the recognition by the teachers of 

Students’ Misconceptions. In the initial lesson, Andy and Bob had two instances 

of recognising misconceptions, which contrasted with Anna (5) and Beth (11). 

Bob modelled multiplication problems on the Slavonic abacus, but the students 

did not have manipulatives available to them individually. Occasionally he invited 

students to share their thinking (on the abacus), but few offered and they appeared 

not to volunteer unless they were confident in contributing a correct response. 

This meant Bob was not in a position to notice possible misconceptions, because 

conversations were generally with individual students who had volunteered 

correct answers. This contrasted with Andy, who gave all the students 

manipulatives and allowed them time to talk and come to agreement within their 

groups. However, Andy sometimes answered a question for the students, rather 

than allowing time for their responses. This limited the opportunities for him to 

gauge students’ misconceptions.  

Many misconceptions focused around the accepted interpretation of the 

multiplication symbol as “groups of”. Beth’s students struggled to understand this 

idea and she continually re-worded and/or modelled the concept:  

Beth:   How would we write a multiplication equation? 

Child 1: You would say two (um), two and… I can’t remember the rest of it. 

Child 2: You’d do something like two plus… 

Beth:   Plus. Would it be [plus] if it was multiplication? 

Child 2:  Oh, no it would be… 

Child 3   (interrupts): It’s a times table. 

Beth:   Yes, a times table. Multiplication is a big fancy word for times table. 

Child 3:  So two times four would equal eight? 

Once Beth had reinforced the meaning of multiplication, she asked the students to 

use the Unifix cubes, to show what 3 times 5 (3 × 5) looked like. The 

conversation continued: 
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 Child:  Do we have to get three blocks? 

 Beth:  You are going to need to get enough for 3 times 5. 

 Child 1: We’ll need to get eight, eight blocks (adding the factors). 

 Beth:  Eight blocks, do you think you’ll need eight? 

Child 1: Yes. 

Beth:  You get out how many you think you might need to do three times five. 

Child 2: See I did it prettily [the child had constructed the equation (Figure 5.9)]. 

Beth:  Oh not like that. I want you to show me another way. We can actually 

explain times is (as), three lots of five. 

Child 2: Three lots of five? Like, five, ten, fifteen. 

Confusion between addition, multiplication, and conceptual understanding of the 

expression 3 × 5, was still evident (Figure 5.9). 

 

 

 

  Figure 5.9 A student’s model of 3 × 5 as an equation  

Because of on-going misconceptions around the meaning of multiplication, Beth 

used a real-life context to help her explain the difference. She turned the 

multiplication problem into a division problem, to help demonstrate the difference:  

You’ve got a total of fifteen biscuits in the cupboard. This family over here has                                    

five children okay. How many biscuits are they getting each? Over here you have a                                 

total of fifteen and you’re dividing it [the biscuits] up for three people. Are these 

people [points to a circle drawn in modelling book] getting the same as these people? 

 

A lengthy conversation was held around division as groups of things (biscuits) 

being shared out evenly, and multiplication also about groups of things. Beth 

recorded two equations, 3 × 5 = 15 and 5 × 3 = 15, asked half of the students to 

make three groups of five, and half to make five groups of three. Immediately one 

student said: “They’re both the same. It’s pretty obvious because you have just 

turned it around.” Beth responded, “Okay. Well, you show me with your blocks 

what each one means.” The students modelled their equations with the Unifix 

cubes, and eventually the conversation continued: 

Beth: Okay, so we’ve swapped them [the numbers in the equation] around. 

They’ve got the same answer, but do they mean the same thing? 

Child 1: Yes. 

Child 2: No. 

 

Beth used the phrase groups of, most of the time when conversing with the 

students. Misconceptions arose when the students were required to make 
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connections between groups of during discussion, use of the word times in word 

problems, and the symbol in the written equation.  

There were times when Anna unwittingly caused confusion among her students. 

As Anna’s class explored the difference in representation between equations such 

as 6 × 3 and 3 × 6, she asked the students which expression they thought would be 

the easier to solve and sometimes failed to recognise when a student’s explanation 

was the wrong way around:   

Child:  Ah, 6 times 3 [be]cause if you do 6 times 3 (recorded as 6 × 3), you just 

think about 6, 12,18, and if you do 3 times 6 (recorded as 3 × 6) you do 3, 6, 

9, 12, 15, 18. 

 Anna:  OK. So you were adding up, you just went up, you skip counted up in sixes?  

This was contrary to what Anna had been teaching as the meaning of 

multiplication (6 × 3 interpreted as 6 groups of 3, and 3 × 6 as 3 groups of 6). She 

did not notice the error and instead agreed with the student. Anna acknowledged 

that the student had skip counted in sixes, but this did not relate to the expression 

she had identified as the easier to use. This may have caused some confusion for 

the students.   

Beth identified the greatest number of student misconceptions in her first lesson, 

while in the final lesson she identified the least (Table 5.3). This was possibly 

because her second lesson was less teacher-directed and she allowed the students 

more time to problem solve together in their groups. The reverse happened for 

Bob, whose identification of misconceptions increased from the first lesson (2) to 

the last (5). In the final lesson, Bob’s students had their own manipulatives, which 

meant that he recognised more readily when they were confused. They struggled 

to recognise the relationship between repeated addition and multiplication, and he 

tried to reinforce the difference: 

 Bob: I have said eight plus eight, but how can we express that in multiplication?    

 Child:  Eight plus eight equals sixteen. 

 Bob:  How can we express that as in multiplication?  You’ve got eight plus eight.   

 Child:  Um. 
 

There was still confusion with understanding the multiplication symbol, in 

relation to the context that had been taught throughout the unit: 

 Bob:  Is this two times ten, or is this ten times two?  (pointing to a model on the 

abacus) 

 Child: Both.  It’s both. 
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There were times when Bob’s students showed misconceptions, which went 

unrecognised. For example, one student modelled 2 groups of 10 (2 × 10) and 

another modelled 10 groups of 2 (10 × 2). Bob recorded example (i) in Figure 

5.10, as having modelled 2 × 10, when 10 groups of 2 are counted, and example 

(ii) as 10 × 2, when 2 groups of 10 are shown. This contradicted the meaning of 

multiplication that he had previously taught the students. 

 

 

 

                       Figure 5.10 Models of (i) 10 × 2 and (ii) 2 × 10 

Andy remained consistent in recognising misconceptions (2 in the initial lesson 

and 3 in the final lesson). In Andy’s class, the students experienced difficulty skip 

counting with larger numbers. At one stage, they determined that each of the 

smaller pieces of paper was 100 square centimetres (they measured 10cm × 10cm) 

and attempted to work out how many square centimetres were on a large sheet of 

paper (Figure 5.3):          

Andy:  So how many square centimetres do you have now? You’ve got one 

hundred…  

Child 1: One hundred, two hundred, three hundred, four hundred, five 

hundred, six hundred, seven hundred, eight hundred, nine 

hundred and ten. 

 Andy:   What comes after nine hundred? 

 Child 2:  Nine hundred and ten. 

 Andy:  Nine hundred and the next number is? Th…  

 Child 1:  One thousand. 

 Andy:   Good girl. 

 Child 1:  One thousand, two thousand. 

 Andy:   Not two thousand. One thousand, and one [what]? 

 Child 1:  Hundred. One thousand, two hundred. 

Beth recognised that some students found it difficult to determine what happened 

to the product when the multiplier was doubled, for example when they multiplied 

by ten. Beth modelled the pattern on the abacus, and showed: two groups of ten; 

four groups of ten; eight groups of ten; then Beth asked, “What would 16 groups 

of ten be?” Beth recorded the facts one-step at a time in the modelling book and 

discussed the pattern with the students. As they doubled the multiplier, the 

students initially thought the product went up in groups of two, and then they 

changed it to twenty. One student said, “You just add a zero”. Eventually they 

 

 

 

 

 

(i) 

(ii) 
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recognised that when the multiplier doubled, the product also doubled. Beth 

repeated the idea with the ×5 tables, as she wanted them to see and understand the 

pattern. The conversation continued: 

Beth:    Now let’s go back and do it with the fives. Let’s just make sure that we can 

see how it’s doubling. Can you show me 2 lots of 5, or 2 times 5 (2 × 5) 

please? Can you write that down? 

 Child:  (records the expression in the modelling book) There.  

 Beth: Now, show me 4 lots of 5, or 4 times 5. Can you write the equation for that 

down? [Child’s name] is going to do the next one. I want you to double it to 

get me 8 lots of 5. Show me 8 lots of 5 on there, on the bead board [frame].  

Show me how you would do 8 times 5. What are 8 groups of 5 going to be?  

Can you write the equation for me? 

 Child: What would that other one be, if we had to equal 80?   

Beth:  To equal 80. Let’s work backwards and see if you can figure [it] out. 

Remember, we had groups of 5, so what might it have been? What might 

this number have been? (Points to the first number – the multiplier in the 

recorded equation 2 × 5). See if you can work backwards. 2 times 5 = 10, 4 

tines 5 is? (pauses for a brief moment) 20. 8 times 5 = 40. Something times  

5 = 80.   

 Child:  9? 

 

Beth then asked, “What would sixteen lots (groups) of five be?” Some of the 

students were able to double the 40 to get 80, so she said, “Okay, what would 32 

lots of five be?” Some of the students knew that they doubled the 16 × 5 = 80 and 

attempted to answer, but could not calculate this mentally. Beth later became 

confused when she tried to show the connection between the ×5 and ×10 facts, 

and the connection between doubling and halving in this context. She steered 

towards this at one stage, but forgot what she was trying to achieve and said, “I 

had it right in my head, and I’m confusing it now.” She was confused about what 

she was doing in her lesson and realised that she was also confusing the students. 

Beth stopped the lesson and said, “I might just leave it there for now because I 

don’t want to confuse you anymore. I’ll have a think about it and work with you 

again tomorrow.” 

At times Andy contradicted himself, in the final lesson. An example of this was 

when he was establishing 4 groups of 5 equals 20 (4 × 5 = 20): 

 Andy:  Four.  OK. 4 times 5 is?                                                                                                                  

  Child:  20. 

 Andy:  20.  Let’s count it.  4, 8… 

 Child:  12, 16, 20. 

 Andy:  4 times 5 is (slight pause) 20. 

Andy began the count in groups of four (instead of five) and the students 

continued from his example. Bob created a similar confusion for his students 
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when he wanted them to recognise the connection between groups of five and 

groups of ten. He modelled 5 × 10 (5 groups of 10) on the Slavonic abacus. He 

said, “If I split this apart, what equation have I got? 5 times 10 is the same 

as …?” As he spoke, he split the groups of ten in half. The conversation continued: 

 Child (1):  10 times 5 

 Bob:      No, I don’t [paused]. 5 times 10 is the same as… ?  

 Child (2):  10 times 5. 

Bob:  Yes, I know but remember we’re using fives [groups of five] to solve the 

equation. We’re halving it right? 5 times 10 (5 ×10) is equal to (what)? 

 Child (2):  50. 

 Bob:      Fifty. 5 times 10. If we halve it? 

 Child (2):  5 times 5? 

 Bob:       5 times 5, No. 5 times 10 is equal to 10 times 5. Okay? 

Two students answered 10 times 5 at different times. Bob said, “No” to one of the 

students and “Yes” to the other, which caused confusion among the students. Part 

of Bob’s difficulty arose, because the numbers in the five groups of ten (recorded 

as 5 × 10) and ten groups of five (10 × 5) were reversed from one expression to 

the other. Had he used different numbers in his example, for example:                   

4 × 10 = 8 × 5, the confusion may not have occurred.  

5.2.2 Content Knowledge in a Pedagogical Context (B) 

In this part of the framework, the most important part of the knowledge is to do 

with the mathematics, rather than how it is taught. The focus is on mathematics 

content knowledge as used for teaching, including subject matter knowledge. 

Deconstructing Content to Key Components (B.1)  

In both the initial and final lessons, Deconstructing Content to Key Components 

was the area within this section of the framework that was utilised the most 

frequently, by all teachers (Andy 7 [5], Anna 13, Beth 20 [8], and Bob 10 [5]). 

Deconstruction of content was necessary when students did not understand a 

particular mathematical concept, which was fundamental for applying that 

concept in a given situation. An example of deconstruction was, when the teachers 

taught multiplication as repetition of equal groups (a composite unit), and they 

reiterated the importance of understanding that the first factor in the equation (the 

multiplier), represented the number of groups, while the second factor (the 

multiplicand), represented the size of each group. An example of this, was when 

Beth unpacked the idea that 8 × 2 meant 8 groups of 2 (or 2 + 2 + 2 + 2 + 2 + 2 + 

2 + 2), and Anna explored the difference between 5 × 8 and 8 × 5. Recording both 
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expressions additively enabled the students to appreciate the difference between 

the multiplier and the multiplicand. While the teachers acknowledged that they 

wanted the students to move on from solving multiplication problems additively, 

they recognised that by representing them as repeated addition helped the students 

understand what occurs in the multiplication process. Later Beth asked, “How 

could we use addition to show two times five?” A child replied, “Five plus five.” 

Understanding this key idea was crucial for implementing other ideas that 

followed. However there were occasional times when the teachers acknowledged 

expressions incorrectly, such as when one of Anna’s students said that 6 × 3 could 

be skip counted 6, 12, 16, 24 (Section 5.2.1: A8). This was contrary to the 

meaning of the symbol as taught in the lesson and caused confusion later. 

Deconstruction also occurred when the teachers used the array model to show the 

meaning of commutativity in relation to multiplication. Discussions were held 

with the students about the connection between repeated addition, which they had 

modelled and discussed earlier, and the array that they modelled with Unifix 

cubes. The students modelled representations such as 6 × 3 and 3 × 6 as arrays, 

and discussed the difference between appearances of the two models. Anna 

extended her students’ understanding of the array when she asked them to use a 

rounding and compensating strategy to solve 3 times 99 (3 × 99), by visualising a 

representation of 3 groups of 100 (3 × 100) and then subtracting one from each 

group (3 × 1).  

One key component Beth highlighted was the importance of patterns in 

mathematics. As the students skip counted in different groupings, the patterns 

were recorded on the hundreds board (Figure 5.11).  

 

 

Figure 5.11 Recognising the multiple of three pattern  

These patterns became a focus throughout the lesson and Beth returned to them 

when the students were unsure about solving their multiplication problems, such 
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as when they became confused about the difference in representation between       

4 × 3 and 3 × 4. 

Mathematical Structure and Connections (B.2) 

Teachers were observed overlapping Deconstructing Content, and Mathematical 

Structure and Connections within their lessons. For example, as Bob and Beth 

highlighted the importance of the array model in understanding multiplication 

they made connections between ×5 and ×10 on the Slavonic abacus. They showed 

that every group of ten was comprised of two groups of five, resulting in twice as 

many groups with half as many objects in each. At one stage, Bob showed 40 

beads on the abacus. He asked the students how many groups of 10 that was and 

invited someone to also show how many groups of 5 that might be. The abacus 

was ideal for seeing the important link between one group of ten and two groups 

of five, as while the beads are displayed in rows of ten, each row contains two 

groups of five shown in different colours.  

In the final lesson, Bob recorded 4 × 18 on the whiteboard and drew arrows 

demonstrating how this could be solved by doubling the 4 to make 8, and halving 

the 18 to make 9. Bob mentioned he was getting off track, but continued on for 

the more able students in the group and demonstrated how doubling and halving 

could be further developed into the idea of thirding and trebling. He wrote the 

equation 6 × 12 on the whiteboard and said, “We divide that by 3 [pointed to 

number 6], and times that by 3 [pointed to number 12].” Generally, the larger 

number is divided and the smaller number multiplied. However, in this instance, 

the students recorded 2 × 36 and used their knowledge of doubles to solve the 

problem, by doubling 36 to get 72. He returned to the problem 4 × 18:  

 So four times eighteen, even though we don’t do the eighteen times table, comes out 

to seventy-two. We could use threes, here’s the thing. We could divide that by three 

[18] and times that by three [4]. Whatever we have to do to one number we have to 

do the opposite to the other. Sort of balance it out.  

 

Bob recorded the resulting 12 × 6, which gave him the same answer as the earlier 

6 × 12, as well as the original equation of 4 × 18.  

In the initial lesson, Andy noticed that some students modelled the groups within 

the multiplication expression by colour co-ordinating the Unifix cubes and 

responded, “Ok I’m not interested in colour co-ordination. This is not algebra - 

we are not doing patterning.” He had drawn everyone’s attention to algebra and 
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missed an opportune moment to discuss the patterns formed. However, in the final 

lesson, Andy made deliberate connections between multiplication and algebra. 

The students were finding the area of shapes and he commented at one stage, 

“I’ve talked about it before and I’ve given you the formula for it, the algebra 

formula for it. But, I want you to tell me in your book. Give me a sentence why it 

works.” At the time, Andy was discussing how to find the area of a triangle. He 

explained, “Understanding a formula is a bit like doing algebra, in that a formula 

works every time you used it, regardless of the size of the numbers.”    

A mathematical structure and connection Andy identified in the final lesson, was 

the link between the formation of arrays in multiplication and square units in area. 

While he did not specifically state the connection, it was implicit when the 

students were asked to count the number of rows of square paper, the number of 

pieces of paper in each row, and multiply them to find the area (Figure 5.3b). He 

told the students that the small pieces of paper were ten centimetre squares and 

asked them to use their rulers to make a ten centimetre square on their paper. 

“Find the ten centimetres with a ruler, and then you can rule the lines.” Earlier, 

Andy had consolidated understanding of the multiplication symbol, through 

representation of commutativity. “Think about it. Six groups of three are lots of 

little groups and three groups of six are only a few big groups, isn’t it?  [So] they 

add up to the same, but they don’t look like quite the same thing.” Some students 

were unsure, so they used Unfix cubes to construct the expressions and examine 

the difference between the representations that both totalled the same amount. 

When the students were solving the area of different shapes, Andy prompted them, 

“Remember we’re dividing this into squares aren’t we?” They had made their 

square unit representations on paper, they had modelled them with cubes, and as 

they solved equations, he pointed to the square units on the board as a reminder 

(Figure 5.7). He also reminded the students, “I have given you the formula. I want 

to know why it works.” His emphasis on understanding what was happening was a 

noticeable difference from his first lesson to his final lesson. 

Methods of Solution (B3) 

The teachers demonstrated methods for solving problems in varying ways. The 

importance of understanding some basic facts (2× [doubles], ×2, ×5 and ×10), and 

using these to work out other problems, was the final lesson emphasis for Beth 
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and Bob. Beth used fly flip cards to show the connection between groups of five 

and groups of six. The cards had a pictorial representation of 5 flies on the front of 

each card, with the number 6 written beneath. The students found the difference 

between the 5 flies on the front of the card and the number 6 by determining the 

number of flies on the back of the card. This showed the connection between 

using what is known (×5 tables) to work out the unknown (×6 tables). For 

example, 8 × 6 = (8 × 5) [5 flies on the front of each of the 8 cards] + (8 × 1)        

[1 fly on the back of each card]. 

Anna also encouraged building on known facts to work out unknown facts, as a 

strategy to solve problems. When the students shared their procedure for solving  

3 × 6, one student said she had skip counted in sixes. Anna replied: 

 So you were adding up, you counted up, skip counted up in sixes.  Anyone do it in 

any way different?  [Paused a moment]. Everyone did it the same way? You wanted 

to count up, or skip count in sixes? Did anyone use the fives?  And go up in 3 groups 

of 5, and then add on three more? 

She continued: 

 Anna: If we had 3 groups of 5. [She counted] 1, 2, 3, 4. Oops, 3 groups of 5 

[modelled with blocks], but we want 3 groups of 6. We would have to add 

on three more wouldn’t we? 

 Child: Yes. 

 Anna: So we would have to add one more on to each row to get our three groups of 

six. So fifteen and three is …? 

Anna was aware that the students knew their ×5 table, and encouraged them to see 

that ×6 was about adding one more to each group, and therefore, 3 × 6 could be 

solved by doing (3 × 5) + (3 × 1). While Anna demonstrated this strategy with 

known basic facts, she later encouraged the students to use the same strategy on 

more difficult, double-digit operations. An example used was, 3 × 27 = (3 × 25) + 

(3 × 2). Anna’s students also adeptly applied the use of doubles. As she solved     

4 × 8, one student explained that she could solve four times something, by 

doubling and doubling again:  

 Anna: Alright so when you doubled 8 what did you get? 

 Child:  16. 

 Anna:  And then what did you do after that?   

 Child:  Got the 16 and added the other 16, and got 32. 

Anna:  So in actual fact, you doubled 8 and got 16, and you doubled 16 and you got

 (what)?                                               

 Child:  32. 
 

Anna pushed this idea a little further and continued: 

So we could keep that going and get larger [number of] groups of 8 couldn’t we,  
by doubling again and getting 8 groups of 8. 
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Rounding and compensation was also a solution strategy used by Anna’s students, 

which extended the earlier taught notion of using what is known to work out the 

unknown. She asked the students, “Is it easier to solve 4 × 99 or 99 × 4?” They 

agreed that 4 × 99 was easier, as 99 can be rounded to 100, and the answer found 

by calculating (4 × 100) – (4 × 1).  

Procedural Knowledge (B4) 

All teachers showed procedural knowledge early in their final lesson, when they 

outlined rules with no further explanation at the time. Andy mentioned the 

formula required to find the area of a square and suggested it be used to find the 

area of other shapes. He told the students the answer was in square units, but gave 

no reason why. Beth initially told the students, “You find doubles by finding two 

lots (groups) of something,” and then moved on to discuss other multiplication 

facts. Bob mentioned that two groups of five equalled one group of ten. He then 

said, “And so six times five, is equal to three times ten,” and did not capitalise on 

this to any extent at the time.  

Profound Understanding of Fundamental Mathematics (B5) 

Aspects of PUFM were demonstrated infrequently by all of the teachers, with a 

range of 1 to 4 in the initial lesson and 0 or 1, in the final lesson. Anna showed her 

understanding of place value when she discussed the importance of this 

knowledge with the students. The students were asked if it was easier to solve      

3 × 100 or 100 × 3. They decided 3 groups of 100 were much easier to visualise 

and understand than 100 groups of 3. One student said, “I just added zeros at the 

end.” Another student responded, “Yes that’s a quicker way.” Anna replied, “A lot 

of people do that but does that help with your understanding? What I am wanting 

is that you understand what you are doing.” Anna reminded the students of what 

occurred when they added zeros to numbers for multiplication, and removed zeros 

from numbers when they divided. She explained:  

    Anna: What you are actually doing is you’re putting zeros in the tens and ones 

[columns] as place holders, because we are shifting it [the number 3] up two 

place values, when multiplying by 100. We’ve talked about this before. The 

rule is you move up two place values when you multiply by 100. Similarly, 

when we multiply by 10, we move up one, and when we multiply by 1 000, 

we move them up what? 

   Child: Three places. 

Anna: A similar thing applies when we divide by 10; everything goes down a place 

value. When we divide by a 100 they go down two place values, when we 
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divide by 1 000 they go down three place values. As long as we understand 

what we’re doing, that is the most important thing. 

 

As Anna and the students discussed the rule of adding zeros when multiplying by 

multiples of 10, she sketched columns in the modelling book and used arrows to 

show the students what was happening in terms of the numbers moving from one 

place (column) to the next. Anna reminded the student of the place-value houses 

that they had used in previous years, where the columns within each house were 

ones, tens, and hundreds, and the order of the houses were ones, thousands, and 

millions. 

Understanding of the commutative property of multiplication was another aspect 

of PUFM shown by Anna when she explained, “We can think about this type of 

multiplication as learning to change the order of the numbers, to make 

multiplication easier with big numbers.” Similarly, Andy gave the students Unifix 

cubes to form arrays, so that they could model understanding of the commutative 

property. He asked the students to justify their explanation by questioning them 

about whether it was important to understand the difference between the two 

expressions (for example 3 × 4 and 4 × 3): 

Andy:  Hands up if you think it is important (that there is a difference in the 

representation of the problem). 

Child:  I think it is important because if you come to a test and it says 3 × 4 and                                  

you might do it the other way you will get it wrong. 

Andy:  But we just said it gives you the same answer, didn’t we? 

Child:  Yes, but if it says show your working, it will be different. 

 

Beth was the only teacher who showed PUFM with connections between 

multiplication and division, when she used division to show the difference 

between 3 × 5 = 15 and 5 × 3 = 15 (Section 5.2.1: A.8). Beth used two piles of 15 

blocks, and divided one pile of blocks into 5 equal groups, and one pile into 3 

equal groups, asking the students to imagine that they were biscuits. The students 

agreed that they were not the same, as people with 5 in their family would get 3 

biscuits, while the people with 3 in their family would get 5 biscuits. Beth then 

unpacked the idea that the result of the division problem provided each person 

with a group of biscuits, and that multiplying also involved the groups of idea. 

Had Beth recorded the equations it might have enabled the students to see the 

connections between the two expressions.  
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5.2.3 Pedagogical Knowledge in a Content Context (C) 

This part of the framework acknowledges that there are occasions when 

professional knowledge has a major emphasis on the skills associated with 

teaching. While PCK within a subject area is topic-specific knowledge, this 

category considers generic teaching knowledge used in specific cases of 

mathematics teaching.   

Classroom Techniques (C.1), and Getting and Maintaining Student Focus (C.2) 

Classroom techniques are the generic classroom practices used by the teachers 

(Figure 3.1), and were used by the case-study teachers in a similar manner in both 

the initial and final lessons (Table 5.3). To varying degrees, all of the teachers 

invited students to share ideas with others as they solved problems. In the initial 

lesson, the students struggled with the concept discussion and the importance of 

collaboration, and while the teachers encouraged their students to work together 

and talk together, this occurred infrequently. Andy regularly reminded the 

students, to talk with each other before explaining solutions to him:   

 Andy:  Why is there a difference? 

 Child:  I think there’s... 

 Andy:  No, no, tell your neighbour first. Don’t tell me first. 

 

Andy persevered and continually encouraged group talk. This was evident when 

he set up working groups for the lesson, and said: 

 So you three work together, and you two work together. In fact, you could actually 

work together in one big group. Help each other. Okay? Talk amongst yourselves. 

Work it out together then prove it to me. 

 

At other times, Andy invited the students to challenge his thinking, and on more 

than one occasion commented:   

 If you’ve got a good argument, let’s hear it. I could be wrong. It wouldn’t be the first 

time in my life I’ve been wrong. So if you can justify your answer, let me know.  

Asking the students to share ideas was also a technique used to maintain student 

focus (C.2). Anna frequently used this practice and instructed the students, “Talk, 

pair-share with the person beside you. And listen carefully.” Andy implemented 

the pair share idea in a slightly different manner. As students finished their own 

work, he asked them to check with their neighbours to see who had used the 

smartest way to solve the given problem, reminding them to stay focussed at all 

times and be ready to give an answer at any time. Occasionally, when students 

appeared inattentive, he addressed individual students by name and asked them to 
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share their thoughts with the class. This refocused not only the individual student 

concerned, but also others who were aware that they might be the target in the 

future. He encouraged the students to listen carefully and not merely accept what 

others said: 

 How did you know that was 24?  Is she right?  Don’t stop thinking about it just 

because someone is giving you an answer. It could be wrong.  

Bob suggested to the students that they raise their hands and seek support if they 

did not understand a concept during the lesson. However, the students seldom 

asked for help and at one stage during the lesson when he suspected that some 

students were unsure, he reminded them: 

 Hands up who is not getting what we’re saying. OK. So we all know it. Remember                              

don’t be afraid to put your hand up, because if I do carry on and you don’t understand                            

it well then, I’ll go on, and then if you put your hand up later on, then I’m going to 

have to go all the way back.   

Andy showed a greater variety of ways for gaining student attention (C.2) in the 

final lesson, and one of these was setting challenges for the students. He made 

comments such as: “Now these ones here are a little bit trickier”; “I’m going to 

make things a little more interesting today and you [guys] are going to have to 

turn your brains on”; “Oh this is tough”; and “It’s a brain teaser for you.” 

Observations showed that the students responded to the challenges afforded them, 

and set about trying to prove that they could complete the tasks correctly. 

Goals for Learning (C.3) and Knowledge of Assessment (C.4) 

The teachers were reliant on the WALT in both lessons, to emphasise the goals 

for learning, as well as maintaining student focus (C.2). All teachers began their 

lessons by sharing the WALT and the intended learning outcomes for the students 

(the only exception was Andy’s initial lesson). Bob, regularly returned to the 

WALT to provide a focus to the lesson. Continual reference also became 

problematic (seven times during the final lesson), as frequently Bob stifled the 

students’ responses when they provided solutions not directly linked to the chosen 

learning intention. An example of this was when discussing 2 × 20 and 4 × 10 

modelled on the abacus: 

Bob:  4 times 10.  [OK] remember 4 times 10 is like that [pointed to 4 groups of 10 

representation on abacus]. 2 times 20 is like that [demonstrated on abacus]. 

So we’re looking at these two and those two. Although they give the same, 

they give the same answer, they are different.   

Child:  That’s quicker [pointed to 2 × 20]. 

Bob:  Pardon? 

Child:  But that way is quicker to answer it. 
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Bob:  Yes, but remember going back to our WALT we’re dealing with our twos, 

fives, and tens.    

Beth returned to the WALT at the end of the lesson, as she wished to see whether 

the students understood the purpose of the lesson. Beth concluded her lesson: 

  Beth: Can you just explain what we’ve learnt about? 

  Child:  We’ve learnt about factors and how grouping works. 

  Beth:  Yes but what did we learn about those equations?   

 Child:  The numbers can be changed around but they can still, they can still 

add up to the same.    

  Beth:  But they…? 

  Child:  But they don’t look the same. 

The teachers’ application of the knowledge of assessment category was one of the 

less frequently observed (range 0 to 4), and aligned to the lower frequency evident 

in the curriculum knowledge category (range 1 to 5) (Table 5.3: A.2). At the start 

of his first lesson, Bob reminded the students that they were at Stages 4 and 5 on 

the Number Framework (aligned to Levels 1-2 ) and that he wanted them to reach 

Stages 5 and 6 (Levels 2-3), (Section 5.2.1: A.1 & Section 5.2.1: A.2). However, 

the problems given during the lessons remained at Stages 4 and 5 (based around 

skip-counting, doubles, ×2, ×5, and ×10 tables), and did not challenge the students 

to reach the higher stages appropriate for their class levels.  

Written diagnostic assessment tasks were given to the students prior to the initial 

lesson, but none of the teachers used these to influence their planning and 

teaching. Bob referred to the assessment in his first lesson, “Ah [researcher’s 

name] took you over last week what we know. It wasn’t actually a test it’s just to 

see where you were in multiplication.  What you knew.” He advised the students 

that the assessment tasks were to find out what they knew and yet like the other 

teachers, he did not use this information as a starting point when planning lessons. 

Similarly, all teachers had assessment data available from other sources including 

Progress and Achievement Tests (PAT) and NumPA assessments, and discussions 

with the teachers indicated that data available from these assessments were also 

not used as starting points for lessons.  

In Andy and Bob’s final lessons connections were not made to previous lessons, 

which made it difficult for the researcher to ascertain to what degree formative 

assessment practices were used. Andy’s students carried out many tasks in their 

personal mathematics books and it is possible that he utilised these at other times. 

However, Bob’s students were not observed carrying out any written tasks in 
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either their own books or the modelling book, providing no obvious written 

evidence of understanding and progress. This contrasted with Beth who began her 

final lesson using the modelling book to revise the previous week’s learning and 

asked the students to use their equipment to show 2 × 5 = 10 as an array model. 

She viewed the models for evidence of understanding of the written equation. She 

said, “Let’s just check this for revision. If I was to turn it around, what’s the 

difference between 2 times 5 (2 × 5) and 5 times 2 (5 × 2)?” She was immediately 

aware of which students were able to recognise the difference between the two 

expressions.  

Questioning Techniques (C.5, C.6, C.7) 

As indicated in Section 3.13 and Figure 3.1, question types were subdivided into 

three groupings, based on the patterns of practice categories of Fraivillig et al.’s 

(1999), Advancing Children’s Thinking Framework (ACT): supporting (C.5); 

eliciting (C.6); and extending (C.7).  

Questioning – Supporting (C.5)  

All teachers used supporting type questions to the greatest extent throughout their 

lessons (Table 5.3: Andy 8 [21], Beth 16 [26], Bob 26 [21] and Anna 20). This 

was particularly evident when the IRE pattern occurred, with closed questions 

supporting the students’ current thinking. An example was in the initial lesson 

when some students in Beth’s class had made five groups of three, while others 

had made three groups of five: 

 Beth:    Can you tell me how many blocks you have got altogether over              

this side? 

 Child (1): 15. 

 Beth:     Have you got 15? 

 Child (1): Yes, 3 groups of 5. 

 Beth:     (turns to another child). How many have you got altogether? 

 Child (2): 15. 

 Beth:     15. How might we write your equation?  

 

Supporting questions were also evident when a question was directed at an 

individual or group that required a particular student to explain a method, or when 

a student was invited to share an idea with others by using the equipment or 

writing in the modelling book. Examples of these included “So how would we 

write that as a multiplication equation?”, “Can anyone give me an example?”, 

“(Child’s name), can you show me that with your cubes?”, “Well done, how did 

you do that (Child’s name)?”, “Can anyone tell me how many beads there are?”, 
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and “What was your thinking when you shared that with (Child’s name)?” These 

questions supported the students’ current thinking by encouraging them to clarify 

their own solutions. All of the teachers used this question type regularly to 

reinforce a particular student’s thinking and/or explanations.    

Questioning – Eliciting (C.6) 

The next most frequently used questioning format, was eliciting. The most 

common form of eliciting used by all of the teachers was when they encouraged 

students to elaborate on a peer’s response. An example of this in Bob’s class, was 

when one student provided a method of solution, he asked the rest of the class, 

“Can you come and explain to me what [child’s name] is actually saying?”  

Eliciting questions generally provide students with the opportunity to 

communicate their mathematical thinking with each other, think of different 

solution methods, and to think beyond the initial response of those in their group. 

They encourage students to wait and listen to the description others gave, as part 

of forming their own opinion. This was evident when Bob said, “So if we’re doing 

multiplication, and [child’s name] said seven plus seven, what’s another way of 

solving this problem?” Anna often asked if others wanted to share their thoughts 

in order to seek different solution methods. Anna said, “Talk, pair share with the 

person beside you, is it the same? And listen carefully.” She wanted the students 

to discuss ideas together, to listen to what each other said, and later be in a 

position to explain why they decided on their solution. When different solution 

methods were given, the students were often asked to decide which might be the 

smarter strategy to use given a particular problem. Similarly, Andy instructed the 

students: “Okay so what have we got here? Work it out with others in your group” 

or, “Is there a difference? Tell your neighbour”. The students were encouraged to 

share the ideas back with the group.  

Questioning – Extending (C.7) 

The question type used the least often was that of extending. This was when 

students were challenged to move beyond initial efforts, were pushed to attain 

learning goals, and encouraged to consider and discuss interrelationships among 

mathematical concepts. The discussion that followed this type of questioning was 

indicative of high-level thinking and theorizing. One example of extending used 

by Andy was when he did not accept a solution to a problem and instead said to 
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the students concerned, “Can you justify your answer for me please?” At this 

point, Andy expected the students to go beyond initial solution methods and 

reason about why they solved the problem in that particular way. In an effort to 

draw on ideas for discussion, Andy challenged students to reconceptualise 

problems by asking class members for different solution methods. For example, 

he said, “Can someone tell me how we could work out…?” or “If you didn’t have 

the squares (background to the diagram on the board), how would you prove the 

answer was six square centimetres?” Andy wanted the students to justify their 

thoughts and made comments such as: “Can you explain your theory to everyone 

else, please?” At one stage, a student pointed to other students’ work and said, 

“They’re right.” Andy replied, “They’re right, are they? Tell me, why?” Andy 

also extended the students’ thinking by encouraging reflection on a previously 

used formula: 

But what I also want to see is this. I’ve left this one in here as a special one (Andy 

pointed to an area problem on the whiteboard) and I wonder if you can work it out. 

I’ve talked about it before and I’ve given you the formula for it, the algebra formula 

for it.  But I want you to tell me in your own words. Give me a sentence why it works. 

 

5.3 Multiplicative Domain Summary 

A comprehensive analysis of teacher knowledge and student learning from two 

observed multiplication lessons (the initial lesson and a lesson toward the end of 

the unit), was presented using a detailed framework (Figure 3.1).  

In the Clearly PCK category, the teachers used a range of strategies to encourage 

and support their students’ learning. They utilised their students’ thinking to 

promote further learning with varying frequency (Table 5.3) depending on 

whether the students were left to problem solve among themselves, or whether 

discussion was more teacher directed. Manipulatives were used to represent 

concepts and support students in their conceptual understanding. Initially not all 

students had materials available for their use (e.g., Bob’s first lesson), but by the 

final lesson all students used them. Estimation was seldom used as a method to 

check for reasonableness of answers, inconsistency in the use of mathematical 

language caused confusion, and repeated reference to the learning intention 

(WALT) often stifled potential opportunities to utilise unanticipated teachable 

moments. 
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In the Content Knowledge in a Pedagogical Context category, the teachers 

regularly deconstructed the content of what they were teaching in an effort to 

assist the students with their understanding of multiplication. However, the small 

number of times the teachers made connections with the mathematical structure of 

the problems, was highlighted by the few instances in which they exhibited what 

is referred to as, profound understanding of mathematics. There were times when 

the teachers recognised student misconceptions and corrected these. For example, 

when students were confused over the meaning of the multiplication symbol, Beth 

unpacked the written expression additively to show the equal groupings. However, 

at other times the teachers caused misconceptions due to in-the-moment responses. 

For example, when Anna overlooked a child’s response to 6 × 3 as skip counting 

6, 12, 18, which was contrary to the meaning of the times symbol as taught in the 

lesson.  

In the Pedagogical Knowledge in a Content Context category, the teachers did not 

utilise the assessment data available to them to plan their lessons, and instead 

relied heavily on the lesson sequence in the NDP books and associated planning 

sheets for direction and content. The majority of questions were the lower-level 

supporting type, and the teachers seldom extended the students with higher 

expectations, going beyond initial solution methods to solve problems.  

The findings presented in this chapter are discussed and critiqued in Chapter Eight, 

in relation to research literature. The following chapter (Chapter 6) presents the 

results of observations of the teachers’ professional knowledge when teaching a 

lesson from the proportional domain. 
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CHAPTER SIX 

RESULTS and ANALYSIS: THE PROPORTIONAL 

DOMAIN 

 

6.1 Introduction  

This chapter presents a detailed analysis of four observed lessons, one by each of 

the case-study teachers, mid-way through a unit within the proportional domain. 

Each lesson was taught towards the end of the school year.  

6.2 Observed Teacher Professional Knowledge in the 

Proportional Domain  

One lesson was observed in each of the four case-study teachers’ classes to assist 

in understanding the teachers’ professional knowledge in relation to teaching 

fractions and decimals. Anna’s lesson with her Years 7 and 8 students, focused on 

understanding decimal numbers, while Andy, Beth, and Bob, focused on fractions 

(Table 6.1). Andy began the lesson with all of the students working at their desks 

(a practice commonly used by teachers because of their NDP participation), using 

coloured rods to identify how many fractional pieces equalled one whole. Half of 

the students continued to complete worksheet problems individually, while he 

worked with the other half on the floor. Anna, Beth, and Bob, were observed 

teaching half of the class, while the other half worked at their desks, on 

independent tasks consolidating prior fractions learning.   

Table 6.1 

Observed fraction lessons 

Teacher Whole Class 

(or) Group 

Lesson Focus 

Andy Class              

(start of lesson) 

relationship between fractional pieces and one whole 

Andy Group find fractions of a lengths, including seeing when a 

fraction is greater than one whole 

Anna Group place value understating in decimal numbers 

Bob Group using multiplication to find the fraction of a set 

Beth Group find fractions of lengths, including seeing when the 

fraction is greater than one whole 

As for the lessons for the multiplicative domain, the observations were analysed 

utilising the PCK Framework (Figure 3.1). The extent to which each category was 

observed in classroom practice is presented in Table 6.3. 
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As reported in Chapter 5 (Section 5.2), there were times when parts of the lessons 

could be coded against multiple categories on the Framework (Figure 3.1). In 

these instances, observations were coded against the various classifications 

(Figure 6.1) as it was deemed necessary to record the teachers’ applications of 

professional knowledge against the different categories as they arose. 

 

 

 

 

 

 

 

 

Figure 6.1 Sample of multiple coding in Beth’s fraction lesson 

Multiple coding is seen in Figure 6.1 when Beth showed aspects of four different 

categories simultaneously. The teacher demonstrated “Knowledge of Resources” 

through the use of cut up strips of paper to create wafer biscuits and showed 

“Appropriate Representation of Concepts” as she discussed how the paper had 

been cut into halves which might then be added together. The teacher supported 

the “Student’s Thinking” discussing with the student how the three individual half 

pieces are combined to equal three halves, and “Method of Solution” is shown 

when the teacher supported the student to solve one half, plus one half, plus one 

half is equal to three halves.   

There were also times when the observation of a particular action might be 

interpreted in different ways. For example, the use of the learning intention, or 

WALT arose frequently and was coded to various categories (Table 6.2). 
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Table 6.2 

Use of the WALT coded against different categories 

Action Coding Reason 
Use of the Learning 

intention (WALT) 

Purpose of content 

knowledge (A.1) 

WALT copied from NDP Book 7 showing 

relationship to the curriculum 

 Classroom techniques (C.1) Sharing the WALT, recording in the 

modelling book, and unpacking what this 

meant for the lesson. 

 Getting and maintaining 

student focus (C.2) 

Reminding the students of the WALT 

when they wandered off task  

 

Another time when an action might have been coded in a different manner was in 

the category Cognitive Demands of the Task (A.4). However, in all instances the 

researcher coded based on what was deemed the most appropriate, depending on 

the current teaching situation combined with student responses and actions. An 

example of this, was when Andy and Beth discussed that “if a number of objects 

are shared out evenly among a number of people, and there are more people than 

objects, everyone receives a part of a whole.” While understanding this idea is 

dependent on the word problem given, the prior knowledge of the students, and 

the manipulatives being used, the main issue here is that the teacher stopped and 

unpacked the aspects of the task that affected the level of complexity for the 

students (Figure 3.1), hence the A.4 coding.  

6.2.1 Clearly PCK (A) 

The first category examined in detail was that of Clearly PCK where it was 

difficult to separate the pedagogy from the mathematics, because of the 

overlapping links between the two concepts.  

Purpose of Content Knowledge (A.1) and Curriculum Knowledge (A.2) 

On analysing the observed fraction lesson, Purpose of Content Knowledge (an 

awareness of reasons for content being included in the curriculum and how it 

might be used), and Curriculum Knowledge (evident when a teacher shows how 

topics fit into the curriculum) were two of the categories addressed least 

frequently in classroom practice. The teachers did not specifically mention the 

curriculum and/or associated Number Framework within their lessons, although 

these were implicit in the chosen lesson objectives. Andy’s and Beth’s group 

lessons were based on a lesson when transitioning from the advanced counting to 

early additive stage (AC to EA) (Ministry of Education, 2008g, p. 16), while 

Bob’s lesson was moving from early additive to advanced additive (EA to AA) 
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(Ministry of Education, 2008g, p. 26), all below the appropriate curriculum level 

for the year level of the students.  

Table 6.3  

Frequency of each PCK category used in the observed fraction lesson 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anna’s lesson was for students moving from AA to AM (Ministry of Education, 

2008g, p. 38). The teachers admitted during follow-up conversations, that they 

found NZC (Ministry of Education, 2007) provided limited guidance as to exactly 

what the students were expected to know and understand in relation to fractions 

and decimals at different levels of the curriculum. Hence, there was a reliance on 

examples in the NDP Book 7 (Ministry of Education, 2008g) when moving from 

Stage 4 to Stage 5 (Andy and Beth), Stage 5 to Stage 6 (Bob), and Stage 6 to 

Stage 7 (Anna) and associated planning sheets, to guide their teaching. 

PCK Category Andy Anna Beth Bob Total 

A. Clearly PCK 

     1. Purpose of Content Knowledge  0 0 0 0 0 

2. Curriculum Knowledge  1 1 2 0 4 

3. Teaching Strategies 5 1 2 2 10 

4. Cognitive Demands of Task 5 0 3 0 8 

5. Appropriate and Detailed 

Representations of Concepts 
4 3 2 1 10 

6. Knowledge of Resources 2 1 4 1 8 

7. Student Thinking 4 4 5 0 13 

8. Student Thinking - Misconceptions 6 2 8 1 17 

      

B. Content Knowledge in a Pedagogical Context  

   1. Deconstructing Content to Key 

Components 
10 7 9 3 29 

2. Mathematical Structure and Connections 0 5 2 3 10 

3. Methods of Solution 1 3 8 9 21 

4. Procedural Knowledge  0 2 2 7 11 

5. Profound Understanding of 

Fundamental Mathematics 
0 3 1 0 4 

      C. Pedagogical Knowledge in a Content Context 

    1. Classroom Techniques 7 4 8 3 22 

2. Getting and Maintaining Student Focus 10 5 4 3 22 

3. Goals for Learning 1 4 3 3 11 

4. Knowledge of Assessment 3 5 1 1 10 

5. Questioning - Supporting 18 17 28 11 74 

6. Questioning - Eliciting 6 5 6 3 20 

7. Questioning - Extending 1 3 0 2 6 
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The only observed connection to curriculum knowledge was via the chosen 

learning intention (WALT) which Andy, Beth, and Bob, copied directly from 

NDP Book 7. Andy and Beth’s WALT was, “I am learning to find fractions of 

lengths, including when seeing a fraction is greater than one” (although they 

varied the lesson and included circles), while Bob’s was “I am learning to use 

multiplication to find a fraction of a set.” Anna began her lesson by 

acknowledging a gap identified in student knowledge from an earlier lesson and 

adapted a WALT in the NDP book. She recorded in the modelling book, “WALT 

determine how many tenths there are in all of a number.” 

Teaching Strategies (A.3) 

All of the teachers used manipulatives to reinforce conceptual understanding, 

although Andy admitted during his post-research interview he had often struggled 

with this concept:  

“I never really understood why children needed to understand what they were doing                                  

in maths when they could just give me an answer. I’ve never been a particularly 

heavily equipment-focused person so actually; you know having [lead teacher’s name] 

hand me a whole load of equipment at the start of the year didn’t actually thrill me 

very much.  It’s like, what am I going to do with this?”  

At the start of lesson, Andy worked with the whole class. Andy decided to utilise 

manipulatives into his fraction lesson, and used different-coloured rods (Figure 

6.2) to show the relationship between fractional pieces and the number of those 

pieces that equalled one whole. The students modelled two halves (black rods) 

make one whole (brown rod), four quarters (green rods) make one whole, and two 

eighths (yellow rods) are in each quarter. The difficulty with using rods as 

manipulatives was that while the number of pieces equalled one whole, the 

proportional difference in the size was not evident. For example, the model 

indicated that four green rods (Figure 6.2 [ii]), equalled one whole, but each rod 

was not one-quarter the size of the whole (brown rod) (Figure 6.2 [i]); or eight 

yellow rods (Figure 6.2 [iii]) equalled one whole, but each was not one-eighth of 

the size of the brown rod. The importance of proportionality in fractions was 

overlooked in this model (Figure 6.2).  

As their lessons progressed, Andy (now working with a group), Beth, and Bob, 

used manipulatives to allow the students to exemplify fraction word problems in 

context. Andy represented apples with fraction tiles, Beth used paper strips to 

resemble wafer biscuits, and Bob used paper circles to represent cakes. 
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               Figure 6.2 Coloured rods showed number of pieces in one whole, without proportional

 representation.  

The real-life context in the word problem was exemplified using equipment, to 

make the mathematics learning more meaningful for the students. For example, 

Beth said, “I want you to imagine these strips of paper are wafer biscuits. I want 

you to take three wafers each [indicated to pair of students], and I want you to 

divide them up between two people so that you get the same amount.” Similarly, 

Bob picked up a paper circle and said, “We’ve got four people at [Child’s] party. 

If you look at this, it represents a cake. Your birthday cake [Child]. You have 16 

candles to put on the cake so that each person gets the same number of candles on 

their piece of cake. How many candles will each person get?”  Bob continued 

with further examples using a number of students’ names, and included himself 

and the researcher in other examples. 

Andy’s students used fraction tiles to share five apples among four people. After 

discussion and manipulation of the equipment, the students gave each person a 

whole apple (tile) and re-unitised the other whole into four equal pieces, giving a 

further one-quarter to each person (Figure 6.3a). While the students solved the 

problem, Andy reminded them that they were to prove the five apples were shared 

evenly. One student placed a whole tile over the top of the four quarters (Figure 

6.3b) in order to prove that there were five whole apples altogether. 

        (a)                                                            (b) 

 

 

Figure 6.3 Student examples of 5 apples shared among 4 people (a) showing five whole apples 

gives each person 1 whole and ¼, while (b) proving that 4 whole apples and four quarters (beneath 

one whole) equal 5 wholes. 

All of the teachers asked the students to discuss their ideas to consolidate 

understanding (Section 5.2.1: A.3). For example, Anna said, “Share your thinking 

with someone else and say what number you are showing [on your deci-pipe] and 

why you’ve done what you’ve done”. Of the four classes, Anna’s students were 
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more inclined to converse with each other about their solution methods. However, 

while they told each other what they did, they struggled with justification of their 

procedures (Figure 6.4).  

 

 

   

      Figure 6.4 Students discus fractions represented on the deci-pipes. 

Andy encouraged discussion and observation of his facial expressions and tone of 

voice (evident on the video recording) indicated that he was frustrated when the 

students continued to work in isolation. While the students were seated in groups, 

he realised that they solved problems independently and directed them towards 

more co-operative learning:  

Let’s give it a try and see if it works. So [Child 1], you make one of those cakes into 

quarters please and [Child 2] you do the other one because [Child 3] has already done 

the eighths. So you’re going to need the quarter tiles. Work out together how many 

quarter tiles you are going to need. 

At another point during the lesson, Andy said to one of the students, “Talk to the 

boys. See if you can work it out. Convince him.” He wanted the students to 

consolidate understanding of the mathematics through discussion with each other. 

However, observations showed the students continued to tell each other the steps 

of their problem solving, rather than discuss their ideas together. 

Cognitive Demands of Task (A.4) 

The teachers unpacked the Cognitive Demands of the Task when they identified 

aspects of the task that affected its complexity for their students (Figure 3.1 and 

Table 6.3). This meant that when the students were confused or uncertain of the 

nature of the task, the teachers provided a simplified explanation of what was 

required. For example, Andy and Beth discussed that when a number of objects 

(for example, biscuits or pies) were shared out (or cut up) among a number of 

people, and there were more people than objects, no-one received a whole: instead 

each person received a fraction (of the whole). This generalisation was 

emphasised and unpacked accordingly with equipment. However, the students 

often struggled with what was the whole and what was the piece to be found. For 

example, when Andy’s students shared four pies among three people, they were 
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unsure initially whether they wanted quarters or thirds, what the size of the piece 

was relative to a whole, and what the whole was. The conversation went: 

Child:  Because there’s three people and you put them [cut them] into six and give 

everybody a sixth each. I know quarters won’t do it. 

 Andy:  Why won’t quarters do? 

Child:  Oh wait, because there’s only going to be four of them [pies] and there’s 

only three people.  

 Andy:  Okay. So what do you need then? 

In Beth’s class, the students had three wafer biscuits and four people. Some of the 

students were not convinced that they could do the problem with more people 

than biscuits: 

Child:   Ah there’s going be an odd one, so there’s three people, is there three people? 

Mrs [teacher’s name] is there three people? 

Beth:  No, four people and three wafers. We’ve already said that each person isn’t 

going to get a whole one.  

 [After a slight pause and observation around the room Beth continued]  

 Remember that when we’re cutting into fractions, each piece has to be the 

same [size]. 

The cognitive demands and understanding the complexities associated with the 

fraction tasks were unpacked through manipulatives representing the contexts. 

Andy began the lesson using paper circles, but realised that the students had 

difficulties identifying the fractional names of the pieces they created, once the 

circles were cut. The students put the paper circles aside and used commercial 

fraction tiles, which they found easier for identifying the name of the piece (the 

fraction name was on each tile). However, the students became confused again 

later, when the fraction tiles represented cakes, pies, and apples and they were 

unable to be cut into different sized pieces.  

Beth used paper circles (pies) and paper strips (wafers) according to the different 

contexts of the problems given, which enabled the students to construct the 

scenario. The folding and cutting of the strips of paper (Figure 6.5) proved to be 

an important part of unpacking the problem, and when mistakes were made the 

students often took another piece of paper and had another attempt.  

(a)                                       (b)         (c) 

 

 

Figure 6.5 (a) Folding and cutting paper (wafer biscuit) to solve (b) how many pieces are required 

and (c) re-cutting if required. 
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Bob’s students did not always recognise the importance of having equal-sized 

portions when representing fractions. When they divided their paper circles (cakes) 

into thirds they drew dividing lines to show three pieces, but these were often 

uneven-sized pieces (Figure 6.6). This caused problems when objects were place 

onto the pieces to solve problems, such as 21 candles spread out evenly on top of 

the birthday cake. The uneven-sized pieces meant that the students did not always 

recognise the importance of even distribution.   

 

 

 

 

 Figure 6.6 An example of 21 shared out into 3 (uneven) pieces    

Bob also modelled and discussed the concept part-to-whole, on paper circles. 

Most of the cake was covered and the portion visible, was the fractional portion 

related to the whole. An example of this was when he asked the students, “If I 

have some candles to spread out evenly over the top of my birthday cake and 

there are five candles on one quarter of my cake, how many candles would I have 

on my whole cake?” Bob presented other similar problems to the students, to 

develop the relationship between the two concepts whole-to-part and part-to-

whole.  

Appropriate and Detailed Representations of Concepts (A.5) and Knowledge of 

Resources (A.6) 

Using Appropriate Representations aligned to the teacher’s Knowledge of 

Resources for the concept they wished their students to understand (Section 5.2.1: 

A.5 & Section 5.2.1: A.6). Anna’s lesson focused on decimal fraction 

understanding and she commenced her lesson using a body fraction activity 

(Figure 6.7). Each student used their arm spans and folded arms to represent one 

whole, one half, or one quarter. As the students participated in the activity and 

formed the fractional representation, they related halves and quarters to the 

equivalent decimal fraction, which allowed them to show an understanding of 

common fractions and decimal equivalence.  
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    Figure 6.7 Body Fractions showing 2 wholes and one quarter. 

Anna’s Year 7 and 8 students exhibited difficulties with decimal place-value 

understanding and she emphasised the importance of correct mathematical 

language, to ensure that the students were clear in distinguishing between tens and 

tenths, or hundreds and hundredths: 

 It is really important that you start using that [decimal] language and that you 

actually say what you’re talking about. Otherwise you can be talking about any 

number, or any measurement, or something like that. So be specific.  

The students utilized deci-pipes to model decimal place-value (Figure 6.4), with 

one whole pipe used for comparison of the decimal portions. The students proved 

that 10 tenths equalled one whole (Figure 6.8), then showed why 10 smaller 

pieces (hundredths) equalled one of the tenth-sized pieces. The deci-pipes allowed 

the students to establish that 10 hundredths equalled one tenth, and because 10 

tenths equalled one whole, there would be 100 little pieces (hundredths) in that 

whole.   

 

 

 

 

 
  Figure 6.8 Ten tenths are lined up alongside one whole pipe. 

 

Student Thinking (A.7)  

Utilising Student Thinking to further consolidate understanding, was evident in the 

lessons of Andy (4), Anna (4), and Beth (5), and less evident in Bob’s (1) lesson 

(Table 6.3). Andy’s students were sharing three cakes among eight people when 

one student cut each cake (paper circle) into eight pieces. Another student 

disputed the necessity of cutting every cake into eight pieces: 

Andy:  So you’re saying instead of cutting every cake into eighths and giving people 

one bit from each cake, you could cut it… 

 Child:  You can cut all of them in different sizes. 

 Andy:  Let’s give it a try and see if it works. 
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Andy realised that the student’s idea of cutting each of the three cakes into 

different-sized pieces was a possibility, but what they were about to do would 

pose difficulties. However, he appreciated that making mistakes was part of the 

learning process and thought the students needed to realise this also: 

 So now you’re happy. You’ve cut one cake into thirds (pointed to Child 1), you’ve 

cut one cake into quarters (pointed to Child 2) and you’ve cut one cake into eighths 

(pointed to a Child 3). Now you’ve got to share them with eight people so make eight 

even groups for me please. And I don’t want to end up with anyone getting a small[er] 

amount of cake so you better make them all equal.   

 

Andy observed the students as they shared out the pieces among the eight people. 

The students gave everyone an eighth, then four people a quarter, and when they 

began to give the rest a third they realised they could not share the pieces evenly. 

Andy left them to unravel how each person would get the same amount. Another 

group solved the same problem (sharing three cakes among eight people) with 

fraction tiles. Eventually some students received one eighth and one quarter, while 

some got three pieces of one-eighth (Figure 6.9a). Andy asked the students to 

prove to him that everyone had an equal amount. They did this by placing a one-

quarter tile over the top of two one-eighth tiles (Figure 6.9b).  

(a)                                                                      (b) 

 

 

 

Figure 6.9 Representations of 8
3
  (a) as 3 × 8

1
and 8

1
+ 4

1
and (b) Proving 4

1
is the same as 8

1
+ 8

1
 

At times, Anna and Andy checked for understanding by determining whether the 

rest of the group agreed (or disagreed) with a student’s idea. For example, a 

student in Anna’s class used the deci-pipe to explain how she had modelled the 

number 0.62: 

 Child:  I put six of the tenth pipes and I put two of the hundreds [hundredth] ones, 

because there’s two in the hundreds [hundredths] column. 

 Anna:  Alright, is everyone in similar thinking as [child’s name]?   

 

Occasionally each teacher became involved in an IRE pattern of discussion using 

a student’s thinking as part of checking for understanding. An example of this was 

in Beth’s class when the students were sharing three cakes among four people: 

 Child: We cut them in half. 

 Beth:  You cut them in half. Did you give everyone a half? 

  



 

164 

 

 Child: Yes. 

 Beth:  So everyone got a half/? And what did you have left over when everyone got 

a half? 

 Child:  One whole. We cut [it] into four pieces. 

Beth:  Then you cut it into four pieces. If you cut it into four pieces what have you 

cut it into? What’s the fraction you’ve cut it into? 

 Child:  Quarters.  

 Beth:  Quarters, OK. So each person got what?   

 Child:  A half and a quarter. 

 

This type of conversation allowed Beth to check whether the student understood 

the physical process carried out when they cut the paper circles (cakes) into pieces.  

Student Thinking – Misconceptions (A.8) 

The nature of Andy’s and Beth’s group lessons allowed them to notice the 

misconceptions of the students, more readily than Anna and Bob (Table 6.3). 

Andy began his lesson by saying, “You can work in pairs today, because pairs are 

always sharing the learning.” The scenario was:  

 “I have five wholes, five whole apples. And I need to share them with [among] four                             

people. How many apples is each person going to get?  So, you guys [students] work                             

it out. Use the tiles, these tiles and those tiles (pointed to tiles). Discuss it amongst 

yourselves, think about it. Five apples. You can move the tiles around, pick them up, 

you can swap them with the other tiles. You can do what you like, but you have got 

five. I want to see what you can do. You’ve got five apples, and you’ve got four 

people.” 

As Andy observed the students and listened to their conversations, he noticed 

misconceptions and discussed these with the students concerned. An example was, 

when one pair of students began to share the five apples (fraction tiles) among 

four people they were unsure whether to have four or five whole tiles (apples), 

and whether to divide each whole into four or five pieces. Andy said: 

 “Do you understand, now put them together, no, no, no, no, don’t do that.  Put them                                

together and show me you’ve got five apples. Go. Prove to me that those are still                            

five apples. No, no, no, I didn’t say get another one out, I said put your stuff together 

and prove to me you’ve still got five apples. Anyone can just get another one out and 

stick it in there. Is that five?”   

 

Andy recognised the students’ misconception and immediately responded to it, 

which enabled them to continue problem solving in a meaningful way.  

Beth was aware of students’ misconceptions early in the lesson and while she 

sometimes corrected their misunderstandings, in other instances she allowed them 

time to work these out themselves. The first anomaly Beth observed was, 

regardless of how many whole objects there were to share and how many people 

there were to share the objects among, some of the students always began by 
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cutting the whole (objects) in half. While in the example of sharing three objects 

among four people the action gave the correct answer, the students were unaware 

mathematically of the size of the piece each person received: 

 Beth:  You’ve cut them all into quarters? 

 Child:  No, I halved it and halved it again. 

 Beth:  You halved it and halved it again?  Yes. So you cut them into quarters, now 

put them into four groups. How many does each person get? 

Beth recognised that the students did not see the connection between their action 

and the mathematical concept that, one-half of one-half is equal to one-quarter. 

Beth gave them the solution, and then guided them into understanding behind this 

important idea. 

Another misconception some of Beth’s students had was, regardless of how many 

people the objects (in this instance the biscuits) were shared among, each whole 

object must be cut up into the number of pieces that equalled the number of 

people. For example, three wafers among four people meant each whole wafer 

must be cut into four equal pieces (Figure 6.10a), or three wafers among eight 

people must be cut into eight equal pieces. While this is mathematically possible 

and always gives a correct answer, this is not always necessary and Beth wanted 

the students to explore the notion that there are times when problems can be 

solved using other more efficient strategies (Figure 6.10b). 

 (a)                      (b)                        

   

 

 

Figure 6.10 Examples of 3 wafers shared among 4 people (a) 4 people means each wafer is 

cut into 4 pieces (quarters) and (b) an alternative representation shown as ½ + ¼  

 

Misconceptions also occurred in Beth’s class when the students had difficulty 

deciding which number in the word problem assisted in determining into how 

many pieces the wholes (wafers) might be cut. For example, when there were 

three wafers to share among four people the students were unsure whether to cut 

the wafers into three equal pieces, or four equal pieces (Section 6.2.1: A.4). 

Initially, because they had three wafers they decided to cut them into three equal 

pieces, but they soon realised there were four people to share the pieces among. 
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After giving each person two pieces (using 8 of the 9, 
3
1 sized pieces), they had a 

one-third piece left: 

 Beth:  So you’ve cut those into thirds then? 

 Child:  Yes but see they’ve [all] got two each. They’ve got two each, they’ve got 

two each, they’ve got two each, and they’ve got two each (pointed to each of 

the four people). Then we’ll cut this [piece] like this (the child took the 

scissors and indicated cutting the third in half).  

 Beth:  So if you cut that one, if it’s a third, and you’re going to cut it in half… 

 Child:  Yes then we’re going to… 

 Beth:  What are you going to do?  

 Child:  We’re going to go like that [cut in half] and then that [cut in half again] so 

they’ll be little-er ones, so there’ll be… 

The student cut the one-third in half (now two, 6
1 sized pieces) and in half again 

(now four, 12
1

 sized pieces) and gave each person one of the small pieces ( 12
1 ). 

This meant that each person had 3
2 and 12

1 . The students did not know the name of 

the smaller piece and Beth quickly explained why it was 12
1 . The students were 

still confused and Beth said: 

You’re giving this person two thirds plus this one here aren’t you? Which is                       

a twelfth. So you’ve given them two thirds and a twelfth. Shall we look at 

what other people did and we’ll come back to you. I don’t want to leave that 

but we’ll come back to it. 

The students had two misconceptions here: three wafers and four people, meant 

each whole wafer must be cut into one-third sized pieces; and the need to 

continually cut pieces in half, until there were enough (pieces) to share out evenly. 

The halving and halving again (something they had learned earlier in their 

multiplication lessons), was successful in this instance. However, the students 

were unaware of the name of the size of the pieces they had made, along with 

what portion of the original whole each person had received. 

Andy recognised his students had difficulties (similar to Beth’s students) in 

determining the number of pieces to cut the whole into (Section 6.2.1: A. 7), when 

they shared three pies among eight people:  

 Andy:  Try one of the different ones.   

 Child:  Like, we could just try fifths.   

 Andy:  Maybe go bigger. Why would you try fifths when you’ve got to give it to

 eight people?   

 Child:  OK, one third.  Oh, yeah one third. 

Like Beth’s students, thirds came to mind because there were three pies. The 

students did not recognise two important proportional relationships: the more 

pieces the whole is cut into, the smaller the piece; and the inverse relationship 
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between the number of pieces the whole is cut into (in this instance 8), and the 

size of each piece (eighths). Andy’s students (like Beth’s) also struggled to 

understand what the names of the pieces were that had been shared:  

 Andy:  How much cake did everybody get? 

 Child:  One and a half.  I don’t know. 

 Andy:  It can’t be one and a half because one and a half would look like that 

(modelled one whole and one half). So it’s not one and a half. What is it that 

everyone’s got here? Anyone?   

 Child:  So everybody gets three pieces of cake eh?   

 Andy:  Yes, but how much of a cake does everyone get? Because it’s making it even 

isn’t it? And three pieces of cake could be anything. Okay here’s three 

pieces of cake. Half of that cake, half of that cake and a third of that cake. 

I’ve got three pieces, and then what do the other people get?   

 Child:  One over twenty-four? 

 Child 2:  No, not that much. 

 Andy:  Not one over twenty-four. You [‘ve] got something of the right idea but… 

how many of these have you got?   

The students continued to work out the number of pieces and the size of each 

piece. After a while, one of the students thought that maybe the pieces were 

eighths. Others were not sure: 

 Andy:  So how many eighths have you got?   

 Child:  Three. 

 Andy: So how much of each cake have you got?  Three …? 

 Child:  Sixths. 

 Andy:  Is it one sixth? (Andy points to one piece). Why one sixth? 

 Child:  Because there’s three people and put them into six and give everybody a 

sixth each. I know quarters won’t do it. 

The student knew about quarters and eliminated those but could not determine 

whether the pieces were eighths or sixths. 

6.2.2. Content Knowledge in a Pedagogical Context (B) 

This part of the framework focuses on the mathematics content as used for 

teaching.  

Deconstructing Content to Key Components (B.1) 

Andy and Beth deconstructed the meaning of fractional numbers early in their 

lesson, when they discussed that the denominator relates to the number of equal 

pieces that make up the whole, while the numerator tells how many of those 

pieces there are. While Andy and Beth explored improper fractions, Beth was the 

only teacher who emphasised that it can be mathematically correct to write a 

fraction with a numerator larger than the denominator. Beth told the students, 

“Improper fractions, are actually proper,” and discussed the notion, “if you add 
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three quarters to another three quarters, you end up with six quarters.” She 

deliberately left converting these to a mixed-numeral, until the students accepted 

that mathematically it was correct to have improper fractions.  

Deconstruction of content was also evident when the teachers made connections 

between whole-number multiplication and division, and the need to share items 

equally when finding a fraction of a whole (object, or set). However, at one stage 

during Bob’s lesson, the sharing idea dominated to such an extent that it might be 

questioned whether the lesson was a whole-number division lesson or fraction 

lesson, as the notion of proportionality associated with fractional representation 

did not arise. This was evident when they solved problems such as spreading 15 

candles out evenly onto a cake which was cut into 3 pieces. They knew there were 

5 candles on each piece, but did not unpack the idea that the cake was cut into 

thirds and that 5 is one-third of 15. This contrasted with Andy who often showed 

the connection between the two domains with comments such as, “So you shared 

it between four [people]. And you told me that was one quarter.” Similarly, Beth 

made the connection between fractional representation and division, when she 

asked the students to consider the two ideas simultaneously: 

 What about if you cut all of them into quarters would that help?  If you cut them all 

into quarters, because remember there are four people. 

 

Andy often unpacked key ideas to assist in student understanding and rather than 

telling the students the answer, he encouraged them to deconstruct the ideas for 

themselves. An example of this was when the students shared three cakes among 

eight people and Andy suggested that every cake need not be cut into eighths: 

 Andy:  So you’re saying instead of cutting every cake into eighths and giving people

  one bit from each cake, you could cut it… 

 Child:  You can cut all of them in different sizes? 

 Andy:  Let’s give it a try and see if it works. Sounds [like] a good idea to me. So 

[Child 1], you make one of those cakes into quarters please, and [Child 2] 

you do the other one because [Child 3] has already done [one into] eighths.   

Other students attempted to cut each cake into different-sized pieces: 

 Child:  We could try one of the different ones. Like, we could just try fifths.   

 Andy: Why would you try fifths when you’ve got to give it to eight people?   

 Child: OK, one third. Oh, yeah one third. 

Andy was overheard saying (to himself), “This could be interesting.” He observed 

the students exploring different fractions and they soon realised that thirds and 
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eighths were not compatible. Andy consolidated equivalent fractions to enable the 

students to see the relationship between thirds and sixths: 

 One and two sixths. Very good. [Child’s name], I want you to find me a fraction in 

here (pointed to the box of fraction tiles) that is the same as two sixths (pause). A 

fraction that is the same as two sixths, please.  

Beth deconstructed equivalent fractions with her students, by giving them paper 

strips to cut. Some students went straight to the eighths by halving their paper, 

halving it again, and then again. Others made halves, then quarters, then stopped. 

They looked at the paper pieces and thought about the problem momentarily, 

before folding the paper again, to make eighths. 

Andy and Beth spent time unpacking the meaning of the fractional symbol. When 

checking that the students understood the symbol 4
3 , Beth reminded the students: 

 If you’ve got three on the top that tells you how many [pieces] you’ve got altogether.                  

The bottom number is telling us how many pieces you’ve cut each whole into. 

 

When the students constructed fractional representations later, they frequently 

returned to the fraction number and reminded themselves of the meaning of the 

numerator and denominator. Andy and Beth wanted the students to realise that 

fractions can be greater than one whole and again Beth reminded the students that 

is mathematically correct to have an improper fractions and record a fraction with 

the numerator greater than the denominator. At one stage, Beth asked the students, 

“So can we say that one and one-half is the same as three halves?” As the 

students unpacked the model they had constructed, Beth again consolidated the 

meaning of the numerator and denominator: 

 Beth:  When we cut things into halves what’s the number on the bottom?   

 Child:  Two.   

 Beth:  And how many have you got altogether?  

 Child:  Three.  

 Beth:  So you’ve got three halves haven’t you? 

Anna’s lesson focussed on decimal fractions and the students explored now many 

tenths were in a given number (e.g., 3.6), using deci-pipes (Figure 6.8). Anna 

asked the students:  

Anna: Can anyone see a pattern or a rule that you can also use, when you’re doing 

this?  If you’re thinking about it, is there a rule, a mathematical rule perhaps 

that you could use?   

 Child:  You’re just taking the decimal point away? 

 Anna:   Not quite. But, I can see why you might think that because it does disappear.  
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After an explanation by Anna, the students recognised that they had multiplied the 

3.6 by 10. One child mentioned that the numbers had gone up a place value, and 

Anna reinforced this idea: 

 Every time we multiply a number by ten it goes up a place value. So, the six went up 

to the ones, and the three went up to the tens, and because we multiplied it by ten, 

because we know there are groups of ten. Ten lots of tenths are in one whole. That 

meant we ended up with 36 tenths in our number three point six. 

As the students deconstructed place value, Anna emphasised the importance of 

calling the decimals (and pieces of equipment) by their correct name: 

 Anna:  Thirty-six what? 

 Child:  Thirty-six tenths.    

 Anna:  Tenths. All right so you must say, the measure of the number. 

Later Anna again emphasised the use of correct language: 

 Child:  Oh, because there are ten hundredths in one whole tenth. And there are four 

of these.  

 Anna:  What are these?  Be specific.   

              Child:  Um, four of the hundredths.   

On one occasion, Bob presented problems on part-to-whole thinking, and asked 

the students to consider the relationship between the number of candles on a piece 

of cake, and how many would be on the whole cake. Questions posed included: 

“Three-quarters of the cake have nine candles [on them]. How many candles are 

on the whole cake?” These problems created discussion among the students, who 

initially wanted to find one-quarter of the nine candles, noticed this could not be 

solved evenly, and struggled to answer the problem. Realising the difficulty the 

students were having, Bob put that problem aside (he said for another day), and 

gave a problem involving a unit fraction, “Here are 9 candles to go on one-third 

of the cake. How many will be on the whole cake?” The students found this easier 

to solve using their manipulatives to support them.  

Mathematical Structure and Connections (B.2) 

Making connections between structure and concepts were observed in Anna’s (5), 

Beth’s (2), and Bob’s (3) lessons (Table 6.3). Anna made connections between 

place-value understanding of whole numbers and decimal numbers. She referred 

to the notion of “ten groups of” when unpacking how many tenths, or hundredths, 

are in a number. For example, she reiterated what a student said, “So I did hear 

someone say there are ten hundredths in one tenth?” and showed the value of 

each digit according to its place value, by moving from one column to another 
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diagrammatically in the modelling book. Anna ensured it was not a rote-learned 

procedure and that connection with place value was made. 

Beth related division with remainders to fractions, which began by asking the 

students how many whole pieces everyone would receive when they shared out 

six wafers among four people: 

 Beth:  [What happens] If we’ve got six wafers, and four people?    

 Child:  Ah, they get more [than a whole]. 

 Beth:  More than. How do we know that they’re going to get more? 

 Child:  Because there’s more wafers than people. 

Beth’s students explored what would happen to the two left-over wafers after 

everyone had received one whole wafer. However, while the students recognised 

the left-overs were less that a whole, they did not describe the size of the piece in 

terms of a fraction of the whole. 

Having explored mixed fractions and improper fractions, Andy and Beth gave the 

students a problem that involved sharing 3 pizzas among 8 people. While the 

students cut their pizzas and divided them up, or shared them out equally, again 

they saw the amount of pizza each person received in terms of whole numbers, or 

pieces of pizza. At one stage in Andy reminded the students of the need to 

determine how much pizza each person received (relative to the original whole): 

 Andy: How much cake did everybody get? 

 Child: One and a half. I don’t know. 

 Andy:  It can’t be one and a half because one and a half would look like that (picked 

up one whole fraction tile, or representation of cake, and a one-half tile). So 

it’s not one and a half. What is it that everyone’s got here? Anyone? Anyone 

got a guess? 

 Child:  So everybody gets three pieces of cake.   

 Andy:  Yes, but how much of a cake does everyone get?  Because it’s making it 

even [equal amount] isn’t it? And it, three pieces of cake could be anything.  

It could be… Ok, here’s three pieces of cake. Half of that cake, half of that 

cake and a third of that cake.  I’ve got three pieces and all that [pointed to 

the pieces of cake], and then what do the other people get?   

 

After re-constructing the problem and discussing the names (size) of the different 

pieces, eventually the students decided that each person received 8
3

 of a cake. 

Methods of Solution (B.3) 

Beth and Bob discussed Methods of Solution to problems more regularly (8 and 9 

times respectively), than Andy (1) and Anna (3), due to their participatory role 

within their lessons. When Beth observed the students having difficulties, she 

frequently intervened and discussed procedures, rather than leaving them to solve 
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the problems themselves. For example, as the students shared three pies among 

four people, she stopped them and commented:  

 Ok so these people over here, you divided yours into thirds and then you divided the 

last piece into twelfths. You gave each person two thirds and a twelfth. You’ve                          

all done it differently, you’ve divided yours into halves first [looks at another group].                    

And then you’ve given them a quarter, so you’ve given them a half and quarter.                       

You’ve divided them all into quarters [another group] and you have given them three                      

each. So, let’s add up how many they’ve got, you’ve given them a quarter, plus a                        

quarter plus a quarter. So what is, what is that equal [to]?  

Bob controlled the discussion that took place during the lessons to a greater extent 

than the other teachers, and the on-going intervention meant he was more aware 

of the students’ different solution methods. For example, when Bob’s students 

solved the number of candles required on the fractional portions of birthday cakes, 

he was aware that two solution methods were being used - known multiplication 

facts and equal sharing of objects. When asked how the 16 candles were 

distributed over quarters, one student had replied: “I knew there were four people 

so what I did was, four times four equals sixteen so four people, they get four 

each.” Another student replied, “There are sixteen counters so we just put one on 

each [piece] until they’re all gone.” Bob then explored these two solution 

methods. 

Anna’s reinforcement of place value meant that her students used x10 as a method 

to find the number of tenths in all of a number: 

Anna:  And what’s our rule if we multiply something by ten?  What happens to our 

digits? 

 Child:  It goes up a place value.  

 Anna:  It goes up a place value, doesn’t it?  So, here, you were correct when you 

were thinking in groups of ten. 

 

After learning about ×10 for tenths, the students transferred this solution method 

to ×100 for hundredths:  

 Anna:  What did you do [child’s name]? 

 Child:  ‘Timesed’ it by a hundred. 

 Anna:  And when you timesed it by a, a hundred …? 

 Child:  It goes up by two place-values. 

Anna:  So you used the rule and you went up your two place values, so that went 

from the ones up to the hundreds, and similarly this went up too. 

Anna’s students knew the procedure for ×10 as adding a zero and adding two 

zeros for ×100, but also understood that in adding the zeros the numbers shifted in 

place value. They used this understanding of shift in place value, to find the 

number of tenths, and the number of hundredths, in any given number. At one 
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stage their understanding was questioned and a child explained the number of 

hundredths in 1.14 as:  

 There’s a one whole and one whole has a hundred hundredths and the fourteen 

[indicates the point 14] has fourteen hundredths so one hundred plus fourteen 

hundredths is one point fourteen [one, four]? 

Procedural Knowledge (B.4) 

Bob focused on Procedural Knowledge, as opposed to conceptual understanding, 

more frequently than the other teachers (Table 6.3). He accepted answers given by 

the students and seldom checked for understanding of their responses. There were 

times when if a student did not answer a question immediately, another student 

responded spontaneously, or else Bob redirected the question, with explanation 

and justification of answers seldom evident. For example, when Bob wanted to 

know how the paper circle (being used to solve a problem) had been divided into 

thirds: 

 Bob: I would like for [Child 1] to show us this time. Twenty-one candles, there 

are only three people at the party. Three people, so I want you to show me 

how you would divide that into thirds.   

 Child 1: I don’t how to get that.  

Another child interrupted: 

Child 2: I do. You go along there along there and along there [indicated on the circle 

where lines would be drawn]. Draw a peace sign, in other words.  

 Bob:  Ok, that’s a third. I’m happy with that. 

While it is recognised that dividing a shape into an odd number (thirds, fifths, 

sevenths) of even sized pieces is difficult for students, Bob failed to check 

whether the students understood that in drawing a peace sign, they needed to 

show 3 equal-sized parts. Some of the students divided their circles into obviously 

uneven-sized pieces (Figure 6.6), which had further repercussions, including 

incorrect answers to given problems. 

The multiplicative relationship between fractions when numbers are halved, 

(finding a fraction of a fraction), was the basis of Beth’s teaching. She asked, “If 

you cut a half in half you get quarters, so if you cut a third in half what are you 

going to get?” Beth emphasised doubling the number and taught it procedurally, 

which over-rode the important understanding that each time you cut something in 

half, it results in twice as many pieces. This idea also linked to the doubling and 

halving strategy she had taught earlier in multiplication, but that connection was 

not made. 
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Profound Understanding of Fundamental Mathematics (PUFM) (B.5) 

A Profound Understanding of Fundamental Mathematics (Figure 3.1), was 

seldom observed through the teaching of fractions by the teachers (Table 6.3: 

frequency range 1 to 3). An exception was, when Anna showed her understanding 

of place value in both whole numbers and decimal numbers, and she passed this 

on to the students through the manipulation of the deci-pipes. The students’ 

representations showed ten-tenths made one whole, ten-hundredths equalled one-

tenth, and one hundred-hundredths equalled one whole. She did not allow the 

students to say that they had taken the decimal point away and checked that they 

understood the numbers were changing place value, when multiplied by powers of 

ten. Once understanding had occurred, she allowed the procedural use of adding 

zeros, when solving problems included ×10 and ×100. 

Beth utilised her understanding of fractional numbers, when she encouraged her 

students to understand that a fraction could be greater than one, equal to one, or 

less than one. She regularly emphasised that the denominator represented the 

number of equal pieces that made up one whole, and the numerator was the 

number of those pieces. 

6.2.3 Pedagogical Knowledge in a Content Context (C) 

This section explored knowledge drawn directly from observation of pedagogical 

practice in the teaching of fractional concepts (Table 6.2). Analysis of lessons 

indicated that some over-lap occurred between findings in the Clearly PCK and 

Pedagogical Knowledge in a Content Context categories, and the relationship 

between the multiplication lessons and fraction lessons.  

Classroom Techniques (C.1)   

Varying Classroom Techniques were observed in the lessons of each of the four 

case-study teachers. However, one common technique was to begin the fraction 

lessons, as they did their multiplication lessons (Section 5.2.1: A3 and Section 

5.2.3: C.3), by sharing the learning intention (WALT). Bob and Andy recorded 

the WALT in the modelling book at the start of the lesson, but seldom utilised the 

book for any other purpose, which contrasted with Beth and Anna who were 

mindful of recording students’ mathematical thinking alongside their use of 

manipulatives, and often used the modelling book for this purpose. 
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The students in all classes sat on the floor for their fractions lesson, as it was 

easier to manipulate the equipment from this position. One point of difference 

between the teachers was the manner in which they grouped students to share the 

materials. Andy’s students worked in groups of four, Anna’s and Beth’s students 

worked in pairs, while Bob’s students chose whether to work alone, in pairs, or in 

small groups.  

As lessons progressed from multiplication to fractions, the teachers encouraged 

the students to discuss ideas together as they solved problems. However, Anna, 

Beth, and Bob, often interrupted the students if they suspected there was a 

difficulty and talked them through steps to support the finding of a correct 

solution, asked someone else in the class to explain their answer, or answered the 

question themselves. This contrasted with Andy who often allowed the students to 

make mistakes. He reminded the students that making mistakes was part of the 

learning process and that if they were unsure of their answer it would be unpacked 

when they shared their solution methods. It proved to be a valuable learning 

experience for the students, because an incorrect answer often led to 

understanding the strategy for finding a correct one. He said, “Well try it. See 

what you get. You try something different.” There were times when Andy 

intentionally challenged the students to re-consider their answers. Conversations 

went along the lines of the following example: 

 Andy:  Then, how many pieces would each person get?   

 Child:  Oh, eight. 

 Andy:  Would they get eight? 

 Child:  [possibly now doubting himself] Oh, one. 

 Andy:  OK, alright, find the eighths for me and prove it.  

 

Getting and Maintaining Student Focus (C.2) 

One way the teachers maintained student focus was to create word problems in 

real-life contexts, which included the students’ names. For example, Bob used the 

names of students when he presented birthday cake problems, such as, “John 

(pseudonym for a child in his class) has fifteen candles to put on the cake so that 

each of the three people at the party gets the same number of candles on their 

piece of cake.  How many candles will each person get?” 

All four teachers also used names to direct questions to specific students. If the 

teacher observed a student paying insufficient attention, or was unsure whether 
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the student understood the lesson, a question was targeted at him/her by putting 

his/her name on the end of it. This quickly brought everyone back into focus, 

because if the named student was unable to respond to the question, the students 

knew the question might be redirected towards them. 

With fractions, the context usually involved food and the students were 

encouraged to visualise the whole object (e.g., cake or pie). Andy emphasised the 

importance of establishing the whole:  

 So, yes it’s a one, it’s a whole. So, you could think of this [picked up a paper circle] 

like a whole pizza, or a whole cake, or a whole block of chocolate, or a whole apple. 

It’s up to you.   

At one stage when the students had insufficient “wholes” (cakes) to work with, 

Andy said, “Well, come on guys, let’s bake the other one [cake]. You better bake 

that other one”. The real-life situations also meant that the students appreciated 

the significance of equal-sized portions. Andy’s students shared three cakes 

among eight people and each group cut their cake into different-sized fractional 

pieces:  

 So now you’re happy. You’ve cut one cake into thirds [pointed to one group], you’ve 

cut one cake into quarters [pointed to a group] and you’ve cut one cake into eighths 

[pointed to a group]. Now you’ve got to share them with eight people so make eight 

even groups for me please. And I don’t want to end up with anyone getting a small[er] 

amount of cake, so you better make them all equal.   

 

Goals for Learning (C.3) and Knowledge of Assessment (C.4) 

Andy used formative assessment practices to gauge prior learning. Early in the 

fraction teaching, one of Andy’s students responded to a given question and he 

recognised that the student was more advanced than others in the group. He said, 

“[Child’s name], I’m going to suggest that you’re in the wrong group. That you 

shouldn’t be in triangles, would that be a fair suggestion? Do you want to go and 

move yourself to another group, please?” Similarly, Anna began her lesson with a 

quick warm-up activity, called Body Fractions (Figure 6.7). As the students 

created decimal fractions, such as 0.25 and 2.75 with their arm-spans, Anna 

watched and listened to group conversations. At this time, Anna observed whether 

the students made the connection between the earlier created fractions and the 

decimal fractions (Section 6.2.1: A.5).    

Anna regularly asked students to explain or justify how they had solved a 

particular problem, using manipulatives to support their reasoning:   
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 Child:  Because the six was in the tens [tenths] column, so I put six as the tenth pipe  

  and I put two of the hundreds [hundredths] ones cause there’s two in the 

hundreds [hundredths] column. 

 Anna:  Alright, is everyone in similar thinking as [Child’s name]?   
 

As she checked whether everyone had similar ideas, she was aware of which 

students used correct terminology and which students had solved the problem 

correctly. When students wrote in the modelling book, they initialled their 

contribution and Anna used this recording as part of her formative assessment.  

Beth utilised formative assessment to a lesser extent. However, at one stage 

during the lesson, she observed that many of the students had solved the problem 

(three wafers shared among four people) in different ways and asked them to 

explain to each other their solution methods. This made her aware of the different 

strategies used by the students and whether any extra support was required.  

Questioning Types – Supporting (C.5), Eliciting (C.6), and Extending (C.7) 

The data analysis indicated that the emphasis on different question types remained 

the same in the fractions lessons (Table 6.3), as for the multiplication lessons 

(Table 5.3). The teachers utilised supporting type questions to the greatest extent 

(74 overall), with many of these following the back-and-forth IRE model. Beth 

carried out this type of questioning most regularly (28), with questions similar to 

the following. “If we add them up, how many halves have we got altogether?”, 

“How do you write that you have three halves?”, “How do you know that?”, “If 

you cut that in half what are you making?”, and “How many pieces did you cut 

your whole into?” 

The second most frequently used question type was that of eliciting (20). Bob 

used eliciting questions when he checked students’ explanations of their actions: 

“So can anyone tell me what that actually means?” Beth encouraged elaboration 

of ideas, such as, “If we’ve got six wafers and four people, is each person going to 

get more than a whole, or less than a whole? How do we know?” and “Let’s see, 

who else did it another way?” Andy promoted collaborative problem solving and 

asked the students, “Now what are we going to do here?” or, “So how we going 

to do that?” Anna sought different solution methods and asked, “How do we 

know that? [Child’s name], what’s your thought?”  

Challenging and extending the students’ thinking with higher-order questions was 

observed the least in all classes (1 to 3). Anna asked for generalisations, to check 
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the students’ depth of understanding: “Is there a rule, a mathematical rule 

perhaps that you could use? And how can we apply the same rule that we’ve done 

here [points to the tenths], with hundredths?” 

6.3 Proportional Domain Summary 

The professional knowledge of teachers when teaching fractions and decimals for 

understanding, was analysed against the framework presented in Figure 3.1 (Table 

6.3). This Framework was also used for analysis of the multiplication lessons 

(Table 5.3) and similarities and differences were observed between the two 

domains as indicated throughout this chapter. 

In the Clearly PCK category, the teachers relied on the NDP planning sheets and 

lesson progressions in the NDP Book 6 (Ministry of Education, 2008g) to plan 

their lessons, with little reference made to the NZC (Ministry of Education, 2007). 

All teachers encouraged their students to use manipulatives to support their 

understanding of concepts. Both commercial materials (e.g., fractions tiles, rods, 

and deci-pipes) and paper strips and circles, allowed the students to form 

representations of word problems (e.g., birthday cake scenarios), which would 

seem to support their learning. However, there were times when the manipulatives 

available to the students did not represent the fraction key idea being unpacked 

and misconceptions occurred. For example, Andy’s use of coloured rods showed 

the number of equal pieces in one whole, but because the rods (e.g., those 

representing one-half, one-quarter, and one-eighth) were all the same length, the 

proportional size of pieces was overlooked.  

In the Content Knowledge in a Pedagogical Content Context category, the 

teachers regularly deconstructed the content of what they were teaching in an 

effort to assist the students, in this case, with their understanding of fractional 

number. The three teachers who focused on fractions (Andy, Beth, and Bob) spent 

time discussing the meaning of the fractional number, while Beth extended this to 

improper fractions. Equivalent fractions were explored using multiplication basic 

facts learnt earlier. However, when the students shared pieces of cake, pies, or 

biscuits among friends, they often focused on division and seldom recognised 

what portion of the original piece each person received. For example, during 

Bob’s lesson the students spread 15 candles evenly onto a cake which was cut into 
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3 pieces. They knew there were 5 candles on each piece, but did not unpack the 

idea that the cake was cut into thirds and that 5 is one-third of 15. Similarly, when 

Andy’s students shared 3 pizzas among 8 people answers focussed on the number 

of pieces of pizza each person got, rather than each person having three-eighths of 

the original amount. Anna’s lesson focused on decimal fractions with an emphasis 

on place-value understanding.  

In the Pedagogical Knowledge in a Content Context category, all teachers 

encouraged more discussion among the students (than the multiplication lessons). 

Andy stood back and observed his students allowing them to learn from their 

mistakes, while the other three teachers were more inclined to intervene when 

they observed the students experiencing difficulties. All teachers used word 

problems based on real-life experiences applicable to the students (usually around 

food) in an effort to support their learning. There was an emphasis on the lower-

level supporting type questions and rarely extended the students’ thinking and 

understanding.  

The findings presented in this chapter are discussed and critiqued in Chapter Nine, 

in relation to research literature. The following chapter (Chapter 7) presents the 

results and analysis of students’ learning in the multiplicative and proportional 

domains.  
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CHAPTER SEVEN 

RESULTS and ANALYSIS: STUDENT LEARNING 

 

7.1 The Multiplicative Domain 

The students completed assessment tasks prior to teaching a unit of work on the 

multiplicative domain, with similar tasks given at the conclusion. The tasks 

focussed on key items of knowledge to be understood at Levels 2 and 3 of The 

New Zealand Curriculum (Ministry of Education, 2007). Given that 25% of the 

students were in  latter part of Year 5 and the remaining 75% were in Years 6,  7, 

and 8, the majority were expected to be capable of solving the tasks correctly 

(Table 3.3), using an appropriate range of strategies developed at Stage 6 (Level 3) 

of the Number Framework (Ministry of Education, 2008a, 2008f, 2009).  

7.1.1 The Multiplicative Domain Initial Assessment 

The initial multiplication and division assessment comprised ten paper-and-pencil 

tasks designed to ascertain current knowledge. Alongside written instructions on 

the assessment sheets, the students were given oral instructions explaining that 

they were to complete each task, explain how they worked it out and when asked, 

draw a diagram to show their thinking. The researcher discussed with the students 

the importance of them completing all parts of each question and read them to the 

students, to ensure they understood the requirements. The initial assessment 

results are presented on Table 7.1 and show that there was no task, where more 

than 50% of the students in every class gave a complete and correct response.  

Task-by-task analysis of the initial assessment is outlined in detail below. The 

actual task (and task description) given to the students is presented following each 

numbered sub-heading, along with examples of responses written by the students 

on their recording sheets. Both the number of students and corresponding 

percentages are recorded for comparison purposes, as the number of participating 

students changed from the initial assessment (Table 7.1) to the final one (Table 

7.2).  Results of each task were collated as class cohorts rather than for individual 

students, as the researcher was interested in gathering the data as part of 

identifying the overall change that had occurred in student understanding, due to 

the teaching and learning that had taken place throughout each unit of work. The 



 

182 

 

answers to the tasks involved the drawing of diagrams and writing of explanations 

to support their understanding, rather than requiring computational answers alone, 

as NZC requires students to use words, diagrams, and symbols to record and 

interpret additive and multiplicative strategies (Ministry of Education, 2007, 

Level 3 fold out chart). Therefore some of the following tasks also asked for these 

recordings. A response was deemed correct if the student gave a correct numerical 

answer and also recorded mathematical thinking that matched the word problem. 

Table 7.1  

Number (and percentage rounded to nearest whole number) of students with correct 

responses on the initial multiplicative assessment tasks 

 

School 

Teacher 

Task 1     

 

Mult. as 

repeated 
addition 

4+4+4+4+4+4  

= 6 × 4 

Task 2 

Diagram 
of           

3 × 5 = 

Task 3  

Division 
Partitive 

20 ÷ 4 

Task 4  

Divisio
n 

Quoti- 

tive     

12 ÷ 3 

Tasks      

5 & 6 
Commut-

ative 
Property        

2 × 5  

5 × 2            

Task 7 

Using the 

6x5 basic 

fact to 
solve       

6 × 4 

Task 8 

Under-
standing  

the array 

6 × 5 

Task 9 

Using 
4x7 to 

derive     

4 × 14 

Task 10 

Division 

with 

remainders 
(30÷4)          

7 r 2        & 

7 ½ or 7.5  

A (total)  

n = 53 
19 (36) 9 (17) 5 (9) 3 (6) 14 (26) 20 (38) 31 (58) 31 (58) 18 (34) 

& 3 (6) 

Andy 

Y5/6      
n = 25         

8 (32) 7 (28) 3 (12) 2 (8) 10 (40) 9 (36) 15 (60) 10 (40) 1 (4)  

& 2 (8) 

Anna 

Y7/8      
n = 28 

11 (39) 2 (7) 2 (9) 1 (4) 4 (14) 11 (39) 16 (57) 21 (75) 17 (61) 

& 1 (4) 

B (total) 

n = 50 
15 (30) 8 (16) 6 (12) 1 (2) 12 (24) 22 (44) 24 (48) 17 (34) 3 (6)  

& 0 

Bob 

Y5/6      
n = 28 

8 (29) 4 (14) 5 (18) 1 (4) 10 (36) 10 (36) 12 (43) 12 (43) 1 (4)  

& 0 

Beth 
Y5/6      

n = 22 

7 (32) 4 (18) 1 (5) 0 5 (23) 12 (55) 12 (55) 5 (23) 2 (9)  

& 0 

Overall 

Total     

n = 103 

34 (33) 17 (17) 11 (11) 4 (4) 26 (25) 42 (41) 55 (53) 48 (47) 21 (20) 

& 3 (3) 

 

Task 1: Understanding multiplication as repeated addition  

4 + 4 + 4 + 4 + 4 + 4 = 24. How would you write this as a multiplication fact? 

As students transition from the Advanced Counting (AC) stage to the Early 

Additive (EA) stage, they are learning the language of multiplication, the 

connection between multiplication and repeated addition, and that repeated 

addition problems can be recorded as multiplication facts e.g., 5 + 5 + 5 can be 

recorded as 3 × 5 (Ministry of Education, 2008f, pp. 11, 15). It is suggested this 

knowledge is taught in context using word problems and manipulatives at the AC 
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and EA stages (Table 3.3). Task 1 was intended to determine if these students, in 

Years 5 to 8, were able to present their thinking in this way.  

The standard practice in New Zealand schools is to interpret the multiplication 

symbol (×) as groups of, or sets of, with the first number in a multiplication 

expression representing the multiplier and the second number, the multiplicand 

(Ministry of Education, 200f, p. 12). Therefore, it was expected that the addition 

equation would be written showing 6 groups of 4, as 6 × 4 = 24. In this task, 34 

(33%) students recorded this correctly. Others created different forms of addition 

equations, with recording errors including the running on error (Figure 7.1). 

 

Figure 7.1 Recording repeated addition using running on 

 

Task 2: Understanding the multiplication symbol  

Draw a picture of what 3 × 5 would look like. 

For Task 2, a total of 17 (17%) students drew an accurate picture showing 3 sets 

of 5 (in line with the groups of notion as outlined in Task 1). Many students were 

unable to draw a picture, while other difficulties included representing 3 × 5 by 

sketching 3 objects, times (symbol inserted) 5 objects (Figure 7.2). 

 

               

Figure 7.2 Three students’ representations of 3 × 5 

Task 3: Partitive division 

You have 20 biscuits to put into 4 equal packets. How many biscuits will go into 

each packet? Draw a diagram to show how you worked this out. How would you 

write this as a mathematics equation?  

Eleven of the 103 students (11%) solved Task 3 correctly accompanied by a 

correct partitive division diagram. Some students drew the representation, but 

were unable to write the division equation solved, while others wrote the equation, 

but unable to show a correct representation. The most common mistake was to 

draw 20 divided into packets of 4, while others saw the numbers 20 and 4, and 

used these to draw the multiplication equation 4 groups of 20 (4 × 20).  
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Task 4: Quotitive division 

You have 12 biscuits to put into packets, with 3 biscuits in each packet. How many 

packets can you make? Draw a diagram to show how you worked this out.            

How would you write this as a mathematics equation? 

Students are expected to understand the two different contexts for division: 

sharing and grouping/measuring. Understanding of the two contexts begins at 

Stage 4, when the students are transitioning from AC to EA (Ministry of 

Education, 2008f, pp. 11, 17, 19).   

Task 4, quotitive division, appeared be the most difficult task for the students to 

represent, with four (4%) students correct. There was confusion between 

multiplication and division, and responses included 12 ÷ 3 = 36 along with            

3 ÷ 12 = 36. Many other incorrect answers showed 12 divided into 3 packets 

(rather than packets of 3). One student drew 12 biscuits, with each one divided 

into three (uneven) parts (Figure 7.3).  

 

 

Figure 7.3 One student’s representation of 12 biscuits put into packets of 3 

 

Tasks 5 & 6: Understanding the commutative property of multiplication 

Task 5: What is the answer to 2 × 5 = ?  Draw a diagram to show what 2 × 5 looks like. 

Task 6: What is the answer to 5 × 2 = ?  Draw a diagram to show what 5 × 2 looks like. 

As the students move from EA to AA (Stage 5 to Stage 6) they learn to 

understand the commutative property of multiplication (Ministry of Education, 

2008f, p. 24) and that while the answer is the same, the representation is different.  

Overall, 26 (25%) students interpreted the written expressions and drew their 

diagrams around the correct way. The most common error was representing the 

equations around the opposite way to the accepted interpretation in New Zealand 

schools of the multiplication symbol as ‘sets of’ or ‘groups of’. Other errors 

included: lack of recognition of the difference between the two problems, with 

answers given the same in both instances, either 5 + 5, or 2 + 2 + 2 + 2 + 2; and 

showing one group of two objects and one group of five objects, with the 

multiplication symbol in between (Figure 7.4).  
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Figure 7.4 Different representations of 2 × 5 and 5 × 2 

 

Task 7: Using known facts to derive unknown facts (Figure 7.5)   

 

 

 

 

                Figure 7.5 Using 6 × 5 = 30 to solve 6 × 4 = ? 

This built on a key idea (introduced at Stage 5 of the NDP Framework), that 

knowledge of the ×5 facts can be used to derive other facts (Ministry of Education, 

2008f, pp. 29, 32). At School A, 20 (38%) students were correct, while at School 

B, 22 (44%) were correct. Mistakes included either shading in the last column, 

shading in the first 24 blocks (first 4 columns and 4 more blocks), or leaving one 

block blank, and recording the answer to the equation as numbers other than 24.  

Only one student from each school supported their diagram with a correct 

explanation.  

Task 8: The array model of multiplication (Figure 7.6) 

 

 

 

 

 

 

      Figure 7.6 Task 8: Understanding an array model of multiplication 

As students transition from AC to EA (Stage 4 to Stage 5) on the framework, 

“students are introduced to the array model that visually lends itself to identifying 

equal rows or columns. The convention in New Zealand is to regard 4 × 3 as four 

sets of three” (Ministry of Education, 2008f, p. 12). “Given an expression such as     

 

1. How many smiley faces are in each row? 

2. How many rows are there? 

3. How many smiley faces are there altogether 

4. How did you work this out? 

 

 

 

I have 6 groups of 5 cubes and know to write this as         

6 × 5 = 30. How could I use this to work out 6 × 4 = ?  

Show how you can do this on the diagram below. 

 

                       What is the answer to 6 × 4 =  

 

 

  

                   

 

 

 

Incorrect 2 x 5       Incorrect 5 x 2 
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5 × 4, the student is able to create an array and then derive other multiplication 

facts from this, e.g., 6 × 4 by adding on a row of 4 and 4 × 4 by subtracting a row 

of 4” (Ministry of Education, 2008f, p. 15).  

Overall, 55 (53%) students solved this task correctly. When answering Parts 1 to 3, 

the most common error was confusion between the terms column and row. 

Incorrect responses for Part 3 were mainly due to computational errors. When 

asked how they found the total number of faces, responses were both additive     

(5 + 5 + 5 + 5 + 5 + 5 = 30) and multiplicative (6 × 5 = 30).  

Task 9: Using a known fact to work out the unknown 

 If you know 4 × 7 = 28, what does 4 × 14 equal?  Show how did you worked this out. 

 

Students at Stage 6 and transitioning from AA to AM (Stage 6 to Stage 7), solve 

multiplication problems by deriving from other known multiplication facts and 

division by proportional adjustment. For example, if you know that 5 × 8 = 40, 

then that can be used to work out 5 × 16, by doubling 40 (Ministry of Education, 

2008d, pp. 17, 58).  

At School A, 31 (58%) students correctly derived 4 × 14 from the known fact       

4 × 7 = 28, while at School B, 17 (34%) students did this. While some gave a 

correct response, only a small number of students said that they derived the 

answer by doubling the 28, recognising 4 × 14 as 4 × 7 × 2.  

Task 10: Division with remainders  

There are 30 apples to put into 4 equal sized bags. How many apples will there be in 

each bag? 

Students at Stage 6 who are transitioning from AA to AM are learning to solve 

division problems that have remainders. They are learning to understand that the 

amount left (the remainder) can be expressed as a whole number, or a fraction, or 

as a decimal (Ministry of Education, 2008f, p. 60). 

At School A, 18 (34%) students gave an answer of 7 remainder 2, while at School 

B, 3 (6%) students gave that same answer. One student from School A gave an 

answer of 7
2
1 and two gave 7.5. Seven students suggested 7 apples in two bags, 

with 8 apples in two bags.  

The initial assessment results were offered to the teachers to assist in the planning 

of their unit of work. However, none of the teachers requested the data preferring 
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to plan directly from the NDP planning sheets and Book 6 (Ministry of Education, 

2008f). 

7.1.2 The Multiplicative Domain Final Assessment 

Assessment tasks, similar to those prior to the teaching of multiplication and 

division, were given at the end of the unit as an indication of the students’ 

learning throughout the lessons. The collated results are presented in Table 7.2.  

The percentage of students correct on final assessment tasks indicated an 

improvement in some areas and a decline in others (Tables 7.1 & 7.2). However, 

it must be noted that some students were absent for the final assessment and the 

total student number decreased by close to 10%, from 103 to 93.  

Table 7.2  

Number (and percentage rounded to nearest whole number) of students with correct 

responses on the final multiplicative assessment tasks 

 

School 

Teacher 

Task 1     

Mult. as 

repeated 
addition 

5+5+5+5  

= 4 × 5 

Task 2 

Diagram 

of             

3 × 6 = 

Task 3  

Division 

Partitive  

20 ÷ 4 

Task 4  

Division 

Quotitive

12 ÷ 3 

Tasks        

5 & 6   
Commut-

ative 

Property           
3 × 5  

5 × 3          

Task 7 

Using the  

6 × 5 
basic fact 

to solve 6 

× 6 

Task 8 

Using the 

3×10=30 
basic fact 

to derive 

□ ×5 = 
30 

Task 9 

Division with 
remainders 

(26 ÷ 4) 

6 r 2              
& 6 ½ or 6.5  

A (total) 

n = 47 
13 (28) 10 (21) 3 (6) 3 (6) 20 (43) 24 (51) 6 (13) 10 (21)    

& 3(6) 

Andy 

Y5/6        
n = 25 

6 (24) 4 (16) 3 (12) 2 (8) 12 (48) 10 (40) 1 (4) 1 (4)        

& 3 (12) 

Anna 

Y7/8        
n = 22 

7 (32) 6 (27) 0 1 (5) 8 (36) 14 (64) 5 (23) 9 (41)       

& 0 

B (total)  

n = 46 
30 (65) 12 (26) 6 (13) 3 (7) 8 (17) 18 (39) 1 (2) 7 (15)      

& 7 (15) 

Bob    

Y5/6        

n = 25 

19 (76) 5 (20) 4 (16) 3 (12) 4 (16) 11 (44) 1 (4) 6 (24)      

& 7 (28) 

Beth   

Y5/6        

n = 21 

11 (52) 7 (33) 2 (10) 0 4 (19) 7 (33) 0 1 (5)         

& 0 

Overall 

Total      

n = 93 

43 (46) 22 (24) 9 (10) 6 (6) 28 (30) 42 (45) 7 (8) 17 (18)    

& 10 (11) 

 

Task-by-task analysis of the final assessment is presented following each 

numbered sub-heading, along with comparisons made to similar initial assessment 

tasks.  

Task 1: Understanding multiplication as repeated addition  

5 + 5 + 5 + 5 = 20. How would you write this as a multiplication fact? 
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At School A, there was a decrease in the total number of students who solved this 

task correctly from 19 (36%) to 13 (27%), while at School B, there was a 

substantial increase with the number of students correct doubling from 15 (30%) 

to 30 (65%). The most common response of the remaining students at both 

schools was to write the equation as 5 × 4 = 20, which according to their taught 

lessons would be interpreted as 5 groups of 4.  

Task 2: Understanding the multiplication symbol  

Draw a picture of what 3 × 6 would look like.  

There was a small increase in the number of students at School A, from 9 (17%) 

to 10 (21%), and a slightly greater increase at School B from 8 (16%) to 12 (26%), 

who correctly drew a representation of 3 × 6 by drawing 3 sets of 6 (as taught in 

their lessons). Some students drew their interpretation of the equation but did not 

clearly show which group within the representation was the multiplier, and which 

was the multiplicand, leaving their understanding of the difference questionable 

(Figure 7.7a). However, Figure 7.7 (b) shows the circles connected in groups of 

three, suggesting that the representation of 6 × 3 was shown.  

 

(a)                                                                       (b) 

 

Figure 7.7 (a) lack of clarity between 3 × 6 and 6 × 3 whereas (b) connected circles suggest 6 

groups of 3. 

Task 3: Understanding partitive division 

You have 20 biscuits to put into 4 equal packets. How many biscuits will go into 

each packet? How would you write this as a mathematics equation? Draw a diagram 

to show how you worked this out.  

At School A, there was a small decrease from 5 (9%) to 3 (6%) students who 

showed partitive division correctly. At School B, 6 (12%) students drew the 

division problem accurately on both assessments. Of the remaining students the 

majority used reversibility to interpret the problem and wrote a multiplication 

equation alongside their diagram showing 5 packets (groups) of 4, rather than 4 

packets (groups) of 5 (Figure 7.8).  
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     Figure 7.8 Twenty biscuits divided into packets of four instead of four equal packets 

Task 4: Quotitive division 

You have 12 biscuits to put into packets, with 3 biscuits in each packet. How many 

packets can you make? How would you write this as a mathematics equation? Draw a 

diagram to show how you worked this out.  

When comparing the initial and final assessments at School A, there was no 

change in the number of students (3, or 6%) who wrote the equation correctly and 

drew a correct diagram showing quotitive division, while at School B, there was a 

small increase from 1 (2%) to 3 (7%) students. Figure 7.9 shows a student’s 

example of the quotitive form of representation. The main reasons for incorrect 

responses included recording the problem using multiplication with the multiplier 

and multiplicand around the wrong way, and sketching a representation of 

partitive division rather than quotitive division (12 biscuits into 3 packets, as 

opposed to packets of 3). 

 

 

Figure 7.9 Quotitive division showing12 biscuits into packets of 3                             

In some instances, the students solved the two different division types the same 

way, not interpreting the change in wording of the scenario accurately. This meant 

both problems were solved as either quotitive division, or both as partitive 

division.  

Tasks 5 & 6: Understanding the commutative property of multiplication 

Task Five: What is the answer to 3 × 5 = ? Draw a diagram to show what 3 × 5 looks 

like. 

Task Six: What is the answer to 5 × 3 = ? Draw a diagram to show what 5 × 3 looks 

like. 

At School A, there was an increase of correct responses from 14 (26%) to 20 

(43%) and at School B, a slight decrease from 12 (24%) to 8 (17%). The most 

common representation of correct responses was repeated addition (Figure 7.10).  
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(a)            (b)                                                                          

 

Figure 7.10 (a) 3 × 5 as 5 + 5 + 5       and     (b) 5 × 3 as  3 + 3 + 3 + 3 + 3

       

Task 7: Using known facts to derive unknown facts 

The initial assessment required one less object in each set, while in the final 

assessment one object was added to each set (Figure 7.11). 

 

 

 

Figure 7.11 Using 6 × 5 = 30 to solve 6 × 6 = ? 

At School A, there was an increase from 20 (38%) to 24 (51%) in the number of 

students who used ×5 facts to solve other problems, while at school B, there was a 

slight decrease from 22 (44%) to 18 (39%). The most common error was adding 

one more set, rather than adding one item to each set (Figure 7.12). 

 

 

         Figure 7.12 An attempt at using 6 × 5 to solve 6 × 6 

 

Task 8: Using the known to work out the unknown  

I know that 3 × 10 = 30. 

  How can I use this to work out      × 5 = 30?  

The final assessment showed a large decrease in the number of students who used 

a given basic fact to solve an unknown one (Task 9 on the initial assessment). At 

School A, there were 31 (58%) correct on the initial assessment and 6 (13%) on 

the final assessment, while at School B the number of correct responses decreased 

from 17 (34%) to 1 (2%). Some students possibly knew the basic fact, 6 × 5 = 30 

and solved the problem correctly by merely inserting the number 6 into the box, 

with no explanation about how they solved the problem. However, they did not 

show whether they had an understanding of the relationship between the ×5 and 

×10 tables, to explain their answer. The six children at School A, who derived 

  

 

I have 6 groups of 5 cubes and know to write this as         

6 × 5 = 30. How could I use this to work out 6 × 6 = ?   

Show how you can do this on the diagram below. 

                           What is the answer to 6 × 6 = _____ 
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from the known fact, used the double and halve strategy (Figure 7.13), while only 

one child at School B, used derivation.  

 

(a)                                                                (b) 

        Figure 7.13 (a) and (b) Using the ‘double and halve’ strategy   

 

Task 9: Division with remainders 

There are 26 apples to put into 4 equal sized bags. How many apples will there be in 

each bag? 

Task 9 on the final assessment was similar to Task 10 on the initial assessment 

and overall there was a slight increase from 24 (23%) to 27 (29%) students who 

solved division with remainders correctly. However, a breakdown of results 

showed School A, with a decrease in the number of students correct from 21 (40%) 

to 13 (27%), while at School B, there was an increase from 3 (6%) to 27 (30%). 

The final scenario given to the students meant that the correct responses included 

6 remainder 2, 6 2
1

, and 6.5 (Figure 7.14). In reality, not many people would want 

to buy a bag with one-half of an apple in it. However, if the apples were shared 

out evenly that would be the case.   

(a)                                            (b) 

 

   

                           (c) 

 

Figure 7.14 Representations of 26 apples into 4 bags (a) bags of 6 apples with 2 remainder,                          

(b) each bag has 6
2
1  apples and (c) each bag has 6.5 apples 

7.2 The Proportional Domain 

The students completed a short paper-and-pencil assessment prior to the 

commencement of the unit on fractions and decimals, with a similar assessment 

given at the conclusion. As with the multiplication and division assessment, 

instructions given to the students included: solve each problem; explain how you 

worked it out; and where possible draw a diagram to show your thinking.  
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The two assessments, assisted in ascertaining the students’ progress in the 

understanding of fractional number.  

7.2.1 The Proportional Domain Initial Assessment 

Six tasks were included in the students’ initial assessment, based on Level 3 in the 

New Zealand Curriculum. As the class levels ranged from Years 5 to Year 8, it 

was expected the majority of students would have sufficient knowledge to solve 

these problems correctly (Ministry of Education, 2007; 2009a), (Table 3.2). The 

initial assessment results are presented on Table 7.3, followed by a description of 

example responses.  

Table 7.3  

Number (and Percentage rounded to nearest whole number) of students with correct 

responses on the initial assessment of fractions 

 

School: 

Teacher 

Task 1     

Addition of unit 

fractions 
 

4
1

+ 4
1

+ 4
1

= 

Task 2 

Addition of 

fractions with 
compatible 

denominators 



1
10 + 5

2
 =     

Task 3  

Word 

problem 
comparing 

fractions 

2
1

& 8
4

 

Task 4  

Part-to-whole     

- unit fractions 

If 4
1

= 3 

1 whole = ? 

Task 5 

Whole-to-part 

– fraction of a 
set  

3
1

of 18 = ? 

Task 6 

Ordering 

fractions 
smallest to 

largest       

A (total)          

n = 45 
30 (67) 2 (4) 12 (27) 34 (76) 16 (36) 11 (24) 

Andy Y6/7        
n = 25         

12 (48) 0 3 (12) 16 (64) 3 (12) 1 (4) 

Anna  Y7/8     
n = 20 

18 (90) 2 (10) 9 (45) 18 (90) 13 (65) 10 (50) 

B (total)          

n = 44 
17 (39) 0 9 (20) 30 (68) 17 (39) 2 (5) 

Bob Y5/6                
n = 23 

15 (65) 0 7 (30) 20 (87) 13 (57) 1 (4) 

Beth Y5/6               
n = 21 

2 (10) 0 2 (10) 10 (48) 4 (19) 1 (5) 

Overall 

Total         

n = 89 

47 (53) 2 (2) 21 (24) 64 (72) 33 (37) 13 (15) 

 

Task 1: Addition of unit fractions (same denominator) 

  4
1

+ 4
1

 + 4
1

= 

 

As students move from AC (Stage 4) to EA (Stage 5) (early curriculum Level 2) 

they learn to add unit fractions, and begin to recognise equivalent fractions 

(Ministry of Education, 2008g, pp. 17, 21). At Level Two they learn that, 

“fractions are iterations (repeats) of a unit fraction, for example, 
4

3  = 4
1 + 4

1 + 4
1  
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and 
3
4 = 

3
1 + 

3
1  + 

3
1 + 

3
1 ” (Ministry of Education, n.d.c).  Addition of unit fractions 

are frequently taught in real-life food contexts, such as pizzas and cakes. “The 

students have a good understanding of coordinating the numerator and 

denominator of fractions when they demonstrate that they do not need materials 

and images to make comparisons” (Ministry of Education, 2008g, p. 21). 

Therefore, Task 1 was an addition of unit fractions example using symbols, to see 

if the expressions and contexts learnt in earlier years were understood.  

At School A, 30 (67%) of the students added the unit fractions correctly, while at 

School B, 17 (39%) were correct. The most common reason for an incorrect 

response was the adding across error (18%), resulting in the answer 12
3 (Figure 

7.15a). Another error recorded was interpreting the numerators as one, while 

adding the denominators to get 12 (Figure 7.15b). 

(a)                                                          (b) 

 

Figure 7.15 Addition of unit fractions: (a) adding across error, (b) the numerator is 

recognised as one, while the denominator is added to get 12. 

 

Task 2: Addition of fractions with compatible denominators 



1
10  + 5

2 = 

As students progress from AC (Stage 4) to EA (Stage 5), they “need to have a 

good understanding about what the numerator and denominator represents in a 

fraction symbol”  (Ministry of Education, 2008g, p. 16) and are “developing 

knowledge of the symbols for halves, quarters, thirds, fifths and tenths” (p. 15). 

Through models comparing the size of fractions, they begin to recognise 

equivalent fractions such as two-quarters is the same as one-half. When the 

students are transitioning from AA (Stage 6) to AM (Stage 7) they are learning 

the equivalent fractions for halves, quarters, thirds, fifths, and tenths with 

dominators up to 100, and that in order to add fractions together, they must be of 

the same denominator.   

At School A, two students (4%) solved this equation correctly, while at School B, 

no students were correct. The most common mistake was the add across error, 

where 38% gave the answer 15
3 . Another frequent mistake was adding the 
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numerators, while maintaining one of the denominators (realising they should 

have a common denominator), with answers either 5
3 , or 10

3 . 

Task 3: Comparing fractions 

Judith eats 
2
1 a pizza and Jenny eats 

8
4 of a pizza. Who eats the most?                   

Draw a diagram to show how you worked this out. 

As noted in Task 2, students moving from AC to EA are beginning to learn about 

equivalent fractions. By Level Three (AA) students should be able to find simple 

equivalent fractions related to doubling and halving, for example 
4

3 = 
8

6 , to add 

and subtract fractions with the same denominators, for example 
4

3 + 
4

3 = 
4

6 = 1
4
2  

(Ministry of Education n.d.c). “Halves, quarters and eighths are particularly suited 

to the students at the early stages (e.g., AC to EA) because they easily relate to 

doubling, and halving (Ministry of Education, 2008g, p. 21). Task 3 was about 

understanding the relationship between quarters and eighths.   

At School A, 12 (27%) of the students recognised the two fractions as equivalent, 

while at School B, 9 (20%) of the students recognised the equivalent fractions. 

Incorrect responses included: Judith got the most because 2
1 is the biggest size 

fraction you can have; and incorrect attempts at drawing the two pizzas, resulting 

in the pizza cut into eighths with unequal-sized portions. The decision as to 

whether Judith or Jenny had the larger amount was then based on the inaccurately 

drawn diagrams. 

Task 4: Part-to-whole thinking 

 

 

Part-to-whole thinking is a key idea taught as students transition from EA 

(Stage 5) to AA (Stage 6) (Ministry of Education, 2008g, pp. 26-27). 

At School A, 34 (76%) of the students solved Task 4 correctly, while at School B, 

30 (68%) were correct. Correct results included: drawing the fraction pieces onto 

the circle, putting the faces onto it, and counting them (Figure 7.16a); identifying 

three faces on one-quarter, then adding four quarters to total 12 (Figure 7.16b); 

and using the multiplication basic fact, 3 × 4 = 12. 

 

  

 

If 4
1

of my circle has 3 smiley faces, how many are 

there on the whole circle? How do you know?
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(a)                              (b) 

 

     Figure 7.16 (a) Faces drawn on each quarter (b) The number on each of the quarters is added  

Task 5: Whole-to-part thinking 

  What is 3
1

 of 18? How did you know?   

Whole-to-part thinking is a key idea taught as students transition from EA to AA 

(Ministry of Education, 2008g, pp. 26-27). 

Similar numbers of students at both schools solved this correctly (School A: 16 

[36%]; School B: 17 [39%]). Of those who were correct, the majority converted 

the problem to a multiplication fact (3 × 6 = 18 or 6 × 3 = 18), while others 

recorded it as division (18 ÷ 3). A common error at School B, was misinterpreting 

the 3
1 as 4

1 , then finding 4
1  of 18 using a halving strategy (learned earlier in the 

multiplication unit): the students found a quarter by halving and halving again    

( 2
1  of 18 is 9 and 

2
1  of 9 is 4.5). 

Task 6: Ordering fractions from smallest to largest  

 

 

 

Students at AA (Stage 6) are expected to be able to order unit fractions and as 

they transition from AA to AM (Stage 7), are learning to order all fractions 

involving halves, thirds, quarters, fifths and tenths. Students working at the AA to 

AM stage are learning that fraction equivalence is critical to understanding the 

order of numbers, along with the notion that there are infinite names for a given 

point on the number line (Ministry of Education, 2008g, p. 37). 

At School A, while 11 (24%) of the students ordered the fractions correctly, there 

was one student from Andy’s class (Years 6 & 7) with 10 from Anna’s class 

(Years 7 & 8). At School B, 2 (5%) students were correct, with one student 

coming from each class. Incorrect responses included: (i) ordering the unit 

fractions from smallest to largest according to the numeral in the denominator, 

then those with the same denominator (the number 4) according to the numerator 

  

Order these fractions from smallest (on the left) to largest (on the right): 

3
1

    4
6

    4
1

    4
3

   2
1
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(Figure 7.17a). (ii) ordering the denominators from largest to smallest, and when 

the denominators were the same, ordering the numerator from largest to smallest 

(Figure 7.17b). (iii) 2
1  was thought to be the largest fraction as it had a 

denominator with the smallest numeral, therefore regardless of how all the other 

fractions were ordered, 
2
1  was placed as the largest.  

   (a)                                                             (b) 

 

 

Figure 7.17 Ordering of fractions with (a) denominators ordered as whole numbers, 

then numerators and (b) fractions with the same denominator ordered first.  

 

7.2.2 The Proportional Domain Final Assessment 

There were ten tasks in the final assessment. The first six tasks (Table 7.4) were 

similar to those of the initial assessment (Table 7.3). 

Table 7.4  

Number (and percentage rounded to nearest whole number) of students with correct 

responses on the final assessment of fractions. 

 

School 

Teacher 

Task 1     

Addition unit 

fractions 
 

5
1 +

5
1 +

5
1 = 

Task 2 

Addition of 

fractions with 
compatible 

denominators   

   10
1

+ 5
2

= 

Task 3  

Word problem 

comparing 
fractions 

 

4
3

& 8
7

 

Task 4  

Part-to-whole    

unit fraction 
 

 If 4
1 = 5 

1 whole  =  ? 

Task 5 

Whole- to-part 

unit fraction 
 

3
1

of 21 = ? 

Task 6 

Order 

fractions 
smallest to 

largest       

A (total)          

n = 49 
34 (69) 22 (45) 28 (57) 30 (61) 21 (43) 5 (10) 

Andy Y6/7         
n = 23 

9 (39) 2 (9) 13 (57) 10 (43) 3 (13) 1 (4) 

Anna Y7/8        
n = 26 

25 (96) 20 (77) 15 (58) 20 (77) 18 (69) 4 (15) 

B (total)          

n = 41 
23 (56) 1 (2) 19 (46) 33 (80) 29 (71) 3 (7) 

Bob Y5/6           
n = 21 

10 (48) 1 (5) 10 (48) 20 (95) 20 (95) 1 (5) 

Beth  Y5/6       

n = 20 
13 (65) 0 9 (45) 13 (65) 9 (45) 2 (10) 

Overall 

Total         

n = 90  

57 (63) 21 (23) 47 (52) 63 (70) 50 (56) 8 (9) 

An additional four tasks (Table 7.5) were added to the final assessment, from 

Level 4 of the New Zealand Curriculum. Two of the extra tasks were more 

difficult fraction problems, while two related to decimal understanding, as this 
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area of proportional reasoning had been included in some of the class learning 

sessions.  

The final assessment Tasks 1 to 6, are presented along with comparisons to 

similar initial assessment tasks.  

Task 1: Addition of unit fractions 

5
1 +

5
1 +

5
1 = 

At School A, nearly all of Anna’s class were correct (25 or 96%), with a decrease 

from 12 (48%) to 9 (39%) in Andy’s class. At School B, there was a reversal in 

terms of the number of students correct, between the two classes. In Bob’s class 

the number of correct responses lessened from 15 (65%) to 10 (48%), while 

Beth’s class they increased from 2 (10%) to 13 (65%). The most common error 

(18%) was the add across error (Figure 7.18), where the numerator numbers were 

added together as well as the denominators. Another error was recording 5
1

 as the 

answer (students were unsure whether the numerator or denominator be kept the 

same, so did not change either).  

 

 

                                  Figure 7.18 Addition of numerators and denominators 

Task 2: Addition of fractions with compatible denominators 

   



1
10 + 5

2  = 

At School A, correct resposes in Anna’s class increased from 2 (10%) students 

correct on the initial Task 2, to 20 (77%) students correct on the fianl task, while 

Andy’s class increased from zero correct to 2 (9%). At School B, one child (2%) 

from Bob’s class was correct. As in the initital assessment, the most common 

mistake was the add across error (35%), which gave the same answer for Tasks 1 

and 2 (Figure 7.19a). The students did not realise that while 
5
1 +

5
1 in Task 1 

equalled the 5
2

in Task 2, the other addend was different in each question, so the 

answer could not possibly be the same. Other incorrect answers included: the 

fractions
5
1 , and

4
3 ; adding the denominators and ignoring the numerators; and 
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solving Task 1 correctly, then after using the “add across” error in Task 2, 

returned to Task 1 and changed their answer accordingly (Figure 7.19b).  

(a)                                                                 (b) 

 

 

Figure 7.19 The “add across” error (a) gave the same answer for different questions, (b) was used 

       in Task 2, resulting in a change to Task 1.  

Task 3: Comparing fractions 

Judith eats 4
3 a pizza and Jenny eats 

8
7 of a pizza. Who eats the most?  

Draw a picture to show how you worked this out. 

More than twice as many students were correct on Task 3 in the final assessment 

(47 or 52%), compared to the initial assessment (21 or 24 %). At School A, the 

largest increase was in Andy’s class where correct responses went from 3 (12%), 

to 13 (57%). At School B, the biggest increase was in Beth’s class from two 

(10%), to nine (45%). Some students saw Judith and Jenny having the same 

amount of pizza because they each had one piece remaining (Figure 7.20). 

 

 

Figure 7.20 Each person has one piece left therefore they eat the same amount  

One student gave a correct answer for the wrong reason: Jenny ate the most 

because both numbers (numerator and denominator) were bigger (i.e., the 7 and 

the 8 were larger numbers, than the 3 and the 4), therefore Jenny got the most. 

Inaccurate sketches also showed Jenny to get the most (Figure 7.21) 

 

 

 

         Figure 7.21 Uneven fraction representations  

Task 4: Part-to-whole thinking  

A picture showing smiley faces did not accompany the task in the final 

assessment:  
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If 
4
1 of my circle has 5 smiley faces, how many are there on the whole circle?                                

Show how you worked this out. 
 

At School A, there was a slight decrease in the number of correct responses from 

34 (76%) in the initial assessment to 30 (61%), in the final assessment. The 

opposite occurred at School B, where there was a slight increase from 30 (68%) to 

33 (80%). The majority of students divided a circle into quarters, sketched the 

faces on each quarter and either solved the problem using addition (5 + 5 + 5 + 5 

= 20) or multiplication (4 × 5 = 20). Incorrect responses included dividing a circle 

into quarters, and placing one smiley face (confusion with one-quarter) in each 

quarter (Figure 7.22). 

 

 

       Figure 7.22 The circle is divided into quarters with a smiley face on each  

Task 5: ‘Whole-to-part’ 

What is
3
1 of 21? How do you know? 

At School A, there was a small increase in the number of correct responses from 

16 (36%) to 21 (43%), mostly from Anna’s class. At School B, the increase 

almost doubled from 17 (39%) to 29 (71%) with a large increase in both classes. 

Most students said that they knew that 3 × 7 = 21, while others wrote the equation 

incorrectly by mixing the divisor and dividend (Figure 7.23). 

                                                 

 

        

Figure 7.23 Confusion between divisor and dividend when finding 
3
1  of 21  

Task 6: Ordering fractions from smallest to largest  

 

 

The fractions in this task were the same as the initial assessment, with the addition 

of 16
7

. While this introduced another denominator, sixteenths are compatible with 

quarters and halves. At School A, one student in Andy’s class was correct (the 

 

   

Order these fractions from smallest (on the left) to largest (on the right): 

               3
1

    4
6

    4
1

    4
3

    2
1

   16
7
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same as the initial assessment), with a decrease of those correct in Anna’s class 

from 10 (50%) to 4 (15%). At School B, there was one student (5%) from Bob’s 

class and two (10%) from Beth’s class, who were correct. Incorrect responses 

included: (i) Disregard of the numerator and writing 
16
7 as the smallest fraction, 

because it had the largest numeral for the denominator (Figure 6.24). (ii) 

Recording 
16
7  as the largest fraction, because the number seven was the largest 

numeral for numerator, therefore it had the most number of pieces. (iii) Placing 2
1  

as the largest, as two on the denominator means it must be the biggest piece.      

(iv) Ordering the fractions by looking at the denominator with whole number 

thinking. (v) When there was more than one fraction of the same denominator, 

ordering the numerators from smallest to largest (Figure 7.25). 

 

 

Figure 7.24 Fractions ordered according to size of the denominator  

 

 

 

Figure 7.25 The numerator and denominator ordered using whole number thinking 

 

Additional final assessment tasks 

The final assessment included four additional tasks based on lessons taught when 

moving from AA to AM (Levels 3 to 4) (Ministry of Education, 2008g, pp. 35, 36, 

38). These tasks were to further assess the Years 7 and 8 students in Andy’s and 

Anna’s classes, who should be familiar with these problems, along with the more 

able students from the other classes. The students in Andy’s class had difficulty 

solving these tasks correctly, while none of the students in Beth’s class were able 

to do so (Table 7.5). 
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Table 7.5  

Number (and percentage rounded to nearest whole number) of students with correct 

responses on final fractions assessment (additional questions from initial assessment). 

     

 School 

Teacher 

Task 7     

Whole-to-part     

non unit fraction 

4
3

of 32 

Task 8 

Part-to-whole word problem        

9
5

were eaten. 16 were left. 

What was the whole? 

Task 9  

Decimal subtraction 

4.3 – 3.89 =? 

Task 10  

Decimal Place value 

How many tenths in 

5.23? 

A (total)          

n = 49 
15 (29) 6 (12) 7 (14) 11 (22) 

Andy Y6/7      
n = 23 

0 0 1 (4) 4 (17) 

Anna Y7/8      
n = 26 

15 (58) 6 (23) 6 (23) 7 (27) 

B (total)          

n = 41 
15 (37) 3 (7) 0 10 (24) 

Bob  Y5/6       
n = 21 

15 (71) 3 (14) 0 10 (48) 

Beth  Y5/6      
n = 20 

0 0 0 0 

Overall 

Total n = 90 
30 (33) 9 (10) 7 (8) 21 (23) 

 

Task 7: Whole-to-part (non-unit fraction) 

What is 4
3 of 32? How did you work this out? 

At School A, 15 (58%) of Anna’s students were correct, while at School B, 15 

(71%) of Bob’s students were correct. The main error, was finding 
4
1  of 32, rather 

than 
4
3 of 32.  

Task 8:  Part-to-whole 

Leah ate five-ninths of a box of chocolates. That left only 16 chocolates for Blake. 

How many chocolates were in the box at the start? Show how you worked this out. 

. 

At School A, six (23%) of Anna’s students solved this correctly, while at School 

B, three (14%) of Bob’s students were correct. Incorrect responses included the 

remaining 16 chocolates being added to the five (numerator of the fraction, 9
5 ) to 

give a total of 21 (Figure 7.26). The students did not recognise 5 was the 

numerator in the fraction number, and not the number of chocolates. 

 

 

Figure 7.26 The whole number (16) added to the numerator (5) 
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Task 9: Decimal subtraction 

The school record for the long jump was 4.3 metres. Kathryn jumped 3.89 metres.                           

How far short of the school record was Kathryn? Show how you worked this out. 

At School A, one (4%) student from Andy’s class, and six (23%) from Anna’s, 

were correct. At School B, no student solved this correctly. One of the incorrect 

responses was 1.14, obtained by rounding 3.89 up to 4 to get 0.11, and adding the 

0.3 from 4.3 onto the last digit (as they would in whole number thinking) solving 

0.11 + 0.3 incorrectly to get 0.14. The 3 metres was taken away from the 4 metres 

by solving 4 – 3 = 1, and lastly added the 1 to the 0.14 to get an answer of 1.14.  

Other students took the 3 metres away from the 4 metres leaving 1 metre, then 

reversed the numbers to subtract 0.3 from 0.89 to get a difference of 1.86 (Figure 

7.27).  

 

 

        Figure 7.27 Attempt to solve 4.3 – 3.89 

Task 10: Place-value understanding 

How many tenths are in all of this number?  5.23 

At School A, four (17 %) students from of Andy’s class and seven (27%) students 

from Anna’s class solved this correctly, while at School B, 10 (48%) from Bob’s 

class were correct. Incorrect responses included the answers 20, 23, 523 (Figure 

7.28) and 2 (the number in the tenths place). 

 

 

    Figure 7.28 Attempt at finding the number tenths in all of the number 5.23 

7.3 Assessment Tasks Summary 

 

7.3.1 The Multiplicative Domain Assessment Tasks Summary 

The results of the assessment tasks suggested that, generally there was little 

progress in students’ understanding of multiplication and division as a result of 

the teaching that had taken place. Over the 19 tasks (the combined number in both 

the initial and final assessment) given to the students, there was only one task 
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where more than half of the students overall were correct (Task 8 on the initial 

assessment). On the final assessment, on the majority of tasks the percentage of 

students with correct responses either remained the same, or decreased.  

When it came to recognising that repeated addition can be written as 

multiplication (Task 1), there was an overall increase of students correct from 34 

(33%) to 43 (46%). However, analysis of the results indicated that School A, 

decreased from 19 (36%) to 13 (27%), while School B, increased from 15 (30%) 

to 30 (65%). There was also an increase in awareness and understanding of the 

commutative property, from 26 (25%) students to 28 (30%) (Tasks 5 & 6). 

However, on closer analysis of the results, the school break-down indicated the 

reverse of Task 1, with an increase at School A, from 14 (26%) to 20 (43%), 

while at School B, there was a decrease from 12 (24%) to 8 (17%). 

On both the initial and final assessments, division posed the greatest difficulty, 

with 11 (11%) on the initial assessment and 9 (10%) on the final assessment 

understanding partitive division (Task 3), and 4 (4%) on the initial assessment and 

6 (6%) on the final assessment understanding quotitive division (Task 4). 

7.3.2 The Proportional Domain Assessment Tasks Summary 

The assessment results indicated a general improvement in the percentage of 

students correct on each task from the initial assessment to the final assessment. 

However, further analysis showed Beth’s class was the only one where the 

percentage of students either remained the same or improved on all tasks. Andy’s, 

Anna’s, and Bob’s students had at least one question, where there was a decrease 

in the percentage correct from the initial assessment to the final assessment.  

On the initial assessment, the greatest number of students solved Task 4 correctly 

(64 or 72%). This task was based on knowing how many objects were on part of a 

whole ( 4
1 = 3), therefore determining the resulting whole. Task 4 provided a 

similar number of correct responses on the final assessment with 63 (70%) correct 

responses.  
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Initial assessment showed that addition of fractions with compatible denominators 

(Task 2: 



1
10

 + 5
2 ) was the task which posed the most difficulty, with two students 

(2%) from the total cohort of 89 correct. Addition of compatible fractions (Task 2) 

showed a gain in the number of correct responses in the final assessment, with an 

increase from two (2%) correct to 21 (23%). However, this represented one child 

from School B, while at School A, there were only two (9%) from Andy’s class, 

and 20 (77%) from Anna’s Years 7 and 8 class. On the final assessment, the task 

with the fewest correct responses (n=8 or 9%), was ordering fractions from 

smallest to largest.  

In the following chapter (Chapter Eight) the results related to the multiplicative 

domain are further analysed and discussed in relation to the research literature.  
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CHAPTER EIGHT 

DISCUSSION: THE MULTIPLICATIVE DOMAIN 

This chapter discusses results from the three preceding chapters: Chapter Four 

(Section 4.2.1 & Section 4.2.2); Chapter Five; and Chapter Seven (Section 7.1) 

associated with the teaching of multiplicative thinking.  

8.1 Teachers’ Subject Matter Knowledge and Pedagogy 

8.1.1 Introduction 

The teachers at both schools noted on their questionnaire responses and in 

discussions that they had learnt mathematics content in a purely procedural 

manner, and like many students the experience of school mathematics was not 

always positive, and perceived to be difficult and irrelevant (Beswick, 2005; 

Burns, 1998; Carroll, 1994; Grootenboer, 2001; Grootenboer et al., 2008). They 

had learnt to memorise facts and used these mechanically with little, or no 

understanding of what was occurring in the strategy involved in solving a 

mathematics problem. In Chapter 2, it was proposed that in order to teach 

mathematics competently teachers need to have a profound, flexible, and adaptive 

knowledge of mathematics content (Ma, 2010) and many primary school teachers 

lack the required conceptual understandings to select worthwhile tasks for 

strengthening students’ mathematical understandings (Ball, 1993; Ball & Bass, 

2003; Philippou & Christou, 2002; Scharton, 2004). 

8.1.2 Multiple-choice Questions 

The questionnaire contained eight multiple-choice items designed to give insight 

into the teachers’ subject matter knowledge and pedagogical practice, in relation 

to the teaching of mathematics for understanding, in the multiplicative and 

proportional domains. The number of multiple-choice items was limited, as 

research had shown that they do not give teachers the opportunity to elaborate 

their decision-making and explain their reasoning, and there are no ways of 

checking how the answers were found (Clements & Ellerton, 1995). Of the eight 

multi-choice problems given to the teachers (Appendix C, Section B), three asked 

for estimated answers (1, 4, & 8). Mathematics goes beyond the requirements of 

teaching written calculating procedures, to involve both mental calculation and 

estimation as efficient processes for calculating (Anghileri, 2006, p. 2), and is one 
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of the fundamentals of numeracy (van den Heuvel-Panhuizen, 2001c). While the 

teachers answered the problems correctly (Section 4.2.1) on the questionnaires 

(and one can only presume they were solved through estimation and not by 

finding an exact answer), the use of estimation was not observed in any of the 

classrooms, by the teachers or their students.  

Many opportunities for estimating answers were available in the observed 

multiplication and fractions lessons. Estimation requires a good number sense and 

assists in all computation situations, becoming a checking mechanism that can be 

compared to a calculated answer to gauge the plausibility of the answer (Ma, 

2010). Students do not easily grasp the concept of estimate, or approximate, and 

the skills and strategies of estimation need to be taught to students (Bobis et al., 

2013; Ministry of Education, 2007). When Andy’s students shared three cakes 

among eight people, they might have considered as a group approximately how 

much cake each person would get, before they solved the problem accurately. If 

there were four cakes, each person would get one half. However, as there were 

only three cakes (one cake less), each person would get a bit less than one half. 

Teaching estimation and encouraging its use in a range of situations, helps 

students see reasonableness in their answers (Jorgensen & Dole, 2011; Ministry of 

Education, 2007; van den Heuvel-Panhuizen, 2001c). As these students rely more 

on technology, there is a need to teach them how to compute mentally and how to 

estimate in order to understand the numbers they should obtain when using such 

devices as a calculator (Perso, 2006).   

8.1.3 Teachers’ Understanding of Multiplication and Division 

This section of the chapter discusses part of research Question 2, concerning the 

teachers’ espoused professional knowledge. 

There were three problems on the teachers’ questionnaire related to the teaching 

of multiplication and division (Section 4.2.2). They were to solve each problem 

and discuss what they would do to progress the student in each given scenario 

(Figures 4.1, 4.2, & 4.4). In the first scenario, all teachers used place value 

partitioning (PVP) to solve 11 × 99, as they recorded (10 × 99) + (1 × 99). While 

Bob used PVP to solve the problem, his number sense should have told him that 

his given answer of 999 was incorrect. Number sense includes having a good 
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intuition about numbers and their relationships (Howden, 1989), or having a feel 

for numbers (Anghileri, 2006). Number sense is an integral part of what Ma (2010) 

described as PUFM and the lack of reference to number sense in the teachers’ 

responses may have impacted on their teaching practice (Tables 5.1 & 6.1).  

Anna mentioned supporting the students’ understanding through the use of 

concrete materials, although she did not expand on what materials she would use, 

or how they would be implemented. Concrete materials, or manipulatives, are 

often used in mathematics lessons with the claim that they extend students’ 

learning of mathematical concepts and operations, as they make them more 

comprehensible (Ma, 2010; Nührenbörger & Steinbring, 2008; Schoenfeld, 2011; 

Swan & Marshall, 2010; Wright, 2014). Beth also mentioned manipulatives and 

suggested giving Jon a smaller problem as a starting point and “going from there.” 

Knowledge building, or extending the students current capabilities, is considered 

a conceptual shift in mathematical learning and key to improving student 

knowledge and understanding (Davis & Renert, 2014) and while Beth started with 

smaller numbers, the go from there phase to push the students up to the higher 

numbers, seldom eventuated. 

Earlier problems using jumps on the number line, might have helped the teachers 

explain to the student (Jon) the steps involved in the PVP strategy. One of the 

early ideas taught in multiplication is relating repeated lots of, or groups of, to 

jumps on the number line (Anghileri, 2006). The link with the jumps, often 

carried out previously in repeated addition problems, can support a mental 

strategy that is helpful for calculating. Understanding the structure of 

multiplication including grouping, number-line hopping, and arrays, has been 

found to lead to an appreciation of multi-digit multiplication at later stages (Davis, 

2008; Mulligan & Mitchelmore, 2009; Young-Loveridge & Mills, 2010).  

While researchers have stressed the importance of teaching multiplication and 

division simultaneously for students to see the relationship between the two 

(Anghileri, 1999; Beak, 2006; Bobis et al., 2013; Clark & Kamii, 1996), many 

teachers struggle with the conceptual understanding associated with division 

constructs (Roche et al., 2015). In the questionnaire, two division scenarios were 

presented, each with a different focus, although there was a connection between 

the two (Section 4.2.2: Scenarios 2 & 3). The first drew on the understanding of 
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divisibility rules, knowledge developed as students move from AA (Stage 6) to 

AM (Stage 7) (Ministry of Education, 2008f). The scenario related to dividing a 

number by three (Figure 4.2). The clue given to the teachers was in the phrase 

“Mere knew the number was not divisible by 9, because 9 does not go evenly into 

12, and concluded that it was not divisible by 3.” Neither Andy nor Bob knew 

what they would do next with Mere, while Beth and Anna broke the number 516 

up into smaller chunks. The familiarity with number patterns of this nature and 

the notion that multiplication and division are related to the same number patterns, 

was explored in the research of Mulligan and Mitchelmore (2009, 2013), who 

found that these number relationships can provide the key to successful 

calculations. Mulligan and Mitchelmore (2013) found that students with an 

understanding of the construct referred to as Awareness of Mathematical Pattern 

and Structure (AMPS), learn that the first rule of structural understanding is that 

of generality. There is always a general rule telling you how a pattern is 

constructed and understanding those generalisations is the beginning of algebra. 

However, the generalised association between patterns in groups of three and 

groups of nine was not evident in this example.  

The connection between the two division scenarios was in the use of the quotitive 

form of division. All of the teachers admitted to teaching division predominantly 

through partitive division and that problem scenarios used in class generally 

focussed on the equal sharing out of items. This meant that the groups of idea 

used in understanding quotitive division was not recognised and used intuitively 

when they saw a problem, or taught a problem.  

While none of the teachers referred to quotitive division, there were some links 

made between equal groups in multiplication and the strategy they applied to 

solve the division problem. This was possibly due to the wording of the problem 

which asked for “14 chocolate peanuts to be put into each bag” (Figure 4.4). This 

scenario is based on understanding required as students transition from AA to AM 

(Ministry of Education, 2008f, p. 57), where division problems can be solved 

through proportional adjustment. As the teachers did not identify the next steps of 

teaching, it is suggested that they struggled to fully understand the grouping idea 

behind quotitive division. This is consistent with the research of Roche and Clarke 

(2009) and Roche et al. (2015), who found that generally quotitive division was 
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not understood, or taught well by teachers. In identifying the next steps of 

learning, the teachers might have made connections between the structures 

associated with multiplication and division as emphasised in the research of 

Mulligan and Mitchelmore (1997; 2013). The wording of the quotitive division 

problem should have been the clue to how to solve the problem. Division word 

problems given to students, similarly dictate the structure of the problems when 

solving them (Roche & Clarke, 2009).    

8.1.3 Perceived Mathematics Practice 

The teachers indicated that they either always, or often, encouraged their students 

to explain their thinking to others (Table 4.1). Research, has also shown that as 

teachers become more aware of their students’ thinking, they need to generate 

ways the thinking can be clarified within classroom interactions (Fennema et al., 

1993; Franke & Kazemi, 2001) and this is often begins through group discussion. 

However, the teachers often appeared to have difficulty getting their students to 

carry out meaningful discussions, and it is questionable whether the skills 

associated with group discourse (Bakhtin, 1994; Wenger, 1998) had been taught. 

Hunter’s research (2005, 2006, 2009, 2012) established that children need to be 

taught specifically how to carry out meaningful discussions within their 

mathematics lessons and that effective discussions develop over time.  

When the teachers were asked if they encouraged their students to justify their 

choice of strategy and thinking to others, two teachers (Andy and Beth) replied 

“always”, one (Anna) noted “often”, and one (Bob) wrote “sometimes” (Table 

4.1). Observations indicated that while their students talked with each other, they 

struggled with discussion that involved argumentation and explanation. Cobb and 

Bauersfeld (1995) identified that the conversation is multivocal (when both [all] 

students voice their opinions), if all of the students involved are given opportunity 

to express their ideas and challenge each other’s thinking. The difficulties the 

students in this study had challenging their peers, also came to the fore in the 

research of Hunter (2009, 2012), who found that a great deal of time was needed 

when creating a safe environment where students were comfortable with 

questioning each other. As Hunter (2009) concluded, teachers need to foster an 

environment where it is not considered judgemental to disagree with others and 
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where students can learn polite ways to disagree, or challenge each other and 

actively listen to what is said.  

The teachers were asked if they encourage students to include in their maths 

books drawings, diagrams, or other recording methods which represent their 

thinking, and Beth responded with always, Andy with often, and Anna and Bob 

with sometimes (Table 4.1). While the teachers encouraged the students to use 

manipulatives as representations of equations and scenarios, removing the 

concrete representation and moving to the implementation of diagrams and 

sketches did not eventuate in any of the classes. The use of manipulatives, then 

the use of diagrams and sketches during representational phases of the CRA 

model, allows for greater gains in student learning (Flores, 2010). Flores asserted 

that the improvement was even greater among students who had learning 

difficulties, or were identified as lower achieving (such as in Beth’s class). At 

School A, there were many English Language Learners (ELLs) and diagrams 

could have been utilised more effectively in classes to consolidate mathematical 

understanding. Research has found that ELLs students need opportunities to speak, 

write, talk, and listen in nonthreatening situations, and often a diagram and/or 

manipulatives may be an effective way to overcome the language barrier (Bautista 

Verzosa, 2011; Fernandes, 2011).                                                                                                    

8.2 Teacher Practice in the Multiplicative Domain  

This section of the chapter discusses the research question, “What professional 

knowledge is evident when teaching mathematics for numeracy in the 

multiplicative domain?” It incorporates part of Question 2, “and how does it (the 

teachers professional knowledge) contribute to student learning.” 

The discussion in this section aligns with the results of the seven observed 

multiplication lessons and accompanying field notes outlined in Chapter 5 and 

critically examines these in relation to the relevant literature. The lessons were 

analysed using a comprehensive framework (Figure 3.1), which supported 

Question 3, “How does the use of a framework assist in the investigation of 

teachers’ professional knowledge in practice?” 
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8.2.1 Clearly PCK (A) 

Purpose of Content Knowledge (A.1) and Curriculum Knowledge (A.2)  

The Purpose of Content Knowledge and Curriculum Knowledge categories 

overlapped and were identified as two of the less frequently observed, when the 

seven lessons were analysed against the PCK Framework (Table 5.3). All four 

teachers acknowledged during discussions that some of their students were 

performing below the appropriate level of NZC (Ministry of Education, 2007) for 

their class year. However, observations within the classroom, later analysis of the 

lessons, and assessment data, suggested that the teachers’ interpretation of what 

was required at each stage on the Number Framework, and the associated links 

with the NZC Levels and Standards was not comprehensive. This may have 

contributed towards the teachers not recognising that the majority of students 

were below suggested expectations (Ministry of Education, 2010), and lessons 

taught would not have met the Curriculum level guidelines for the appropriate 

year levels of the classes (Ministry of Education, 2007). In relation to 

multiplication and division, the NZC notes that a Level 3 student should be able to 

“use a range of simple multiplicative strategies with whole numbers, fractions, 

decimals and percentages” and “know basic multiplication and division facts” 

(Ministry of Education, 2007, Level 3 chart). Lessons observed fell short of 

meeting these expected outcomes.  

While the long-term goal for the teachers was for the students in their classes to 

have the knowledge and skills expected to solve problems appropriate for moving 

from AA (Stage 6) to AM (Stage 7) (Level 3 to Level 4 of the Curriculum), 

observations showed that problem samples given to the students did not support 

progress towards this expectation. Bob mentioned to the students that they were 

currently at Stage 4 and Stage 5 on the Number Framework and that he hoped to 

move them to their expected Stage 6 (see 5.2.1., A.1 & A.2). However, he 

continued to give them low-level problems to solve (e.g., 3 × 5 = □). As these 

students were Years 5 and 6, they were expected to experience multiplication with 

a range of strategies utilising a combination of single-digit and double-digit whole 

numbers (Ministry of Education, 2007). Students who are not given opportunities 

to learn challenging and high-level work, may not achieve at high levels (Boaler, 
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2008; Rubie-Davies, 2007, 2010; Solomon, 2007; Zevenbergen, 2005) and this 

became evident in the final assessment tasks.    

Beth had one of the lower achieving groups in her school (her school cross-

grouped classes by ability for mathematics) and her general acceptance of a lower 

level of attainment by her students, was evident in the slow pace at which she 

moved the students. Establishing a classroom community where students develop 

a sense of belonging is essential if they are to engage in mathematical learning 

(Anthony & Walshaw, 2008) and when teachers have lower expectations for 

students, their achievement is adversely affected (Boaler, 2008; Rubie-Davis, 

2007, 2010, 2015; Zevenbergen, 2005). Zevenbergen’s research found that lower 

stream students believed that their mathematical experiences were more restrictive 

and less enriching for having been in a class of this nature. This practice can also 

lead to long-term problems, as while school achievement is constrained by the 

ability grouping, lower-streamed students are also set up for low achievement in 

later life skills, required for employment (Boaler, 2008; Solomon, 2007; Wiliam 

& Bartholomew, 2004).   

The few observations of purpose of content knowledge (defined in Figure 3.1 as 

discusses or demonstrates reasons for content being included in the curriculum or 

how it might be used) may have contributed to the difficulty students had in 

understanding some of the key concepts taught, with the ensuing repercussions 

reflected in their final assessment results (Table 7.2). For example, lesson 

observations indicated that the teachers encouraged the students to construct 

models of multiplication using an array to solve problem examples (e.g., 3 × 5), 

with little discussion around patterns that the structure formed. This meant that the 

students grappled with the problems presented to them in the final lesson (area 

problems in Andy’s class, and using known multiplication facts to solve unknown 

basic facts, in Beth’s and Bob’s classes). Understanding the array model has often 

been emphasised as the most effective representation for understanding 

multiplication and the basis for further multiplication applications (Anghileri, 

2006; Davis, 2008), along with an emphasis on the appreciation of pattern and 

structure in mathematics learning (Mulligan & Mitchelmore, 1997, 2009, 2013; 

Mulligan et al., 2013). Teaching multiplication and division provides many 

opportunities for unpacking associated patterns and the structure of number and 
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this relationship was only mentioned in Beth’s class, when they discussed the 

patterns of the ×3 tables, and the doubling strategy.  

Teaching Strategies (A.3) 

The framework used for analysis described teaching strategies as being evident 

when, different strategies or approaches are used for teaching a mathematical 

concept or skill (Figure 3.1). One approach all teachers used was to identify a 

learning intention at the start of each lesson, recorded as a WALT (Section 5.2.1: 

A.3). While this was the intended purpose of the lesson, it created a narrow focus 

and in some instances observed to constrain the lesson. As the teachers allowed 

the WALT to dominate their lessons, they often missed opportunities for students 

who brought their own thinking to problem solving. For example, Anna and Andy 

briefly listened to students’ explanations and rather than ask further questions to 

extend their ideas, refocused on the WALT, while Bob remained single-minded 

about the need to continually remind students of the specifics of the WALT. 

Observations suggested there may have been a two-fold reason for this: 

management of the students; and apprehension about coping with something 

mathematical that may arise, to which the teacher may not have known the answer. 

As long as they maintained focus on the WALT, they were equipped and ready to 

answer any questions. 

While the similar number of teaching strategies (6 or 7) used in the initial lesson 

(Table 5.3) might suggest all teachers had similar approaches to their lessons, they 

varied considerably and resulted in differing classroom dynamics. For example, 

Anna and Beth sat on the floor with their students, maintaining accessibility to 

manipulatives, and a modelling book to share and record their thinking. The 

strength of a modelling book is in reinforcing the complexities of hands-on 

learning, that kinaesthetic learning alone tends to gloss over (Higgins, 2006). 

Anna’s and Beth’s usage contrasted with Bob, who sat on a chair recording on the 

whiteboard and rarely used the modelling book available. Andy’s usage of the 

modelling book sat somewhere between the extremes of the openness and 

flexibility of Anna and Beth, and the domination of Bob. The modelling book was 

utilised a little more in Bob’s final lesson, although at one point, he flicked back 

through the few pages to find an example of multiplication as repeated addition, 

only to realise that there was no record of the earlier discussion that had taken 



 

214 

 

place. The written examples had been on the whiteboard and had Bob, or his 

students recorded in the modelling book, evidence of prior learning could have 

been referred to directly. This would align with Higgin’s research, which 

concluded the modelling book becomes a shared recorded history of previous 

learning, and provides the teacher and students with a means of informing 

discussion through linking back to previous mathematics sessions. The modelling 

book provides students with information in discussion that can be used later in 

building their mathematical understanding.   

In the initial session, all lessons were very teacher-directed and while the teachers 

asked the students to share ideas, there was little sign of genuine discussion. 

When the students were asked to pair-share their thoughts, they described steps 

taken, with little evidence of conversation and no justification of solutions. As 

discussed in Chapter 2, this aligns to Cobb and Bauersfeld’s (1995) notion of a 

univocal discussion, where one student explains his solution to a partner who 

attempts to make sense of the explanation and accepts his answer without 

interaction or question.  

As the final lessons unfolded, there was a particularly notable change in Andy’s 

approach to his lesson (Section 5.2.1: A.3). It was less structured (than the initial 

lesson) and he recognised the value of explaining and justifying ideas as a 

powerful strategy for supporting student learning, resulting in his students 

attempting to discuss and argue amongst themselves. Explanation and justification 

of ideas is advantageous to student learning and understanding, as when students 

explain an answer they build a stronger mathematical argument or find a new way 

of looking at the problem (Boaler, 2008; Fraivillig et al., 1999; Whitenack & 

Yackel, 2002). The importance of students’ problem-solving together, justifying 

their methods of solution, and feeling comfortable about disagreeing with a peer’s 

ideas, is a crucial part of the learning process (Hunter, 2009, 2010, 2012). Case 

studies have shown that the multivocal approach (Cobb & Bauersfeld, 1995) 

results in more productive interactions, whilst at the same challenging the 

mathematical learning of those involved. 

Cognitive Demands of Task (A.4) 

In an effort to reduce some of the cognitive demands of the tasks associated with 

understanding multiplication, the teachers kept initial problems relatively simple 
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for the students’ year levels. In the initial lesson, all teachers focussed on 

understanding the multiplication symbol (Section 5.2.1: A.4), and the meaning of 

the multiplier and the multiplicand (Davis, 2008). Anna, Andy, and Beth, 

consolidated understanding when they encouraged their students to manipulate 

materials to form arrays. Bob modelled multiplication representations on a 

Slavonic abacus, but gave few opportunities for the students to construct arrays 

for themselves.  

Anna’s students should have been able to use a range of strategies for 

multiplication and division with whole numbers, as this is an expectation as 

students transition from AA to AM on the Number Framework (Ministry of 

Education, 2008f, p. 52). However, Anna’s examples did not include problems 

where both factors were double-digit numbers, an expectation at this level. The 

reluctance to nudge numbers up in magnitude to create more challenging 

problems, and encourage the students to attempt more difficult tasks, meant they 

may have had less opportunity to gain insight, reason, and understanding of the 

important principles of solving multiplication problems (Ma, 2010).  

The notion of increasing complexity of problems is supported by the strategy 

teaching model used by the teachers. Progression from using materials, to imaging, 

to using number properties, is promoted by increasing the complexity or size of 

numbers involved, thus making reliance on representations with materials 

cumbersome and inefficient (Ministry of Education, 2008b; Wright, 2014). The 

reluctance of the teachers to support the students through the challenging process 

of developing further understanding, contrasts with Japanese and Chinese 

classrooms, where teachers want their students to struggle with problems (Ma, 

2010). Students need challenging work that results in mistakes (Boaler 2008, 2013; 

Ma, 2010) and the mistakes should be valued for the opportunities they provide 

for learning (Boaler, 2013). When students successfully unpack problems that 

they initially find difficult, it consolidates their understanding of concepts (Boaler 

2008).  

Appropriate and Detailed Representation of Concepts (A.5) and Knowledge of 

Resources (A.6) 

All teachers represented concepts and showed their knowledge of resources 

through the use of manipulatives, including Unifix cubes, animal strips, the 
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Slavonic abacus, fly-flip cards, the number line, and a large hundreds board. 

While there were differences in how the teachers utilised materials in the initial 

lesson (e.g., Bob held an abacus, Beth’s students used cubes), by the final lesson 

the manipulatives had become important resources for the students to construct 

representations of their ideas, alongside discussion about their problem solving. 

When teachers utilise a conceptual and dialogical approach to mathematics 

teaching, their choice of equipment is framed by the discussion of mathematical 

ideas they wish to foster among students (Higgins, 2005c).   

Word problems, were also used when representing concepts. While, Anna and 

Bob (in the initial lesson) seldom utilised word problems, Andy and Beth 

regularly used them to demonstrate the term ‘groups of’ in relation to 

multiplication. Beth’s students had been identified as low-achieving and she 

regularly explained unfamiliar concepts by comparing them to familiar objects 

and experiences. When teachers create scenarios and word pictures that appeal to 

their students, conceptual understanding is acquired by aligning mathematics to 

their real-life world (Anderson-Pence et al., 2014; Carpenter et al., 2015; Ma, 

2010; Miheso-O’Connor, 2011; Mulligan & Mitchelmore, 1997; Schwartz, 2008). 

Metaphors, analogies, and models are important components of effective 

explanations, and the ability to transform new mathematics ideas through 

explanations is a necessity for teachers, if students are to understand them 

(Miheso-O’Connor, 2011).  

Beth was observed using multiplication and division alongside each other. It is 

important that students see the relationship between multiplication and division 

and the structure of the two problem types (Anghileri, 1999; Clark & Kamii, 1996) 

and to show the connection. Beth used a word problem to dictate the model 

created (for understanding), by turning the multiplication expressions of 3 × 5 and 

5 × 3 into division:  

You’ve got a total of 15 biscuits in the cupboard. This family over here has 5 

children okay. How many biscuits are they getting each? … Over here you have a 

total of 15 and you’re dividing it [the biscuits] up for 3 people. Are these people 

[points to a circle drawn in modelling book] getting the same as these people? 

One of the major conceptual difficulties students have in working with 

multiplication structures is appreciating that groups of items are composite units, 

while also understanding that a group contains a given number of items (Clark & 
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Kamii, 1996). While the students in all classes struggled with the idea of 

composite units alongside multiple representations, Beth was the only teacher 

who attempted to unpack this.  

Student Thinking (A.7) and Student Misconceptions (A.8) 

The two categories of Student Thinking and Student Misconceptions are 

discussed simultaneously here, as when the data was analysed and compared, 

some interesting anomalies were revealed. In the introductory lesson, the 

frequency of occurrences (Table 5.3) might suggest that Bob capitalised to the 

greatest extent on the students’ thinking (A.7 = 10), while at the same time his 

students had fewer misconceptions (A.8 = 2). This contrasted with Beth, whose 

students had the greatest number of misconceptions (11), and her recognition of 

misconceptions outnumbered the number of times she utilised students’ thinking 

(8). However, the frequency data in these two sections must be combined with 

classroom observations in order to gain an accurate interpretation of the data in 

relation to the classroom teaching, as the number of times the teachers responded 

to the students’ thinking and misconceptions was directly related to the manner in 

which the lessons were conducted.  

Bob’s initial lesson was a very teacher-directed, structured lesson, following a 

back and forth conversation between himself and one student at a time, suggesting 

the IRE model (Flores, 2010), which meant he was in a position to respond 

immediately to a student’s ideas. Similarly, Beth’s lesson began with back-and-

forth conversation between the students and herself, which was where she 

addressed their thinking and many misconceptions. However, as the lesson 

progressed Beth became less directly involved and allowed the students to solve 

problems, manipulate materials, and discuss ideas amongst themselves. During 

this time, while student misconceptions occurred Beth, was not in a position to 

utilise students’ thinking to the same degree, as the students now steered the 

thinking and reasoning process themselves. However, when students participate in 

productive discussions, they listen to and made sense of each other’s solution 

methods (Hunter, 2009, 2010; Yackel, 2001). By allowing the students to scaffold 

with each other, Beth was also advancing their thinking, utilising what Fraivillig 

et al. (1999) referred to as ‘supporting techniques’. Beth assisted the students in 
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clarifying their solution methods and often gave them other similar problems, to 

consolidate their understanding.  

In the initial multiplication lesson, Anna had similar frequencies for student 

thinking (A.7 = 6), and student misconceptions (A.8 = 5), while Andy had the 

lowest frequencies for both categories (4 & 2 respectively) (Table 5.3). Andy 

regularly asked the students questions but, before they had time to respond, he 

would either ask another question, or answer it himself (Section 5.2.1: A.8). 

Consequently, the students had little time to show any misunderstandings or 

misconceptions, as they seldom had time to contribute their own ideas to the 

discussion. The lack of wait time displayed by Andy is consistent with the 

research of Black et al. (2004), who found that after asking a question, many 

teachers wait less than one second and if no answer is forthcoming, either ask 

another question or answer the question themselves. Like students in Black et al.’s 

study, students in Andy’s class ultimately avoided answering a given question and 

instead waited, knowing that he would eventually answer it for them. Thus, they 

appeared unresponsive to questions asked of them. This strategy was upheld in 

Bibby’s research (2002), who found that many students believed that the main 

characteristics of school mathematics was that it should be quick, efficient, rule-

based, and full of right answers. Students upheld the notion that school 

mathematics was full of questions, where the person asking the question (the 

teacher) already knew the answer and therefore the opinions of others did not 

really matter (Bibby, 2002; Black et al., 2004).  

Nevertheless, Andy showed an increase in the frequency of times that student 

thinking was utilised from the initial multiplication lesson to the final lesson 

(Table 5.3), which aligned to the changes made in his teaching style. Andy’s final 

lesson was less teacher-centred (than the first lesson), allowing the students more 

time to respond to questions and converse among themselves. He capitalised on 

the students’ responses and misconceptions acknowledged by giving responses 

such as: “now let’s see if you are right? Are they (the answers) different or the 

same? (Andy pointed to others in the group)”. These questions stimulated 

mathematical thinking (Way, 2008) and allowed flexibility among the students to 

recognise the difference between their answer and those of others, without a 

feeling of failure because their solution was different (Hunter, 2005, 2009). It also 
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provided opportunity for ‘friendly disagreement’ among group members, which is 

an important component of discussion, and takes time to develop and implement 

in a positive and comfortable manner (Hunter, 2009).  

During post-lesson conversations, Bob commented that his own mathematics 

ability was strong as he was able to solve problems accurately (generally using an 

algorithm). However, while Bob was able to calculate answers to problems 

accurately (his questionnaire supported this), at times he caused confusion among 

the students which may have impacted on their learning. As explored in Chapter 2, 

knowing mathematics and knowing mathematics for teaching are not the same 

(Ball, 1991; Ball et al., 2005; Ma, 2010; Schoenfeld, 2013; Shulman, 1986, 1987, 

2010). Ball et al., argued that in teaching, there is more “to knowing the subject 

than meets the eye” (p. 20) and that it requires “a kind of depth and detail that 

goes well beyond that which is needed to carry out the algorithm” (p. 22). Bob’s 

reliance on procedural knowledge meant there were times when conceptual 

understanding was not explored, resulting in student misconceptions.   

8.2.2 Content Knowledge in a Pedagogical Context (B) 

 Deconstructing Content to Key Components (B.1) 

The deconstructing content to key components category was the most frequently 

observed in use within Section B, identified 50 times (including Anna) in the 

initial lessons (Table 5.3). Deconstructing content is evident when the teacher 

identifies critical mathematical components within a concept that are fundamental 

for understanding and applying that concept (Figure 3.1). All introductory lessons 

began with a focus on understanding the difference in representation when an 

array model of multiplication is rotated. With examples such as 5 × 3 being 

understood as 5 groups of 3, the teachers unpacked the importance of the first 

number in the expression representing the number of groups (multiplier), and the 

second number representing the number of objects in each group (multiplicand). 

Anna and Beth used repeated addition to explain the difference between 

multiplication expressions (for example 3 × 5 and 5 × 3) This derived operation 

(Ma, 2010, p. 113) shows that multiplication is an operation derived from addition, 

and allows certain types of complicated addition problems to be solved in an 

easier way. 
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The repeated addition context the teachers modelled is frequently taught as an 

initial representation of multiplication. However, teachers could make greater 

distinction between repeated addition and multiplication in order to develop 

further understanding of various constructs (Carpenter et al., 2015; Confrey, 1994; 

Nunes & Bryant, 1996; Steffe, 1994). Steffe’s research concluded that when 

students were able to see a composite unit (in Beth’s case, a unit of 3) as a 

countable unit, and used their number sense to track the iterations, they formed an 

iterating concept of multiplication. Teaching multiplication should not be solely 

taught as repeated addition, or as the distribution of a composite unit across the 

elements of another composite unit, but instead alternative constructs for 

developing children’s multiplication understanding should be encouraged. 

Multiplication may also be a one-to-many correspondence between two sets, such 

as one child has two eyes (1-to-2), which may be replicated a number of times 

(Confrey, 1994; Nunes & Bryant, 1996). 

Beth investigated patterns formed when the products (of factors) were modelled, 

or recorded. She explored patterns with groups of three (Figure 5.11), as well as 

patterns created through repeated doubling when she unpacked the relationship 

between two times, four times, eight times, sixteen times, etc. Andy alluded to the 

importance of pattern in relation to the teaching of algebra, when some of the 

students colour coordinated Unifix cubes. However, he did not explicitly unpack 

pattern as it related to the construct of multiplication and it is important to 

recognise that different kinds of patterns are embedded within different branches 

of mathematics (Devlin, 2000). Beth’s exploration of patterns in multiplication 

may help to support the students’ awareness of pattern and its underlying structure 

(Mulligan & Mitchelmore, 2009, 2013; Papic et al., 2011). When students are 

encouraged to recognise and understand the underlying structure of one concept, 

they generally do so for other concepts, and learn to generalise in a range of 

situations (Mulligan & Mitchelmore, 2013).  

All teachers emphasised the importance of knowing certain basic facts and how 

they may be used to work out other unknown multiplication facts.  For example, 

Bob used the abacus to show how ×6 tables, can be derived from knowing the 

times ×5 tables, and Anna unpacked how place-value knowledge can help solve   

3 × 99, by first solving 3 × 100. Exploration of the ×5 and ×10 connections with 
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other factors, such as when the multiplicand is doubled or halved, also contributes 

to deeper understanding of the associative property (grouping) of multiplication 

(Wright, 2014). There are many ways in which the various structures of concepts, 

and elements of mathematics are organised and related to each other, including 

the connection between repeated addition and multiplication (Ball et al., 2008; 

Mulligan & Mitchelmore, 2013). 

Andy’s final lesson incorporated multiplication with geometry and focussed on 

finding the area of shapes. One group of students constructed a rectangular array 

model, and found the number of small square units that fitted into the allotted 

rectangular area. Some students initially one-to-one counted or skip-counted the 

number of small squares covering their paper (Figure 4.16) and Andy suggested 

counting the number of squares in each row, the number of rows, and then 

multiplying them. This highlighted the significance of the one-to-many 

correspondence (Confrey, 1994; Nunes & Bryant, 1996), along with the 

relationship between the array model in multiplication and area in geometry.  

Mathematical Structure and Connections (B.2) 

In the initial lesson, focus on mathematical structure and connections was 

minimal for all four teachers (0 to 2). By the final lesson, Andy made five 

connections (Table 5.3). As well as making links between arrays and area, Andy 

linked number and algebra. He identified rules and formulae as examples of the 

connection between understanding number and applying it to rules in geometry, 

which leads to algebraic expressions. For example, a triangle is half of a rectangle 

so the formula for finding the area of the triangle is connected to the rule for 

finding the area of a rectangle. He explained to the students that the rules (e.g., for 

finding the area of triangles and rectangles) were algebraic expressions, because 

the rule works for all triangles and all rectangles.  

Bob and Beth, used the Slavonic abacus (each row of beads was in two groups of 

five contrasting colours) to encourage students to see the structure and 

connections between groups of five and groups of ten. The groups of 5 and 10 

relationship, was later extended to other factor relationships where the 

multiplicand could be doubled or halved (e.g., the relationship between ×4 and ×8) 

(Section 5.2.2: B. 2). This led to the doubling and halving strategy, where the 

students were shown that 4 × 18 could be solved by multiplying 8 × 9 by drawing 
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arrows between the two expressions recorded on the whiteboard. Both Beth and 

Bob became confused in their explanation of doubling the multiplier and halving 

the multiplicand, when they attempted to demonstrate this idea with the abacus, so 

placed the equipment aside, and moved on to something else. Manipulatives are 

generally used in mathematics lessons with the claim that they extend students’ 

learning of mathematical concepts, and operations, by making them more 

comprehensible (Burns, 1998; Ma, 2010; Nührenbörger & Steinbring, 2008; Ross, 

1989; Schoenfeld, 2011; Swan & Marshall, 2010; Wright, 2014). However, this 

was not the case when it came to the doubling and halving strategy in Beth’s and 

Bob’s lessons. When manipulatives are utilised to represent the mathematical 

concepts underlying the procedure, and connections made between the two – the 

manipulative and the mathematical idea – mathematical understanding should be 

greater (Carbonneau et al., 2013; Clements & McMillen, 1996; Fennell & Rowan, 

2001; Ma, 2010; Pape & Tchoshanov, 2001; Zevenbergen et al., 2004). However, 

teachers must model the use of manipulatives accurately or students will not make 

the connections between them (the manipulatives) and the mathematical concept 

being explored (Carbonneau et al., 2013).  

Methods of Solution (B.3) and Procedural Knowledge (B.4) 

Analysis of the lessons indicated that there were times when all teachers were 

procedural in their approach to teaching (Table 5.3: B.4 range 1 to 4; also B.2 

above). Bob introduced doubling and halving procedurally (B.2 above) and when 

the notion of thirding and trebling arose, he recorded 3 × 27 on the whiteboard. 

He said, “What you do to one side, you do the opposite to the other. If you times 

that by 3 (pointed to the number 3), you divide that by 3 (pointed to 27). Okay.” 

There was no explanation about why thirding and trebling can be a strategy 

applied to solve multiplication problems and no modelling of the concept with 

equipment.  

Andy’s final lesson focussed on formulae for the area of rectangles, triangles, and 

irregular shapes. However, understanding the structure of the array was not 

embedded as knowledge for Andy’s students, and this was reflected in the manner 

in which they solved area problems in class and in their final assessment results. It 

was a major jump for the students to move from counting rows and columns, to 

conceptual understanding of a formula for finding area (Clark and Kamii, 1996). 



 

223 

 

The students needed to spend time consolidating understanding of the formula for 

the area of a rectangle, by understanding that a multiplication array consists of 

finding the total amount in the structure of rows and columns of squares. 

Focussing on the structure of multiplication, rather than memorizing individual 

facts by rote makes the transfer of knowledge more likely, and is necessary for the 

students to understand area (Baroody et al., 2009; Clark and Kamii, 1996).  

In the final lesson, Beth encouraged the students to use knowledge of doubles to 

find the answer to 16 × 5. Beth explained this procedurally, by firstly finding       

2 × 5, then 4 × 5, then 8 × 5, and finally 16 × 5. The students observed the 

procedure and later in the lesson when use of doubles arose again, they could not 

explain what to do. The students understood that 2 groups of 5 might be doubled 

to 4 groups of 5, but struggled to see how this procedure might be extended 

further to 4 groups doubled to 8 groups, then 8 groups doubled to 16 groups. The 

use of manipulatives enables students to see for themselves what a procedural 

explanation cannot always show (Swan & Marshall, 2010; Thompson, 1994; Van 

Garderen, 2006) and had Beth allowed students to manipulate materials as she 

demonstrated the repeated doubling procedure, they may have been more likely to 

retain this strategy for further use. 

All of the teachers acknowledged during follow-up conversations, that they had 

learned mathematics procedurally, often revert to their known methods during 

teaching, and have moments when they struggle to explain concepts conceptually. 

Once a teacher becomes fluent and automatic in the use of elementary 

mathematics concepts and procedures, it may make it difficult for them to teach 

those conceptually to students (Ball et al., 2001; Schoenfeld, 2011, 2013; 

Schwartz, 1996). With automaticity, it is possible to lose recollection of how 

fundamental and basic mathematics understandings are constructed. Mathematical 

procedures that are automatic for teachers are far from obvious for students, and 

there needs to be a distinction made between the procedural application of 

knowledge and conceptual understanding (Ball et al., 2001).  

Profound Understanding of Fundamental Mathematics (PUFM) (B.5) 

Profound Understanding of Fundamental Mathematics (PUFM) appeared to be 

one of the least evident of the framework categories observed in use by the 

teachers (excluding Anna, 6 in the first lesson and 2 in the final lesson), (Table 
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5.3). Observations indicated that the teachers taught mathematics as isolated or 

fragmented pieces, with limited application of what Ma (2010) referred to as 

subject matter knowledge that is deep, broad, and thorough. This was evident in 

their continued reference to the WALT during teaching, and reluctance to deviate 

from the planned lesson, which ultimately restricted opportunities to make 

connections between mathematical ideas and within concepts. Ma emphasised that 

a teacher must make a special effort within lessons to emphasise the fact that key 

ideas are connected. If the focus is on one idea at a time, it can create the illusion 

that mathematics consists of a number of separate ideas used individually. Depth 

and breadth depend on a thoroughness which glues knowledge of mathematics 

into a coherent whole (Ma, 2010). In order for teachers to display profound 

understanding of fundamental mathematics (PUFM) they needed to exhibit deep 

and thorough conceptual understanding of identified aspects of mathematics 

(Chick et al., 2006). 

One area of PUFM unpacked by the teachers was representation of the 

commutative property within the context of multiplication (Section 5.2.2: B.5). 

The teachers challenged the students to justify why understanding the difference 

in the rotated representations of expressions (e.g., 3 × 5 and 5 × 3) is important. 

The difficulty in understanding the difference in representation was identified in 

previous research (Baroody, 1999; Carpenter et al., 2015; Steffe, 1994; Suggate et 

al., 2010), which found that the commutative principle as it relates to 

multiplication, involves an awareness of the reorganization of the multiplicative 

construct. Because, representation of the two different forms of the equation is 

quite different (Carpenter et al., 2015; Steffe, 1994; Suggate et al., 2010), the 

students did not immediately understand that that the two numbers are 

interchangeable when solving problems (Carpenter et al., 2015). In this instance, 

it was the groups of construct, which the teachers emphasised to support this 

understanding.  

Beth discussed the connection between multiplication and division, as she 

unpacked the commutative property. Making connections within a topic, has been 

described as understanding the topic with depth by connecting it with more 

conceptually powerful ideas of the subject (Chick et al., 2006; Howley et al., 

Kazemi & Stipek, 2001; 2007; Ma, 2010; Stigler & Hiebert, 2004). Once the 
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students constructed their representations of the multiplication expression, Beth 

demonstrated the idea of the multiplier and the multiplicand using a scenario that 

involved division and the sharing of biscuits. This helped to clarify the difference 

between 3 × 5 and 5 × 3. However, the explanation was oral and had the 

representations been recorded alongside the expressions, she could have further 

explored the connections and shown the thoroughness Ma refers to within PUFM. 

The value of simultaneously teaching the relationship between multiplication and 

division as inverse operations, has been stressed by researchers who have 

advocated that understanding how these problem structures are connected, can 

help students generalise when they solve problems later (Ma, 2010; Mulligan, 

1998; Roche & Clarke, 2009; Roche et al., 2016; Young-Loveridge, 2011).  

There were many opportunities for the teachers to show an awareness of number 

sense (or feel for number) within the lessons. There were instances when the 

teachers avoided unanticipated student questions, accepted one strategy to solve a 

problem as opposed to encouraging students to seek alternative strategies, and 

often relied on rote learnt explanations of concepts (as opposed to unpacking 

understanding of key ideas). In these instances, a sound number sense would have 

seen the teachers recognise the importance of encouraging their students to 

understand and explain their solutions to problems. Teachers with number sense 

are aware of the conceptual structure of mathematics, and look at the numbers to 

see ways of solving an expression using a range of strategies and techniques to 

find an answer (Briand-Newman et al., 2012; Ma, 2010; Nunes & Bryant, 1996; 

van den Heuvel-Panhuizen, 2001d).  

8.2.3 Pedagogical Knowledge in a Content Context (C) 

The Pedagogical Knowledge in a Content Context (PKCC) section refers to the 

knowledge which has been drawn most directly from pedagogy (Chick et al., 

2006). It contains special reference to those broad principles and strategies of 

classroom management and organisation that appear to transcend subject matter 

(Shulman, 1987).  

Classroom techniques (C.1) 

This research ascertained that while the teachers attempted to use particular 

techniques in the classroom, their desire often differed from actuality. For 

example, there was discrepancy between encouragement by the teachers for 
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discussion among the students, for them to share their thinking, to discuss, and 

justify their ideas, and evidence of the discussions. The students needed to 

develop a confidence in their ability to think and reason mathematically, and to 

explain and defend those reasons (Fraivillig et al., 1999; Hunter, 2009, 2012; 

Whitenack & Yackel, 2002). It is often in the explanation of a correct answer that 

a student gains a deeper understanding of a mathematical concept (Kazemi & 

Stipek, 2001). In mathematics classrooms, both explanation and justification have 

important roles as students develop arguments during the discussion process (Ball, 

1993; Goos, 2004; Forman & Ansell, 2002; Hunter, 2006, 2010; Lampert, 1990; 

Stein et al., 2008; Whitenack & Yackel, 2002; Wood et al., 2006; Yackel & Cobb, 

1996). The forthcoming expectation of challenge, and at times disagreement, from 

listening to other group members is what extends explanation of challenge, to 

justification (Hunter, 2006), and this did not occur within the observed lessons. 

The teachers frequently asked the students questions and then provided the 

answers, and at times the students asked questions that were not addressed. The 

teachers’ avoidance of questions, may have been partly due to uncertainty about 

how to progress the students (as shown on the written scenarios) and was one way 

to avoid being put in a situation where they were unable to provide confident 

answers. Similar responses to questions were identified in the research of Black 

and Wiliam (1998), who reported that teachers often lack the flexibility or 

confidence to deal with the unexpected and so they direct students towards giving 

the expected answer. Black and Wiliam suggested that when teachers manipulate 

the discussion this way, the students soon realise they do not need to work out 

their own answers and it often becomes a case of guessing what it is the teacher 

wants to hear. It would seem that guessing what was in the teacher’s head was 

particularly evident in Andy’s and Bob’s classes. 

Getting and maintaining student focus (C. 2) and Goals for learning (C. 3) 

All teachers gained the focus of students when contextualising word problems 

using the names of the students, and creating scenarios relevant to their everyday 

lives. The students were excited when Beth made the mathematics more 

meaningful to them and began a word problem along the lines of, “Let’s imagine 

Jane’s (a child in the class) family was …” Personalising problems by using the 

names of students in the class, was also emphasised in the research of Fraivillig et 
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al., (1999), who concluded that when teachers used the names of the students in 

their class, it helped to give the students a feeling that the mathematics was 

accessible, and that the classroom was participatory and their learning relevant. It 

recognised the importance of student at the heart of the learning. Other 

researchers have also emphasised the importance of relational understanding 

during mathematics lessons and advocated word problems as one of the most 

effective ways to help develop the conceptual understanding that is needed 

(Schoenfeld, 2011; Skemp, 2006).  

A technique often used by Andy to maintain focus was to surprise, or challenge 

the students with statements or questions. He made comments including, “So, 

what can you two do to try and solve this problem?”; “So what can you do to 

solve this conundrum?”; “If you don’t stop doing things you won’t learn.” As part 

of his challenge to the students, he sometimes deliberately gave incorrect answers 

to questions, or made statements like, “I could be wrong you know.” At times, he 

challenged them a little further: “Now these ones here, are a little bit trickier,” or 

“I’ve left this one in here as a special [one], and I wonder if you can work it out? 

It’s a brain teaser for you.” Andy’s recognition of the need to challenge students 

aligns to other researchers who have acknowledged the importance of using 

students’ thinking, and at the same time challenging their thinking (Black & 

Wiliam, 1998; Black et al., 2004; Smith & Stein, 2011). The importance of 

reasoning, and challenging oneself and each other, helps students to reason 

mathematically (Whitenack & Yackel, 2002). The students clarified their thoughts 

when the teachers challenged them to extend their thinking beyond an initial 

response, and justify and reason their answers. Students’ mathematical thinking 

further advanced in an environment where there was a level of respect between 

the teacher and the students (Fraivillig et al., 1999), and a superficially tough, no 

nonsense manner was combined with affection for the students, such as was the 

case in Andy’s class.  

Knowledge of assessment (C.4) 

Capitalizing on the information gained from the initial assessment, could have 

highlighted general patterns of students’ uncertainties by the teachers, in readiness 

for teaching. However, written diagnostic assessment tasks given to the students 

were not accessed (teacher choice), nor was reference made to assessment data 
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available from other sources, including PAT (New Zealand Council for 

Educational Research, 2006) and NumPA (Ministry of Education, 2008d). The 

teachers later indicated (during interviews) that the PAT and NumPA scores were 

generally used in a summative manner, were included in individual student 

profiles when reporting to parents, and used for reporting to the Ministry of 

Education. While data for summative purposes is recognized, the NZC states that, 

“the primary purpose of assessment is to improve students’ learning and teachers’ 

teaching, as both student and teacher respond to the information that it provides” 

(Ministry of Education, 2007, p. 39). More in-depth analysis of the assessment 

data available may have assisted the teachers in determining a wider range of 

appropriate learning experiences.  

Questioning Techniques  

Supporting type questions (C.5) were used to the greatest extent (excluding Anna: 

50 times in the initial lesson and 68 in final lesson), from the three different 

question types of supporting, eliciting, and extending, explored in this study 

(Table 5.3). Supporting questions were generally lower-order, back-and-forth or 

one-on-one questions, and did not encourage in-depth discussion and 

argumentation among the students. The high frequency, with which supporting 

questions were used in this research, concurred with other researchers’ findings, 

which identified that supportive-type questions are the most prevalent type used in 

classrooms and is a skill that most teachers feel comfortable with (Fraivillig et al., 

1999; Waring, 2009; Way, 2008). The structure of this classroom discussion 

reflects the “teacher initiation, student response, teacher evaluation” (IRE or IRF) 

model (Cazden, 2001; Waring, 2009). This included what Cazden referred to as 

revoicing, which is frequently used as part of the IRE pattern of discussion to 

govern the conversation that followed.   

Elicitation of students’ thinking (C.6) is an important part of the learning process 

and questioning based around eliciting ideas was found to be the second most 

commonly used by teachers in this study (a total of 27 times in the initial lesson 

and 26 in the final lesson, Anna excluded). Ascertaining what students know, and 

how they think about a problem, is critical to further their understanding of that 

mathematical concept. In the initial lesson, Bob appeared to elicit ideas to the 

greatest extent, within his structured lesson (18, compared to 8, 14, and 1 of the 
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other teachers). However, the type of elicitation he used was restricted to 

questions that allowed the students to explain their thinking (generally using the 

Slavonic abacus which Bob was holding), or share their solution methods with 

others. Fraivillig et al.’s (1999) research also identified the eliciting questions 

evidenced in this study of probing students, promoting collaborative problem-

solving and using students’ names, as the second most commonly used by 

teachers.  

This study also showed a direct relationship between the eliciting type questions 

used and the manner in which each teacher involved a number of students in 

explanations within the lesson. This concurred with the research of Fraivillig et al., 

who concluded that by eliciting students’ responses, teachers orchestrated learning 

opportunities for all students, while assessing individual children’s thinking. 

By the final lesson, the teachers extended the thinking of the students (C. 7) by 

using questions that encouraged individual students to go beyond their initial 

solution methods. At one stage, Andy said to a student, “Can you explain your 

theory to the rest of the group?”  At times, Andy accepted a student’s response to 

an answer, then to extend the thinking of the group asked others to explain 

mathematically the reason why the given answer was correct, or give an alternate 

solution. An example, was when he asked, “What do you think this shape would 

be? Talk to your neighbour. Can you find different ways of working the answer 

out?” The approach Andy used of questioning all students, to consider and discuss 

a possible range of methods for problem-solving, is consistent with the findings of 

Fraivillig et al. (1999), which concluded that extending students’ thinking requires 

mathematical reflection and challenges all students to try difficult problems and 

arrive at different solution methods. The practice of extending a student’s thinking 

and reasoning requires a teacher to understand the capability of each student, yet 

be realistic and hopeful of each student’s potential.   

The total frequency of usage of the different question types explored in this study 

(138 supporting, 67 eliciting, and 20 extending), is consistent with the research of 

Fraivillig et al., (1999) who found that teachers were very supportive about 

students’ thoughts, elicited ideas to a limited degree, but when it came to 

extending the students’ thinking, this was seldom evident. The teachers required 

more support themselves in the art of extending the thinking of their students, 
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which embraces a shift away from a focus on students acquiring proficiency in 

merely regurgitating their existing knowledge, towards the idea that students 

should be supported to construct their own mathematical ideas. This is 

accomplished, to some extent, by anticipating the responses of students and 

preparing in advance suitable questions, in readiness to extend their mathematical 

thinking and understanding (Smith & Stein, 2011).  

8.3 Student Learning in the Multiplicative Domain 

This section of the chapter discusses part of research Question 2, concerning “the 

relationship between teachers’ professional knowledge and student learning”. 

Pre-unit assessment tasks were designed to ascertain the students’ current 

mathematics problem-solving skills, alongside their understanding of the 

processes involved, while similar tasks were repeated at the end of the unit, as an 

indication of the students’ learning. Students’ understanding of the mathematics 

involved, through justification of their answers, was deemed as important as the 

answer itself.  

Students participating in the research included Beth’s and Bob’s Years 5 and 6 

classes, Andy’s Year 6 and 7 students, and Anna’s students who were Years 7 and 

8. For this reason the assessment tasks were all within the expected capability of 

students working at New Zealand Curriculum Levels 2 and 3 (Ministry of 

Education, 2007, 2009a), or Stages 5 and 6 of the Number Framework (Ministry 

of Education, 2008a).  

8.3.1 Assessment Tasks and Student Learning in the 

Multiplicative Domain 

The mathematics inherent in Task 1 (understanding multiplication as repeated 

addition: 4 + 4 + 4 + 4 + 4 + 4 = 24. How would you write this as a multiplication 

fact?), would be taught when transitioning from AC to EA and aligns to New 

Zealand Curriculum (early) Level 2 (Ministry of Education, 2007) (Section 7.1.1: 

Task 1). As these students were Years 5 to 8, it is suggested that all students 

should have been able to complete this task correctly. However, the small number 

of students, who initially got this task correct (33%), showed that a clear majority 

did not understand the concept of multiplication as iterations of a unit. Awareness 

of multiplication as iteration of a unit, has been stressed as an important 
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component of students’ understanding of the basic structure of multiplication, as it 

forms the foundation of applying simple multiplicative strategies to combine (or 

partition) whole numbers (Mulligan & Mitchelmore, 1997, 2009, 2013; Sophian, 

2007).  

On the final assessment, there was a decline in the number of students who solved 

Task 1 correctly at School A, from 36% to 27%, while at School B, there was an 

increase from 30% to 65%. These percentages appeared to be related to the 

amount of emphasis that the teachers placed on understanding the multiplication 

symbol as presenting equal groups of. Each of the four teachers began the lessons 

by discussing the commutative property and the fact that both 3 × 4 and   4 × 3 

gave an answer of 12, while the representation of each expression was different 

(Section 5.2). While acknowledging that both equations equalled 12, the teachers 

emphasised the meaning of the multiplier and multiplicand in each written 

expression and highlighted the notable difference between the two, when 

constructed as models. At this time, Beth and Bob explicitly mentioned repeated 

addition of equal groups (Section 5.2.2: B.1) as the teaching of repeated addition 

and skip counting consolidates the concept of equal groups in multiplication 

(Davis, 2008; Mulligan, 1998; Mulligan & Mitchelmore, 1997). Skip counting 

develops concepts of multiplication around the notion of a ‘composite’ unit and is 

often seen as a fundamental principle of understanding multiplication through 

equal grouping (Davis, 2008; Mulligan, 1998; Mulligan & Mitchelmore, 1997; 

Sophian, 2007). While there are different problem structures (for example 

multiplicative comparison, array, Cartesian product) and contexts for teaching 

multiplication, understanding the structure of the groups of idea, such as when 

Andy and Anna referred to 3 groups of 4, and 4 groups of 3, is recognised as the 

basis of all other structures (Davis, 2008; Hansen, 2005; Mulligan & Mitchelmore, 

1997, 2009). 

Task 2 (understanding of the multiplication symbol: Draw a picture of what 3 × 5 

would look like), was connected to the multiplication understanding implicit in 

Task 1. On the initial assessment, less than 20% of the students at either school 

correctly sketched a representation of 3 × 5, although this increased slightly on the 

final assessment (School A: 17% to 21%, and School B: from 16% to 26%) 

(Tables 7.1 & 7.2). Results suggested that the students had little understanding of 
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the meaning of the expression “a × b” as interpreted in New Zealand schools as “a 

groups of b” (Ministry of Education, 2008f, p. 12) and closer consideration of the 

assessment results indicated that this was exemplified in their sketches of the 

representation. While it is acknowledged that an array structure may be 

represented either way (Carpenter et al., 2015), it appeared that the majority of the 

students had not recognised the connections between the problems they solved, 

the models they created in class, and were unfamiliar with presenting their ideas 

diagrammatically. Past research has also revealed that when students are initially 

given the opportunity to represent their models and/or their ideas on paper, they 

often struggle to do so (Anderson-Pence et al., 2014; Ma, 2010; 2010; Suh, 2007; 

Thompson, 1994; van Dijk, van Oers, & Terwel, 2003). Drawing of mathematical 

representations was seldom observed in any of the classrooms, and yet the 

importance of sketching has been emphasised as a means of consolidating 

students’ understanding of a concept (Anderson-Pence et al., 2014; Ma, 2010; 

Mulligan & Mitchelmore, 1997; Suh, 2007; Thompson, 1994; Young-Loveridge 

& Mills, 2009a). As has been suggested elsewhere, when problem solving a 

diagram is a useful tool as it can serve to represent the structure of the problem, as 

well as allow students to demonstrate abstract problems, which they may find 

difficult using only words and symbols (Mulligan & Mitchelmore, 1997; 

Nührenbörger & Steinbring, 2008; Pantziara, Gagatsis, & Ella, 2009; Suh, 2007; 

Thompson, 1994).                    

Few students understood the difference between partitive and quotitive division 

on either the initial or the final assessment (Tables 7.1 & 7.2)). When asked to 

sketch a partitive division problem (Section 7.1.1: Task 3), 11% of the students 

were able to demonstrate the equal sharing idea correctly on the initial assessment, 

with 10% correct on the final assessment (Section 7.1.2: Task 3). When asked to 

draw a representation of a given quotitive division word problem, thus 

demonstrating the notion of equal grouping, the total number of correct responses 

lessened to 4% on the initial assessment and 6% on the final assessment (Tables 

7.1 & 7.2., Task 4). In relation to the teaching of the different division types, the 

teachers admitted that the equal sharing context continues to dominate their 

teaching, which is consistent with the research of Roche and Clark (2009) and 

Roche et al., (2016). The teachers’ lack of awareness of representational 
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difference between the two division types, resulted in quotitive division seldom 

being taught, and ultimately impacted on students’ learning and understanding of 

the structure of division. As Mulligan and Mitchelmore (1997) have suggested, it 

would seem that more attention needed to be given by the teachers during lessons 

to the presentation of word problems, to strengthen understanding of the division 

types. Given that the word problem in Task 4, informed the students how many 

(biscuits) were required in each group (20 biscuits to put into packets with 3 

biscuits in each packet), it seems strange that more students did not give a correct 

response. 

On the initial assessment 25% of the students were correct on Tasks 5 and 6 (draw 

a diagram to show representation of 2 × 5 and another to show 5 × 2), an 

indication of their understanding of the commutative property related to 

multiplication (Table 7.1). Understanding the number of items in a group (size of 

the group) and the number of iterations (number of groups), is a key idea that 

needs to be understood in the context of multiplication (Anghileri, 2006; Baek, 

2006; Clark & Kamii, 1996; Mulligan & Mitchelmore, 2009). The results on 

Tasks 5 and 6 suggested that the majority of the students had not recognised that 

there was a difference in representation between the two expressions. In the 

observed teaching sessions, the students often modelled repetition of groups and 

found the total number of items correctly, by skip counting or multiplication. 

However, the number of students correct at School B on the final assessment 

Tasks 5 and 6 lessened from 24% to 17%, suggesting that connections were not 

made between the models constructed in class and the assessment tasks given. 

Previous studies have also shown that there is a difficulty in students’ 

understanding of commutativity as it relates to multiplication, in that the 

representation of the two different forms of the equation is quite different, while 

the product remains the same (Carpenter et al., 2015; Steffe, 1994; Suggate et al., 

2010).  

Task 7 (using known facts to derive unknown facts), built on a key idea taught at 

Stage 5 of the Number Framework (Ministry of Education, 2008f, p. 32), that 

when certain basic facts are known (e.g., 2× [doubles], ×2, ×5, ×10), they can be 

used to work out other basic facts. In the initial assessment (Section 7.1.1: Task 7), 

the students were asked to utilise a diagram representing 6 × 5, to determine the 
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answer to 6 × 4. At School A, 38% of the students made this connection, while at 

School B, 36% of Bob’s students and 55% of Beth’s students were able to do so. 

This might suggest that while Beth’s lower-ability students could not instantly 

recall all basic facts, they were learning to think mathematically (Confrey, et al., 

2009) by making use of known facts to solve problems. Learning to think 

mathematically has been identified as an important element in early learning 

experiences, which can later be built on and extended when consolidating 

mathematical thinking and reasoning (Anghileri, 2006; Confrey et al., 2009; 

Lampert, 1990; Siemon et al., 2005). 

Understanding a diagram of an array of smiley faces (Task 8), was the only initial 

assessment task where more than half (53%) of the overall students were correct. 

The model given in the assessment was of a rectangular array and emphasised the 

understanding of groups of, which is used as a key representation of 

multiplication in New Zealand schools, including the terms rows and columns 

(Ministry of Education, 2008f, p. 15). It is acknowledged there are many contexts 

to be explored when teaching multiplication. However, the equal grouping idea 

portrayed in the array model in Task 8, is generally thought to precede other 

contexts (Carpenter et al., 2015; Ministry of Education, 2008f; Mulligan & 

Mitchelmore, 1997; Nunes & Bryant, 1996), and its usage has been stressed in 

prior research (Davis, 2008; Mulligan & Mitchelmore, 1997; Young-Loveridge & 

Mills, 2009a, 2009b).  

Task 9 on initial assessment (using a known fact [e.g., 4 × 7 = 28] to work out the 

unknown [e.g., 4 × 14]), was an extension of the idea presented on Task 7. This 

idea related to a key idea for students transitioning from EA (Stage 5) to AA 

(Stage 6) of the Number Framework of being able to “work out unknown 

multiplication facts from those already known” (Ministry of Education, 2008f,     

p. 24). In the initial assessment the students were required to show how if they 

knew 4 × 7 = 28, the factor 7 can be doubled to solve 4 × 14. While some students 

gave a correct answer to 4 × 14 using place-value partitioning, only a small 

number saw the connection between the two expressions and wrote that they 

doubled the 28, recognising that 4 × 14 was two groups of 4 × 7. Research has 

shown that instruction can be effective when it directly builds on what the student 

already knows, and when the strategy used connects with known knowledge it 
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becomes more meaningful to the student (Baroody et al., 2009). It would appear 

that half of the students used a known doubling strategy and built on their basic 

facts knowledge to solve an unknown equation, with a double-digit factor.   

Task 8 (I know that 3 × 10 = 30. How can I use this to work out      × 5 = 30?), on 

the final assessment, also entailed using known facts to find an unknown fact 

(Section 7.1.1: Task 9 on the initial assessment). The task given on the final 

assessment (Section 7.1.2: Task 8) posed much more difficulty than the 

corresponding Task 9 on the initial assessment. This may have been because the 

initial assessment task represented a result unknown problem structure, while the 

final task was a start unknown. This problem structure difficulty was also 

identified in the research of Carpenter et al., (2015), who found that students 

struggled to understand and solve problems where the start was unknown, as 

opposed to problems where to result was unknown.   

On Task 8 in the final assessment, the students were expected to understand the 

connection between the ×10 tables and the ×5 tables, and the doubling and 

halving strategy: because the multiplicand was halved, the multiplier should be 

doubled. However, the total number of students who solved this correctly was 

very few (7 from 93 students), (Table 7.2): one student in Andy’s class, five in 

Anna’s class, one in Bob’s, and no-one in Beth’s class. Andy, Beth, and Bob, had 

all mentioned in their final lesson that two groups of 5 equalled one group of 10, 

while Bob and Beth had modelled the relationship between ×5 and ×10 on the 

abacus with the students. The importance of the relationship between ×5 and ×10 

explored by the teachers in this instance was emphasised in the research of 

Young-Loveridge (2011). Encouraging students to generate new facts using what 

is known, such as the ×5 and ×10 relationship in this instance, also minimises the 

number of facts which need to be memorised (Baroody, 1985; Butterworth et al., 

2003; Young-Loveridge, 2011). The doubling and halving strategy discussed by 

the teachers, also exemplifies the connectedness of mathematics concepts outlined 

by Ma (2010). While these connections had been discussed and modelled in class, 

in all instances the teachers had demonstrated the concept to the students, rather 

than the students manipulating materials themselves. Beth and Bob had been 

muddled as they explained the double and halve strategy to the students, which 

might also have contributed to the difficulty their students had solving this task.  
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The initial assessment Task 10 (Task 9 on the final assessment), was a division 

problem with a remainder. “Interpreting division remainders in meaningful 

contexts” is part of the learning at the AA to AM stage (Ministry of Education, 

2008f, pp. 42, 60). If Anna’s Year 7 and 8 students were removed from the 21 

students who were correct (Table 7.1), only four students from the other three 

classes combined, identified remainders and explained what the leftovers meant 

relative to the divisor. A further three students were mathematically correct, 

providing an answer of 7 ½ or 7.5, although given the context of the problem 

being solved (30 apples put into 4 equal-sized bags) they were conceptually 

incorrect. What happens when there are leftovers, depends very much on the 

context of the problem. Other research has similarly found that while students 

might complete the calculation correctly, they were often unable to provide a 

solution that was consistent with the meaning of the problem (Roche et al., 2016; 

Silver et al., 1993; Treffers & Buys, 2001). The result of division can generally be 

tested against reality, and must be guided by reality (Treffers & Buys, 2001) and 

what to do when division doesn’t go, provides a special complication not found 

with multiplication. One of the most common errors students make on division 

assessment problems is to divide procedurally, not paying attention to the context 

when addressing what to do with remainders (Lamberg & Wiest, 2012; Ma, 2010; 

Roche & Clarke, 2009; Roche et al., 2016).  

8.4 Aligning Teaching Materials and Language 

During their observed lessons, the teachers relied on the Numeracy Development 

Project (NDP) supporting books (Ministry of Education, 2008a, 2008b, 2008d, 

2008e, 2008f, 2008g) and associated planning sheets (Ministry of Education, 

n.d.a), to implement the New Zealand Curriculum (NZC)  (Ministry of Education, 

2007). At the time of the classroom observations for this research, the 

Mathematics Standards (Ministry of Education, 2009, 2010, n.d.b.) were in their 

early period of implementation. To support teachers in understanding the 

requirements of The Standards, Curriculum Elaborations were later developed 

(Ministry of Education, n.d.c), although these were not available to the teachers at 

the time this research data was gathered. However, some of the difficulties 

mentioned earlier in this thesis that the teachers and students experienced, may 

have been attributed to two key factors involving: (i) the inconsistency of 
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expectations; and (ii) the language used, within and across the above teaching 

materials and documents. The expectations and language used are interdependent 

for teachers when teaching for understanding and some of the discrepancies found 

are outlined below. 

Teaching materials  

The recognised relationship between the New Zealand Curriculum Level, the 

Number Framework Stage, and the Class Level, was outlined in Table 3.3. 

However, when the associated teaching documents were cross-referenced the 

descriptors did not always align, causing some confusion in expectations and 

requirements associated with the teaching of multiplication and division. For 

example: Students at Years 5 and 6 are generally working from Level Three in 

NZC. As a result of a GloSS (or NumPA) assessment, the strategies used for 

solving problems suggest that the students should be working at Stage 6 on The 

Number Framework, and thus be taught lessons from the AA (Stage 6) to AM 

(Stage 7) planning sheet (Section 3.12.4). Both the planning sheets and NDP 

Book 6 (Ministry of Education, 2008f), are written as transitioning from one stage 

(e.g., Stage 6) to the next stage (e.g., Stage 7), (Section 3.12.4) and in some 

instances the expectations of the students in these lesson are not aligned to the 

associated curriculum level (e.g., Level Three) expectations. For example, the 

NZC (Ministry of Education, 2007) says that students should be able to, “use a 

range of additive and simple multiplicative strategies with whole numbers… 

know basic multiplication and division facts… record and interpret additive and 

simple multiplicative strategies, using words, diagrams, and symbols, with an 

understanding of equality” (Level Three chart). However, the AA to AM planning 

sheets move beyond simple multiplicative strategies and basic multiplication facts 

and includes using proportional adjustment to solve division problems, using 

place value units to solve multiplication and division problems (including written 

multiplication algorithms, , 34 × 26), and using divisibility rules for 2, 3, 4, 5, 6, 8, 

& 9. This means that while teachers are consolidating the learning and 

understanding of basic facts up to and including the ×10 tables, an expectation at 

NZC Level Three, if they plan from the aligned AA to AM planning sheets they 

are also teaching the students lessons involving double-digit times double-digit 

multiplication, and understanding divisibility rules of numbers such as 3 and 9. 



 

238 

 

Lessons associated with these key mathematics concepts are found in the NDP 

Book 6 (Ministry of Education, 2008f, p. 67 & p. 70) and the knowledge required 

to understand them is beyond students who are still learning to understanding and 

implement basic multiplication and division facts. 

Inconsistency of language  

The inconsistency in the language associated with the teaching of the times tables 

as written in many of the lessons, was one of the main difficulties shown by the 

teachers in their teaching practice and the students in their learning (Section 5.2.1: 

A.4, A.7, A.8; & Section 5.2.2: B.3). For example, one of the key lessons as 

students move from EA (Stage Five) to AA (Stage Six) is, “learning to work out 

[my] times six, seven and eight tables from my times five tables” (Ministry of 

Education, 2008f, p. 28). This was part of the lesson taught by Beth and Bob 

(Table 5.1) based on the twos, fives, and tens (Ministry of Education, 2008f,        

p. 21). The lesson on “times six, times seven, times eight tables”, is consistent 

with the standard New Zealand practice of times, as groups of (Ministry of 

Education, 2008f, pp. 12, 15). However, the language in the lesson on “twos, fives, 

and tens” (taken by Beth and Bob), refers to the five times tables (5 groups of), 

and then carries out times five (groups of 5) problems.  

Inconsistency with the language began with one of the first lessons in NDP Book 

6, “Three’s Company” (Ministry of Education, 2008f, p. 12), which has a learning 

intention of “I am learning to solve three times problems” and proceeds to get the 

students to make groups of three. The Threes Company learning intention, 

contrasts with the following lesson called “Animals Arrays” (Ministry of 

Education, 2008f, p. 15), which shows repeated addition such as 4 + 4 + 4 + 4 + 4 

as 5 × 4, or 5 sets of 4. Following the Animal Arrays is a lesson called, “Pirate 

Crews” (Ministry of Education, 2008f, p. 17). Within the diagnostic snapshot for 

Pirate Crews it notes, “Students who solve the problem by multiplication, e.g.,       

5 × 󠆛 = 20, by skip counting 5, 10, 15, 20, or by using repeated addition 5 + 5 + 5 

+ 5 = 20…” However this is not “5 × 󠆛 = 20,” but “ 󠆛 × 5 = 20,” and makes three 

consecutive lessons where the use of times tables is inconsistent. There are many 

instances of inconsistency in the use of times as groups of, and the associated 

recording of ×5 or 5× throughout Book 6, which meant that when the lessons were 

taught by the teachers in this research, as written in NDP Book 6, there was 
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inconsistency in the language used by the teachers and their students. This 

inconsistency might explain why the teachers and students confused the language 

in their lessons (Section 5.2.1: A.4, A7, A.8; and Section 5.2.2: B.3), which was 

then evident for many in their final assessment tasks (Section 7.1.2: Tasks 1, 2, 5, 

6, 7, & 8). 

The NDP Book 6 supports the teaching of two division types: quotitive and 

partitive. The explanation begins on page 4 (Ministry of Education, 2008f) where 

the two types of division are described, using one diagram and the context “24 

marbles and 4 bags.” The examples are: (1) “Kayla has 24 marbles. She shares 

them equally into 4 bags. How any marbles are in each bag?” and (2) “Kayla has 

24 marbles. She puts them into bags of 6 marbles. How many bags can she 

make?” Example 1, should be recorded as 24 ÷ 4 = 󠆛 and example 2, as              

24 ÷ 6 = 󠆛. However, the recording of the division equation alongside each of the 

given scenarios is not given, which can be confusing given that there is only one 

diagram in the book. It might have been more helpful for teachers, had two 

separate diagrams and two explanations been given in Book 6 for one equation          

(e.g., 24 ÷ 4 = 󠆛). This would support the Level Three elaborations, which note 

that   “56 ÷ 7 can mean fifty-six shared among seven, or how many sevens are in 

fifty-six,” (Ministry of Education, n.d.c), and later lessons in NDP Book 6 

(Ministry of Education, 2008f, pp. 17, 19, 36, 38).  

Division was not observed in teaching practice in this research, although the two 

division types were discussed with the teachers during learning conversation after 

their initial lesson, as division related to the commutative property understanding 

which had been observed in unpacking the times tables. Understanding division is 

an important part of teaching the multiplicative domain at Levels 2, 3, and 4, and 

during learning conversations after their second observed lesson, this was raised 

once again. The teachers all reported that they had included division in their units 

of work, but admitted it had mainly focussed in partitive division. The lack of 

clarity in the recording of an equation, alongside the writing of a word problem 

and drawing of a diagram, in the initial instance in Book 6, may have contributed 

to the teachers’ teaching and the students’ uncertainties in understanding the 

difference between partitive and quotitive division as evidenced in their final 

assessment tasks (Section 7.1.2: Tasks 3 & 4). 
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8.5 The Multiplicative Domain Summary 

8.5.1 Teachers’ Subject Matter Knowledge and Pedagogy 

In order to examine the professional knowledge of teachers, this chapter explored 

the teachers’ subject matter knowledge in relation to their pedagogical practice. 

The first part of each scenario asked the teachers to explain what they would do 

next with the student in each instance. In most instances, the teachers struggled to 

do this. The teachers often commented that they would teach the student the same 

way as the given example, and provided no further explanation or identification of 

the next steps to learning.  

Questions the teachers might ask each student to check for understanding, or 

identify of the progression of learning to examples of increased difficulty, were 

not forthcoming. In particular, Bob and Andy found it challenging to identify 

what actions they would take in future lessons with each student. The difficulty of 

knowing the next steps of learning parallels with the uncertainty shown by the 

teachers during their teaching practice, in terms of curriculum knowledge. The 

progressions on the Number Framework (Ministry of Education, 2008a) were not 

understood well, which reflected in the teachers’ knowledge of how to move 

students into the next phase of learning. Not knowing what questions to ask of the 

students, or what steps to take next, is consistent with research findings of Watson 

et al. (2008), who found that knowing what questions to ask of students, or what 

cognitive conflict to generate, was a difficulty for teachers. They found that 

teachers did not recognise an appropriate zone of proximal development in which 

to extend and challenge their students. This area of knowledge also falls within 

Ball et al.’s (2008) notion of horizon content knowledge, where teachers are able 

to identify how current understanding may be built on in future teaching. 

According to Ball et al., having knowledge of the mathematical horizon, allows 

connections to be made to later ideas.  

The second part of each scenario asked the teachers to give their answer to the 

problem and draw a diagram and explain how they solved it. The difficulty the 

teachers had drawing diagrams on the questionnaires was also evident in their 

classroom practice, where diagrams were seldom observed being used by the 

students or themselves. When teachers use drawn representations, there is a 
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noticeable change in their PCK and conceptual understanding (Way et al., 2013) 

along with students’ conceptual understanding (Flores, 2010; Gould 2005a; Way, 

et al., 2013). Similarly, when teachers use the concrete-representational-abstract 

(CRA) model, pictures and/or diagrams provide the intermediary step between the 

use of manipulatives and the use of numbers (the abstract phase) (Flores, 2010). 

The teachers reliance on procedural knowledge meant that drawing diagrams to 

explain thinking did not come naturally to them and therefore the benefits to the 

students of  drawn representations was not articulated.  

8.5.2 Teacher Practice in the Multiplicative Domain 

This chapter discussed the observed professional knowledge of teachers during 

the teaching of multiplication and the contribution this made to student learning. It 

concluded that teaching multiplication for understanding is not as simple as it may 

appear and brings with it many complexities to be addressed within classroom 

lessons. Current reforms in education have placed an emphasis on teaching 

conceptually prior to procedural methods, which requires strength in subject 

matter knowledge and pedagogical practice (Ball, 1992; Howley et al., 2007; Hull 

et al., 2011). As these teachers acknowledged, this is a shift in practice from the 

procedural manner in which they were taught and, as previous research has shown, 

takes time to implement.   

Detailed analysis of the observed multiplication lessons, was made against the 

modified framework of Chick et al. (Figure 3.1). Using this framework enabled 

the identification of commonalities and differences used by the teachers and their 

students, across many PCK categories. While the frequency of categories gave an 

indication of what occurred in each lesson, as data on their own they did not give 

the total representation of what occurred in practice. Observation of lessons 

backed up with repeated viewing of video-recordings and detailed analysis of 

transcripts, combined to show the importance of classroom observation as a 

means of gathering data about professional knowledge.  

Underutilisation by the teachers of the various types of available assessment data 

meant the existing knowledge of the students was not well known. This is a 

fundamental aspect of knowledge of the learners and was especially important at 

School B, where they cross-group classes for mathematics and the teachers saw 
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the students for a short time each day. The teachers appeared not to use on-the-

spot knowledge of the content, and progressions of learning in the curriculum and 

its associated expectations, to progress their students to Year level expectations. 

This limited use of such knowledge contributed towards links and connections 

within and between mathematical concepts seldom occurring, particularly when 

unplanned opportunities arose within a lesson.  

The teachers were aware of the importance for students of conceptual 

understanding prior to procedural computation and at some point all utilised 

manipulatives, to support the learning and understanding process. While all of the 

teachers recognised some of the students’ misunderstandings, there were times 

when these were either not recognised and therefore not corrected, or not 

unpacked sufficiently to ensure the students did not continue to have the 

misconception. Recognising the appropriate questioning type applicable to 

different situations is crucial for extending students’ mathematical thinking, and 

this research showed that teachers were effective in the supporting of their 

students by breaking down problems and asking questions requiring simple 

explanations. The teachers were less inclined to extend the mathematical 

understanding of the students by challenging responses, encouraging discussion, 

and helping them form generalisations.    

8.5.3 Student Learning in the Multiplicative Domain 

Comparison of results between initial and final assessment tasks suggested that 

there was little gain in the understanding of multiplication by the students as a 

consequence of the teaching that had taken place. While it is acknowledged that 

assessment data can be misleading because it is a snapshot of students’ learning at 

a particular point in time, the results of these assessment tasks is of concern. 

Task 8 (interpreting an array of smiley faces), was the only question on the initial 

assessment where more than half of the students were correct and was omitted 

from the final assessment. On the initial assessment, less than half of the students 

solved any of the remaining nine tasks correctly, which is an indication that the 

majority of the students in these classes were categorised as below the 

Mathematics Standard expected of students in Years 5 to 8 (Ministry of Education, 

2009). These data could have provided the teachers with suggestions for content 

in their teaching lessons.  
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Final assessment results suggest that overall, the students did not achieve as well 

as might have been expected relative to expected achievement levels, with all 

tasks showing less than half of the students correct (Table 4.2). Stage 6 on the 

Number Framework aligns to Level 3 in NZC (Years 5 & 6), while Stage 7 relates 

to Level 4 (Years 7 & 8), (Ministry of Education, 2009a, 2010). The tasks given 

in the assessment were based on the understanding expected at Stages 4 to 6 of the 

Number Framework, or Levels 2 and 3 in NZC, and the majority of students 

would be expected to be able to solve the problems correctly by the latter part of 

the year. The teachers had put a large amount of time and effort into preparation 

and delivery of their lessons and the number of correct responses was not 

indicative of the observed teaching and learning. The students did not always 

demonstrate understanding of key ideas expected for their class level according to 

national expectations.  

When these results were discussed with the teachers, they were surprised at what 

was found. Beth was aware that her students struggled with basic-fact retention. 

However, Anna, Andy, and Bob, were unaware of the large number of students 

who did not have basic multiplication understanding and were unable to answer 

the tasks correctly.  

8.5.4 Aligning Teaching Materials and Language 

There appears to be many inconsistencies across the materials available for use by 

the teachers in their classrooms, in terms of Curriculum Level expectations and 

language used. The teachers in this research were reliant on the NDP planning 

sheets and associated books, for guidance in implementing NZC. Since the 

collection of data for this research, the Curriculum Elaborations were introduced, 

which align closely to the planning sheets and NDP books and have clarified 

many of the uncertainties of the broad achievement objectives of NZC. However, 

inconsistency in the language used in the NDP books caused some confusion in 

teaching practice, and was evidenced in the students’ learning and associated 

assessment tasks.  

In the following chapter (Chapter Nine) the results related to the proportional 

domain are further analysed and discussed in relation to the research literature.  
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CHAPTER NINE 

DISCUSSION: THE PROPORTIONAL DOMAIN 

 

9.1 Teachers’ Subject Matter Knowledge and Pedagogy 

This chapter discusses results associated with the preceding chapters: Chapter 

Four (the espoused professional knowledge of the four case-study teachers); 

Chapter Six (observations of the teachers’ classroom practice); and Chapter Seven 

(evidence of student learning).   

9.1.1 Teachers’ Understanding of the Proportional Domain 

This section of the chapter discusses part of research Question 2, concerning “the 

teachers’ espoused professional knowledge”, with links made to the impact on 

“teaching practice and student learning.” 

The teachers identified the student in Scenario 4 (Section 4.2.3) on the 

questionnaire (Figure 4.6: a decimal fraction addition problem), as having 

difficulty with place-value understanding. There is an expectation that place value 

is understood with whole numbers up to one million, and decimals to two places, 

when working at Stage 6 on the Number Framework, or by the end of Year 6 

(Ministry of Education, 2007, 2008b). Understanding place-value requires an 

understanding of a part-whole concept. The basis of place-value numeration 

begins with understanding that “the quantities represented by the individual digits 

are determined by the position they hold in the whole numeral” (Ross, 1989,        

p. 47). The teachers recognised that providing students with this place-value 

knowledge allows for accurate computation of decimal fractions. Beth also 

suggested using a number line to show where the decimal numbers came in 

relation to other numbers. The use of the number line clearly shows the ordinality 

of the numbers (Bobis, 2007) and is encouraged as a tool for imagery and mental 

computation.  

As Anna’s students were Years 7 and 8, she placed a greater emphasis on 

decimals in her observed lesson and the importance of place-value understanding, 

when relating the fractional pieces to the whole unit. In responding to Scenario 4, 

Anna discussed the relationship between fractions, decimals, and place-value, 

which was identified by Steinle and Stacey (1998) as a difficulty for many 
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students. Anna carried this place-value relationship over into her observed lessons, 

by ensuring that when the students converted between fractions and decimals, 

they regarded the decimal as part of a whole through the use of deci-pipes. This 

meant the students were not confused between fraction and decimal conversions, 

like those of Steinle and Stacey’s study, which found many students viewed 0.4 as 

4

1 and concluded 0.4 is bigger than 0.5, because 
4

1  is bigger than 
5

1 .  Anna was 

aware of this misconception, which can lead students to further place-value 

misunderstanding, such as when converting between fractions and decimals and 

confusing 
100

83 for 0.083. 

All teachers solved addition of fractions with different but compatible 

denominators, correctly (Section 4.2.3: Figure 4.8, Scenario 5). They all 

recognised that the student (Pete) had added the numerators together and the 

denominators together, and that this misconception needed further exploration. 

However, Andy and Bob gave little information about what their next learning 

steps would be with the student who used this common computational error, 

which was also identified as a teacher difficulty in the research of Ward and 

Thomas (2007). Ward and Thomas, found that while the majority of teachers did 

not make the add across error (Smith, 2002) when adding fractions, less than 10% 

described clearly the key understanding that students need to acquire to add unlike 

fractions correctly. While Anna mentioned checking that the student understood 

that the denominators must be of equal-sized portions before adding them together, 

key ideas related to the teaching of equivalent fractions for conceptual 

understanding were not mentioned by any of the teachers. Other research has 

found that understanding equivalent fractions is cognitively demanding (Gould, 

2005b; Way et al., 2015; Wong, 2010; Wong & Evans, 2007) and teachers who 

understand how students develop this knowledge, will help them see the links 

between various representations (Wong & Evans, 2007). Anna’s knowledge 

carried over into her classroom practice as on the final assessment 77% of her 

students solved addition of compatible fractions correctly (Section 7.2.2: Task 2), 

while the combined total of students with correct answers in the other three 

classes was 14% (Table 7.4).  
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Beth mentioned manipulatives to show the meaning of the denominator, although 

she did not state the specifics of what manipulatives, or how they would be used. 

Beth’s emphasis on the use of manipulatives to assist with conceptual 

understanding is consistent with research, which has found that mathematics 

manipulatives have the potential to lead to an awareness and development of 

concepts and ideas (Ball, 1992; Gould, 2005b; Swan & Marshall, 2010). However, 

it is how a teacher uses manipulatives that is important: if students merely mimic 

the teacher’s directions or modelling, it may look as though they understand, but 

they could be just copying what they see (Ball 1992; Swan & Marshall, 2010). If 

the students do not understand what the mathematical learning is about, the 

manipulative does not assist in developing that concept. Beth’s use of 

manipulatives to support students’ understanding, possibly contributed to her 

students making substantial improvements on Task 1 (addition of unit fractions) 

from 10% correct in the initial assessment to 65% correct in the final assessment.  

All teachers solved the final scenario, multiplication of fractions (Section 4.2.3: 

Figure 4.10, Scenario 6) correctly. However, understanding that when multiplying 

two fractions, the product is about finding a piece of a piece (in this instance of a 

cake), was not mentioned in their responses. Although teaching multiplication of 

fractions was not observed in classroom practice in this study, it is accepted 

practice in New Zealand schools, that when multiplying fractions the 

multiplication symbol is interpreted as “of” (Ministry of Education, 2008f, p. 63), 

and would be expected teacher knowledge. Anna, Andy, and Bob, did not identify 

how they could use the student’s (Jo) current knowledge to extend her 

understanding of multiplication of fractions. Beth was the only teacher who 

recognised the complexity of the understanding behind multiplication of fractions 

and the confusion that is often made with division (Ma, 2010). Ma suggested that 

confusion arose because when you want to find a part of something you would 

expect to divide it into pieces, but when you want to find a portion of a unit with 

fractions, you use multiplication. For example, if you want to find 
3
2 of a 2 

kilogram bag of apples you multiply
3
2 by 2, (

3
2 × 2), resulting in 1



1
3
 kilograms.  
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9.2 Teacher Practice in the Proportional Domain  

This section of Chapter 9 discusses the research question, “What professional 

knowledge is evident when teaching mathematics for numeracy in the 

proportional domain?” It incorporates part of Question 2, “and how does it (the 

teachers professional knowledge) contribute to student learning?” 

This section presents a discussion of the findings of proportional teaching outlined 

in Chapter 6 and critiques these in relation to the relevant literature. The teaching 

practice analysed in this research was from a lesson mid-way through the unit on 

fractions. It was envisaged that during the unit on fractions, students would build 

on knowledge gained from the earlier unit on multiplication and division. 

Understanding fractions relies on certain multiplicative knowledge and 

connections need to constantly be made between the two domains (Ma, 2010; 

Pearn & Stephens, 2004). The fraction lesson was thus analysed with a focus on 

aspects of knowledge specific to the teaching of fractions, along with comparisons 

to the multiplication lesson, in order to ascertain similarities and differences in the 

categories of teacher knowledge used, between the multiplicative and proportional 

domains.  

9.2.1 Clearly PCK (A) 

The results presented within the Clearly PCK category exposed many similarities 

related to teacher knowledge in classroom practice, and the effect this had on 

students’ learning, within and between the multiplication (Table 5.3) and fraction 

(Table 6.3) lessons. 

Purpose of Content Knowledge (A.1) and Curriculum Knowledge (A.2) 

The teachers demonstrated similar gaps in understanding and knowledge of the 

curriculum, and the associated expectations of achievement by the students within 

the proportional domain, as that shown earlier in the multiplicative domain. The 

learning intention (WALT) of three of the observed fraction lessons (Table 6.1) 

were at Number Framework Stages pitched below the expected curriculum level 

for the year level of the classes and there was little emphasis on providing more 

difficult problems in an effort to raise the students’ levels of achievement. This 

was evident in Beth’s lesson, which was identified in the NDP material (Ministry 

of Education, 2008g, p. 16) as suitable for moving students from AC (Stage 4) to 
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EA (Stage 5) on the Number Framework (suitable for Year 2-3 students) 

(Ministry of Education, 2007, 2008a, 2010). While it is acknowledged that Beth’s 

class had been identified through school-wide assessment as below year level 

expectations, as Years 5 and 6 students they could have been given opportunities 

to solve problems considerably more complex than those at the AC to EA stages. 

Researchers have consistently found that one of the most important factors in 

school success is the opportunity to learn (Boaler, 2008; Hattie, 2003; Loughran, 

2010), and have identified that when students are in lower-ability groups, their 

progress is limited as their teachers often have lower expectations of them (Allsop 

et al., 2007; Boaler, 2008; Steffe & Olive, 2010). Indeed, few opportunities were 

observed that afforded the students in all classes to work on challenging and 

higher-level problems, in order to achieve expectations of their class levels 

(Ministry of Education, 2009, 2010). More opportunities within lessons for 

extending students’ mathematical thinking by encouraging the activities of 

analysing, comparing, and generalizing, recognised as key components of 

advancing student thinking and achievement in mathematics (Fraivillig et al., 

1999; Gould, 2005a), might have resulted in greater student learning.  

The NDP Book 7 (Ministry of Education, 2008e) guided the teachers on the 

sequence of the fractions lessons. Each activity in the NDP book is based on a 

specific learning outcome (WALT) and the teachers (other than Anna) relied on 

the WALT in the books, to direct the learning (Section 6.2.1: A.1 and A.2). What 

the teachers seemed to lose sight of was that while the NDP material provided 

suggestions to supplement the curriculum, lesson planning was to meet the aims 

and objectives at the expected level of the New Zealand Curriculum (Ministry of 

Education, 2007). However, the teachers admitted in conversation that they found 

the wording in the curriculum document vague, making interpretation of the 

achievement objectives confusing and that the Number Framework provided them 

with a more detailed learning trajectory. For example, the Level 3 Curriculum 

objective, expects students to, “use a range of additive and simple multiplicative 

strategies with whole numbers, fractions, decimals and percentages” (Ministry of 

Education, 2007, Level 3 chart).  
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Teaching Strategies (A.3) 

While all of the teachers used manipulatives as a teaching strategy during the 

teaching of fractions, the change in how Andy used them (from the multiplication 

lessons, and as the fraction lesson progressed) was noticeable. In the initial 

multiplication lesson, Andy introduced manipulatives for the first time and the 

novelty of the new equipment (Unifix cubes and animal arrays) meant that the 

students were observed playing with it much of the time. As his fraction lesson 

progressed, Andy’s conscious use of manipulatives, alongside his word problems 

based on scenarios applicable to the students’ lives, was a change in teaching 

strategy. Although there were times when he caused some confusions, as he 

became more comfortable with the use of manipulatives and the associated talk it 

generated among the students, he recognised the difference it was making to the 

students’ conceptual understanding (Nührenbörger & Steinbring, 2008; Ross, 

1989; Schoenfeld, 2011; Wright, 2014). Andy recognised that while gains can be 

made using mathematics manipulatives, “simply placing one’s hands on the 

manipulative materials will not magically impart mathematical understanding” 

(Swan & Marshall, 2010, p. 19). Therefore, he encouraged more discussion 

among the students because, as Swan and Marshall identified, appropriate 

discussion makes links between the manipulatives and the mathematics concepts 

being taught, more explicit.   

In the fraction lesson, Andy encouraged the students to explain their ideas to each 

other when solving problems. When the students used fraction tiles to represent 

the whole and parts of objects, initially the students placed one whole tile on top 

of the fractional pieces (representing the portions the food was cut into) to show 

they were equal in size (Figure 6.9). This strategy is similar to that used by Way 

et al. (2015), when they found that overlaying fractions on printed transparencies 

allowed students to compare equivalent fractions. However, Andy acknowledged 

that while the pieces appeared to be the same size he wanted the students to 

explain the equivalence mathematically. While some of the students in Andy’s 

class took some time to adapt to the use of manipulatives followed by explanation 

of the results, he persevered and adapted his teaching strategies accordingly. This 

observed difference in approach is consistent with research, which found that a 

deliberate hands-on exploration of fraction (and other mathematics) concepts, 
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results in the dual effect of increasing teacher pedagogical knowledge, while 

supporting conceptual understanding in their students (Way, et al., 2015). Andy’s 

allowing the students to explore different solution methods and discuss their 

findings is consistent with Yackel’s (2001) and Wong’s (2010) research, which 

found that students’ explaining what they have modelled is important, if the 

manipulatives are not to become a tool used in a procedural manner, similar to 

verbal rules.  

Allowing students to manipulate equipment themselves was one of the key 

differences also observed from Bob’s multiplication lessons to his fraction lesson. 

While the fraction lesson tended to be teacher directed, Bob allowed the students 

to utilise their own manipulatives as part of their learning (Section 6.2.1: A.3). 

The individual’s use of materials is connected to the importance of conceptual 

understanding during instructional time, that has been emphasised in research (Ma, 

2010; Schoenfeld, 2013; Swan & Marshall, 2010; Way, et al., 2013; Wong & 

Evans, 2007) and aligns to relational understanding (Skemp, 1976). The use of 

manipulatives helped emphasise the importance of relating mathematics to 

everyday life, in order to relate word problems to actions (Perso, 2006).  

Encouraging the students to work in pairs, to discuss ideas together, and justify 

their solutions, was a strategy employed by all of the teachers who regularly asked 

the students to talk with their buddy about their mathematics problems (Section 

6.2.1: A.3). There was a noticeable change from the multiplication lessons to the 

fractions lessons, in the manner in which the students talked together when 

solving problems. For example, in Beth’s class once the students had worked in 

pairs to share three wafer biscuits (strips of paper) between two people, they 

explained their solution method to others in the larger group. They then discussed 

and compared the different solutions and recorded the symbols representing the 

various strategies in the modelling book. This was a change from Beth’s 

multiplication lessons, where she asked the students to discuss ideas but they 

struggled to do so. Earlier explanations were confined to a description of the steps 

that had been taken and while the students were still reluctant to challenge each 

other’s thinking, the fact that they now had the confidence to share ideas meant 

that Beth would be in a position to build on this in the future. This aligns to the 

theories of learning associated with socio-culturalism where collaboration and 
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conversation is crucial to changing external communication to internal thought 

(Cobb & Bauersfeld, 1995; Rubie-Davies, 2010; Vygotsky & Luria, 1993). When 

a learning environment is constructed in which students are required to talk and 

act like mathematicians this becomes as much of a priority as the lesson learning 

outcome (Askew, 2007; Hunter, 2012).  

The change in mathematical discussion among the students in all classes as the 

year progressed (from the multiplication unit to the fractions unit), may have 

resulted in greater understanding of the concepts taught, as evident in many of the 

final fractions assessment tasks. Greater understanding as a result of questioning, 

discussion, and justification is also evident in other research (Hunter, 2006, 2012; 

Kazemi & Stipek, 2001; Ma, 2010; Schoenfeld, 2011). Furthermore, the teachers 

in this research recognised that establishing classroom cultures that promote 

argumentative elements of discussion and justification is a challenging task and 

takes time to bring about (Hunter, 2005; 2006; 2010). The teachers persevered 

with this process and were seen to scaffold discussions by suggesting the students 

“talk with each other” about their strategies before telling the teacher.  

Alongside the challenge of effective group discussions, one of the difficulties 

some of the students in Andy’s class encountered was a strategy he employed of 

questioning the students about their answers (whether they were correct or 

incorrect). This provocation caused uncertainty among Andy’s students who 

appeared confused and unsure about whether they should change their answer, or 

their way of thinking. At one point, he provided a solution to a problem and 

followed it with the statement, “I may be wrong. It wouldn’t be the first time in my 

life that was the case.” The students believed that Andy’s questions and 

statements were designed to elicit certain responses, and therefore instead of 

giving an answer they thought was correct, tried to give an answer they thought 

that he wanted to hear. This led the students to what has been referred to as “guess 

what is in the teacher’s head” (Loughran, 2010, p. 61). Like the students in 

Loughran’s research, Andy’s students often presumed his questions were 

designed to elicit a particular response and when they were challenged about a 

response that was correct, immediately doubted their answers.   

Another focal point used by the teachers was the modelling book. The modelling 

book was used in a range of ways, to complement the learning taking place. For 
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example, in Beth’s class, after the students modelled two different ways three 

wafer biscuits (strips of paper) might be shared between two people, the pieces of 

paper were glued into the modelling book. Pasting the representations into the 

modelling book provided a permanent record of the problem solved and was 

referred to during discussions about whether students with three-halves, had the 

same amount of wafer as those with one whole and one-half. This use is similar to 

that identified by Higgins (2006), who found that a modelling book enhances the 

hands-on approach to teaching mathematics through linking conversations and 

modelling of concepts. As concluded by Higgins, the visual support provided by 

the modelling book in Beth’s class suggests that students may have known what 

they were learning about, and provided connections to previous knowledge when 

new learning took place. The students and the teacher, as suggested by Ell et al. 

(2010), made recordings in the modelling book and when students’ names are 

recorded alongside their work, it may also be utilised for assessment purposes 

(Higgins, 2006).   

Real-life scenarios, relevant to the students, were also used as an approach to 

learning. An example of this was Bob who used circles to represent birthday 

cakes and scenarios with the names of students in the class. When he increased 

the size of the numbers, he used more candles and one time modelled a birthday 

cake for himself. The difficulty was that the cakes and parties theme was a 

novelty to the students and at times, this distracted from the mathematics 

problems being solved. This was consistent with the research of Treffers and Buys 

(2001), who advocated for the importance of real-life scenarios, but cautioned that 

at times the context might get in the way as students often interpreted scenarios 

literally. Real-life scenarios can be particularly difficult in both division and 

fractions, when things do not necessarily divide evenly (Treffers & Buys, 2001).  

Rather than allowing the students to become reliant on recognising the 

representation of fractions on one particular shape, Beth used a variety of shapes 

to consolidate understanding of the fractional number. For example, she used pies 

as a context with paper circles as the representation, and then used wafer biscuits 

represented by strips of paper, thus exploring one-half as both a semi-circle and 

rectangular shape. It is important to change shapes to ensure the students’ 
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understand the meaning of a fraction (Gould, 2005b; Ma, 2010), and are not 

reliant on the visual representation.   

Cognitive Demands of Task (A.4) 

Andy, Bob, and Beth recognised that the students had difficulties in establishing 

the whole and related fractional pieces (Section 6.2.1: A.4). The students 

struggled to understand that one whole is not always represented by a single 

object (e.g., a pie, a cake, a biscuit, or a pizza), but may also be represented by a 

collection of objects such as a bag of apples, packet of biscuits, or several pizzas. 

Added to this was the complexity that sometimes the fractional piece found may 

be less than one whole object, for example one-quarter of two pizzas, while 

sometimes the fractional piece might be greater than one whole object, for 

example when four children each received one-quarter of six biscuits. 

Misconceptions occurred when, as Ma (2010) found in her research, the students 

failed to understand the concept of whole and did not recognise the complete set 

of objects as the whole unit. Fractions have many meanings and the meanings are 

all about relationships between numbers (Ma, 2010). 

While the students were struggling to see the relationship between the whole and 

the piece they were finding in their problem solving, Andy, Bob, and Beth 

identified that the students did not fully understand the notion of equivalence. 

Apart from placing the fraction tiles on top of each other, Andy’s students’ were 

unsure why two-sixths and one-third were equivalent, while the difficulty Bob’s 

students had with equivalence was compounded because many were inaccurate in 

their representations (Figure 6.6) and the uneven portions created an added 

complexity. Challenges the students had associated with understanding the 

relationship between the part and the whole in the first instance, and later with 

equivalence, is consistent with Suggate et al.’s (2010) findings, that understanding 

fractions as part of a whole must be strongly in place before equivalence can be 

fully understood. As Suggate et al. reasoned, the students needed to understand 

the resulting fractional portion after finding a piece of a set (e.g., 3 cakes shared 

among 4 people gives 4
3  each), before they understood that 4

3 is equivalent to 
8
6 .   

Operations with fractions can be confusing for students and difficulties associated 

with identifying the names of the fractional representations came to the fore 
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during the observed lessons. The emphasis in both Andy’s and Beth’s lesson was 

on sharing: for example, the students shared three cakes among eight people, and 

four pies among three people. After cutting paper circles to share out the pieces, 

one student in Andy’s class used whole number thinking and reported, “You get 

three bits of cake.” Another student cut two circles (cakes) into quarters and one 

circle into eighths, and said, “You get one and a half pieces.” Without knowing 

the fractional name of each piece and the relationship with the original whole 

cakes (paper circles), the students became confused. One student, looked at the 

cut pieces of paper and said, “Oh, I don’t know.” Operations with fractions can be 

problematic for students, because the rules associated with whole numbers do not 

work with fractional numbers (Bailey et al., 2014; Gould, 2005a; Ma, 2010, 

Roche, 2005; Smith, 2002), and giving the result of the sharing problem, as a 

proportional representation of the whole caused difficulties.   

Appropriate and Detailed Representation of Concepts (A.5) and Knowledge of 

Resources (A.6) 

Detailed representation of concepts within the fraction lessons, relied on the use 

of concrete manipulatives including paper circles, counters, paper strips, fraction 

tiles, and deci-pipes. However, while the manipulatives supported conceptual 

understanding, misrepresentation sometimes occurred with paper circles, when the 

whole was divided into an ‘odd’ number of pieces (for example thirds or fifths), 

as these were difficult to model accurately. The difficulty in this instance 

associated with equal portions represented on the manipulatives, and resulted in 

incorrect answers to problems. This notion was also identified in past research, 

which found that teachers’ understanding of the use of varying manipulatives 

needs to be strengthened (Perry & Howard, 1997; Swan & Marshall, 2010; Way 

et al., 2013), to ensure correct representations. Ma (2010) similarly acknowledged 

that many teachers struggle to come up with representations of fractions that are 

appropriate, and as computation becomes more complex, both the teachers and the 

misuse of representations may lead to misconceptions about the meaning of 

fractions.  

Anna emphasised the importance of place-value understanding with decimals and 

unpacked this while the students modelled the representations on their 

commercially produced deci-pipes (Figure 6.8). Anna’s attention to the notion 
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that one-tenth is one piece of a whole that has been divided into ten equal parts, is 

a necessary concept to understand in relation to the meaning of decimals, and is 

supported in the research of Roche (2010). Andy often relied on commercially 

produced fraction equipment (e.g., fraction tiles), which provided pieces of a 

consistent size, although they deprived the students of the opportunity to learn 

from the construction of their own material. An example of consistency with 

commercially produced equipment was when the students showed two-sixths as 

equivalent to one-third, relying on the visual alignment of the materials, and 

colour of the different fractional pieces. Andy pushed the students for 

explanations based on the understanding of equivalence. A critical skill in the 

development of understanding of fractions is appreciating that while fractions can 

have many names, there are times when one particular version of the alternate 

name might be more useful in a given situation (Small, 2013).  

Beth’s lessons indicated that she was an advocate for the use of manipulatives to 

reinforce conceptual understanding. The need for conceptual understanding has 

been emphasised in the teaching of mathematics and has been strongly advocated 

by many researchers (Anghileri, 2006; Ma, 2010; Skemp, 2006; Swan & Marshall, 

2010; Wong & Evans, 2007; Young-Loveridge & Mills, 2009a), as conceptual 

understanding generally allows a person to reconstruct a procedure that they may 

forget through procedural learning alone (Anghileri, 2006). When teaching 

fractions, Beth used paper circles and rectangular strips of paper primarily as an 

area measure, although she also compared the length of the strips of paper, 

showing an awareness of Kieren’s (1980) fractions as a measure construct. 

However, as Way et al. (2013) asserted, moving from recognising part of a 

rectangular strip as an area measure, to focussing on its length, was difficult for 

the students as they came to terms with the two different interpretations.  

Student Thinking (A.7) 

One notable difference from the initial multiplication lesson (Table 5.3) to the 

fraction lessons (Table 6.3) was the change in frequency of using student thinking 

(from 28 instances to 13). A possible interpretation is that the students were less 

secure in their understanding of fractions (than multiplication), and therefore not 

so confident to ask questions. On the other hand, it might be that on occasions, the 

teachers were insecure in their ability to teach fractions and did not give the 
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students the opportunity to ask questions, for fear of being unable to answer them 

accurately. One opt out for utilising student thinking, was the emphasis placed on 

the learning intention, which allowed the teachers to refocus the students on what 

they had planned for the lesson, and at the same time stay within their personal 

comfort zone. However, possibly the main reason for the lesser frequency was the 

change in the lesson delivery. In the fraction lessons, all teachers allowed all 

students to use manipulatives as part of their problem solving and to build 

conceptual understanding. The teachers were less dominant in the fractions lesson 

and while the students were thinking mathematically (possibly more so than in the 

multiplication lessons which were more teachers directed) this was through their 

participation in the hands-on activities with limited questioning by the teachers.         

There were times when the teachers might have taken opportunities to delve more 

beneath the students’ initial thinking. For example, when Anna discussed the total 

number of tenths in the number 3.6 one student said, “You just take away the 

decimal point.” Anna responded, “The decimal point disappeared, because the 

numbers went up in place value.” She then asked, “What’s our rule in 

mathematics when we multiply something by a hundred?” A student replied, “Go 

up two place values.” However, developing procedural knowledge such as this, at 

the expense of conceptual understanding has often been cited as part of the reason 

for poor mathematics proficiency (Ball, 1992; Burns, 1998; Kazemi & Stipek, 

2001; Scharton, 2004; Skemp, 1976). 

Bob also overlooked responses and ideas contributed by the students. For example, 

when the students were finding one-quarter of sixteen, a student said, “I know two 

times eight is sixteen.” Another student responded, “But then only two people get 

cake. Oh maybe you could cut the half in half.” Instead of discussing further the 

size of the resulting fractional pieces if the cake was cut in half, and in half again, 

Bob ignored the comment and moved on to another problem. Bob’s brushing-over 

of ideas, can be common among teachers and many teachers conduct their lessons 

without ever explicitly focussing on student’s mathematical thinking (Fraivillig et 

al., 1999) for extended periods of time.  

Student Thinking – Misconceptions (A.8) 

The regularity with which the teachers addressed their students’ misconceptions 

(17), was greater than the frequency they utilised their students’ thinking (13) 
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(Table 6.3). At one stage when one pair of students began to share the five apples 

(fraction tiles) among four people, they were unsure whether to have four or five 

whole tiles (apples), and whether to divide each whole into four or five pieces 

(Section 6.2.1: A.8). Some of the confusion the students had may have been 

attributed to earlier in the lesson, when Andy used materials to consolidate 

fractional representations, and did not emphasise the proportional relationship 

between the fraction and the whole to which it was compared. For example, the 

students knew that one whole could be divided into two pieces (halves), or four 

pieces (quarters). However, they did not fully grasp that when four equal-sized 

pieces (quarters) are combined, they are equal in size or quantity to one whole. 

This is consistent with research which has found teachers need to emphasise that 

fractions are about the relationship between two numbers (the numerator and 

denominator), as well as about the relationship between the fractions itself and the 

whole to which it is compared (Ma, 2010; Pearn & Stephens, 2004; Siegler et al., 

2011).  

Some of Beth’s students had a similar misconception, when they shared three 

wafer biscuits among four people and immediately cut their wafers into thirds 

(getting confused between the number of wafers and the number of people). 

Unlike Andy, Beth observed the students momentarily to see if they recognised 

their mistake, but when she realised they were having difficulty, she brought the 

group back together and discussed their dilemma. When Beth acknowledged the 

misconception her students were having, she invited a pedagogical response 

described as required guidance (Loughran, 2010) and steered the students towards 

arriving at the correct solution. Research has found that understanding common 

misunderstandings that students have, and knowing how to address these in order 

to remedy them, is an important component of teacher knowledge (Ball et al., 

2001). When to step in and out of significant moments in students’ discussions is 

important for teachers to recognise, in order to make a difference to students’ 

learning (Walshaw & Anthony, 2007). 

Early in her lesson, Anna recognised one of the students had difficulty saying 

decimal numbers correctly (for example hundredths and thousandths) and 

emphasised that it is important not to read decimals like whole numbers. Anna 

was aware of the necessity for using correct language with decimals, which was 
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also emphasised by Ma (2010), who found that the issue of correctness and 

appropriateness in decimal numbers when read and spoken, must be clearly 

understood and articulated.  When working with decimals, it is important that they 

are not treated like whole numbers as this can lead to misunderstandings later. 

Teachers need to model (almost by over emphasising the phonic blends) the 

difference between whole numbers and fractional numbers such as between tens 

and tenths, and hundreds and hundredths (Ma, 2010).  

9.2.2 Content Knowledge in a Pedagogical Context (B) 

The teachers in this study generally carried out their mathematical computation 

procedurally, as this was how they were taught. For Andy and Bob, this 

sometimes became an issue in their teaching practice and was reflected in the 

difficulty they had when explaining content with conceptual understanding to 

their students. Similar difficulties were evident in the research of Ward and 

Thomas (2009), who explored the relationship between teacher knowledge and 

student achievement in the New Zealand context. They found that teachers who 

were unfamiliar with specific content knowledge were unlikely to know effective 

ways to teach that content, while teachers who were familiar with content, may or 

may not know how to teach it effectively.  

Deconstructing content to key components (B.1)  

The category Deconstructing Content to Key Components, occurred the most 

frequently (29) within the content knowledge section of the framework (Table 

6.4). Alongside the students’ misconceptions concerning fractional understanding, 

the teachers found a need to deconstruct concepts regularly. With the three of the 

observed lessons pitched at transitioning from Levels 1 to 3 in the curriculum 

(Andy and Beth, AC to EA; Bob, EA to AA), the concepts being developed built 

on what Hansen (2005) referred to as, basic fundamental concepts. It was crucial 

that the students grasped these concepts well, so that teaching could move on to 

higher levels, allowing the students to achieve at the appropriate level of 

expectation.  

Deconstructing key components, provided opportunity for the teachers to hand 

content-related thinking over to the students. Andy often guided the students, by 

challenging their thoughts and making further suggestions. For example, he 

encouraged the students to look at various ways they could approach the dividing 
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of the cakes (paper circles) into equal portions, which led to a discussion about 

equivalent fractions. In the fraction lesson, the willingness of Andy to wait for the 

students to arrive at their own conclusions was a key to enabling students to find 

solutions themselves (Black et al., 2004), and required Andy to increase wait time, 

resisting the urge to jump in and either reword or answer the original question. As 

outlined in Chapter 2, teachers often wait less than one second, before either 

asking another question, or answering the question themselves (Black & Wiliam, 

1998). Allowing the students time to unpack solutions to problems, is a vital stage 

in mathematical thinking process (Schoenfeld, 2013). Schoenfeld, established that 

allowing students time to solve problems themselves, broadens participation while 

allowing the teacher to learn more about their knowledge and misconceptions, so 

that future lessons can better address their needs. 

Beth explored improper fractions, emphasising that a fraction can be written with 

a numerator larger than the denominator. Beth explained to the students, 

“Improper fractions, are actually proper,” and discussed the notion, “if you add 

three quarters to another three quarters, you end up with six quarters.” She left 

converting these to a mixed-numeral until the students accepted that 

mathematically it was correct to have an improper fraction. Beth’s earlier 

emphasis on understanding the fractional name prior to the addition of fractions, 

aligns with other studies, which have found that it is important students 

understand the fractional name, prior to using equivalent fractions for finding 

common denominators in order to solve problems (Hansen, 2005; Kieren, 1980; 

Wong, 2010). Teaching the students in later lessons that an improper fraction can 

be renamed into a mixed numeral, is consistent with Ma’s (2010) research, which 

found that students should be taught to turn the improper fraction into a mixed 

numeral as the final step in the process of understanding the fractional name.  

Many of the fractional problems the teachers gave the students related to the 

discrete model of division, and involved the sharing out of items into equal 

portions. This provided an opportune time to deconstruct the fundamental 

relationship between division and fractions within proportional reasoning, but was 

not emphasised by the teachers. The students used multiplication and division 

strategies as they solved problem examples, such as 24 candles going evenly onto 

six pieces of cake. Frequently, emphasis on the sharing of items meant that the 



 

261 

 

lesson became purely a multiplication and division one, as no connection was 

made between the piece and the whole, demonstrating the proportional 

relationship between the items. Instead, each portion was seen as a piece of cake. 

Understanding that dividing is finding a part of something, or a fraction of a 

whole, is a fundamental idea of proportional reasoning (Shulman, 2010). Shulman 

acknowledged that often teaching this fundamental knowledge can be 

misconstrued as remedial, instead of recognising the rigour attached to it.  

Mathematical Structure and Connections (B.2) and Methods of Solution (B.3) 

Mathematical structure and connections were less evident in the teachers’ 

fractional content knowledge (Table 6.3: B.2, 10 times), as the teachers made 

minimal connections between, and within concepts. This finding is similar to 

Ma’s (2010) research, which found that teachers require specific subject matter 

knowledge that allows them to make explicit connections between and among 

mathematical topics. Students’ recognition of division and the procedure of 

solving division problems are not the same thing. Mathematical ideas are 

intimately interconnected and interrelated, and learning and understanding a small 

number of ideas and the ways in which they are related, is more powerful than 

learning a large number of facts and procedures, in a disconnected way (Ma, 

2010).  

When Anna’s students began problem solving with decimals, the key idea that 

decimal numbers are a unit being partitioned (or decomposed) into smaller and 

smaller pieces, possibly infinitesimally small pieces, was not made. Anna 

reinforced the idea that decimals are a special construct of fractions and revisited 

place-value understanding with whole numbers and the connection to decimal 

place-value understanding. While Anna made some comparisons between 

common fractions and decimal fractions in this lesson, this was minimal and they 

were generally seen as separate representations. This was contrary to findings in 

Ma’s (2010) research, which emphasised the importance of developing and 

understanding some of the underlying concepts that form the inter-relationship 

between both systems.  

Procedural Knowledge (B.4) 

There were times when all of the teachers relied on rules and procedures to 

demonstrate solutions and in return, the students sometimes returned to a 
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procedural approach to explain solutions to problems. Although the teachers 

encouraged the use of manipulatives to assist in conceptual understanding, it is 

questionable as to whether the students always understood the concepts they were 

modelling. There were times when the teachers modelled the equipment 

procedurally and the students later replicated their teacher’s modelling. For 

example, during the lesson Beth modelled the cutting of a piece of paper in half, 

and then in half again. At the same time, she told the students “If you cut a half in 

half you get quarters, so if you cut a third in half what are you going to get?” 

Beth emphasised doubling the number, which may have over-ridden the important 

understanding that each time you cut something in half it results in twice as many 

pieces that are half the size. The students replicated Beth’s use of materials 

procedurally which may have meant that verbal rules and procedures were 

replaced with procedures and rules for using tools. As outlined in Chapter 2, 

mathematical procedures should not be learnt without conceptual understanding 

(Ball, 2002; Kazemi & Stipek, 2001; Ma, 2010; Perso, 2006; Yackel, 2001). If 

conceptual understanding is gained, it gives students tools to reconstruct a 

procedure they may otherwise forget (Ma, 2010), rather than using the language 

of fractions, without fully understanding their nature (Nunes & Bryant, 1996).  

Profound Understanding of Fundamental Mathematics (B.5)    

As stated in Chapter 2, the ability of teachers to address student thinking may be 

reliant on them having profound understanding of fundamental mathematics 

(PUFM) (Ma, 2010) In this study, the teachers seldom made connections between 

fractional concepts and what had been taught previously in multiplication and 

division. For example, candles (counters) were spread out evenly on top of cakes 

(paper circles) with no relationship made between fractional quantities and 

quotitive division, and understanding the size of each piece relative to the whole. 

This may have indicated their understanding was not always profound. 

Mathematics needs to be seen as a unified body of knowledge (Ma, 2010), and 

whilst the teachers endeavoured to lay the foundation for what the students would 

learn later, they did not display the skill of providing the students with underlying 

connections among different operations and subdomains. Whilst Ma used the term 

profound as “an intellectual depth that consists of a deep, vast and thorough 

connectedness” (Ma, 2010, p. 120), Loughran (2010) preferred to use the term 
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linking.  Linking makes connections across ideas so that prior knowledge and new 

knowledge can interact in ways that will further develop understanding of the 

topic being studied. The teachers in this study did not always make mathematical 

connections or links across key ideas in the multiplicative and proportional 

domains.                                                                                         

At one time, when Andy’s students were sharing three whole cakes among eight 

people, one child said, “each person will get 1
2

1
”, while another child said, “

24

1
.”  

Andy did not acknowledge either of these answers and refocussed the students on 

the manipulatives in an effort to decide the proportion of cake each person 

received. The student who gave the response of 
24

1 recognised the three groups of 

8

1 on his manipulatives but added the denominators to get an answer of 
24

1 . A 

common misconception among Andy’s students on Task 1 (
5

1 +
5

1
+

5

1 ) of the final 

assessment (Section 7.2.1: Task 1), was the add across error: 10 students gave an 

answer of 
15

3 , while two students added the denominators leaving 1 on the 

numerator, an answer of 
15

1 . If during his lesson Andy had stopped and asked the 

child how he arrived at the answer 
24

1 and reiterated addition of the numerators 

only, it may have helped correct this common misconception, prior to the final 

assessment. Shulman (1987) asserted that it was important that teachers take 

advantage of the opportunities to consolidate students’ new learning and to use 

that knowledge immediately to consolidate understanding. Expert teachers often 

spontaneously react to what is happening in the classroom and respond to the 

needs of the students by predicting what types of error might be made (Loughran, 

2010).  

9.2.3 Pedagogical Knowledge in a Content Context (C) 

During observation of the teachers’ practice, there were moments when their 

content knowledge was at the forefront and times when the manner in which they 

imparted subject matter became more important. This section acknowledges that 

content and pedagogy are not mutually exclusive and the focus is sometimes 

primarily on the pedagogical strategies required for teaching fractions. While the 

teachers’ PCK was the focus, how the students reacted to the teaching and 

instruction became a large part of determining this context.  
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Classroom Techniques (C.1) 

One teaching technique the teachers continued to implement (from their 

multiplication lessons to their fraction lesson), was keeping the learning intention 

(WALT) as a focus. Determining goals for learning and sharing these with the 

students, is an important part of the planning and teaching process (Hiebert et al, 

2007; Smith & Stein, 2011). The teachers placed importance on the students being 

aware of the WALT and ensured they understood what was required to meet the 

specified learning outcome.  

Another teaching technique applied by the teachers, was encouraging students to 

solve problems together and to discuss ideas among themselves. This important 

pedagogical shift of allowing students to discuss ideas together was promoted 

through the NDP, which emphasised the importance of manipulating materials 

and the ensuing explanation by students of their actions, in terms of the 

underlying mathematical ideas being investigated (Higgins, 2006). However, what 

occurred with regularity in this study was that when the students shared their 

solution methods they resorted to telling procedurally how they got their answers. 

Many researchers have found that engagement in productive discussions, 

ultimately enables learners to re-look at problems and build strong arguments 

(Boaler, 2008; Kazemi & Stipek, 2001; Vosniadou, 2001; Walshaw & Anthony, 

2007; Way, 2008; Whitenack &Yackel, 2002). This was also evidenced in 

Fraivillig et al.’s (1999) findings that ascertained what students knew, and how 

they thought about mathematical concepts, were critical components for 

advancing children’s thinking.  

Andy acknowledged the value of making mistakes. He often discussed a solution 

and then said, “I could be wrong. It wouldn’t be the first time in my life I was 

wrong.” This put doubt in the minds of his students who were left questioning, 

“Were they right, or were they wrong? Or, was Andy (their teacher) right, or was 

he wrong?” This may have been a technique to encourage the students to be 

certain of their strategies and justify their solutions. While Andy’s approach 

appeared to frustrate the students, it may have been an attempt to develop a sense 

of the value of argumentation in the mathematics lesson, that could provide the 

foundation for clarification of ideas and understanding (Fraivillig et al., 1999; 

Goos, 2004; Hunter, 2006, 2009, 2012; Whitenack & Yackel, 2002). Andy also 
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displayed anticipation of the students’ responses, one of five effective practices 

described by Smith and Stein (2011) as being essential for orchestrating 

productive discourse during the mathematics discussions. Anticipating students’ 

questions in advance assists teachers in developing questions that are bound to the 

context, rather than just telling students answers in-the-moment (Cobb & 

Bauersfeld, 1995; Smith & Stein, 2011).   

Another example of a classroom technique is the use of manipulatives combined 

with every-day scenarios (Section 6.2.1: A.3). As discussed in Section 9.2.1: A.3, 

this would have ensured that the mathematics was meaningful and relevant to the 

students.  

Getting and maintaining student focus (C.2) 

Getting and maintaining student focus was frequently intertwined with the 

classroom techniques used by the teachers. For example, using the real-life 

contexts for problem solving (Section 9.2.1: A3, & Section 9.2.3: C1) also helped 

to gain the attention of the students. The teachers often used their students’ names 

when creating word problems, such as Bob’s word problem that started, “We’ve 

got four people at [Child’s name] party. And if you look at this (pointed to a 

paper circle), this represents a cake. Your birthday cake [Child]” (Section 6.2.1: 

A.3 & Section 6.2.3: C.2). The student whose name was used, along with his or 

her peers, immediately became involved and focussed on the problem, which 

often generated further discussion. While this could be temporarily distracting, it 

certainly gained the attention of the students. For example, following on from the 

scenario above Bob said, “Now you are coming to Mr [used his own name] 

birthday party.” One of the students laughed and interrupted, “So are you turning 

21?” (Section 6.2.1: A.3). Bob thought that was a good idea and gave the students 

a problem sharing out the 21 candles on his cake. The students participated in the 

fun of the occasion and became focussed on their learning as they solved 

problems determining the ages of different teachers. These examples suggest that 

scenarios with direct meaning to the students’ lives maintained their focus and 

may have supported their mathematical learning (Smith, 2002). 

Fractional representation was often presented in relation to the context of food, 

which was another way of ensuring the focus of the students. Contexts included 

cakes, biscuits, pizzas, apples, and similar foods that the students were familiar 
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with, and could be cut up and shared out evenly. Understanding that fractions 

relate to equal-sized portions is paramount (Ma, 2010), and the students definitely 

understood the unfairness if someone received a larger portion of cake than others.  

Goals for learning (C.3) and Knowledge of assessment (C.4) 

Observation of the fraction lessons along with the assessment tasks given, 

indicated the classes were achieving below expectation. The teachers appeared to 

be uncertain of what was expected at their respective curriculum level. Therefore, 

there was a reliance on the WALT being copied (or in Anna’s case adapted) from 

the NDP book on fractions and decimals (Ministry of Education, 2008g), which 

aligned to the Number Framework Stage (Ministry of Education, 2008a), and the 

NZC Level (Ministry of Education, 2007).  

The teachers at both schools gathered assessment information, but did not appear 

to use analysis of the data to inform their teaching practice. None of the teachers 

used the results of the initial assessment tasks to check the students’ fractional 

understanding and the reliance on NDP books suggested that little attention was 

given to the results of other available assessment material (e.g., NUMPA and PAT 

results from earlier in the year). The teachers could have responded to the 

difficulties identified in these assessments and utilised them to improve the 

students’ learning as suggested in NZC (Ministry of Education, 2007, p. 39). 

During interviews, the teachers admitted that when preparing their lessons they 

had not taken into account the errors on specific questions the students in their 

mathematics class had made in these assessments, and had not used these to 

inform their planning.  

Anna used a short activity at the start of her fraction lesson as an assessment task. 

The initial body fractions activity (Mills, 2011) was limited to quarters, halves, 

and wholes, because representations were made using each student’s arm span as 

a unit of measure (Figure 6.7). This visual representation allowed Anna to see 

immediately whether the students knew equivalence between fractions and 

decimals, such as 4

1  being equivalent to 0.25 and 4

3 equivalent to 0.75. The 

students then used deci-pipe equipment to further explore decimal place-value 

understanding of tenths and hundredths (Figure 6.8), and was an example of how 

utilising manipulatives can stimulate students’ thinking during explanations 



 

267 

 

(Swan & Marshall, 2008). It is important that students explain their findings to 

others, as this process encourages deeper mathematical thinking and consolidates 

understanding (Boaler, 2008).  

Questioning – Supporting (C.5) 

Supporting students by asking questions, was a technique used on many occasions 

(74 in total) by the teachers, within the fraction lessons. An example of this was 

when Anna said, “Is everyone in similar thinking as Phillip?” or when Beth said, 

“So how many halves have we got? (Section 6.2.3: C. 5). Supporting questions 

were used to the greatest extent because the students often used strategies that had 

been suggested by their teacher. For example, Andy directed the students’ 

thinking when he suggested they cut ‘the cakes’ into quarters, rather than eighths. 

Beth and Bob regularly participated in back and forth conversations, such as when 

Beth’s students shared wafer biscuits among people. While supporting questions 

may be thought of as simplistic, the conversation generated assisted the teachers 

in determining what the students knew. They typified Fraivillig et al.’s (1999) 

research findings, which found how students think about mathematical concepts is 

a critical component for advancing children’s thinking. Either the teacher, or 

another student, may carry out supporting a student’s thinking by restating, or 

explaining, what the student has said.   

Questioning – eliciting (C.6) 

Eliciting type questions were the second most frequently used (20), which is 

consistent with the findings of Fraivillig et al. (1999). These questions elicited 

several ideas and/or strategies for solving problems. For example, during Beth’s 

lesson, as the students shared three biscuits (represented by strips of paper) among 

four people, she discussed one group’s solution then said, “Let’s see, who else did 

it another way?” (Section 6.2.3: C.6). This allowed other groups to contribute 

their solution methods, which the research of Fraivillig et al. suggested, is an 

important component of classroom discussions and a key to mathematical success, 

as it provides students with opportunities to promote their mathematical thinking.  

While the teachers in this study elicited a range of strategies, they did not 

necessarily utilise them as a teaching point. For example, one group in Beth’s 

class constructed one-quarter of one-third to determine the answer to a given 

problem. They shared the four pieces they created by cutting the one-third into 
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four pieces among the three people, but did not recognise or name the piece as 

one-twelfth of the original whole. This would have introduced multiplication of 

fractions and the concept that multiplying a fraction by a fraction, is about finding 

a piece of a piece. Discussing the strategies and questioning the students’ thinking 

about the fractional representation of each could have led to greater understanding 

of equivalent fractions.  

Questioning – extending (C.7) 

Extending responses as a result of questioning, was observed the least number of 

times (6) by the teachers. One example, was when a group of Andy’s students 

presented their solution for sharing three cakes among eight people. He 

challenged them by saying, “Can you explain your theory to everyone else please? 

(Andy pointed to one of the students). And you all (points to everyone else) have 

to discuss his theory, and decide how it is similar or different to yours.” This 

meant the students had to listen carefully to the ideas of their peers and rationalise 

these in comparison to their own. 

The findings of this research compared to Fraivillig et al.’s (1999) who found that 

teachers’ use of the different types of questioning, increases discussion around 

scenarios in a way that and may increase student learning. Using the right type of 

questioning at different stages within a lesson can support and stimulate students 

during the problem-solving process (Way, 2008).  

 

9.3 Student Learning in the Proportional Domain 

This section of the chapter discusses part of research Question 2, concerning “the 

relationship between teachers’ professional knowledge and student learning”. 

9.3.1 Assessment Tasks and Student Learning in the Proportional 

Domain 

Tasks 1 to 3 focused on understanding the meaning of the fractional number and 

the relationship between the fraction and the size of the whole. These tasks were 

placed first on the assessment, because it has been argued that interpretations of 

fractions should be taught in a particular order of conceptual challenge, and that 

the first type of fraction teaching relates to “part of a whole” understanding 

(Hansen, 2005).  
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Task 1 (
4
1 +

4
1 +

4
1 ), was an early Level 2 problem (Section 7.2.1: Task 1) which 

means that all students should have been capable of adding the unit fractions. The 

NZC, states that at Level 2 students are expected to “use simple additive strategies 

with [whole numbers and] fractions” (Ministry of Education, 2007, Level Two 

chart). The curriculum elaborations for Level Two states that students are 

expected to understand that “fractions are iterations (repeats) of a unit fraction, for 

example, 
4

3  = 
4
1 +

4
1 +

4
1  and 

3
4 = 

3
1 + 

3
1  + 

3
1 + 

3
1 (Ministry of Education, n.d.c).  On 

the initial assessment only 48% of Andy’s Year Six and Year Seven students and 

10% of Beth’s Year Five and Year Six students, added the fractions accurately.  

In her teaching session, Beth explored the addition of unit fractions with paper 

circles and the number of correct responses by her students on Task 1 in the final 

assessment (
5
1 +

5
1 +

5
1 ) (Section 7.2.2: Task 1), increased from 10%, to 65%. In 

contrast, the number of students correct on Task 1 in Andy’s class, decreased 

from 48% to 39%. The students struggled with understanding the meaning of the 

numerator and denominator in the symbol 
5
1 , along with the connections between 

repeated addition, skip counting, and multiplication. Nine (39%) of Andy’s 

students gave an answer of 
15
3  having added the numerators and then the 

denominators. They did not understand that when they have 
5
1 , and added another 

5
1  , and another 

5
1 , they had 3 representations of 

5
1 , or 3 times 

5
1 . This important 

part-to-whole construct and the connection between repeated addition and early 

understanding of multiplication, has also been found by other researchers to be a 

difficulty for students (Behr et al., 1992; Kieren, 1988; Lamon, 2007; Van Dooren 

et al., 2010). Many students continued to apply additive thinking (some 

incorrectly) when multiplicative thinking would be more appropriate (Van Dooren 

et al., 2010).  

Task 2, involved addition of fractions with different denominators. While the 

denominators were different they were compatible (



1
10

+ 5
2

), and it was expected 

that the students would recognise the relationship between tenths and fifths 

(Section 7.2.1: Task 2). On the initial assessment, two students (4%) from Anna’s 

class added the fractions together accurately, while at School B, no-one solved 

this correctly, the main error being addition of the numerators and the 
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denominators. Often students treat the numerators and denominators as separate 

numbers rather than seeing the connection between them (Hart et al., 1981; 

Young-Loveridge et al., 2007), which results in what is referred to as the ‘add 

across error’ (Carpenter et al., 2015; Ma, 2010).  

When teaching the fraction lessons, the teachers made few connections to the 

learning that had previously occurred in the multiplication and division lessons. 

All teachers were observed previously teaching the relationship between twos, 

fives, and tens, in their multiplication lessons and recognition was not made in 

Task 2, between two-fifths also being represented as four-tenths, which meant that 

together with another one-tenth made five-tenths, equivalent to one-half. The 

issue of mathematics ideas being taught in isolation has often been explored in 

research, which has found that students and teachers frequently see their 

mathematics as isolated learning experiences and do not connect different 

concepts together (Howley et al., 2007; Kazemi & Stipek, 2001; Ma, 2010; Steffe 

& Olive, 2010; Stigler & Hiebert, 2004). However, teachers will not make 

connections between related ideas, or between manipulatives and ideas, unless 

they have a clear understanding of the mathematics ideas themselves (Ma, 2010), 

and this knowledge appeared to be problematic for the teachers in this study.  

Students’ responses in the assessment tasks also indicated some lack of number 

sense in relation to fractional numbers. For example, when answers to the 

problem 



1
10

+
5
2  included 5

1 ,
4
3 , and 

15
3 , if number sense had prevailed the students 

would have realised that when adding



1
10

 and 5
2 together, they could not possibly 

get an answer of 5
1 . This result disregards one of the basic properties of number: 

that the sum of two positive numbers must be greater than either addend (Olive & 

Steffe, 2002; Siegler, et al., 2011). One of the reasons that connections were not 

made, may have been because of a lack of fundamental understanding (PUFM) by 

the teachers, including number sense (Ma, 2010).  

Task 3 was a word problem comparing two fractions. On the initial assessment 

the fractions were equivalent: “Judith eats 2
1 of a pizza and Jenny eats 8

4 of a pizza. 

Who eats the most? Draw a picture to show how you worked this out.” Almost 

one-quarter (24%) of the students solved this problem correctly. However, while 

some students drew the pictures reasonably accurately, they gave an incorrect 
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answer. They believed 2
1 was the largest piece anyone could get, because when 

ordering unit fractions by magnitude 2
1 is the largest. Other students drew 

incorrect representations of the fractions that did not depict equal partitioning of 

the whole, which led to them giving an incorrect answer. This is consistent with 

the findings of Gould (2005b) who found diagrams were sometimes created in 

proportion to the size of the denominator, resulting in incorrect answers to given 

problems. In order to gain competence in solving fraction problems, greater 

conceptual understanding is required (Pearn 2003; Siemon et al., 2001; Way et al., 

2013; Wong, 2010). 

On the final assessment, Task 3 was: “Judith eats 4
3 a pizza and Jenny eats 8

7 of a 

pizza. Who eats the most?” While a little over one-half (52%) of the students 

solved this correctly, the difficulties in comparing fractions of different 

denominators is consistent with other research. Such research has found that 

students learned fraction equivalence through the mastery of the rule, “multiply or 

divide the numerator and denominator by the same number” (Pearn 2003; Siemon 

et al., 2001). It cannot be claimed that the students in this study were taught in this 

way, but this illustrates the importance of students understanding that a fraction is 

a member of an equivalent group in which all symbolic representations denote the 

same quantity (Wong, 2010). Wong’s research found that in order to advance 

students’ understanding of fraction equivalence, their teachers require a greater 

insight into the paths (trajectories) students follow. While her research focused on 

fractional representations (as opposed to computation), the understanding required 

of the area model emphasised by Wong could have provided a sound knowledge 

basis for addition of fractions as required in Task 2, as well as comparing of 

fractions in Task 3.  

Task 4 on the initial assessment was, “If 4
1 of my circle has 3 smiley faces, how 

many are there on the whole circle?” On the final assessment, the number of 

smiley faces was changed to five. Both classes at School A, showed a percentage 

decrease (Anna’s from 90% to 77% and Andy’s from 64% to 43%), while at 

School B, both classes showed an increase (Bob’s 87% to 95% and Beth’s 48% to 

65%) in the number who solved the part-to-whole task correctly. It was expected 

that the task on the final assessment would be easier than that of the initial 
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assessment, given that the final task was based on Level 2 (Ministry of Education, 

2007) knowledge (students are expected to know their ×5 tables prior to ×3). The 

increase at School B, appears to be related to Bob and Beth having given students 

part-to-whole problems, during their observed lessons. The percentage of students 

who solved this task correctly, is similar to the findings of Clarke et al. (2007) 

who found in Australia that at Grade Six (Year 7), 64% of students were able to 

move from the part of a shape, to the whole.  

Task 5 on the initial assessment was, “Find 3
1 of 18”. More than one-third (37%) of 

the students solved this correctly (Table 7.3), although they did not see the 

connections between whole number division (÷3), and proportional understanding 

( 3
1 ×). Half of the students either recorded that they guessed an answer, or omitted 

to give one. Of the remaining students the most common solution method was, 

“halve the 18 to get 9, and halve the 9 to get 4.5.” The students did not understand 

what it meant to find one-third of a set and instead, procedurally utilised a halving 

strategy that they had learnt in their multiplication unit. However, as fraction 

teaching followed on from the multiplication unit, the students should have been 

able to divide by three or use reversibility and solve 3 × 6 = 18. This question 

related to Hansen’s (2005) and Kieren’s (2007) notion of fractions as operators, 

an important sub-construct in developing an understanding of fractions (Lamon, 

2006).   

On the final assessment, Task 5 was, “What is 3
1

of 21?” On this task, Beth’s 

students increased from 19% correct, to 45%. Beth’s class was cross-grouped for 

mathematics based on school assessment at the start of the year and the identified 

low-achieving group of students had made a major shift in their understanding. 

The research of Boaler (2008) found that cross grouping often resulted in poor 

achievement of the students concerned, due to lower expectations by their 

teachers. However, in this instance, Beth had an expectation that the students 

could successfully solve operator-type problems and as the final assessment 

results indicated, worked hard to ensure this happened. Beth’s lessons focused on 

the relationship between visual models and the use of manipulatives to support 

students’ understanding.  In an effort to develop conceptual understanding before 

procedural application, Beth also related problems to the students using real-life 
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contexts including their names, which may have made the problems more relevant 

and meaningful when carrying out their computations. Her student numbers 

subsequently showed the greatest improvement on the majority of fraction tasks. 

Beth worked towards establishing what is referred to as “a culture of success” 

(Black and Wiliam, 1998, p. 142), as she believed that all students could achieve.  

Task 5 (whole-to-part) also saw a large increase in correct responses in Bob’s 

class, from 57% to 95%. This task related to scenarios solved in the observed 

lesson in Bob’s class, where the students used manipulatives and worked in pairs 

to solve birthday cake problems, which had involved the students’ names (Section 

6.2.3: C.2). The increase in understanding the students gained as a result of using 

manipulatives is consistent with the findings of many researchers (Ball, 1992; Ma, 

2010; Skemp, 2006; Swan & Marshall, 2010).  

Task 6 on the initial assessment related to the magnitude of fractions, and is often 

related to the positions of fractions on the number line. Hansen (2010) suggests 

this concept is third in the order of difficulty and is within Kieren’s (1980) 

construct of fractions as measure. The students were asked to order fractional 

numbers ( 3
1

  4
6

  4
1

  4
3

  2
1 ) from smallest to largest (Section 7.2.1: Task 6). Further 

strategies for solving this task could have included considering the fractions as 

part of a set and finding equivalent fractions. Research has found that using the 

number line portrays an understanding of the underlying conceptual difference 

between recognising the fractional number in terms of a counting unit and its 

ordinal placement (Way et al., 2013; Yackel, 2001), as opposed to a collection of 

objects. However, in determining the order of the fractions in this task, the 

students may have visualised a set of objects (e.g., 12) and ordered the fractions 

according to the relevant proportion of the set (e.g., 4
1 is smaller than 3

1
, because 

4
1 of 12 is equal to 3, and 3

1  of 12 is equal to 4).  

Over three-quarters of the students solved Task 6 with similar errors. The 

first was ordering both numerators and denominators from larger to 

smaller ( 4
6

4
3

4
1

3
1

2
1 ). This suggests that the students had previously learnt 

that the larger the denominator the smaller the size of the piece, which 

would be true if the fractions were all unit fractions. Other students did 

the reverse and ordered denominators from smallest to largest (using 
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whole-number thinking), and likewise the numerator when there was 

more than one fraction with the same denominator ( 2
1

3
1

4
1

4
3

4
6 ). Previous 

research has also found that many students use their knowledge of whole 

numbers to solve fraction problems (Behr et al., 1984; Gould, 2005; 

Wong, 2010; Wong & Evans, 2007), and that when students focus on 

whole-number numerators, whole-number denominators, or both, they 

often get problems right for the wrong reasons (Gould, 2005b). 

One extra fraction ( 16
7

) was added to Task 6 ( 3
1

 4
6

4
1

4
3

2
1

16
7 ), for the final 

assessment (Section 7.2.2: Task 6). The fractions in the initial assessment were 

either unit fractions or had compatible denominators, and by including 16
7  the 

students required a greater understanding of the relationship between numerators 

and denominators. On the initial assessment, 50% of Anna’s Years 7 and 8 

students ordered the fractions accurately and on the final assessment, this lessened 

to 15%. While the addition of the extra fraction made the task more difficult, it 

showed that Anna’s students did not have the understanding of working with 

fractions expected of them at Level 4 of the curriculum, which requires students to 

understand equivalent fractions and be able to order them accurately (Ministry of 

Education. 2007).  

Four additional fraction tasks relating to Levels 3 and 4 of the curriculum were 

included in the final assessment, primarily for Andy’s Years 6 and 7 students, and 

Anna’s Year 7 and 8 students, along with more capable students from the other 

classes (Section 7.2.2: Tasks 7 to 10). The additional tasks included non-unit 

fractions, fractions of a set, and decimals. Andy had one student (4%) who 

completed the decimal subtraction problem accurately, while Anna had six (23%) 

(no student at School B could do this). When asked how many tenths were in all 

of the number 5.23, 17% from Andy’s class and 27% from Anna’s were correct. 

While Anna had discussed place-value in her lesson and the students had used 

deci-pipes to model groupings of units within decimal fractions, they did not 

recognise the connection between the models they had made in class and the task 

in the final written assessment. A generalised understanding of fractional numbers 

is required when transferring between representations and contexts (Lamon, 2006), 

which was not apparent by Anna’s students. 
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9.4 Aligning Teaching Materials and Language 

As found in the multiplicative domain (Section 8.4), there were some 

inconsistencies between teaching materials used in the proportional domain which 

may have contributed to the difficulties the teachers and students experienced in 

their fractions lessons.  

Level Three Curriculum objectives state that students be able to “use a range of 

additive and simple multiplicative strategies with whole numbers, fractions, 

decimals, and percentages… know fractions and percentages in everyday use.” 

(Ministry of Education, 2007, fold out chart). The understanding for this objective 

is expanded on in the curriculum elaborations, which state that students should be 

able: “to find fractions of quantities, for example two-thirds of 24 as 24 ÷ 3 × 2 = 

16, and find simple equivalent fractions related to doubling and halving, for 

example 
4

3 = 
8

6 . To add and subtract fractions with the same denominators, for 

example 
4

3 + 
4

3 = 
4

6  and to convert improper fractions to mixed numbers, for 

example 
3

17 = 5
3

2 . Students should know the decimals and percentage conversions 

of simple fractions (halves, quarters, fifths, tenths) and use these to solve simple 

percentage of amount problems, for example 50% is fifty out of one hundred. 

50% is one half, so 50% of 18 is 9” (Ministry of Education, n.d.c).  As noted in 

the multiplicative domain findings (Section 8.4), while the elaborations now help 

teachers to understand what the curriculum requires, they were unavailable to 

teachers at the time the data was gathered for this research. Without the 

elaborations, interpreting the requirements of the curriculum was often difficult 

for the teachers, who relied on their NDP Books and planning sheets for 

clarification. For example, Bob incorporated birthday cakes into his lessons 

(Ministry of Education, 2008g, p. 26) as he worked from the part to the whole 

(Section 6.2.1: A4). Beth used a lesson on wafer biscuits (Ministry of Education, 

2008g, pp. 16, 17) as a guide to her lesson and both she and Andy, incorporated 

addition of fractions that went over one whole (Section 6.2.2: B1). 

While parallels can be seen between, the NDP books, planning sheets, and 

elaborations, there are times when they appear to vary from NZC. For example, 

fraction equivalence is emphasised in the NDP Book 7, for students at Stage 6 

(Ministry of Education, 2008g, p. 37), who are transitioning from AA to AM. The 
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idea of equivalence is further emphasised in the NDP book at AA to AM in 

naming fractions as decimals (p. 41) and ratios and proportions (p. 50), neither of 

which is mentioned at Curriculum Level Three (Ministry of Education, 2007). 

However, the first strategy being developed on the AA to AM planning sheets, is 

“find equivalent fractions by splitting, e.g., 
4

3  = 
20

15 , by splitting each quarter into 

fifths” and the second strategy is “order fractions using equivalence and 

benchmarks”, a strategy more suited to Level Four.  

Curriculum Level Four achievement objectives state that students be able to, “use 

a range of multiplicative strategies when operating on whole number… 

understand addition and subtraction of fractions, decimals, and integers… find 

fractions decimals, percentages of amounts expressed as whole numbers, simple 

fractions and decimals… know the equivalent decimal and percentage forms for 

everyday fractions” (Ministry of Education, 2007, fold out chart). Nowhere is 

multiplication of fractions mentioned specifically in the curriculum at Level Four, 

although as the curriculum elaborations maintain, multiplication is necessary to 

find fractions decimals, percentages of amounts expressed as whole numbers, 

simple fractions and decimals. Therefore, the elaborations expand on what is 

required in terms of teaching multiplication of fractions at Level Four, by stating 

that “students will understand that finding a decimal or percentage of an amount 

involves finding a fraction of that amount, for example 40% of 56 = 0.4 × 56 = 4 

× 5.6 = 22.4… Students should be able to multiply fractions with understanding, 

for example 3

2 × 5

3 =  as two-thirds of four-fifths, and use their multiplicative 

understanding of place value to solve multiplication and division problems with 

simple decimals, for example: 1.6 × 0.4 =  as 16 × 4 ÷ 100 = 0.64 and 24 ÷ 0.3 

=  as 24 ÷ 3 × 10 = 80” (Ministry of Education, n.d.c).  However, without the 

availability of the elaborations, understanding what was required when teaching 

the multiplicative relationship of fractions as a requirement of the Level Four 

curriculum was an uncertainty for the teachers. Therefore, the teachers relied on 

the NDP material to guide them when planning for their Years 7 and 8 students. 

Solving problems that involve multiplying by fractions, is a strategy being 

developed on the AM to AP planning sheets and lessons in the NDP Book 6. For 

example, “I am learning to multiply fractions and decimals” (Ministry of 

Education, 2008g, p. 63). Therefore, Anna’s lesson on understanding the place 
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value of fractions and how many tenths and hundredths are in decimal numbers, 

was a foundation for teaching multiplication of decimal numbers.   

9.5 Proportional Domain Summary 

9.5.1 Teachers’ Subject Matter Knowledge and Pedagogy 

In order to examine the professional knowledge of teachers, this chapter explored 

the teachers’ subject matter knowledge in relation to their perceived pedagogical 

practice when teaching fractions. Each scenario asked the teachers to identify 

what the student had done in order to solve the problem and explain what they 

would do next with the student in each instance. The results in this section 

paralleled those of the multiplication scenarios and in most instances, the teachers 

struggled to identify what the next steps of learning might be. The teachers often 

commented that they would teach the student the same way as the given example, 

and provided no further explanation or identification of the next steps to learning.  

9.5.2 Teacher Practice in the Proportional Domain 

There were observable differences in some areas of the teachers’ professional 

knowledge as they moved from teaching in the multiplicative domain to teaching 

in the proportional domain. The teachers became more aware of the importance of 

allowing for different methods of solution using a range of classroom techniques, 

including all students having manipulatives available to reinforce understanding 

of concepts; standing back and allowing the students to participate in meaningful 

discussions, including greater justification of solution methods; and using 

different question types in different situations. These changes in teacher practice 

were considered to contribute to a general improvement in the number of correct 

responses on the final assessment tasks. 

All of the teachers were seen to encourage the students to use manipulatives more 

readily during the teaching of fractions (than the earlier unit on multiplication). 

What was particularly noticeable was the change in how the manipulatives were 

used. For example, in the initial multiplication lesson, Bob modelled with 

equipment while the students watched, while Andy introduced manipulatives to 

the class for the first time and the novelty of the new equipment meant that the 

students played with it. During the unit on fractions, all of the students in Bob’ 

class had manipulatives available to them, while in Andy‘s class the 
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manipulatives were no longer seen as an added fixture and incorporated into the 

lesson in a more purposeful manner.  

Lesson observations also showed differences between teaching multiplication and 

fractions, in the manner in which the students talked together when left to solve 

problems on their own. One noticeable change in mathematical discussion among 

the students included greater justification of ideas, which might explain the 

greater understanding of the concepts taught, as evidenced by the final assessment 

tasks. 

The teachers appeared to have some uncertainty in interpreting the curriculum and 

progressions of learning. This may have contributed to uncertainty in associated 

expectations of student achievement within the proportional domain and of the 

progression of key ideas to be taught. This study revealed factors outside the 

teachers’ control that may also have contributed towards this uncertainty. 

Uncertainty in curriculum expectations, were possibly compounded by 

inconsistency in the wording between NZC, the Number Framework, and the 

Standards, which meant that teachers were unsure of exactly what should be 

taught at their class level. Some of these inconsistencies were outlined in Chapter 

8 (Section 8.4) and Chapter 9 (Section 9.4). 

Fractions are complex, and the cognitive demands of the problems, meant the 

teachers did not always identify students’ difficulties. Word problems designed to 

develop fractional understanding were often treated as whole number division, 

with little recognition of the proportional representation (for example, placing 

candles on a cake was presented as sharing rather than finding a fraction of a set). 

Connections between what had been taught in multiplication and what was being 

taught in fractions were not made.  

Learning to establish what was the whole, and what was the fraction to be found, 

provided challenges for both teachers and students. The students had difficulty in 

understanding that one whole is not always represented by a single object (e.g., in 

these lessons, a pie, biscuit, or pizza), but may also be represented by a collection 

of objects, such as a bag of apples, packet of biscuits, or several pizzas. This 

caused confusion when finding the fractional representation of a set. 
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The teachers did not always delve beneath the initial thinking of the students. 

They sometimes overlooked responses and ideas from the students and preferred 

not to stop and develop these. Instead, they continued with the planned lesson, 

which meant that they may not have extended the students beyond their comfort 

zone, or allowed them to be challenged with higher-level problems. Questioning 

techniques continued to focus on back-and-forth supporting type questions, at the 

expense of extending the students’ learning through more complex questioning 

and problems to solve. 

The results above suggest that greater emphasis could be placed on connecting 

ideas if the students are to remember how to solve problems. While connections 

were made between real-life contexts and problems solved, they were not made 

consistently between fractional number and whole number, fractions and decimals, 

and connections with manipulatives. 

9.5.3 Student Learning in the Proportional Domain 

The assessment tasks were based on Levels 2 and 3 in NZC, with Level 3 tasks 

designed for achievement by the end of Year 6. The initial tasks suggested the 

students were below, the expected levels of understanding in the proportional 

domain as outlined in the Curriculum Standards (Ministry of Education, 2009a). 

Improvement was made on many of the tasks, the most notable being comparing 

the size of fractions (Tables 7.3 & 7.4: Task 3) and finding fractions of a set 

(Tables 7.3 & 7.4: Task 5). However, overall there were still many areas where 

the students did not meet the expected levels of knowledge and understanding. 

For example, in the final assessment in Andy’s Years 6 and 7 class, there was 

only one task where more than half of the students were correct.  In three of the 

four classes (the exception being Anna’s Year 7 and 8 class) fewer than three 

students could add fractions with compatible denominators, while a range of one 

to four students in all classes ordered fractions accurately from smallest to largest. 

Anna’s lesson focussed on decimal number understanding and yet approximately 

one-quarter of her students carried out a decimal subtraction task accurately and 

only one-quarter could say how many tenths were in a number.  

As was the case for multiplication, no attention was given by the teachers to 

assessment information available to guide their teaching practice. Successful 

teachers utilise assessment data to target concepts to be taught, and use these to 
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plan sequenced lessons (Allsopp et al., 2007). Prior knowledge is an important 

factor in student learning, and students learn much more effectively when they are 

building on what is already known (Allsopp et al., 2007; Loughran, 2010). Skilful 

teachers who promote learning with understanding, draw on students’ current 

knowledge, understand how their knowledge develops, and map out learning 

trajectories as a result of the information gained (Confrey et al., 2009; Wilson et 

al., 2015). Loughran explained that mistaken or flawed prior knowledge can 

hinder progress and teachers must be aware of inaccuracies and address these 

throughout their teaching, if progress is to be made in student learning.  

The students at School A, were in Years 6 to 8 and the expectation was that they 

would be achieving late Level 3 and early Level 4 achievement objectives of the 

curriculum. The above assessment results indicated that this was not the case and 

later discussions with the teachers showed that they were unaware of the degree to 

which the students’ knowledge was below expectation. Earlier participation in the 

NDP professional development, gave the teachers prior opportunities to unpack 

many aspects related to the teaching of proportional reasoning. The professional 

development was followed closely by the introduction of the Mathematics 

Standards, alongside a range of support material to assist teachers in recognising 

whether students were achieving expected outcomes appropriate to their year level 

(Ministry of Education, 2009a, 2010). Learning trajectories provided the basis for 

the Number Framework (Ministry of Education, 2008a), which identified 

progressions of learning through various stages. The requirements of the 

progressions and incremental steps of learning shown in the Number Framework 

and Mathematics Standards was complex and this study suggested that more time 

may be required for the teachers to fully comprehend and understand the 

expectations of these documents.  

9.5.4 Aligning Teaching Material and Language 

Some of the difficulties teachers had in interpreting what was required when 

teaching fractions and decimals, related to interpretation of the objectives at each 

level of NZC. The teachers relied on the NDP books and planning sheets for 

clarification, but these did not always align. More recent availability of the 

curriculum elaborations (not written at the time of this research), has supported 
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teachers in understanding the curriculum requirements, with the NDP books and 

planning sheets providing a supporting role.  

In the following chapter, Chapter Ten, the different data sets from previous 

chapters are combined and presented as a discussion, based on themes that 

emerged across the findings. 
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CHAPTER TEN 

DISCUSSION: KEY RELATIONSHIPS 

10.1 Introduction 

This chapter bridges across the different data sets outlined in the previous chapters 

and presents a discussion based on themes that emerged from the results and 

analysis. The data sets began with teacher responses to questionnaires, which 

included written scenarios designed to identify the teachers’ espoused 

professional knowledge, based primarily on subject matter knowledge and 

perceptions of desirable pedagogical practice. This was followed by a detailed 

analysis of professional knowledge in practice, made against a comprehensive 

PCK framework specifically designed for use in mathematics teaching. Classroom 

observations were complemented by student progress gauged through initial and 

final assessment data, combined with contributions from observed classroom 

lessons. Field notes relating to teachers’ comments made during informal follow-

up learning conversations, supplemented these sources.  

10.2 Professional Knowledge of Primary School Teachers 

of Mathematics 

This section discusses themes from data gathered when investigating Question 2: 

What relationships are there between professional knowledge, teaching practice, 

and student learning, when teaching mathematics for numeracy in (a) the 

multiplicative domain and (b) the proportional domain? 

Teachable moments and on-the-spot recognition of student learning 

Uncertainties in the teachers’ curriculum knowledge were identified in response to 

the questionnaire scenarios (Sections 4.2.2 & 4.2.3), when there were times that 

they were unable to identify what might be appropriate next learning steps for the 

students and left that section of the question blank (Andy 4; Bob 5; Anna 1). It is 

generally recognised that on-the-spot recognition of next steps, relies on teachers 

having confidence in their subject matter knowledge, in order to amend previously 

planned teaching and learning progressions (Clements & Samara, 2014; Confrey 

et al., 2014). For the teachers to determine next steps of learning, they required 

termed horizon knowledge (Ball et al., 2008). The teachers’ horizon knowledge 

could have provided them with understanding of the students’ current knowledge 
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and provided them with the vision to see how they could build on that knowledge 

to take the students’ learning to the next level.    

When observed in classroom practice, the teachers showed evidence of indecision 

about next steps, such as when students provided unexpected responses to a 

question, or unanticipated ideas within discussions, which resulted in potential on-

the-spot teachable moments being overlooked or confused. When the notion 

doubling and halving arose, Bob struggled to explain the strategy conceptually, 

while Beth got herself confused mid-way through her explanation. Bob, recorded 

4 × 18 on the whiteboard, and procedurally drew arrows to show how it could be 

changed to 8 × 9 (Section 5.2.2: B.2). Beth provided examples of what happened 

to the product when doubling the multiplier in multiplication, from 2 times a 

number, to 4 times a number, to 8 times a number (Section 5.2.1: A.7). However, 

when doubling and halving arose, during the exploration of the relationship 

between the ×5 and ×10 facts, Beth also got muddled and confused (Section 5.2.1: 

A.7). The knowledge required by Bob and Beth, for this in-the-moment action, is 

referred to by Rowland et al. (2009) as “contingency knowledge” and assists 

teachers in deviating from the planned lesson, by pausing and responding to 

students’ ideas. Contingency knowledge encompasses Smith and Stein’s notion of 

anticipation, and the importance of teachers actively envisioning how students 

might mathematically approach a task, in order to be ready to respond to answers. 

In these instances, neither Bob nor Beth, displayed the contingency knowledge 

that might have provided an understanding of the doubling and halving process 

when it arose. Had they anticipated this approach in advance of the lesson, they 

might have, as suggested by Smith and Stein (1998), been more prepared to 

provide mathematical explanations for the understanding behind the strategy that 

they showed procedurally.  

The teachers’ subject matter knowledge and associated confidence to explain the 

key concepts associated with understanding rules came to the fore in both their 

espoused professional knowledge and classroom practice. When given a problem 

on the questionnaire related to the divisibility rule for nine, the teachers were 

unable to show an understanding of the rule (Section 4.2.2: Scenario 2). While 

Beth and Anna, provided an explanation as to what they would do next with the 

student concerned, this was not associated with the rule for divisibility by nine. 
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The challenges the teachers faced unpacking something that was not familiar to 

them (in this case the divisibility rule) and identifying the teaching that should 

follow, was also seen in class where they only occasionally gave their students 

open-ended problems to solve, or exposed them to the experiences associated with 

more difficult problems. When the students struggled to solve a problem, instead 

of taking the time to unpack the difficulty and allowing them the opportunity to 

learn from the process, the teachers would sometimes ignore the problem (Section 

9.2.1: A.7)  or leave the problem (for another day), and give the students a simpler 

example (Section 6.2.2: B.1). Continually giving the students simpler problems 

that did not challenge them, meant that they were not given the opportunity to 

problematize (Hiebert et al., 1996) their mathematics. The teachers’ uncertainties 

with on-the-spot problem solving, meant that the students were seldom put into 

situations where they were required to delve deeper into their knowledge to seek 

out solutions, and see this as a positive aspect of mathematics learning. The idea 

of making mathematics problematic for learners and requiring students to delve 

deeper is well supported by research (Boaler, 2003; Fennema et al., 1993; Hiebert, 

et al., 1996; Hunter, 2010). Had the students been encouraged to problematize the 

mathematics within a community of learners, it would have allowed them to solve 

problems, explain, and examine their explanations, which then leads to the 

construction of understanding (Hiebert, et al., 1996; Hunter, 2006, 2010; Stein et 

al., 2008). The development of purposeful reasoning through engagement in 

problematizing and later in the reasoning process is highly beneficial to the 

students’ learning.  

Difficulties associated with identification of next steps of learning may have been 

due to insufficient awareness of the students’ current knowledge. When planning 

their lessons, the teachers could have taken into account the students’ existing 

understandings, alongside their gaps in knowledge. These understandings and 

gaps were indicated in the results of the initial assessment tasks. The initial 

assessment tasks were a combination of procedures with connections, and 

procedures without connections (Stein et al., 1996) within a range of curriculum 

levels. Understanding common misconceptions students have and how to resolve 

them is an important component of teacher knowledge (Ball et al., 2001) and 

closer analysis of individual and collective data from the assessment tasks, could 
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have assisted the teachers in recognising specific problem difficulties associated 

with progressions of learning.  

The teachers found the achievement objectives in NZC (Ministry of Education, 

2007) were not always clear in terms of requirements and relied on lesson 

progressions outlined in NDP books and on the associated planning sheets for 

clarification. The NZC, NDP books, and planning sheets, did not always align in 

terms of requirements and this caused confusion for the teachers. For example, the 

Level Three requirement is for the learning and understanding of basic facts up to 

and including the ×10 tables. However, if lessons are planned from the aligned 

AA to AM planning sheets, they are also teaching the students double-digit times 

double-digit multiplication. Uncertainties in determining the next steps of learning 

meant that the lessons were often taught in sequential order as presented in the 

books (Sections 8.4 & 9.4).  

The use of manipulatives and visual representations 

The teachers often used manipulatives to support the explanation and justification 

of a particular strategy during the teaching practice. In the questionnaires, Anna 

and Beth were the only two teachers to mention that they would use manipulatives 

to check the students’ understanding of their answer given to the scenarios. 

Similarly, in the multiplication lessons, Anna and Beth were observed making 

more use of manipulatives to represent the problem at hand, when reinforcing the 

importance of conceptual understanding, than did Bob and Andy. Anna’s and 

Beth’s students all had materials available to them. In contrast, Bob used the 

abacus at the front of the class, demonstrating show-and-tell type scaffolding 

(Baxter & Williams, 2010). Manipulatives are frequently used in mathematics 

lessons with the claim that they extend students’ learning of mathematical 

concepts and operations, as they make them more comprehensible (Nührenbörger 

& Steinbring, 2008; Schoenfeld, 2011; Wright, 2014) and for Beth’s lower ability 

students this was the case. Both of these ideas had been key parts of her observed 

lessons.  

As the lessons moved from multiplication and division to fractions, all of the 

teachers provided more opportunities for their students to use manipulatives. 

Paper circles, paper strips, scissors, animal strips, and fraction tiles are examples 

of manipulatives available to all students, in the classes. The teachers used the 
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manipulatives to deconstruct content and to make connections between the 

manipulative and mathematical idea (Carbonneau et al., 2013; Fennell & Rowan, 

2001) as they endeavoured to identify critical mathematical components that were 

fundamental for understanding particular concepts (Ma, 2010).  The students use 

of manipulatives may have contributed towards improvement in the final fractions 

assessment tasks. Such a relationship would be consistent with previous research, 

which has established that when conceptual understanding of fractions is 

intertwined with procedural knowledge, a greater understanding of concepts is 

evident (Gould, 2005a, 2005b; Way et al., 2015; Wong & Evans, 2007), and this 

knowledge is often formed through the initial use of manipulatives (Swan & 

Marshall, 2010). 

The teachers’ procedural knowledge meant they were comfortable with 

algorithmic procedures and symbolic representations, but they appeared to be less 

comfortable when explaining mathematical concepts, with diagrams and non-

symbolic representations. The teachers’ difficulties with drawing diagrams were 

evident in the questionnaire scenarios, where they were asked to “give their 

answer to each problem” and “draw a diagram and explain” how they solved it. 

This contradicted the espoused encouragement of diagrams as stated by the 

teachers in the questionnaires, and was also not evident in their teaching practice. 

The exceptions were a quick sketch by Anna of the roll-over of groups of ten units 

in place-value understanding and Beth’s drawing of groups of objects when 

reinforcing understanding of the multiplication symbol.  

Research has shown that drawn representations (of fractions) supports 

understanding of mathematical concepts (Gould, 2005b; Way et al., 2015). 

Drawing and then sharing diagrams is important, as the ensuing discussion 

provides support to the students’ thinking, and clarification of ideas, which would 

have assisted the students in understanding the concepts taught in class (Clement, 

2007; Flores, 2010; Gould, 2005a, 2005b). This understanding may then have 

been evident in the assessment tasks, where the students were asked to draw a 

diagram to show how they worked their answers out. However, diagrams were 

used only occasionally and when they did, many were inaccurate which resulted 

in incorrect responses. For example, on the multiplication Task 4 (12 biscuits put 

into packets of 3, Figure 7.3) and fraction Task 3 (comparing the fractions 4
3  and 
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8

7 , Figure 7.20) inaccurate diagrams led to incorrect answers. When teachers use 

drawn representations, a noticeable change in their PCK and conceptual 

understanding is evident (Way et al., 2013), which results in improved student 

conceptual understanding (Flores, 2010; Gould 2005a; Way, et al., 2013).  

Use of Learning Intentions in the lessons 

In the classroom, all teachers outlined the learning intention (WALT) for the day 

at the start of each lesson and discussed this with their students (the exception 

being Andy in the initial multiplication lesson). Presenting a specific goal for 

learning can provide teachers and students with a clear outcome that guides the 

learning and selection of activities that takes place (Smith & Stein, 2011; Stein et 

al., 1996). Without specific learning goals, determining what learning has 

occurred as a result of the instruction and activities can be problematic (Hiebert et 

al., 2007).  

However, this study found that sharing the WALT often led to teachers directing 

the learning, rather than facilitating the learning, as they focussed on success 

criteria for achieving the learning intention. In directing the learning back to the 

learning goal for the day, there were times when the teachers failed to capitalize 

on students’ ideas that arose. Fostering students into lesson contributions means 

accepting ideas whether they are right or wrong (Fielker, 1997). Even if the 

students had come to a wrong conclusion, the important thing is that they 

participated in discussion and learnt to make their own judgements. In the 

observed lessons, seldom did the opportunity arise for deviation from the WALT, 

which meant they relied on the teachers’ judgements and authority (Fiekler, 1997), 

rather than learning from their own ideas (and possibly mistakes).  

When the results of the final multiplicative domain assessment tasks were shown 

to the teachers, they were disappointed. For example, Andy was surprised to see 

the minimal progress made by his students from the initial tasks (4 tasks showed 

slight improvement; in 3 out of the 9 tasks less students were correct; while in 2 

tasks, correct responses remained the same). His comment was that he thought 

that he had “taught them” what “times” meant. However, within a Vygotskyan 

sociocultural orientation to lessons, a primary belief is that learning in 

mathematics is based on open dialogue between students, and between teacher 
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and students, in order for the students to gain further knowledge. By constantly 

returning to the WALT to re-focus the learning, dialogue was directed rather than 

open, which resulted in limited multiplicative learning. While Andy may have 

encouraged discussion amongst his students, multivocal conversations were not 

evident. However, in the later fractions lessons, the WALT was less prominent 

which provided opportunities for the students to discuss ideas more openly, and 

possibly contributed to greater improvement from the initial assessment tasks to 

the final assessment tasks.   

Teachers’ use of discussion in the classroom 

Quality discourse during discussions has been acknowledged as having a positive 

outcome on student learning (Hunter, 2006, 2009, 2012). The teachers, when 

identifying the next steps of learning in the written scenarios, did not mention 

encouraging discussion among students. When asked if they encouraged their 

students to justify their choice of strategy and thinking with others (Section 4.2.4: 

Statement 3), the teachers’ responses included always, often, and sometimes 

(Table 4.1). However, such quality discussion seldom eventuated in the classroom, 

where the students were unaccustomed with challenging the thinking of others. 

The teaching was generally based on the use of a single strategy (generally due to 

the wording of the WALT) when solving problems, which meant the students 

often limited responses to describing to others in their group their procedure for 

solving the equation. The students shared their solution methods step-by-step, 

seldom explaining the reason why they solved problems in the manner they had, 

or justifying their strategies.  

Observations suggest that as the students progressed from the multiplicative to the 

proportional domain, they became a little more conversant. When students create 

new knowledge for themselves based on networks within the classroom (their 

peers), they are more likely to retain their knowledge (Yackell & Cobb, 1996). 

The more frequently the teachers asked the students to describe their solution 

strategies and justify their responses the more they were engaged, which as 

Hiebert and Wearne (1993) maintained, resulted in higher gains in mathematics 

achievement. The group discussions during the students’ fraction learning were 

more co-operative and resulted in greater overall improvement on the final 

proportional tasks than was evident on the earlier multiplicative tasks. During this 
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process, the students helped each other learn in what Vygotsky referred to as their 

zone of proximal development. The students shared their thinking, which 

enhanced their problem-solving skills. 

In generating quality discussions, teachers need to consider their use of 

questioning strategies and techniques. Beth was the only teacher who in response 

to the questionnaire scenarios, asked students to explain their thinking. For 

example, when multiplying fractions she responded, “Get (ask) Jo to explain her 

answer. Check Jo understands and make sure she is not just remembering rules” 

(Section 4.2.4: Scenario 6). Effective teachers are responsive teachers, in that they 

constantly elicit, monitor, and respond spontaneously and effectively to their 

students’ thinking (Anthony & Walshaw, 2009; Franke & Kazemi, 2009), and in 

her questionnaire responses Beth showed recognition of the need to probe 

students’ thinking to ensure understanding. 

During teaching sessions, the teachers often used lower-order questions similar to, 

“Why did you do that?” and there were some missed opportunities to extend the 

students’ thinking by asking higher-order questions along the lines of, “What 

would happen if we changed this [number] to?” or, “If we changed this [number], 

how might that affect this [number]?” When questioning, the teachers were very 

much focussed on what Fraivillig et al. (1999) referred to as “supporting” 

question types and seldom used higher-order questions that extended or advanced, 

the mathematical thinking of their students. As found in other research (Hallman-

Thrasher, 2015), the teachers generally relied on supporting students towards 

correct solutions through leading questions as these frequently took less time to 

answer. However, when a teacher extends the thinking of students, the resulting 

discussion allows them to compare their own ideas with those of others and to 

generalise and draw conclusions (Fraivillig et al., 1999). Research has shown that 

a crucial factor in mathematical achievement is the manner in which students 

interact with their teachers through engaging in questions which require 

development of higher-order thinking skills (Way, 2008). Further use of questions 

to extend students’ thinking may have supported performance in the assessment 

tasks.  
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Making connections across mathematics strands  

Being numerate involves being both efficient and effective, and includes a 

connectionist orientation involving an awareness of different methods of 

calculation, in order to choose an appropriate method (Askew, 1999). In this study, 

limited attention to connections meant that both the teachers and their students 

may not have seen mathematics in the broader sense, but rather viewed it as 

compartmentalised into separate unconnected ideas within topics. For example, 

the relationship between groupings of 5 and groupings of 10 made in the 

multiplication lessons, were not connected to fraction problems, such as when 

something is halved there are twice as many pieces. Past researchers have found 

that in order to facilitate and strengthen learning, teachers need to emphasise and 

promote the connections between and among ideas and topics (Hiebert & 

Carpenter, 1992; Howley et al., 2007; Kazemi & Stipek, 2001; Ma, 2010; Stigler 

& Hiebert, 2004; Treffers, 2001). 

In the written scenarios, the teachers seldom made connections between 

understanding of concepts associated with prior learning and identification of 

what to include in the next phase of the learning process. There were times when 

the next step might have included returning to previously learnt concepts. For 

example, when decimal place-value understanding was an apparent difficulty in 

fractions (Section 4.2.3: Scenario 4), the teachers might have recapped whole 

number place-value understanding, then returned to decimal numbers. In the 

observed lessons, the teachers also missed many opportunities to connect the 

current learning contexts to past learning, both within number as well as between 

number and other strands of mathematics. The application of number is important 

to the connectionist emphasis (Askew, 1999), such as when finding equivalent 

fractions and finding fractions of a set. In these instances, the students require a 

strong foundation and understanding of multiplicative thinking, to understand the 

magnitude of the fraction. Students can later extend this knowledge to think 

relatively, as they maintain the ratio between the numerator and denominator 

(Lamon, 1994). However, this research found that when exploring equivalence the 

understandings and connections between concepts were not emphasised, which 

meant the students may not have recognised the connection between the key 

mathematical ideas they had learnt in class and examples in the assessment tasks.  
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Multiplication and division lessons focussed heavily on multiplication and very 

little on division, which may have had repercussions for the teaching of fractions 

later. When whole number division understanding is limited to a sharing model, it 

can impede progress and limit strategies available, when alternative approaches 

may be more effective (Anghileri, 1999). This was exemplified during the 

fractions lessons, when problems were presented with a focus on equal sharing, 

resulting in lessons based on partitive division. Emphasis was given to the number 

of objects that resulted when something was shared out equally, rather than the 

proportional relationship between the pieces and the whole. Part of the difficulty 

in understanding the relationship between division and proportional reasoning, 

may be attributed to the teachers’ lack of awareness of the distinction between 

different division problem structures (Section 4.2.2: Scenarios 2 & 3). This meant 

that the students were also unaware of these differences. This became noticeable 

in tasks on the students’ assessment, when they were given an example of each of 

the two division types (Tasks 3 and 4) and many were unable to do so. Other 

research has also shown that teachers place a large emphasis on partitive division 

and that teaching quotitive division seldom occurs effectively (Roche & Clarke, 

2009; Roche et al., 2016). Giving the students multiplication and division 

problems together, and de-emphasising sharing procedures, assists in developing 

number sense (Anghileri, 1999).   

Conceptual understanding, number sense, and mathematics for numeracy 

The teachers’ intuitive understanding and reliance on procedural knowledge 

meant that they often found unpacking the underlying structure of a problem 

required for conceptual understanding difficult to model to their students. The 

difficulty the teachers had explaining some of the mathematical concepts aligns to 

previous research, which has shown that a teacher will rely on procedural 

understanding, when they have insufficient conceptual understanding of 

mathematics content (Way et al., 2015). Limited conceptual understanding was 

initially evident on the questionnaires for Bob and Andy when they relied on rule-

based vertical algorithms to show how they would solve most of the scenarios. 

This contrasted with Anna and Beth who responded by showing a variety of 

different strategies, including rounding and compensating, place-value 

partitioning, equal adjustment, and using ratios. The development of conceptual 
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understanding includes an awareness of the connections between concepts and 

procedures (Wong & Evans, 2007) and there were times when the relationships 

between ideas were overlooked. Although the teachers sometimes struggled to 

model the reason why things occurred mathematically, they persevered with this 

practice and indicated an awareness of the need for students to understand this 

relationship, such as when they deconstructed content as part of understanding the 

mathematics involved in the problems (Table 5.3: B.1 & Table 6.3: B.1). Current 

reforms and research emphasise the benefit of initial conceptual understanding, 

prior to or alongside procedural knowledge, if students are to make sense of 

problems (Hiebert & Carpenter, 1992; Kazemi & Stipek, 2001; Skemp, 1989; 

Treffers, 2001).  

Teachers’ number sense, as a component of Profound Understanding of 

Fundamental Mathematics (PUFM), seldom came to the fore in the observed 

lessons on multiplication and division, and fractions. Emphasising addition of 

fractions as the repeated adding of units of the same size, and unpacking this 

notion (with manipulatives) alongside the meaning of the numerator and 

denominator in a fractional number, would be of benefit to understanding fraction 

computation (Ma, 2010). During the observed fraction lessons, little attention was 

given to equivalent fractions. This may have helped address students’ confusions 

and misunderstandings, including their use of the “add across” error. For example, 

many students in their assessment tasks, did not recognise that 4
1

+ 4
1

 + 4
1

could 

not possibly equal 12

3
, which is equivalent to 4

1
, nor could it equal 12

1
, which is less 

than 4
1

 (Section 7.2.1: Task 1 & Section 9.3.1: Task 1). Developing number sense, 

reasoning and operation sense is reflected in Skemp’s (2006) notion of relational 

understanding, which allows students the opportunity to implement ways of 

solving problems that make sense to them. Something is only understood if one 

can see how it is related or connected to other things that are known (Hiebert & 

Carpenter, 1992; Skemp, 1989).  

 All of the teachers presented problems using situations or contexts that the 

students would probably experience in real life. These contexts included cookies, 

sandwiches, pizzas, money, and birthday parties. Tasks based on students’ 

interests and mathematical strengths are an effective way to engage students, 
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promote mathematical justification, and develop conceptual understanding (Jane 

& Fey, 2000; Jennison & Beswick, 2010). However, the connections made in 

class between life experiences and mathematics, were not always transferred into 

their assessment tasks. School A, was a multi-cultural school with the greatest 

proportion of students from non-English speaking backgrounds and maybe the 

contexts of pizzas (in the assessment tasks) were not so familiar to these students.  

Associated with conceptual understanding and number sense is estimation (Jordan 

et al., 2006; van den Heuvel-Panhuizen, 2001c). Of the eight multiple-choice 

questions on the questionnaires, three asked for estimated answers. However, 

during their teaching the teachers placed an emphasis on correct answers as they 

strove for accuracy, and estimation was not mentioned, or used as a self-checking 

mechanism. Approximation and estimation involve understanding the order of the 

magnitude of numbers and are important tools to understand and utilise when 

carrying out mathematics in the real world (van den Heuvel-Panhuizen, 2001c). 

During the final assessment tasks, the students could have used estimation as a 

self-checking mechanism on a number of tasks to guide their answers, which may 

have assisted them in recognising incorrect answers.  

10.3 Using a Framework of Professional Knowledge  

This section presents conclusions drawn from data gathered when investigating 

Question 3: How does the use of a framework assist in the investigation of 

teachers’ professional knowledge in practice?  

This study used a modified version (Figure 3.1) of the PCK framework of Chick 

et al. (2006), (Figure 2.1), for the in-depth analysis of the eleven classroom 

lessons. As noted earlier, the Chick et al. framework was chosen as it was 

designed with mathematics teaching at the forefront and included particular 

categories of knowledge that provided a thorough basis for conclusions to be 

made, concerning commonalities in professional knowledge.  

The use of a framework to investigate teachers’ professional knowledge in 

practice, provided a structured range of categories for detailed analysis of 

observed lessons. The framework highlighted the importance of content 

knowledge for teachers, while acknowledging that there is a difficulty separating 

it from pedagogy in classroom practice. As a result of analysis of the classroom 
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lessons within the three framework categories (Clearly PCK, Content Knowledge 

in a Pedagogical Context, and Pedagogical Knowledge in a Content Context), the 

themes outlined in the preceding section (Section 10.2) emerged. On closer 

analysis of the teachers’ espoused professional knowledge and student 

achievement, similar themes also emerged. 

The Clearly PCK category showed that there were many inseparable links with 

content knowledge and pedagogy. It allowed the researcher to identify that during 

the mathematics lessons the teachers used a range of approaches for teaching a 

mathematical concept or skill, in order to encourage and support their students’ 

learning. These approaches included using modelling books, establishing a 

learning outcome, using manipulatives, encouraging discussion, and using word 

problems.  

The sub-categories within the Clearly PCK category indicated a difficulty teachers 

had in understanding the requirements and expectations of the curriculum, which 

may have contributed to uncertainty related to further teaching and learning 

progressions. The framework identified that one of the teacher’s strengths, was 

her recognition of the importance of students’ conceptual understanding alongside 

procedural knowledge. Whilst the teachers initially struggled with teaching 

mathematics conceptually, they persevered with this approach, emphasising to 

their students the importance of understanding mathematics as well as how to 

carry out mathematical computations accurately, in order to become numerate. In 

many instances, the focus on conceptual understanding required the teachers to 

unpack for themselves the mathematics they were teaching, as without conceptual 

understanding teachers will not be able to explain why a procedure works, or even 

why it is necessary (Way et al., (2013). 

The Content Knowledge in a Pedagogical Context category, emphasised the 

importance of subject matter knowledge in relation to teacher practice. This 

section of the framework indicated to the researcher that the teachers regularly 

deconstructed the content of what they were teaching, in an effort to assist the 

students with their understanding of the mathematics. However, the few times the 

teachers made connections with the mathematical structure of the problems, was 

highlighted when they exhibited profound understanding of mathematics. The 

teachers did not encourage the use of estimation, a key component of number 
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sense (Jordan et al., 2006; van den Heuvel-Panhuizen, 2001e)), and it was not 

used as a method to check for the reasonableness of answers. There were times 

when the teachers recognised student misconceptions and corrected these, and 

occasions when they may have contributed to these, due to in-the-moment 

responses.   

In the Pedagogical Knowledge in a Content Context, emphasis was placed on the 

requirements of teaching practice. The use of assessment data available to the 

teachers was underutilised when planning lessons. The majority of questions were 

the lower-level supporting type, and the teachers seldom extended the students 

with higher expectations, going beyond initial solution methods to solve problems. 

New frameworks of professional knowledge  

This research established that a framework provided the researcher with specific 

categories of knowledge to carry out fine-grained analysis of teachers’ practice. 

After using the framework to analyse professional knowledge in practice, the 

researcher concluded that teachers could possibly benefit from the use of a 

framework to reflect on their personal professional knowledge and to support their 

teaching practice. Therefore, building on the findings of this research, two 

frameworks of professional knowledge were developed: one for teachers to reflect 

on their practice, and one for researchers to investigate the professional 

knowledge of teachers in practice.   

While it is acknowledged use of the adapted framework (Figure 3.1) of Chick et al. 

(2006) provided a basis for the coding of data in this study, during the analysis 

process the researcher recognised that categories relating to knowledge of students, 

including their attitudes and beliefs about mathematics and relationship with their 

cultural identity, were missing categories. Shulman (2015) also acknowledged 

these notions as missing components of his original PCK thinking, which was 

based on theoretical underpinnings, rather than teacher practice. Having this 

knowledge is an important component of teachers’ professional knowledge, and 

so the researcher included these into the establishment of a Wheel of Knowledge 

for classroom teachers. The wheel of knowledge (Figure 10.1) is a representation 

of the categories and sub-categories of professional knowledge, which teachers 

might consider within their classroom practice.  
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     Figure 10.1 Wheel of Professional Knowledge 

The wheel is based on four key categories of professional knowledge identified 

throughout this research including knowledge of students, pedagogical knowledge, 

content knowledge, and curriculum knowledge, and was created specifically for 

use by teachers. A wheel was chosen to represent the cyclic, on-going nature of 

acquisition and implementation of knowledge, and to sit alongside 

implementation of the “Teaching as Inquiry Cycle” (Ministry of Education, 2007, 

p. 35). The spokes of the wheel are not intended to represent all areas of 

professional knowledge required to teach mathematics effectively. However, they 

are a combination of aspects of professional knowledge that were identified as 

particularly important in the classroom in this research. The sectors might widen, 

or narrow, depending on the characteristics of specific mathematical topics, the 

students concerned, or lesson styles. While the sectors were separated within the 

diagram, the dynamic inter-relationship between the components is reflected in 

the meeting together at the centre of the wheel.  
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It is not expected that teachers would focus on all categories in every lesson, nor 

on any one category (spoke of wheel) giving it greater or lesser importance. 

Instead, recognition of each component should be evident over a period of time 

(for example, a complete unit of work). The wheel of professional knowledge 

could be utilised by school leaders, classroom teachers, and pre-service teachers. 

It might be used in staff meetings, as part of the attestation and appraisal process, 

or for teachers to refer to as a reminder of their professional knowledge in action.  

The adapted PCK framework of Chick et al., (Figure 3.1) has been similarly 

adapted for researchers to use during classroom-based research. The new 

framework (Figure 10.2) was compiled for use by researchers when focussing on 

the professional knowledge of teachers, based on comparable attributes to those of 

The Wheel, with more detailed explanation of categories. Again, the categories 

were identified through this study as important components of professional 

knowledge, with some later found to be acknowledged by Shulman as missing 

components of his original PCK material.  

The new framework for researchers is purposely called a Professional Knowledge 

Framework, as opposed to a PCK Framework (as used in this study). Many of the 

original research frameworks (Chick et al., 2006; Schoenfeld, 2013) were 

designed with Shulman’s original PCK thinking at the forefront. Shulman has 

since acknowledged in his more recent writings (Shulman, 2015) that the idea of 

PCK was put forward at a particular point in time, as a result of the discussions 

that were happening around education as theory, practice, policy, and action. 

Shulman acknowledged that teachers are professionals who require a special type 

of professional knowledge unique to their situation and that original PCK thinking 

was devoid of affective characteristics, with insufficient attention given to broader 

social and cultural contexts. Hence, the new framework presented here is a 

professional knowledge framework based on findings of this research and 

Shulman’s more recent contribution. 
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Figure 10.2 Framework of Professional Knowledge  

(Acknowledging: Chick et al., 2016; Shulman, 2015). Note; * denotes new categories, or 

changes to existing categories, on the framework (Figure 3.1) used in this research.  

 

Professional Knowledge Category Evident when the teacher... 

A. Knowledge of Students 

 *1. Prior Experiences Acknowledges an individual student's prior personal experiences, in 

relation to mathematics learning. 

*2. Cultural Knowledge Demonstrates understanding of all students' identities and heritage, and 

the impact of these on mathematics contexts. 

*3. Attitudes and Beliefs 
Demonstrates an understanding of the impact of individual students’ 

prior mathematical experiences on their current learning.   

B. Curricular Knowledge 

 *1. Achievement Objectives 

Demonstrates understanding of expectations of curriculum objectives. 

2. Goals for Learning Uses a goal for students’ learning (may or may not be related to 

specific mathematics content). 

*3. Learning Progressions Demonstrates understanding of learning progressions such as The 

Number Framework in teaching practice. 

4. Knowledge of Assessment Demonstrates summative and/or formative assessment practices. 

5. Questioning - Supporting Questions asked support students’ comments, assist students in 

clarifying thoughts, ask for group support, and/or ask others to 

paraphrase explanations. 

6. Questioning - Eliciting Questions asked elicit different solution methods, encourage 

elaboration, and/or promote collaborative problem solving. 

7. Questioning - Extending Questions asked encourage generalizations, consider relationships 

between concepts, allow for reflection on multiple solutions methods, 

and/or provide challenge.   

C. Content Knowledge  

 1. Purpose of Content Knowledge  Demonstrates reasons for content being included in the curriculum or 

how it might be used.                          

2. Deconstructing Content to Key  

Components 
Identifies critical mathematical components within a concept that are 

fundamental for understanding and applying that concept.  

3. Mathematical Structure and 

Connections 
Draws attention to mathematical structure and makes connections 

between concepts and topics 

4. Methods of Solution Demonstrates a method(s) for solving a mathematics problem. 

5. Procedural Knowledge  Displays skills for solving mathematical problems. 

*6. Conceptual Understanding Exhibits a thorough conceptual understanding of identified aspects of 

mathematics. 

*7. Number Sense Demonstrates a meaning for numbers and their relationships.  

D. Pedagogical Knowledge   
1. Classroom Techniques Demonstrates positive classroom practices  

2. Getting and Maintaining Student 

Focus 

Demonstrates strategies for engaging students. 

*3.Teaching Approaches Demonstrates strategies or approaches for teaching a mathematical 

concept or skill. 

4. Cognitive Demands of Task Identifies aspects of the task that affect its complexity.  

*5. Authentic Representations of 

Concepts 

Demonstrates ways to model or illustrate a concept (can include 

materials or diagrams). 

6. Knowledge of Resources Uses resources available to support teaching. 

7. Student Thinking Addresses students' ways of thinking about a concept, or recognizes 

typical levels of understanding. 

*8. Technology Inclusion Demonstrates inclusion of a range of technology sources into 

classroom practice. 
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CHAPTER ELEVEN 

CONCLUSIONS, LIMITATIONS, and IMPLICATIONS 

 

11.1 Introduction 

This chapter builds on the results and key themes discussed in relation to existing 

literature outlined in Chapter 10. As indicted in Chapter One, there has been 

limited research around the professional knowledge of New Zealand primary 

school teachers, and while some research has been carried out via anonymous 

questionnaires (Ward, 2006), which focused on the espoused views of teachers’ 

professional knowledge, there has been little which included the investigation of 

actual classroom teaching practice.   

This study, contributes to an awareness and understanding about the professional 

knowledge of primary school teachers that emerged from analysis of data from 

multiple sources. Knowledge of teaching and learning should inform the practice 

setting (the classroom) and addressing the theory-practice gap is essential in 

progressing teaching and learning in productive ways (Loughran, 2010). 

Therefore, while data were gathered from multiple sources, the research primarily 

focussed on teachers’ professional knowledge in practice in the mathematics 

classroom (during the teaching of the multiplicative and proportional domains). 

The professional knowledge in practice was explored using a detailed framework 

(Figure 3.1) adapted from the framework of Chick et al., (Figure 2.1), which 

identified categories of knowledge associated with teaching practice. The 

professional knowledge evident in practice was equated to the teachers’ espoused 

professional knowledge, and student learning based on assessment data, related to 

curriculum levels and expected levels of achievement. As a result of analysis 

across the three data sources (espoused professional knowledge, professional 

knowledge in practice, and student learning), themes emerged in relation to the 

professional knowledge of New Zealand primary school teachers (Chapter Ten). 
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11.2 Conclusions 

Conclusions are presented based on the results, analysis, and discussions of the 

themes that emerged from the multiple-data sources presented in Chapters Four to 

Ten. They address the three specific questions, which framed this research:  

1) What professional knowledge is evident when teaching mathematics for 

numeracy in (a) the multiplicative domain and (b) the proportional domain? 

2) What relationships are there between teachers’ espoused professional 

knowledge, professional knowledge in practice, and student learning, 

when teaching mathematics for numeracy in (a) the multiplicative domain 

and (b) the proportional domain? 

3) How does the use of a framework assist in the investigation of teachers’ 

professional knowledge in practice?  

11.2.1 Professional Knowledge in Practice  

This section presents conclusions drawn from the analysis of data gathered, when 

investigating Question 1: What professional knowledge is evident when teaching 

mathematics for numeracy in (a) the multiplicative domain and (b) the 

proportional domain? 

Teaching multiplication and fractions for understanding is not as simple as it may 

appear, and brings with it many complexities to be addressed within classroom 

lessons. The following concluding points emerged from the analysis of data and 

discussions in relation to the teachers’ observed practice (Chapters 5, 6, 8, & 9). 

The teachers used manipulatives to support the explanation and justification of a 

particular strategy, and emphasised to the students the importance of conceptual 

understanding. As the lessons moved from multiplication and division to fractions, 

opportunity was provided for all students to use the manipulatives. Relationships 

between the manipulatives and understanding of mathematical concepts and 

operations is developed when students use equipment to construct a model and 

develop its meaning (Flores, 2010; Nührenbörger & Steinbring, 2008), and this 

was evident when solving fractional word problems which were usually based 

around food. Manipulatives such as paper circles, paper strips, and fraction tiles, 

were used alongside real-life experiences that were meaningful to the students 

(Section 11.2.2). Manipulatives came to the fore in problems such as sharing three 
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cakes among eight people, when the students used circles and scissors to explore 

the different sized portions each person might receive. Manipulatives allowed 

both the teachers and the students to deconstruct ideas in the different problems, 

as they endeavoured to identify critical mathematical components that were 

fundamental for understanding particular concepts, such as equal sharing.  

Different sub-categories of knowledge on the framework came to the fore, 

between the multiplication lessons (Table 5.3), and the fraction lessons (Table 

6.3), depending on the, lesson structure, teaching style, context, the problem types, 

opportunities afforded to students for conversation, and use of manipulatives. 

When the lessons were teacher dominated, the problem samples were structured 

and deconstruction of content was prominent, with goals for learning featuring 

prominently. For example, Bob’s initial multiplication lesson was teacher 

dominant and he could immediately respond to students’ ideas because he was on-

the-spot to do so. Whenever the lesson started to deviate from given scenarios, he 

refocussed students on the WALT to keep the lesson progressing as planned. This 

contrasted with the fraction lesson where the teachers were less directly involved 

in conversations and the students spent more time problem solving together. Less 

teacher involvement meant that deconstruction of content was less (e.g., Bob was 

not so directly involved so was unable to immediately respond to students’ 

thoughts) and the goals for learning were not addressed as frequently (the students 

were more focussed on their lesson due to greater involvement).   

This study found that sharing the WALT resulted in both positive and negative 

consequences. The teachers used the intended outcome of the lesson positively to 

refocus the students, when discussion became more social and less centred on 

mathematics (e.g., when Andy’s students used pie scenarios and the discussion 

moved to different pies, then to parties and food in general). However, a negative 

consequence of the WALT was when it was used to direct the learning, rather 

than facilitate the learning, which meant that teachable moments were overlooked. 

For example, directed learning was evident when Bob discussed with the students, 

groupings of beads on the abacus and what mathematical expression the beads 

represented. A child gave a response (that there were two ways to solve the 

problem), and rather than capitalise on the response, Bob simply acknowledged it, 

refocused on the WALT, and moved on. A specific goal is intended to provide the 
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teacher with a clear outcome that guides the learning and selection of activities 

that take place and highlights the key mathematical ideas to develop the students’ 

conceptual understanding (Smith & Stein, 2011). However, as this research found, 

the WALT should not dictate the learning.  

The teachers did not capitalise on the wide range of assessment data available to 

them. Recognition of the current difficulties and misconceptions of the students 

could have provided ideal next steps of learning in the subsequent teaching 

sessions. Identification of gaps in understanding in previous learning is necessary, 

as they can have a compounding effect on low student achievement if not 

addressed (Allsopp et al., 2007). Closer analysis of individual and collective 

results on the initial tasks associated with this research, along with data from 

Numeracy Project Assessment (NumPA) tools and Progressive Achievement tests 

(PAT), could have assisted the teachers in recognising specific problem 

difficulties, as well as identifying the progressions of learning within Number 

Framework stages (Ministry of Education, 2008a, 2008f, 2008g).  

Tasks selected by the teachers were generally low-level (Smith & Stein, 1998), 

relying on procedures, such as the sharing out of candles on cakes. These tasks 

meant that the teachers’ questioning of students about the problem solving 

strategies utilised, was predominantly around low-level supportive questions 

(Fraivillig et al., 1999), such as “Why did you do that?” Questions that challenged 

and extended the students thinking were seldom presented. Insufficient 

opportunities presented by the teachers for students to extend and justify their 

thinking, became evident when the students discussed strategies together in their 

groups. Students tended to give systematic accounts of procedures and their peers 

seldom questioned these, or asked for further justification of steps taken. 

11.2.2 Relationships between Espoused Professional Knowledge, 

Professional Knowledge in Practice, and Student Learning. 

This section presents conclusions drawn from data analysis and themes identified, 

when investigating Question 2: What relationships are there between teachers’ 

espoused professional knowledge, teaching practice, and student learning, when 

teaching mathematics for numeracy in (a) the multiplicative domain and (b) the 

proportional domain? 
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Two teaching strategies used by the teachers combined to provide a relationship 

between their teaching practice and an increase in student achievement. These 

were the simultaneous use of manipulatives, and the presentation of word problem 

examples using scenarios and contexts relevant to the students’ real-life 

experiences. When the teachers created scenarios that appealed to the students, 

they enabled conceptual understanding by relating the mathematics to their real-

life world (Anderson-Pence et al., 2014; Carpenter et al., 2015). Conceptual 

understanding was further enabled through the use of manipulatives (Stein & 

Bovalino, 2001). For example, when finding fractions of sets in class lessons, 

scenarios related to birthday parties and the number of candles on cakes, or 

cookies shared among class members, were solved used paper circles and counters. 

Not only were the names of students in the class used, but so were the names of 

teachers at the school – and even the researcher. The combination of real-life 

contexts using their own names in fraction problems in class, possibly contributed 

to an increase in the number of students who recalled the mathematics associated 

with finding fractions of sets, in assessment tasks. For example, in the initial 

assessment, 39 % were correct on Task 5 (find 3
1 of 18), while in the final 

assessment 71% were correct on a similar Task 5 (find 3
1 of 21).  

There was an emphasis during teaching on the multiplication symbol as groups of, 

with 6 × 3 being interpreted as 6 groups of 3. Recognising how the structure in the 

number patterns that are formed relates to tables facts, has long-term significance 

in multiplicative understanding (Anghileri, 1999). Understanding the structure of 

the groups of idea is the basis for using known facts to solve unknown facts, as 

well as other structures of multiplication (Davis, 2008; Mulligan & Mitchelmore, 

1997, 2009) and it appears that the multiplication models created in class (often 

using Unifix cubes), were not always connected to final assessment tasks. This 

became evident, when the students were asked to solve and draw a diagram for    

3 × 6 (Task 2), and only 24% were able to do so correctly and when asked to use 

the 6 × 5 fact to solve 6 × 6 (Task 7) and less than half were able to do so.  

There was a prominence within the observed lessons on teaching multiplication in 

isolation, without mention of links to division. Teaching multiplication and 

division provides some challenges for teachers when encouraging students to 
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develop conceptual understanding (Anghileri, 1999; Ball et al., 2001). The 

teachers acknowledged during learning conversations that division taught within 

the unit of work focussed on equal sharing problem types. However, working on 

multiplication and division facts together, with less emphasis on sharing 

procedures in division, helps develop number sense and an awareness of the links 

between operations (Anghileri, 1999, 2006). As with other research (Roche & 

Clarke, 2009, 2011; Roche et al., 2016), understanding the grouping, or sets of 

idea associated with quotitive division was not so well understood or addressed by 

the teachers. The minimal teaching time afforded division, with focus on partitive 

division, was reflected in the teachers’ questionnaire responses (Section 4.2.2: 

Scenarios 2 & 3) and in the students’ final assessments. Students’ assessment 

results showed that only 10% of the students could draw and explain a partitive 

division problem (Section 7.1.2: Task 3, “You have 20 biscuits to put into 4 equal 

packets, how many biscuits will be in each packet?”). Furthermore, only 6% could 

explain and draw a quotitive division problem (Section 7.1.2: Task 4, “You have 

12 biscuits to put into packets with 3 biscuits in each packet. How many packets 

can you make?”).  

The teachers’ uncertainties of the specifics of what was expected at each 

curriculum level was reflected in the difficulties they had in identifying next 

learning steps for their students. During their NDP participation, all teachers had 

been introduced to the Number Framework, which is set out in stages of 

increasing complexity requiring greater understanding of number, as students 

progress through the stages (Bobis et al., 2005; Higgins & Parsons, 2011). A 

clearer understanding of the progressions could have assisted the teachers in 

identifying students’ next steps of learning. The teachers had difficulty identifying 

where to next in the given scenarios on their written questionnaires and often left 

this section blank, while during teaching time the uncertainty of the subsequent 

progression of problem types and associated strategies, possibly contributed 

towards the teachers reluctance to utilise in-the-moment  opportunities. There 

were times when the teachers may have diverted from planned lessons to discuss 

ideas that arose incidentally, but instead reminded the students of the current 

learning intention and left the idea for another time. This in-the-moment 

responsiveness, or ability to understand an issue from a learner’s perspective 
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(Schoenfeld, 2011), also known as contingency knowledge (Rowland et al., 2009), 

is an important component of teachers’ professional knowledge in classroom 

practice.  

11.2.3 The use of Frameworks in Research 

This section presents conclusions drawn from the analysis of data when 

investigating Question 3: How does the use of a framework assist in identification 

of teachers’ professional knowledge in practice?  

The subject-matter-specific professional knowledge which Shulman (1986) 

referred to as pedagogical content knowledge, links content knowledge and the 

practice of teaching and the use of a framework provided a systematic 

representation of categories, which provided the researcher with detailed data 

associated with teachers’ professional knowledge in practice in the classroom. 

The framework used was built on one originally presented by Chick and 

colleagues (Figure 2.1), based on Shulman’s original PCK categories of 

pedagogical knowledge, content knowledge, and pedagogical content knowledge. 

Chick et al., referred to their broad categories as Clearly PCK, Content 

Knowledge in a Pedagogical Context, and Pedagogical Knowledge in a Content 

Context, to show the connections between content knowledge and the practice of 

teaching. Sub-constructs within each of the three broad categories, assisted the 

researcher in coding and analysing the data associated with the teachers’ practice 

in detail, in order to gain insight into the attributes of classroom practice.  

Identifying whether the framework used was fit for purpose for classroom 

observations. 

In order to identify the professional knowledge of teachers during teaching 

practice, the Chick et al. framework (Figure 2.1) was adapted slightly for the 

analysis of data (Figure 3.1), as previously it had been used via questionnaires 

(Section 3.13). To assist in determining if the adapted Chick et al. framework 

could be considered fit for purpose in relation to this thesis, it was decided to 

compare the manner in which these data were coded to other methods of coding 

(Section3.13). The deductive approach and adapted Chick et al. framework was 

compared to (i) a grounded, inductive approach (Glaser & Strauss, 1967), and (ii) 

the established model of Ball et al. (2008), which was already identified as 

suitable for classroom use.  
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(i) Comparing the analysis of data against the framework used, to a grounded 

theory approach:  

Andy’s first multiplication lesson and Bob’s fraction lesson were used for this 

analysis. In order to make the framework comparison process valid and credible 

from a research perspective, a senior colleague (referred to as Jill) who was 

experienced in the grounded approach of data analysis, was given transcripts of 

the two lessons and asked to code them accordingly. After an initial coding of the 

lessons from a grounded approach, Jill identified a number of emerging themes 

and identified the contexts on which these were based. These contexts, along with 

other instances identified by the researcher, were identified within the lessons and 

traced back to categories within the framework (Table 11.1). In order to determine 

whether the framework used was fit for purpose a judgement was then made about 

how well the key idea behind each of Jill’s themes was reflected in The 

Framework categories and descriptors (Figure 3.1).   

a) The use of manipulatives – sharing the purpose of using manipulatives 

with the students and drawing out the mathematics. During the multiplication 

lesson Andy used animal strips and Unifix cubes, and in the fraction lesson Bob 

used paper circles representing birthday cakes and counters for candles. These 

manipulatives were used to draw out the mathematics and became evident within 

the Framework, when the teachers unpacked the cognitive demands of the tasks 

(Figure 3.1: A.4), or they deconstructed content (Figure 3.1: B.1). These 

categories showed a comparative relationship with the theme, along with the 

hands-on use of the manipulatives as the students explained their understanding of 

the concepts to each other (Figure 3.1: A.7). For example, using manipulatives 

alongside an explanation was important when Andy wanted the students to 

determine which of the constructed animal arrays (Figure 5.1) represented the 

expression three times four, and said, “Talk to the person next to you”. 

b)  Using students’ responses – to assist in drawing out understanding of the 

mathematics. This theme was traced back and clearly identified in the categories 

of student thinking (Figure 3.1: A.7) and student misconceptions (Figure 3.1: A.8). 

For example, when Andy’s students were finding fractions of a set (e.g., 4
3  of 12), 

he used the responses of students to determine the solution to the problem, and 

how it might be recorded as a mathematical expression.   
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Table 11.1 

Comparing coding of the inductive, grounded approach to the deductive, framework 

approach.  

Jill’s Theme Context Framework 

Category 

Fit for Purpose?           

Comparisons identified… 

Use of 

manipulatives 
(sharing the 

purpose of 

using 

manipulatives 

with the 

students and 

drawing out the 

mathematics). 

Animal Strips 

 

Paper Circles and Counters 

(for birthday cakes and 

candles) 

A.4 Cognitive 

demands of 

task  

B.1 

Deconstructing 

content  

A.7 Student 

thinking 

The theme was clearly identified on the 

framework when Andy deconstructed the 

content of the problems (B.1), through 

the arrays formed by animal strips and 

cubes. They assisted him in explaining 

the meaning of the multiplication 

symbol. As the students discussed their 

constructions (A.7), they explained the 

difference between the array of 3x4 and 

4x3.     

Using 

students’ 

responses      

(to assist in 

drawing out 

understanding 

of the 

mathematics)  

Fractions as an operation       

(e.g., sharing out candles on 

the cake such as 
4
3  of 12) 

Commutativity in 

multiplication 

A.7 Student 

thinking 

A.8 Student 

misconceptions 

This theme came to the fore when. as the 

students shared their thinking A.7) how 

they solved  
4
3  of 12 Andy supported 

them to explain their solution method to 

others. At times, he turned to other 

students to expand on a student’s idea 

and/or explain their own. 

Asking 

students to 

justify their 

thinking 

Using animal strips (e.g., to 

determine 3 groups of 4)  

A.7 Student 

thinking 

Questioning 

Techniques 

C.5 supporting 

C.6 eliciting 

C.7 extending 

This theme was evident through utilising 

student thinking (A.7) and the added 

categories related to ‘questioning 

techniques’. Depending on a student’s 

thoughts and responses and how the how 

the following question was formed, the 

specific questioning category was 

determined.   

Awareness of 

‘big ideas’ in 

mathematics 

(to make 

suitable 

connections, or 

inappropriate 

connections) 

Bob talked about using 

multiplication to solve 

problems in fractions and 

never mentioned the inverse 

(division).                           

Andy talked about 

commutativity in 

multiplication (4x3 and 3x4 

have the same answer but 

different representations). 

Looking at patterns, i.e. we 

are not doing algebra.  

 

B.2 

Mathematical 

structure and 

connections 

B.1 

Deconstructing 

content to key 

components  

This theme showed an awareness of ‘big 

ideas’ alongside missed opportunities to 

consolidate other big ideas. The category 

B.1 showed that when Andy consolidated 

understanding of the multiplication 

symbol, he looked at the structure of the 

animal arrays and noted that while 4x3 

and 3x4 gave the same answer the 

formation was different.  B.1 also 

indicated Andy later made an 

inappropriate connection between 

multiplication and algebra, and patterns.  

Teacher 

coherence in 

elaborating 

learning goals  

Bob stated a learning goal 

‘We are learning to use 

multiplication to find a 

fraction of a set’.  

A.1 Purpose of 

content 

knowledge  

B.1 

deconstructing 

content to key 

components. 

This theme was identified in A.1 and B.1 

showing the teachers’ awareness of the 

purpose of the lesson. While Andy did 

not specifically state a WALT for this 

lesson, a strong theme of understanding 

the meaning of multiplication emerged 

and was coded frequently. 

Connecting 

language and 

symbols to the 

mathematics 

in 

manipulatives  

Andy used animal strips and 

arrays – and related the 

multiplication symbol to the 

arrays and emphasised 

‘groups of’. 

Bob used paper circles to 

emphasise multiplication and 

fractions of sets and covered 

sections for part-to whole 

comparisons. 

A.3 cognitive 

demands of 

task 

A.8 student 

thinking - 

misconceptions  

B.1 

deconstructing 

content to key 

components 

This theme was evident when the 

teaching and learning was coded against 

A.3, A.8 and B.1. As Andy’s students 

used their manipulatives (animal strips 

and Unifix cubes) correct language 

associated with the meaning of 

multiplication symbol and the use of the 

term ‘groups of’. Bob used paper circles 

to connect the use of multiplication of 

fractions with ‘groups of’.  



 

310 

 

Bob later gave students a part-to-whole problem (if 6 candles [counters] equal one 

quarter, how many are on the whole cake). A child explained the steps he used to 

solve the problem with the support of Bob, who then capitalised on the child’s 

response to get the students to solve another, similar problem (if 7 candles 

[counters] are on one third of the cake, how many are on the whole cake?). 

c) Asking students to justify their thinking. This theme was identified on the 

framework categories depending on how a student’s thinking was utilised (Figure 

3.1: A.7) and the following associated questioning techniques (Figure 3.1: C.5, 

C.6, C.7). How the teachers asked the students to justify their thoughts, 

determined whether it was part of the supporting (C.5), eliciting (C.6), or 

extending (C.7) section. For example, in Andy’s class as the students discussed 

which of the presented array models (using animal strips) represented three times 

four. Andy supported the students in justifying their solution and said, “When I 

wanted three times four, which of those two options do you think is correct?” 

(Section 5.2.3: C.5). Bob promoted collaborative problem solving when he 

checked the students explanations of their actions, “So can anyone tell me what 

that actually means?” (Section 6.2.3: C.6). Andy extended the thinking of 

students when he asked them to justify their thoughts to others, “Can you explain 

you theory to everyone else please?” (Section 5.2.3: A.7).  

d)  Awareness of big ideas in mathematics, to make connections, or 

inappropriate connections. An example of this theme emerging against the 

framework was in Andy’s on-going reference to a key idea in understanding 

commutativity of multiplication: while the multiplier and multiplicand are 

reversed in representation of the array, (e.g., 4 × 3 looks different on a model from 

3 × 4), the product remains the same (they both equal 12). This along with other 

examples of understanding the multiplication symbol, was coded against 

deconstructing content to key components (Table 5.3: B.1) and mathematical 

structure and connections (Table 5.3: B.2). However, the theme Jill identified 

suggested there were times when big ideas were only partly mentioned and 

opportunities missed to explain them fully. An example of this, was when Bob 

mentioned using multiplication to find fractions of a set, and made no mention of 

the important relationship between fractions and division. The fact that Bob did 
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not mention division was not coded against a category, showing one instance 

when deductive coding might miss important ideas.  

e) Teacher coherence in elaborating learning goals.  In the two lessons Jill coded, 

Andy did not state a learning goal while early in his lesson Bob shared with his 

students, “We are learning to use multiplication to find a fraction of a set.” His 

WALT shared a lesson focus on using multiplication (which may be why he did 

not mention division in the big ideas theme) and examples of elaboration were 

coded against purpose of content knowledge (Table 5.3: A.1) and deconstructing 

content to key components (Table 5.3: B.1). At one stage, Bob mentioned, “The 

most important thing about fractions is we have to know our times tables” and 

encouraged the use of multiplication during problem solving e.g., finding  4
3  of 

12. While Andy did not mention a specific learning goal and therefore was not 

recognised in Jill’s thematic coding, his clear intention of ensuring the students 

understood the meaning of the multiplication symbol came through in categories 

on the framework.  

f) Connecting language and symbols to the mathematics in manipulatives. This 

theme came to the fore in a number of the categories on the framework. For 

example, in the cognitive demands of the task category (Table 5.3: A.3) Andy 

emphasised the meaning of the multiplication symbol as times or groups of as 

problems were discussed. He began the lesson using animal strips to form arrays 

(Figure 5.1) and later used Unifix cubes for the students to construct arrays using 

singular units. Language and symbols were and again discussed alongside 

manipulatives when student misconceptions (Table 5.3: A.8 & Table 6.3: A.8) 

were identified. For example, when Andy noticed his students were still unsure of 

the meaning of the multiplication symbol, he recorded the expression in the 

modelling book, unpacked with them what it meant and then asked them to use 

their blocks to construct the correct array.   

Overall, while the comparison between the grounded, inductive approach to 

identifying themes and the deductive approach of the Framework used, showed 

that the Framework was suitable for this research, it also highlighted that there are 

advantages and disadvantages associated with the different methods of analysis. 

As Glaser and Strauss (1967) emphasised, identification of themes from a critical 
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analysis of the data using a grounded approach meant that the researcher was open 

to ideas, which can sometimes be overlooked when allocating data to a 

predetermined set of categories (Section 11.3). This was evident in the 

“identification of big ideas” category. However, as Andy did specify a learning 

goal, Jill did not mention it in the contexts associated with her themes, but a clear 

lesson intention came through in the Framework categories. The Framework 

provided a list of categories, which enabled the researcher to acknowledge that 

certain aspect of PCK occurred in the classroom, which meant that it was fit for 

purpose for this research. However, had there been a focus on the degree to which 

PCK occurred and comparison between teachers made, then using a grounded 

approach to identify the quality of the teaching might have been more suitable.  

(ii) Comparing the analysis of data against the Framework used, to an established,      

recognised framework (model) used in classroom research: 

Ball introduced the phrase, “knowledge about mathematics” (Ball, 1990) and Ball 

and colleagues spent many years researching what they referred to as “the 

teaching of mathematics and the mathematics used in teaching” (Ball et al., 2008, 

p. 390). As a result of their research, Ball et al. developed a framework identifying 

domains of mathematical knowledge for teaching, to be used alongside teaching 

practice. The framework contained two broad sections Subject Matter Knowledge 

(SMK) and Pedagogical Content Knowledge (PCK). SMK included Common 

Content Knowledge (CCK), Horizon Content Knowledge (HCK), and Specialised 

Content Knowledge (SCK), while PCK included Knowledge of Content and 

Students (KCS), Knowledge of Content and Teaching (KCT), and Knowledge of 

Content and Curriculum (KCC) (Section 2.8 explains detail of categories).   

After coding Bob’s fraction lessons using Ball et al.’s framework (Ball et al., 

2008), a comparative analysis was made with coding used against the adapted 

Chick et al. framework (Figure 3.1). Research and associated literature, had 

suggested there may be similarities behind the purpose and positioning of the two 

frameworks, and the researcher wish to compare the recognised framework of  

Ball et al. which had been used for coding classroom practice, to the framework 

used in this research (which had not been used previously in the classroom). The 

comparison showed that all categories within the adapted framework of Chick et 
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al., could be placed within the broad categories of Ball et al.’s framework. Some 

of these are outlined on Table 11.2. 

Table 11.2 

Comparing two frameworks of mathematical knowledge for teaching 

Ball et al.’s category Chick et al.’s 

category 

Context Fit for purpose? 

Comparisons 

identified… 
Knowledge of content 

and curriculum 

(knowing about 

mathematics and 

understanding 

curricular knowledge) 

A.2 Curriculum 

knowledge  

B.1 

Deconstructing 

content to key 

components            

Sharing the learning intention, 

‘WALT use multiplication to 

find a fraction of a set’. 

Teaching about whole-to-part 

and part-to whole alongside the 

use of manipulatives  

The identified WALT and use 

of manipulatives alongside 

key ideas taught, directly 

related to ‘knowledge of 

content and curriculum’.  

Knowledge of content 

and students 

(combines knowing 

about mathematics and 

knowing about 

students) 

C.2 Getting and 

maintaining 

student focus 

Using a student’s name in a 

word problem, e.g., Jock has 16 

candles to put on the birthday 

cake…. 

Bob kept students focussed on 

the mathematics he was 

teaching by including them in 

scenarios presented for 

problem solving – a link to 

‘knowledge of content and 

students’.   

Specialised content 

knowledge                

(the mathematical 

knowledge and skill 

unique to teaching) 

 B.3 Methods of 

solution   

 

 A.7 Student   

thinking  

Bob recognised both 

multiplication and equal sharing 

were used to solve problems.  

He built on a student’s 

explanation, that if there were 9 

candles on one third of the cake 

there would be 27 on the whole 

cake.  

As a teacher, Bob noticed two 

different methods were used 

for finding fractions of a set 

and explored both methods. 

As students explained their 

ideas, he used these for future 

scenarios. These are examples 

of specialised content 

knowledge. 

Horizon knowledge  
(shows how 

mathematics topics are 

connected over the span 

of mathematics 

included in the 

curriculum) 

C.3 Goals for 

learning  

Reminded the students they 

were using multiplication to 

find a fraction of a set’ and 

discussed further examples 

Bob emphasised the 

importance of knowing the 

‘times tables’ as unpacked in 

the multiplication lessons, for 

solving fractions of sets. This 

was a deliberated connection 

with the previous topic 

taught. 

Common content 

knowledge  

(knowledge of a kind 

used in various settings, 

not necessarily 

confined to teaching) 

B.4 Procedural 

knowledge  

The students were asked how 

many candles would be on each 

piece of cake if there were 21 

candles and 3 children at the 

party. Bob ‘told them’ to start 

by dividing the paper circle 

(cake) into thirds. 

Bob capitalised on one of the 

children’s recent birthday and 

used candles and cakes as a 

context for scenarios. This 

real-life setting supported 

their learning and was related 

to the students’ common 

content knowledge. 

 

There were times when both frameworks saw an overlap of categories (Section 

3.13). For example, Bob asked, “If three quarters of the cake had nine candles on 

it, how many candles are on the whole cake?” One of the students gave an 

incorrect answer and on Ball et al.’s framework, Bob’s response could have been 

coded against “knowledge of content and students” (based on previous problems) 

or “specialized content knowledge” (based on the mathematical error). Similarly, 

on the Chick et al., framework there was an identified overlap between student 

thinking (Figure 3.1: A7), appropriate and detailed representation of concepts 
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(Figure 3.1: A5) and the need to deconstruct content to key components (Figure 

3.1: B1). This reinforced the notion that the detailed categories of Chick et al., 

aligned to the broad categories of Ball et al., and were useful as a set of filters for 

looking at the teaching process and identifying the kind of knowledge that was 

being used in the classroom.    

Future frameworks of knowledge 

As noted in Chapter Ten, while there is a need to connect subject matter 

knowledge with pedagogical practice, some of the affective aspects and issues 

relating to broader social and cultural contexts of teaching practice (Shulman, 

2015), were missing from the Framework (Figure 3.1). These aspects missing 

from the Framework included students’ prior experiences with mathematics 

learning and the impact this has on current learning, along with students’ cultural 

background and heritage and the impact of these identities on mathematical 

contexts. Therefore, the three categories of the framework used in this research 

became a foundation for the forming of a new framework for future research 

based on four key categories of professional knowledge, which included these 

contexts: knowledge of students, curricular knowledge, content knowledge, and 

pedagogical knowledge (Figure 10.2).  

An issue that arose out of this research was the suitability of a framework for 

teachers to use when reflecting on their professional knowledge, compared to one 

for researchers to use when identifying the professional knowledge of teachers in 

action in their classrooms. A framework required for teachers as reflective 

practitioners has subtle differences from the detail required of subcategories of 

knowledge on a framework for researchers. Therefore, as a result of this research, 

a wheel of professional knowledge (Figure 10.1) was created for use by teachers, 

to sit alongside the professional knowledge framework (Figure 10.2) for use by 

researchers.  

11.3 Limitations of the Study  

While this research contributes to the field of teacher professional knowledge, like 

any research it had some limitations. Multiple-case study research was used to 

examine the classroom practice of teachers both within and across, four cases. The 

schools participated in this study as a result of convenience sampling. 
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Convenience sampling involves the selection of the most accessible subjects to 

the researcher (Marshall, 1996) and may be seen to provide an incomplete picture 

of general classroom teaching. However, both schools were involved in the 

sustainability phase of the NDP, which was part of a nation-wide professional 

development programme, and were characteristic of many other classes in New 

Zealand schools during this time.  

The results of this research are based on a small number of schools, teachers, and 

students, to allow for manageable collection of data during the school year. 

Originally, it was decided to focus on teaching the multiplicative and proportional 

domains at Years 5 and 6, as longitudinal data at the time (Young-Loveridge, 

2009a, 2010) showed that students were underachieving in these domains, at these 

levels. However, due to the convenience sampling of schools, limited classes were 

available at these levels at each school and the upper end of primary school, 

including Years 7 and 8 became the focus. Student absences on days the initial 

and final assessment tasks meant that participatory numbers varied. The variance 

in student numbers became particularly noticeable in the multiplicative analysis 

and comparisons, where initial data represented 103 students, while the final 

multiplication data was from 93 students. The variance in numbers was thus 

reflected in numbers and percentages, which made direct comparisons difficult. 

For example, 42 students correct on Task 7 of the initial multiplication assessment 

equalled 41%, while 42 correct on Task 7 of the final assessment, was 45%.      

Two multiplication lessons (one for Anna) and one fraction lesson from each of 

the four teachers, provided eleven lessons which were transcribed and provided a 

large amount of data. The data of the each teachers’ actions were coded and 

analysed individually, as well as being combined to identify consistencies, 

discrepancies, and trends, across identified categories of professional knowledge. 

An in-depth analysis of more lessons and/or more teachers would have provided a 

wider range of evidence of practice. However, as Bassey (1999) emphasised, 

generalisation is a matter of judgement and he preferred to use the term 

relatability. Bassey suggested that the merit of a case study is the extent to which 

the details are sufficient and appropriate for a teacher to relate to what is described 

in the case(s).  
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This research highlighted the complexities associated with teaching and classroom 

practice found in the research of Roche et al., (2016) noting that teachers cannot 

be expected to attend to and respond to everything that happens in every lesson. 

The research found that while the strengths and weaknesses of individual teachers 

professional knowledge in practice might be partly identifiable through the 

quantitative data (for example the number of times they utilised students’ 

thinking), the frequency of occurrence recorded against a category only told part 

of what actually occurred during teaching. Frequency indicated patterns of 

performance and the increase or decrease in frequency, did not necessarily 

indicate improvement or waning in practice, but rather a change due to many 

factors, including the teaching-style implemented during the lesson. Instead, the 

qualitative data showed what happened in the classroom sessions, and provided 

the actuality of the impact of the teachers’ knowledge on their students’ learning, 

in varying situations.  

The research also highlighted the complexities associated with data coding and 

analysis. While the framework used for the coding of data, was seen as fit for 

purpose for this research, comparison with another established framework and 

identifying themes using a grounded approach indicated that different methods of 

analysis might have highlighted different key findings. For example, the 

deductive approach when using the range categories on the given framework, 

allowed for the detailed analysis of a number of lessons. The data was then used 

to identify occurrences within individual lessons and trends across all of the 

lessons. However, the grounded approach allowed for interpretations and 

identification of phenomena, which might be missed when the researcher places 

findings against predetermined categories on an established framework. 

Researcher Positioning 

Consideration needs to be given to the influence of this research on the schools 

and the classrooms of those involved. Being a researcher and an adviser at the 

same time could have involved a conflict of interest and provided difficulties for 

the researcher, the teachers, and students participating in the research. However, 

the researcher was well aware of this ethical predicament and potential conflict of 

interest at all times. Prior to the commencement of the research, careful 

consideration was given to possible difficulties, which may arise due to the 
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different roles. Discussion had taken place with the principals, the teachers, and 

the students involved at both schools. The teachers were well aware of which 

lessons would be used for research purposes as they were reminded at the 

previous visit and were wearing microphones for audio-recording. The students 

were also informed at the start of each session. Audio-recording and video-

recording might have been viewed as intrusive, although during discussion 

following each lesson the teachers said that after the first couple of minutes they 

forgot the devices were there.  

One advantage of the dual role, was that it allowed the researcher to get to know 

the teachers and students well, as she visited their rooms regularly during the year 

of data gathering. The teachers participated in professional learning throughout 

the year that this study took place. The teachers commented that the frequent 

visits and participation in the research added a positive dimension to their 

professional learning, rather than detracting from it. The extra conversations and 

lesson analysis may have helped to strengthen their teaching practice in both the 

short term and the long-term. Participating in regular reflection and professional 

development is an important component of teacher’s professional learning. The 

professional development may have contributed to improvement in student 

learning in the proportional domain that was taught towards the end of the year, as 

opposed to the students’ minimal improvement in the earlier taught multiplicative 

domain.  

11.4 Implications for Future Teaching and Further 

Research 

This study is the first in New Zealand, which focuses on teachers’ professional 

knowledge through multiple-data sources simultaneously: including observations 

of classroom practice, alongside espoused knowledge through questionnaires, 

student achievement data, learning conversations, and field notes. An implication 

of sharing the findings is that classroom teachers will be provided with a way of 

identifying strengths and gaps in teachers’ professional knowledge. This could 

assist in their ongoing professional development, and improve teaching practice 

and student achievement.  
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Evidence from this study showed a potential relationship between teachers’ 

professional knowledge in classroom practice and students’ learning. It showed 

that although teachers may have taught a concept, for many students, learning and 

understanding does not occur within one or two lessons. Ensuring student 

understanding, had many repercussions for the teachers who strove for a balance 

between time taken and knowledge acquired, before moving to the next steps of 

learning. A suggestion for teachers is that some of the discrepancies between what 

occurs in classroom practice and the desired outcome may be overcome if they 

observe themselves in practice (via video-recording) and critique this both 

independently and/or collaboratively. The Wheel of Knowledge (Figure 10.1) 

designed for teachers, could provide a focus for reflection on their teaching 

practice. Reflecting on evidence of practice alongside the categories of knowledge 

on the wheel, would assist in identifying the teachers’ strengths and provide 

suggestions for further learning and development.  

Within this study, the complexities associated with the mathematical knowledge 

required for teaching (MKT) came to the fore. The relationship between the 

teachers’ espoused professional knowledge and mathematical knowledge evident 

in their pedagogical practice became a noticeable factor. The teachers in this study 

had sufficient mathematical content knowledge for the class level they were 

teaching (as evident in their questionnaire responses). However, they required 

more support with the challenges related to the change from a procedurally-based 

orientation (the way they had been taught mathematics), to a conceptually-

oriented approach to teaching. The teachers knew how to solve mathematical 

problems beyond the year levels they taught (they all had a minimum of bursary 

level mathematics), but they often struggled to support their students in unpacking 

strategies used and understanding mathematics behind the concepts.   

This study found that the teaching of multiplication takes priority over division, as 

the teachers’ MKT related to different division types was minimal. Associated 

with the teaching of division is the writing of effective word problems, as it is the 

way that the problem is structured, which dictates whether it is a quotitive or 

partitive problem. The teachers provided many real-life, word problem examples 

that the students related to during their teaching of fractions, although these 

tended to be partitive problems based on sharing out objects. More experience 
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with whole number quotitive division problems, could strengthen students’ 

understanding fractions. More research is required in New Zealand schools into 

the teaching and understanding of division and the distinction between partitive 

and quotitive division word problems and the influence this has on the conceptual 

approach to teaching of fractions. 

The findings of this study suggest that manipulatives helped to support students’ 

conceptual understanding in classes at the upper end of primary school (Years 6 to 

8). Having manipulatives available to all students assisted the students in 

generalising about concepts.  

In terms of the teachers’ professional knowledge, particular themes emerged from 

this study, which could become foci of future professional learning and 

development for teachers. Themes include: (i) Interpreting the requirements of the 

curriculum, alongside the writing of specific learning outcomes or Learning 

Intentions in relation to strand achievement objectives. This may include the 

teacher and students co-constructing a learning intention based on an identified 

need. (ii) Recognising when, and how, to make connections within and between 

concepts taught, including connections across strands. Connections also need to 

be made to authentic life experiences of the students, in order to make the 

mathematics learning more meaningful. (iii) Knowing how to judge an 

appropriate length of time spent on content and strategies taught at a particular 

stage, before moving to the next learning steps. In conjunction with the time issue 

is, when might unpredictable opportunities presented as teachable moments be 

addressed, and when are they better left for later. (iv) Analysing available 

assessment data, so that it is used constructively to personalise the teaching and 

learning for the students.  (v) Learning to advance the mathematical thinking of 

students by asking questions which require high-order thinking and encouraging 

students to justify their solutions and question each other in an open friendly 

manner during discussions.  

11.5 Final Words 

The intention of this research was to investigate the professional knowledge of 

New Zealand primary school teachers, and the contribution this knowledge makes 

to student learning, when teaching mathematics for numeracy in the multiplicative 
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and proportional domains. This research is unique in that while most of the data 

was gathered through the privileged opportunity to observe teachers in their day-

to-day classroom practice, the research was strengthened by the addition of 

teachers’ espoused professional knowledge through written questionnaires, 

student assessment data, field notes, and learning conversations. Acquiring data 

from multiple sources highlighted the relationships between espoused 

professional knowledge, professional knowledge in practice, and student learning. 

The use of a detailed framework assisted in carrying out analysis of such a 

complex investigation. However, as with much research in education, ‘the job is 

never complete’ and out of this research comes much thinking and discussion, to 

inform future research. 

The findings show that gaining and improving professional knowledge is a 

complex, dynamic process, which is person-specific, context-specific, and 

changes from lesson-to-lesson. Despite the theoretical distinctions among the 

different knowledge types (content [subject matter] knowledge, general 

pedagogical knowledge, pedagogical content knowledge, knowledge of the 

curriculum, knowledge of the learners), the research showed that they are also 

interwoven and interdependent. The differences in professional knowledge from 

teacher to teacher and from lesson to lesson, depended on many factors (for 

example: lesson structure, teaching style, context, tasks, word problems, use of 

manipulatives, and opportunities afforded to students for conversation), and  

reflected in students’ learning. Such variability may also be impacted by the 

relationship between teachers’ conceptual knowledge and procedural knowledge.  

There is a need to pay attention to the requirements of teachers’ professional 

knowledge, while at the same time, to better appreciate their professional practice. 

As stated at the beginning of this thesis, teacher professional knowledge is often 

not viewed as specialist knowledge in the same way that practitioner knowledge is 

valued in other professions (Loughran, 2010). Conceptual understanding and the 

shift in practice from the procedural manner in which teachers may have been 

taught, can provide challenges. When knowledge of subject matter and teaching 

are combined into practice, teachers’ professional knowledge becomes noticeable 

and significant. “This is something which needs to be understood, more highly 

prized, and specifically valued, within the profession” (Loughran, 2010, p. 56).  
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This study supports Loughran’s claim that teachers require a specialised 

professional knowledge to provide classroom programmes that allow for a balance 

between the conceptual understandings required for mathematics problem solving 

and the procedural knowledge required to do mathematics. Recent advances in 

technology, along with associated societal expectations and requirements, have 

meant that the need for people to transfer their mathematics understandings to 

everyday life has become greater. While it is acknowledged that the meaning of 

number is mathematical, the significance of number is functional (Lambdin & 

Walcott, 2007). Therefore, all (primary school) teachers should see themselves as 

teachers of ‘mathematics for numeracy’ if they are to provide their students with a 

disposition and a confidence to understand mathematics in order to use it 

effectively in their current daily lives, as well as beyond schooling and into the 

years ahead.  
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APPENDICES 

 

Appendix A: Principal Information and Consent  

 

My name is Judith Mills and I am currently doing doctoral research focusing on 

the role of teachers’ knowledge of mathematics for teaching. I recently visited you 

and discussed the possibility of your school being involved in my research. I am 

now formally inviting your school to participate in my research by allowing me to 

use information gathered from observations and discussions taking place in the 

classroom and/or at staff meetings, and student data that your teachers, have 

gathered. You, and the teachers from your school, are also invited to complete the 

enclosed questionnaire. 

As noted in our discussions, all teachers will be invited to complete a 

questionnaire. In addition to this, up to two teachers will be invited to participate 

in in-depth case-studies. This will involve a maximum of one extra classroom 

visit per term and extra support for these teachers around their mathematics 

knowledge for teaching and classroom practice. It is difficult to anticipate at this 

point what this may involve. However, I will keep you informed of this process at 

frequent intervals throughout the year. 

All project data will be stored in a secure location and on the laptop of myself (the 

researcher) which is only accessible via a protected password. The data will be 

used only for the purpose of this research and any publications and conference 

presentations arising from this research. The name of the school and participants 

will remain confidential to the researcher, and pseudonyms will be used in any 

written material and presentations to maintain anonymity.  

You have the following rights in response to my request for your school to 

participate in the study: 

 decline to participate 

 decline to answer any particular question 

 ask any questions about the study at any time 

 provide information knowing that anonymity will be maintained in any 

publication 

 be given access to a summary of the research findings 

 

If you have any further questions about this project, feel free to contact me 

(judith@waikato.ac.nz or phone (07) 8384466 Extn 7240; mobile 027 4937224), 

or my supervisor, Jenny Young-Loveridge (jenny.yl@waikato.ac.nz or phone (07) 

8384353 (direct) at any time.  

mailto:judith@waikato.ac.nz
mailto:jenny.yl@waikato.ac.nz
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Principal Consent: 

 

It has been explained to me that data gathered (as outlined above) and completion 

of the questionnaire is for the purpose of a doctoral study. I know that, all 

information gathered, as well as my name, the name of the school, and the names 

of the teachers and pupils, will remain confidential. 

 

I give/do not give permission for the research study to be conducted in my school.  

 

I give/do not give permission for data gathered from classroom and staff meeting 

discussions and student data gathered to be used in the research. 

 

I am willing/not willing to complete the questionnaire as part of the research 

 

 

Signed: …………………………………Name: ………………………………… 

 

School: ………………………………………      Date: …………………. 
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Appendix B: Teacher Information Sheet (All Teachers) 

and Consent  

My name is Judith Mills and I am currently doing Doctoral research focusing on 

the role of teachers’ knowledge of mathematics for teaching. I am inviting you to 

participate in my research by allowing me to use information gathered from 

observations and discussions taking place in the classroom and/or at staff 

meetings, and student data that you, the teacher, have gathered. I will be sure that 

you are fully aware at all times of any information that is collected and used as 

part of my research. This will ensure that my role as an adviser is separated out 

from my role as a researcher. 

You are also invited to complete the enclosed questionnaire 

All project data will be stored in a secure location and on the laptop of myself (the 

researcher) which is only accessible via a protected password. The data will be 

used only for the purpose of this research and any publications and conference 

presentations arising from this research. The name of the school and participants 

will remain confidential to the researcher, and pseudonyms will be used in any 

written material and presentations to maintain anonymity.  

You have the following rights in response to my request for you to participate in 

the study: 

 decline to participate 

 decline to answer any particular question 

 ask any questions about the study at any time 

 provide information knowing that anonymity will be maintained in any 

publication 

 be given access to a summary of the research findings 

 

If you have any further questions about this project, feel free to contact me 

(judith@waikato.ac.nz or phone (07) 8384466 Extn7240.) or my supervisor, 

Jenny Young-Loveridge (jenny.yl@waikato.ac.nz or phone (07) 8384353 (direct) 

at any time.  

 

 

 

 

 

 

mailto:judith@waikato.ac.nz
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Teacher consent: 

 

It has been explained to me that data gathered (as outlined above) and completion 

of the questionnaire is for the purpose of a doctoral study. I know that everything 

I write and say will be kept private, and that my name will not be used in any 

report or presentation.  

 

I give/do not give permission for data gathered from classroom and staff meeting 

discussions and student data gathered to be used in the research. 

 

I am willing/not willing to complete the questionnaire as part of the research 

 

 

 

Signed: …………………………………….Name: ……………………………… 

 

School: ………………………………………     Room: …………………  

 

Date:……… 

 

Years of Teaching: ……..  Years of Teaching using the Numeracy Project: …… 
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Additional Information and Consent Form for Case-study 

teachers 

 

I have read the information sheet and had the details of the study explained to me. 

It has been explained to me that this research is for the purpose of a Doctoral 

study.  

 

I have agreed to participate in this study under the conditions set out in the 

information sheet for all teachers. I understand that in addition to these conditions 

I will also be involved in classroom observations that may involve audio/video 

recording, one-to-one discussions with the researcher, and professional learning 

related to subject matter knowledge, if/when required.  

 

I know that everything I write and say will be kept private, and that my name will 

not be used in any report or presentation.  

 

Signed: …………………………………….  Name: ……………………………………… 

 

School: ………………………………………     Room: …………………  

 

Date: ………… 
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Appendix C: Questionnaire for Teachers 

Name: 

Section A. Teachers’ Views about Mathematics 

For each of the statements below, please tick the box that best represents what you 
think: 

SA A U D SD 

Strongly Agree Agree Undecided; neither 

agree nor disagree 

Disagree     Strongly Disagree 

 

# Mathematics  SA A U D SD 

1. There is always a best way to do a maths 

problem 

     

2. Maths is about searching for patterns      

3. In maths, things are either right or wrong      

4. It is important for students to be able to work 

out their answers quickly 

     

5. It is important for students get the answer 

right 

     

Comments: 

 

A O S H N 

Always Often Sometimes Hardly ever Never 

 

# Classroom Mathematics Practices A O S H N 

1. I encourage students to explain their thinking to each other      

2. I encourage students to question the strategies of others       

3. I encourage students to justify their choice of strategy and 

their thinking to others 

     

4. I encourage students to work together on solving problems      

5. I encourage students to include in their maths books 

drawings, diagrams, or other recording methods which 

represent their thinking 

     

Comments: 
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Section B. Questions for Teachers 
1.  Without calculating the exact answer, circle the best estimate for:        29 x 0.98 = 

A. more than 29  
B. less than 29 
C. impossible to tell without working it out 

 
2.  How many different decimals are there between 1.52 and 1.53? 

 A. None  
 B. One. What is it? _______  
 C. A few. Give two. _______ and _______ 
 D. Many. Give two. _______ and _______ 

3.  Which is the largest number? 

A. 29 + 0.8    

B. 29 x 0.8   

C. 29 ÷ 0.8 

D. 29 – 0.8 

 

4.  Without calculating the exact answer, circle the best estimate for:             54 ÷ 0.09 = 

A. much less than 54   

B. a little less than 54  

C. a little more than 54 

D. much more than 54 

 

5.  0.5 x 840 is the same as: 

A. 840 ÷ 2  

B. 5 x 840  

C. 5 x 8400 

   D.  840 ÷ 5 

   E.  0.50 x 84 

 
6.  Maia had $426 and spent 90% of the money on clothes. Without calculating the exact 

answer, circle the best estimate for how much she spent. 

A. slightly less than $426  

B. much less than $426  

C. slightly more than $426 

  D.   much more than $426 

  E.   impossible to tell without calculating 

 
7.  A student increased his exam score from 40 to 50. What percentage increase was this? 

A. 10%   

B. 20%   

C. 25% 

D. 50% 

E. 90% 

F. 100% 

   

8. Without calculating the exact answer, circle the best estimate for:         45 x 105 = 

A. 4000    
B. 4600  
C. 5200 
D. 47250 
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Section C. Scenarios for Teachers 

1. Jon was given the following problem: 

 

 

 

a)  What action would you take next with Jon? 

 

 

b)  What is the answer? Draw a diagram and explain how you would solve the problem? 

 

 

2. Mere was given the following problem: 

 

 

 

 

 

a)  What action would you take next with Mere? 

 

 

 

b)  What is the answer? Draw a diagram and/or explain how you would solve the 

problem

What is 11 x 99 =  

Jon took one away from 11 and added one to 99; he then multiplied 10 by 100 to 

get an answer of 1000. 

 

Hera owns a factory that makes tricycles. Each tricycle needs 3 wheels. She has 516 

wheels. Will all the wheels be used to make tricycles, or will there be some wheels 

left over? 

Mere added the digits together (5+1+6=12); she knew that the number was not 

divisible by 9 because 9 doesn’t go into 12 evenly, and concluded that it was not 

divisible by three, so there would be some wheels leftover.  
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3. Rob was given the following problem: 

 

 

 

 

 

a)  What action would you take next with Rob? 

 

 

 

b)  What is the answer? Draw a diagram and explain how you would solve the problem? 

 

 

 

4. Jenny was given the following problem: 

 

 

 

a) What action would you take next with Jenny? 
 

 

b) What is the answer? Draw a diagram and explain how you would solve the 

problem? 

 

5. Pete was given the following problem: 

 

 

 

 

Ana was packing chocolate peanuts into bags for the school fair. She decided to put 

14 chocolate peanuts into each bag. How many bags would she get from 56 chocolate 

peanuts? 

Rob subtracted 14 from 56 to get 42; he then subtracted 14 three more times. Rob 

worked out that he could subtract 14 from 56 four times so Ana must get four bags of 

14 from 56 peanuts. 

 

1.45 + 0.9 = 

Jenny calculated the answer by adding 45 + 9 = 54, so the answer is 

1.54. 

 

Tama and Karen buy two pizzas. Tama eats 3/4 of one pizza while Karen eats 

7/8 of the other one. How much pizza do they eat altogether? 

Pete converted ¾ to 6/8 so he had 6/8 + 7/8; he then added 6 and 7 to get 13, 

and 8 and 8 to get 16, and gave the answer as 13/16. 
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a)  What action would you take next with Pete? 

 

 

b)  What is the answer? Draw a diagram and explain how you would solve the problem? 

 

 

 

6. Jo was given the following problem: 

 

 

 

 

 

a)  What action would you take next with Jo? 

 

 

c) What is the answer? Draw a diagram and explain how you would solve the 

problem? 

 

 

 

 

 

 

 

 

 

 

 

There was 



3
4  of a birthday cake left over after the party. Sarah took 



1
3  of the 

leftover cake home for her brother. How much cake did Sarah take home to her 

brother? 

You hear Jo say “one third of three quarters; that’s the same as one third times 

three-quarters…” 
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Appendix D: Parent/Caregiver Information and Consent  

My name is Judith Mills and I am currently doing Doctoral research focusing on 

mathematics teaching. Your child’s teacher has indicated a willingness to be 

included in my research and I am now writing to request your permission for your 

child to be included in this research also. I will be observing mathematics lessons 

in your child’s class from time to time throughout the year, and using the data 

gathered from the observations as part of my research. Your child’s involvement 

will be no more than that which occurs in normal daily classroom mathematics 

lessons, as my main focus is on the teaching that is taking place. 

I would also like permission to audio- or video-record lessons as part of the 

teacher’s classroom practice. In addition, I may wish to make copies of, or 

photograph, your child’s written work as evidence of the learning taking place. 

All project data will be stored in a secure location and on the laptop of myself (the 

researcher) which is only accessible via a protected password. The data will only 

be used for the purpose of this research and any publications and conference 

presentations arising from this research. The name of the school and participants 

will remain confidential to the researcher and pseudonyms will be used in any 

written material and presentation to maintain anonymity.   

You have the following rights in response to my request for your child to 

participate in the study: 

 decline your child’s participation 

 withdraw your child from the study at any point up until data is processed 

 withdraw any video or audio recording of your child, photographs taken 

and any copies of their work, up until the time data is processed. 

 you may ask any questions about the study at any time 

 your child provides information knowing that anonymity will be 

maintained in any publication 

 be given access to a summary of the research findings 

 decline your child being audio-/video-recorded 

 decline to allow your child’s work being photocopied 

 

If you have any further questions about this project feel free to contact me at any 

time at: judith@waikato.ac.nz or phone (07) 8384466 Extn7240 or my supervisor, 

Jenny Young-Loveridge (jenny.yl@waikato.ac.nz or phone (07) 8384353 (direct) 

at any time.  

 

mailto:judith@waikato.ac.nz
mailto:jenny.yl@waikato.ac.nz


 

366 

Consent Form: Parents/Caregivers of Student Participants 

 

I have read the information sheet and have had the details of the study explained 

to me. 

 

It has been explained to me that this research is for the purpose of a Doctoral 

research study. 

  

I agree/do not agree for my child to participate in this study under the conditions 

set out in the information sheet.  

I agree/do not agree to my child being audio-recorded.  

I agree/do not agree to my child being video-recorded. 

I agree/do not agree to my child’s work being photo-copied.  

 

I know that everything written and said will remain anonymous, and that my 

child’s name will not be used in any report, or presentation.  

 

 

Signed: …………………………………….  Name: ……………………………………… 

 

School: ………………………………………     Room: …………………  

 

Date: ………… 

 

 

 

 

 



 

367 

Appendix E: Student Information and Consent  

 

My name is Judith Mills and I am currently doing research focusing on 

mathematics in the classroom.  

As part of this research I will need to visit your classroom and watch mathematics 

lessons. Your teacher has agreed to take part in my research and now I am writing 

to ask your permission also. I am interested to know what happens in mathematics 

lessons in your classroom.  

I would like permission to audio-record or video-record lessons sometimes. In 

addition, I may wish to make copies, or take photos, of your written work to help 

with my observations. 

All project data will be stored in a secure place. The data will only be used for the 

purpose of this research and any publications and conference presentations arising 

from this research. The name of the school and your name will remain 

confidential to me and my supervisor.   

You have the following rights in response to my request for you to participate in 

the study: 

 Choose not to participate 

 ask questions about the study at any time 

 provide information knowing that your name will not be used when the 

study is shared with other people 

 ask for the audio-/video-recording to be turned off at any time 

 not to allow your work to be photo-copied or photographed 

 

If you have any further questions about this project, feel free to contact me at any 

time at: judith@waikato.ac.nz or phone (07) 8384466 Extn7240 or ask your 

teacher.  

 

mailto:judith@waikato.ac.nz
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Consent Form: Student Participants 

 

I have read the information sheet and have had the details of the study explained 

to me. 

 

It has been explained to me that this research is for the purpose of a Doctoral 

study. I agree to participate in this study under the conditions set out in the 

information sheet.  

 

I agree/do not agree to being audio-recorded.  

I agree/do not agree to being video-recorded. 

I agree/do not agree to my work being photo-copied or photographed.  

 

I know that everything written and said will remain anonymous, and that my name 

will not be used in any report or presentation.  

 

 

Signed: …………………………………….  Name: ……………………………………… 

 

School: ………………………………………     Room: …………………  

 

Date: ………… 
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Appendix F: Statement of Confidentiality for 

Transcribers 
 

Please read this document carefully, and fill in the required information in the 

spaces provided. Indicate your consent by signing and dating in the spaces 

provided at the end of the document. 

 

I   _____________________________________  (PRINT NAME)  

of  _____________________________________________________________  

__________________________________________________ (ADDRESS) 

__________________________(TELEPHONE NUMBER)   

 

consent to transcribing from audiotape to a computer disk the contents of 

interviews supplied to me by Judith Mills. I consent that all the information that I 

hear on the tapes will remain confidential and I will not discuss the contents with 

anyone.  I also consent to having my name released to the people whose audio-

recorded interviews I am transcribing, if requested. 

 

 

___________________________________________________  (Signature) 

 

____________________________  (Date) 

 

 


