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ABSTRACT OF THE DISSERTATION

ANALYSIS OF EYE-TRACKING DATA IN VISUALIZATION AND DATA SPACE

by

Sayeed Safayet Alam

Florida International University, 2017

Miami, Florida

Professor Sitharama S. Iyengar, Major Professor

Eye-tracking devices can tell us where on the screen a person is looking. Researchers fre-

quently analyze eye-tracking data manually, by examining every frame of a visual stim-

ulus used in an eye-tracking experiment so as to match 2D screen-coordinates provided

by the eye-tracker to related objects and content within the stimulus. Such task requires

significant manual effort and is not feasible for analyzing data collected from many users,

long experimental sessions, and heavily interactive and dynamic visual stimuli. In this

dissertation, we present a novel analysis method. We would instrument visualizations

that have open source code, and leverage real-time information about the layout of the

rendered visual content, to automatically relate gaze-samples to visual objects drawn on

the screen. Since such visual objects are shown in a visualization stand for data, the

method would allow us to necessarily detect data that users focus on or Data of Interest

(DOI).

This dissertation has two contributions. First, we demonstrated the feasibility of col-

lecting DOI data for real life visualization in a reliable way which is not self-evident. Sec-

ond, we formalized the process of collecting and interpreting DOI data and test whether

the automated DOI detection can lead to research workflows, and insights not possible

with traditional, manual approaches.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Eye-tracking is a method of reporting eye activities using specialized hardware called

“eye-trackers”. Modern eye-trackers have several capabilities. Primarily, they can locate

where a user is looking on a display device (e.g. computer screens, projection screens,

hand-held, and wearable displays). Albeit several types of eye-tracking applications exist,

we can divide them into two categories: interactive and diagnostic. For the former (inter-

active), eye-tracking is used to change an interface based on a user’s visual attention, such

as using eye-tracking as an alternate to pointing devices ( e.g. mouse, touch interface) or

text inputs. However, the latter (diagnostic) is to describe a user’s visual attention. In this

dissertation, we will primarily focus on the diagnostic category of eye-tracking applica-

tions.

Usually, a diagnostic eye-tracking study serves the purpose of quantitatively measur-

ing people’s attentional process as they solve visual tasks. It plays a major role in research

fields such as human-computer interaction, cognitive sciences, and information visualiza-

tion. In a typical eye-tracking experiment of this type, an eye-tracker tracks a human

subject who sits in front of a computer screen which shows a visual stimulus (i.e. image,

video). The eye-tracker reports and records the subject’s gaze-positions on the screen.

Experimenters then test their hypotheses by analyzing the collected data using visual and

statistical analytic techniques.

Presently, eye-tracking data, accumulated as a stream of 2D gaze-samples, is analyzed

by one of two approaches: point-based and area of interests (AOI) -based analysis. In

point-based methods, experimenters treat gaze-samples as individual points. Afterward,

they relate them to the 2D stimulus shown on the screen during the experiment. In AOI-
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based methods, experimenters first define certain regions or areas within the analyzed

stimuli. Later, they aggregate recorded gaze samples into those AOIs, which then serve

as a higher-level unit of analysis.

A major limitation of these approaches is that both of them involve a significant over-

head. That is, experimenters collect gaze samples as pixel coordinates and relate them

to visual stimulus by either overlaying gaze-clouds on top of the stimulus image (e.g.

heatmap) or by manually defined AOIs. However, if the stimulus is dynamic or inter-

active, then experimenters have to repeat these analysis actions for each frame of the

stimulus. Such scenario makes these approaches infeasible for dynamic or interactive

stimuli.

In data visualization, the arrangement and layout of visual contents are often known at

rendering time. Thus, for such case, we can devise a solution for the limitations as men-

tioned earlier. For visualizations with open source code, we can instrument visualization

so that gaze samples are related to visual contents automatically and in real-time. In other

words, we can track what data objects users are viewing at each consecutive moment in

time. For example, a network visualization may contain visual representations of nodes

and edges. Since we know the locations of these data objects on the screen, we can map

gaze samples provided by an eye-tracker to them. To exploit the analogy with the tradi-

tional AOI nomenclature, we call such eye-tracked data objects Data of Interest (DOI),

and the entire detection and analysis process as DOI eye-tracking analysis.

The particularity of DOI analysis is that we can perform it in data space rather than

image space. In other words, we can couple DOIs with visualization data. Thus, DOIs

intrinsically contain annotations with data attributes. As a result, we can analyze DOIs

on its data-derived properties, independently from visual stimuli. Hence, it will eliminate

manually relating gaze samples to visual stimuli process which traditional analysis meth-

ods (i.e. point-based and AOI-based) regularly perform. Moreover, DOI analysis will

2



support experiments of significantly longer sessions than those possible using traditional

analysis approaches. Again, operating in data space will leverage DOI analysis to answer

many questions that traditional analysis approaches cannot.

1.2 Problem Definition and Contributions

This dissertation makes two contributions. First, we demonstrate that collecting suffi-

ciently accurate DOI analysis data is feasible. Second, we seek to create the foundation

for DOI eye-tracking analysis (i.e. DOI analysis). We describe the contributions in Sec-

tion 1.2.1 and 1.2.2.

1.2.1 Contribution-1:Collecting DOI Data is Feasible

In Section 1.1, we have introduced the idea of relating gazes with data entities in order

to produce DOI data. However, we claim that such data collection is feasible. Moreover,

we also claim to collect data with our method over long experimental sessions associated

with dynamic and interactive stimuli, and open-ended tasks.

We have two assumptions on the eye-tracking experiments which we intend to collect

DOI data. First, the experiments must use a visualization that has computer generated

visual elements. Second, source codes for generating the visualization must be open

source. Hence, experimenters can implement a part of DOI-producing code to the original

code.

DOI data will consist collection of DOIs. Albeit DOIs are customizable, we assume

they will contain certain information about visualization data entity, screen information,

eye-tracking information, and user-specific data. However, for simplicity, we assume

DOI data are time-annotated visual elements that participants viewed during such eye-
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tracking experiments. We call such visual elements as viewed objects. Thus, viewed

objects detection is a critical component of DOI data collection.

For detecting viewed objects, we can adopt a naı̈ve method from AOI analyses. The

AOI’s method identifies a visual object as ‘detected’ whenever a gaze point falls on it.

However, in AOI analyses, annotated AOIs are usually large and non-overlapping. Albeit

the naı̈ve method is sufficient for such scenario, it will not work for complex and dense

visualization. For example in a real-life visualization, hundreds of distinct visual objects

may occupy the screen at the same time. Again, a human eye can see clearly within a small

region (e.g. approximately one inch in diameter) while viewing. Eye-trackers can indicate

only the center point of that region, which the user is fixating (i.e., viewing). Since such

regions are likely to intersect with multiple visual objects, mapping gazes to individual

objects are compelled to be an imprecise process. Moreover, DOI instrumentation should

produce data that are sufficiently accurate for meaningful analyses in the context of real-

life visualizations.

In our first contribution, we will demonstrate that DOI instrumentation is feasible. We

developed a novel DOI detection algorithm. In this algorithm, we have improved upon the

naı̈ve AOI detection approach. We implemented it based on the hypothesis that users are

more likely to view objects that are visually appealing (e.g. highlighted), or connected

(physically or semantically) to previously viewed objects. If these were true, it would

allow us to distinguish between potentially viewed objects, when eye-trackers detect gaze

points in the vicinity of multiple objects. We have tested this hypothesis. Moreover, we

have formalized the idea into our DOI detection algorithm, and evaluated its performance

over the naı̈ve AOI detection approach.

In summary, we have developed a DOI detection algorithm. Moreover, we instru-

mented and applied the algorithm to collect DOI data from users solving real tasks in
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real-life visualization. Afterward, we will evaluate the reliability and effectiveness of the

collected DOI data.

1.2.2 Contribution-2: Formalization of DOI Data Collection and In-

terpretation

We claim that using DOI analysis will significantly reduce the human effort on analyzing

eye-tracking data. However, to harness its maximum potential, we need to formalize the

process of DOI analysis. We can divide the DOI analysis process into two parts: collect-

ing data and interpreting data. We have contributed by formalizing both of the processes

above. For formalizing the former, we have developed guidelines to experimenters about

instrumentation methods and DOI data model. Again, formalizing the latter part would

require two steps. First, we will compile a list of questions that DOI data can answer.

Second, we will create novel visual analytics support to answer them.

DOIs are closely related to AOIs. Moreover, using AOIs to analyze eye-tracking is

well understood, and a plethora of visualization techniques exist to support such analyses.

However, we claim that using these established AOI analysis methods to understand DOI

data will not be effective due to two major challenges. First, we have observed that DOI

is significantly more granular and larger than data collected in traditional eye-tracking

experiments. For example, using the DOI approach, we could track hundreds or thousands

of DOIs over hour-long experimental sessions. Such scenarios contrast with traditional

AOI methods which typically track tens of AOIs over one or two minutes. AOI methods

are unlikely to handle the significantly larger volumes of DOI data. Second, DOI data can

be more useful in getting insights about the semantics of the data a user explores since

DOIs couple them with data attributes. Such attributes are unavailable in AOI data, and

5



AOI methods have not been designed to explore them. Thus, AOI methods will not be

sufficiently flexible to answer the new questions that DOIs can answer.

We divide this contribution into three sub-contributions. The first sub-contribution

addresses the formalization of collecting DOI data process. The latter two address the

two steps of interpreting DOI data.

Sub-contribution 2.1: We have contributed to the formalization of DOI data col-

lection process by providing guidelines to experimenters about how to instrument visu-

alizations and collect DOI data. We claim that DOI data can be difficult to analyze if

collected data are in a clumsy format. We also provided a DOI data model to enable

experimenters to produce adequately formatted DOI data. For example, in a network vi-

sualization, DOIs may be individual nodes or clusters of nodes. Usually, links represent

a single relationship among nodes. Thus, simple links are unable to represent multiple

semantic relationships among DOIs. Hence, a representation of all essential relationships

among DOIs to test intricate hypotheses afterward. On the other hand, testing hypotheses

may become infeasible if collected DOI data is without any data model. Thus, we would

need a DOI data model to facilitate experimenters.

Sub-contribution 2.2: Generally, analyzers test their hypotheses by questioning their

experimental data. We have compiled the type and range of analysis queries that are

askable to DOI data. Such questions will allow researchers to understand the classes of

scientific queries that the DOI methodology can support. Methodologically, we started

from the formal data model devised as part of contribution 2.1 and exhaustively identified

the types of questions that the data model can support, an approach used with reliable

results in the past to generate tasks-requirements for other categories of data (e.g. geo-

graphical data, temporal data).

Sub-contribution 2.3: Presently, visualization is an essential tool for data analysis.

For this sub-contribution, we have explored designs of visual solutions that could fa-
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cilitate DOI data analyses. We explored existing visual techniques for analyzing AOI

data. Moreover, we implemented new visualizations based on them to support the inter-

pretation of the larger and richer DOI data. We also explored these methods and their

effectiveness while collaborating with real-life researchers to answer real-life scientific

questions. Specifically, we asked design requirements and feedback from collaborators at

FIU and incrementally modified our designs according to their suggestions.

1.3 Related Publications

For the accomplishment of this dissertation, we have published the following articles:

• R. Jianu and S. S. Alam. A data model and task space for data of interest (doi)

eye-tracking analyses. IEEE Transactions on Visualization and Computer Graphics,

PP(99):1–1, 2017.

• S. Alam and R. Jianu. Analyzing eye-tracking information in visualization and data

space: from where on the screen to what on the screen. IEEE Transactions on Visualiza-

tion and Computer Graphics, PP(99):1–1, 2016.

• Mershack Okoe, Sayeed Safayet Alam, and Radu Jianu. A gaze-enabled graph

visualization to improve graph reading tasks. In Computer Graphics Forum, volume 33,

pages 251–260. Wiley Online Library, 2014.

1.4 Outline of the Dissertation

We discuss the background of the research of this dissertation in Chapter 2. Next, we

discuss feasibility and effectiveness of collecting DOI data in Chapter 3. In Chapter 4,

we described three experiments where we collected DOI data. Again, in Chapter 5, we

described a data model for DOI. Moreover, we also described analysis questions that are
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applicable for DOI data. Next, in Chapter 6, we described visual solutions to interpret

DOI data. Finally, we conclude our discussion of this dissertation in Chapter 7.
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CHAPTER 2

BACKGROUND

2.1 Origin of Eye-Tracking

Eye-trackers provide a stream of gaze points based on the subtle positions changes of eye-

pupils. However, the pattern of human perception reveals that stream of gaze points are

not smooth trajectories. Earlier, in the 1800s, eye movements were interests affiliated

to know how people read. Javal [Jav78], Lamare [Lam93], and Hering [Her79] first

discovered that people make stops while scanning through words while reading. Thus,

eye-movements yield two types of gaze points: fixations, and saccades. Fixations are the

points where eye stops moving for a while. On the other hand, saccades are intermediate

points where eye stops for a small amount of time during switching fixations from one

object to another. Edmund Huey was the first to build an eye-tracking device to track

eye movement in reading [Hue08]. He used lenses with small openings attached to a

pointer. Later, Judd and Buswell developed an eye movement camera to capture eye

motions [JB22].

With the progress of eye-trackers, it opened paths for more research in different

disciplines. In 1967, Yarbus correlated eye-movements with user study tasks [Yar67].

Presently, Eye-tracking is a popular tool in many research domains such as psychology,

neuroscience, Marketing, human-computer interaction, data visualization [Duc02]. The

applications of eye-tracking technology are discussed in Section 2.2.

2.2 Applications of Eye-Tracking

Eye-tracking technology is gradually getting more accurate, faster, and cheaper [Duc07].

Due to its availability, more research studies are adopting it as a utility. We can divide
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the applications of eye-tracking technology into two categories: Interactive, and Diagnos-

tic [Duc02]. This dissertation primarily focuses on eye tracking’s diagnostic role. How-

ever, we briefly discuss its interactive applications in Section 2.2.1. Later, we discuss the

use of eye-tracking as a diagnostic application in Section 2.2.2.

2.2.1 Eye-Tracking as an Interactive Tool

Eye movement is significantly faster than hand movements [SJ00]. Thus, many computer-

based systems have used eye-tracking as an interactive tool. Examples include using eye-

tracking as an alternative to pointing devices (e.g. mouse, touch-interface) in 2D [Jac91]

and 3D [Bol90, TJ00], and even as a text-input device [MR02]. However, eye-tracking is

proved as ineffective compared to traditional selective devices (e.g. mouse, touch, and

keyboard) due to the difficulty of differentiating between view-gazes and interaction-

gazes. Such case is known as the “Midas Touch Problem” [Jac91]. For example, a

Graphic User Interface (GUI)-based system uses eye-tracking as a selective system. The

system’s screen contains two icons: ‘A’ and ‘B’. If a user wants to select ‘B’ but looks at

‘A’ (view gaze) then looks at ‘B’ (interaction gaze) then the system may find it ambiguous

to decide which icon the user wants to select. To overcome this problem, Jacob proposed

several solutions such as use blinks or dwell time. However, using such solutions make

eye-tracking interaction slower than traditional interaction methods [Jac91].

Despite being fast, eyes are not effective to control interactions. Moreover, it cannot

fully serve the selective system purpose [ZMI99]. However, gaze points can indicate

user’s intentions and displays can alter in gradual and unobtrusive nature [Jac91, JK03].

Such interactive displays are labeled as “Gaze-Contingent Displays” (GCD) [Duc07].

Researchers developed GCDs by changing either screen contents [RLMS03, PN02] or

underlying model before rendering [DDGM00, OD01, ODH02, OAJ14].
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2.2.2 Eye-Tracking as a Diagnostic Tool

Computer vision has a profound impact on artificial intelligence, medical diagnostics,

and visual perception [FP11, Hua96]. Examples of computer vision applications in-

clude facial recognition [SK87], video scene detection [YL95, GJL+06], and disease

detection such as Alzheimer’s disease [CRA+04], glaucoma [BZB+09], and retinopa-

thy [CBKI11, CBT+08]. Eye tracking technology uses similar methods to computer vi-

sion for diagnostic purposes. Many research user studies use eye-tracking as a diagnostic

tool. The most common form of a diagnostic eye-tracking study is a user solving visual

tasks by observing visual stimuli on a computer screen while an eye-tracker records the

user’s gaze positions. Then, analyzers process the gaze data offline to understand how

the user observed the stimuli and solved the tasks [Duc07]. In this way, researchers used

eye-tracking to understand how people recognize faces [GS+14, SSP14], how attention

changes with emotion [VTPM13], how diseases may affect perception [KLCA14], and

how students learn from visual contents [ZAB14, May10, vGS10, CAM13].

The use of eye-tracking in data visualization research has increased with the growing

popularity, accuracy, and affordability of the technology. For example, major contribu-

tions building on eye-tracking technology include the network readability study by Pohl

et al. [PSD09] and Huang et al. [HEH08,HE05]. Moreover, the study on tree drawing per-

ception by Burch et al. [BKH+11, BAA+13]. As well as, the study on decision-making

visualization by Kim et al. [KDX+12].

2.3 Analysis of Eye-Tracking Data

Research studies using diagnostic eye-tracking heavily depend on analyzing eye-tracking

data. Studying from the literature, we divide the analysis methods for eye-tracking data

into two paradigms: point-based methods and area of interests (AOI)-based methods [BKR+14].
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Point-Based analysis methods treat each gaze sample as a discrete point. As such, point-

based analyses usually report overall gaze patterns as spatial or temporal distributions of

2D gaze coordinates over visual stimuli. The major weaknesses of this approach include

the requirement to show the same set of stimuli to the human subjects (i.e. users) to be

comparable, and the obligation to always analyze the collected gaze data in conjunction

with the 2D screen capture. Analyzing each stimulus will result in longer analysis time

for larger numbers of stimuli. Moreover, analyzers have to relate gazes with the semantic

contents of stimuli manually. This approach is highly ineffective in the case of interactive

and dynamic stimuli.

Alternatively, analyzers often define AOIs that are relevant to their hypotheses onto a

stimulus [BKR+14]. The number of gaze points landing into an AOI can then be com-

puted automatically as a proxy for users’ interest in that AOI. Higher level analyses are

thus possible. Examples include but are not limited to investigating reading patterns

where each word is an AOI [BR05, SD04], to observe where and how long users look at

visual regions [Coc09,KDX+12], and to compare interfaces utilizing AOI fixation counts

and frequencies [ÇHGF09]. Usually, analyzers define AOIs over stimuli manually, and

the process is significantly time-consuming. Thus, the analysis process takes prolonged

time with the increasing count of stimuli and visual contents within those. Moreover, the

process becomes prohibitively inefficient for interactive and dynamic stimuli (e.g. video)

since analyzers have to define AOIs for each frame of a video.

Several solutions are proposed to overcome this weakness. One example is the au-

tomatic AOI annotations using gaze clustering algorithms [PS00, SD04, DBP14]. How-

ever, an increase of complexity of visual contents in stimuli may increase the difficulty

of the AOI annotation process. Stellmach et al. proposed the object of interests (OOI)

concept for 3D stimuli where eye-trackers collect gaze points on the surface of 3D ob-

jects available in a scene [SND10]. Additionally, Steichen et al. [SCC13] and Kurzhal
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et al. [KHW14] suggested the possibilities of dynamic AOI annotations in the case of

computer generated visual contents. However, this concept is still unexplored. This dis-

sertation leverages this concept of dynamic AOI and OOI into developing DOIs. We

discuss related works about DOIs in Section 2.4.

2.4 Related Work

Our contributions in this dissertation explore analyses of eye-tracking data in two aspects:

collection and interpretation. We discuss related work about them in the following sec-

tions.

2.4.1 Eye-Tracking Data Collection

In Section 1.2, we have mentioned that the Data of Interests (DOI) is an improved solution

for eye-tracking data analysis. The idea of DOI originates from the objective of automat-

ically detecting which data objects a user of a visualization views. As such, DOI is the

mapping of gaze samples to data objects rather than pixel positions. Recently, Sundstedt

et al. [SBS+13] and Bernhard et al. [BSHW14] introduced a process called gaze to object

mapping (GTOM) for identifying objects which are targets of users’ attentions in 3D vir-

tual environments. This dissertation contributes a similar approach albeit in the context

of relating gaze points with semantic contents of network diagram [OAJ14]. However,

relating gaze points with semantic contents of any visualization is non-existent. Salvucci

et al. presented a probabilistic approach to predict viewed objects on a computer screen

using eye-tracking [SA00]. Moreover, Salvucci et al. alongside with Okoe et al. [OAJ14]

indicated that leveraging semantics of visual contents can significantly improve viewed-

object predictions. However, both Salvucci et al.’s and Okoe et al.’s contributions were

limited to simple visualizations. Salvucci et al. tested their methods over a simple gaze-
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added WIMP (i.e. Window, Icon, Menu, and Pointer) interface. On the other hand, Okoe

et al. explored only network visualization [OAJ14]. The idea of OOI and GTOM sig-

nificantly influenced our first contribution. Moreover, One of our methods innovates on

existing techniques for mapping gazes to objects by adopting the probabilistic method by

leveraging semantic contents of visualizations.

2.4.2 Eye-Tracking Data Interpretation

Many methods exist to interpret eye-tracking data visually. Blascheck et al. catego-

rized several existing visualization techniques for point-based and AOI-based visualiza-

tions [BKR+14]. More complex visual analytics software systems and solutions include

those by Andrienko et al. [AABW12], Weibel et al. [WFE+12], Kurzhal et al. [KHW14],

and Blascheck et al. [BJK+16].

However, DOI data can be significantly more granular and larger than AOI data.

Moreover, we can associate DOIs with a wealth of directly-derived data attributes from

the tracked data. Hence, we have hypothesized that DOI data can answer questions that

AOI cannot. Moreover, data interpretations using traditional AOI analysis methods are

ineffective for DOI data. This shortcoming motivated our second contribution, with its

two sub-goals: determining what questions DOI data can answer that AOI cannot, and

creating support for theses questions.

To accomplish the former, we formalized the DOI specific analytical tasks. Any spe-

cific categorizations of analysis tasks for eye-tracking data are currently non-existent.

However, task categorizations, task taxonomies, and task frameworks do exist for other

types of data and analyses. For example, Wehrend and Lewis [WL90], Shneiderman [Shn96]

discussed general features of task taxonomies in the context of data visualization. Re-

cently, Brehmer et al. [BM13], Schulz et al. [SNHS13], and Rind et al. [RAW+15] pro-
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posed a multilevel typology that can be applicable for creating complete task descrip-

tions regardless of domain specifications. Amar et al. provided a comprehensive cat-

egorization of low-level tasks [AES05]. Moreover, task taxonomies exist for several

specific types of data visualizations such as for graph visualizations [LPP+06], group

level graphs [SSK14], multidimensional data visualizations [War02], and geo-temporal

data [AAG03, Rot13]. Hence, as a part of our second contribution, we draw inspiration

from these studies for an attempt to categorize DOI analysis tasks.

To achieve the interpretation part of our second contribution 1.2.2, we explored the

designs of visualizations to perform analysis tasks for DOI. Moreover, we employed ex-

isting visual techniques available for AOI analyses. We also adopted interaction tech-

niques from Yi et al.’s taxonomy for information visualization [YaKSJ07] to support DOI

analysis tasks.
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CHAPTER 3

DOI DATA COLLECTION FEASIBILITY INVESTIGATION

3.1 Introduction

The motivation of using DOI analyses over traditional methods (i.e. point-based and

AOI-based) is that it will significantly reduce human interventions for analysis processes.

We claim that using DOI analyses over traditional AOI analysis will have four major

advantages. First, experimenters will be able to analyze a user study with longer sessions.

A traditional eye-tracker reports data in 60Hz to 120Hz. Hence, for an hour-long session,

experimenters may have to examine 60× 1× 60× 60 = 216, 000 gaze points for a single

user. Although, automated interpretation visualization tools exist with contemporary eye-

tracker software packages. However, such analysis tools can only create visualizations

for the entire experimental sessions and can identify only screen locations. For example,

in an eye-tracking experiment, a user was looking at a diagram for one hour would have

produced gaze points recorded all over the given stimulus. It cannot identify which visual

elements the user was viewing. For that, experimenters would have to go over every

gaze points over time manually. DOI analyses data would contain time annotated data

elements. Hence, it will be possible to analyze eye-tracking data for longer sessions.

Second, DOI analyses can handle eye-tracking data from more users than traditional

methods can handle. DOI analyses eliminate the process of manually relating gaze points

with semantic contents of given stimuli. For example, data interpretation of a user of

an eye-tracking study may take 5-6 hours. Thus, a user study with ten subjects will

require analysis for 50-60 hours. DOI analyses automatically relate gaze points with

semantic contents which eliminate such exhaustive process. Hence, DOI analyses enable

experimenters to conduct user studies with more subjects than it was possible.
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Third, DOI analyses enable experimenters to use complex, interactive, and dynamic

visualizations for eye-tracking user studies. We discussed that experimenters have to

spend a significant amount to time to relate gaze points with given stimulus. However,

if a stimulus is interactive and dynamic, then experimenters have to repeat the same task

for each frame. Moreover, the process is even more difficult for dense and complicated

visualization layout. DOI analyses facilitate experimenters by providing data elements

that users were interested in real-time.

Fourth, experimenters can test users with more open-ended tasks in eye-tracking stud-

ies with DOI-based analysis. Traditional eye-tracking analysis methods can provide a

relatively small amount of analysis data compared to DOI data. Thus, they compel exper-

imenters tends to use small close ended tasks. However, DOI analyses can provide detail

reports of elements that users tend to see. Thus, more behavioral analyses are possible

with DOI-based analysis.

Again, DOI data collection is the process of relating gaze points to data elements.

With the open-source code for generating visualizations, we know layouts of all visual

elements and their corresponding data elements. However, eye-trackers report data with

low-resolution and inaccuracy. Due to peripheral vision, a human can view an area rather

than a precise pixel. Thus, identifying objects a user viewed is challenging. We discuss

the difficulty of DOI data collection in Section 3.2.

We implemented a method of fuzzy interpretation of gaze data. The method reports

a likelihood of viewing an object rather than certainty. Using this approach, we imple-

mented a novel viewed-object-detection algorithm. We discuss the incremental develop-

ment of this algorithm and instrumentation to visualization code process in Section 3.3.

To test our algorithm, we have conducted an eye-tracking experiment with instru-

mented DOI data collection code. Details of the experimental setup and results are dis-

cussed in Section 3.4. Finally, we provide our conclusion remarks in Section 3.5.
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3.2 DOI Data Collection is non-trivial

Many eye-tracking related studies generate visual stimuli using computer programs coded

by visualization researchers. In such cases, since the structure and layout of the visual

content in the stimuli is accessible at runtime, we can relate gaze positions supplied on

the fly by an eye-tracker to the visual content of such visualizations.

For example, in Figure 3.1, a network diagram depicts the characters from the novel

Les Miserables. Each rectangle node represents a character. Links between two characters

are present if they co-occurred in the same chapter. The colors indicate different clusters

of characters. The visualization has interactions such as dragging nodes (i.e. rectangles).

Moreover, users can input a ‘compactness’ value to change the layout of the visualization.

The lower value of compactness indicates a more compact arrangement of the network.

Figure 3.2 shows the same visualization with four different compactness values.

Figure 3.3 is a smaller version of the original network diagram with the major charac-

ters only. The dashed circles represent a user’s gaze points in it. This figure also depicts

collected gaze points from a user looking at Fantine and Cosette. It is evident that we

can match the positions of these gaze samples to the two rectangles closest to them (i.e.

the visual content). Hence, we label this eye-tracking analysis as being in ‘visualization

space’ (i.e., relating gazes to visual objects shown on the screen) rather than ’image space’

(i.e., relating gazes to pixels in a stimulus).

Moreover, the visual objects in the Les Miserables visualization stand for actual data:

the characters in the novel. So, mapping gazes to the visual objects let us in turn map the

user’s interest to data elements, such as Fantine and Cosette. Moreover, by looking at the

properties of the data that users are viewing, we can relate visual interest to semantic data

subsets or perspectives. For example, Fantine and Cosette are both female characters and,

based solely on the few gaze samples depicted in our example. We could conclude that the
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Figure 3.1: An interactive network visualization, depicting characters from Les Miser-
ables.
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Figure 3.2: Different layouts of Les Miserables visualization when the compactness is
changed.
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Figure 3.3: A network diagram with major characters of Les Miserables.

user is viewing female characters. In other words, we can track the user’s interest in data

subsets defined based on gender. Similar data subsets could be identified based on central

or secondary characters, or positive or negative characters. We call this eye-tracking data

analysis in “data space” or data of interest (DOI) analysis.

We hypothesize that this is a compelling alternative to traditional analysis methods,

primarily AOI (area of interest) analyses. Using conventional AOI-based approaches,

analyzers would be required to define AOIs over already rendered 2D stimuli. In our

example, and most real-life visualizations, this would be time-consuming because of the

many visual objects displayed on the screen. Moreover, the 2D layout of the visualization

may change in response to user interactions (e.g., users move node), in which case the AOI

annotations would need to change. Moreover, AOIs are not annotated by any attributes so

defining AOIs on characters wouldn’t implicitly mean that we could also track other data

subsets such as based on gender.

However, as described in Chapter 1, mapping gazes to individual data objects can be

imprecise since eye-trackers produce noisy, low-resolution data. Figure 3.4 illustrates

this. We have 2 rectangles Fontaine and Cosette, and five gazes g1, g2, g3, g4, g5. The

21



naı̈ve approach of maps gazes to the nearest visual object. Using this approach, we can

confidently map g1, g2 to Fontaine, and g4, g5 to Cosette. However, it is unclear what we

should do about g3 since it is squarely between the two nodes.

Figure 3.4: Using proximity to map gazes to visual objects.

3.3 Methods

Initially, we assume that our eye-tracking experiments will use visualizations which are

accessible for instrumentation to programmers. Thus, graphical information (e.g. posi-

tion, size, shape) of internal visualization primitives (e.g. circles representing nodes in a

graph) are available at rendering time.

Our methods only operate over visualizations with open source code. Such scenario

is a limitation of our work. However, we claim that open source code libraries are gaining

popularity over proprietary applications. Figure 3.5 shows a comparison between two
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popular visualization libraries: d3JS (open source code) and FusionChart (proprietary

application).

Figure 3.5: Comparison of number websites using d3js and FusionChart in their home-
pages. Data collected from http://trends.builtwith.com/.

We have mapped gazes to visualization primitives using our viewed-object-detection

algorithm. Our algorithm computes “object viewing scores” that express the likelihood

that an object is perceived given a particular gaze sample. The viewed-object-detection

algorithm outputs object viewing scores from which we can construct DOI data. We

developed viewed-object-detection algorithm incrementally in three stages. First, we de-

tected objects using the naı̈ve approach of AOI binning. We considered each visual object

as an AOI. In this method, we consider the objects as ‘viewed’ where most recent gaze

points land. Second, we developed a method for calculating a probabilistic fuzzy score

for each object based on the proximity of gaze landing to the object. Third, we developed
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an algorithm based on Salvucci’s method [SA00] to calculate the object-viewing-score

based on the probabilistic score and an additional prediction score. The algorithm calcu-

lates prediction scores based on the semantic contents of data.

Figure 3.6: Detection of viewed objects in generative visualizations.

We depict our general approach for collecting DOI data in Figure 3.6. Eye-trackers

supply gaze samples in screen space. The ‘Screen to Model Transformation’ module (Fig-

ure 3.6) transforms these gaze samples to the visualization model space. The ‘Renderer’

module renders the visualization, and supply information regarding shapes and positions

of visual objects, and model transform information. Afterward, our algorithm combines

gaze samples and visual object positions to detect viewed objects by calculating object-

viewing-scores. A prediction module uses information about what a user has seen in the

past and interacted with, to infer what objects the user is likely to be viewing presently. In
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Figure 3.6, we observe that the eye-tracker and the visualization model pass the gaze po-

sitions and visualization information respectively to the viewed object detection module.

We hypothesized that this would reduce the inaccuracies previously illustrated, by allow-

ing us to discriminate which visual object is users is likely to be looking at when gazes

land near multiple objects. We provide more details about the three stages of developing

viewed-object-detection algorithm in following subsections.

3.3.1 AOI-Based Viewed Object Detection

A naı̈ve approach to detect viewed objects, is to treat object shapes as dynamic AOIs and

determine that a viewed object is that with the most recent fixation landing in its AOI.

Analysts use manually drawn AOIs are in the same manner in offline eye-tracking data

analysis, and the similar concept of objects of interest (OOIs) has been proposed already

by Stellmach et al. [SND10] for generative 3D content.

The problem with this approach is that for highly granular visual content, such as

individual nodes or labels, users often fixate in the vicinity of the object rather than on

the object itself. A potential solution is to pad object AOIs to be slightly larger than

the objects. However, larger AOIs may lead to overlaps in cluttered visualizations. We

demonstrate and quantify these observations in Section 3.4. Ultimately, the problem lies

with an inability to determine with absolute certainty what a user is observing. We de-

scribe it in more detail in the next section.

3.3.2 A Probabilistic Approach to Viewed Object Detection

Human eyes do not fixate on a single pixel point. Instead, they can view a small region

with high definition. Typically, such regions are about one inch in diameter, though spe-

cific values depend on viewing conditions. Thus, eye-trackers cannot indicate particular
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pixel points, unlike mouse input. As such, it is impossible to tell with certainty which

objects a user is viewing, if the user is fixating in the vicinity of multiple close objects

(Figure 3.7(a)). Such situation is not a significant problem for traditional AOI analy-

ses, which use large AOIs. Conversely, we aim to detect the viewing of granular visual

content, such as network nodes or glyphs, in cluttered visualizations.

Figure 3.7: (a) A real visualization example in which a user fixates in the vicinity of
multiple close object groups (red dot). (b) An example of predictive method.

We advocate for a fuzzy interpretation (i.e. finding a partial truth value instead of

absolute true or false) continuous of gaze data and detect likelihoods that objects are

viewed rather than certainties. To this end, we can compute object gaze scores gs (for

all objects i in a visualization, and at all times t). The gaze scores range between zero-

user did not view the object, and one-user certainly viewed the object. We show them in

Figure 3.8 and Formula 3.1. In Figure 3.8, d is the distance from the object to the gaze

sample, and R approximates the size of the user’s foveated region.
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Figure 3.8: Calculating gaze score gs for a gaze sample landing near an object.

gsi,t = 1−min
(
1, (

d

R
)
)

(3.1)

The region of radius R used in the formula is analog to the user’s foveated region, and

as such needs to be constant in screen space. Thus, if we zoom the view in or out, R needs

to be scaled accordingly in model space to remain constant in screen space. Salvucci et

al. [SA00] and Okoe et al. [OAJ14] used similar approaches.

Finally, we note that the object scores (gs) do not directly equate to probabilities.

The distinction is important because our implementation can detect two objects as being

viewed simultaneously (gs1 = 1 and gs2 = 1). We think this is appropriate since a person

can in fact visually parse multiple objects at the same time if they fall within the user’s

foveated region, and even think of multiple objects as a unit for specific task purposes.

3.3.3 A Predictive Algorithm for Viewed Object Detection

Salvucci and Anderson described the concept of “intelligent gaze interpretation” in the

context of a gaze-activated interface [SA00]. They more accurately detected which in-

terface control a user was gazing at, by integrating both the proximity of the gaze to the

control, and the likelihood that the control was the target of a gaze-interaction, based on
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the current state and context of the interface. Formally, their algorithm identified the most

likely currently viewed item iviewed by solving Equation 3.2.

iviewed = argmax
i∈I

[Pr(g|i) · Pr(i)] (3.2)

In Equation 3.2, Pr(g|i) is the conditional probability of producing a gaze at location

g given the intention of viewing item i, and Pr(i) is the prior probability of an item i being

the target of a gaze interaction. Salvucci and Anderson based these prior probabilities on

assumptions about how we may use an interface, and hard code them into their system.

We adapt Salvucci and Anderson’s paradigm to solve the ambiguous case when a gaze

sample lands close to multiple objects (e.g., Figure 3.7(a)). For example, in a network vi-

sualization, we may assume that a user who has just viewed a node n, will more likely

view one of n’s neighbors than another random node, perhaps especially if the user pre-

viously highlighted node n and its outgoing edges. In Section 3.4 we show quantitatively

that this assumption holds for one tested visualization.

We consider the simplified scenario in Figure 3.7(b): four visual objects (O1...4), two

of which are connected (O1 and O3), and one of which is highlighted (O3), are shown on

the screen. A new gaze sample registers between O3 and O4 at time t. Intuitively, it is

more likely that the user viewed O3 since it is highlighted. Moreover, if we knew that O1

was seen just before the current moment and assume that users view neighboring nodes

together, then this likelihood becomes stronger.

Formally, we compute vsi,t (i.e., the viewing score vs of object i at time t) by weighing

the gaze score gsi,t described in Section 3.3.2 by a prediction score psi,t that object i is a

viewing target at time t:

vsi,t = gsi,t × psi,t (3.3)

This prediction score is computed based on the likelihood that an object is viewed if

another object (e.g., a node’s neighbor) was seen just before it. Specifically, ps is derived
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from a viewing transition function T between objects: T (j, i) gives the likelihood that

object i is viewed after object j is perceived. We will assume that T (j, i) is input to our

algorithm. Concrete examples of what T (j, i) could be linked to are whether objects i

and j are somehow connected or related, or whether they are part of a special group (e.g.,

highlighted elements). Moreover, connections could be either visual, such as an explicit

edge or leader line or an implicit sharing of similar visual attributes (e.g., color, shape),

or semantic (e.g., both nodes are actors). More examples of T (j, i) functions, and means

of defining them are described throughout this chapter.

To compute ps, we could consider psi,t = T (j, i) but that would involve knowing j,

the previously viewed object, with absolute certainty. As exemplified in Figure 3.7(b),

we often cannot unequivocally determine which item was viewed at a given time: O1’s

previous viewing score (vs1,t−1 = 0.6), is just slightly larger than O2’s viewing score

(vs2,t−1 = 0.4), and thus an absolute choice of O1 over O2 as previously viewed element

would be rather arbitrary. In other words, we cannot say with absolute certainty which of

the two objects was viewed before because the user fixated between them.

In more general terms, our computation of psi,t must account for multiple items j that

may have been viewed before. These items j are those with a previous visual score vsj,t−1

that is greater than 0. As such, we compute psi,t as a weighted average of all transition

probabilities from objects j with vsj,t−1 > 0 , to our current item i. The weights are

given by the likelihood that an object j was viewed before - in other words by its previous

viewing score vsj,t−1. This computation is provided in Formula 3.4.

psi,t =

∑
j

vsj,t−1 × T (j, i)∑
j

vsj,t−1

, where

0 ≤ i ≤ n and gsi,t > 0

0 ≤ j ≤ n and vsj,t−1 > 0

0 ≤ j ≤ n and gsj,t = 0

(3.4)
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Finally, Formula 3.4 needs to add a significant constraint. Intuitively, our approach

means that previously viewed objects j act as referees with varying degrees of influence

(i.e., previous visual scores) in a competition between currently viewed items i. This

analogy provides the intuition for the important constraint: an object should not referee

a competition that it is part of. For example, in our simplified scenario, using O3 as a

previous element in a competition between itself and O4 would result in an open feedback

loop and should be avoided. Formula 3.4 reflects this restriction by the 3rd inequality. We

provide the algorithm pseudocode in Algorithm 1.

Algorithm 1 Viewed Object Detection Algorithm
1: Inputs:

Oi,...,n= tracked visualization objects (shapes, positions)
g(x, y) = gaze sample in model space (time t)
T (i, j) = viewing transition function (T (i, j) ∈ [0, 1])

2: Outputs:
vsi,t = momentary viewing scores of all objects (i = 1, . . . , n).

3: for i← 1 to n do
4: Compute gsi,t using Formula 3.1
5: max← 0
6: for i← 1 to n do
7: if gsi,t > 0 then
8: Compute ps′i,t using Formula 3.4
9: if ps′i,t > max then

10: max← ps′i,t

11: for i← 1 to n do
12: vsi,t ← gsi,t ×

ps′i,t
max

Last, we note that to optimize for speed, we only compute prediction scores for ob-

jects with non-zero gazes (Algorithm 1, line 7). Also, we compute viewing scores for

every gaze sample, rather than every fixation. We believe that doing so leads to results

that are less dependent on how fixations are computed and more robust. Since our eye

tracker’s sampling rate is 120Hz, the scores vsj,t−1 were calculated just 8ms ago, an in-

terval shorter than the time it takes for people to shift their attention to a new object. As
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such, instead of using the raw vsj,t−1 score, we use an average of the last several viewing

scores. Moreover, for all practical purposes, the term vsj,t−1 should be replaced in the

previous formulas by 1
W

W∑
k=1

vsj,t−1−k, where we consider recent W gaze samples. How-

ever, we note that our algorithm can take as input fixations rather than individual gaze

samples, in which case this step would not be necessary. Moreover, additional smoothing

and filtering such as those summarized by Kumar et al. [KKP+08] could be used to clean

gazes before feeding them into our algorithm. We tried removing gaze samples with high

velocity as they are likely to be part of saccades but observed no discernable improvement

in our algorithm’s output.

Performance analysis: The algorithm traverse through all objects (n) to find those

in the proximity of a gaze sample or fixation (kt). Then, to compute ps for each of the

kt potentially viewed elements, the algorithm iterates over kt−1 objects with non-zero

viewing scores from the previous iteration. The run-time of the algorithm is O(n) (i.e.

linear) if we consider the number of objects that a user can view at any time to be a

constant. Such case is not true for example if the visualization is zoomed out too much

and falls entirely within the algorithm’s R radius. However, in such cases, the output of

the algorithm would be meaningless, and we should abort the algorithm.

3.4 Evaluations

3.4.1 Overview

We instrumented Dörk’s interactive PivotPaths visualization of multifaceted data [DRRD12].

Figure 3.9 shows the visualization which links to the popular internet movie database

(IMDB). In this figure, movies are displayed in the center of the screen, actors at the top,

and directors and genres share the bottom space. Actors, directors, and genres associated

31



to movies are connected through curves. Users can highlight objects and their connected

neighbors by hovering over them. We collected data from 9 subjects, each using our in-

strumented visualization for 50 minutes on a series of structured and unstructured tasks.

We used these data to test the validity and effectiveness of our approach in two ways.

First, we compared the output of the predictive algorithm to human annotations. We

found that data collected automatically were on average as similar to human annotations,

as human annotations were analogous to each other. We conducted this analysis for all

three viewed detection algorithms described in Sections 3.3.1 to 3.3.3 and found that

the AOI algorithm performs poorly compared to the other two and that the predictive

algorithm improves detection accuracy by about 5% (Figure 3.10).

Second, we showed that our instrumentation method provides relevant information

that we can leverage in novel ways. We showed both qualitatively and quantitatively

that viewed objects detected automatically were closely correlated to tasks people were

asked to do, and those data collected automatically from many users could answer novel

questions about how people use visualizations (Figures 3.11 and 3.12). We also demon-

strated quantitatively that the viewing-biases our predictive algorithm exploits exist and

are significant: our users were much more likely to look at objects that were highlighted

and connected to each other (Table 3.2, 3.3, 3.4, and 3.5). Each table shows data for

a movie element (e.g. movie, actor, director) to a target object divided by: (i) type of

source and target; (ii) whether the target was highlighted (H); (iii) whether the target was

highlighted and connected to the source (HC); (iv) and whether source and target were

neither highlighted nor connected. Columns show: (i) the number of direct transitions

for the source/target combination; (ii) the observed transition probability from the source

to that target; (iii) the (unbiased) probability of transition between source and target if all

elements had equal probability to be viewed; (iv) the ratio between observed and unbiased

transition probabilities.
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3.4.2 Instrumenting a Sample Visualization

Figure 3.9: A PivotPaths visualization of IMDB data.

Our PivotPaths visualization of IMDB data renders movies in the center of the screen,

actors on top, and genres and directors at the bottom (Figure 3.9). The visualization con-

nects actors, directors, and genres by curves to the associated movies. Moreover, the

elements are larger, and their connections more salient, if they associate with multiple

movies. Actors, genres, and directors are colored distinctively, which is particularly im-

portant for genres and directors since they occupy the same visual space. Such views

are created in response to users’ searches for specific movies, actors, and directors, and

show only data that are most relevant to the search. As shown in Figure 3.9, users can

hover over visual elements to highlight them and their connections. Users can also click
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on visual elements to transition the view to one centered on the select element. Finally,

users can freely zoom and pan.

We opted to instrument this visualization for three reasons. First, it is highly interac-

tive and would be significantly difficult to analyze using traditional analyses. Second, it

contains visual metaphors, graphic primitives, and interactions typical of a wide range of

visualizations. Third, movie data are familiar to a wide variety of users.

To choose transitions functions T underlying our predictive algorithm, we made sim-

ple assumptions about how the visualization is used, an approach also employed by

Salvucci [SA00]. We assumed that transitions between connected items would occur

more often than between unconnected objects. We also assumed that highlighted ele-

ments are more likely to be viewed than those that are not. We translated these assump-

tions into specific weights, as exemplified in Table 3.1. We show in Section 3.4.4 that

these assumptions hold for the instrumented visualization and the subjects that used it in

our study.

Table 3.1: Example transition probabilities in our instrumented visualization (assumed).

Assumed visual and transition weights
Movie to unconnected actor 1
Movie to connected actor 3
Movie to unconnected genre 1
Movie to connected genre 3
Movie to unconnected director 1
Movie to connected director 3

Finally, as part of the instrumentation, our system collected screen shots, interactive

events (e.g., zooming, panning), raw gaze samples captured at a rate of 120Hz, and visual

elements that users viewed. For each viewed element we recorded the type (i.e., movie,

actor, director, genre), its label, its gaze score (gs), its prediction score (ps), and the

aggregated viewing score (vs). All recorded data were time stamped.
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3.4.3 Study Design

Setup: We used the IMDB visualization described above, and an SMI RED-120Hz con-

nected to a 17” monitor. Subjects were seated approximately 30′′ away from the display.

Subjects: We collected data from 9 graduate and undergraduate students aged between

20 and 30 years. Six subjects were male, and three were female. All were paid $10 for

their participation.

Protocol: At first, we gave the subjects a description of the study’s purpose and proto-

col. Next, we introduced them to the visualization and asked to perform a few training

tasks. This introductory part lasted on average 10 minutes. The main section of the study

followed, involved multiple instances of four types of tasks, and lasted approximately 50

minutes.

Tasks: Subjects completed four types of structured and unstructured tasks. To solve struc-

tured tasks, subjects had to consider data that were better defined and with fewer variables

than in unstructured tasks. This made it easier for us to test the degree to which object-

detection was aligned with the task associated data. On the other hand, data collected

in unstructured tasks may be more ecologically valid. We limited the time we allowed

subjects to spend on each task for two reasons: to manage the total duration of the study

and to make results comparable across users.

• Task1 (structured): Finding four commonalities between pairs of movies. The

tasks were limited at three minutes each, and subjects solved the following four

instances of this task: (a) Goodfellas and Raging Bull; (b) Raiders of the Lost Ark

and Indiana Jones and the Last Crusade; (c) Invictus and Million Dollar Baby; (d)

Inception and The Dark Knight Rises.
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• Task2 (structured): Ranking collaborations between a director and three actors (2

minutes, 4 instances): (a) Ang Lee; (b) Tim Burton; (c) James Cameron; (d) David

Fincher.

• Task3 (semi-structured): Given three movies, subjects were asked to recom-

mend a fourth (5 minutes, 3 instances): (a) Catch Me If You Can, E.T. the Extra-

Terrestrial, and Captain Phillips; (b) To Kill a Mockingbird, The Big Country, and

Ben-Hur; (c) Inglourious Basterds, The Avengers, and Django Unchained.

• Task4 (unstructured): Given a brief and incomplete description of the “Brat Pack”,

a group of young actors popular in the 80’s, subjects were asked to find additional

members and movies they acted in. Subjects solved one such task, in approximately

5 minutes.

3.4.4 Results

Data Collected Automatically are Similar to that of Human Annotators

We tested whether the outputs of the three algorithms described in Sections 3.3.1 to 3.3.3

(AOI, probabilistic, and predictive) are comparable to annotation data obtained from

human coders who inspected screen-captures with overlaid gaze samples and manually

recorded what subjects viewed. We included in our analysis the AOI algorithm version

which uses padded AOIs (Section 3.3.1). As shown in Figure 3.10, we found that the

overlap between human annotations and the predictive algorithm’s output is similar to the

overlap within the set of human annotations and that the predictive algorithm outperforms

the others.

We enlisted the help of five coders and asked them to annotate eye-tracking data cor-

responding to one task of approximately three minutes, for each of six subjects. The task

was the same for all coders - task 1b. The six subjects were selected randomly and were
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the same for all five coders. Coders spend approximately one hour per subject completing

their annotation. This long duration meant it was unfeasible to code data from more users

or more tasks. Four coders completed all six assigned annotation tasks, while one was

able to annotate the data of only three subjects.

Coders used an application that allowed them to browse through screen captures of a

users’ activity with overlaid gaze coordinates. We asked coders to advance through the

videos in 100ms time-steps, determine what visual objects their assigned subjects were

viewing, and record those objects along with the start time and the end time of their

viewing. If unsure which of multiple viewed objects, coders were allowed to record all of

them.

We transformed each coder’s annotation into temporal vectors with 100ms resolution.

These vectors contained at each position one or several objects that were likely viewed by

the subject during each 100ms time-step. We then created similar representations from

our automatically collected data. Finally, we defined a similarity measure between two

such vectors as the percentage of temporally aligned cells from each vector that were

equal. We defined equality between vector cells as a non-empty intersection between

their contents.

For each algorithm, we computed the similarity of its output for each subject’s data to

all available human annotations of the same data. This yielded 4 coders × 6 subjects + 1

coder× 3 subject = 27 similarities per algorithm. We averaged these similarities and plot-

ted them as the first four bars in Figure 3.10. Then, we compared each coder’s annotation

of a subject’s data to all other available annotations of the same data. Since we had five

annotations for three subjects, yielding 3 subjects× 10 annotation pairs = 30 similarities.

Moreover, four annotations for the remaining subjects, yielding 3 subjects × 6 annota-

tion pairs = 18 similarities. Finally, we obtained 48 similarities, which we averaged and

plotted as the last bar of Figure 3.10. The first four bars show the overlap between the
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outputs of the three algorithms described in Section 3.3 (padded-AOI approach included),

and annotation results of human coders. The last bar shows the overlap within the set of

human annotations. Values correspond to averages over multiple tasks, multiple subject

data sets, and multiple annotators, and are computed as described in Section 3.4.4. Error

bars extend by one standard error.

Our collected data allowed us to perform this analysis for all three algorithms de-

scribed in Section 3.3, as well as for the padded version of the AOI method. If we only

consider gaze scores gs that are equal to one (Section 3.3.1) and no predictive component,

we essentially have the output of the AOI algorithm. If we limit the analysis to gs scores

alone, without the prediction component described in Section 3.3.3, we have the output

of the probabilistic approach described in Section 3.3.2.

Figure 3.10: Comparison between automated and manual viewed object detection.

Data Collected Automatically are Relevant and Useful

We used two analyses to show that data collected automatically are tightly correlated with

the tasks that users had to do. We chose this evaluation for two reasons. First, it provides

evidence that our instrumentation approach can be used to solve the inverse problem: an
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observer or analyst who is unfamiliar with a subject’s intentions can determine what these

are by looking at the subject’s visual interest data.

Second, it demonstrates how the automated collection of eye-tracking data can facil-

itate novel insights into how we use visualizations. Our approach allowed us to quantify

that a users’ interest in a visual item present on the screen decays exponentially with a

decrease in the items’ relevance to a task. It is a well-known fact in visualization com-

munity that users follow “information scent” when solving tasks visually [Nie03]. Thus,

from this fact, we were able to quantify this effect.

First , we created heatmap representations from our collected data (Figure 3.11) to illus-

trate qualitatively the strong connection between the tasks our subjects performed and the

data we collected. We listed viewed objects vertically, discretized viewing scores by av-

eraging them over 500ms intervals, and arranged them horizontally. Thus, time is shown

horizontally, viewed objects vertically, and intensity of heatmap cells indicate the degree

to which an object was viewed at a given time. The viewed objects listed vertically were

colored based on their type (movie, actor, director, genre) and could be sorted by either

first time they were viewed, the amount of viewing activity, or type.

Figure 3.11 shows the data collected from a subject performing Task 1b: finding com-

monalities between two Indiana Jones movies. Horizontal cells, shown horizontally, rep-

resent user eye activity in 500ms time increments. Viewed objects are viewed vertically;

cell darkness indicates viewing intensity (black: high; white: low); viewed items are

ordered by category (genre, director, movie, actor). We notice that elements viewed of-

ten are tightly connected to the subjects’ task. Moreover, we can distinguish a temporal

pattern: the movies featured in the task description were viewed throughout the analy-

sis, actors were considered early on, followed by genres, then directors, and ultimately a

quick scan of other movies. We observed this pattern for most subjects and thought it was
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caused by the ordering used in the task’s phrasing: we asked subjects to determine actors,

genres, and directors that were common between the two movies.

Figure 3.11: Heatmap views of one subject’s activity on Task 1b.
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Second, we formalized the relevance of each visual item to a particular task and plotted

this relevance against the amount of interest that each item attracted (Figure 3.12). In

Figure 3.12, each task is plotted in its type’s corresponding chart as a subdivision across

multiple relevance categories. Relevance was computed as described in Section 3.4.4,

and plotted for all objects that were visible to subjects during each task. The average

interest in objects with the same task relevance are linked by separate polylines for each

task; errors bars extend from the averages by one standard error. These plots quantify the

degree to which tasks determine users’ interest in visual objects and demonstrate that our

instrumentation captures relevant data.

We formalized the relevance of a visual item to a task as Relevance = 1/(1 + d),

where d is the shortest graph distance between that item and items mentioned directly in

the task description. To exemplify, the relevance of Goodfellas and Ranging Bull to task

1a is 1 as they are the focus of the task, that of Martin Scorsese is 1/2 because he directed

both movies, while that of other movies directed by Scorsese is 1/3. This definition is

not entirely accurate as items might be relevant to a task even though we did not directly

mention them in the description. For instance, items that eventually constitute a user’s

answer will elicit more attention.

Figure 3.12 facilitates several insights. First, even though many items were shown to

subjects during their tasks, only very few were viewed for significant periods of time, and

many were not viewed at all. Second, the types of user-focused data, correlate with the

particularities of each task. For example, Task 3 involved movie recommendations and

Figure 3.12 illustrates that genres and directors were viewed significantly more than in

task 4, which involved determining the identity of a group of actors and seemed to drive

users’ attention towards actors.
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Figure 3.12: Users’ interest in data objects, in relation to each objects’ relevance to a task,
for twelve tasks of four types.

Viewing Transition Biases Exist and are Significant

We performed a quantitative analysis of our subjects’ viewing-transition patterns, using

the data we collected during our study, and found that the informal assumptions we made
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in Section 3.3.3 were correct: our users showed strong preferences to view objects that

were highlighted or connected to previously viewed objects. The last three columns in

Table 3.2 compare the probability with which our users viewed one object category af-

ter another (e.g., viewed a highlighted actor after a movie) as computed from data we

collected to a null hypothesis in which users pick at random which items to view next.

The quantitative results show for instance that after seeing a movie, our users were four

times more likely to look at an actor that was highlighted (Ratio = 4.081). Moreover,

eleven times more likely to look at an actor that was both highlighted and connected to the

previously viewed movie (Ratio = 11.484), than if users were viewing items at random.

To reach these results, we first discarded the prediction component from our data,

since it represents exactly the assumption we seek to evaluate. We then counted direct

viewing transitions between all types of objects (sources) to all other types of objects

(targets) and divided them into categories based on whether targets were highlighted,

connected to the sources, or both (Table 3.2). For example, after looking at a movie, our

users looked at an actor that was unconnected to that movie and unhighlighted 793 times,

and at an actor that was connect to the movie and highlighted 616 times. Since in our

visualization connections existed only between movies and actors, genres, and directors,

transitioning to connected targets was only possible to and from movies.

We translated these counts into observed transition probabilities by normalizing them

by the total number of transitions from each type of source to each type of category. For

example, our users transitioned in total 1784 times from a movie to an actor, of which

147 transitions were from a movie to a highlighted actor, yielding an observed transition

probability of 147/1784 = 0.082.

However, interpreting these observed probabilities by themselves can be misleading.

For example, we observed 793 transitions from a movie to an unconnected actor and

just 147 to a connected one. However, This case did not indicate a preference for non-
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highlighted viewing actors but happened because users had many more opportunities to

view unhighlighted actors than they had to view highlighted ones. Intuitively, when a user

transitions their gaze from a source to a target, the visualization typically contains many

more targets that are not highlighted and are not connected to the source, than those that

are.

Thus, observed transitions should be compared to the default case, which assumes that

users treat all visual objects equally. Assume the following simplified case: a movie is

connected to two of ten actors shown in a visualization. We observe that of ten transitions

from that movie to one of the actors, five were to a connected actor, while five were to

unconnected actors. The two observed probabilities, to connected and unconnected ac-

tors, would, in this case, be equal at 5/10 = 0.5. However, if no transitioning preference,

the probability of transitioning to any actor would be equal to 0.1, that of transitioning to

a connected actor 0.2, while that of transitioning to an unconnected actor 0.8. Thus, our

observed transition probability from a movie to a connected actor is 0.5/0.2 = 2.5 times

higher than the default, unbiased probability, while our observed transition from a movie

to an unconnected actor is a fraction (0.5/0.8 = 0.625) of the unbiased one.

To compute unbiased probabilities, every time we counted a transition from a source

to a target, we also counted all target options available to the subject at that point, given the

state and structure of the visualization at the time of transition. Reverting to our simplified

example, for each of our ten observed transitions we would count two possible transitions

to connected actors and eight possible transitions to unconnected actors, ending up with

20 counts for connected actors, and 80 counts for unconnected actors. These numbers

allow us to compute the two unbiased probabilities as 20/(20 + 80) and 80/(20 + 80).
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Table 3.2: Transitions from a Movie object.

Movie to
No. of

transitions

Observed
trans.
prob.

Unbiased
trans.
prob.

Ratio
Observed
Unbiased

Actor

- 793 0.445 0.898 0.495
H 147 0.082 0.02 4.081
C 228 0.128 0.052 2.473

CH 616 0.345 0.03 11.484

Movie
- 5727 0.761 0.899 0.846
H 1798 0.239 0.101 2.376

Director

- 304 0.537 0.887 0.606
H 37 0.065 0.021 3.088
C 51 0.09 0.055 1.647

CH 174 0.307 0.038 8.176

Genre

- 193 0.33 0.792 0.417
H 40 0.068 0.033 2.045
C 69 0.118 0.102 1.159

CH 282 0.483 0.072 6.693

Table 3.3: Transitions from Actor objects.

Actor to
No. of

transitions

Observed
trans.
prob.

Unbiased
trans.
prob.

Ratio
Observed
Unbiased

Actor
- 4711 0.685 0.962 0.713
H 2164 0.315 0.038 8.207

Movie

- 839 0.469 0.82 0.572
H 213 0.119 0.058 2.046
C 386 0.216 0.076 2.843

CH 352 0.197 0.046 4.284

Director
- 68 0.701 0.959 0.731
H 29 0.299 0.041 7.271

Genre
- 43 0.524 0.931 0.563
H 39 0.476 0.069 6.918
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Table 3.4: Transitions from Director objects

Director to
No. of

transitions

Observed
trans.
prob.

Unbiased
trans.
prob.

Ratio
Observed
Unbiased

Actor
- 71 0.747 0.958 0.78
H 24 0.253 0.042 5.964

Movie

- 271 0.494 0.792 0.623
H 55 0.1 0.04 2.478
C 130 0.237 0.108 2.198

CH 93 0.169 0.06 2.841

Director
- 384 0.706 0.93 0.759
H 160 0.294 0.07 4.216

Genre
- 256 0.522 0.899 0.581
H 234 0.478 0.101 4.708

Table 3.5: Transitions from Genre objects

Genre to
No. of

transitions

Observed
trans.
prob.

Unbiased
trans.
prob.

Ratio
Observed
Unbiased

Actor
- 61 0.656 0.9791 0.67
H 32 0.344 0.021 16.47

Movie

- 229 0.118 0.261 0.453
H 46 0.024 0.008 3.001
C 172 0.089 0.093 0.956

CH 138 0.071 0.013 5.288

Director
- 282 0.591 0.973 0.608
H 195 0.409 0.027 15.174

Genre
- 348 0.398 0.943 0.422
H 526 0.602 0.057 10.627
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3.5 Conclusions

In visualizations that are open to instrumentation, gaze information provided by an eye-

tracker can be used to automatically detect what visual objects users are likely to be

viewing. Such detection can produce results that are almost as accurate as annotations

created by human coders, provided that detection is done “intelligently”, by using gaze

points together with a prediction of which objects are likely to be viewed at a given time.

Data collected in this way are highly granular and have semantic content because we link

it to the data underlying the visualization. For this reason, and because these data do not

require any human pre-processing, we can efficiently collect and analyze object viewing

data for many subjects, using interactive visualizations, for a long analytic session, and we

could utilize it in studies that explore how analysts hypothesize about data using complex

visual analytics systems.
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CHAPTER 4

CASE STUDIES

In this chapter, we explore the use of the DOI methodology in three concrete projects.

We report on the instrumentation process, the data collection methods, and the research

goals of these projects as a means of exemplifying the research processes that the DOI

approach can facilitate.

4.1 Tracking Data Consumption in Visualization Systems

We study the degree to which the DOI approach can enable visualization researchers

and analysts to track and understand what data users are foraging for, and what types

of questions they are trying to answer while using interactive visualization systems. We

showed that DOI data could reveal to an analyst, even in real-time, details about the tasks

users are pursuing in an interactive visualization [AJ16,AJ14b]. We used this experiment

to evaluate our first contributions (i.e. Section 3.4).

To drive this research, we instrumented a Java-based PivotPaths [DRRD12] visualiza-

tion of movie data from the Internet Movie Database (IMDB). The visualization showed

actors, movies, directors, and genres as 2D nodes connected by curves and was interac-

tive. It could be zoomed and panned, users could select and highlight data, and could

change the subset of data shown at any given time.

We instrumented the visualization by inserting instructions that mirrored its model-

ing and rendering code so as to inform a viewed object detection module of the shapes,

positions, and attributes (e.g., actor name, age, gender) of objects shown on the screen

at any given time. We tracked individual data items (e.g., actor). The object detection

module matched 2D gaze points received from an eye-tracker to screen objects reported

by the visualization. We collected data from 9 subjects using these visualizations interac-
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tively for thirty to forty-five minutes. The experimentation and instrumentation process is

described in detail in Chapter 3.

Typical questions we found that we were able to answer from DOI data were: “Did

a user try to solve a given task, or did they focus on specific data?”, “Did a tracked user

switch their analysis focus?”, “When did a tracked user start solving a specific task?”,

“What data did users focus on when asked to solve a particular task?”. Such analyses

can advance the visual analytics agenda by providing unprecedented insights into how

users forage for and analyze data naturally, in interactive visual analytics systems and

over extended periods of time.

4.2 Understanding Student Learning

We work with education researchers to understand how students learn architecture using

visual, interactive instruction material. In a preliminary pilot study with six subjects,

we found that we can collect detailed DOI data from students learning via an interactive

learning environment, to reveal the type of content learners focus on, and the sequences

and patterns in which they do so.

We explored an existing learning environment designed to teach architecture concepts

related to facades and energy efficient building materials. This learning module was struc-

tured as an informational web application (HTML + Javascript), contained primarily text

and images, and was interactive in that students could navigate between learning concepts,

collapse and expand sections, and obtain details on demand.

As described before, we instrumented the HTML and javascript code to allow the

learning environment to permanently communicate (via AJAX protocols) to a viewed ob-

ject detection module the shape, position, and nature (i.e., attributes) of the content it

showed on the screen at any moment in time. As part of our experimental setup, students
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interacted with the web content on a local machine that we equipped with an eye-tracker.

The detection module received gaze data from the eye-tracker and matched it to the vi-

sual content reported by the learning environment, to identify and record likely viewing

targets.

Individual DOM elements with sufficient semantic meaning (e.g., paragraphs, images,

headers, navigation widgets) formed the basis of DOI elements (Figure 4.1). In Figure 4.1,

we depict our instrumentation using our DOI method from Chapter 3. The overlays in the

figure illustrate defined DOIs. However, several images depicted complex schematics or

included multiple panels. In such cases, we defined more granular DOIs within those

pictures.

We annotated DOIs with attributes such as which learning concept the DOI was re-

ferring to (e.g., facade, heat transmission, material type). Moreover, its complexity level

(introductory, medium, advanced), the type of visual content it was depicted with (e.g.,

text, image, navigation widget), and the type of learning content (e.g., definition, example,

exercise). The learning environment communicated These attributes to the instrumenta-

tion library, which in turn stored them as part of the description of viewed objects.

In our pilot experimental setup, six students spent approximately forty-five minutes

exploring freely and absorbing the content illustrated in the learning module, as their

gazes were tracked. In the end, their learning was quantified using a relatively short mul-

tiple choice questionnaire. Additionally, we collected information about students’ educa-

tional background (e.g., pursued a major, career interests), degree progress (sophomore,

junior, senior), and general demographic profile (e.g., age, gender).

This experimental setup and data collection process were designed to allow our collab-

orators to answer several high-level research questions expressed at our project’s outset.

These include: ”Does a particular type or learning content or viewing pattern correlate

with more efficient learning?”; ”Does student background (e.g., engineering, science,
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arts) correlate with the type of content students focus on?”; ”Are there viewing patterns

that can predict learning deficiencies?”. We hypothesize that the highly granular and an-

notated DOI data collected over extended periods of time from students learning ”in the

wild” from interactive visual content will facilitate insight different than that enabled by

typical AOI-driven eye-tracking analyses.

Figure 4.1: A single page of an interactive, HTML environment for learning architecture
concepts.

4.3 Exploring How Workers Detect and Assess Hazardous Situations

on Construction Scenes

We collaborate with civil engineering researchers wishing to understand and model how

construction workers identify and respond to safety hazards in construction scenes. Such
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research is important as the construction industry suffers from the highest number of

occupational fatalities among all the industries.

Existing studies have explored the visual perception of workers on construction sites

by tracking workers’ gazes as they observe active sites for specific amounts of time [HHG+12].

However, simulating hazardous scenarios in-vivo is at best difficult, if not impossible.

Moreover, capturing and analyzing eye-tracking data for videos is laborious, thus limit-

ing previous experiments to short, constrained scenarios.

Instead, we modeled a 3D construction scene from a real scene, using the Unity 3D

framework, and had subjects explore this scene virtually on a computer screen, while an

eye-tracker, in lieu with DOI instrumentation, captured which construction elements they

observed.

The scene was dynamic and involved multiple unfolding hazardous situations (e.g., a

construction worker rushing in front of a vehicle). Subjects were assigned a virtual char-

acter which the scene placed in a truck that moved along a predetermined path through

the scene (Figure 4.2). Subjects had no control over the transition of the camera (i.e.,

the truck’s path), but they could change their viewing angle by rotating the camera in the

horizontal plane. The whole ’trip’ through the construction scene lasted approximately 8

minutes.

We instrumented the Unity scene using Bernhard et al.’s GTOM approach [BSHW14].

Specifically, in addition to rendering the scene on the screen for subjects to view, we

assigned each tracked object a specific color and rendered objects into a color buffer. We

then identified colors in the proximity of gaze coordinates supplied by the eye-tracker and

used this information to detect objects subjects potentially viewed. Figure 4.2 illustrates

an example of the process. Each 3D object tracked in the scene is projected in the color

buffer using a distinct color. Gazes are mapped to objects in the 3D space via their colors

in the buffer.
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Through the instrumentation process, we exported object attributes such as type (e.g.,

machinery, human, static), hazards associated with each object (e.g., collision, electrocu-

tion), whether objects were moving or not, and their distance from the subject’s camera.

At the same time, we used the color buffers to compute the size of objects and their po-

sition (i.e., the center of mass) on the screen, and we tracked which of all objects were

visible and which not. We note that the latter five types of attributes were time dependent.

We also recorded screen captures and computed the bounds of objects on the screen.

We collected such DOI data from sixteen subjects, half of which had construction

training and the half which had not. Subjects were asked to complete a post-questionnaire

about which hazardous situations they detected. Additionally, we collected subject-specific

information such as experience and training levels.

Specific questions that our collaborators expressed interest in, and that this experi-

mental setup was designed to answer, included “Viewing which types of visual items lead

workers to identify specific hazards?”, “How does the interest of experienced and novice

construction workers in construction scene elements differ?”, “Are there any low-level

visual patterns that are unique to experienced construction workers?”, moreover, “What

types of hazards might go unnoticed at a construction site?”.

In addition to enabling the study of hazardous situations that are not safe to reproduce

in vivo, we hypothesize that this DOI approach will eventually facilitate a novel, data-

driven experimentation process. Specifically, our collaborators will be able to alter the

construction scene often, between participant groups and in response to subjects’ actions,

or to simulate varied types of hazards and construction scene configurations, and docu-

ment the resulting visual behavior. Examples of alterations include removing a virtual

worker’s reflective vest, altering the path of a worker to lead through a dangerous area,

and removing or adding warning signs. Such experimentation can thus lend more signif-

icant data than traditional eye-tracking experimentation and facilitate novel workflows.
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While it is true that data collected in this way is of less ecological validity than that col-

lected in situ, initial studies have shown that viewing patterns captured in virtual scenes

may approximate those captured in real scenes well [PPJO16].

Figure 4.2: A 3D construction scene model (top) instrumented using Bernhard et al.’s
color-buffer (bottom) approach [BSHW14].

4.4 Conclusions

The analysis scope of eye-tracking data in any projects can be unbounded. Using real

concepts have facilitated us on developing DOI analysis model and methods. All of the

three projects mentioned in this chapter (Section 4.1, 4.2, and 4.3) have a general struc-

ture. Thus, many data analysis projects can relate to them. In this chapter, we discussed

research workflow, analysis scope, visualization, and instrumentation methods. We will
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refer these projects as a basis for developing DOI data models and analysis framework in

the following chapters.
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CHAPTER 5

DOI FORMALIZATION: DATA MODEL AND ANALYTIC QUESTIONS

5.1 Introduction

Due to the differences between DOI and AOI, methods for visualizing and analyzing AOI

data are unsuited for the analysis of DOI data. The differences are due to two factors.

First, DOIs can be more granular and DOI data much larger compared to AOIs. For

example, an eye-tracking visualization instrumented with DOI can track 100 DOIs per

frame. Conversely, experimenters can annotate only about 10-20 AOIs manually. Thus,

AOI-based visualizations are not able to show the typically large volumes of DOI data.

For example, Figure 5.1 illustrates a scanpath, a typical AOI visualization, build from a

full DOI dataset including 108 tracked DOIs (Figure 5.1(a)). Moreover, one build from

only twelve DOIs (Figure 5.1(b)), a count more typical of traditional AOI analyses. We

generated both diagrams from an eye-tracking session of ten minutes. It is evident that

the scanpath diagram for the full DOI set is more complicated than that representative of

AOI analyses. Thus, interpreting large DOI data from such diagrams is difficult.

Table 5.1: Three attributes (isAlive,Gender, and Centrality) for each character in the Les
Miserables Data.

Character Survives Gender Centrality
Valjean No Male 1
Javert No Male 3

Cosette Yes Female 2
Marius Yes Male 6

Eponine No Female 4
Fantine No Female 5

Thanerdier Yes Male 7

Second, since DOIs are data-derived, they have specific attributes. A set of attributes

that the visualization can access, display, and leverage describes each DOI. Instead, AOIs
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Figure 5.1: Two examples of scanpath visualization. Here, (a) displays scanpath with 108
DOIs. (b) displays scanpath with 12 AOIs.

have implicit attributes that only experimenters that defined them know. Such attributes

are inaccessible to visualizations and analysis software. For example, consider that in

‘The Les Miserables Visualization’ example (Figure 3.3), attributes (Table 5.1) such as

‘Centrality’, ‘Gender’, and ‘Survives’ (i.e. whether the character is alive at the end of

the novel) describe each character. Once they collect data about which objects subjects

viewed, analyzers can answer a breadth of questions such as “Are users more likely to

view female characters rather than male characters?”, “Are users more likely to view

deceased characters rather than alive?”, alternatively, “Do users tend to look at central

characters?”.
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In conclusion, DOI data interpretation is different from AOI data. Hence, we aim to

formalize DOI data model and analysis tasks. In this chapter, we discuss our contributions

to a general data model in Section 5.2 and a list of analysis questions for DOI data in Sec-

tion 5.3. Moreover, we discuss a comparison between AOI and DOI data in Section 5.4.

Finally, we conclude our discussion about this chapter in Section 5.5.

5.2 General DOI Data Model

As described in Chapter 1, peoples’ foveas are guided by visual cues in perceived scenes.

To study how people parse a scene, especially from a perceptual (bottom-up) perspective,

access to the visual attributes of objects in it (e.g., color, movement) is indispensable.

However, visual attributes often encode semantic properties of data (e.g., color may en-

code disease type in a medical visualization). To hypothesize about cognitive and goal-

directed processes that drive visual ones, analysts may wish to investigate directly what

data people looked at, as opposed to how the data was shown. This aligns with the top-

down theory of visual processing, which implies that it is meaning and significance of

content, together with representation, that drives visual scanning. The DOI approach is to

capture both visual and semantic data from eye-tracking experiments to support various

research questions, such as about perception, cognition, or data exploration and search.

DOIs are defined to overlap significant chunks of a visualization’s underlying data

(e.g., a protein in a protein-interaction network), and inherit the semantic data attributes

and values that define those chunks (e.g., protein name, type, function). DOIs also include

visual attributes that describe how that information is shown on the screen (e.g., shape,

the color of protein glyph). A DOI instrumentation will capture for each user fixation;

the DOIs the user may have intended to view, potentially along with low-level attributes
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of the respective fixation. Below we describe a formal model that captures this idea, and

exemplify it in the context of the three case studies (Table 5.2).

We approximate a visualization’s data using the generic entity-attribute-value (EAV)

data model [Der91], in which combinations of attribute-value pairs describe entities. We

thus define data as the set D, containing Nd data entities d. Each entity is itself defined

by multiple pairs of data attributes (da) and data attribute values (dav):

D = {di | i = 1..Nd}

di = {dai,k = davi,k | k = 1..Ndai}

The definition above describes static datasets. In real applications, data can change

over time as a result of user interaction (e.g., a user changes the speed of a vehicle in a 3D

simulation; user annotates or deletes data in a visualization). Again, as a result of factors

external to the visualization (e.g., data are streamed from a simulation). We augment the

definition to include a temporal domain T (e.g., the time of the eye-tracking experiment):

Dt = {di,t | i = 1..Ndt, t ∈ T}

di,t = {dai,t,k = davi,t,k | k = 1..Ndai,t}

Visualizations turn data sets into visual models by defining visual elements to repre-

sent data elements. While this mapping is often one to one, this is not necessarily true; a

single visual representation might capture multiple data elements. As such, we will define

a visual model as the set M , containing Nm visual entities m. Each visual entity contains

a reference to one or more data entities it depicts, and a collection of visual attributes and

values that define it (e.g., position, shape, size, color). As before, our definition accounts

for possible changes over time, as users may change a visualization through interaction.
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Mt = {mi,t | i = 1..Nmt, t ∈ T}

mi,t = { {dj,t | j = 1..Nmdi,t},

mai,t,k = mavi,t,k | k = 1..Nmai,t}

Finally, models are rendered on the screen via a transformation (e.g., dependent on

zooming and panning in 2D visualizations) or projection (e.g., dependent on perspective

changes in 3D). The mapping between model and screen entities is generally one to one

(i.e., one screen entity for each model entity), but attribute values may differ between

model and screen entities even when attribute names are similar. For example, an en-

tity’s size in model space is often not the same as in screen space. So, we define our

screen visualization as a set of screen entities, same in number as model entities, with one

associated model entity, and pairs of screen attributes and values. Screen attributes can

include screen-capture cutouts of individual DOIs.

St = {si,t | i = 1..Nmt, t ∈ T}

si,t = {mi,t, sai,t,k = savi,t,k | k = 1..Nsai,t}

Eye-trackers report fixations periodically, as time-stamped 2D coordinates with an as-

sociated duration. Fixations may be described by additional properties such as dispersion

or pupil size.So, we define fixations reported during an experiment as:

Ft = {x, y, duration, fak = favk | k = 1..Nfat}, t ∈ T

Both Bernhard et al. [BSHW14] and our method (Chapter 3) compute candidate ob-

jects a user is likely to have viewed during a fixation by considering not just the fixation

point, but also a small area around it. If multiple DOIs intersect that area, Bernhard et
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al. report only the object closest to the fixation, while our method report all viewing

candidates. For a more general DOI data model, we will consider the approach we dis-

cussed in Chapter 3. Thus, each fixation may be associated with multiple viewed DOIs,

and the confidence that a DOI was indeed the locus of a user’s attention is proportional

to the proximity of the fixation to the DOI (Chapter 3). For maximum flexibility, DOI

instrumentations can record the distance of users’ fixations to all DOIs, postponing its

interpretation (i.e., should an object be considered viewed or not viewed given a specific

distance) until the analysis stage:

d(Ft, si,t ) =


pixels fromF to center or border of s,

if s is visible on screen

∞ , otherwise

This definition allows us to capture not just DOIs users viewed in an experiment,

but also which DOIs were visible and not visible during the experiment and when. This

allows analysts to understand not just what viewers chose to view, but also what they

chose to ignore.

Finally, a typical eye-tracking experiment captures DOI sequences for multiple users,

as well as data describing those users individually. Since through interaction users can

change both the data and how it is displayed, all already introduced definitions should

be augmented to reflect that they are user specific. User data (U ) includes for each user

(ui) background and demographic information (e.g., education background, level of ex-

pertise, gender), but also user performance data (e.g., answers to questionnaires). Such

user attributes could be time dependent (e.g., self-reported fatigue):

Ut = {ui,t | i = 1..Nut, t ∈ T}

ui,t = {uai,t,k = uavi,t,k | k = 1..Nuai,t}
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Using the definitions introduced above, DOI data can be formallly described as:

DOIt,u = {St,u(+ linkedM,D),

d(Ft,u, St,u), Ft,u, uu,t} | t ∈ T, u = 1..Nu

That is, DOIs are analytic constructs that overlap data elements or subsets and are

characterized by four types of attributes: data, visual, user, and perceptual. Examples are

shown in Table 5.2. These attributes may be time and user dependent, capturing that in

real-life visualizations data and visual encoding change in response to user interactions

and external factors. The model defines data that can be collected in an eye-tracking

experiment exhaustively and can thus underlie a broad range of research questions. Visual

attributes can reveal the perceptual mechanisms that compel peoples’ foveas to fixate on

specific visual objects (bottom-up perception). Data attributes may better reveal why

users intently choose to look at particular data, and could provide insight into cognitive

processes associated with top-down perception. User attributes can tie perceptual and

cognitive patterns to user demographics, abilities, and performance. Moreover, the model

can be extended as necessary with additional types of attributes, such as modality (e.g.,

audio) or interaction annotations (e.g., is an object the target of an interaction).

5.3 Possible and Probable DOI Tasks

5.3.1 Related Work

AOI analysis task categorization is non-existent. In this section, we discuss related works

on contributions regarding task taxonomies and frameworks and draw inspiration from

the methods involved in their creation. We primarily focus on task taxonomies for spatio-

temporal data by Andrienko et al. [AAG03], and cartography and geo-visualization by
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Table 5.2: Example DOIs and attributes collected in each of the three applications de-
scribed in Chapter 4.

Visual Analytics Learning Education Construction
DOI (at fixation N ) DOI (at fixation N ) DOI (at fixation N )

data attributes
type : movie
label : The Dark Knight
rating: 9.0
visual attributes
visible : yes
pos : 550, 300 (px)
size : 200, 150 (px)
user attributes
id : user1
level : graduate
background : computer
science
perceptual attributes
fix pos : 450, 280 (px)
fix spread : 30, 25 (px)
distance : 20 (px)
time : 720, 000 (ms)
duration : 300 (ms)

data attributes
type : definition
format : text
concept : structure
level : intro
visual attributes
visible : yes
pos : 120, 300 (px)
size : 300, 100 (px)
user attributes
id : user1
level : senior
background : arts
accuracy : 85 (%)
perceptual attributes
fix pos : 130, 280 (px)
fix spread : 30, 25 (px)
distance : 20 (px)
time : 51, 000 (ms)
duration : 280 (ms)

data attributes
type : worker
helmet : yes
size : 0.7, 0.4, 1.8 (m)
moving : 1.5 (m/s)
hazard :
caught in between
visual attributes
visible : yes
pos : 560, 430 (px)
size : 20, 40 (px)
color : (100, 150, 150)
appearance : image ref
user attributes
id : user1
experience : 5 (years)
background : construction
accuracy : 7
(hazards spotted)
perceptual attributes
fix pos : 130, 280 (px)
fix spread : 30, 25 (px)
distance : 20 (px)
time : 51, 000 (ms)
duration : 280 (ms)
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Roth [Rot13]. Similar to these works, we aim to generate and categorize DOI tasks by

considering data-derived goals (i.e., high-level, domain-specific questions that analysts

would like to answer), operands (i.e., the specification and answer of a data question),

and objectives (i.e., low-level analytic question on the data).

Previous efforts found it useful to define tasks regarding their operands, data cate-

gories that can be used as inputs (i.e., task specification) and outputs (i.e., answer) to a

task. For example, in the context of geographical data, Andrienko et al. defined three

basic operands: space (where), time (when), and object (what). Using these operands,

Andrienko et al.’s defined three basic kinds of possible questions, regarding inputs and

outputs, for spatio-temporal analyses: when+where→ what, when+what→ where,

and where + what → when. We aim to employ a similar analysis in the context of the

formal DOI data model. Therefore, an example of a (when+where→ what) question in

our particular domain could be “Which character (What) was viewed in Time T (When)

in ‘Fantine Cluster’ (Where) in the Les Miserables Graph (Figure 3.1)?”. However, our

data model is likely to differ from that of Andrienko (e.g., by including different types of

operands), and as such the space of possible tasks will differ as well.

Additionally, existing work also found it useful to define tasks regarding their ob-

jective primitives, or what type of cognitive task they involve. For example, Roth’s five

objective primitives include: identify (i.e., find a piece of information given some other

piece of information), compare (i.e., compare two pieces of information at the same time),

rank (i.e. determine order of information pieces), associate (i.e. capture relationships

between different information pieces), and delineate (i.e. group or cluster information

pieces) [Rot13]. Roth’s objective primitives are validated empirically and are thus well

suited to categorize both loosely defined and specific objectives. We combined these ob-

jectives with our operand models to define the possible range of possible DOI tasks. For
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example, a specific task involving these operands and this objective would be “Which

character was viewed most (objective: rank) by user A (operand: who)?”.

5.3.2 Objectives and Probable Data Questions

After reviewing multiple taxonomies and frameworks, we decided to use Roth’s five ob-

jective primitives — identify, compare, rank, associate, delineate [Rot13] — for two

reasons. First, these targets were validated empirically and shown to correlate with how

real users think about the tasks they are doing. Second, they are a compromise between

loosely defined objectives with a broad meaning and very specific targets. For example,

Andrienko et al. define only two cognitive objectives, identify and compare. While these

are indeed sufficient to describe Roths primitives (e.g., an association is a comparison of

attributes), we think Roth’s more fundamental objectives map to analysts’ goals more di-

rectly, making it easier to consider possible tasks in practice. Conversely, Amar et al. has

defined very specific targets which we felt occasionally overlapped and made it difficult

to map detailed data questions to single objectives [AES05]. We discuss the five objective

primitive in context of DOI below. We also give task examples in Table 5.3 and Table 5.4.

Identify allows an analyst to extract a data characteristic from a given data target. After

considering possible tasks and how they support high-level research goals in our three

concrete applications, we distilled the probable types of questions listed below. These

essentially boil down to identifying what data a group of subjects viewed and how (e.g.,

time, gaze properties), which subjects viewed certain data at a certain time, and what

subjects’ characteristics are. They also account for the fact that analysts may wish to

focus their data questions on specific users or groups of users (e.g., students with an

engineering background), an experiment’s entire duration or just a temporal subset (e.g.,
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second task, the first minute of each task), and on specific subsets of data (e.g., definitions,

fast moving machinery).

I1: During all or part of the experiment, one ore more subjects looked at data or a

specific subset of data — (i) with what data or visual attributes; (ii) and/or when, how

long; (iii) and/or how often; (iv) and/or in what way?

I2: During all or part of the experiment, what are the attributes of subjects that viewed

a specific subset of data — (i) in a particular way; (ii) and/or at a particular time; (iii)

and/or particularly often?

I3: During all or part of the experiment, what are the attributes of one or more given

subjects?

Compare captures the objective of determining the differences or similarities between

two data targets. It is possible for two compared targets to have the same form but a

different level of generality: ”Did user A look at various things than everyone else in task

one?”. We identified the following probable compare objectives:

C1: Compare individual or groups of subjects, based on all or a subset of data they

saw or accessed, during all or a part of the experiment, by — (i) the data or visual

attributes of those data; (ii) and/or when, how long, or how often they looked at it or it

was visible; (iii) and/or how they looked at it.

C2: Compare time subsets, based on all or a subset of the data viewed or accessed by

one or a group of subjects in those times, by — (i) the data or visual attributes of those

data; (ii) or when, how long, or how often the data were viewed or it was visible; (iii)

or how the data were viewed; (iv) or the attributes of the users that viewed or accessed

it.
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C3: Compare subsets of data, viewed or accessed by one or a group of subjects,

during all or part of the experiment, by — (i) its data or visual attributes; (ii) or when,

how long, how often it was viewed; (iii) or how it was viewed; (iv) or the attributes of

the users that viewed or accessed it.

C4: Compare individual or groups of subjects based on their properties, during all or

part of the experiment.

Rank allows analysts to determine the order of multiple objects. The space of probable

ranking questions is similar to that of comparison questions, only involving more than

two operands. It is important to note that ranking operations, by Roth’s definition, will

include questions on the identification of extremums, outliers, and means and centroids.

A few examples of particular ranking tasks are shown in Table 5.4.

Associate allows analysts to capture the relationship between different attributes, and is

synonymous with the correlate objective in other taxonomies. To describe associate tasks

we need to consider the two characteristics to compare, and the data subset that they are

sought in. As Andrienko et al. point out [AAG03], and we observed in practice, it is rare

that association task would be performed across different targets. As such, we identified

the following probable associate objectives:

A1: Are there correlations between attributes of all or a group of subjects, and — (i)

data or visual properties of; (ii) when, how long, or how often; (iii) how — data or

subsets of data those subjects viewed or accessed during all or part of the experiment?

A2: Are there correlations between when, how long, or how often data or subsets of

data that one or more subjects viewed or accessed during all or part of the experiment

and — (i) data or visual properties of those data; (ii) how those data were viewed?
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A3: Ar there correlations between attributes of all or a subset of data and how those

data were viewed by one or more subjects during all of part of the experiment?

A4: Are there correlations between the attributes of all or a group of subjects, during

all or part of the experiment?

A5: Are there correlations between the attributes of data or subsets of data viewed or

accessed by one or more subjects during all or part of the experiment?

A6: Are there correlations between when and how long or how often data or subsets

of data were viewed or accessed, by one or more subjects, during all or part of the

experiment?

We note that the phrasing ’are there correlations’, which denotes a confirmatory goal,

can be changed to ’find correlations’, which denotes a more general, exploratory goal.

Delineate tasks capture analysts’ objective of organizing data in logical structures, such

as clusters or groups. Delineate tasks operate on the same operands as compare and rank

tasks.

5.4 A Comparison Between AOIs and DOIs

While DOIs can be regarded as a mere extension of AOIs, there are significant differ-

ences that warrant their separate consideration, and highlight the benefits of a change in

methodological paradigm.

Data collection : AOIs exist in stimulus or image space and need to be defined for each

visual frame subjects see. AOI analyses can be used for any visual stimulus. Moreover,

drawing AOIs requires little expertise, given the right annotation software.

DOIs are defined over a visualization’s underlying data by instrumenting code. Once a

visualization instrumented, DOI data can be collected without added effort for any dataset
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Table 5.3: DOI task examples: Indentify (I) and Compare (C).

Task Type Task Instance
I(i) What was the type distribution of advanced architecture concepts

that subjects looked at?
I1(ii) Cumulatively, how much time did subject X spend looking at

moving objects?
I1(iv) On average, how close were experienced users’ fixations from the

center of the closest object?
I2(ii) Which subject looked at definition X in the first minute of the

experiment?
I2(iii) What is the average experience of subjects who looked at every

object associated with ‘caught in between’ hazards at least twice?
I3 How fatigued did subject X report to be at the end of the study?
C1(ii) Do experienced users view hazard-tagged objects faster once they

become visible, than do novices?
C1(iii) Do experienced users fixate closer to objects than do novices?
C2 (i) When do subjects look at genres more, in the beginnings or at the

ends of tasks?
C2 (iii) Do subjects fixate closer to objects in the first minute of a

task than in the last minute of it?
C3(i) What distinguishes visible data that subjects looked at, from

visible data that they ignored?
C3(iii) Are examples being viewed more than definitions

by experienced users?
C4 Are our experienced users typically older than our novices?
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Table 5.4: DOI task examples: Rank (R), Associate (A), and Delineate (D).

Task Type Task Instance
R1(i) Which user tends to look at examples first?
R3(ii) What do users look at most in the first few seconds after

spotting a new movie: actors, directors, genres, or ratings?
R3 (ii) What type of learning object do successful learners look at most?
R2 (ii) During which task did subjects start looking at examples earliest?
R3(ii) Which one object was viewed most by experienced subjects in the

third section of the experiment?
R4 Which user was the most successful learner?
A1 (i) Is there are correlation between the background of subjects

(e.g., science) and the format of learning content they focus on
(e.g. numeric)?

A2 (ii) Do people fixate further away from objects as time progresses
in a task?

A2 (i) Is there are correlation between how near objects are to a subject
and how much subjects focus on them?

A3 Do subjects tend to fixate closer to objects that appear smaller
on the screen?

A4 Is users’ experience correlated with their ability to identify
more hazards?

A5 Is there a correlation between the genres and ratings of movies
that subjects viewed?

A6 Do effective learners look at examples more as time progresses?
D1 (i + ii) Cluster subjects based on the what content they viewed, and when.
D2 (i) Cluster tasks based on how the content viewed in them.
D3 (iv) Cluster the objects tracked in the experiment by the attributes

of the users who viewed them (e.g., their experience,
their performance).

D4 Cluster subjects based on their attributes.
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the visualization can show. Since DOIs are defined over data, their collection is immune

to a subject’s interactions with a system and specific views they create. This means that

data can be captured easily from interactive systems over long times [AJ16]. However,

the code of the visualization needs to be open, and expertise is required to instrument it.

Data scale and granularity : AOIs tend to be vast and sparse (e.g., an entire interface

panel), and analyses often involve few AOIs. Moreover, AOI analyses tend to be limited

to static stimuli or short videos since defining AOIs is costly. Conversely, DOIs can be

granular and many (e.g., individual data objects), and collected over long periods of time.

As such, DOI analyses can involve hundreds of DOIs and thousands of focus switches

between them. For example, in our first application area subjects viewed on average 75

individual data objects per task.

Experiment scale and ecological validity: AOI analyses often explore key-hole, con-

strained scenarios. Data are captured for timescales of up to a few minutes, and only

a handful of coarsely defined AOIs are tracked. Instead, DOI analyses can be used to

monitor the behavior of many users, using interactive visual content (e.g., real-life visual

analytics systems), over extended periods of time. The DOI methodology thus enables a

type of in-vivo experimentation not previously explored.

Data driven analyses: AOIs have been mostly analyzed and interpreted in direct con-

nection with the visual stimuli they were defined on. They have meaning that is known

to those who create and use them, but which is rarely defined explicitly as attributes that

can be visualized or mined computationally in an analysis.

Instead, DOIs are described explicitly by a rich set of attributes derived from the vi-

sualization’s underlying data and visual encoding. This broadens the type of research

questions that experimenters can ask. For example, the question ”Did effective learners

look at examples more than ineffective learners?” can be answered immediately by corre-
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lating the subjects’ attributes to the types of DOIs they focused on. DOI attributes make

it possible to refer to categories of data, rather than to individual DOIs.

Range of research questions: Eye-tracking in general, and the AOI method in partic-

ular, have been aimed at exploring low-level perceptual processes. Through its intrinsic

connection to data, the DOI methodology can support novel questions about the types of

data users are interested in, and how they might use these data to reason and hypothesize.

Through its scale and semantic annotation, DOI data can support exploratory analyses not

common in traditional eye-tracking experimentation.

5.5 Conclusions

DOIs are subsets of data that a visual interface shows to a user. We define them on the data

model underlying a visualization, by instrumenting the code that translates concrete data

into visual representations. Once a visual interface instrumented, user gaze coordinates

provided by an eye-tracker can be mapped to DOIs via their visual representations auto-

matically and effortlessly, regardless of users’ individual interactions with the interface.

As such, the DOI approach can capture users’ data interests from interactive visualiza-

tions over extended periods of time. Moreover, DOIs are characterized by a rich set of

attributes derived from the data that the DOIs are defined on, and from the visual context

in which they are displayed. These attributes allow analysts to pose a broad range of ques-

tions that relate the type of viewed data to user behavior and characteristics. While DOIs

can be regarded as a mere extension of AOIs, there are significant differences in DOI data

properties and how it is collected, the research goals it can support, and the data ques-

tions it facilitates. Moreover, current visualization techniques do not help DOI-specific

analyses. These differences, justify the different nomenclature and motivate the research.
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CHAPTER 6

VISUAL SOLUTIONS FOR DOI INTERPRETATION

In this chapter, we discuss the possible visual interpretations for DOI data. AOI is

the image-space counterpart of DOI. Although a plethora of visual solutions exists for

AOI [BKR+14], three distinct properties of DOIs prohibit them to interpret DOI data.

First, DOI data have volumes and multiple granularities. Second, DOI data deal with

data attributes. Third, DOI data support a different range of analysis questions possible

compared to AOI data.

Thus, DOI visualizations (i.e. DOI-vis) should allow analysts to explore DOI data

at many levels of detail, including multiple temporal scales (e.g., seconds vs. minutes)

and data granularities (e.g., individual vs. categories of DOIs). DOI attributes should

be shown visually and flexibly queried to allow analysts to detect correlations between a

user’s interest in data and those data’s properties. Attributes should be used to deal with

the scale of the data by allowing users to filter, highlight, and aggregate data with specific

attribute values. Finally, visualizations need to support the DOI analysis tasks.

6.1 Background

In this section, we discuss existing visualization techniques for eye-tracking data. Specif-

ically, we will focus on three basic visualization techniques: Heatmap, Scanpath, and

Scarfplot.

6.1.1 Heatmap

Heatmap visualization contains a 2D matrix where each cell is assigned a color. The

color used in the cell represent the value of the cell. Multiple color schemes exist to de-
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scribe color to value. The most common color scheme is the ’Rainbow’ color scheme.

In the rainbow color scheme, ’red’ represents the maximum and ’violet’ accounts for

the minimum. Many heatmap visualizations also use green or blue for the minimum.

However, rainbow color scheme lacks perceptual ordering, and not sensitive small value

changes [BI07]. Hence, visualization researchers consider rainbow color scheme as mis-

leading. Many heatmaps use color scales such as gray-scale, heated-object, and linearized

optimal scale [SMS07]. Figure 6.1 depicts an example of heatmaps with three different

color schemes.

6.1.2 Scanpath

A scanpath visualization depicts transitions among multiple entities over time. Scanpath

visualization either show temporal information on a linear scale or discard temporal infor-

mation. For example, we encode transitions among five entities {e1 → e2 → e3 → e4 →

e5} with scanpath visualization. Figure 6.2(a) portray all transitions among entity to en-

tity. Such techniques require a layout with minimal crossing among transitions. However,

it produces a compact visualization. Again, in Figure 6.2(b), all entities lie vertically and

are connected to a horizontal line to show temporal information. For depicting a transition

between e1 and e2, we place transition markers (e.g. a circle) along with their horizontal

lines. Then, we connect the markers with a transitional encoding (e.g. an arrow). The

latter technique is more suitable for tracking transitions. However, it takes more space

than the former version.

6.1.3 Scarfplot

In a scarplot technique, visual entities are joined as multiple tapes known as scarflines [RD05].

The entities may have different width in tapes. The width usually represent data value
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Figure 6.1: Heatmap visualization with three different color schemes: (a) rainbow, (b)
gray-scale, and (c) heated object.
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Figure 6.2: Scanpath visualization (a) without explicit temporal information, (b) with
temporal transitions.
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(e.g. intensity). Figure 6.3 demonstrate an example of transitions viewing pattern for two

users. User1 viewed entities e1, e2, e3, e4, e5 and User2 viewed e6, e7. Scarfplot technique

is useful for finding pattern among multiple sets of data.

Figure 6.3: An example of Scarfplot visualization.

6.2 Case Studies

In this section, we discuss our implementation of four DOI analysis visualizations: heatmap,

scanpath, scarfplot, and stacked glyph-plot. We developed these visualizations based on

collected DOI data from experiments in Chapter 4. Specifically, we generated for the

study described in Section 4.1. Next, we developed another heatmap for the study de-

scribed in Section 4.2, and a stacked glyph plot for the experiment described in Sec-

tion 4.3. We discuss more of them below.

6.2.1 DOI-Vis for the Tracking Data Consumption Experiment

We already discussed the data collection and instrumentation methods about the tracking

data consumption experiment in Section 4.1. To analyze the data collected from this

study, we developed three visualizations: heatmap, scanpath, and scarfplot.
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First, we developed a time-annotated heatmap (Figure 6.4) where each cell’s color

represents viewing score (i.e. viewing-intensity). It shows user-data separately. DOI-

rows are scaled vertically to make often viewed DOIs more salient. The visualization

orders DOIs by viewing-score and do not display the DOIs with viewing-scores are be-

yond a threshold. A time-window (white section) helps to prioritize selecting which data

to show. We chose the grayscale color scheme to render the heatmap where black rep-

resents maximum and white represents the minimum. In our visualization, we facilitate

interaction of panning to view time-based data. For facilitating comparison, we allowed

rendering user data views side by side.

Second, we have implemented a scanpath for the same experiment (Figure 6.5). Un-

like heatmap, we considered every DOI as ‘viewed’ when its viewing score crossed a

threshold value (e.g. 0.75). Then, we connected the DOI cell to render the scanpath.

The scanpath rendering had two versions: juxtaposed (Figure 6.5(left)) and superposi-

tioned(Figure 6.5(right)). We applied a string edit-distance clustering over the vertical

sequence of DOIs to reduce cluttering. In Figure 6.5(left), depicted DOIs are the same for

all four users, enabling the comparison of the scanpath profile; the top two users viewed

similar data. Besides, in Figure 6.5(right), four users cluster into two pairs, based on their

interests.

Third, we modified the original scarfplot to enable DOI data visualization. We de-

veloped a scarfplot with clear labels (Figure 6.6. Moreover, the labels attach themselves

with the scarf area on the scarflines. To support multiple granularities, we rendered many

scarflines to show DOIs clearly. DOI are labeled explicitly and scaled according to their

viewing-score around particular time-points. Vertical resizing of a users’ plot would show

less or more data. The figure highlighted a selection for one user (Goodfellas) in all data.
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Figure 6.4: An example of a heatmap generated from real DOI data.

6.2.2 DOI-Vis for the Student Learning Experiment

We developed an interactive heatmap visualization (Figure 6.7) for the student learning

experiment from the Section 4.2. In Figure 6.7, we lined up all detected DOIs on the left

and their viewing timeline on the right. A sorting option for DOI lineup is also available

where we can sort DOIs over first viewed, most viewed or by categories. We collected

DOIs of three categories: text, navigation (i.e. buttons, links), and image AOIs. We added

selection option where a pop-up dialog appears whenever we select any DOI. The pop-up
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Figure 6.5: Scanpaths of real DOI data: (Left) Data are shown separately for each user,
(Right) Users’ data are shown next to each other for each DOI.

dialog describes DOI details and possible image section from the original stimuli. We

also enabled the timeline panel to be dragged to have a better view of DOI data.

6.2.3 DOI-Vis for the Construction Hazard Detection Experiment

We implemented a glyph-based visualization for hazard detection experiment discussed

in Section 4.3. The visualization (Figure 6.9) employs focus+context technique and glyph

based solution to handle multiple granularities of DOI data and to handle data attributes.
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Figure 6.6: A DOI-scarfplot for movie DOI data sketched for two users.

Figure 6.7: An example of interactive heatmap visualization for the student learning ex-
periment (described in Section 4.2).
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Focus+context is an interactive technique which is similar to overview+detail tech-

nique. Overview+detail have two sections of the involving visualization: overview and

detail. In the ‘Overview’ section, we can view the whole display with minimal readabil-

ity, and the detail view shows a detail of a part of the ‘Detail’ section. On the other hand,

focus+context combines the two sections in a single coherent view [SA82]. Using such

technique will facilitate analyzers to navigate through DOI data.

On the other hand, a glyph is a small visual object that is discretely placed in visual-

izations. It is useful to depict data attributes [BKC+13]. Glyph designing often combines

concepts of Gestalt psychology [Köh70], visual channel selection, and design criteria.

For example, if we want to design a glyph for O = a1, a2 where ai is the ith attribute for

object O. We assume that the attributes are sorted in descending order of importance(i.e.

a1 is the most important attribute and a2 is the least). We can assign four visual channels

for all the attributes: color, and size. According to the pop-out effect of visual channel,

color precedes size in importance. Thus, users will be able to detect whether a visual

object is red or blue first then whether it is big or small.

A suitable instance of a glyph is star-plot. A star-plot contains radially arranged mul-

tiple axes (i.e. rays) [KHW09]. Each attribute of involving data element corresponds to

a star-plot ray. Connecting data points of each ray create a star-like shape to create such

star-plot. Using star-plots for DOI data significantly facilitates handling data attributes.

In Figure 6.8, we describe an example for star plot. Suppose, we want to represent a

DOI D1 = ∪1≤i≤Nai = vi, where ai represents ith attribute and vi is the value of ai. We

entitle a ray for each attribute ai. For vi we mark a point along the ray for ai. Then, we

connect all the line to form a star-like shape.

In Figure 6.9, we show a glyph for what type of DOI (e.g. worker) it is alongside a

star plot over it. We also enabled sorting option based on data attributes. Moreover, we
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Figure 6.8: An example of a star-plot glyph.

enabled panning and filtering. Again, we used colors to detect whether the users identified

any hazard over a particular DOI and color coded them.

6.3 A Visual Design Space for DOI Analysis

In this section, we analyze the design space for visual DOI analysis in more detail. Given

the scale of DOI data and the breadth of DOI tasks, we should augment visual encodings

augmented with interaction capabilities. To ensure that our discussion captures all visual

design dimensions, we ground it in Yi’s taxonomy of interaction tasks [YaKSJ07], which

includes seven categories of visual operations: Encoding, Selection, Reconfiguration,

Exploration, Abstraction/Elaboration, Filtering, and Connection/Comparison [YaKSJ07].

We will discuss new visual solutions by starting from existing AOI visualizations and

describing how we may extend and redesign them to support DOI requirements.
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Figure 6.9: Stacked Glyph plot for Construction
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6.3.1 Encoding

Encoding determines how data should be shown visually [YaKSJ07]. We discuss encod-

ing design options and requirements of DOI visualizations below.

Show many DOIs : AOI visualizations such as scarfplots identify specific AOIs via

distinctive colors. This method does not scale to many DOIs, and techniques that identify

DOIs explicitly (e.g., through a label), such as scan-paths or transition matrices, are likely

preferable.

Also, showing all DOIs viewed in an experiment is not always possible, especially

when observing data from many users. For example, a scanpath of ten users, each having

viewed 100 DOIs would have a thousand rows and be cluttered. One solution is to show

only the most viewed DOIs, as done for visualizations shown in Figures 6.4, 6.5, 6.6, 6.7, 6.9

and to a lot DOI space that is proportional to how often they are viewed, as exemplified in

Figure 6.4. This prioritization approach is likely appropriate as we showed in Chapter 3

that even though users view many DOIs during an extended analysis, they focus most of

their attention on a smaller subset of them.

Finally, DOI attributes make it possible to collapse multiple DOIs into categories to re-

duce the amount of information shown, as discussed in section 6.3.2, Abstract/Elaborate.

Showing DOI attributes can be supported via conventional techniques such as link-

ing DOI attributes to visual channels (e.g., color, shape) or by relying on glyph designs.

Displaying DOI attributes can enable analysts to detect how DOIs with similar properties

clusters over time visually. For such tasks to be possible, in addition to showing proper-

ties, DOIs need to be grouped based on when they were viewed or in what transitions they

were involved. For example, scarf-plots inherently order DOIs by time (Figure 6.6), but

scan-paths and transition matrices have to be clustered to group together co-viewed DOIs

(Figure 6.5). Additionally, showing multiple attributes for each DOI facilitates a visual
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approximation of attribute-derived measures, supporting summarization tasks. Figure 6.9

exemplifies showing many data attributes using glyph based designs.

Reducing clutter is essential in busy DOI visualizations. Clustering is one effective

way to impose order on visualizations. Figure 6.5 shows scanpaths that orders DOIs based

on how often there are transitions between them. This in effect shortens the vertical tran-

sition in the paths. Second, linking DOI appearance to their attributes can divide DOIs

into data categories or layers that are visually separable, by the Gestalt principles [Köh70].

Third, reducing shown information using semantic zooming and DOI grouping, and high-

lighting and filtering, can also reduce clutter, as discussed in the next sections.

A further factor needs to be considered when supporting analyses of DOI data from

many subjects. Visualization datasets can sustain hundreds or thousands of DOIs, which

subjects, based on their interests and exploration, will only see small subsets of them.

These subsets may differ significantly between subjects, leading to a tradeoff: should

visualizations be optimized to best show a single user’s behavior, or to show a user’s

behavior in the context of other users’ data? The scanpaths in Figure 6.5 show DOIs

that were viewed by all subjects, and use the same DOI-set and ordering for each user.

Alternatively, each subjects’ scan-path could also show and order DOIs based solely on

that subject’s data. The former approach shows less relevant data for each user but makes

it easy to compare user behavior, while the latter would show more relevant data for

each user but would hinder comparison. Similarly, scanpaths can be separate or integrate

individual users’ data as shown in Figure 6.5, making it easier or harder to compare

subjects.
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6.3.2 Interaction

Selections allow users to track interesting objects by marking them [YaKSJ07]. On se-

lection targets, DOI methods support selections of DOIs, DOI categories, users, and time

intervals. As for methods of selection, two options are possible: ‘in situ’ selections of

DOIs shown in the visualization, and query-based selections of DOIs by attribute values.

Finally, selected items should be highlighted visually, and brushing-and-linking should

translate selections over multiple views, supporting connect and compare interactions.

Figures 6.5, 6.6, 6.4, 6.7 exemplify DOI selections, time-window selections, and brush-

ing and linking.

Reconfigurations change the spatial arrangement of data. In section 6.3.1 we already

discussed the benefit of clustering co-viewed DOIs to reduce clutter and to support the

detection of correlations between DOI categories and their viewing time. Additionally,

DOIs should be orderable based on their attributes. Similarly, clustering and arranging

subjects by their behavior can create more organized visualizations, while the ability to

cluster subjects on their background or demographic data (e.g., expert vs. naive subjects)

can support tasks typical of human experimentation. Finally, visualizations should also

support interactive repositioning (e.g., of users, DOIs), to allow analysts to arrange and

group items manually.

Exploration enables users to analyze different subsets of data instances. DOI data vi-

sualizations should support time-scrolling, panning, and zooming efficiently. Exploration

options also include the ability to flexibly define which DOI attributes should be mapped

visually, given that the number of variables that can be visually encoded concurrent may

be limited.

Abstract/Elaborate interactions allow users to control a visualization’s level of ab-

straction. Our discussion on encoding emphasizes the need for representations that sup-
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port analyses at multiple time-scales, DOI grouping, and the ability to control the amount

of data shown.

First, semantic zooming can be an efficient way to explore different time scales and

involves aggregating and summarizing data over variable time-steps (e.g., milliseconds

to minutes). An alternative to semantic zooming is pixel-based techniques which allow

individual viewing events to merge and blend visually [K+00]. The re-imagined scarfplot

design in Figure 6.6 exemplifies the first approach by grouping co-viewed elements to-

gether, while the heatmap in Figure 3.11, the second. The stacked glyph plot Figure 6.9

also exemplify semantic zooming by providing the ability to adjust the data granularity

used for detail viewing interactively.

Second, we can group DOIs by using attribute queries to define DOI categories, by

exploiting DOI hierarchies (i.e., DOIs that are contained by other DOIs), or manually.

Aggregating DOIs visually can again be done semantically, by allowing analysts to col-

lapse multiple DOIs into single ones explicitly, or by showing data in a way that allows

categories to emerge and separate visually (Figure 6.9).

Finally, details on demand can give access to additional data via tool-tips and auxiliary

information data panels, populated with data obtained through brushing and linking.

Filtering enables users to change the set of data items being presented based on spe-

cific conditions, and should be possible on all selectable data categories previously men-

tioned. DOIs should be hidden or revealed based on their attributes, their viewing fre-

quencies, viewing timestamps, and viewing users (e.g., “Show only DOIs that both of

two selected users viewed”).

We can control the number of DOIs shown directly (e.g., “Show top 25% most viewed

data”), or by adjusting the amount of space allotted to users and filling it with as much data

as can fit, as suggested in Figure 6.6. The latter is a useful way of controlling the amount
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of information based on available screen space and how many users or time-intervals one

needs to compare.

Defining time-windows of interest can support both reconfiguration and filtering in-

teractions. DOI visualizations will likely need to prioritize which data to show. Thus,

defining such configuration based specific time windows can answer DOI analysis ques-

tions. For example, by prioritizing the display of data that subjects viewed late in an

experiment, an analyst could un-clutter the visualization of data which subjects viewed

during preliminary exploration and search processes, and more clearly reveal how final

data interests crystallize.

Connection/Comparison interactions show associations and relationships between

data items and can be implemented using one of Gleicher et al.’s visual comparison meth-

ods: juxtaposition, superposition, and encoding of differences [GAW+11].In juxtaposi-

tion, two visualization placing side by side facilitate comparison. Next, in superposition,

we can render one visualization over another to aid similarity among them. Finally, in

explicit encoding, we can describe explicit relationship visually by encoding two data in

a single view.

Visual analyses are not limited to the categories as mentioned earlier. Besides, the

three types are the basic categories. We can generate hybrid categories from them. In

Figure 6.10, we describe an example of two user data User1 and User2. Figure 6.10(i)

depicts comparison by juxtaposing them, by superpositioning them in Figure 6.10(ii).

Figure 6.10(iii) depicts a specific encoding of intersection between them.

To support juxtaposition, an ideal visualization should show data from multiple users

or from multiple time intervals using compact, stackable, and comparable visualizations.

The designs in Figures 6.4, 6.5, 6.6, 6.7, and 6.9 can be resized to show more or less of

a user’s data, to multiple user-views to fit in a single screen, and the scanpaths use the

same DOI ordering for all users to support comparison. Superposition is exemplified in
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Figure 6.10: An example of comparison categories by Gleicher et al. [GAW+11]. i)
Juxtaposition, ii)Superposition, and iii) Explicit encoding (Intersection).
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the right panel of Figure 6.5. Selecting and highlighting overlaps and differences (e.g.,

“Show DOIs viewed by all participants”, “Show DOIs that are unique to a subject”) can

implement the third method of comparison. Brushing and linking across users and across

time would support all comparison and correlation tasks.

Finally, clustering can reveal similarities between users or time-intervals computa-

tionally. AOI sequences of multiple users have previously been clustered using a string-

edit-distance [KHW14]. This gave good results for short, highly constrained perceptual

tasks with few AOIs. However, this distance measure may not be robust enough to han-

dle DOI data collected over long, open-ended tasks, since such data are not temporally

aligned and are bound to differ at the key-hole level that string-editing operates. Instead,

comparing users in the space of derived features (e.g., DOIs they viewed most, common

DOI transitions or sequences) may be more robust to local differences. It may also al-

low features to be included in and excluded from a distance measure, thus enabling an

exploration of which features explain observed behavior.

6.4 Conclusions

Visual interpretation of DOI data is significantly vital for DOI-based eye-tracking data

analysis. In this chapter, we provided possible visualization and interaction techniques

based on the existing solutions in the literature. Moreover, we have discussed challenges

for visually interpreting DOI data and their solutions.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

Eye-tracking data analysis is challenging and exhaustive. In this dissertation, we proposed

a new analysis method of eye-tracking data: DOI-based analysis. DOIs are data space

counterpart for AOIs. However, DOI data tend to be larger, more granular, and richly

annotated than AOI data.

The DOI-based analysis is limited within the visualization with open source code

which can be instrumented. In such visualization, we define DOIs in the underlying

data model of it. In an eye-tracking experiment with DOI instrumented visualization,

experimenters can collect automated analysis data which is not possible with traditional

methods. Moreover, DOI data can answer analysis question that is not feasible for eye-

tracking data collected by conventional methods.

We also demonstrated that collecting accurate DOI data is feasible. We evaluated

our claim by collecting DOI data from three different eye-tracking experiments. Each

experiment used highly interactive and dynamic visualizations. We also described detail

instrumentation methods and study design for each study.

Next, we formalized DOI-based analysis. First, we described a data model for DOI.

We defined DOI in an entity and value style consisting data model, eye-tracking gaze

points, and user data. Second, we listed possible and probable questions that DOI data

can answer. We categorized the questions and provided examples based on the three

experiments we conducted. Third, we discussed visual design guidelines for interpreting

DOI data. We discussed existing visual techniques and proposed possible modifications

over them for DOI data. We also demonstrated several visual technique instances for
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interpreting DOI data from the three experiments. Moreover, we discussed interaction

techniques on each of them.

DOI data can enable data-driven, exploratory eye-tracking research not previously

possible, by supporting long “in vivo” experiments of complex and interactive visual

content. The dissertation creates a foundation for such research by formalizing DOI data

and tasks and provides visual design guidelines in supporting DOI analyses.

7.2 Future Work

The research described in this dissertation can be improved in three possible directions.

First, the viewed-object-detection algorithm described in Chapter 3 assume every visual

element as rectangles. We generate every calculation based on the position of a visual

element and its dimension. However, in real-life, visual elements can come in different

shapes and dimensions. Moreover, our algorithm does not consider the case of human

visual perception changes to various sizes of visual objects. We can improve our viewed-

object-detection algorithm to support human perception pattern on any shapes and sizes.

Second, we can build a library for experimenters to enable easy instrumentation.

Moreover, the library could support widgets for data interpretation once it is collected.

Analyzers will be able to test their hypotheses by using its built-in visualization tech-

niques. Third, using faster DOI data collection and cheap eye-trackers, we can exper-

iment with real-time eye-tracking applications. We did a pilot study on monitoring an

eye-tracking user data instance which itself was tracked by an eye-tracker [AJ14b]. Such

experimenters can be valuable to education research.
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