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ABSTRACT OF THE DISSERTATION

EFFICIENT MISSION PLANNING FOR ROBOT NETWORKS IN

COMMUNICATION CONSTRAINED ENVIRONMENTS

by

Md Mahbubur Rahman

Florida International University, 2017

Miami, Florida

Professor Leonardo Bobadilla, Major Professor

Many robotic systems are remotely operated nowadays that require uninterrupted

connection and safe mission planning. Such systems are commonly found in military

drones, search and rescue operations, mining robotics, agriculture, and environmen-

tal monitoring. Different robotic systems may employ disparate communication

modalities such as radio network, visible light communication, satellite, infrared,

Wi-Fi. However, in an autonomous mission where the robots are expected to be in-

terconnected, communication constrained environment frequently arises due to the

out of range problem or unavailability of signal. Furthermore, several automated

projects (building construction, assembly line) do not guarantee uninterrupted com-

munication, and a safe project plan is required that optimizes collision risks, cost

and duration. In this thesis, we propose four pronged approaches to alleviate some

of these issues: 1) Communication aware world mapping; 2) Communication pre-

serving using the Line-of-Sight (LoS); 3) Communication aware safe planning; and

4) Multi-Objective motion planning for navigation.

First, we focus on developing a communication aware world map that integrates

traditional world models with the planning of multi-robot placement. Our proposed

communication map selects the optimal placement of a chain of intermediate relay

vehicles in order to maximize communication quality to a remote unit. We also

vi



propose an algorithm to build a min-Arborescence tree when there are multiple

remote units to be served.

Second, in communication denied environments, we use Line-of-Sight (LoS) to

establish communication between mobile robots, control their movements and relay

information to other autonomous units. We formulate and study the complexity

of a multi-robot relay network positioning problem and propose approximation al-

gorithms that restore visibility based connectivity through the relocation of one or

more robots.

Third, we develop a framework to quantify the safety score of a fully automated

robotic mission where the coexistence of human and robot may pose a collision risk.

A number of alternate mission plans are analyzed using motion planning algorithms

to select the safest one.

Finally, an efficient multi-objective optimization based path planning for the

robots is developed to deal with several Pareto optimal cost attributes.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The connected networks of multiple autonomous robots have an increasing demand

for many risky and labor intensive tasks such as military missions, search and rescue

operations, construction automation, autonomous mining, health care, and environ-

mental monitoring. Often, these robots are highly mobile and are deployed in groups

to remote locations where humans cannot safely venture (e.g. interplanetary space,

deep oceans, toxic gas tanks). They are able to perform tasks with levels of precision

that are not achievable by human hands, such as micron-level slicing of materials

in manufacturing or minimally invasive surgical incising. Even in scenarios where

humans have historically been in-the-loop, today aerial, ground and underwater ve-

hicles are able to completely or partially eliminate the need of a physical human

presence. Virtual reality has been a promising research topic in recent years and is

useful for telepresence or artificially simulating environments that imitate the real

world scenario. All of these would not have been made possible without continuous,

unprecedented advancement in intelligent robotics research.

Many companies and government research agencies are heavily investing in dif-

ferent robotic research areas, and the technology is rapidly evolving in order to

eliminate the need for, or more effectively leverage human effort. Recently, in 2015,

DARPA awarded $2M USD to its Grand Robotic Challenge winner KAIST from Ko-

rea, $1M to IHMC in Florida, who placed second, and $50K to CHIMP of Carnegie

Melon, who held the third place position. All the participant robots were teleoper-

ated from a remote location in both natural and man-made environments [ihm], and

were specially designed for disaster response. These humanoid robots (see Figure

1



1.1(a)) are highly advanced, having the capability of completing challenging tasks,

such as search and rescue operations in disaster areas, climbing ladders, walking on

rubble and manipulating gas hoses. Similarly, the United States Army is investing

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.1: (a) IHMC humanoid robot [JSB+15]; (b) US Military drone
(UAV) [Zen13]; (c) Sandia Lab’s mining drone [ZLLZ08]; (d) Sandia’s robot
swarm [BHEH02]; (e) da Vinci surgical system developed by Intuitive Surgical [dVS];
(f) K5 security robot [NS09]; (g) Google’s waymo self driving car [Rim17]; (h) SAM-
100 mason robot [Rob]; (i) BoniRob agricultural robot from Bosch [RBD+09].
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heavily on remote controlled unmanned aerial, ground, and maritime vehicles, and

has forecasted an increase in spending on research and development of such systems

will increase from $6.6 billion in 2013 to $11.4 billion in 2022 [DMC+14]. These sys-

tems are operated from a distance that is safe for the operator and therefore reduces

fatalities by decreasing the amount of manned missions in adversarial environments.

Sandia National Lab developed their Gemini Robot System as shown in Fig-

ure 1.1(c) to explore underground mines and tunnels. They are able to traverse

through debris, water, mud, flooding, explosive vapors, poisonous gases, and a vari-

ety of other environmental conditions where human teams cannot navigate quickly

or safely. These robots are remotely operated and fully equipped with modern cam-

eras and sensors in order to perceive environmental and structural conditions, and

serve as two-way communications devices with miners. Sandia has also developed a

cooperative squad of robot vehicles (see Figure 1.1(d)) that can be used for fighting

forest fires, cleaning up oil spills, delivering and distributing supplies to remote field

operations, and conducting military missions. A single operator plans a set of tasks

for a squad of robotic vehicles and the coordinated system collectively achieves the

goal that would otherwise require many humans to be present in risky environments

such as battlefield, nuclear disaster areas.

Nowadays, in the medical sciences, robotic surgery has become very common.

Intuitive Surgical’s da Vinci system (see Figure 1.1(e)) has already performed suc-

cessful operations on three million patients, and every 60 seconds someone around

the world is receiving minimal invasive surgery from this advanced technology [int].

Robotics research has made significant advancements in security research and medi-

cal research. Knightscope has developed their K5 security robots as shown in Figure

1.1(f) that can visualize 360◦ around it, detect possible threats and report them to
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the remote security operation center. In 2016, a number of K5 robots were deployed

in the Stanford Shopping Center for a cost of only $7/hour [PPBGC17].

Another very exciting advancement of robotics research is self driving cars, where

many companies are aggressively investing to win the race of fully driverless cars (L5

autonomy). Google’s autonomous car Waymo (see Figure 1.1(g)) has already driven

millions of miles. Intel recently purchased Mobileye and their vision based percep-

tion systems, while NVIDIA Corporation is training their cloud based deep neural

network to control self driving cars. Most giant car makers, including Honda, Toy-

ota, GM, and Ford are also investing heavily in this area and the fully autonomous

cars are predicted to be on the market by 2021 [bmw].

Robotics research advancements have heavily impacted modern agriculture, con-

struction jobs, and manufacturing and assembly, where humans and robots coordi-

nate to complete a bigger task. Therefore, safe and efficient planning for sequences

of activities, which at the same time meet the project timeline are required. The

SAM-100 robot, shown in Figure 1.1(h), is an automated mason robot developed by

Construction-Robotics that is able to lay bricks in construction sites six times faster

than humans [sam]. Autonomous dump trucks and cranes that will reduce accidents

in construction sites by employing safe motion plans are under heavy research focus.

Bosch developed a robotic platform called BoniRob (see Figure 1.1(i)) to be mod-

ified for various jobs in agriculture. This system can navigate autonomously along

plant rows (e.g. Dams) in the field, carrying the application module (tool) as it

moves. Multiple high end sensors such as LiDAR, inertial sensors, wheel odometry

and GPS are mounted for row detection and navigation.
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1.2 Fundamental Challenges and Key Themes

The success of an autonomous mission using the aforementioned robotic systems

depends on two common phenomena, 1) communication, and 2) efficient planning.

Most of the systems are remotely controlled and require an uninterrupted control

signal from the command center. Additionally, mutual connectivity among the de-

ployed robotic systems is necessary to achieve a goal by a collective effort from

a team of robots. Efficient sequence of activities is also required in time critical

projects (e.g. automated construction, assembly line) which at the same time en-

sure a safe collocation of humans and robots. However, traditional communication

mediums such as mobile networks, GPS, radio among the robots in a multi-robotic

system may not be readily available or may be very primitive, which results in a

communication denied environment.

Communication Denied Environment: The conventional communication

among the autonomous robots/vehicles and human operators can be interrupted

and degraded by many factors, including mission related/random movements, out

of range locations, physical obstructions, atmospheric conditions, electromagnetic

interference, and adversarial attacks such as jamming and sniffing. One important

problem with these systems is that robots cannot be properly controlled in sen-

sor and communication denied environments, a situation that arises frequently in

disaster areas, underground exploration (cave or mine), and secure military commu-

nication. In such scenarios, a remote robot has a limited communication capability

and broad range of communication modalities (satellite, mobile network) are not

available. Furthermore, there is a critical safety issue for a robot that is at risk of

losing the signals or coverage by other robots in a field full of adversaries.
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Relay Robots: To alleviate the difficulties of communication denied scenarios,

intermediate communication relays may be established, and these relays can also

be mounted on robotic systems. The relay robots cater signals/service to remotely

placed units from an operator who stays in a safe location. However, as the number

of relays is limited, and the signal degrades, or drops over long distances due to the

presence of obstacles and terrain, an optimal placement plan is required to achieve

the best communication signal possible. Accordingly, the question of where to place

these relays so as to maximize effective communication is one that can be answered

through the use of communication aware world mapping.

Communication Aware World Mapping: This tool is proposed in this re-

search in order to deal with the challenge of creating a map of the environment that

is directly related to the communication quality. A communication aware world map

is a decomposition of the world map based on communication quality that guides

the placement procedure of intermediate relay robots in order to maximize the sig-

nal strength. The outcome of the process can be either a chain or a spanning tree

of relay robots, depending on the number of remote units.

Visibility based Communication and Systems: Visibility is a very impor-

tant metric for autonomous guarding, patrolling, coverage, and security robots where

an area or a target needs to be in the direct Line-of-Sight (LoS) of the robots. Also,

in several restricted military missions, two robotic units are only allowed to commu-

nicate while they are in the direct LoS of each other. This form of communication

is more difficult to intercept or jam, because it requires the attacker to be directly

between the sender and receiver. However, mission-critical movements of land forces

may naturally cause them to lose LoS with their friendly units. Therefore, we need

to solve a number of key challenges to create an efficient relocation method among
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the robotic nodes or relays that can re-establish/maintain communications between

the units. Some research questions centered on this theme are:

1) Whether a setup of the units and robots form a communication-valid con-

nected network;

2) How the units move and what mobility models they follow;

3) How to relocate a single vehicle in order to recover a unit that went out of

sight;

4) How complex the problem is if we select more than one vehicle to relocate;

5) What is the hardness of the problem of replanning the entire setup of the

relay vehicles;

6) What is the minimum number of vehicles to maintain visibility with all the

units deployed;

7) Can we do a patrolling among the different locations using minimum number

of available vehicles in the worst case scenario;

Communication Aware Safe Planning A generic task assigned to an au-

tonomous system is accomplished through a sequence of activities (e.g. Furniture

assembly, construction work). Some activities may be performed in parallel while

other activities may need to be completed in a sequential manner depending on

the precedence constraint. Parallel task requires a number of robots to be engaged

at the same time in the system. Moreover, the workers stay in the workplace and

therefore we require a safe robotic work schedule that eliminates collisions among

the different robotic systems and human workers. For example, in an automated

construction project, the human workers and equipment, such as trucks, cranes stay

and move together. These jobsites are a source of potential accidents which include

a significant loss of lives every year due to struck-by collisions involving moving

equipment and workers [OSH]. Recent data shows that the percentage of struck-
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by accidents constituted 17.6% of fatalities and serious injuries among construction

workers [CPR13]. We found that the real cause of the hazards lies in the planning

phase where the workers are not well communicated or informed about potential

struck-by risks. Therefore, a communication aware safe planning model is required

where alternate construction plans are suggested to the planning managers through

computer simulation that calculates their safety, cost, and duration attributes. A

key challenge in this research theme is to make an event based simulation framework

of the work procedure for the entire project, which enables the project managers to

simulate the project in a virtual environment and realize the safety and cost metrics

before the actual project takes place.

Communication Aware Movements: The traditional robotic motion plan-

ning [LaV06a] algorithms generate a transformation for a robot from one config-

uration to another by minimizing a cost metric (e.g. distance). However, in a

communication denied setup a multi-objective optimal plan is required that will

optimize different objectives such as minimizing the traveling duration, enemy ex-

posure, and maximizing communication, profit, and visibility. Objectives can be

weighted and converted to a single objective optimization problem, but appropriate

weights may not be known a priori. Moreover, the cost functions can be additive,

non-additive, cooperative or non-cooperative and therefore significant modifications

to the existing motion planning algorithms and the cost functions are required.

1.3 Related Work

Communication map generation: Our first problem of interest of building a

communication aware world mapping related to the placements of the relay robots

is well motivated by the problems explained in [DD14, DeB10]. According to these
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research, the use of autonomous robotic units in military and rescue missions are

rapidly increasing to reduce the fatality of human units. These robots are remotely

controlled by an operator who stays in a safe region. A solution to this problem was

proposed in [BDH+09, BDH+10] where the relays form a chain to provide communi-

cation service to a remote unit. A modified Bellman-Ford algorithm [CLRS09] was

used on a grid decomposition of the environment to find the shortest sequence of the

desired number of grid points, each of which will contain a relay robot. However,

one drawback is that the frequent re-computation is required for the same environ-

ment when the remote unit moves. We will show that this can be avoided using our

proposed communication aware world map.

In the case of multi-unit, multi-relay scenarios the limited branching Steiner

tree discussed in [WWBB13] can be very helpful in that it will span a minimum

spanning tree among the robots. Our proposed methodologies are connected to

visibility graph-based [Kir83] planning and art gallery problems [O’R87, O’R04]

that guard polygons through visibility. However, we must find a solution using

the given number of relays instead of a visibility based shortest path that contains

an unrestricted number of intermediate nodes. Two separate groups of researchers

presented leader-follower based robot formations in [RS08, RCM04], and [WTM09,

BF10, LX05]. In [RS08], the authors used a consensus based scheme while the

authors of [WTM09, BF10, LX05] designed a dynamic controller. None of them

considered obstacles and therefore no motion based optimality was guaranteed.

Robot Placement in LoS network: A visibility based robot network setup

is commonly used in modern military missions for unit formation, area coverage or

security systems [WTK11, PTDM12]. Here, in this part of our research, we are

mostly interested in monitoring a number of human units or landmarks by a given

number of autonomous vehicles through direct Line-of-Sight (LoS). This class of
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problems are well motivated in [MVSW12] where multiple vehicles were used for

area coverages. Also, the usefulness of connected network in the modern military

expedition was discussed briefly in recent researches [WTK11, PTDM12].

Closely related to our work is presented in [OOD12], where the authors proposed

a solution to visit all the visibility polygons using a single vehicle. This solution is

based on an artificial genetic algorithm and we found that the optimality cannot

be easily guaranteed due to random mutation of two different paths. In fact, the

solution is not guaranteed to visit a minimal number of regions using an optimal

traveling route. In another stream of research, some attempts have been made to

maintain visibility to a single static landmark [BMCH07, MMCH05]. Also, the idea

of a powerful servicing vehicle serving light mobile units has been explored in data

muling and data ferrying [MAZ+15, BTI11, DCIVR06, TILT09]). These schemes

differ slightly from our problem because of focusing more on proximity rather than

Line of Sight based communication such as Free-Space Optical Communications

(FSOC) [JDH+06].

The analysis of the problems computational complexity about robot patrolling

has similarities to the well-known TSP [DM01] problem. We could also relate the

problem to the solutions of the set-cover [Mit00] problem, where a set of regions

can cover all the units. In computational geometry, the Watchman Route prob-

lem [Mit13] has a strong connection to our ideas. However, the solutions of tradi-

tional watchman route problem do not consider the differential constraints of the

robots nor the visibility metrics of the solution path.

Communication aware safe planning: Communication aware safe planning

research enables us to create a safe plan for an automated project, especially where

the human workers and machines coexist in the same workspace. As a generic project

we select the construction planning where the human workers and equipment, such
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as trucks and cranes stay and move together. A safety oriented project plan can

be achieved through simulating different options of action sequences and selecting

the optimal one based on project related metric. Many existing research works

focus on construction project simulation such as [CT13, AH11, KM01]. However,

most of these tools only provide graphical modeling in computer aided systems and

are unable to quantify the safety aspect of a construction plan. Also the existing

literature cannot answer about an alternate project plan in case the selected plan

is not safe.

This research has commonalities to approaches that use Linear Temporal Logic [BKV10],

STRIPS-like representations [GNT04] that connect with motion planning algorithms [CA09].

These systems converts a high level plan to low level trajectories. However, we found

that theActivity Graphs blended with the Discrete Event Simulations (DEVS) [Zei84]

models are more efficient than other methods, which generate a number of alternate

plans and simulate them in detail using low level motion planning methods. In

some research works [ZAH10] and [ZHB11], traditional motion planning algorithms

such as Rapidly Exploring Random Tree (RRT) was used for re-planning of crane

motion in real time. However, these tools [ZAH10, ZHB11, KL90] are not intended

to capture the whole project and fail during detailed low level simulation.

Communication Aware Multi-Objective Motion Planning: As described

earlier, we may need to optimize more than one objective during path planning for

a robot compared to the traditional robotic systems where a single objective is

optimized. A common approach to this problems is found in literature based on

scalarization of objectives, where the objectives are weighted and added to form a

single scalar value [Tar07a]. However, appropriate weights are difficult to compute

and lots of tuning is needed before achieving an acceptable value.
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We propose a solution by modifying the RRT* [KWP+11b, KF11] algorithm

which is an optimized version of the standard Rapidly Exploring Random Tree

(RRT) [LK99] that generates a single path optimizing all of the objectives. We

incorporate the multi-criteria optimization problem by normalizing the objectives

using the Utopian optimal vector [ZL07] during the RRT* tree expansion process.

One stream of research work also uses RRT* in [YGS15] in order to adopt multiple

criteria during expansion. However, they generate a number of Pareto optimal paths

and do not suggest a way to select a single one of them.

Another stream of research [Fuj96] prioritizes one objective over other and the

resulting path is naturally biased towards the high priority objectives. In the sam-

pling based pursuit evasion scheme [KF10a], multiple RRT* [KF11] trees were used,

one for each unit, and the evader’s tree was expanded in a restricted way to avoid

pursuers. We also extend this idea and apply to our modified RRT* tree algorithm

to avoid enemy units while maximizing communication and minimizing path length.

1.4 Thesis Organization and Contribution

The thesis consists of six chapters that solve the different robotic problems in com-

munication denied environments.

Chapter 2: In chapter 2, we investigate a remote controlled mission where a

base operator controls a number of remotely placed units through several interme-

diate relay robot vehicles. We develop algorithmic solutions for estimating the best

locations to place the available relay robots in order to maximize the overall com-

munication quality. Initially we decompose the world model into a grid as we found

that the solution on a continuous plane is NP-Hard. Here, two major problems

were considered: 1) A chain formation of communication relays building a signal
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link from the base station to remote robot; 2) A tree formation that spans over

multiple remote robots, relays and base station operator. For the chain formations,

a re-usable data structure based on a layered graph is computed that contains the

positions of the intermediate relays, and the initial node at level 0 of this structure is

the base operator’s position. We propose a modified breadth-first search algorithm

and apply it on the layered graph to estimate the communication map. This map is

used to extract the optimal positions of the relay robots on a communication chain

depending on the position of the single remote unit throughout the mission. We

show that our solution is able to reduce significant computation time through the

elimination of the frequent re-computation of the entire plan each time the remote

unit moves to a new position.

In the cases of serving multiple remote units, a limited branching Steiner tree [WWBB13]

is computed that essentially optimizes the communication cost. This solution is

achieved by building a number of alternate min-arborescence trees [GGST86] and

selecting the one that yields the optimal communication cost.

Chapter 3: This chapter contains the problems and sub-problems of visibility

based relay network communication systems. We propose motion planning solutions

to recover a LoS based network through re-planning and relocating the robot vehi-

cles. Two categories of robots are used here, mobile units and autonomous vehicles,

where the former moves freely and independently in the environment. Consequently,

the autonomous vehicles chase the units in order to repair any visibility based dis-

connection. Therefore, we first need to identify any disconnection resulting from

the motion of the units. Two algebraic graph theory based algorithms, centralize

and distributed, have been proposed and either of these is effectively triggered by

any movement in the system to check the system status. The proposed centralized
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algorithm uses algebraic graph theoretical methods while the distributed algorithm

depends on a message passing protocol.

Afterwards, we propose techniques that can recover visibility based connectivity

by relocating a single vehicle based on optimal motion cost. Oftentimes, a sin-

gle vehicle is not sufficient to reconnect the relay network as this may disrupt the

remaining connected part. We therefore extend the solution to relocate multiple

vehicles in situations where a single vehicle is unable to repair disconnections. How-

ever, the exact solution of calculating new positions for the relays is proven to be

NP-hard and an approximated heuristic procedure has been proposed to calculate

a possible sub-optimal solution. Additionally, a patrolling scenario may be required

in the cases of an insufficient number of vehicles to visit the newly calculated poly-

gons. Further optimization has been achieved in terms of motion cost by utilizing

the graph theoretical methods.

Chapter 4: Next, in Chapter 4, we focus on quantifying the safety score for

a fully communication aware safe robotic project plan and analyze the alternate

plans to select the safest one. We define a project plan as safe if, 1) there is

no or a minimal chance of collision among the moving robots, and 2) the moving

robots avoid the solid obstacles. An automated building construction project has

been selected for safety analysis purposes as these environments are naturally very

complex and contain lots of motions and obstacles. Our proposed solution aids the

project managers to plan/re-plan a sequence of project related activities in order

to reduce the chance of fatalities and injuries during different phases of a project.

In addition to collision avoidance, the plans for the robotic project are required to

optimize multiple objectives, which leads to Pareto optimality [War87] if there is

not a single best plan that minimizes all the objectives, such as cost, duration or

safety.
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Chapter 5: This chapter presents the multi-objective optimal RRT* [KF11] mo-

tion planning algorithm for calculating a Pareto optimal path that best optimizes

all of the different objectives. Accordingly, we must guarantee that the selected

solution path is in the Pareto optimal set [War87], which is a set of non dominating

solutions (i.e. no solution in this set is better that the other members). We mainly

modify the tree expansion steps of the well known RRT* sampling based motion

planning algorithm so that the RRT* tree expands through satisfying multiple ob-

jectives. This has been achieved through the incorporation of a cost vector in place

of a single cost function and normalizing the elements of the vector during the tree

update process. We also provide a solution for multiple robots that may be cooper-

ative and non-cooperative. In such cases, separate cost functions are designed along

with the multi-objective cost vectors that either attract or repel the multiple tree

nodes (for multiple robots) during the tree expansion phase.

Finally, We evaluate our theories through extensive experiments on realistic com-

puter simulation models (python, MSL Library and Gazebo simulator [KH04]) and

outdoor hardware deployment. We also design inexpensive robot vehicles equipped

with a number of sensors (GPS, Lidar, ZigBee communication antennas) and on-

board computation modules (Raspberry Pi, Arduino). The test-bed is generic and

re-programmable for the purposes of adapting them easily in the future robotic

experiments.
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CHAPTER 2

COMMUNICATION AWARE MAPPING

In this Chapter, we present our relay based communication framework with the

modeling of a communication-based world model that we define as communication

map. Our proposed communication map is a graph-based data structure that effec-

tively encodes the positions of relay robots depending on the 1) number of remote

units to be served and 2) number of available relays. The sole purpose of this work

is to maximize communication quality of distant units controlled from a safe base

station.

2.1 Relay Based Communication

Relay-based communication has practical applications in scenarios where traditional

communication systems are compromised or broken. Such scenarios can be found

in disaster areas, military operations, nuclear waste monitoring, underwater explo-

ration, or forest areas where either the traditional communication is absent or a

manned mission is not safe. In these communication-constrained environments, one

or more unmanned units can be used to collect data, monitor activity, or take other

actions. These robots are remotely controlled by an operator who stays in a safe

region. However, due to obstacles and terrain the signal degrades or drops over long

distances and we need to deploy intermediate relay robots in between the opera-

tor and the remote units in order to maximize communication quality. Example

scenarios for this problem are shown in Figure 2.1(a), where we need to build a

relay chain to serve a single remote unit, and in Figure 2.1(b), where we need to

construct a spanning tree to serve three remote units. As the number of relays is

limited, an optimal placement plan is required to achieve the best communication

signal possible to the remote units using the available relays.
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Figure 2.1: (a) A chain consisting of three robots that relay communication from an
operator to a remote unit; (b) A minimum spanning tree incorporating three relays,
optimizing communication from an operator to three units.

2.2 Related Work

The robotic relay placement problem has been studied in the literature with a focus

on controlling the robots and the formation of a relay chain. The best known so-

lution for our first problem about the robotic relay chain formation (Figure 2.1(a))

was proposed in [BDH+09, BDH+10]. Two different algorithms, a modified Bellman-

Ford algorithm [CLRS09] and a dual ascent algorithm, were used on a grid to find

the shortest sequence of grid points for placing the given number of robot relays.

Although their solution is able to form a relay chain, frequent re-computation of

the chain is required each time either the unit moves to a new location or the num-

ber of relays changes. In contrast, we develop a reusable data structure as a static

placement map that is computed once and used to extract the new locations of

the available relays when the unit moves throughout the mission. Thus, our solu-

tion eliminates significant re-computation and re-planning time in a mobile robotic

system.

Our second problem, multi-unit multi-relay tree formation, is connected to the

limited branching Steiner tree discussed in [WWBB13]. Although the general prob-
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lem is known to be NP-Hard, the authors proved that a polynomial time algorithm

can compute a tree for a fixed number of branching and terminal nodes. We adapted

the ideas for our problem and illustrated them in an algorithmic way that was miss-

ing in [WWBB13]. Another relay formation solution using the Markov chain is

proposed in [KMadH11], where the relays move based on the inputs from their

neighbors. However, obstacles were not considered, and the robots did not form

other topologies beyond a chain.

This research is closely related to wireless sensor networks, mesh networks, and

multi-hop dynamic wireless networks. A summary of notable works can be found in

the survey, [YA01]. However, most of the solutions are related to area coverages for

which static relay nodes are used. In contrast, we use robotic relay nodes that are

capable of adjusting their locations through movement to maintain mutual connec-

tivity. Therefore, a better communication quality can be achieved with fewer nodes

compared to area-based sensor mesh networks.

Our ideas are naturally connected to visibility graph-based [Kir83] planning and

art gallery problems [O’R87, O’R04] that guard polygons through visibility. How-

ever, the solution is a minimum number of nodes required to observe the whole

galley, which is not applicable in our problem where we need to achieve the best

communication using the given number of nodes. Similarly, visibility graph based

approaches focus on finding shortest visibility paths and cannot limit the number

of intermediate nodes.

In [LOC16], a particle swarm optimization is used on an initially connected

network to change the travel direction of the relays. This method, however, cannot

repair a disconnection, nor initialize an entire setup. Their approach also needs fine

tuning of different weights which may introduce additional complexity.
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In [OZLL14], the authors proposed a relay UAV motion relative to an access

point based on the perceived signal to noise ratio (SNR). This solution works on a

single relay and single unit problem, and cannot be extended to multi-relay coverage

problems. Similarly, an energy-minimization solution is proposed in [CKS14], where

a static operator can communicate with a static unit through a UAV. However, no

algorithmic solution is provided and the model cannot be adapted for moving targets.

Our work also has similarities to the leader-follower robot formation where a

number of robots position themselves according to the policy distributed by their

leader. A number of related solutions are presented in [RS08, RCM04], and [LX05].

Although a consensus-based control algorithm is provided in [RS08] and a dynamic

controller was designed in [LX05], no obstacles are considered in either work. A

visual odometry is used in [RCM04] to keep the leader in sight, but the calculated

trajectories and positions do not guarantee any optimality.

Also closely related to our work are the ideas described in [BF10, WTM09],

where a number of relay routers adapt their locations based on that of a moving

unit. Although an initial implementation was provided for motion tracking, the

optimality of the relay placement is not guaranteed. Furthermore, the methodology

was not implemented for obstacle avoidance during the relay robot motion, which

will make the problem significantly harder.

2.3 Mathematical Formulation

We will consider a two-dimensional environmentW = R2 that is filled with polygonal

obstacles O as illustrated in Figure 2.1. In this environment, there is a set of m

relay vehicles A1, A2, . . . , Am and p remote units B1, B2, . . . , Bp that need to be

connected to a static operator S. We define the collision-free space as W ′ =W \O
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where the units and relays present in the world can move freely. The remote units

are modeled as point robots and a unit Bj has configuration space Bj , where a

particular configuration rj ∈ Bj is defined as rj = (x, y) ∈ W ′. Similarly, the

configuration space for the operator S is defined as S, where an operator’s position

s ∈ S is denoted by s = (x, y). The relay vehicles are modeled as car-like robots and

incorporate differential constraints on their movements. A particular vehicle Ai has

a configuration space Ci and the positions qi ∈ Ci are defined as qi = (x, y, θ) ∈ W ′×

[0, 2π) [LaV06b]. Vehicle dynamics for Ai are defined as ẋi = uis cos θ, ẏi = uis sin θ,

and θ̇i =
uis
Li tanu

i
φ; [BL89b], where uis is the forward speed and uiφ is the steering

angle of the vehicle. In most parts of the chapter (except motion planning), we

will consider qi = (x, y) as our approach calculates the positions of relays rather

than planning their trajectories. We define the entire system state space to be X =

C1×C2×· · ·×Cm×B1×B2×· · ·×Bp. Let Xobs = {x ∈ X : x∩O 6= ∅ where O ∈ O}

be the obstacle state space. The collision-free state space is then Xfree = X \Xobs.

2.3.1 Communication Quality

As the communication to the units must be established through the relay vehicles

to and from the operator, their placements will affect the communication quality.

The communication quality can be interrupted or degraded due to: a) the distance

between two components, and b) the presence of obstacles that directly affect the

communication quality [BMPC08]. For any two points on the plane ρ1, ρ2 ∈ W
′

that have free Line of Sight (LoS), the path loss [BMPC08, SAZ08] is proportional

to the quadratic distance, d2(ρ1, ρ2), and we define the free space path loss function

fF :W ′ ×W ′ → R
≥0 as:

20



fF (ρ1, ρ2) =






αd2(ρ1, ρ2) if d(ρ1, ρ2) < dth

∞ otherwise

(2.1)

Here α is the loss coefficient and dth is the distance threshold beyond which no

communication can be established. Let the path loss in the presence of obstacles and

terrain be fO(ρ1, ρ2,O), which includes the costs resulting from diffraction (fDF ),

fading (fFA), and/or multipath propagation [SAZ08].

fO(ρ1, ρ2,O) =





0 if ρ1ρ2 has LoS

fDF (O) + fFA(O) otherwise

(2.2)

Diffraction loss of a signal results from an obstacle in between the transmitter

and receiver that scatters the signal by the edges of the obstacle, and Fading occurs

when the obstacles reflect the signal, causing multiple routes of reception [SAZ08].

Here, for simulation purposes, we use a simple weighted obstacle crossing based

on the amount of intersection of the line segment ρ1ρ2 with the obstacles and

fO(ρ1, ρ2,O) = γ · |ρ1ρ2 ∩ O|, where γ is a weighting coefficient.

Finally, the total communication cost fC between ρ1 and ρ2 is defined as:

fC(ρ1, ρ2) = fF (ρ1, ρ2) + fO(ρ1, ρ2,O) (2.3)

2.3.2 Relay Placement Problems

Our first problem of interest is to develop a solution for the relay placement problem

involving an operator, a number of relay robots, and a remote unit. Given the

operator’s position s and a remote unit’s position r, we need to calculate a set of

relay robots’ positions q1, q2, . . . , qm such that they form a communication chain.

The operator and the remote unit are the two endpoints to complete the chain and

the communication cost is,
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fLC = fC(s, q1) +
∑

1≤i<m

fC(qi, qi+1) + · · ·+ fC(qm, r) (2.4)

We are required to solve the problem of creating a reusable placement map that

gives the best placements for a given number of relay vehicles and different positions

of a remote unit. Therefore, we define a communication map corresponding to the

static operator s as Ms
c : B → Cn. Computation of a chain formation of multiple

relay robots describes our first problem, and we define the MULTI-RELAY CHAIN

problem as:

Problem 1: MULTI-RELAY CHAIN - Finding Optimal Positioning of

a Set of Relay Robots on a Chain.

Given the fixed positions r and s corresponding to a unit B and an operator S, find

m points q1, . . . , qm corresponding to the m relay vehicles A1, A2, . . . , Am in the free

space that form an m+ 1-link m hop path to connect s to r and minimize fLC .

We extend the multiple-relay single-unit problem to a multiple-relay multiple-

unit problem. Consequently, we have p unit positions r1, . . . , rp that must be con-

nected to s through m relays. Therefore we define our second problem as a MULTI-

RELAY MULTI-UNIT problem:

Problem 2: MULTI-RELAY MULTI-UNIT - Finding Optimal Posi-

tioning of a Set of Relay Robots That Serve a Number of Remote Units.

Given a set of fixed positions r1, . . . , rp of p units and the position s of one opera-

tor, compute the optimal positions q1, q2, . . . , qm of m relay robots on the plane that

form a connected component among the operator, relays and units while the term
∑

1≤i≤p

min
1≤j≤m

fC(ri, qj) + min
1≤j≤m

fC(s, qj) is minimized.

In this case, the optimal solution is a tree T = (V,E) that spans over the

operator, p remote unit positions, and m available relay positions. Accordingly, the
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Figure 2.2: (a) A sample environment with obstacles decomposed into a grid; (b)
Connected communication graph G with the weights in fC ; (c) Directed layered
graph G generated from G and (d) Communication map M0

c as a form of a shortest
path tree excluding irrelevant nodes of G.

communication cost of this multi-unit system is defined as:

fTC (T ) =
∑

(u,v)∈E

fC(u, v) (2.5)

We need to compute a tree T that minimizes the communication cost fTC (T ).

2.4 Single Unit Multiple Relay Placement

A MULTI-RELAY CHAIN problem is shown in Figure 2.1(a) where we want to

form a relay chain between the operator and the remote unit. However, the problem

becomes NP-Hard on a plane filled with obstacles as stated below.

Proposition 2.4.1 The MULTI-RELAY CHAIN problem in a polygon with holes

is NP-Hard.
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Proof. (Sketch) Our problem is similar to the shortest m+1-link paths in polygons

with holes as discussed in [AMP91, MPA92]. The bi-criteria shortest path decision

problem was proven to be NP-Complete [AMP91] when we need to decide if a path

with m + 1 links is the shortest. Therefore the optimization version of calculating

the shortest m+1 link path (our MULTI-RELAY CHAIN problem) is generally NP-

Hard. Although we use communication cost metric fC , it depends on the distance

metric d and does not reduce the hardness of the problem.

Therefore, we employ discretization as shown in Figure 2.2(a)-(b) instead of

solving the problem in the continuous plane. We convert the world W ′ = W \ O

into a grid (such as a Sukharev grid [YL04]) with n grid points Ω = {g1, g2, . . . , gn}.

An example environment grid Ω is shown in Figure 2.2(a) where the operator S stays

in cell 0. A graph representation G(V,E) of Ω, based on communication cost fC , is

drawn in Figure 2.2(b) where the node set V is composed of all the grid points that

are not inside the obstacles O, and is defined as V = {vi|vi ≡ gi ∈ Ω and gi /∈ O}.

Here, a node vi ∈ V is equivalent to a grid point gi ∈ Ω, but contains additional

attributes such as identifier, cost, neighbors, and parent. Each node v ∈ V has a

unique identifier v.id that is used to identify the node. The set of undirected edges

E is defined as E = {(u, v) : fC(u, v) <∞}. Here, the communication between two

grid points is blocked by the obstacles that we enforce for demonstration purposes.

However, we will show other general cases in the experimental section where the

signal is allowed to penetrate the obstacles.

Next, we compute the communication map Ms
c using Algorithm 1. A layered

directed graph G = (V, E) withm+2 levels l0, l1, . . . , lm+1 form available relay robots

is computed (see Figure 2.2(c)) based on the original graph G. Level l0 contains only

one node v0s ≡ vs ∈ V corresponding to the static operator’s position s which also

represents the root of the tree. Each of the subsequent layers li, where 1 ≤ i ≤ m+1,
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will copy all the nodes V \ vs of the original graph G. This means a particular layer

li contains the nodes Vi = {v
i
1, v

i
2, . . . , v

i
|V |} and, for a node vik ∈ Vi, the identifier

vik.id = vk.id, where vk ∈ V is the corresponding original node in G. Additionally,

the nodes at different layers with the same index have the same identifier, which

means v1k.id = v2k.id = · · · = vm+1
k .id (see Figure 2.2(c)). Finally, the node set V for

the graph G is defined as,

V = V0 ∪ V1 ∪ · · · ∪ Vm+1 (2.6)

which contains O((m + 1) · |V |) nodes. A directed edge (u, v) ∈ E is allowed only

between the nodes of any two consecutive layers li and li+1 (lexicographic order) if

and only if (u′, v′) ∈ E ⇔ fC(u, v) < ∞ where u.id = u′.id and v.id = v′.id for

u′, v′ ∈ G.V :

E = {(u, v) : u ∈ li, v ∈ li+1 and fC(u, v) <∞ ; 0 ≤ i ≤ m} (2.7)

Once the layered graph G is constructed, we compute a modified shortest path

tree that results in our communication map Ms
c . The resulting tree is constructed

by exploring G layer-wise in a lexicographic order while removing the unnecessary

nodes that have already attained optimality. Therefore, we modify the breadth first

graph search (BFS) [CLRS09] algorithm to explore layer by layer and compute the

shortest chain from the root vs to each of the nodes. Line 3 of Algorithm 1 initializes

the exploration by enqueuing vs into a queue Q. In order to compute the shortest

path tree, we introduce a hash table h of length |V | that uses v.id as the keys and

is initialized to ∞ (line 4). We defined earlier that a particular node v ∈ V has the

same key v.id in all the layers of G where its instances appear (see the numbering

in Figure 2.2(c)). Therefore, h is used to keep track of the lowest cost of each node

v ∈ V of the original graph G as we explore throughout the levels of G.
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Algorithm 1 multiRelaySingleUnit(G(V,E))

1: G(V, E) = calculateGraph(G)
2: vs.cost = 0, and v.parent = NULL; ∀v ∈ V
3: Enqueue(Q, vs)
4: h[v.id] =∞; ∀v ∈ G.V
5: while Q 6= ∅ do
6: u = Dequeue(Q)
7: for v ∈ u.Neighbors do

8: if u.cost+ fC(u, v) < h[v.id] then
9: v.parent = u
10: v.cost = u.cost+ fC(u, v)
11: h[v.id] = v.cost
12: Enqueue(Q, v)
13: end if

14: end for

15: end while

Although the identifiers (v.id) of a node’s replicas across all layers are identical,

their cost attributes v.cost differ at different layers. Initially, the cost of the root

node vs.cost = 0 and the parents of all the nodes are set to NULL (line 2), as

many nodes have multiple incoming edges. Our target is to select one incoming

edge per node in order to choose a parent. We dequeue a node u from Q (line 6)

and check to see if setting it as the parent of its neighbors in the next layer will

reduce their costs. Accordingly, in lines 7-14 we select node u ∈ V as the parent

of a node v ∈ V if the condition u.cost + fC(u, v) < h[v.id] is satisfied. Otherwise,

u.cost+fC(u, v) ≥ h[v.id] indicates that we already have achieved the optimal cost in

one of the prior layers, including the current layer, with a better parent than u. For

example, in Figure 2.2(d) node 2 achieves the optimal cost h[v2.id] = 2 (using (2.4))

at layer l2 through the node 1 of layer l1. During the evaluation of node 2’s replica

in layer l3, we do not find any node u that satisfies u.cost + fC(u, v2) < h[v2.id],

thus it is excluded from the tree, having no incoming edge. Finally, we achieve a

communication map Ms
c , as shown in Figure 2.2(d), after traversing all the nodes.
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Chain Extraction: Given the position of a mobile unit r, and a number of relay

robots m, we search for v ∈ V s.t. v.x = r.x and v.y = r.y in the (m+1)-th layer of

the communication map Ms
c . If such a node is found we backtrack recursively using

its parent pointer until the root vs is reached at layer l0. The nodes found along this

traversal are the positions of the intermediate relays. However, if r is not found in

layer (m+1), we search for it in layer m, then layer (m−1) and so on, until we find

r or reach layer l1. If r is found in a lower layer lm′ where m′ ≤ m, we can achieve

a minimum cost using m′ − 1 relay nodes. On the other hand, if we reach layer l1

in this process, then the position r cannot be served by m relay robots. The grid

points that cannot be served by m relays compose the shadow region Φm ⊂ Ω ofW:

Φm = {g ∈ Ω|g ≡ v /∈ li where 1 ≤ i ≤ m+ 1} (2.8)

In Figure 2.2(a), grid point 5 cannot be served by m = 1 relay and therefore does

not appear in the layers l1 and l2 of Ms
c in Figure 2.2(d).

The above chain extraction procedure implies that Ms
c only needs to be con-

structed once for an environment W if the operator does not change its position s.

Then, the positions of any number of relays can be extracted to serve a unit located

anywhere on the grid.

Algorithm analysis: The running time of Algorithm 1 is O(V + E) as every node

and edge is visited once [CLRS09]. However, the input is a graph G of n nodes

from which we computed G with (m+ 1)(n− 1) + 1 nodes for m+ 2 layers. In the

worst case, where every node can communicate to all other nodes, the total number

of edges is at most |E| = (number of edges in m + 1 layers) + (number of edges in

layer l0) = m(n − 1)(n − 2) + n − 1 = O(mn2), which is also the running time of

Algorithm 1.
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2.5 Multiple Unit Multiple Relay Placement

According to the definition of the MULTI-RELAY MULTI-UNIT problem (Prob-

lem 2), there are m relays available for serving p mobile units that are located at

r1, r2, . . . , rp. We need to compute the optimal locations q1, q2, . . . , qm that will con-

nect the operator position s to the units. However, the general problem on a plane

becomes NP-Hard.

Proposition 2.5.1 The MULTI-RELAY MULTI-UNIT SERVING problem in a

polygon with holes is NP-Hard.

Proof. (Sketch) A Euclidean m-median problem is to find a set of m points on a

plane to serve p fixed nodes so as to minimize
∑

1≤i≤pmin1≤j≤m d(ri, qj). This is

shown as NP-Hard in [MS84] and [FMW00] for polygons with holes. Our MULTI-

RELAY MULTI-UNIT problem is similar except that the m+ p+ 1 points need to

form a connected component, and therefore cannot be relaxed to an easier version.

Thus, according to the technique of proof by restriction [GJ79], MULTI-RELAY

MULTI-UNIT contains the Euclidean m-median problem and is therefore NP-Hard.

Consequently, we use the same discretization method of relay chain placement sim-

ilar to that shown in Figure 2.2(a). We need to compute a minimum spanning

sub-tree of G(V,E) (Figure 2.2(b)) that spans over all the p unit locations, m re-

lays, and the operator such that the units become the leaf nodes while all the relays

become the internal nodes. The problem of interest has commonalities to the lim-

ited branching Steiner tree discussed in [WWBB13] where the authors prove that

a polynomial time algorithm exists for a fixed number of branching and terminal

nodes (m intermediate and p terminals in our case). However, we must prevent the

remote units from branching and must make the operator the root.
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Algorithm 2 computes the solution for the optimal multi-relay positioning for

multiple units. Let the set of p + 1 fixed nodes be VT = {vs} ∪ VB, where vs ∈ V

is the operator node and VB ⊂ V is the set of nodes corresponding to the remote

units. As we have n nodes in G(V,E) (from n grid points), including the p + 1

fixed nodes, we have to select m relay locations from the remaining n−p−1 nodes.

Therefore, we define ϑm ⊂ P(V \ VT ) as the set of all possible sets of nodes with

exactly m members. Here, P(V \ VT ) is the power set of the remaining nodes

other than the fixed nodes. Accordingly, ϑm has
(
n−p−1
m

)
members that are used to

enumerate
(
n−p−1
m

)
possible graphs, each of which has exactly m relays, p units, and

one operator.

Algorithm 2 multiRelayMultiUnit(G(V,E))

1: VT = {vs} ∪ VB
2: ϑm = {ν ∈ P(V \ VT ) : |ϑ| = m}
3: for νi ∈ ϑm do

4: Vi = νi ∪ VT
5: Gi = computeDiGraph(Vi)
6: if Gi.connected() then
7: Ti = minArborescence(Gi)
8: T .add(Ti)
9: end if

10: end for

11: return failure if T = Null
12: return argmin

Ti∈T
[fTC (Ti)]

From lines 3-10 of Algorithm 2, we compute a set of
(
n−p−1
m

)
spanning trees,

T , and select the optimal one. For each set νi ∈ ϑm of m nodes, we construct a

directed sub-graph Gi(Vi, Ei) from the undirected graph G(V,E), where Vi ⊂ V and

Vi = νi ∪ VT (in total, m + p + 1 nodes). For each undirected edge (u, v) ∈ E, if

u, v /∈ VB, then the edge is replaced with two directed edges. Otherwise, if u ∈ VB,

then the edge is replaced with only one directed edge from v to u, or vice versa (see
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Figure 2.3: The operator is at cell 0 and two units (p = 2) are placed at cells
4 and 9 that need to be served by m = 2 available relays: (a) A sub-graph G1

constructed with ν1 = {v1, v2}; (b) Resulting min-arborescence tree T1 of G1; (c)
Another candidate sub-graph G2 with ν1 = {v2, v3}; and (d) Candidate tree T2

Figure 2.3(a) and (c)). Also, the operator node (root) vs has no incoming edges.

Ei = {(u, v) ∈ E : u /∈ VB and v 6= vs where u, v ∈ Vi} (2.9)

Once we construct a graph Gi, we check its connectivity and exclude it from

further computation if it is not connected. Otherwise, on the graph Gi that has

exactly m relays, p units, and one operator, we compute the minimum spanning

tree Ti which is generally called the min-arborescence tree [GGST86] for directed

graphs. We apply Tarjan’s algorithm [GGST86] to get a minimum arborescence tree

Ti (see Figures 2.3(b) and (d)). Finally, we choose the tree that yields the minimum

cost:

argmin
Ti∈T

fTC (Ti) where fTC (Ti) =
∑

(u,v)∈Ti

fc(u, v) (2.10)

Algorithm analysis: The running time of Algorithm 2 depends on lines 3-10.

The loop of line 3 runs
(
n−p−1
m

)
times, which can be simplified as (n−p−1)m

m!
=

(n−p−1)(n−p−2)...(n−p−1−m)
m(m−1)...2·1

= O(nm) for a constant m. As the Tarjan’s algorithms

runs in O(E + V log V ) [GGST86], in the worst case it’s running time is O(E) =

O(m + p + m(m − 1) + mp) = O(m2 + mp + p) (by sub-graph construction as

shown in Figures 2.3(a) and (c)). Therefore, the running time of Algorithm 2 is
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Figure 2.4: Multi relay chain simulation: (a) Four relays forming a chain; (b) and
(c) Number of relays are reduced to three and two, respectively; (d) and (e), the
remote unit relocates to a new position, triggering the reformation of the relays; (f)
Shadow region Φ1 for one relay (using (2.8)).

O(nm(m2 +mp + p)). Generally, for a robotic mission, the given number of relays,

m is fixed which makes the running time polynomial.

Extension to Aerial Systems: Algorithms 1 and 2 can easily be extended to a

3D environment. In such cases, the environment would be in the form of a cuboid

that can be decomposed into a 3D grid onto which our algorithms can be applied.

2.6 Experimental Results

We tested our proposed methodologies through software simulations and hardware

experiments. A detailed analysis will be presented in this section.
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2.6.1 Software Simulation

Multi-Relay Chain: We have implemented Algorithm 1 on several randomly gen-

erated environments shown in Figures 2.4 and 2.5. Once we generate the communi-

cation map Ms
c , we extract the chain based on the number of available relay robots.

Figure 2.4(a) is a solution to a visibility based system when we have 4 intermediate

relays and no connection is allowed through the obstacles O. In this case we search

and find the unit node in layer l5 of the communication map Ms
c and backtrack until

we reach the operator node in layer l0. Consequently, the four intermediate relay

positions are extracted from the layers l4, l3, l2 and l1 of Ms
c . Next, we reduce the

number of relays to 3 and then 2, and the solutions extracted from the same Ms
c

are shown in Figure 2.4(b) and (c), respectively. In all of the cases, our algorithm

extracted solutions form the same map Ms
c and are able to minimize the distances

of the successive nodes in the chains.

Figures 2.4(d) and (e) demonstrate the reusability of our communication map

Ms
c when the unit moves from place to place. Here, we have four relays and we

are able to find the unit node in layer l5 of Ms
c for both the cases. Finally, Figure

2.4(f) shows a case where a single relay cannot serve the unit which stays inside the

shadow region Φ1 (as per (2.8)).

In our next case study, we allow the signal to be penetrated through the obstacles

O (like radio waves). The path loss is therefore impacted by fading (fFA) and

diffraction (fDF ) effects (as per (2.2)). Accordingly, Figures 2.5(a), (b) and (c) show

the optimal relay placements for four, three, and one available relays, respectively.

In all three cases, the algorithm found the minimal obstacle intersections to minimize

the communication cost fLC . In Figures 2.5(d), (e) and (f), we allow the operator to

stay at a safe place inside a building, and compute the solutions for one, two and

32



(a) (b) (c)

(d) (e) (f)

Figure 2.5: Communication can now be established through the obstacles with extra
costs according to (2.2): (a) Four relays, (b) three relays and (c) one relay connecting
the unit to the operator. (d) The operator stays inside a building and one relay is
available; (e) and (f), Obstacle crossings have decreased as the number of relays has
been increased to two and four, respectively.

four available relays. We see that the obstacle intersections are decreasing with the

increasing number of relays, and the signal gets stronger, which is expected.

Multi-Relay Multi-Unit Tree: Next we simulate the cases involving multiple

units that are collectively served by multiple relays. Six sample min-arborescence

trees are shown in Figure 2.6 as generated by Algorithm 2. The operator does not

directly serve the units, which means the units receive their service from one of the

relays. Figures 2.6(a) and (b) demonstrate the cases of two vehicles A1, and A2

relaying communication to four units B1, B2, B3 and B4. Next, we increase the

number of relays to three and four; the outputs are shown in Figures 2.6(c), (d) and

Figures 2.6(e), (f), respectively.
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2.6.2 Hardware Experiment

To demonstrate our chained-relay, and multi-relay multi-unit solutions, we use

robots based on the open source SERB robot [BMG+12] in a hardware/software

test-bed. The experiments are performed on an indoor small prototype test-bed

which is considered as a miniature of the larger real world systems. The vehicles

are equipped with a battery, two servo motors and an Arduino Uno that operates

the motors and sensors. We added line detection sensors for use in navigation along

the environment’s grid lines.

The test-bed’s software components are distributed between a C++ program

that runs on the Arduino to operate the vehicles, and a Python program that runs

on a separate controller device to implement the two presented algorithms. The

centralized communication between the controller and the robots is implemented

using XBee DigiMesh 2.4GHz wireless radio transceivers.

Motion Planning: We used the A∗ search algorithm [LaV06b] to generate tra-

jectories that avoid all obstacles. During one robot’s trajectory generation, all other

robots, the operator, and the units are considered obstacles, in addition to static

obstacles O. The coordination method [LH98b] also works well for multi robot path

planning. In cases where a car-like robot is used, the optimal RRT* [KF11] path

planning in 3m dimensional space ((x, y, θ) for each relay) for m robots can be im-

plemented. However, the relocation cost (e.g. fuel consumption, navigation costs

for large military vehicles) may outweigh the new communication cost, if the com-

munication quality improvement is marginal. Therefore, the operator will decide

either to move the relays or to stay with the current setup considering the commu-

nication cost calculated by our system (fLC or fTC ) and the traveling cost computed

by a selected motion planner.
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: Multi-Relay Multi-Unit simulations. (a) and (b) show min-arborescence
tree for two relays serving four units; (c) shows three relays serving three units and
(d) is a case of three relays connecting four units; (e) and (f) are min-arborescence
tree for four relays connecting the units to the operator.

MULTI-RELAY CHAIN: In Figure 2.7 we demonstrate the relay chain for-

mation using two available relay robots A1 and A2. The unit B is located at the

top-left corner while the operator S stays near the red obstacle (Figure 2.7(a)). The

two marked locations are the desired positions for the relays that were calculated

using Algorithm 1. In Figure 2.7(b), robot A1 starts moving following the path

generated by the A∗ algorithm, avoiding all the obstacles and other robots. A1

reaches its destination and A2 prepares to move as shown in Figure 2.7(c). Finally

A2 reaches its goal location as shown in Figure 2.7(d), establishing a relay chain

(yellow dotted lines).

MULTI-RELAY MULTI-UNIT: An example environment with two relays

(placed at top right) and two remote units is shown in Figure 2.8. The relays need to
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(a) (b)

(c) (d)

Figure 2.7: Multi-relay chain experiment: (a) A1 and A2 need to be on the two
marked positions generated by Algorithm 1; (b) A1’s path generated by the A∗

algorithm; (c) A1 reaches its destination and A2 prepares to move; (d) A relay chain
is established: S → A1 → A2 → B.

move to the marked locations (Figure 2.8(a)) that are the part of a min-arborescence

tree generated by Algorithm 2. Vehicle A2 moves along its path as shown in Figure

2.8(b), and reaches its destination in Figure 2.8(c), in which A1 also starts moving.

Finally, in 2.8(d), both vehicles A1 and A2 have reached their destinations and an

optimal communication tree (green lines) is established.

2.6.3 Numerical Analysis

In Table 2.1, we compare our relay chain model (Algorithm 1) with a closely related

solution from [BDH+10] in terms of the increasing number of nodes. For each model,

the left column has two components: 1) the time to build the graph + 2) the time

to compute the underlying data structure (Ms
c in our case), and the right column

shows the time to recompute solutions in response to the changes either in the
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(c) (d)

Figure 2.8: Multi-unit multi-relay experiment: (a) A1 and A2 need to be on the
two marked positions generated by Algorithm 2; (b) A2 is moving along its path
as generated by the A∗ algorithm; (c) A2 reaches its destination and A1 is moving
along its path; and (d) a min-arborescence tree has been formed with the edges
E = {(vs, v2), (v2, v1), (v1, r1), (v1, r2)}.

number of relays or the location of the unit. Although our graph-building phase

takes longer than that of [BDH+10] due to the construction of the layered graph G,

computation of reusable map Ms
c is commonly faster for smaller environments as

we use a modified BFS algorithm on G (which is a tree), compared to a modified

Bellman-Ford algorithm [CLRS09] used on G according to [BDH+10]. Then, we

achieve significant improvements in the subsequent computations than [BDH+10],

as we only need to extract a chain of relays from Ms
c instead of recomputing the

entire data structure.

We plot the running time of our min-arborescence tree computation (Algorithm

2) with the increasingly large environments in Figure 2.9. The curves correspond to

polynomial running times in terms of a fixed number of relays m.
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Figure 2.9: Running time plotted against environment size for (a) two available
relays (m = 2) and (b) three available relays (m = 3).

Table 2.1: Analysis of Running Time (in seconds)
Nodes Our Method Burdakov et el.

Building G+
Ms

c computation
Subsequent
Runs

Building G +
k-hop BF

Subsequent
Runs

361 6.70+0.438 0.0052 2.39+1.23 1.05
400 8.15+0.58 0.0067 2.66+1.62 1.50
625 23.82+2.41 0.0081 6.54+4.12 4.06
729 35.57+3.70 0.0079 11.39+7.78 7.23
900 49.86+8.01 0.0095 13.52+8.93 8.85
1089 85.01+14.07 0.012 23.03+14.51 14.87

2.7 Discussion and Extension

We have studied the complexities of optimal relay placement problems in an envi-

ronment filled with obstacles, and proposed solutions that are capable of dealing

with most variations of the problems. In the case where we have multiple relay

robots, we build a static map which is a reusable data structure computed from a

layered graph using the modified breadth-first search algorithm. Thus a chain for-

mation can be obtained for m available relays and a single unit in different positions.

This eliminates a significant amount of re-computation in scenarios where the unit

relocates, the number of relay changes in the same environment. We also developed

a solution for optimal placement of multiple relays in order to serve multiple units.
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The solution is a tree and we generate a number of alternate min-arborescence trees

from which we select the optimal one in terms of communication cost.

One immediate extension of our work is to test the solutions for different commu-

nication modalities and perform a benchmark analysis. We are aware of the running

time of the multi-unit problem where all possible combinations of candidate nodes

may take a long time in the case of many relays. However, this can be improved by

early decomposition of the environment and weeding out the unnecessary nodes.
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CHAPTER 3

COMMUNICATION BASED ON LINE-OF-SIGHT

In the several specific environments, the communication medium may be con-

strained and unlike the previous chapter, the signal may not be allowed to pass

through the obstacles and terrain. These systems may use visible light communica-

tion, human gestures, smoke that require the sender and receiver to be in the direct

Line-of-Sight (LoS) of each other. Also besides communication, visibility plays a vi-

tal role in many robotic systems such as coverage and patrolling. Therefore, in this

chapter, we investigate different scenarios to preserve a LoS based system where the

deployed robotic nodes must ensure mutual visibility. We analyze the computational

complexity of this class of problems and propose different techniques that focus on

setup/recovery of a relay network. We evaluate our theories through extensive ex-

periments on a realistic computer simulation model (Gazebo simulator [KH04]) and

through an outdoor experiment where a vehicle equipped with a number of sensors

(GPS, camera, ZigBee communication antennas) and onboard computation modules

(Raspberry Pi, Arduino) is able to monitor 2 distinct units. The methodologies of

this chapter has been partially published previously and can be found in [RBRa].

3.1 Visibility Based Communication

Communication between mobile units located in geographically separated positions

in an environment plays an important role in unmanned aerial or ground missions.

However, the existing signal can be easily interrupted by natural features such as

terrain, atmospheric effects, and electromagnetic interference. Intentional jamming

of communications and sniffing by an enemy may also pose a serious risk. In order

to mitigate these problems, Line-of-Sight (LoS) communication can be established.

This form of communication is more difficult to intercept or jam because it requires
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Figure 3.1: (a) A sample field mission where two autonomous servicing vehicles
and five units are deployed; (b) The corresponding environment geometry in 2D
space. The red rectangles are vehicles while the green circles are mobile units.
The polygonal hole in the middle represents the obstacles and terrain O; (c) A
communication-invalid state where the unit B1 is not seen by any of the vehicles;
(d) Another communication-invalid state as vehicles A1 and A2 do not have any
relay communication.

the attacker to be directly between the sender and receiver. Because mission-related

movements of land forces may naturally cause them to lose LoS with their friendly

units, it is desirable to provide additional nodes or relays that can maintain com-

munications between the units. A group of autonomous ground vehicles can fulfill

this role, by moving from place to place as needed for the purposes of establishing

relayed contact. One such environment is exemplified in Figure 3.1(a)-(b) where

a LoS-based relay network has been established among the autonomous vehicles

(rectangles) and units (circles).
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Once a connected group of autonomous ground vehicles has been established in

the field, its computational and storage capacity can be used to provide services to

the units that it serves. This can provide additional military value, by analyzing

tactical data, detecting threat patterns, or searching for information that would not

otherwise be readily available. The task of a servicing ground vehicle is to maintain

LoS to one or more units and at least one other servicing vehicle if more than one

vehicle is deployed. Collectively they need to cover all the units and also to maintain

a relay network among themselves.

As the units move around the environment, they frequently get isolated from the

network as shown in Figure 3.1(c). This problem requires one or more autonomous

vehicles to relocate into the visibility polygon of the disconnected unit in order to

stay in the LoS and provide service. The relocation may damage the existing LoS-

based connectivity of the network as shown in Figure 3.1(d) where the two vehicles

become disconnected. Also, in some cases we may not have enough vehicles to form

a fixed relay network.

3.2 Related Work

Since the group of servicing vehicles must have LoS communication with all the

units they serve, our ideas are naturally connected to Art Gallery problems [O’R87,

O’R04] and other visibility-based approaches in computational geometry [Kir83].

Art-gallery based approaches have been used in robotics to solve sensor [GBL01] and

landmark placement [EL11] problems. Another computational geometry problem

that is connected to our ideas is the Watchman Route problem [Mit13]. Some of the

differences between the traditional Watchman Route problem and our setup are: 1)

We are not only concerned about the shortest path but also about a path that will

42



keep the most visibility with all units and other vehicles; and 2) The vehicle’s paths

should respect differential constraints.

In [OOD12], the authors proposed a scheme to visit all the visibility polygons

using a single vehicle, which leads to redundancy when polygons intersect. Also,

they do not consider formation of a constrained relay network amongmultiple robots,

which is the main goal of this work. The solution is based on a genetic algorithm,

and the patrolling route computed for a single robot is unable to guarantee the

optimality due to random mutation. In contrast, here we propose a solution that

minimizes the number of regions to visit by a single vehicle that either eliminates

or reduces the patrolling route.

Closely related to our problem are visibility-based pursuit schemes whose goal

is to find a path that will guarantee that an evader is captured regardless of his

motion [GLL+97]. Our work is also closely connected to path planning approaches

that attempt to maintain visibility to a single static landmark [BMCH07, MMCH05].

The idea of a powerful mobile unit uploading, downloading, and distributing

data to a set of dynamic units has been explored in data muling and data fer-

rying [MAZ+15, BTI11, DCIVR06, TILT09]). One important difference between

our formulation and the data muling approach is that communication is based on

Line-of-Sight instead of the proximity of the sensor nodes. In the area of communi-

cation, Free-Space Optical Communications (FSOC) [JDH+06] is being considered

as an alternative for military network-centric operations. Particularly related is the

work in [KY14] where the problem of two mobile nodes that try to maintain LoS

alignment is studied.
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3.3 Preliminaries

Let A1, A2, . . . , An be a set of n servicing vehicles, with configuration spaces C1, C2, . . . , Cn

and a set of m mobile units be, B1, B2, . . . , Bm. Units and vehicles are deployed in

a 2D world W = R2 which we assume to be a connected polygon. Let O be

the set of obstacles that block communication and are modeled as polygons. The

collision-free space is defined as E = W \ O. The mobile units can move freely

in the world and are modeled as point robots without rotation. Accordingly, the

configuration for a mobile unit Bj is defined as, rj = (x, y) ∈ E, and the set

B = Em is the configuration space for the mobile units. The servicing vehicles

can move inside the bounded environment E using both translation and rotation

actions, and are modeled as point robots with an orientation and configuration

defined as qi = (x, y, θ) ∈ E × [0, 2π) [LaV06b]. These vehicles are car-like, and

a given vehicle Ai must satisfy differential constraints and dynamics defined as

ẋi = uis cos θ; ẏi = uis sin θ, and θ̇i = uis
Li tan u

i
φ; [IKH11], where uis is the forward

speed and uiφ is the steering angle of the vehicle. Together, the n vehicles compose

the configuration space C = C1 × C2 × · · · × Cn. We define the entire system state

space to be X = C × B. Let Xobs = {x ∈ X : x ∩ O 6= ∅ where O ∈ O} be the

obstacle state space. The collision-free state space is then Xfree = X \Xobs.

3.4 Problem Statement

3.4.1 Communication State Validity

Communication can only be established among servicing vehicles and between ser-

vicing vehicles and mobile units through LoS. Mobile units cannot communicate
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with each other. The communication range can be characterized by a visibility

polygon. The visibility polygon V (p) for a point p ∈ E is defined as [EGA81]:

V (p) = {w|w ∈ E and pw ∩ E = pw}. (3.1)

Definition 3.4.1 A state x ∈ X is considered communication-valid if and only if

each unit is visible by at least one servicing vehicle and the servicing vehicles form

a connected network. We define this set of configurations as Xcomm ⊂ X.

According to the definition, we must satisfy the following conditions in order to have

a communication-valid state:

∀j, ∃i s.t. rj ∈ V (qi) for 1 ≤ j ≤ m and 1 ≤ i ≤ n (3.2)

{(qj, qk)|qk ∈ V (qj) for 1 ≤ j, k ≤ n, k 6= j} ≡ CC(x) (3.3)

where CC(x) is a connected component formed by all the vehicle-vehicle connections.

The state x ∈ X is changed whenever a unit or vehicle changes its configuration.

The units move autonomously, and in response to those movements we may need to

plan the trajectories and new configurations for the servicing vehicles depending on

communication-validity. Therefore, we have a decision problem in which we want

to know whether a given state is communication-valid (x ∈ Xcomm). This problem

can be formulated as follows:

Problem 1: Communication State Validation

Given the workspace W, a set of obstacles O, a set of configurations C for servicing

vehicles, and B for mobile units, determine whether a state x ∈ Xcomm or not.
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3.4.2 Invalid-to-Valid Communication State Restoration

Initially, we assume that the visibility-based network is connected as shown in Figure

3.1 and x ∈ Xcomm. Since the mobile units are allowed to move freely throughout the

environment E, the system becomes communication-invalid frequently. A unit is

marked as disconnected if and only if it is not visible to any of the servicing vehicles.

A set of disconnected units, D ⊆ {B1, B2, . . . , Bm}, is defined based on a given state

x ∈ X , and we dispatch an available vehicle Ai from its current location xis to a

newly computed goal region X i
G in order to reconnect the strayed units. As the

event of vehicle relocation must not break the existing partially connected network,

the selection of vehicles to be moved must be done carefully. This motivates the

following problem:

Problem 2: Communication Validity Restoration

Given W and O, the current state x ∈ X, and a set of disconnected units D, select

one or a number of vehicles to relocate and compute their new goal regions, XG, that

will reconnect all the units in D.

3.4.3 Patrolling and Trajectory Estimation

There may be situations where there are not enough vehicles to serve all of the

units and maintain a connected relay network. In these cases, we need to calculate

the optimal regions on the free space so that placing the available vehicles on those

areas can serve as many units as possible. Furthermore, a patrolling tour may

be required by one vehicle which will connect the remaining disconnected units and

vehicles and act like a dynamic relay link. Because the vehicle designated to serve the

disconnected units and other vehicles along the patrolling route may lose its existing

connection to one or more units or vehicles that it is already servicing, the tour
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must be chosen optimally, not arbitrarily, such that the traveling time is minimized.

Therefore, if we have a set of disconnected units, D, a tour, τ : [0, T ]→ Xfree, must

satisfy,

∀i∃t s.t. ri ∈ V (τ(t)) where 1 ≤ i ≤ m, t ∈ [0, T ]. (3.4)

Problem 3: Patrolling Trajectory Estimation

Given W and O, the current state x ∈ X and a set of disconnected units D, com-

pute the optimal patrolling trajectory τ : [0, T ] → Xfree, such that τ touches the

minimum number of discrete regions.

3.5 Communication State Validation

We propose two algorithms: centralized and distributed to estimate whether the

current state x ∈ X is communication-valid, which solves Problem 1 demonstrated

in Section 3.4.

3.5.1 Centralized Algorithm

Initially, we are given the positions of units and vehicles and we do not know which

vehicle is providing service to which unit. In order to solve Problem 1, we propose Al-

gorithm 3 that works based on graph theoretic network connectivity [ZEP11, SJK08]

solutions. A visibility-based graph can be constructed where the node set is com-

posed of all the components (vehicles and units) and an edge is added between two

nodes if the corresponding components are visible to each other. However, check-

ing the algebraic connectivity [ZEP11] on this graph is not sufficient. For example,

the graph shown in Figure 3.2(b) is connected but not communication-valid. This

type of graph occurs if there are obstacles between vehicles. Therefore our proposed
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Figure 3.2: (a) Vehicle relay graph GA generated from a vehicle-vehicle relay network
for the environment demonstrated in Figure 3.1; (b) Unit graph GB from the vehicle-
unit connectivity; (c) Union of the two graphs, G = GA ∪ GB.

validation is two-fold and we generate the following two types of undirected graphs

based on a particular state x.

Vehicle Relay Graph (GA): This state-dependent undirected graph is a mapping

gA : X → GA(VA, EA), where VA = {A1, A2, . . . , An} is the set of vehicle nodes (see

Figure 3.2(a)). EA denotes the set of edges defined as,

EA = {eij |qi ∈ V (qj)} (3.5)

where qi and qj are the positions of vehicles Ai and Aj in the environment E. This

implies that an edge eij exists if and only if the vehicle Ai is inside the visibil-

ity polygon, V (qj), of vehicle Aj . We then compute the n × n Laplacian matrix,

L(GA) = DEG(GA) − ADJ(GA), where ADG(GA) is the familiar (0, 1) adjacency

matrix, and DEG(GA) is the diagonal matrix of vertex degrees [Mer94], also called

the valency matrix of GA. The entries of L are as follows [BB10]:

i) lij =





−1 if an edge exists between i and j

0 otherwise

ii) lii = −
∑n

k=1,k 6=i lik
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In line 2 of Algorithm 3, we check the second-smallest eigenvalue λ2(L(GA)) of GA

to see whether it is positive. A non-positive value indicates that the relay network

formed by all the vehicles does not exist and the network is communication-invalid

(line 3). If λ2 > 0, then we go to the second step of validation where we check the

entire network connectivity (lines 5− 11).

Unit Graph (GB): The unit graph GB, which is also undirected and is a mapping

gB : X → GB(VB, EB), is computed in line 5. In contrast to GA, the graph GB

includes all the m units and n vehicles in its node set VB. Accordingly, VB =

{A1, A2, . . . , An, B1, B2, . . . , Bm} is indexed by the vehicles, followed by the units,

so that all units have indices greater than n. The edge set EB has the following form:

EB = {eij |rj ∈ V (qi) where n < j ≤ n +m and 0 < i ≤ n}. (3.6)

This means that an edge is added if and only if a unit’s position rj is visible from

some vehicle’s position qi (see Figure 3.2(b)).

Finally, we form a state-dependent graph G(V, E) as shown in Figure 3.2(c),

which is the union of the two graphs GA and GB. Accordingly, the vertex set V =

VA ∪ VB and the edge set E = EA ∪ EB. Therefore we conclude that the graph is

communication-valid if the second-smallest eigenvalue λ2 of the (m+ n)× (m+ n)

Laplacian matrix, L(G), of graph G(V, E) is greater than zero (lines 7− 11).

Analysis of Algorithm 3: The graph creation in lines 1 and 5 uses a visibility

polygon computation algorithm to determine the edges of the graphs. Each polygon

computation takes O(n) [EGA81] and for n vehicles the running time is O(n2). The

dominant factor, however, is in computing the eigenvalues (lines 2 and 7) which

generally takes O(n3) in the worst case. Therefore the running time of Algorithm 3

is O(n3).
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Algorithm 3 communicationCheck(x,O)

1: GA = gA(x)
2: if λ2(L(GA)) ≤ 0 then

3: return false
4: end if

5: GB = gB(x)
6: G = GA ∪ GB
7: if λ2(L(G)) ≤ 0 then

8: return false
9: else

10: return true
11: end if

3.5.2 Distributed Algorithm

An improvement can be made over the centralized Algorithm 3 if we use the com-

putational power of all the vehicles in a distributed manner. Algorithm 4 presents

pseudo code for the distributed communication-validity checking program which will

run in each of the vehicles. In a distributed processing system we rely on message

passing through network protocols. Algorithm 4 will be triggered once it receives

a request or control message. In Line 1 we collect all the elements visible from the

vehicle. Line 2 sends a query message to each of the neighboring vehicles except the

requester (reqV ), to share their coverage information. The program then waits for

all the vehicles’ response messages. Accordingly, line 4 merges the vehicle’s own vis-

ibility information with that of its neighbors. If the current vehicle is the initiator,

lines 5− 10 will check the network to see if all the units and vehicles in service were

discovered or not. Otherwise, in lines 11− 13, the resulting status from the current

vehicle will be sent back to the requester.

Analysis of Algorithm 4 : All the lines in Algorithm 4 except lines 2, 3 and 12

run in O(1). Lines 2 and 3 will run at most O(n) if all other n − 1 vehicles are

visible. Therefore on a single vehicle the algorithm takes O(n) time. Similarly if all
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Algorithm 4 stableStateDist(Ci, reqV )

1: α = hi(x)
2: query hj(x) to all adjacent vehicles, Aj ∈ N \ reqV
3: wait and receive hj(x) from all neighbor vehicles Aj

4: α = α ∪ h1(1) ∪ h2(x) · · · ∪ hj(x)
5: if Ai is initiator() then
6: if α == N ∪M then

7: return true
8: end if

9: return false
10: end if

11: if receiver(Ai) then
12: send α to the requester
13: end if

n− 1 other vehicles are the requester, line 12 will take O(n). The drawback of this

algorithm is the messaging overhead and waiting time for responses. The number

of messages being sent can be vast if the graph is dense.

3.6 Recovering a Communication-valid State with a Single

Vehicle

As units are on the move, this may result in disconnections from their respective

servicing vehicles. Here we propose a solution that dispatches a single vehicle in

order to reconnect a strayed unit from the visibility-based network. Any movement

inside a network triggers Algorithm 5, which identifies any disconnections and relo-

cates a vehicle that best re-establishes a communication-valid state without affecting

existing network connections. The set of disconnected units D is defined as:

D = {Bj|∀i, rj /∈ V (qi) where 1 ≤ i ≤ n}. (3.7)

Therefore D is the set of units that are not visible to any of the vehicles due to

obstacles. In other words, the set of all the units with degree zero in the graph GB
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compose the disconnected set D. If there is any such non-visible unit (i,e., D 6= ∅),

we attempt to resolve disconnections for each Bj ∈ D using Algorithm 5.

Next, we define the set Hi as the set of hard constrained units of a vehicle Ai

which are only visible from Ai and to which no other vehicles can provide service.

A unit is said to be a hard constrained unit if and only if it is visible from only one

vehicle. Lines 1− 3 of Algorithm 5 compute Hi for all the vehicles according to the

following equation:

Hi = {rj |rj ∈ V (qi) and ∀k 6= i, rj /∈ V (qk)}. (3.8)

Therefore, the unit nodes (nodes corresponding to the units) with degree one in the

graph GB are the members of the hard constrained sets. In line 4 we compute the

intersecting polygon V (Hi) of all visibility polygons of all members in Hi. Initially

the set of candidate vehicles for relocation is C = {A1, A2, . . . , An}. However, we

may not be able to relocate all the vehicles in C as this may break the existing

connected graph topology GA among the vehicles. Therefore, we check the second-

smallest eigenvalue of the Laplacian matrix of a graph generated by removing the

corresponding vehicle nodes Ai ∈ C along with their incident edges from graph GA.

We remove the nodes from C that make λ2 ≤ 0 (line 6 of Algorithm 5).

The new goal polygon X i
G of a candidate vehicle Ai ∈ C must be inside the visi-

bility polygons of 1) the disconnected unit Bj and 2) at least one other vehicle that

is a part of the existing relay network. Moreover, if there is any hard constrained

unit and Hi 6= ∅ then X i
G must be inside the polygon V (Hi). As the visibility poly-

gons may be concave in an environment filled with obstacles, we may get multiple

goal polygons. In such cases, we take the largest one. Therefore we compute X i
G
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for Ai ∈ C as follows (see line 8):

X i
G =





max
Ak 6=Ai,1≤k≤n

V (rj) ∩ V (qk); if Hi = ∅

max
Ak 6=Ai,1≤k≤n

V (rj) ∩ V (qk) ∩ V (Hi); otherwise

(3.9)

Once the goal regions for all the candidate vehicles in C are computed, we only

retain the vehicles that have nonempty goal regions (line 10). We then select the

optimal vehicle Arj in terms of the motion cost. In brief, the motionCost() method

in line 14 computes the relocation cost of a vehicle from its current position xis to

the computed goal region X i
G using a motion planning algorithm such as Rapidly-

exploring Random Trees Star (RRT*) [KWP+11a].

Algorithm 5 singleMoveComm (Bj ∈ D,GB,GA)

1: for each vehicle Ai do

2: Hi = computeHardConstrained(GB)
3: end for

4: V (Hi) =
⋂|Hi|
k=1 V (rk ∈ Hi)

5: C = {Ai|1 ≤ i ≤ n}
6: C = C \ Ai s.t. λ2(L(GA(VA \ Ai, EA \ ei))) ≤ 0
7: for Ai ∈ C do

8: X i
G =





max
Ak 6=Ai,1≤k≤n

V (rj) ∩ V (qk); if V (Hi) = ∅

max
Ak 6=Ai,1≤k≤n

V (rj) ∩ V (qk) ∩ V (Hi); otherwise

9: end for

10: C = C \ Ai s.t. X
i
G = ∅

11: if X i
G = ∅ for all 1 ≤ i ≤ |C| then

12: return failure
13: end if

14: Arj = argmin
Ai∈C

[motionCost(xis, X
i
G)]

15: return success
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3.7 Recovering a Communication-valid State with Multiple

Vehicles

3.7.1 Hardness of Relocating Multiple Robots

If Problem 2 cannot be solved by Algorithm 5, we need to move more than one

vehicle. New configurations for more than one vehicle cannot be calculated efficiently

as different combinations of vehicle movements are possible. Another important

constraint is the number of vehicles; a sufficient number of vehicles may not be

available to support all the units. Therefore, we first assume that we have only one

vehicle that follows a travelling route τ ([OOD12]) to visit the visibility polygons of

the m units. An analysis of the hardness of this problem follows.

Definition 6.0: LoS Communication Problem : Given a set of m visibility poly-

gons each for one unit Bi ∈ M , find the shortest tour τ : [0, T ] → Xfree to visit at

least one point in each polygon.

Proposition 3.7.1 LoS Communication problem is NP-Hard.

Proof. We will prove the hardness of the problem by polynomially reducing the

Traveling Salesman Problem with Neighbors (TSPN) [DM01], a well-known NP-hard

problem, to our LoS communication problem. Suppose TSPN takes as an input a

set of convex polygons, Γ = {P1, P2, . . . , Pm}, and the goal is to find a minimum

cost tour that touches at least one point in each of the polygons. The convexity of

the polygon does not reduce the difficulty of the problem [DM01].

The reduction algorithm will take as an input Γ from TSPN and will place a unit,

Bi, in the centroid of each polygon Pi (see Figure 3.3). This centroid calculation

can be done in polynomial time. Therefore, Pi will work as visibility polygon for
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converted to visibility polygonspolygons to visit

units added

Figure 3.3: An instance of TSPN is reduced to an instance of LoS Communication
problem. Each polygon in TSPN will act as visibility polygon of an assigned unit.

the unit Bi. These will convert the input of TSPN problem to the input of LoS

Communication in polynomial time. The output transformation is trivial, since the

solution for the LoS Communication problem τ is clearly a solution for the TSPN

as each of the units Bi ∈ M belong to a polygon Pi that will be touched by the

tour, solving the TSPN.

Conversely, suppose that we have a solution tour, τ for the TSPN that touches

each of the polygons Pi ∈ Γ. We can use this as a route that will be followed by

the vehicle in our LoS communication problem since the vehicle will go into all the

visibility polygons in each tour and will provide service to all the units.

3.7.2 Approximated Solution

Since our problem is NP-hard, it cannot be solved exactly in polynomial time unless

P=NP. We must use an approximation algorithm for TSPN to get a near optimal

solution. As previously mentioned in Section 3.2, a genetic algorithm solution of

this problem can be found in [OOD12] for a UAV where the aerial robot is allowed

to fly over the obstacles. However, we cannot use this solution or the approximate

solution for TSPN due to obstacles in the environment. We must instead use a

motion planning algorithm once the sequence of polygons to visit is computed.
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Figure 3.4: Two sample environments are partitioned using visibility polygon based
decomposition.

Since visibility polygons may intersect, the number of regions to visit may be

fewer than the total number of individual polygons; this allows for a significant

improvement over the works in the literature ([OOD12]). Let Γ be the set of goal

regions to be visited that are inside the area composed by the visibility polygons of

all the units (Γ ⊆
⋃m
i=1 V (Bi)). There is an intractable number of regions and sub

regions in the obstacle free plane E. Therefore, we developed Algorithm 6 which

computes Γ, the finite set of goal polygons to be visited by a vehicle. In line 1,

we compute the visibility polygons V (B1), V (B2), . . . , V (Bm) corresponding to the

units. Next, we decompose the obstacle free environment E into a countable set

of polygonal faces F = {P1, P2, . . . , Pρ} based on the intersections of the visibility

polygons as shown in Figure 3.4. We need to select a set of polygons Γ from F , which

implies that Γ ⊆ F . One important fact is that F contains all the original polygons

and the split polygons resulting from their intersections after the decomposition

process. This helps us to select bigger polygonal regions for vehicle placements that

cover large areas, making it easier for the motion planner to compute paths, given

large goal regions.
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The visibility-based decomposition is a vital step towards solving the problem as

the edges of a face P ∈ F inflict at least one visibility event. Crossing an edge results

in the appearance or disappearance of a unit. As a result, each of the polygonal

faces P is visible by a set of units. We need to choose the minimum number of such

polygons so that they collectively cover all the units. This resembles the well-known

geometric Set Cover problem [HP11, BG95], and computing the optimal solution is

NP-Hard. An instance of such problem consists of a finite set U = {B1, B2, . . . , Bm}

and a set of allowable polygons F = {P1, P2, . . . , Pρ}, such that every point in U

is covered by at least one polygon in F [HP11]. We use a modified greedy set

cover approximation algorithm [Cor09, Mit00] to solve this problem (lines 3-11 of

algorithm 6).

In line 3 of algorithm 6, we assign a label yP to a polygon P , which is a set,

yP = {Bj , Bk, . . . , Bl}; ∀c ∈ {j, k, . . . , l} V (Bc) ∩ Pi = Pi. (3.10)

This means the label yP of a polygon P contains the names of the units whose

visibility polygons completely enclose P . Next we assign a score to all the polygons

as,

ŝ(P ) = γ · area(P ) +
∑

Bk∈yp

[
α− β · d(P,Bk)

]
(3.11)

Here, area : F → R≥0 is used to compute the area of the polygon and d : F×

B → R≥0 is the distance function to compute the distance between any visible unit

and the polygon. α, β, γ ∈ R≥0 are the variables and α is chosen to be very large

compared to β and γ to make the visible number of units (|yP |) of the polygon P

the most dominant factor of ŝ. Therefore, it is obvious that the highest scoring

polygon covers most of the units. In the cases where more that one polygons cover

same number of units, we chose the largest and the nearest one to the units.
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Line 7 of Algorithm 6 greedily selects a polygon that covers as many units as

possible. Breaking the tie is done using the score ŝ. We remove the units from U in

line 8 that are covered by P (i.e. in yP ) and add the polygon in the resulting set Γ

in line 9. This process ends when U becomes empty and we terminate the algorithm

by returning Γ as the goal regions to visit.

Algorithm 6 multiRobotPlacement (B,O)

1: V = {V (B1), V (B2), . . . , V (Bm)}
2: F = decompose(V)
3: ∀P ∈ F , yP = assignLabel(V)
4: ∀P ∈ F , ŝ(ti) = assignScore(P, yP)
5: Γ = ∅; U = {B1, B2, . . . , Bm}
6: while U 6= ∅ do
7: Select P ∈ F that maximizes |yP ∩ U|
8: U = U − yP
9: Γ = Γ ∪ {P}
10: end while

11: return Γ

Analysis: Algorithm 6 is composed of two different algorithms. Lines 1-4 calcu-

late a set of polygons F which is fed as an input to the set cover approximation of

lines 5-11. The polygon set F is produced through the intersection of m visibility

polygons which are concave. From a pairwise visibility polygon intersection, we

get O(cm2) polygons for some constant c. These resultant polygons also intersect,

yielding O(c2m4) polygons. This implies |F| = c2m4, which is the input of the set

cover approximation that runs in O(|U||F|min(|U|, |F|)) time [Cor09].

3.7.3 Multi-Robot Placements and Patrolling

In the presence of n vehicles, we have three different cases:

Case |Γ| = 1: This is a trivial case where we deploy a vehicle in the sole polygon

that is visible to all the units.
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Case |Γ| < n: In this case we have enough vehicles that they can be placed

as static servers to each of the polygons. We use |Γ| vehicles where each of the

polygons receives one vehicle. We may need to use one vehicle for patrolling among

the polygons depending on the components in the visibility-based vehicle graph

(GA).

Case |Γ| ≥ n and |Γ| > 1: In such cases we do not have sufficient vehicles to

cover all the polygons. Therefore, we keep assigning one vehicle per polygon in Γ,

prioritizing based on their scores, ŝ, until we are left with one vehicle. The last

vehicle will perform a tour, τ , among all the polygons. Therefore the polygons

P1, P2, . . . Pn−1 are covered and all other polygons Pi ∈ Γ s.t. i ≥ n are not covered.

In both of the above cases, we may need an optimal patrolling strategy in order to

establish a dynamic link among the covered polygons (having an assigned vehicles)

and uncovered polygons (having no assigned vehicle). Once a number of available

vehicles are deployed, as shown in Figure 3.5(a), we compute the vehicle-graph

GA(VA, EA) as explained earlier in Section 3.5.1 (see Figure 3.5(b)). We then apply

the connected component algorithm [HT73] to get a set of subgraph components

C1, C2, . . . , Cκ where VA =
⋃κ

i=1Ci. By definition, any two member vertices Aj , Ak

in a component Ci are connected through a path (visibility path in our case) as

shown in Figure 3.5(b). We merge all the visibility polygons of the vehicles under a

component Ci to make a single polygon,

PCi
=

⋃

Aj∈Ci

V (Aj) (3.12)

There may be some polygons that are not covered due to insufficient vehicles (if

|Γ| ≥ n). These are the polygons denoted as ΓU = Γ\{P1, . . . , P|VA|}. We thereafter

create a directed connected-component graph GCCA (VCCA , ECCA ), as shown in Figure

3.5(c), where the vertices are composed of the component polygons and uncovered
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(a)|Γ| = 6 and n = 6 (b) GA

(c) GCCA (d) TSP tour

Figure 3.5: (a) A set of six polygons, Γ = {P1, P2, P3, P4, P5, P6} computed by
approximate set cover (Algorithm 6) that are to be covered by n = 6 available
vehicles; (b) Two connected components C1 and C2 are computed from vehicle
graph GA; (c) Connected component graph GCCA ; (d) TSP tour and RRT* path to
be followed by the 6-th vehicle.

polygons,

VCCA = {PC1 , PC2 . . . , PCκ
} ∪ ΓU (3.13)

Graph GCCA is a complete graph which means any polygon is reachable from any other

polygon, as our environment E is connected. The weighted directed edge eCCij ∈

ECCA between two vertices PCC
i , PCC

j ∈ VCCA is computed using a motion planning

algorithm such as RRT*, A* or combinatorial planning [KWP+11a, LaV06b], that

finds a path (edge) between the polygons while avoiding the set of obstacles O.

Once all the edges are computed, we apply the approximate Geometric TSP [Chr76]

algorithm to compute the sequence of polygons to visit. Finally, a motion planner
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computes a sub-optimal tour that touches all the polygons according to the sequence

with minimal motion cost (see Figure 3.5(d)).

3.8 Experimental Results

3.8.1 Checking Communication-Valid State

In the first case study, we validate the correctness of Algorithm 3 to check the

communication-valid state space. The results from our experiments on different

setups of the environment are shown in Figure 3.6. In Figure 3.6(a) we have a few

trivial environments where only one graph is communication-valid (bottom right

with λ2(GA) = 2 and λ2(G) = 3). A complex environment with three obstacles,

two vehicles and six units is presented in Figure 3.6(b). Here, the relay network

is connected, as the second-smallest eigenvalue of the vehicle graph’s Laplacian is

λ2(GA) = 2 > 0. However, the union graph including vehicles and units results in

λ2(G) = 0, which indicates that the setup is not communication-valid.

Another environment is shown in Figure 3.6(c) where the relay network is not

communication-valid (λ2(GA) = 0), although the union graph is connected. Finally,

in Figure 3.6(d) we demonstrate a communication-valid network with three vehicles

where both the relay graph and union graph are connected (λ2(GA) = 1 and λ2(G) =

0.5024).

61



(a) (b) λ2(GA) = 2;λ2(G) = 0.

(c) λ2(GA) = 0. (d) λ2(GA) = 1;λ2(G) = 0.5024.

Figure 3.6: (a) A few trivial environment setups. Only the bottom right state is
communication-valid; (b) and (c) are two communication-invalid states as λ2 ≤ 0 for
at least one graph (relay or union graph) in each environment. (d) A communication-
valid state as λ2(GA) > 0 and λ2(G) > 0.

3.8.2 Regaining a Communication-valid State by Single Ve-

hicle Movement

We used the Bonnmotion Library [AEGPS10] to generate different mobility models.

The CGAL library [FP09] was also used to perform the geometric polygon compu-

tation, and the Python programming language was used for visualization. The SMP

library [KFb] was used for RRT* algorithm implementation.

In Figure 3.7, we present the test cases for a random waypoint mobility model

where four servicing vehicles are assigned to monitor six deployed units. While the

units are moving randomly, unit E gets disconnected from the network. Therefore,
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(a) (b)

(c) (d)

Figure 3.7: Bonnmotion random waypoint experiment: (a) Unit E gets discon-
nected; (b) Goal region computation for candidate vehicle 2. The green shaded
region is the visibility polygon of E. Purple dashed regions are the intersections of
vehicle 3 and unit E’s visibility polygon while blue dashed area is the intersecting
polygon of 4 and E. (c) Goal region for candidate vehicle 4. (d) RRT* trees and
resulting trajectories for the two candidate vehicles 2 and 4.

we demonstrate the computation of our proposed Algorithm 5 in Figures 3.7(a)-(d)

in order to recover the network. As the relocation of vehicle 1 or 3 would cause

other vehicles to become disconnected from the network, they are both eliminated

from consideration and the candidate vehicle set becomes C = {2, 4}. In Figure

3.7(b), we compute the goal region X2
G for vehicle 2. We have three regions to

consider from the intersection of the visibility polygons marked by dotted lines.

From among those, we select the region labeled as “E, 4” as X2
G, which is the

largest of the three. Similarly, we compute the region “E, 3” as the goal region

X4
G for vehicle 4 shown in Figure 3.7(c). Finally, as shown in Figure 3.7(d), we
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(a) time = 4 (b) time = 5

(c) time = 7 (d) time = 15

Figure 3.8: Bonnmotion random waypoint experiment at different times: (a) System
reconnected by relocation of vehicle 2 to recover D. (b) System is still connected
at time = 5. (c) Unit E is disconnected and the system is recovered through
relocation of vehicle 1. (d) An example system that is unrecoverable by a single
vehicle movement.

generate two motion paths corresponding to the vehicles 2 (red) and 4 (blue) using

the RRT* [KWP+11b] motion planning algorithm for a Dubins car [IKH11]. We

select vehicle 4 for relocation by following the blue trajectory as it gives an optimal

cost compared to the red trajectory which requires a longer path to travel.

In Figure 3.8(a) we have three available vehicles forming a relay network while

serving six units. Unit D gets disconnected and the candidate vehicle set for relo-

cation is C = {2, 3}, as relocating vehicle 1 makes the relay network broken. As

both of them have hard constrained units (H2 = {B}; H3 = {E, F}), we use (3.9)

to calculate the intersecting polygons X2
G and X3

G as their respective goal regions.
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(a) (b)

(c) (d)

Figure 3.9: Bonnmotion nomadic mobility experiment: (a) All components are
connected and the units form two groups; (b) Vehicle 1 is relocated to its goal
region X1

G (purple area, which is the intersection of vehicle 2 and unit B) in order
to serve disconnected unit B; (c) Vehicle 2 moves to serve disconnected unit A; (d)
Again, vehicle 1 is dispatched to serve the disconnected unit F .

The resulting region that optimizes the visibility is shown as a dashed area for

vehicle 2, which is the intersecting visibility region of vehicle 3, hard constrained

unit H2 = {B}, and disconnected unit D. Vehicle 2 is then relocated into the

purple dashed region following the trajectory generated by the RRT* algorithm.

At time = 5 as shown in Figure 3.8(b), the hard constrained unit B of vehicle 2

changes position and does not break the connectivity. At time = 7 (Figure 3.8(c))

we dispatch vehicle 1 to serve the disconnected unit E after the same computa-

tions done for the above cases. However, at time = 15 (Figure 3.8(d)), the system

becomes non-recoverable when unit A gets disconnected. We cannot move vehicle
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1 or 2 because there is no common visibility polygon among hard constrained units,

another vehicle, and the disconnected unit A. Vehicle 3 cannot be moved due to

relay connectivity.

Nomadic Mobility Model: Units move in groups according to the nomadic mo-

bility model and an example scenario is presented in Figure 3.9. We deployed two

servicing vehicles in order to provide service to six units that are distributed into two

groups (see Figure 3.9(a)). Unit B gets disconnected in the next time-stamp shown

in Figure 3.9(b). Accordingly, vehicle 1 goes to the intersection of the visibility poly-

gons of vehicle 2 and unit B (purple dashed). This small movement is highlighted

by a red curvature generated by the RRT* algorithm. In Figure 3.9(c), unit A is

disconnected and vehicle 2 is dispatched to its calculated goal location X2
G (the in-

tersection of the visibility from vehicle 1 and unit A). Then, in the next time-stamp,

unit F is disconnected. Only vehicle 1 has a common intersection with vehicle 2,

hard constrained unit set H1 = {B,C,D} and disconnected unit F . Therefore, we

relocate vehicle 1 to repair the LoS-based visibility network. We observed that the

nomadic mobility model is easier to repair than the random waypoint model with a

single vehicle movement as the units move in groups.

3.8.3 Re-Establishing a Communication-valid State

We have tested the methodology discussed in section 3.7.2 to establish a communication-

valid network (static or dynamic) in case 1) a new setup is needed, or 2) there

is no solution with a single vehicle movement once a connected network becomes

communication-invalid. At first, a visibility-based polygonal decomposition of the

environment was obtained using the VisiLibity [OC08] and Shapely [GBLT] libraries

as shown in Figure 3.10(a). After applying algorithm 6, we get the two polygons
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Figure 3.10: (a) Decomposition of an environment using visibility polygons. (b)
Selected polygons using approximate set cover algorithm.

presented in Figure 3.10(b) that collectively see all the units. The bottom-left poly-

gon is completely visible from units B1, B3, B4 and B6 while the units B2, B3 and

B5 can see the middle-right polygon.

We tested our approximate solution on several randomly generated environments

with six (m = 6) units shown in Figure 3.11. Our algorithm was able to select the

best polygons according to the labels yi and scores ŝi in F . Accordingly, a single

vehicle can serve the units deployed in Figure 3.11(a) as we found a single polygon

visible to all the units. In the case of 3.11(b), two vehicles are sufficient to cover the

two selected polygons. Moreover, the polygons are completely visible to each other

and form a single connected component. Therefore, no extra vehicle is required to

do patrolling. Then, we need a minimum of three vehicles in the case shown in

Figure 3.11(c), where two of them are assigned to each of the polygons while the

remaining one connects the two polygons using an approximate TSP tour τ . A

scenario is presented in Figure 3.11(d) with three selected polygons. We need three

vehicles to form a static relay network as the three polygons are completely visible
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Figure 3.11: (a) A single vehicle is sufficient to serve all the units as |Γ| = 1; (b)
Two vehicles are sufficient as their deployment will result in a single connected
component; (c) Three vehicles are required where two of them will be deployed
in two goal polygons and the remaining one will do the patrolling between their
visibility polygons; (d) Three vehicles can form a static relay network as the three
goal polygons are completely visible to each other.

to each other and therefore no further patrolling is required. However, patrolling

needs to be planned in case we have less than three available vehicles.

An animated simulation model is developed using ROS and the Gazebo 3D

simulator [KH04] where we use a number of Husky cars as our robot vehicles as

shown in Figure 3.12. The Husky is a simulated version of Clearpath Robotics real

UGV, and is widely used in research for its enabling of realistic simulation of real
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(a) (b)

(c) (d)

Figure 3.12: (a) ROS and Gazebo simulation environment containing six units pre-
sented with various colors; (b) Visibility based decomposition; (c) Planning with
one vehicle; (d) Planning with three available vehicles.

world hardware capabilities. The six cylindrical objects in Figure 3.12(a) represent

the six (m = 6) units, while the black vehicle around the center is the Husky

UGV. We first decompose the environment based on visibility polygons of the units

as shown in Figure 3.12(b) and three polygons P1, P2 and P3 are selected by the

approximate set cover method of Algorithm 6 (see Figure 3.12(c)).

Next, we simulated two cases with one (n = 1) and three (n = 3) Husky cars

as shown in Figure 3.12(c)-(d). Given a single vehicle, a motion planning algo-

rithm generates a tour τ that touches the chosen polygons, avoiding the obstacles
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(Figure 3.12(c)). The visiting order of the polygons is obtained from the approx-

imate TSP [Chr76] algorithm as discussed in Section 3.7.3. The Husky vehicle

uses a motion planner that combines A* with Adaptive Monte Carlo Localization

(AMCL) [FBDT99] to move the car from source to goal. However, one can use any

other motion planner that conforms the robots dynamics and configuration, such as

RRT* or PRM*. In Figure 3.12(d), a case is presented with three available vehi-

cles, so we can assign one vehicle per polygon which serves as static servers. As a

result, we get a connected component PC1 and a uncovered polygon P3 as explained

in Section 3.7.3. Therefore, the remaining vehicle follows a patrolling trajectory τ

in between PC1 and P3. Detailed simulations with animation can be found in the

attached multimedia of this paper.

3.8.4 Physical Deployment

We performed a physical experiment of our ideas using a modified Traxxas Slash

Dakar Truck Series Edition as a servicing vehicle as shown in Figure 3.13(a). An

ArduPilot controller (ArduPilot Mega APM 2.5) was added to control the movement

of the vehicle. A Turnigy 9X radio was used to place a series of waypoints to be

followed by the vehicle and as a safety feature in case of communication loss. The

Raspberry Pi (version 2) unit was mounted for on-board processing and an external

compass/GPS unit was mounted for localization.

We connected a camera (Vilros 5MP Camera Board Module) to the Raspberry

Pi as a visibility sensor and used simple color segmentation algorithms for unit

detection using the OpenCV computer vision library. On top of each unit, a Zigbee

communication module (Zigbee+Arduino) was used to communicate with the vehicle

as shown in Figure 3.13(b). In Figure 3.13(c) and (d) we see the output of unit
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Figure 3.13: (a) Modified robotic truck as a servicing vehicle with APM, Raspberry
pi, GPS, Zigbee and Camera mounted on it; (b) A sample unit (Red) with a Zigbee
module mounted on it as a communication device; (c) and (d) are the images cap-
tured by the camera mounted on the vehicle along with their real time Computer
vision output after color based segmentation (to detect red and yellow) shown on
the right side of each image.

detection captured by the on-board camera mounted on the vehicle when the units

come within the visibility region of the vehicle. The images are processed in real

time using onboard processing power while the vehicle is in motion. The Zigbee

module is used for passing messages between the vehicle and the units. Detailed

experiments with the robots in action can be found in the attached multimedia of

this paper.
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3.9 Summary

In this paper, we study the problem of establishing Line-of-Sight (LoS) communica-

tion between a number of moving vehicles and a group of mobile units. We proposed

algorithms to determine if a configuration of units and vehicles is connected through

LoS communication. Two polynomial-time versions of the algorithm, one central-

ized and one distributed, were developed to be deployed for different types of ground

missions. Secondly, we proposed a complete algorithm that gives a solution, if there

is any, to recover a system by relocating a single vehicle.

In a complex and highly dynamic situation, where a single vehicle fails to repair

the network, we solve the general problem of multi-robot relocation and placement.

We proved that the exact solution to this problem is NP-hard and then presented

heuristic procedures based on set cover approximation to calculate goal locations

and paths. In a patrolling scenario with insufficient vehicles, we use the TSP al-

gorithm to visit the calculated goal polygons. Further optimization was achieved

in terms of motion or patrolling cost through visibility-based geometry and graph

algorithms. Finally, the ideas were extensively tested in a realistic simulated en-

vironment with the help of ROS, Gazebo, and the simulated Husky UGV, and in

an outdoor experimental deployment with a modified RC car. Several interesting

directions are left for future work.

We found that the problem of interest is NP-hard and can only be approximated

with an O(logn) ratio at best. We presented a heuristic solution inspired by set

cover approximation that uses visibility polygon decomposition as input and TSP

with neighbors for a patrolling sequence. It is clear that this finds a feasible solution,

but calculating the exact approximation ratio is still an open problem.
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Another extension of our work is to remove assumptions about the known world,

W, and obstacles, O. We assumed that the obstacles are known beforehand and

the layout can be perfectly decomposed. Ideally, a robot equipped with sensors can

create a strategy based on visibility events [LaV06b] to explore the environment and

find good LoS locations. We are exploring the related problem of finding competitive

strategies for a kernel polygon search and determining if they can be implemented in

a mobile vehicle with sensors [IK95]. We also want to remove the need to estimate

the state of the units to follow the proposed path. A feedback based planning

approach using ŝ as a navigation function may help to overcome this problem.
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CHAPTER 4

COMMUNICATION AWARE SAFE PLANNING

A communication aware safe planning model assumes that the communication

may not be readily available during the entire mission and therefore an ex ante

assessment is required to estimate a safe robotic plan before the actual work takes

place. Accordingly, we eliminate the strict requirement for strong communication

and optimal robot placements presented in chapter 2 and chapter 3. This Chapter

solves the problem of communication aware safe motion planning and we choose

to analyze an automated building construction project as our study case. Such

places are highly hazardous, contain uncertainty and pose a great risk of collision

between heavy equipment and human workers as the movements of different objects

are not pre-planned and well-communicated. This chapter includes results from our

previous publications [RBM+16, RCBM, RCB+].

Construction jobsites are a source of potential accidents which include a sig-

nificant loss of lives every year due to struck-by collisions involving moving ma-

chinery and workers [OSH]. Recent data shows that the percentage of struck-by

accidents constituted 17.6% of fatalities and serious injuries among construction

workers [CPR13]. During construction planning activities, safety managers and

construction engineers might not be aware of the potential hazards on a construc-

tion site. Often times, activity sequences are planned to optimize time, available

resources, precedence constraints, site congestion etc. However, the overall safety

of a plan is frequently neglected as there is no suitable automated safety estimation

tool.

We identify two coupled phenomena that affect the level of safety hazards related

to struck-by accidents in construction jobsites: (1) the sequence of activities and

jobsite layout, and (2) the movement patterns of workers and equipment [BLS14].
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The layout of a construction jobsite affects the movement of equipment and workers

within the jobsite. In addition, the movement patterns (trajectories) of the equip-

ment and workers continuously evolve due to changes in the requirements of each

construction task as well as the addition or removal of obstacles on the jobsite.

4.1 Approach

We focus on better understanding construction operations to reduce hazardous con-

ditions created by a selected construction plan. There are high variability and

dynamic changes in construction operations that affect the performance and safety

of a project. However, the main activities (e.g. excavation and concrete pouring)

can be anticipated and the corresponding equipment such as trucks, cranes, and

drill machines can be modeled using state space formulations and motion planning

algorithms. Therefore, we propose an ex ante analysis model of the deterministic

aspects of a construction project to identify its risks. We believe that the high-level

deterministic aspects dominate the stochastic aspects and if analyzed properly, can

help to prevent and reduce risks.

To the best of our knowledge, our approach is one of the first to consider to

use motion planning techniques to evaluate safety scores or determine obstacle-free

trajectories for workers and moving equipment. The concrete contributions of our

work are the following: 1) We generate a number of distinct alternate construction

plans that are possible after considering the precedence constraints. Afterward, we

select the plan that would be the best in terms of safety; 2) We develop an activity

and event scheduler to simulate all the plans using discrete event simulation and

motion planning; 3) We generate a number of safe trajectories for workers to avoid

static obstacles and develop a navigation policy in order to avoid moving equipment;

4) We decompose the layout of a construction site in order to generate heatmaps

75



of the construction layout to identify dangerous hotspots at discrete times; 5) We

develop a model that guides the managers to select one of the Pareto optimal plans

resulting from the sensitivity/trade-off analysis among the resource, speed, layout

modification, duration etc.

4.2 Related Work

In one stream of research, different studies (e.g., [NX13]) have developed optimization-

based methodologies for safety assessment of construction site layouts. In another

stream of research, discrete event simulation has been adopted for construction plan-

ning [Mar96]. These studies have two main limitations: (1) the lack of consideration

of the impact of the layout of construction job sites on the spatio-temporal motion

trajectories related to the workers and equipment, and (2) lack of consideration re-

lated to the dynamic changes in the layout of construction sites at different stages of

a project schedule. Our approach for obtaining the safety score is different compared

to [NX13] and [Mar96] since our methodology is based on the motion trajectories

of workers and equipment. We convert the construction projects into a state space

model and investigate deeply into the motion planning layers as movement patterns

of equipment and workers are the main causes of struck-by hazards. This allow us

to generate time indexed dynamic safety scores based on construction events which

is an improvement to the static scores found in related literature.

An effective approach requires to be able to translate high level plans into low

level state trajectories in order to enable better safety assessment. Therefore, our

ideas are connected to approaches that use Linear Temporal Logic [BKV10] to create

high-level specifications that can be translated to low-level trajectories. Our ideas

also share commonalities with STRIPS-like representations [GNT04] that connect
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with motion planning algorithms [CA09]. However, in contrast to these approaches,

we use Activity Graphs and Discrete Event Simulations (DEVS). The activity graph

enables us to efficiently generate a number of alternate plans while the DEVS model

helps us to simulate them in detail using low level motion planning methods.

Some attempts [KL90] have been made in the construction community to incor-

porate planning algorithms in the analysis of projects. Motion planning has been

used to analyze crane motions and their safe operations. In [ZAH10] and [ZHB11]

a modification of the Rapidly Exploring Random Tree (RRT) algorithm for re-

planning of crane motions was used in real time along with positioning systems

for simulation and safety purposes. However, these tools [ZAH10, ZHB11, KL90]

are intended only to capture a small part (e.g. one equipment or a single activity

simulation) of the activities in a construction project.

Different models are used to simulate construction activities such as [CT13,

AH11, KM01]. However, these tools are intended only to provide graphical modeling

in a virtual construction site without providing any conclusion about the safety

level. Moreover the prior works cannot suggest alternate plans that might be better

in terms of safety and other constraints such as project duration and cost. We

developed an automated system that can quantify safety level of a plan, suggest

alternate plans and compare among those in order to reduce the chance of fatalities

during a construction project.

Our ideas are also connected to [PKV10, GFMG04] as these researches propose

a hierarchy of task decomposition to accomplish a large task. In contrast, in our

work, the decomposition in sub-activities is an input given by the manager as an

Activity Graph. We focus on all alternative plans and simulate them to compare

them in terms of construction safety, cost, time, and space distribution.
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In [LCH+09], the authors are concerned about identifying the possible mistakes

in a construction plan and repair them by using a virtual simulation. Although

we share similar motivations, [LCH+09] did not consider the effects of moving ma-

chinery and workers, layout, and sequence of activities on the plan’s safety level.

Another stream of research [LW08] is mostly concerned with profit maximization by

optimizing resources and cash-flow but they ignore safety aspects of a project.

4.3 Problem Formulation

4.3.1 Activity Graph

The Critical Path Method (CPM) [LL03] is widely used in construction projects to

determine the minimum amount of time needed to complete a project. An activity

graph is a type of CPM with no timing information. The activity graph, G = (V, E),

is a directed acyclic graph. An edge, (v, v′) ∈ E ; v, v′ ∈ V is formed if and only if

an activity denoted by node v is a precondition of another activity represented by

a node v′. It is helpful to consider v as a parent of v′. Additionally, Vs ⊂ V is a

set of starting nodes with no incoming edges while Vf ⊂ V is the set of finish nodes

who have no outgoing edges. Finally, a sequence of all nodes, π = (v1, v2, . . . , vn),

conserving precedence constraints form a construction plan.

4.3.2 Construction Physical State Space

Assume that a construction project takes place in a 2D world, W = R2. Let the

construction timeframe be defined as T = [0,∞). The initial set of static obstacles

is O(t) ⊂ W, t ∈ T where the obstacle set, O(t), is a time variant set, since
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new obstacles may appear on the jobsite and old obstacles may disappear as the

construction project progresses.

We define the system state space as Xv for an individual activity or node, v ∈ V,

in the planning graph. A particular system state, xv ∈ Xv, is composed of a

number of parameters that describe a subproblem. The parameters in xv can be

configurations, orientations and velocities of moving bodies (e.g. trucks and cranes)

as well as the amount of resources (e.g. soil and concrete) used by an activity.

Altogether, the entire system state space is defined as X = X1 ×X2 × . . . , X |V|.

The time varying state space is the Cartesian product Z = X × T and a state,

z ∈ Z, is denoted as z = (x, t). There is a number of moving equipment in the

system such as trucks, excavators, mixers and cranes represented by the set B(t) =

{B1, B2, · · · , Bk}. Considering both the moving bodies and static obstacles, the

obstacle state space is defined as,

Zobs = {(x, t) ∈ Z|B(t) ∩O(t) 6= ∅} (4.1)

and the free space is defined as, Zfree = Z \ Zobs. An initial state is defined as,

zI ∈ Zfree and the set of goal states are defined as, ZG ⊂ Zfree:

ZG = {(x, t) ∈ Z|x ∈ XG, t ∈ T}. (4.2)

4.3.3 Augmented Discrete Event System Specification

Each node of a high-level construction plan in an activity graph is represented as an

Augmented Discrete Event System Specification (DEVS) [Zei84] model. This model

is used along with geometric information from the construction site to generate

obstacle free paths and policies for moving bodies. Each node in the activity graph

is associated with an augmented DEVS model.
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Figure 4.1: An example layout of a construction site. Excavation and concrete
pouring need to be done in two buildings. Yellow dotted lines are trajectories of a
moving truck and a crane’s hook.

The DEV S formalism proposed by [Zei84] and detailed in [Van] and [Van01] is

used to formalize discrete event simulation as an extension of finite state automata.

An event scheduling model is a tuple ESv for the activity v ∈ V and is represented

as:

ESv = (Ev, Zv, ELv, f vη , f
v
z , zI), (4.3)

where Zv = Xv × T is the subset of the states of the system. Any activity in a

construction site consists of a set of events. The ith event is denoted by ηi and if

there are ξ unique events, and we define the finite event set as, Ev = {η1, η2, . . . , ηξ}.

The event list ELv is defined by ELv = {(η1, t1), (η2, t2), . . . }.

The system starts at time tv0 with starting state, zI . The system state is modified

based on the current state and an event of an activity:

f vz : Zv ×Ev → Zv. (4.4)

In some cases f vz is controlled by the availability of resources (for example the amount

of soil that needs to be excavated) and system time. The next event to be scheduled

is controlled by f vη , based on the current event and system state:

f vη : Ev × Zv → Ev. (4.5)
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A number of alternate construction plans π1, π2, . . . , πk are extracted from the

CPM graph. To carry out the simulation for each of the plans, πi, we need to

compute the collision free trajectories in Zfree space for the moving equipment and

workers knowing the initial and goal configurations in X space.

Problem 1: Finding Collision-Free Trajectories for Moving Equipment

Given an initial configuration, xI , a set of goal states ,XG, and the set of static

obstacles, O(t), find a collision free trajectory, Z̃ : [0, 1]→ Zfree, such that Z̃(0) = zI

and Z̃(1) ∈ ZG.

There are m workers, A1,A2, · · · ,Am, present in the workspace, who have to

travel from their initial position xI to a destination region XG. Accordingly our

next problem is to compute the safe trajectories for the workers that avoid both the

static obstacles O(t) and moving equipment B(t).

Problem 2: Finding Safe Trajectories for Workers

Given an initial configuration, xI , a set of goal regions XG, the set of static obsta-

cles, O(t), and the trajectories of the moving equipment, B(t), find an obstacle free

trajectory, x̃worker, such that x̃worker(0) = xI , x̃worker(1) ∈ XG.

Therefore by solving Problems 1 and 2, we have a set of trajectories for each

feasible plan πi.

4.3.4 Safety Evaluation for Different Plans

We need to calculate safety scores for each of the plans π1, π2, . . . , πk in order to

choose the best plan. Problem 3 calculates the safety score for the plans based on

the trajectories X̃worker and Z̃ calculated by solving Problem 1 and 2. To calculate

the safety score for individual plans, we evaluate the entire plan by simulating all

the nodes. A safety score is defined as a function (detailed definition is provided in
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section 4.9),

R : Z̃ → [0, 1], (4.6)

Where 0 is the safest score and 1 is the most dangerous score for a plan. Therefore

we try to minimize the safety score. We calculate the safety score for a plan based

on the trajectory paths.

Problem 3: Safety Score Assessment for Different Plans

Given a set of time variant system trajectories, Z̃, calculate a safety score for the

corresponding plan, π, in the closed interval range [0, 1].

Once the safety score is calculated for the alternate plans, the planning managers

need to extract the optimal one which provides minimal completion times and op-

timal safety scores.

Problem 4: Managerial Implication

Given a number of safety scores for several plans π1, π2, . . . , πk, calculate the optimal

plan which minimizes the project’s finishing time, cost while optimizing the safety

score.

4.4 System Overview

A construction plan starts with a 2D layout of the construction site as shown in

Figure 4.1. An example critical path management graph (CPM) for this layout is

shown is Figure 4.2 where we have two excavation activities (EX) followed by two

concrete pouring activities (CP ).

The system block diagram of our model used to extract the safest plan is shown

in Figure 4.3. An activity scheduler subsystem is responsible for generating alter-

native sequences of activities. It communicates with the event scheduler subsystem

to simulate one or a number of activities. The event scheduler then uses motion
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Figure 4.2: An example activity graph of a construction site.

planning algorithms to generate paths for the moving bodies and a coordinator cal-

culates a way to schedule them without colliding with the bodies of other activities.

The obstacles, whether moving or static, have a different impact on the safety of

the construction plan. Also, different sequences of plans yield different safety scores.

Definition 4.4.1 Moving equipment, B, does not affect the safety of two sequential

activities. The moving equipment, Bu and Bv of two parallel activities, u and v,

affect the safety of one another.

Definition 4.4.2 Static obstacles, Ou, generated by an activity, u, have a succeed-

ing effect on the safety score of all the successor activities, v ∈ V, unless the obstacle

built earlier is removed by some later activity.

Proposition 4.4.3 Different plans yield different safety scores, R.

Figure 4.3: System framework and subsystem interaction.
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Proof. Suppose we have two alternate plans, π1 and π2, from a graph, G. We choose

two activities, u and v, where in plan π1, u is scheduled before v, and in plan π2, v

is scheduled before u. By definition 4.4.1 their safety score is the same. However by

definition 4.4.2 if the static obstacles generated by u and v are not same, then the

plans yield different safety scores.

4.5 Plan Extraction from an Activity Graph

A topological sorting algorithm is used to extract all possible valid plans. Given

n vertices, and a set of integer index pairs, (i, j), of the nodes of the graph, G,

where 1 ≤ i, j ≤ n, the problem of topological sorting is to find a permutation

v1, v2, . . . , vn such that i appears to the left of j for all pairs (i, j) [KS74].

There might be more than one start and finish activities in CPM graph. Accord-

ingly, two dummy activities, vs and vf , are added to the graph as starting and final

activities with a duration zero in order to create single starting and finishing points

(nodes S and F in Figure 4.2). Also the floating activity nodes (without precedence

constraint) are added to G by making vs as parent and vf as their child node. By

default vs is labeled as V isited and is the parent of all initial nodes, Vs ⊂ V, while

vf is the child of all the finishing activities, Vf ⊂ V.

Given a plan π, produced by the topological sorting algorithm, Algorithm 7 is

used for scheduling the activities inside π. A queue, Qt at time t, is initialized to

hold the active (not yet scheduled/visited) activities in Line 2. Line 3 starts a for

loop to go over all the activities u ∈ π starting from index 1 (remember activity 0

is the dummy starting activity). Line 5 uses the ParentV isited function to check

whether all the parents of the current activity have been scheduled. If not, the

activities in Qt are scheduled by calling the EventSchedule(Qt) routine and the
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time is updated. The corresponding activity nodes are all set as V isited from lines

7 to 9. At line 11, the current activity node is enqueued into partition Qt at current

time t, whose parent nodes have already been scheduled.

A notable property of this algorithm is that it tries to schedule activities in

parallel using the activity queue Qt whenever possible to reduce project completion

time. Accordingly, Qt continues to hold the activities for which the dependency has

been met in the CPM graph at time t. We must schedule the activities in Qt once

the parent of a new activity has not been scheduled as it implies that the parent is

in Qt.

Algorithm 7 ActivityScheduler(π,G)
1: t← 0
2: Qt ← ∅
3: for i = 1 to |π| do
4: u← π[i]
5: if ¬u.ParentsV isited() then
6: t← t + EventScheduler(Qt)
7: for all v ∈ Qt do

8: v.V isited← true
9: end for

10: end if

11: Qt.Insert(u)
12: end for

The running time of algorithm 7 depends on various sub-methods. The for

loop at line 3 runs in O(|π|) time. Each activity is scheduled and simulated exactly

once either individually or simultaneously with other activities. Therefore the total

aggregated calls of line 8 are O(|π|) and together the loops in lines 3 and 7 run

O(2|π|) instead of O(|π|2). The only factor that dominates the running time of the

algorithm is EventScheduler sub-method in line 6. Accordingly the running time

of algorithm 7 is O(|π|.O(EventScheduler)).
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4.6 Event Scheduling Using Augmented DEVS

Each node in a plan needs to be evaluated through our event simulation method. A

queue of activities Q is received from the ActivityScheduler routine. Each activity

is a collection of events, η ∈ E. All of the events in E are motion planning problems

which have to be solved before going on to the next event.

Algorithm 8 is used to simulate a number of nodes in the activity graph using

our augmented DEVS model. In order to carry out the simulation in line 2, we first

create an event scheduling model, ES, as defined earlier, for each node. Line 3 ex-

tracts the initial state, zv ∈ Zv and line 4 takes the first event from the event set to

populate the empty event list. The while loop in line 6 is used for scheduling all the

events from multiple activities. The min method in line 8 helps to extract the imme-

diate event’s time from the event list to be scheduled if more than one event is in the

list. Consequently, line 9 provides the next event. The MotionP lanner routine in

line 10 generates a number of trajectories, (x̃1, x̃2, . . . , x̃|Q|), each of which contains

a sequence of configurations. Any state of the system involves some construction

workers moving in the workspace. We generate the trajectories of the moving work-

ers, x̃worker based on the system state zv in line 12 using theMotionP lannerWorker

subroutine. We will describe their details shortly.

Line 13 calls the Coordination routine to generate a set of collision-free-time-

variant trajectories, (z̃1, z̃2, . . . , z̃|Q|), for each activity. Lines 14-17 are the updating

steps of the system states. On line 15 a new system state, zv, is calculated based on

a current state and event. State zv keeps track of the resources, configurations and

other attributes of moving bodies for each of the events along with other information.

If zv ∈ ZG, then the function fη in line 16 will generate a Null event. The routine

stops when no activity generates any event other than Null.
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Algorithm 8 EventScheduler(Q)

1: for all v ∈ Q do

2: ESv ← CreateDEV S(v)
3: zv ← initial state ∈ ESv

4: ELv ← ((ηv1 , 0) : η
v
1 ∈ Ev)

5: end for

6: while [(EL1 6= ∅) ∨ · · · ∨ (EL|Q| 6= ∅) ∧ t < tth] do
7: for all v ∈ Q do

8: tv ← min{t : (η, t) ∈ ELv}
9: ηv ← {η : tv ∈ (η, t)}
10: x̃v ←MotionP lanner(ηv, zv)
11: end for

12: x̃worker ←MotionP lannerWorker(zv)
13: (z̃1, z̃2, . . . , z̃|Q|, z̃worker)← Coordination(x̃1, x̃2, . . . , x̃|Q|, x̃worker)
14: for all v ∈ Q do

15: zv ← f vz (η, zv)
16: η∗new ← f vη (η, zv)
17: ELv ← (ELv \ (η, t)) ∪ (η∗new, t+ z̃v.t)
18: end for

19: end while

20: return t

As a DEVS simulation system, the running time of Algorithm 8 does not de-

pend on input size. The necessary end conditions for the while loop in line 6 are

self generating. To terminate the simulation we put a maximum time tth. This

threshold tth (defined by the planning manager) forces the simulation to terminate

if all the event lists ELi from different activities do not finish in time. Once termi-

nation is guaranteed, the running time of lines 6− 19 is polynomial as the methods

MotionP lannerWorker and Coordination take polynomial time which we will show

in the subsequent sections. MotionP lanner in line 10 is resolution complete but it

takes polynomial time as we have finite search space and specific goal regions.
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4.7 Motion Planner

We need two motion planners: one for the moving equipment and another for the

workers.

4.7.1 Planning under Differential Constraints

The MotionP lanner routine called in Line 10 of the EventScheduler routine works

based on existing motion planning algorithms. Sampling based algorithms like

Rapidly exploring Random Trees (RRT) [LK01] or Probabilistic RoadMaps (PRM) [KSLO96]

can be applied to calculate the trajectories, x̃, of the moving equipment. Also,

RRT* [KWP+11b], an optimized version of RRT, can be applied to generate a bet-

ter path than a non-optimized RRT. If the planning domain is low dimensional

(i.e, a 2D domain), then certain combinatorial planning algorithms, like trapezoidal

decomposition (see chapter 6 of [LaV06a]), can be applied to achieve an efficient

path.

To apply any motion planning algorithms, we have to take motion constraints

into consideration. As an example, trucks have the differential constraint of not

being able to move sideways. To model the motion of such a truck, let the speed of

the truck and the steering angle be specified by the actions us and uφ respectively.

The transition equation for two consecutive configurations is, ẋtr = us cos θtr, ẏtr =

us sin θtr, θ̇tr =
us
L
tan uφ (see chapter 13 of [LaV06a]), where L is the length of the

truck.
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4.7.2 Planning for the Workers

The subroutine MotionP lannerWorker called in line 12 of the Algorithm 8 is re-

sponsible for generating a number of safe trajectories x̃worker, for the workers, avoid-

ing static obstacles, O(t) and moving equipment, B(t).

First we discuss the static obstacle avoidance policies. We will use the gener-

alized Voronoi diagram (GVD) or maximum-clearance roadmap [LD81, LaV06a] to

compute safe trajectories x̃worker for workers. The generalized Voronoi diagram was

chosen because it is a roadmap whose paths provide maximum clearance from static

obstacles (see Figure 4.6). Recall that the set of static obstacles at time t is given

by O(t) = {O1, O2, · · · , On}. We assume that the obstacles are convex polygons. If

the obstacles are not convex, they can be approximated by surrounding them with

a convex shape.

Algorithm 9 presents the pseudo-code of the implemented procedure to find all

possible safe paths using the algorithm for a Voronoi diagram of a set of points [BG08].

The obstacle set, O, contains both the static obstacles and the boundary region as

the boundary walls are also considered obstacles. In lines 1 and 2 of Algorithm 9,

we obtain a set of points, P , containing the midpoints of all the polygonal obstacles

and sample points from the boundary region. We apply an existing Voronoi diagram

algorithm [For92] (which takes O(|P | log |P |) time) in line 3 (GetV oronoi) to P to

generate the Voronoi diagram. Let L be the set of Voronoi edges.

Once the Voronoi edges are generated, we remove the edges that pass through

the obstacles. Removing all the Voronoi edges (line 6) that intersect with the

obstacle line segments result in a set of line segments that approximate the gen-

eralized Voronoi diagram (see Figure 4.6). Two for loops in lines 4 − 5 run in

O(|L|2).
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Algorithm 9 CalculateAllPaths(O,qI ,qG )

1: P ← O.getEdges().midPoints
2: P.Append(Linesboundary .GetSamplePoints())
3: L← GetV oronoi(P )
4: for l ∈ L do

5: for l′ ∈ O.getEdges() do
6: if l.Intersect(l′) == True then

7: L.Remove(l)
8: end if

9: end for

10: end for

11: G(V,E) = G(L.EndPoints, L)
12: E.Add(qI , Nearest(E, qI))
13: E.Add(qG, Nearest(E, qG))
14: S = GenAllPath(qI , qG, G)
15: return S

Finally, we construct a weighted undirected graph, G = (V,E), with weights

given by w : E → R≥0. In this graph, V is the set of vertices of the Voronoi diagram

and an edge, e, is added for each Voronoi edge. The weight, w(e), for e ∈ E is given

by the Euclidean distance between the vertices that compose the edge, e.

Let xI = (qI , tI) be the initial configuration of a worker and let his goal configu-

ration be xG = (qG, tG) where the points qI , qG ∈ W \O. We need to connect these

two points on the roadmap given by the Generalized Voronoi Diagram. In Line 13

of Algorithm 9, this is achieved by connecting qI to the nearest Voronoi line, e ∈ E.

This introduces a new point on e which is the intersection of e and the normal line

of qI on e. The same procedure is also applied to qG.

To choose a safe trajectory x̃worker for the workers, we first compute all possible

paths in graph G from qI to qG. The method GenAllPath(qI , qG, G) in Line 14 gen-

erates all possible paths using a variation of Breadth First Search (BFS) [CLRS01].

Afterwards a path is selected as safe if it has no or infrequent collisions with the

moving bodies B(t). This procedure is discussed in the next section 4.7.3.
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The Method GenAllPath takes linear time and overall the running time of Al-

gorithm 9 is O(|L|2) which is taken by lines 4− 9.

4.7.3 Safest path avoiding moving bodies

The worker Aj must move along his path from x̃worker(ti) to x̃worker(tf ) while the

equipment Bi(t) must move along its path over the time interval T = [ti, tf ] at a

speed of ωi. To avoid colliding with moving equipment on a trajectory, a worker

must yield and make a STOP to let the moving equipment pass.

We will modify the velocity tuning method (see [KZ86] and [LaV06a], Chapter

7 for details) to obtain a plan for the workers with a fixed speed, and two actions,

STOP and MOVE. Let U = {STOP,MOVE} be the two allowable actions. We

call a policy a mapping, π : T → U .

Initially, at ti both the worker and the moving body Bi(t) start at their initial

point of their respective trajectories x̃worker and x̃i. Moving bodies at different

times in T = [ti, tf ] occupy different spaces on the worker’s trajectory, x̃worker. The

solution to the problem of avoiding moving bodies lies in a space-time coordinate

system. Let S = [0, |x̃worker|] be the space axis, where |x̃worker| is the length of

the trajectory, x̃worker. We define the time-space as Y = S × T in which each (s, t)

indicates a worker’s position along the path, s ∈ S, and time, t ∈ T [KZ86, LaV06a].

The space occupied by the moving body on the workers’ path (obstacles in Y ) can

be calculated in this space-time coordinate system (see section 7.1.3 in [LaV06a] for

details).

Algorithm 10 presents a procedure that creates a plan for the worker using the

space-time coordinate system. In line 1 we calculate the straight line in the space-

time system from the original trajectory x̃worker. In an S-T system, the worker
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starts in (0, 0) and moves along a line having a slope, m = dt
ds

and m = 1
ωworker

(see

Figure 4.7) where ωworker is the speed of the worker. Lines 2 − 5 calculate all the

obstacle regions in the space-time system (blue blocks in Figure 4.7). An obstacle

list obsList in the S-T system is generated in line 4 for all the moving equipment

that cross the workers’ trajectory in workspaceW. Lines 6−12 find a policy π which

avoids all the space-time obstacles. In line 7 we check whether the line intersects an

obstacle region. To avoid the moving equipment the worker needs to stop, which is

recorded by updating the policy π in lines 8 and 9. When the line in the S-T system

intersects with the computed obstacle regions, it goes up vertically which means that

time is moving forward but the worker does not move (ds
dt

= 0
dt
= 0) (see STOP mark

in Figure 4.7). This waiting essentially makes a delay for the worker to complete his

trajectory x̃worker. The UpdateLine method in line 10 shifts the starting point of

the remaining line section to the upper left corner of the intersecting obstacle region

and the process repeats for other obstacles in the S-T system.

Algorithm 10 CalcVelocityProfile(ωworker, ωi, x̃worker, X̃i)

1: line = CalcLine(x̃worker)
2: for i = 0 to |X̃| do
3: obss×t = FindObs(x̃worker, x̃i, ωworker, ωi)
4: obsList.Add(obss×t)
5: end for

6: for b ∈ obsList do
7: if intersect(b, line) then
8: π(b.lowerLeftY ) = STOP
9: π(b.upperLeftY ) = MOVE
10: line = UpdateLine(line)
11: end if

12: end for

13: return π
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In Algorithm 10, Lines 2−5 that are responsible for calculating the obstacle blocks

that dominate the total running time. Method FindObs runs inO(|x̃worker|.|x̃i|) [RCBM].

Therefore the running time of lines 2− 5 is roughly O(n3).

4.8 Coordination Space to Prevent Robot-Robot Collision

The sequence of trajectories of moving equipment, x̃1, x̃2, . . . , x̃|Q|, is generated by

the motion planner for each activity regardless of whether they collide or not with

the bodies (equipment or worker) of the other activities which may run in parallel.

Hence, the bodies following the trajectories may collide with the bodies of other

parallel activities or the moving workers. Given m moving bodies, anm-dimensional

coordination space, Γ = [0, 1]m, is represented as a unit cube that schedules collision

free paths for the moving equipment [LH98a]. The ith coordinate of Γ represents

the domain, Γi = [0, 1], of the path x̃i. Let γi denote a point in Γi. The pairwise

robot-robot (body-body) obstacle region is, Γijobs = {(γ1, . . . , γm) ∈ Γ|Bi(x̃i(γi)) ∩

Bj(x̃j(γj)) 6= ∅} which is combined to yield Γobs =
⋃
i,j i 6=j Γ

ij
obs. Therefore, Γfree =

Γ \ Γobs.

At state (0, 0, . . . , 0) ∈ Γ, all bodies are in their initial configurations, xi = x̃(0),

and at state (1, 1, . . . , 1) ∈ Γ, all bodies are in their goal configurations. Any

continuous path, h : [0, 1] → Γfree, for which h(0) = (0, 0, . . . , 0) and h(1) =

(1, 1, . . . , 1) moves the bodies to their goal configurations (see chapter 7 of [LaV06a]).

We applied the A∗ search algorithm [RN09] on Γ to generate a path h avoiding robot-

robot collisions. A body is allowed to move with a constant speed or directed to

remain stopped to yield the other bodies to pass by moving horizontally or vertically

in Γ (see chapter 7 of [LaV06a]). This A∗ search takes polynomial time as the search

space is finite and we have a single goal.
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By applying the above methodologies of coordination among the bodies and

workers, we get the set of time variant trajectories, Z̃.

4.9 Safety Model

We consider a construction boundary to be a perfect rectangular area. If it is not

perfect, we can approximate it with a bounding rectangle and convert the added

area into static obstacles. We need to decompose the environment into a number

of regions to assign a safety score and generate a risk heatmap that provides a

visualization of dangerous regions in a workspace over time. Any primitive geometric

shape can be used. We used squares because we approximated the environment as a

rectangle. The size of the squares does not affect the computation of the algorithms

as all the algorithms are used to either generate trajectories or conduct discrete

event simulations.

We decompose the workspace W into δ number of squares. The safety scores of

all the squares at a time, t, contribute to the safety of the plan at that time. Safety

score of a square is dynamic, time dependent and is inversely proportional to its

distance to moving equipment.

Assume that the duration of a plan, π, is T where T is divided into a number

of discrete time points T = {0,∆t, 2∆t, . . . , j∆t} with constant time intervals, ∆t,

such as j = T
∆t
. We calculate the safety scores in discrete times of T . Let R(gi, t)

denote the score for square gi of the grid at time, t. Then the definition of R(gi, t)

is,

R(gi, t) =

|Qt|∑

j=0

|Bj |∑

k=0

α

d(gi, Bk(t)) + β
. (4.7)

where d(., .) is a distance function (such as the Euclidean Distance) and Qt is the

queue of activities at time t. Parameters α and β are the scaling factors for a better
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score. The safety scores for the squares inside the obstacles (static or dynamic) are,

R(gi, t) = 1. (4.8)

The average safety score, rgrid : T → [0, 1], for a grid with δ squares at time t is,

rgrid(t) =

∑δ
i=0R(gi, t)

δ
. (4.9)

The safety score at time, t for a particular activity plan, π, depends on rgrid(t)

and equipment-equipment distances (e.g. vehicle-vehicle, vehicle-crane from Coor-

dination). Therefore the total safety score rπ can be calculated by averaging these

values over T ,

rπ =
1

|T |

|T |∑

t=0


rgrid(t) +

|B(t)|∑

i=1

|B(t)|∑

j=i+1

1

d(Bi, Bj)


 . (4.10)

We also calculate aggregated safety score over a time interval, [ti, tf ] where ti, tf ∈ T .

The safety score ragg(gi) for a square gi then is,

ragg(gi) =

∑tf
t=ti R(gi, t)

tf − ti
. (4.11)

4.10 Optimal Plan Computation

The proposed discrete event based simulation system is a novel decision support

tool that presents the project manager with a quantified safety score. However a

safe plan may be the slowest one or an increase in resources may incur additional

safety hazards while competing the project early. These phenomena lead to Pareto

optimality where we may not have a plan that is better in terms of all the attributes

to be optimized.

Project Duration: T is defined as the project completion time that we get

from the DEV S simulation model. This is usually the difference of the starting and

finishing times of simulation.
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Cost: A slow sequential plan yields the lowest safety score that has less obstacles

present at any time. But it is undesirable as modern construction projects have cost,

resource and time constraints. Therefore, a plan π is partitioned and all activities

in a partition Qt (from Algorithm 7) are carried on in parallel. The total cost L of

a construction project is defined as,

L =
∑

Qt

|Qt|∑

j=0




∑

B∈ρ(Qt[j])

lB.κ(B,Qt[j]).tQt[j]



+ lF .tQt
. (4.12)

Where ρ : V → B gives the name of required moving equipment B ∈ B (e.g. truck,

crane) for an activity v ∈ V and κ : B × V → N gives the count of each piece of

equipment. lB is the rental cost of the equipment and lF is the fixed cost (salary,

material cost etc) per day. tQ ∈ [0, T ] is the time required to complete all activities

in partition Q.

Safety: The quantified safety values rgrid(t) from (4.9) over discrete times, T

are used to calculate the mean safety value µπ and standard deviation of safety σπ

for a particular plan π. A plan is safer if both the values are low.

The decision to select an optimal plans requires the evaluation of all the above

attributes/objectives and is defined as a tuple,

Yπi = ( Lπi, rπi, µπi, σπi , Tπi ) (4.13)

Optimal Plan Selection: Therefore, we need a plan which optimizes the con-

struction cost, safety scores and finishing times. There might not be any single tuple

(Yπi) that minimizes all of these objectives. This tradeoff among the attributes leads

to a well-known Pareto Optimization [KHB02] problem. Exact solutions for multi-

criteria optimizations are NP-hard [CP07].

We therefore design an approximate solution model that is compromise of all the

objectives. Accordingly an optimum tuple is computed by taking the minimum for
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each objective from all the available tuples Yπi,

Y min = ( Lmin, rminπ , µminπ , σminπ , Tmin ) (4.14)

A plan πi dominates πj (denoted by πi ≺ πj) if ∀k Yπi[k] ≤ Yπj [k]. We discard

all such dominated plans and the remaining non-dominated plans are then Pareto

optimal [Tar07b]. The normalized tuples, Y norm
πi

for the plans are,

Y norm
πi

=
Yπi
Y min

=

(
Lπi
Lmin

,
rπi
rminπ

,
µπi
µminπ

,
σπi
σminπ

,
Tπi
Tmin

)
(4.15)

Therefore we choose the plan πi that yields 1) the closest distance of Y norm
πi

(e.g.

Euclidean distance) to the optimal tuple Y min; 2) the safety score in which rπi is

below the median (Φ = med([rπ1 , rπ2, . . . , rπk ])) safety score.

argmin
πi




|Yπi |∑

k=0

(Y norm
πi

[k]− Y min[k])d





1
d

, s.t. rπi < Φ (4.16)

The term in the bracket represents the Euclidean distance when d = 2.

4.11 Case Study Examples

In the activity graph shown in Figure 4.4(a), the nodes S and F are dummy nodes

created to hold starting and final points. Concrete pouring in building site 1 (CP1)

cannot be carried out before excavation(EX1). Therefore, CP1 has precedence

constraints on EX1. Likewise, the activity EX2 must be completed before CP2 as

it depends on the completion of EX2.

4.11.1 Alternative Plans and Activity Scheduling

We used the Python programming language to implement a topological sorting

algorithm as proposed in [VR81]. The following are three alternate plans (sequence

of activities) generated for the activity graph shown in Figure 4.4(a):
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Plan 1(π1) EX1→ CP1→ EX2→ CP2

Plan 2(π2) EX1→ EX2→ CP1→ CP2

Plan 3(π3) EX2→ EX1→ CP1→ CP2

For the plan, π1 = [EX1, CP1, EX2, CP2], the Activity Scheduler routine in

Algorithm 7 initially loads activity EX1 in Q. Q always holds the activities that

can be executed in parallel. During the second iteration of the algorithm’s loop, it

cannot load activity CP1 into Q as its parent activity EX1 is still in Q. Therefore

EX1 is scheduled using Algorithm 8 and CP1 is loaded into Q. EX2 is also loaded

in the next iteration, since its parent S is a dummy node. Before loading CP2, we

simulate the two activities in the queue (CP1, EX2) simultaneously using the event

scheduler. In the final run CP2 is simulated. π2 is also simulated in the same way,

but we simulate π3 sequentially by scheduling one activity at a time to compare it

with the parallel plans π1 and π2.

4.11.2 Discrete Event Scheduling

A Python program with the SimPy simulation module [Sim] was used to simulate

the discrete event scheduler of Algorithm 8. An event scheduling model, ES =

{E,Z,EL, fη, fz, zI}, for each activity is created. For example, in Figure 4.4(b)

there are three possible repeating events shown for the crane in charge of concrete

pouring(CP ). These are Load(L), Rotate(RO) and Dump(D). For excavation(EX),

shown in Figure 4.4(c), a dump truck in charge of carrying soil has four such states:

Load(L), Haul(H), Dump(D) and Return(R). The following are two example DEVS

models for excavation and concrete pouring activities:

• The set of events for concrete pouring is ECP = {L,RO,D} and the set of

events for excavation is EEX = {L,H,D,R}.
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(a) (b) (c)

Figure 4.4: (a) A CPM activity graph for a construction plan. DEV S event tran-
sition models for (b) Crane; (c) Truck.

• The state, Z, contains the configuration of all parameters such as resources,

interruption, deadline, etc.

• The configuration of the dump truck is R2×S1 while the configuration for the

non-holonomic [LWW+14] crane is RP2 as it can rotate with pitch and yaw,

but no roll.

• An example state we use for the truck is, z = (xtr, ytr, θtr, ηex, rex, tex), and an

example state we use for the crane is, z = (θpitchcr , θyawcr , ηcp, rcp, tcp).

• An example event transition for the dump truck is, fEXη (L, z) = H , as hauling

is carried out after loading. Similarly, the crane starts rotating once it is

loaded with concrete, fCPη (L, z) = RO (See Figure 4.4).

• An example state transition for an excavation is, fEXz (L, z) = (xnewtr , ynewtr , θnewtr , H, rex−

r′, tex + t′). (xnewtr , ynewtr , θnewtr ) is the new configuration of the truck. The con-

stant, r′ ∈ N, denotes the units of soil/resources consumed per iteration and

t′ ∈ R>0 is calculated from a Coordination function as described previously.

4.11.3 Motion Planning and Coordination

We used the Motion Strategy Library (MSL) [htt] to generate trajectories of moving

equipment for different activities (See Figure 4.5(a)). Sample trajectories for two
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(a) (b)

Figure 4.5: (a) Two trucks in MSL library colored red and green moving around pink
excavation areas (b) Trajectories generated by the MSL library (blue and green).
Red trajectory was added to simulate moving worker.

(a) (b)

Figure 4.6: Generalized voronoi diagram of two sample construction sites; (a) A
truck is moving along the pink colored trajectory; (b) A crane is moving along a
pink semicircle. The shortest trajectory colored in red from position C to position
D for the workers is shown.

equipment, x̃1, x̃2 (colored blue and green) are shown in Figure 4.5(b). The red

trajectory in Figure 4.5(b) is the path of a worker that we have generated using the

Generalized Voronoi Diagrams [RCBM].

Two exemplary generalized Voronoi diagrams generated by Algorithm 9 of a site

are shown in Figure 4.6. The red lines are the shortest trajectories (x̃worker) derived

for the workers, following the safe Voronoi edges. A dump truck is moving back and

forth in Figure 4.6(a) while a crane in 4.6(b) is following a semi-circular path (see

pink trajectory).
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Safe trajectory avoiding dump truck: Figure 4.7 is the space time system

generated by Algorithm 10. Initially the worker starts moving freely along the

trajectory x̃worker, at a constant speed of ωworker. At some point (marked with

“STOP”) the worker has a possibility of colliding with the dump truck. The duration

of the collision is 24 units−15 units = 9 units. We advise the worker to stop, which

is indicated by the vertical green line from time 10 to 24. The truck will come back

to the opposite direction on the workers’ path at time 43 units as indicated by

another rectangle centered at (25, 43). This time the worker has already passed, so

there will be no collision. The worker finishes at (124, 76) which means that the

worker took 76 units of time to complete a 124 unit long path.

We considered three alternative paths presented in Figure 4.8. The path of Figure

4.8(a) is a good one in terms of safety as it has no collision and takes 77 units of

time to finish the length of 155 units, which is longer than the shortest path, but

safer. The path in Figure 4.8(c) is also safe, as it has no collisions, but it is long.

Similarly, the path in Figure 4.8(e) is the longest with a length 300 units and with

some collision risk (see Figure 4.8(f)).

Figure 4.7: Obstacles in s× t space. Vertical line means STOP. Diagonal lines mean
MOVE.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: (a) (c) and (e); Three alternate paths that are not the shortest; (b), (d)
and (f) Corresponding velocity profile guidelines from the s× t graph. There are no
collisions for (b) and (d), but the paths are longer. (f) is totally unacceptable as it
traverses a long distance having a high chance of collision too.

Safe trajectory avoiding moving crane: A high boom crane is present in the

site to pour concrete into the Building#2 as shown in Figure 4.1. The workers must

avoid the hook of the crane as the attached bucket full of concrete can suddenly fall

on them which can cause serious injuries and fatalities.

Suppose a worker wants to visit the site from location C → D. The shortest

trajectory x̃worker using the Voronoi diagram is depicted in Figure 4.6(b). Figure

4.9 is the s× t space for other alternate trajectories. The workers trajectory collides

with the crane’s hook twice (as shown in Figure 4.9(b)), if he selects the shortest

path shown in Figure 4.9(a). The worker must wait until the hook clears his path.

We conclude that the worker will reach to his destination at time 115 units while

the path is 130 units long. The alternate trajectory in Figure 4.9(c) is the second
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: s× t space guiding the velocity profile for a crane. (a) Two consecutive
obstacle regions found. (c) and (e) Two alternative paths that are not shortest; (d)
and (f) are the corresponding velocity profile guidelines from s× t graph.

shortest path and does not have a collision. According to our safety score, this is

a better choice than the shortest path in Figure 4.9(a). The worker reaches his

destination in 115 time units travailing a path of length 160 units. Even though

the path is longer, since it has no collisions, it has a lower safety score than the

shortest path. We tested another alternate path as shown in Figure 4.9(e) which is

much longer and involved in a collision (see Figure 4.9(f)).

Coordination: The Coordination subsystem generates policies for equipment-

equipment and robot-worker collision avoidance. A three body coordination space

is shown in Figure 4.10 using the trajectories of Figure 4.5(b). For better visual

understanding we present the 3D image from two different viewing angles. Blue

regions comprise collision configurations, Γobs, for three possible combinations of

truck1-truck2, truck1-worker and truck2-worker. The continuous red path, h, is
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(a) (b)

Figure 4.10: 3D Coordination space for robots from two different viewing angle.
Blue regions are obstacle areas Γobs. Red line is the collision free path

computed using an A∗ search algorithm which connects the point from the initial

configuration, (0, 0, 0), to the goal configuration, (1, 1, 1).

4.11.4 Safety Evaluation

The safety scores were calculated using the motion profiles.We developed a Python

tool for safety heatmap visualization as shown in Figure 4.11. A safety score for

each square gi in a grid was calculated by taking aggregated safety over time using

equation (4.11). The green colored regions are the safest and red regions are the

most dangerous. Figure 4.11(a) and (b) show the hazardous zones for two sample

activities (CP1, EX2) and (EX1, EX2) where a dump truck and a crane were

allocated for excavation and concrete pouring respectively. Two other heatmaps for

an alternate plan where we double the resources (two trucks per excavation and

two cranes per concrete pouring) are shown in Figure 4.11 (c) and (d). Finally we

generated heatmaps for another plan where we relocated the equipment’s starting

and goal locations as shown in Figure 4.11(e) and (f) to complete the sensitivity

analysis.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Aggregated heatmaps (using (4.11)) for the activities. (a) CP1EX2;
(b) EX1EX2; (c) EX1 with increase number of trucks (two trucks); (d) CP2 with
two cranes; (e) CP1CP2 with two cranes that have been relocated; (f) EX1EX2
when the initial loading and final dumping positions are changed for the trucks.

4.11.5 Sensitivity Analysis

A sensitivity analysis is used to identify the objective (see (4.13)) that affects con-

struction safety most. The sensitivity test is conducted by keeping one attribute

fixed while varying the other inputs. Here we carry out an exemplary sensitivity

test that evaluates the cost (Lπ), safety (rπ), timeline (Tπ) etc. attributes.

The timeline chart for the plans, π1, π2 and π3, is shown in Figure 4.12(a). Each

box of this chart under a particular plan represents a partition Qt composed of

one or more activities that can be simulated together using DEV S. Figure 4.12(b)

shows a graph that presents the change of safety scores over time for different plans.

In Figure 4.12(c), we demonstrate the effect of resource increase for activities

that dominate the safety score of the plans. Most importantly it increases the
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Figure 4.12: (a) Time chart for different plans; (b) Variation of safety over time;
(c) Variation of safety due to resource increase; (d) Variation of safety due to space
relocation.

safety score rπ following the increase of dump trucks and cranes as shown in Figure

4.12(c).

Next, we increase the speed of the equipment that make construction faster. The

effect of speed increase was evaluated according to the speed-collision relationship

described in [ECA04] which is adapted here in the form rnπ = rn−1
π + ξ( s+△s

s
)4. Here

△ s is the speed change and ξ is the user defined weighting factor. The safety

score curves are shown in Figure 4.12(d) where we see that the scores are increasing

rapidly with the increase in speed for all the plans.

A comparison analysis over various plans is presented in Table 4.1 where based

on the original plans, we generate additional plans by changing 1) the amount

of resources (π∗2), 2) site space organization (π∗3) and 3) speed of the equipment
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Table 4.1: Safety Analysis and Optimal Plan Selection

Plan Sensitivity Cost (Lπ) rπ Timeline (Tπ) Lnorm

π
rnorm

π
Tnorm

π
Domination Y norm

π
− Y min

π1

Original (π11) 2250 1525 11 1.07 1.17 2.2 Dominated by π13 1.21

Resource Increase (π12) 2100 1745 6 1.0 1.34 1.2 Not Dominated 0.39

Space Changed (π13) 2100 1429 10 1.0 1.09 2.0 Not Dominated 1.00

Speed Increase (π14) 2150 1605 8 1.02 1.23 1.6 Dominated by π23 0.64

π2

Original (π21) 2300 1721 9 1.09 1.32 1.8 Dominated by π14 0.86

Resource Increase (π22) 2350 2076 5 1.11 1.59 1.0 Not Dominated 0.60

Space Changed (π23) 2100 1553 8 1.0 1.19 1.6 Not Dominated 0.63

Speed Increase (π24) 2150 1830 7 1.02 1.4 1.4 Dominated by π12 0.57

π3

Original (π31) 2500 1300 14 1.19 1.0 2.8 Not Dominated 1.81

Resource Increase (π32) 2450 1592 7 1.16 1.22 1.4 Not Dominated 0.48

Space Changed (π33) 2200 1348 12 1.04 1.03 2.4 Not Dominated 1.40

Speed Increase (π34) 2300 1466 10 1.09 1.12 2.0 Dominated by π13 1.01

Y min 2100 1300 5 1 1 1 Φ =median()=1.19; Selected Plan:π13

(π∗4). Speed and resource based plans are similar to the above description while

space changed plans are achieved by changing the starting and goal locations of

the equipment, changing the positions of cranes and by relocating the temporary

buildings (fabrication, material storage etc.) in order to minimize safety score.

We assign the rental cost for the truck and crane as 50 and 100 per day respec-

tively. The fixed cost varies in between 100 and 150 depending on the plan. The

optimization tuples Yπ are calculated using (4.13) from which the minimum tuple

Y min is computed. Accordingly the attributes are normalized (Y norm
π ) using (4.15)

and the difference (Y norm
π −Y min) is calculated from the minimum normalized tuple

Y min = (1, 1, . . . , 1). After discarding all the dominated plans, we have the remain-

ing plans π12, π13, π22, π23, π31, π32, π33. Among those, only the plans, π13, π31 and

π33 are candidate optimal plans according to (4.16) as these plans have the safety

scores smaller than the median safety (Φ = 1.19). Finally we select plan π13 that is

the closest to the minimum among the three plans.

4.11.6 Managerial Implications and Discussions

The methodologies and case studies described above guide planning managers through

choosing a suitable plan. Our system presents graphical heatmaps (such as in Fig-
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ure 4.11) that enable practitioners to virtually realize the scenarios of the real plan

execution. From Figures 4.12(a) and (b) we can conclude that the sequential plan,

π3 has low safety variation while the other two plans take less time to finish. In

Figure 4.12(c), we observed that the increased resource raises the fixed cost per

day (lF ↑) as more workers and other resources are required to operate additional

equipment. Therefore, the planning manager can set a threshold safety score rthπ

to prevent excessive increase of resources and compute the maximum number of

resources that keeps the safety score under the allowed level (rπ ≤ rthπ ). The same

conclusion can be drawn for speed increase (see Figure 4.12(d)) which essentially

raises the safety score by adding more chances of collision and also increases fixed

cost (more material). Therefore, a threshold similar to resource increase is used

in order to get the maximum allowed speed that keeps the safety score under the

allowed limit.

Finally, a detailed analysis similar to Table 4.1 helps managers select a plan

out of all possible alternate plans. This multi-objective optimization model also

guides the planning managers to choose a slightly lesser safe plan, if this results in

significant improvement to the other attributes (e.g project duration, cost).

4.12 Discussions and Future Work

In this chapter, we developed an easily implementable methodology for ex ante anal-

ysis of construction plans in terms of their safety hazards to minimize the risk of

struck-by accidents in construction jobsites. Given an initial activity graph, our

model extracts different sequences of activities, converts them to discrete event

models and simulates them using discrete event scheduler algorithms. Motion plan-

ning methodologies generate the collision free trajectories for the moving bodies
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and workers. An ex ante simulation and proactive safety visualization is provided

during pre-planning phase using heatmaps and sensitivity analysis which effectively

distinguish among the safe and dangerous places in a construction site.

The formalism presented in this chapter provides measurement metrics to con-

struction project managers, such as quantified safety scores, cost and time spent

by a construction plan. Based on these measures, the best plan and guidelines for

workers can be calculated in a construction site.

One immediate extension of our work is to take into account the stochastic nature

of construction jobsites. We assumed that the motions performed by the moving

obstacles were deterministic, so in the future we plan to incorporate models that

include bounded and probabilistic uncertainty. Another extension is to incorporate

the movement of equipment in 3D to investigate possible collision states.

These results provide valuable information for project managers to evaluate con-

struction plans in terms of their safety performance during the planning phase. In

addition, the results could be used during the project execution for training workers

and equipment operators with regards to hazardous zones and the corresponding

safety policies. We would like to closely study deployments linked with real-time

monitoring of construction activities to evaluate how likely it is for a worker to follow

a suggested plan and what alternate action spaces for workers can be used.

In this paper, we evaluated two commonly performed construction tasks: exca-

vation and concrete pouring. We will extend this work to evaluate our methodology

using information for larger construction projects involving different activities with

large equipment fleets and a large number of workers.
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CHAPTER 5

COMMUNICATION PRESERVING MULTI-OPTIMAL MOTION

PLANNING

Motion planning for an autonomous system, at its simplest, involves finding a tra-

jectory that avoids obstacles and respects differential constraints [BL89a, LaV06a].

An objective function, such as travel time or length, will then be optimized [KF11].

However, for many real-world applications, multiple objectives may be relevant. It

might be desirable to conserve fuel, provide a comfortable ride, and avoid locations

with a high risk for accidents. Trade-offs are likely to be involved when optimizing

such disparate objectives. The objectives can be combined using a weighted func-

tion, but the appropriate weights may not be known a priori. Additionally, simple

multi-objective combinatorial problems such as a 2-criteria shortest path are proven

to be NP-Complete [Ehr00]. Therefore, in this chapter, we propose sampling-based

motion planning algorithms to generate a single path that best optimizes multiple

cost functions. The methodologies of this chapter have been partially published

previously and can be found in [RBRb].

5.1 Visibility as an Objective Function and Motivation

In some contexts like military operations, visibility becomes an important aspect

of the objective. One typically wishes to maintain visibility with friendly units

or targets of observation, while avoiding visibility by potential enemies. One such

sample environment is shown in Figure 5.1 where a vehicle needs to monitor two

blue units and avoid one enemy firing range throughout its traveling path from the

purple starting location to the yellow goal area which also has to be the shortest

path. Unless a weighted objective function can be specified for such a mission, it

may be necessary to sample the problem space to obtain estimates for the weight of

110



Figure 5.1: A Dubins vehicle is assigned to observe two blue circular units while
avoiding obstacles and an enemy unit throughout its path from the start to the goal
location. The path also needs to be shorter and a multi-criteria optimization path
like the green trajectory is required. Existing sampling-based path planning may
give an incorrect path like the blue one.

each objective. Integrating this process into the motion planning algorithm makes

it possible to attempt an optimization of all of the objectives simultaneously. This

chapter presents such a method and analyzes its applicability to certain multiple-

objective motion planning problems.

Our work is motivated by the problem posed in [RRPS14] that requires one to

determine the positions of a group of units that need to perform surveillance over a

group of targets while simultaneously minimizing exposure to enemies. In [RRPS14],

the units, targets, and enemies are static. The problem is formulated as a multi-

objective correlated geometric optimization problem and it is solved through Markov

chain Monte Carlo methods. Our goal is to extend this family of problems by allow-

ing the units, targets, and enemies to move in an environment with obstacles while

also attempting to optimize other variables such as completion time, clearance from

obstacles, and communication maintenance. We will frame this family of problems

as multi-objective optimal path planning problems.

The rest of the chapter is organized as follows: Section 5.2 presents a discussion

about existing solutions along with their usefulness and shortcomings in the context
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of our problem. Section 5.3 presents the preliminaries and the problem formulation.

Section 5.4 to 5.9 introduces algorithms to solve the class of multi-objective path

planning problems. We then analyze the complexity and behavior of the proposed

methods in Section 5.10. Section 5.11 presents illustrative case studies of several

field missions. Finally, conclusions and directions for further research are discussed

in Section 5.12.

5.2 Related Work

Multi-objective optimization has been studied widely for many years in different

domains. A solution for a multi-objective problem can be based on scalarization of

objectives where the objectives are weighted according to their priority and added

to form a single scalar value [Tar07a]. Related to our ideas are the methods pro-

posed in [Tar07a] for multi-criteria shortest path computations that compute a

number of possible paths from source to goal and then choose a Pareto efficient

path [War87]. Although our methods are initially motivated by the techniques

presented in [Tar07a], we propose a solution that works in incrementally building

rapidly exploring random trees, such as RRT* [KWP+11b, KF11]. We are also

focused on generating a single path optimizing all of the objectives.

Our ideas are also connected with the method described in [YGS15] that modifies

the RRT* algorithm [KWP+11b] in order to adopt multiple criteria during expan-

sion. In contrast with this approach our algorithm is able to produce a single path

in terms of multiple costs rather than a number of Pareto optimal paths. Addition-

ally, the weights in the Tchebycheff method and the weighted sum method [ZL07]

used in [YGS15] can be difficult to tune as different objectives have different costs.
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Instead, our work solves the multi-criteria optimization problem by normalizing the

objectives using the Utopian optimal vector [ZL07].

Closely related to our work is [OAJRK14] where the scalarization of objectives

was also used to get a single objective function. This work starts with a known

graph and uses A∗ search. A modified Bellman-Ford method is used in [DFS+92]

to assign a normalized label to each node in order to find a multi-criteria shortest

path. Another solution that prioritizes one objective over another is presented

in [Fuj96]. This type of hierarchization biases the path mostly towards the top

priority objective. Also, this solution is limited to a 2D grid and cannot be applied

in a higher dimensional configuration space.

Our work has commonalities with [DW09] as we also assign multiple labels to

each node in an RRT* tree. However, since we do not know the nodes and edges

beforehand, the node reduction and edge pruning applied in [DW09] cannot be used

directly in our algorithm.

Another stream of research proposes visibility-based solutions to monitor a num-

ber of units in an environment. A modified Traveling Salesman (TSP) algorithm

was used by [OOD12] where the problem was solved without optimizing multiple

criteria. Similarly in [GCB06], a vector field was generated to guide a robot that

maximizes visibility regardless of the path length.

Related to our ideas is the pursuit evasion problem discussed in [KF10a] where

multiple RRT* [KF11] trees were used, one for each unit, and the evader’s tree was

carefully expanded in order to avoid pursuers. We extend this idea and apply a

modified version of the RRT* algorithm to avoid adversarial units using visibility

and multiple objectives.
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5.3 Preliminaries

Consider an environment W = R
2 where a mission is taking place. Let O =

{O1, O2, . . . , Oζ} be the set of obstacles which are modeled as polygons. The

collision-free space is defined as E =W \O.

Let A = {A1, A2, . . . , Ak} be a number of vehicles which are deployed, with

configuration spaces C1, C2, . . . , Ck, respectively. The servicing vehicles move inside

the bounded environment E as car-like robots. Therefore the configuration of each

vehicle Ai is defined as Ci = E × S1. These vehicles are like Dubins cars [Dub57],

and a given vehicle Ai must satisfy differential constraints and dynamics defined as

ẋi = uis cos θ, ẏi = uis sin θ, and θ̇i =
uis
Li tanu

i
φ, where uis is the forward speed and

uiφ is the steering angle of the vehicle [GV09]. There are a number of mobile units

deployed in E that can move freely in the world and are modeled as point robots

without rotation. Accordingly, the configuration for a mobile unit is defined as,

Bi = (x, y) ∈ E.

Let X be the state space for servicing vehicles and for simplicity assume X = C.

There are n cost functions l1, l2, . . . , ln where li : X → R≥0. Each state x ∈ X of

the robot is associated with multiple objective costs. Accordingly, a vector valued

function L : X → R
n assigns n cost labels to a particular state x and is defined as,

L(x) = (l1(x), l2(x), . . . , ln(x)) where x ∈ X (5.1)

Let Xobs = {x ∈ X : x ∩ O 6= ∅ where O ∈ O} be the obstacle state space. The

collision-free state space is then Xfree = X \Xobs. We define the initial configuration

state of the vehicle as, xI ∈ Xfree, and a set of goal states as XG ⊂ Xfree.

Let σ be an obstacle-free feasible trajectory that starts from xI and leads a

vehicle to its goal region XG.
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Problem 1: Generation of multi-cost optimal paths for servicing vehi-

cles.

Given an initial configuration xI and a set of goal states XG, find a collision-free

continuous trajectory, σ : [0, t] → Xfree for some time t, such that σ(0) = xI and

σ(t) ⊂ XG attempts to minimize L.

We are also interested in finding paths in adversarial environments. In this

subclass of multi-objective optimization, we study the problems of a unit required

to avoid enemies and reach a goal location safely. This problem is related to pursuit

evasion games [CHI11] and non-cooperative game theory [BO99]. We have a set of

enemies e1(t), e2(t), . . . , eψ(t) at time t, each of which will have a visibility range

V (ei(t)).

Problem 2: Generation of multi-cost optimal paths for a servicing ve-

hicle avoiding adversarial objects.

Given an initial configuration for a vehicle, xI , and a set of enemy positions e1(t), e2(t), . . . , eψ(t)

at time t, find a collision-free continuous trajectory, σ : [0, t] → Xfree, that solves

Problem 1 and σ(t) ∩ V (ei(t)) = ∅ for all enemies ei.

For other scenarios, we will have a number of vehicles deployed inside the en-

vironment which have a common objective and perform cooperative behavior. An

example of such behavior is maintaining visibility for communication.

Problem 3: Generation of multi-objective optimal paths for coopera-

tive robots.

Given a set of friendly robot vehicles A1, A2, . . . , Ak, with a common cost lc, find a

set of collision-free continuous trajectories, σ1, σ2, . . . , σk, that solve Problem 1 and

best optimize lc : X1 ×X2 × · · · ×Xk → R≥0.

115



5.4 Traditional RRT* and Multiobjective Costs

Our ideas for multi-objective optimal motion planning are modifications to the algo-

rithms proposed by Karaman and Frazzoli [KF11, KF10a]. Algorithm 11 presents

a procedure that computes a trajectory σ from xI to XG based on the sampling

algorithm RRT* [KF11]. The structure of the algorithm is similar to RRT* where

we start a tree structure T (line 1) and continue to expand it by sampling random

states. The resulting RRT* tree T will be used to get a single trajectory σ that

attempts to optimize multiple cost functions.

Algorithm 11 MultiObjectiveRRTStar(xinit)

1: T .init(xinit)
2: for i← 1 to K do

3: xrand ← RandomConfig()
4: xnearest ← NearestNode(T , xrand)
5: xnew ← Steer(xrand, xnearest)
6: if ObstacleFree(xnew, xnearest,O) then
7: xopt ← ChooseParent(xnearest, xnew, T )

8: L← (la(xopt) + c(xopt, xnew),
lna(xopt)+lna(xnew)

2
)

9: T ← InsertNode(xopt, xnew, T )
10: T ← ReWire(T , xnew)
11: end if

12: end for

13: return T

In addition to the state cost L(x), we assign edge cost, (c1, c2, . . . , cn) to an edge

x̃ij that connects two successive states xi and xj . Here, a cost function ci for a

particular objective i is defined as, ci : X ×X → R≥0.

Additive/Non-Additive Cost: There are two types of costs assigned to the nodes

in a tree. Additive costs are cumulative and the costs have parent-child dependencies

(e.g. Euclidean distance and time). An additive cost depends on a parent’s cost and

the arc cost that connects it to its parent. On the other hand a non-additive cost

is independent and calculated based on the state (e.g. visibility, safety, clearance).
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We define the additive costs as la and the non-additive costs as lna that will be used

is subsequent sections.

The primitives of the Algorithm 11 are similar to other sampling-based motion

planning algorithms [LH98b, KL00, KF10b]:

Sampling : A tree is initialized in line 1 of Algorithm 11. In line 3 the method

RandomConfig() samples a random configuration xrand ∈ Xfree.

Nearest Node: In line 4, xnearest = NearestNode(T , xrand) returns the node

xnearest of the tree T that is nearest the sampled node xrand in terms of a distance

metric.

Steer : The method Steer(x1, x2) is used to solve control inputs us and uφ and

produces xnew from xrand for a dynamic control system.

Collision Checking : A collision-free path is required to connect the sampled

node xnew to its nearest neighbor xnearest in order to expand the tree T . Method

Obstaclefree() checks whether a path from xnew to xnearest avoids all the obstacles

O.

Until now the above discussed methods and steps are more or less the same

as the ones used in a standard RRT* algorithm. To introduce the multi-objective

optimization, we completely modified the ChooseParent() and ReWire() methods.

5.5 Choosing a Parent

Algorithm 12 is used to select the best parent xopt of the newly sampled node xnew

in terms of a multi-objective optimization.

Domination and Non-Domination: We choose a set of candidate nodes,

Xnear based on a nearness metric (e.g. point distance in Euclidean space) using

method NearestNeighbours() in line 1 of Algorithm 12. Each node xi ∈ Xnear
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has an associated cost vector L(xi) = (l1(xi), l2(xi) . . . , ln(xi)). However, we do not

consider all of them as a potential parent. Only the nodes whose costs belongs to

the Pareto frontier are considered. A node’s cost is a member of the Pareto frontier

set if it is not dominated by the costs of any other node. L(xi) dominates L(xj) if

and only if all the objective costs associated with xi are less than or equal to the

objective costs associated with xj . Node xi is chosen over node xj if cost L(xj) is

dominated by cost L(xi) (denoted by Li ≺ Lj).

xi ≺ xj ⇔ ∀k, lk(xi) ≤ lk(xj); where 1 ≤ k ≤ n. (5.2)

The set of all nodes such as xj ∈ Xnear from (5.2) comprises the set of dominated

nodes DX which are dominated by some node xi ∈ Xnear,

DX = {xj ∈ Xnear|∃i xi ≺ xj}. (5.3)

Accordingly the set of non-dominated nodes PX comprises the Pareto frontier,

PX = Xnear \DX . (5.4)

Choose Parent: This procedure chooses a single node from the set of Pareto

frontier nodes PQ calculated from the previous step. As the essential characteristic

of the nodes in the Pareto set is that none of them is unequivocally better than the

others, it is difficult to select a single node. Several options are available to solve

this problem. We employ a combinatorial solution that approximately solves the

problem to find a feasible path.

We first calculate the minimum costs l∗i for each objective i, among the Pareto

node set PQ. So the optimal cost tuple L∗ therefore is,

L∗ = ( min
1≤i≤|PX |

l1(xi), min
1≤i≤|PX |

l2(xi), . . . , min
1≤i≤|PX |

ln(xi)) (5.5)
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Next, we calculate the arc costs, C = (c1, c2, . . . , cn) associated with an arc, x̃j,new,

which connects the new node xnew to a nearest non-dominated node xj ∈ PX . The

minimum costs c∗i designated to an arc for each objective i are calculated and the

optimum cost tuple for arc costs is:

C∗ = ( min
1≤i≤|PX |

c1(xi, xnew), . . . , min
1≤i≤|PX |

cn(xi, xnew)) (5.6)

A weighting variable αi = [0, 1] is assigned to each objective i to control the effect

of the objective cost on a path to be planned where
∑

1≤i≤n

αi = 1. This weighting

variable is different from that used in Tchebycheff and weighted sum methods used

in [ZL07, YGS15] and is only used to define priority. Our algorithm is capable of

running without α unlike the methods described in [ZL07, YGS15] in which α is

the essential part of those algorithms. Accordingly, we select a node xj ∈ PX as the

parent (line 7) that yields the minimum normalized costs to come to xnew,

argmin
xj∈PX

n∑

i=1

αi

[
li(xj)

l∗i
+

ci(xj , xnew)

c∗i

]
(5.7)

Finally the cost L(xmin) of the current optimal node xmin is updated in line 9 and

the algorithm terminates by returning the best parent node in terms of normalized

multi-objective costs (line 12).

5.6 Updating the Tree

Different Costs: In line 8 of Algorithm 11, we assign a cost label L defined in

(5.1) to the current node xnew once a parent xopt is selected for that node. There

are two types of costs, 1) additive and 2) non-additive. Allocating costs to a node

is therefore not the same for all the objectives. Additive costs la like distance are

allocated by combining the cost of a parent and the arc cost. Therefore this cost
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Algorithm 12 ChooseParent(xmin ← xnearest, xnew, T )

1: Xnear ← NearestNeighbours(xnew, T ,O)
2: DX ← {xi ∈ Xnear|∃j ∀k lk(xi) ≤ lk(xj)}
3: PX ← Xnear \DX

4: L∗ ← (l∗1, l∗2, . . . , l∗n)
5: C∗ ← (c∗1, c∗2, . . . , c∗n)
6: for x ∈ PX do

7: if
∑

i

[
li(x)
l∗i

+ ci(x,xnew)
c∗i

]
<

∑
i

[
li(xmin)

l∗i
+ ci(xmin,xnew)

c∗i

]
then

8: xmin ← x
9: L(xmin)← L(x)
10: end if

11: end for

12: return xmin

resembles the total cost from the root node to the currently extended node xnew.

Suppose we have k additive costs and n−k non-additive costs among the n objective

costs. An additive cost lai (xnew) is therefore computed by:

lai (xnew) = lai (xopt) + ci(xopt, xnew); ∀ i, 1 ≤ i ≤ k. (5.8)

Non-additive costs lna, like visibility require in-place computation and are as-

signed regardless of the total cost of the path from the root node. In other words,

these costs do not propagate. Only the parent’s cost and the current nodes cost

that is computed by an in-place computation are averaged to assign and update the

cost vector L.

lnaj (xnew) =
lnaj (xopt) + lnaj (xnew)

2
; ∀ j, k + 1 ≤ j ≤ n. (5.9)

Node Insertion: Once we know the parent xopt of the newly sampled node

xnew, we add it to the tree T along with the corresponding edge x̃opt,new and arc

cost c(x̃). The modified costs L(xnew) for the involved node is also updated in this

step (line 9 in Algorithm 11).
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5.7 Refining Connections

Algorithm 13 is used to refine the existing connections in the neighborhood of a

newly connected vertex xnew. This procedure makes xnew the parent of the neigh-

boring nodes x ∈ Xnear if this yields optimum costs compared to the costs incurred

through its current parent. Method NearestNeighbours() in line 1 computes the

nearest node set Xnear and works the same as in Algorithm 12. A candidate neigh-

bor x ∈ Xnear is connected through the newly added node xnew if the following two

conditions are satisfied:

∀ i, 1 ≤ i ≤ k; lai (xnew) + c(xnew, x) ≤ lai (x) (5.10)

∀ j, k + 1 ≤ j ≤ n; lnaj (xnew) ≤ lnaj (x.parent) (5.11)

The above conditions are connected to our former explanation that the additive and

non-additive costs need to be evaluated separately. Firstly, in case of an additive

cost la(x), we make xnew the parent of the neighboring node x if the connecting

cost reduces the existing cost la(x) as shown in (5.10). Secondly, we only change

the existing parent x.parent to xnew if xnew provides a better cost than x.parent

in terms of non-additive costs lna(x). For example, if a node’s parent has better

visibility or safety than xnew, then making xnew the new parent is not desirable.

Therefore satisfying both the (5.10) and (5.11) make xnew the new parent of x and

Algorithm 13 terminates by updating the cost vector L(x) and tree T in lines 5 and

6 respectively.
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Algorithm 13 ReWire(T , xnew)

1: Xnear ← NearestNeighbours(xnew, T ,O)
2: for x ∈ Xnear do

3: if
∧k

i=1(l
a
i (xnew) + c(xnew, x) ≤ lai (x)) and

∧n

j=k+1 l
na
j (xnew) ≤ lnaj (x.parent)

then

4: x.parent← xnew
5: L(x)← (la(xnew) + c(xnew, x),

lna(xnew)+lna(x)
2

)
6: T .update(x)
7: end if

8: end for

9: return T

5.8 Avoiding Adversaries

As the deployed robots frequently want to avoid enemies while moving through the

environment, the computed paths need to maintain a safe distance from certain

ranges where enemy impact is unavoidable. Additionally, a very long path may be

out of the reach of enemies, but be undesirable because it is practically impossible

to traverse. Therefore, we must find a path that respects multiple objectives and is

safe from enemies.

We propose Algorithm 14 that avoids the adversarial units while minimizing

other objectives. This solution is based on the pursuit-evasion game explained

in [KF10a]. We expand two types of trees, Tv for the servicing vehicle and Te

for an enemy. Tv expands in such a way that it maintains a safe distance from Te.

We assume that the enemy can fire from a certain visibility range rvis and does not

travel beyond a distance de from an initial position xinite . In line 4 of Algorithm

14, method MultiRRT ∗ Expansion() is used to expand the vehicle’s tree Tv that

minimizes multiple objective functions. Method MultiRRT ∗ Expansion() consists

of only the expansion part of Algorithm 11 (lines 4 − 10 of Algorithm 11). The

NearbyRiskNodes() in line 6 calculates the set of vertices Xnear from the enemy
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tree Te that are in the firing range rvis. An enemy present on node xrisk ∈ Xnear can

potentially attack the newly sampled node xv and therefore it is removed at line 9.

Algorithm 14 RRTStarAdversary(rvis, de)

1: i← 0
2: while i ≤ K do

3: xv ← RandomConfig()
4: Tv ← MultiRRT ∗ Expansion(Tv, xv)
5: if xv 6= NULL then

6: Xnear ← NearbyRiskNodes(Te, xv, rvis)
7: for xrisk ∈ Xnear do

8: if ObstacleFree(xv, xrisk) then
9: Remove(Tv, xv)
10: end if

11: end for

12: end if

13: xe ← RandomConfig()
14: Te ← RRT ∗ Expansion(Te, xe)
15: if xe 6= NULL and dist(xe, x

init
e ) > de then

16: Remove(Te, xe)
17: else

18: Xnear ← NearbyRiskNodes(Tv, xe, rvis)
19: for xrisk ∈ Xnear do

20: if ObstacleFree(xe, xrisk,O) then
21: Remove(Tv, xrisk)
22: end if

23: end for

24: end if

25: end while

On the other hand, an enemy tree Te is grown by sampling new nodes xe in lines

13 − 14 using a regular RRT* tree expansion [KF10a]. We only retain the nodes

that are inside the allowed enemy patrolling range de (lines 15 − 16). The vertices

Xnear from the vehicle tree Tv that have the potential risk of attack from the newly

sampled enemy node xe are extracted at line 18. All such nodes are deleted from Tv

if they are not blocked by any obstacle in O.

123



5.9 Cooperative Path Generation for Multiple Robots

An opposite scenario of an adversarial situation is a cooperative one where multiple

friendly units want to communicate while optimizing their own objectives. One

particular case of cooperative path planning is where two or more vehicles want to

maintain visibility with each other. We propose Algorithm 15 where two cooperative

trees Tu and Tv expand in parallel while affecting each other. Both vehicles have

multiple objectives to satisfy and accordingly lines 4− 10 of Algorithm 11 are used

for their expansion in lines 4 and 6 of Algorithm 15. A function lc : X×X → {0, 1}

is defined that checks whether the two newly sampled vertices xu, xv of the two

trees cooperate (in line 8). A reward function ωk : X × X → R
≥0 is defined that

helps to decrease the costs for objective k if the two nodes cooperate (lines 9− 10).

Otherwise, a penalty function ρk : X × X → R≥0 is used to increase each of the

costs (lines 12 − 13). Finally, PropagateCost() is used in lines 15 − 16 to pass the

effect of the updated cost down towards all the nodes throughout the child chain.

5.10 Analysis

The algorithm proposed here is based on RRT* [KF11, KF10a], so most of its

properties are directly inherited.

Running Time Analysis: The main modification in our proposed model is

implemented in Algorithms 12 and 13. In order to take care of n objective costs,

both of them run n times more than the standard RRT* algorithm. Line 2 and 7

in the Algorithm 12 and lines 3 and 5 in Algorithm 13 take O(n) time to check and

update n costs. Therefore the running time of our multi-objective RRT* algorithm

is O(n · RRT ∗), which is a constant multiple of the running time of the standard

RRT*.
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Algorithm 15 RRTStarCooperative(xinitu , xinitv )

1: i← 0
2: while i ≤ K do

3: xu ← RandomConfig()
4: Tu ← MultiRRT ∗ Expansion(Tu, xu)
5: xv ← RandomConfig()
6: Tv ← MultiRRT ∗ Expansion(Tv, xv)
7: if xu 6= NULL and xv 6= NULL then

8: if lc(xu, xv) then
9: ∀k, 1 ≤ n, lk(xu)← lk(xu)− ωk(xu, xv)
10: ∀k, 1 ≤ n, lk(xv)← lk(xv)− ωk(xu, xv)
11: else

12: ∀k, 1 ≤ n, lk(xu)← lk(xu) + ρk(xu, xv)
13: ∀k, 1 ≤ n, lk(xv)← lk(xv) + ρk(xu, xv)
14: end if

15: PropagateCost(xu, Tu)
16: PropagateCost(xv, Tv)
17: end if

18: end while

We now analyze whether our algorithm chooses the right nodes during expansion

in terms of multiple cost optimization.

Proposition 5.10.1 ChooseParent() selects a non-dominated optimal parent.

Proof. (sketch) It is trivial that we select a non-dominated node as a parent as we

select it from the non-dominated set PX according to line 6 of Algorithm 12.

We now prove the optimality by contradiction. Let ChooseParent() select xp as

a parent of a node xnew which does not provide the optimal costs and let there be

a parent x′
p that provides the optimal costs such that:

n∑

i=1

[
li(x

′
p)

l∗i
+

ci(x
′
p, xnew)

c∗i

]
≤

n∑

i=1

[
li(xp)

l∗i
+

ci(xp, xnew)

c∗i

]
(5.12)

This contradicts the fact in (5.7) where we select the node as a parent which mini-

mizes the above cost. This condition is employed in line 7 of Algorithm 12. There-

fore, xp is chosen over x′
p implies that xp and x′

p cannot be different. This essentially
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proves that the method ChooseParent() selects the optimal non-dominated parent

in terms of multi-objective cost.

Proposition 5.10.2 ReWire() selects the optimal parent in terms of multiple cost

vector L in a particular tree T .

Proof. (sketch) This is trivial from the conditions in (5.10) and (5.11) where the

current parent of a node x ∈ Xnear is changed to the newly sampled node xnew if

and only if xnew is better in all n cost metrics lk where 1 ≤ k ≤ n. See line 3 of

Algorithm 13.

Proposition 5.10.3 A solution path σ is a non-dominated solution for a particular

MultiObjectiveRRT* tree T .

Proof. (sketch) The proposed MultiObjectiveRRT* is a modification of RRT* which

guarantees asymptotically an optimal path. It is a necessary condition that a sub-

path of an optimal path is also optimal. From propositions 5.10.1 and 5.10.2, we

guarantee that the local sub-solutions are non-dominated. This implies that once a

tree T is generated, the corresponding path σ is a non-dominated path.

5.11 Case Studies

We developed an implementation on top of the MIT SMP library [KFa] that was

originally developed by the authors of RRT*. The core functionality of the available

code was modified in order to support multiple cost vectors. Afterwards a Python

visualization was employed to present the raw output extracted from the modified

SMP library.
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5.11.1 Problem Modeling

Wemodeled a problem based on Figure 5.1 where a number of point robotsB1, B2, . . . , Bm

must be served through visible light communication [YBZ13]. This means that the

units must come into the line of sight (LoS) of the serving module. There are a

number of serving vehicles (Dubins cars) A1, A2, . . . , Ak that are assigned to provide

support to these units through patrolling. An optimal trajectory σ must maintain

visibility while optimizing the traveling distance from the starting location (purple)

to the goal location (yellow). Additionally, there might be a number of friendly

units we want to observe and a number of unfriendly units we want to avoid.

5.11.2 Case Study 1: Single Unit Visibility and Patrolling

In Figure 5.2, we present a case where a single vehicle is present to serve the blue

unit. The environment contains an obstacle O at the middle of the map. We used

C++ code to calculate a serving trajectory that minimizes the traveling distance

and maximizes LoS visibility to the units.

Figure 5.2(a) and (c) are the resulting tree and trajectory (red) that are com-

puted by the standard RRT* [KF11] algorithm after 500 and 3000 iterations re-

spectively. We then apply our algorithm and the results are shown in Figure 5.2(b)

and (d) for 500 and 3000 iterations respectively. Clearly the trajectory of Figure

5.2(b) is better than Figure 5.2(a) as it goes close to the unit before reaching to the

goal location. Most parts of the trajectory σ in Figure 5.2(a) is obstructed by the

obstacle O which is undesirable (see Figure 5.1). Similarly the path converges to

optimality in terms of length as shown in Figure 5.2(c), but it has poor visibility.

Finally, our algorithm converges to a better trajectory after 3000 iterations as shown
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RRT* MultiObjectiveRRT*

(a) (b)

(c) (d)

Figure 5.2: Trajectory finding for a car-like vehicle while monitoring the blue cir-
cular landmark: (a) Standard RRT* tree and trajectory after 500 iterations. The
purple rectangle is the initial position and the yellow region is the goal. (b) Our
MultiObjectiveRRT* tree and trajectory after 500 iterations. (c) Standard RRT*
tree after 3000 iterations. (d) Our MultiObjectiveRRT* tree after 3000 iterations.

in Figure 5.2(d). Along with visibility, this path optimizes the length as compared

to the longer path generated by Figure 5.2(b).

5.11.3 Case Study 2: Two Vehicles, Two Units

In Figure 5.3, we present a case where two blue units B1 and B2 need to be monitored

by two Dubins vehicles A1 and A2 while reaching their respective goal regions. The

calculated trajectory for A1 is green and A2 is red. Figure5.3(a), (c) and (e) are

the results from our algorithm and Figure 5.3(b), (d) and (f) are the outcomes of

the weighted sum and Tchebycheff methods used in the state of art [ZL07, YGS15]

solutions.
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MultiObjectiveRRT* Weighted Sum Scalarization

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Dubins car trajectory finding for two car-like robot. Vehicles start from
two small rectangular positions (purple colored): (a) Our MultiObjectiveRRT* tree
and trajectory after 500 iterations. (b) RRT* tree with weighted sum (scalarization)
method after 500 iterations. (c) Our Multi RRT* at 2000 iterations.(d) Tchebycheff
(scalarization) method after 2000 iterations. (e) Our Multi RRT* after 5000 itera-
tions.(f) Tchebycheff (scalarization) method after 5000 iterations.

The path for A1 (green) goes upwards around the unit B1 and turns towards the

unit B2 to maximize visibility while minimizing path length after 500 iterations as

shown in Figure 5.3(a). Similarly A2’s path (red) makes a turn to maximize visibility

and then follows the optimal distant path. With the presence of the rectangular

obstacle, it is not possible to provide maximum service to both units B1 and B2

throughout the path while minimizing the traveling distance. Therefore, A2 makes
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a circular turn to stay in B2’s visibility range a little more before serving B1 through

a shortest distance path.

The weighed sum and Tchebycheff [ZL07, YGS15] methods both use scalarization

of objectives and show similar characteristics after 500 iterations as shown in Figure

5.3(b). Although we tried to select the best weights for the objectives, these methods

frequently become biased towards a particular objective. The trajectory generated

for A1 optimizes path length over visibility and the trajectory for A2 is mostly out

of the visibility range of unit B2. In Table 5.1, we provide a numerical comparison

of our method with these prevalent techniques. We found that the weighed sum

method generates a slightly shorter path (98 vs 111) than our method, while the

difference of visibility (0.62 vs 0.46) is larger (a lower value means better visibility).

In Figure 5.3(c), we present the tree using our MultiObjectiveRRT* after 2000

iterations. Here our method generates a similar tree and trajectories as in Figure

5.3(a). However, the weighted sum method modifies its trajectory (specifically the

red one) which becomes longer with a slightly increased visibility as presented in

Table 5.1.

Finally we ran the methods for 5000 iterations as shown in Figures 5.3(e) and

(f). Our method converged to a near optimal non-dominated solution. On the

other hand, the Tchebycheff method generated the green trajectory with a slightly

increased visibility (0.47 vs 0.53) and a longer path (91 vs 88). The red trajectory

generated by our method is very short compared to the trajectory generated by the

Tchebycheff method (96 vs 117) with very good visibility cost (0.58). Therefore, we

conclude that our method provides a better compromise solution to all the objec-

tives than the weighted sum method which frequently biases towards a particular

objective.
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Table 5.1: Trajectory Analysis in Terms of Multiple Objectives
Iteration Objective Tchebycheff Our Multi RRT*

V ehicle 1

500
Visibility 0.62 0.46
Distance 98 111

2000
Visibility 0.81 0.46
Distance 106 111

5000
Visibility 0.47 0.53
Distance 91 88

V ehicle 2

500
Visibility 0.80 0.58
Distance 83 96

2000
Visibility 0.80 0.58
Distance 103 96

5000
Visibility 0.55 0.58
Distance 117 96

One important property regarding the convergence of the tree can be observed

in Figures 5.3(a), (c) and (e) where we see the trajectories are converging very

fast and the reconstructions of the paths do not produce any abrupt change in the

tree/trajectory structures. This is because the probability of a node to be minimum

in terms of multiple costs is less than the single cost which slows down the tree

re-connection.

5.11.4 Case Study 3: Adversarial Environment

In Figure 5.4 we present a case with one vehicle, two units and two adversaries.

The vehicle starts from the bottom area intending to reach the top yellow region

while serving two blue units. Two other adversaries are present who grow the red

trees while our vehicle grows the green tree following Algorithm 14. The red trees

have a certain range of growth de and a fixed distance to attack rvis. Therefore the

green tree keeps a safe distance while growing and finally finds a trajectory while

maximizing its visibility of the two units.
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Figure 5.4: Path planning for a vehicle surrounded by two enemies. The objective is
not only to avoid enemy’s visibility range but also to serve the blue units and reach
the yellow goal region safely.

5.11.5 Case Study 4: Cooperative Motion Planning

A case is presented with two vehicles A1, A2 and two units B1, B2 in Figure 5.5.

A1 is assigned to monitor B1 and A2 is assigned to monitor B2. Additionally, an

extra cooperative cost lc(x1, x2) is assigned that allows a reward ω to the costs of

A1 and A2 when they are visible to each other. Otherwise it incurs a penalty ρ

on the costs of the states x1, x2 (See lines 8 − 14 of Algorithm 15). In Figure

5.5(a), we see that the paths of the two vehicles attract each other while keeping

visibility to their respective blue units. In contrast, Figure 5.5(b) is the outcome of

MultiObjectiveRRT* where the vehicles only keep proximity to their assigned blue

units and finish the calculated paths without cooperation.

5.12 Summary

In this chapter, we formulated the problem of a group of units that need to monitor

a group of targets in a contested environment as a multi-objective optimal motion
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(a) (b)

Figure 5.5: (a) Cooperative path generation using MultiObjectiveRRT* Algorithm;
(b) MultiObjectiveRRT* path generation without cooperation.

planning problem. We presented modifications to optimal sampling-based plan-

ning algorithms to include multiple objectives and non-additive costs. Additionally,

we proposed algorithms that can handle both adversarial and cooperative missions

based on the ideas in [KF10a]. We found that our proposed system can generate

better paths than the weighted sum and Tchebycheff model for certain types of

motion planning problems. Our study of avoiding adversarial objects in an environ-

ment was able to generate safe paths while serving friendly units. Several interesting

directions are left for future work.

Multi-optimality problems in motion planning appear naturally in several prac-

tical domains. The modifications of algorithm 11 should work for other motion

planning problems. An immediate goal would be testing the performance of the

multi-objective addition to RRT* on benchmark problems in manipulation of an

articulated robot body to see its performance.

We also want to extend the possible set of multi-objective missions in contested

environments. Simple extensions will include modeling moving units as unmanned

aerial vehicles (UAVs) that want to maintain a connected visibility network. Fol-
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lowing such units to cover them makes the problem more complex where a tuning

among velocity, safety, and monitoring is required. We believe that the proposed

system can be a useful aid to calculate a feasible solution in these complex scenarios.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this thesis, we have studied the complexities of optimal relay placement problems,

re-planning of relay robots in LoS based systems, safety quantification of a robotic

construction job and robotic path planning for the multi-objective optimization

problems. We have proposed robotic motion planning and autonomous system based

solutions that are capable of dealing with most variations of the problems.

In the relay placement problem, where a chain formation of the relay robots is

required, we have developed a layered graph from a discretization of the world model.

The number of layers in the graph is equivalent to the maximum available relays. We

propose a modified breadth first search algorithm to create a tree from the graph,

rooted at the operator node and this tree is used as a communication map. The

tree building algorithm is proven to be polynomial and only needs to run once for

a fixed operator position. Afterward, in the cases of relocation of the remote unit,

we only need to extract a new plan from the tree instead of re-computing the entire

plan that was proposed in the best-known solution found in literature. Accordingly,

a comparison table of running times between our method and the existing solution

has been provided in Chapter 2 to show the improvement. We have also proposed a

cost optimal min-arborescence tree computation algorithm, in cases when we need to

serve multiple remote units. Such a tree spans over the operator, remote units, and

intermediate relays and guarantees that the total communication cost is minimal.

We have tested our ideas using a custom communication cost function which

includes the effects of common signal barriers such as building, obstacle, and ter-

rain. Future research should target of testing our system for different communica-

tion modalities using the real world cost functions. We also developed a prototype

hardware system using the mobile servo robots in an indoor grid environment. For
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further extension, we suggest to use other vehicles in an outdoor setup to test the

impact of different motion dynamics on signal strength.

In Chapter 3, we study the problem of setting up a visibility based fully con-

nected network among several mobile units and autonomous robot relays. The robot

relays act as servicing vehicles as they are able to provide coverage, computational

power, and command to the remote units. Each of the nodes in the system, whether

servicing vehicle or mobile unit must be in the visibility polygon of another servicing

vehicle in order to establish a fully operational LoS based relay network. Accord-

ingly, we propose two different polynomials-time algorithms, one centralized and

one distributed to check whether the current setup is communication-valid or not.

In the centralized algorithm, we have used algebraic graph theory technique and

computed Laplacian matrix to check its second smallest eigenvalue that indicates

the connectivity status of a graph. Our proposed distributed algorithm relies on

a message passing system where any servicing vehicle can initiate a query about

the system’s visibility based connectivity status. Then other vehicles respond with

their coverage information and the requester vehicle compiles the messages to get

the status of the network.

Many complex and dynamic systems where the mobile units are frequently in

motion causes regular disconnection. Such cases may not be solved by a single

vehicle relocation and we require a new setup of the servicing vehicles. We have

found that the optimal placements of the relay vehicles are NP-Hard by relating it to

well known TSP with neighbor problem. Therefore, we decompose the environment

using the visibility polygon intersections of the mobile units and apply the greedy

set cover algorithm to extract the minimal number of polygons that collectively

cover all the units. Placing one vehicle per polygon and one vehicle for patrolling

among the polygons solve the problem approximately. Finally, we have simulated
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this approach in ROS and Gazebo environment and conduct experiments on an

outdoor setup using a remote controlled Rover (a modified RC car).

An interesting extension of the proposed solution is to analyze whether the solu-

tion can be improved further that is currently being approximated with an O(logn)

ratio at best. Secondly, the assumption about a known world may not be the case

when a mission is conducted in an unknown environment. In such cases, an ex-

plicit control algorithm is required, which guides the vehicles to keep continuous

visibility in any event of movement. However, recovering a mobile unit in an un-

known environment is still a challenge. Therefore, several ideas from gap navigation

approaches may be helpful in such cases where the vehicles navigate towards the

shadow regions [LaV06b] in the environment, or follow the units that are on the

move. Also, a feedback based planner can be used to collect the information about

the units that intend to go out of sight. Then an information space can be utilized

to take actions in subsequent time steps of the mission.

Chapter 4 solves the problem of communication aware safe project planning

where we investigate critical safety issues of a building construction jobsite. Here

we design an automated planning model that optimizes different attributes such as

safety, duration, cost of a project. Therefore, we propose a simulation tool based

on time-driven Discrete Event Simulation (DEVS) methodologies that enables the

planning managers to investigate the safety metric of a selected construction plan.

This model also guides the managers with alternate approaches of a selected plan

in order to minimize potential hazards. Generally, a construction plan is given as

a CPM graph format which is a precedence constrained directed graph. We use all

possible topological sorting algorithm to extract different and equivalent alternate

plans from this graph. Each of the activities in a particular plan is then simulated
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using our activity scheduler. Also, the atomic events in an activity is simulated

using the DEVS-based event scheduler algorithms.

Motion planning algorithms come into effect during the planning of trajectories

for workers and equipment. Generalized Voronoi Diagram as a maximum clearance

roadmap has been created for the workers’ waypoints while sampling-based motion

planners generate the trajectories for heavy equipment. A space-time coordination

system is then used to avoid collisions among the human workers and the equipment

by employing the STOP and MOVE actions.

An immediate future direction of research is to incorporate the stochastic nature

of the workplace instead of our deterministic model. Therefore, the positions of the

workers and the equipment can be estimated using a probability density function

and a number of possible time intervals can be extracted when the probability of

collision is calculated to be significantly higher.

The proposed system can also be used for employee training in other complex

workplaces such as manufacturing and product assembly line. These automated

systems need safe colocation of human and robots and a proper sequence of activity

planning is required to maximize safety. As we have shown that the safety can be

maximized without incurring significant cost and delay, our system can easily be

used for other industrial automation projects to generate a better work plan.

Finally, in Chapter 5, we have developed a sampling-based motion planning al-

gorithm (based on RRT*) that optimizes multiple objectives instead of a single one,

compared to the conventional motion planners in literature. Sampling-based plan-

ners expand on the free space by randomly selecting configurations and connecting

them with the existing tree based on a single cost metric. Instead, we use a collec-

tion of independent cost functions in the form of a cost vector and normalize them

during tree expansion (predecessor selection and successor update process). Addi-
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tionally, we also propose algorithms to solve path planning problems in cooperative

and non-cooperative scenarios in multi-robotic systems where a path is required for

each of the robots. This is achieved by defining a mutual penalty (non-cooperative

case) or reward (cooperative case) functions during individual tree expansion.

Several immediate future improvements are feasible based on the proposed mod-

ification. Our idea of multi-cost vector, cost normalization, and dominating/non-

dominating classification can be used in other sampling-based motion planners such

as RRT, PRM and PRM*. Another immediate extension to the work is to use gra-

dient descent method that will try to bias the trajectories towards the specific goal

functions. Also designing good reward function can help to select best parent nodes

during expansion of the random tree. Furthermore, a Monte-Carlo method can pro-

vide further improvement in the proposed methodology by incorporating random

variables and their statistical estimations during the tree construction process.
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