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ABSTRACT OF THE DISSERTATION 

SYNTHESIS OF GEMCITABINE ANALOGUES WITH SILICON-FLUORIDE 

ACCEPTORS FOR 18F LABELING 

by 

Cesar Gonzalez 

Florida International University, 2017 

Miami, Florida 

Professor Stanislaw F. Wnuk, Major Professor 

Gemcitabine (dFdC) is an effective chemotherapeutic nucleoside analogue for 

treatment of cancers and solid tumors. Gemcitabine’s chemotherapeutic effect is limited 

by its rapid intracellular deamination by cytidine deaminase into the inactive uracil 

derivative. Herein, I designed and synthesized two sets of gemcitabine analogues: i) a 4-

N-alkyl gemcitabine analogue containing a β-keto sulfonate moiety, and ii) clickable 

analogues possessing silicon-fluoride acceptor building blocks. Both of these sets of 

analogues undergo efficient fluorination, including fluorination protocols compatible with 

18F labeling.  

The synthesis of the 4-N-alkyl gemcitabine analogue bearing β-keto sulfonate moiety 

began with reaction of 4-N-tosylgemcitabine with 1-amino-10-undecene, followed by a 

series of oxidation and sulfonation steps which yielded the β-keto sulfonate analogues. 

The coupling of gemcitabine with carboxylic acids using peptide coupling conditions 

afforded 4-N-alkanoyl analogues with a terminal alkyne or azido moiety. Click reaction of 

these 4-N-alkanoyl analogues with dialkylsilyl building blocks gave 4-N-

alkanoylsilanegemcitabine analogue. Reaction of 4-N-tosylgemcitabine with 
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functionalized azidoalkyl amines provided 4-N-alkylgemcitabine with a terminal azido 

group. Coupling of the latter with dialkylsilyl building block provided 4-N-

alkylsilanegemcitabine. Fluorination of 4-N-alkyl gemcitabine analogues with β-keto 

sulfonate moieties and of the trisubstituted silane derivatives with KF and 18-Crown-6 

(CH3CN/75°C/0.5-1h), gave the corresponding fluorinated 4-N-alkyl and alkanoyl 

gemcitabine analogues under conditions that are compatible with protocols for positron 

emission tomography (PET) 18F labeling. The [18F] 4-N-alkyl and alkanoyl silane 

gemcitabine analogues were successfully synthesized on microscale and macroscale 

radiochemical protocols. The biodistribution of [18F] 4-N-alkyl gemcitabine analogue was 

analyzed via PET imaging. The cytotoxicity activity of the silane gemcitabine analogues 

were studied in cancer L1210 and HEK 293 cell lines and their cellular uptake were 

investigated using HPLC analysis and fluorescence microscopy. 

Reduction of ribono-1,4-lactones and gulono-1,4-lactone as well as ribono-1,5-lactone 

and glucono-1,5-lactones with LTBH (1.2 equiv.) in CH2Cl2 at 0 °C for 30 min provided 

the corresponding pentose or hexose hemiacetals in chemoselective fashion and in high 

yields. Commonly used in carbohydrate chemistry protecting groups such as trityl, benzyl, 

silyl, acetals and to some extent acyls are compatible with this reduction. 
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1. INTRODUCTION 

1.1. Gemcitabine: Chemistry and biological activity 

1.1.1. Gemcitabine: Anti-cancer mechanism of action and inhibition 

Gemcitabine (2′,2′-difluoro-2′-deoxycytidine, dFdC, Figure 1) is a chemotherapeutic 

cytidine analogue that is usually used as first-line therapy for pancreatic and non-small cell 

lung cancers.1, 2 The analogue was first synthesized by Hertel et al. in 1988.3, 4 

Gemcitabine, like most nucleoside analogues, is hydrophilic, and its uptake across the cell 

membrane is facilitated by human equilibrative nucleoside transport proteins (hENT’s).5 

Once in the cell, gemcitabine is activated by deoxycytidine kinase (dCK) for 

monophosphorylation, which is its rate limiting step, and then subsequent phosphorylation 

by intracellular kinases to its di- and and tri-phosphate forms (dFdCDP and dFdCTP). The 

triphosphate, dFdCTP, is then incorporated into DNA, inhibiting DNA polymerase by 

chain termination during replication and repair processes, triggering apoptosis.6-10 Also, 

the potentiation of the effects of the triphosphorylated gemcitabine results from its 

inhibition of ribonucleotide reductase(s) (RNR’s). Ribonucleotide reductases are enzymes 

that are involved in the conversion of nucleoside diphosphates to deoxynucleoside 5′-

diphosphates (dNDPs) (Figure 2).11-13 The inhibition of RNR’s is critical because it leads 

to a reduction in dNDPs and consequently to a reduction in dNTPs. The change in 

concentration of dNTPs reduces the competition for dFdCTP to become incorporated into 

DNA by DNA polymerase, increasing the chance of apoptosis.  
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Figure 1. Structure of gemcitabine (dFdC) 

 

 

Figure 2. Gemcitabine (dFdC) mode of action & inhibition 

Even though, the mechanism of gemcitabine has shown to be effective against a variety 

of tumor types, the efficacy of gemcitabine is diminished because of a variety of issues.8, 

14 Gemcitabine, or Gemzar® as it is known in the market, in its current form, is introduced 

into the body by intravenous infusion, and studies have shown that it is the optimal way 

for the drug to be administered.15 High-dose oral gemcitabine is cytotoxic, causing serious 

liver and gastrointestinal problems.16, 17 Studies have shown that gemcitabine, because it is 

hydrophilic, is excreted (>90%) in the urine. Gemcitabine also undergoes quick 

deamination into the inactive metabolite 2′,2′-difluorouridine (dFdU) by cytidine 

deaminase (CDA), the enzyme which converts the cytosine base to a uracil base.18 The 
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transformation occurs in both the plasma and in the tissues, and it has shown to be a 

significant disadvantage for the potency of the drug.  

1.1.2. Gemcitabine: Design and synthesis of prodrugs 

In order to tackle these various issues, prodrug strategies have been developed featuring 

acyl modifications of different lengths on either the exocyclic 4-N-amine or on the 

hydroxyl groups of the sugar at the 3′ or 5′ carbon.19-22 These modifications have been 

extensively studied because, first, the addition of a lipophilic chain to gemcitabine has 

shown to facilitate the incorporation of the drug into cells. Second, once in the cell, the 

hydrolyzable acyl/amide modifications have shown to facilitate a slow conversion to the 

parent drug, gemcitabine. The modification increases the drug’s bioavailability and uptake 

while also providing prolonged resistance to deamination by CDA as acyl groups are not 

natural substrates for the enzyme.23 A few examples of these type of modifications include 

4-N-stearoyl, 4-N-squalenoyl, and other 4-N-alkanoyl gemcitabine prodrugs e.g., 3-4 

(Figure 3)21, 22, 24-31 and 7-9 (Figure 4)28 as well as modifications in the 5′-hydroxyl groups 

(e.g. CP -4126, 2).19, 29, 32-34 These designed modifications are considered the first 

generation of prodrugs for gemcitabine. Many of the synthesized analogues have been 

extensively studied in cancer cell lines as well as mice models, with the main goal of 

improving the overall efficacy of gemcitabine. One of these examples is LY2334737, 5, a 

prodrug designed by McCarthy et al.21 This prodrug was shown to be stable between pH 

4-8, and its dose resulted in prolonged gemcitabine exposure and slow deamination. Since 

its initial synthesis in 2009, this prodrug has undergone several pharmacokinetic 

evaluations, including phase 1 studies.35-37  



4 
 

 

Figure 3. 4-N-modified gemcitabine prodrugs with enhanced anti-cancer activity 

The Wnuk research group has also been interested in the synthesis of modified 

gemcitabine analogues.28, 38 Following the same design strategy of 1) increased 

lipophilicity, 2) slow hydrolysis to the parent drug and 3) slow deamination by CDA to 

inactive dFdU, Pulido et al. synthesized a series of 4-N-alkanoyl (acyl) 6-8 and alkyl 

gemcitabine analogues 9-10 (Figure 4) and had their cellular inhibition assessed on a panel 

of murine and human tumor cell lines (Table 1). Their findings correlated with previous 

studies on other 4-N-alkanoyl modified gemcitabine analogues. Their 4-N-alkanoyl 

analogues showed potent anti-proliferative activities with nanomolar range IC50 values 

(0.0077-0.053 µM). However, the synthesized 4-N-alkylgemcitabine analogues showed 

only modest IC50 values (17-29 µM). The low IC50 values was hypothesized to be 

associated with their to low cellular uptake as well as low conversion to gemcitabine, which 

was shown by stability studies in rodent liver extract in PBS.  
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Figure 4. 4-N-modified gemcitabine analogues synthesized by Pulido et al.28 

Table 1. In vitro cytostatic activity of 4-N-Modified gemcitabine analogues 7-10 on the 

tumor cell lines L1210, HeLa, and MCF-728 

Gemcitabine 

analogue 

IC50 (µM) 

L1210 HeLa MCF-7 

7 0.023 0.049 0.0081 

8 0.053 0.011 0.0077 

9 29 22 27 

10 28 17 26 

 

To my knowledge, the synthesis and biological properties of 4-N-alkylgemcitabine 

analogues have not been intensively explored. However, because of their stability and 

permanent presence of 4-N-alkyl chain, they can be candidates for use as 18F-PET 

radiotracers and metabolic labeling.  

1.1.3. Gemcitabine: Theranostic image-guided tumor agents 

Using the above prodrug designs as foundation, the next generation of gemcitabine 

prodrugs are being designed through a theranostic approach, the combination of diagnostic 

and therapeutic entities into one drug delivery system. These prodrugs have two goals: 1) 

increase the bioavailability of the drug and 2) provide increased specificity to the tumors 

being targeted. Approaching the same idea of acyl modification, one example is H-



6 
 

gemcitabine (11; Figure 5), the 4-N-alkanoyl gemcitabine prodrug contains the Hoechst 

group, an extracellular DNA (E-DNA) targeting moiety, as a well as a disulfide bond as an 

additional triggering mode of action. The Hoechst moiety binds to the E-DNA present in 

the core of the tumors and the disulfide bond provides a second mode of release, increasing 

the prodrug’s time to accumulate within the tumors.31 H-gemcitabine then provides not 

only provides increased bioavailability, it also provides increased specificity to tumors with 

E-DNA present. The analogue H-gemcitabine also showed similar toxicity to gemcitabine. 

The use of disulfide bonds is also used in other gemcitabine prodrug strategies that will be 

discussed later in this section. 

 

Figure 5. Structure of H-gemcitabine31 

Another approach that has been explored is the design and synthesis of gemcitabine 

conjugates with receptor binding peptides for targeted delivery to specific tumors. One 

such example is the GnRH-gemcitabine conjugates. They have been designed to contain 

Gonadotropin-releasing hormone (GnRH) specific amino acids conjugated to a linker 

moiety attached to 5′ of the sugar of gemcitabine (12; Figure 6).39 The incorporation of the 
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GnRH ligand was chosen because prostate cancer tumors have shown to overexpress 

GnRH receptors. The conjugates were then able to provide specific target and increased 

bio-distribution with potent anti-cancer activity.  

 

Figure 6. Structure of GnRH-gemcitabine conjugate39 

Another route of increasing the effectiveness of gemcitabine has been through the 

synthesis of nanoparticles.40, 41 Wang et al. synthesized gemcitabine–poly(methyl 

methacrylate) (Gem–PMMA) conjugated amphiphiles.42 The amphiphiles can self-

assemble to form nanoscale aggregates in an aqueous environment. These nanoparticles 

provide high drug payload by having a controlled release. Another route that has been 

studied is the synthesis of copolymer and carbon nanotubes–drug conjugates containing 

gemcitabine.43-45 Hu et al. used gemcitabine as part of the synthesis of an azido-carbonate 

monomer, 2,2-bis(azidomethyl)trimethylene carbonate, which was then reacted with 

alkynyl compounds via click chemistry had then gemcitabine was conjugated to it.43 In a 

similar project, Kopecek at al. synthesized degradable HPMA copolymer–drug conjugates 

containing gemcitabine for studies with human ovarian carcinoma cells.44  

Some of the example prodrugs described above have been synthesized using click 

chemistry,46-49 50, 51 through the use of copper catalyst as well as cyclooctyes (SPAAC). 
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Click chemistry in nucleosides and oligonucleotides, with terminal alkyne or azide has 

been reviewed extensively.52-55 These modifications have been done both at the 

heterocyclic base and the sugar, which then have been conjugated with modified 

fluorescent dyes, sugars and peptides for imaging and drug discovery.53, 55-57 The 

exploration of click chemistry in gemcitabine and its analogues is fairly recent. 

Another route of click chemistry that needs mentioning is the use of gemcitabine and 

its analogues for imaging purposes. Luedtke et al. synthesized the metabolite 2',2'-difluoro 

analog of 5- ethynyluridine 13 to achieve pathogen-selective labeling as this analogue is 

selectively metabolized in HSV-1 infected cells owing to the expression of a viral 

thymidine kinase (TK). The analogue bearing a terminal alkyne was then with treated with 

CuI and an azide-conjugated fluorophore to give fluorescent analogue 14, for the 

visualization of cells that contained the HSV-1 infection but not uninfected cells (Scheme 

1).58 

Scheme 1. Synthesis of gemcitabine analogue for fluorescent labeling58 

Additionally, extensive work has been done in the area of the synthesis of gemcitabine 

prodrugs with fluorescent conjugates with imaging capabilities.59 The Kim group has 
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synthesized a series of theranostic gemcitabine (through C5′) prodrugs that contain 

fluorophores connected via a disulfide bond and with biotin/folate through click chemistry 

to monitor drug delivery.60, 61 One of these prodrugs contained Coumarin as their 

fluorophore (not pictured) and another gemcitabine prodrug, 15, with the near IR 

fluorescing BODIPY fluorophore. Another set of analogues contained heptamethine 

cyanine dyes with folate.62 In all the analogues synthesized, the disulfide bond is cleaved 

intracellularly by thiols, followed by hydrolysis of the ester moieties to release gemcitabine 

and the fluorophore. Once released from gemcitabine, the fluorophores have stronger 

fluorescence than when conjugated (Figure 7). The intake of gemcitabine by cells was 

shown by fluorescence studies of the prodrug in the presence and absence of dithiothreitol 

(DTT), a well-known reducing agent. The conjugates showed targeted cellular 

differentiation by its incorporation in biotin/folate-receptor positive tumor cells.  

 

Figure 7. Fluorescent theranostic prodrug synthesized by Kim group 60, 61 
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Liu and coworkers also worked in a similar near infrared activable meso-

tetraphenylporphyrin (TPP) prodrug of gemcitabine with image-guided in situ tumor 

photodynamic therapy capability known as TPP-L-GEM (Figure 8). Meso-

tetraphenylporphyrin is a singlet oxygen (1O2) generator and the present thioketal linker is 

1O2 sensitive. The release of gemcitabine was triggered by the low energy red light induced 

1O2 generation in TPP followed by the 1O2 mediated thioketal cleavage. 63   

 

Figure 8. Fluorescent theranostic prodrug synthesized by Liu et al.63 

As discussed above, many strategies have been developed to increase gemcitabine’s 

efficacy. Many of these strategies involve imaging capabilities, with protocols that are still 

in the beginning stages of development, but it shows that combinational protocols are key 

in understanding and advancing drug discovery. Another useful tool that we shall focused 

on is the use of Positron Emission Tomography (PET) as a means of theranostic imaging. 
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1.2. Positron emission tomography (PET) 

Positron emission tomography (PET) is recognized as an important tool in modern 

imaging. This imaging technique uses a positron emitting radionuclide (such as fluorine-

18). The radionuclide, once emitting, travels through the tissue and it comes to rest to 

disintegrate with emission of two diametrically opposed gamma rays of 511 keV. These 

created gamma rays are then detected and used for reconstruction of a 3D image.64, 65 The 

imaging technique has been used for cancer detection, metabolic disorders and 

cardiovascular disease among other utilizes. Fluoride-18 (18F) is commonly used as a 

radionuclide to provide PET images of high resolution, as it has a low positron energy of 

640 keV and a half-life of 109 minutes. The main focus of the use of 18F is its introduction 

to molecules for biological purposes. The generation of 18F is through a cyclotron that 

produces it by bombarding H2
18O enriched water with protons to initiate a reaction that 

converts the 18O atom into a 18F atom.66, 67 

1.2.1. Radiochemistry: Fluorination 

As mentioned previously, fluoride-18 has been shown to be the optimal atom for PET 

imaging. The radiouclide is greatly used due to its half-life of 109.8 min compared to other 

atoms such as 15O and 11C have half-lives of 2.037 and 20.38 respectively. Also, fluorine 

has favorable physical properties, such as small van der Waals radius (1.47 Å), high 

electronegativity, and strong bond formation with carbon with C−F energy bond of 112 

kcal/mol, making the bond more thermally stable and oxidation resistant, which are key 

for PET imaging.68, 69  

Because of these characteristics, many nucleophilic and electrophilic fluorination 

reagents have been studied but only a few are used in 18F fluorination available in the 
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market. Examples of nucleophilic fluorination reagents include KF, TBAF, DAST, 

PhenoFluor and Deoxo-fluor. Electrophilic reagents include NFSi and SelectFluor. 

Furthermore, there is a difference in nucleophilic aliphatic versus nucleophilic aromatic 

substitutions with fluorinating reagents.70, 71 Additionally, these substitutions are aided by 

the use of phase transfer catalysts (PTC). Kryptofix222 and 18-Crown-6 are PTCs that 

enhance the solubility and nucleophilicity of the fluoride ion by complexing with the 

cation, usually potassium.72 

 

Figure 9. Examples of 18F-aliphatic and aromatic nucleophilic substitutions71, 73, 74 

Nucleophilic aliphatic substitutions (Figure 9, A) are SN2 type reactions where fluorine 

substitutes a leaving group. In the case for the substrates for PET imaging, the specific 

leaving group used is important depending on the reactivity and stability of the substrate. 

These aliphatic substitutions usually involve the use tosylates and mesylates with KF as 

the fluorine sources. Aromatic nucleophilic substitutions (SNAr, B) require electron 
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withdrawing group in the ortho/para position, which act as activators in these types of 

substitutions as well as polar aprotic solvents and high temperatures (100°C or greater). 

These reactions occur through addition-elimination or elimination-addition mechanisms 

with the formation of highly reactive Meisenheimer intermediates. One example is the 

Balz-Schiemann reaction, which involves a diazotization, followed by thermal 

decomposition of the derived tetrafluoroborate. Overall, extensive work has been done in 

studying these type of substitution reactions with all the focused on the carbon-fluoride 

bond. 

Scheme 2. Deoxyfluorination of phenols and heterophenols with 18F by the Ritter group71 
 

The Ritter group showed that nucleophilic substitution to be used with 18F can be done 

through a concerted mechanism (CSNAr, C) through the deoxyfluorination reaction of 

phenols with the reagent PhenoFluor with both electron-rich and electron-poor substrates 

on the ring.71 The substitution yields an imidazolum intermediate, 17, that undergoes a 

fluoride attack to give a tetrahedral intermediate followed by a concerted displacement on 

the arene (Scheme 2). Ritter’s method works with heterocycles which are present in many 

bioactive compounds that are often problematic in regular SNAr conditions.  

1.2.2. Positron emitting 18F radiotracers for anticancer therapy 

Positron Emission Tomography imaging is becoming a great tool for the imaging of 

different types of small molecules.75, 76 The most extensively used radiotracer is 2-deoxy-
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2-[fluorine-18]fluoro- D-glucose ([18F]-FDG, 19). The analogue of glucose provides 

valuable functional information on the basis of the increased glucose uptake and glycolysis 

of cancer cells and the method depicts metabolic abnormalities. The glucose analogue’s 

ability to detect tumors depends on various factors, such as their size, metabolic activity, 

and distribution in some normal tissues which can affect the tumor to surrounding 

background ratio (Figure 10).64, 77 Other well studied compounds include 18F-Fluoro-

Ldihydroxyphenylamine (18F-fluoro-L-DOPA, 20) which is used to evaluate the in vivo 

activity of aromatic L-amino acid decarboxylase of dopaminergic system.78 A structural 

analogue of 5-α-dihydrotestosterone, 18F-16β-Fluoro-5α-dihydrotestosterone (FDHT, 21), 

can be useful to detect metastatic and recurrent prostate cancer lesions, binding affinity and 

selectivity for androgen receptors79 and 18F-3-Fluoro-3-deoxy-thymidine ([18F]-FLT, 22) 

is a pyrimidine analogue that reveals the activities of thymidinekinase-1 during the phase 

S of mitoses.76, 80 

 
Figure 10. Selected 18F radiotracers for anticancer therapy 

Radu et al. developed 1-(2′-Deoxy-2′-18F-fluoro-β-D-arabinofuranosyl) cytosine 

([18F]-FAC, 23) as a PET tracer possessing a substrate affinity for both dCK and CDA 
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comparable to gemcitabine (Figure 10).81, 82 The deoxycytidine analogue bears one fluorine 

atom at the C2’ position, instead of the two fluorine atoms in gemcitabine. The compound 

was synthesized with the goal of using it as a noninvasive method of DCK activity 

detection, which is helpful for personalized cancer therapy as a predictor of tumor response. 

The [18F]-FAC was tested in both tumor cell lines as well as in mice with dCK-positive 

and dCK-negative tumor, with selectivity for dCK-positive tumors, comparable to 

gemcitabine. Because of its selectivity, the incorporation of 18F proves to be useful for the 

diagnosis of cancer. Extensive studies of [18F]-FAC have also been done in humans.83  

Because it possesses similar characteristics as gemcitabine, [18F]-FAC, also has the same 

critical disadvantages. It is a hydrophilic nucleoside analogue that can undergo inactivation 

by CDA. Because of these characteristics, its role as a radiotracer has its limitations. The 

Ritter group has also been involved in the first production of human doses of [18F]5-

fluorouracil, 24, a PET tracer for cancer imaging in humans, from [18F]fluoride through the 

use nickel(II) σ-aryl complexes by transmetalation from arylboronic acids (Scheme 3).84   

Scheme 3. Synthesis of [18F]5-fluorouracil as a PET tracer84 

The path for 18F radiolabeling has many obstacles, which include lengthy number of 

steps and burdensome labeling procedures. These obstacles are definitely the case for the 

synthesis of modified nucleosides analogues. Modification of nucleosides usually involve 

protection and deprotection steps. These steps, even with high conversion rates, can lead 
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to an overall decrease of yield. Furthermore, the synthesis of compounds bearing carbon-

fluoride bond for PET imaging via substitution reactions can become troublesome with 

reaction conditions requiring relatively high temperatures and additives. Because of these 

issues, there is always the need to make this process more simple and efficient.  

1.2.3. Silicon 18F radiochemistry 

The use of Si-F bond formation in radiochemistry has been explored since 1958,85 with 

in vivo studies reported as early as the 1970s and 1980s.86 The use of Si-F for labeling came 

from comparing C-F and Si-F bond formation, as the bond energy of Si-F bond is about 

90kJ/mol higher than the C-F bond. The C-F bond is generally metabolically stable, but to 

be formed, through electrophilic or nucleophilic reaction, the reactions tend to be harsh at 

bery high temperatures.  Early on, it was discovered that even with this increase of bond 

energy, the Si-F bond is highly susceptible to hydrolysis in physiological conditions.87 The 

hydrolytic stability of this bond is highly depended on the substituents attached to silicon 

(Scheme 4).88 Schirrmacher et al., provided an alternative to the conventional 18-F 

radiopharmaceuticals that goes through the carbon-fluoride bond, prepared and tested 

triphenyl Si-F, diphenyl, t-butyl Si-F, and phenyl di-t-butyl-F compounds. It was noticed 

that having two bulky substituents in addition to one phenyl group provided the best 

stability for in vivo studies in human serum at 37.4∘C and pH 7.4–7.6.89 Ametamey et al. 

did an extensive experimental and theoretical hydrolysis study on a number of model 

organofluorosilanes, and they also showed that the tendency to hydrolysis can be prevented 

by the use of bulky substituents on the Si-atom (Figure 11). These compounds were 

dissolved in acetonitrile/aqueous buffer at pH 7 and incubated at ambient temperature. 

Several compounds were tested and they concluded that isopropyl (28-30) and t-butyl (31) 
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groups were significantly more stable than methyl groups when attached to Silicon.90, 91 

With these extensive stability studies, it was concluded that these type of compounds, now 

labeled for fluoride acceptors (SiFA), are a reliable alternative for 18F PET imaging 

protocols.  

 

Figure 11. Hydrolysis half-lives (t1/2) of selected organofluorosilanes under aqueous 

buffer (pH 7) and ambient temperature reported by Höhne et al.91 

 

 The Si-F hydrolysis is also affected by the leaving groups attached to the silicon atom. 

Early on it was noticed that the use of chloro as the leaving group was not optimal because 

of their strong tendency to form silanol derivatives (Si-OH), meaning it undergoes 

hydrolysis easily. The high tendency for hydrolysis meant that other options needed to be 

explored. Klar and Ametamey were able to fluorinate silane peptides with H and OH as 

leaving groups. These compounds, which also bear bulky groups, were fluorinated with no 

issue, but it was noticed that OH and alkoxyl moieties requires the presence of acid for 

better exchange.90  
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Scheme 4.  Hydrolysis reaction of Si-F bond to Si-OH 

  Isotopic exchange reactions have been a key aspect in the study of 18F radiochemistry 

(Scheme 5). In the case of carbon-fluorine reactions, the exchange is usually with low 

yields which leads to no in vivo applications. In addition, there is a problem with specific 

activity when 19F-C bonds occupy receptors. In the case of Si-F, because these reactions 

are in higher yields, isotopic exchange can be an advantage. It has been shown that isotopic 

exchange reactions have occurred in high radiochemical yields with high specific 

activity.92 The labeling procedure also becomes more convenient because there is no need 

for purification as the labeling precursor and labeled compound are identical.  

 

Scheme 5. Mechanism of isotopic exchange reaction between 18F and 19F 

These silicon-fluoride acceptor building blocks are hydrophobic, which means that if 

they introduced in the body for imaging, they would accumulate in the liver. To prevent 

liver accumulation, these building blocks are usually connected to peptides and other small 

molecules,90, 92-95 which increase the overall hydrophilicity. In the case of peptides, the 

incorporation of silicon-fluoride acceptors involve multistep syntheses that involve the 

addition of linkers and auxiliaries that reduce lipophilicity. Additionally, because of the 
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number of amino acid residues that might react, additional protection steps need to be used. 

Lovkova et al. synthesized a set of Octreotate analogues by modifying phenylalanine with 

a silicon-fluoride acceptors and introducing it through solid phase peptide synthesis (32, 

Figure 12).96 Silicon-fluoride acceptors have also been utilized in proteins for PET 

imaging.97, 98  

 

Figure 12. Silicon-fluoride acceptors in octreotate96 32 and thymidine derivatives99 33  

When discussing silane derivatives for their use as a tracer, to my knowledge, not much 

work has been done with nucleosides or nucleoside analogues. Schulz et al. reported a 

protocol for the efficient radiolabeling of nucleosides and oligonucleotides derivatives 

containing the silicon-fluoride acceptors building block (Figure 12).95, 99, 100 Schulz’s work 

involved the use of natural nucleosides modified at the C3’ and C5’ (33) position of the 

sugar. As of this moment, there is no published work on the integration of nucleoside-based 

drugs with silicon-fluoride acceptors for PET imaging. It would be very interesting to 

explore their use as anti-cancer and anti-viral nucleoside theranostic agents. 

1.3. Reduction of lactones to hemiacetals 

 

1.3.1. Synthetic significance of reduction of lactones to hemiacetals 

 

The reduction of sugar lactones to hemiacetals plays an important role in the synthesis 

of modified carbohydrates and nucleosides. When discussing carbohydrates, we shall focus 
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on the synthesis of modified monosaccharaides, more specifically pentoses and hexoses. 

Beaupere et al. worked on the synthesis of 5- and 6-alkyl sulfanyl derivatives.101-103 These 

types of thiosugar derivatives have shown to have therapeutic potential against several 

diseases, including cancer.103 These derivatives were made through the modifications of 

ribonolactones, (e.g., 34) which ultimately are reduced with NaBH4 to S-Alkylthiopentitol 

36 (Scheme 6). Another example is the conversion of D-hexono-1,5-lactones (e.g., 37) into 

cyclic hemiacetals of L-hexoses 39 through a γ-hydroxyalkoxamate derivatives using 

DIBAL-H.102, 104 

Scheme 6. Reduction of lactones with NaBH4 and DIBAL-H 

Reduction of pre-constructed sugar lactones to their corresponding lactols and their 

further coupling with nucleobases are often key steps in the synthesis of important 

nucleoside-based drugs such as the anticancer gemcitabine, anti-HIV 3TC and 

dideoxynucleosides among others.3, 105, 106 In the case of gemcitabine, 1, there have been 

many routes attempted and explored but the majority of them involve the use of a modified 

sugar lactone for synthesis of difluororibose of carbohydrate derivatives.3 Chou et al. 
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synthesized difluororibose derivative 41 through a lactone derivative to then couple with 

cytosine to synthesize gemcitabine (Scheme 7).107 

  
 

Scheme 7. Synthesis of gemcitabine through reduction of sugar lactones 

 

Choi et al. synthesized dioxolanyl 45 and oxathiolanyl 48 nucleoside analogues also 

by using sugar lactones which were then coupled to their respective bases. In the synthesis 

of dioxolanyl, Choi, utilized LiAl(OtBu)3H to reduce the lactone, while DIBAL-H for the 

synthesis of oxathiolanyl (Scheme 8).108 

 

Scheme 8. Synthesis of oxathiolanyl and dioxolanyl nucleoside analogues through 

reduction of sugar lactones108 

 

On the development of novel inhibitors of S-ribosylhomocysteine (SRH) hydrolase 

(LuxS; EC 4.4.1.21), the Wnuk group has had the challenge of reducing modified sugar 
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lactones to their corresponding hemiacetals. Lithium triethylborohydride (LTBH, Super-

Hydride®)109 has been utilized for the reduction of lactam (Scheme 10) and lactone 

analogues of SRH to the corresponding azahemiacetals (N,O-acetals)110, 111 or lactols (O,O-

acetals)112, a method not extensively explored. Below, the commonly used reducing agents 

for this type of transformation will be reviewed. 

1.3.2. Reducing agents for reduction of lactones to hemiacetals 

 The commonly used reagents for the reduction of lactones to hemiacetals include 

NaBH4, and a variety of organic-soluble metal hydrides such as DIBAL-H and other 

boranes.113-115 Additionally, LiAlH4, under controlled reaction conditions, has also been 

used for this purpose. NaBH4 has been shown to be effective in the reduction of sugar 

lactones to aldoses. However, it requires aqueous acid conditions to prevent over reduction, 

which is problematic for nonpolar and/or acid labile protected compounds that are 

commonly used in nucleoside and carbohydrate chemistry.116-118 

Diisobutyl aluminum hydride, DIBAL-H, an intensively studied organometallic 

reducing agent, reduces esters (including lactones) as well as nitriles to aldehydes.119, 120 

Diisobutyl aluminum hydride has been shown to be an efficient reagent for many of the 

reactions discussed above, but it usually requires low temperatures (-78°C) and large 

excess of the reagent, which is a disadvantage for large-scale work.105 In addition, extra 

precautions need to be taken when manipulating DIBAL-H because it is air-sensitive and 

pyrophoric in nature. Alternatives reagents for this transformation have been proposed. 

Buchwald et al. demonstrated the catalytic reduction of lactones to hemiacetals with 

generated in situ titanocene(III) hydride, in the presence of silanes as a hydride source 

(Figure 13).121, 122 Their initial findings involved the use of n-BuLi as a catalyst activator 
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and phenylsilane. Even though they obtained their lactol products with a minimal amount 

of diol, phenylsilane was expensive and n-BuLi reacts violently with water. They later 

optimized their method by implementing the use of polymethylhydrosiloxane (PMHS) as 

an activator. Their method was utilized for the large scale preparation of several sugar 

hemiacetals.  

 

Figure 13. Catalytic cycle and transition state proposed by Buchwald et al.121 

Limitations to this method include the size of the lactone ring, with larger rings 

producing the open aldehyde product that is then reduced to diols and in compounds 

bearing both a lactone as well as an ester group, when subjected to the hydrosilylation 

conditions, the ester moiety was reduced to the alcohol while the lactone moiety was 

reduced to the lactol (Scheme 9).121, 122 
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Scheme 9. General and specific reduction of lactones with titanocene(III) hydride122 

 Although borane-based reagents have been used for the reduction of lactones to lactols 

and diols,114 reports of reductions of sugar lactones to lactols using borane reagents are 

sparse. For example, disiamylborane was used for the conversion of 2,3-di-O-acetyl-5-S-

acetyl-5-thio-D-arabinono-1,4-lactone 49 to the corresponding arabinofuranose 50,102 and 

Selectride was employed for the partial reduction of acetyl protected D-galactono-1,4-

lactone 51 (Scheme 10).123  

 

Scheme 10. Use of borane-based reducing agents for reduction of lactones to 

hemiacetals  

Also, application of LTBH for the reduction of lactams to cyclic hemiaminals 

(azahemiacetals) has been used by Casiraghi, Schofield et al. in the synthesis of 
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dihydroxyprolines 55 and functionalized prolines respectively 54 (Scheme 11).124, 125 To 

the best of my knowledge, there is no other examples in sugar lactones being reduced to 

hemiacetals with the use of LTBH.  

 

Scheme 11. Synthesis of cyclic azahemiacetals SRH analogues 53111, dihydroxyprolines 

54 and functionalized prolines 55 through the use of LTBH124, 125 
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2. RESEARCH OBJECTIVES 

The main objective of my dissertation is the synthesis and in vivo and in vitro biological 

evaluation of novel 4-N-alkyl gemcitabine analogues with i) β keto sulfonate  moieties (A) 

and ii) 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues bearing silicon-fluoride 

acceptor building blocks (B & C) suitable for 18F labeling (Figure 14). 

Figure 14. Proposed structures of 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues 

The design and synthesis of 4-N-alkanoyl gemcitabine analogues, through a number of 

strategies, have shown to decrease the release of the parent drug, increasing its 

bioavailability and used in theranostics. In the case of 4-N-alkyl gemcitabine analogues, 

the Wnuk's group has shown that these type of analogues have increased stability as they 

are enzymatically resistant to cleavage and intracellular deamination by CDA at 4-N-

position. Their stability provides an alternative strategy for PET imaging.  

The synthesis of the 4-N-alkyl gemcitabine analogues with β keto sulfonate moieties A 

involves 4-N-alkylation of gemcitabine followed by a series of oxidation steps in the side 

chain of the gemcitabine analogue to provide the β keto sulfonate. The latter are anticipated 

to be good substrates for an efficient fluorination, including fluorination protocols with 18F 

labeling. Moreover, the β keto moiety is expected to prevent chemical elimination of HF 

of fluoride anion during cell assays because of its lack of β-hydrogens. In my second 
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approach for the synthesis of gemcitabine-derived PET imaging precursors I was planning 

to investigate the use of silicon-fluoride acceptors for an alternative mode of fluorination. 

The synthesis of such gemcitabine analogues with silicon-fluoride acceptors would involve 

the preparation of 4-N-alkyl or 4-N-alkanoyl derivatives of gemcitabine with a terminal 

azido or terminal alkyne group for efficient click chemistry with silane counterparts.  

These analogues are expected to have greater bioavailability than gemcitabine by 

providing an increase in lipophilicity and in the case of the 4-N-alkyl analogues, increased 

chemical and fluoride stability. Therefore, the next objective was to study the cytotoxicity 

of these 4-N-gemcitabine as well as study their capability as radioligands for positron 

emission tomography imaging with 18F. 

The synthesis of modified nucleosides and sugars, including SRH analogues, often 

require the reduction of sugar lactones to the corresponding hemiacetals in the final steps 

of their synthetic pathways. Therefore, in my last objective, I envisioned optimizing 

conditions for the partial reduction of lactones to hemiacetals. The goal of the objective 

was to study reduction conditions of different protected and unprotected sugar lactone 

derivatives with common organic-based reducing reagents, with a special focus on lithium 

triethylborohydride (LTBH), that are usually used in carbohydrate chemistry for their 

conversion to lactols and/or hemiacetals (Scheme 12). 

 

Scheme 12. Reduction of sugar lactones to hemiacetals under various conditions 
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3. RESULTS AND DISCUSSION 

3.1. Design and synthesis of 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues 

3.1.1. 4-N-Alkyl β-keto sulfonate gemcitabine analogue 

3.1.1.1. 4-N-Alkyl β-keto sulfonate gemcitabine analogue: Rationale 

The goal of my objective was the synthesis of 4-N-modified gemcitabine analogue with 

a β-hydroxyl keto moiety suitable for 18F radiolabeling (A). The addition of an aliphatic 

chain should affect cellular uptake of the drug by its increased lipophilicity, while the 4-N-

alkyl modification, bearing β-hydroxy-keto moiety, with the ability of conversion of 

hydroxyl group to a leaving group, provides opportunity for the incorporation of the 

fluorine atom suitable for 18F PET imaging. The modification at 4-N-alkyl of nucleosides 

containing cytosine such as gemcitabine has been reported by our group to have less 

cytotoxic strength as compared to their 4-N-alkanoyl counterparts.28 This cytotoxicity is 

hypothesized to be a result of their lack of hydrolysis back to the parent molecule, 

gemcitabine. There is minimal phosphorylation and DNA incorporation, but it also means 

that there is an increased stability, with the compound entering and staying in the cell. The 

increased stability is a positive effect for its role in 18F PET imaging of cancerous tumors. 

The stability of the 18-fluorine labeled gemcitabine in biological conditions is an issue 

observed previously by Pulido et al. They showed that their 4-N-fluoroalkylgemcitabine 

[18F]-radioligand (10) underwent in vivo defluorination when introduced to non-tumor 

bearing and tumor bearing mice. The defluorination was apparent by the accumulation of 

18F- signal in the bones over time38  and was most likely the result of elimination reactions 

that can occur with β-hydrogens to the fluorine available in the side chain. The presence of 

a β-carbon that lacks hydrogens can evade this issue. With that in mind, a β-hydroxyketo 
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gemcitabine analogue, which lacks β hydrogens can provide the necessary stability for the 

fluorine labelled probes (Figure 15).  

 

Figure 15. Key structural differences between β-keto A and 4-N-alkyl 10 gemcitabine 

analogues 

 

3.1.1.2. 4-N-Alkyl β-keto sulfonate gemcitabine analogue: Synthesis 

The synthesis of 4-N-alkylgemcitabine with β-keto substituent was attempted through 

two different pathways. The first pathway was through the synthesis of the desired alkyl 

amine modified sidechain bearing a terminal α-hydroxy methyl ketone, followed by its 

coupling with 4-N-tosylgemcitabine 62. The second pathway involves coupling of the 

commercially available 1-amino-10-undecene with 4-N-Ts-gemcitabine 62, with the 

chemical modifications of the sidechain done post coupling. It is important to state that in 

both cases, the fluorination is carried out in last step so the product can be conveniently 

used for PET imaging in the medical setting. 

For the first pathway, treatment of 1-amino-10-undecene 56, with di-t-butyl 

dicarbonate (Boc2O) provided Boc-protected amine 57 (95%). Oxidation of terminal olefin 

of Boc-protected amine 57 was effected with a catalytic amount of osmium tetraoxide 

(OsO4) and N-methylmorpholine-N-Oxide (NMO) to yield vicinal diol 58 (88%). 

Regioselective benzylation of amino diol 58 with BnBr effected protection of the primary 
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hydroxide, yielding amino alcohol 59. The average yield in this reaction was 51%, because 

of benzylation of both hydroxide groups. Oxidation of benzyl protected amino alcohol 59 

with Collins reagent yielded amino keto 60 (91%). This was followed by deprotection of 

Boc group by treatment with TFA yielding amino keto 61 (93%, Scheme 13). 

Scheme 13. Synthesis of amino with β-keto side chain 

With the side chain modified, the next step was the coupling with gemcitabine. Thus, 

reaction of transient protected with trimethylsilyl group gemcitabine with TsCl in the 

presence of pyridine followed by deprotection with methanolic ammonia afforded 4-N-

tosylgemcitabine 62 (90%).28 Tosylate 62 was then treated with Et3N (TEA)/1,4-dioxane 

and amino side chain 61 for the expected β-keto-4-N-alkylgemcitabine 63. The coupling 

reaction was attempted three times with varying temperature (from 35°C to 75°C) with no 

desired coupled product observed (Scheme 14) with tosylated gemcitabine and modified 

side chain recovered in all case. Additionally, the purity of the amine appears to be key for 

a successful transamination reaction. 
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Scheme 14. Unsuccessful attempted 4-N-tosylgemcitabine 62 and 61 coupling reaction   

To check the validity of my approach, I took advantage that amino diol 58 was 

synthesized in great quantity. The modification of the side chain provided an opportunity 

to test fluorination reactions. Thus, vicinal diol 58 was regioselectively mesylated with 1.1 

eq. MsCl at low temperature at the terminal primary hydroxyl to give mono-mesylate 64 

(55%). Subsequently, oxidation of 64 with DMP gave β –keto mesylate 65 (92%). 

Appearance of α-hydrogens to the newly formed keto at 2.5 and 4.8 ppm on 1H NMR and 

peak at 205 ppm on 13C NMR demonstrated oxidation of secondary alcohol to ketone. 

Next, fluorination was explored by displacement of mesylate with fluoride. Initially, 

fluorination was attempted using conventional radiosynthetic protocol. Treatment of 65 

with KF in the presence of K2CO3 and Kryptofix 222, carried out in CH3CN at 80ºC for 25 

min gave 66 (55%).  Interestingly, better yields of 66 were obtained when 65 was treated 

with TBAF as fluorinating agent (80%, Scheme 15). In both cases, 19F NMR showed 

formation of the expected triplet at -227.5 ppm. 
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Scheme 15. Synthesis of fluoro β-keto side chain  

The fluorination of the side chain provided the foundation for the continuation of the 

project by using the second approach. The synthesis of the targeted gemcitabine analogue 

was accomplished through three main critical transformations: (i) displacement of 4-N-

tosylamine group with commercially available 1-amino-10-undecene, (ii) modification of 

terminal olefin to β-keto sulfonate moiety, and (iii) displacement of sulfonate leaving group 

with fluoride followed by deprotection (Scheme 16). 

 

Scheme 16. Overall synthesis of 4-N-modified β-keto fluoro gemcitabine analogue 

The alkylation of the 4-exocyclic amine group in gemcitabine was achieved by 

displacement of a 4-N-tosylamine group with 1-amino-10-undecene. Treatment of 62 with 

1-amino-10-undecene effected displacement of the p-toluenesulfonamido group from the 
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C4 position of the cytosine ring to give 4-N-(10-undecene) derivative 67 (85%, scheme 

17). 

 

Scheme 17. Synthesis of 4-N-(10-undecene) gemcitabine analogue 

Benzoylation of 4-N-alkene-gemcitabine 67 with BzCl in the presence of DMAP and 

2,6-lutidine yielded 3’ and 5’ protected nucleoside 68 (77%). Oxidation of the benzoyl 

protected 4-N-alkyl-gemcitabine 68 with NMO in the presence of catalytic OsO4 gave 

terminal vicinal diol 69 (96%). Subsequent regioselective mesylation of the terminal 

primary hydroxyl (MsCl/Et3N/-20°C) gave mono-mesylated compound 70 (55%). 

Analogously, terminal vicinal diol 69 was treated with tosyl chloride in the presence of 

Et3N to make regioselectively mono-tosylated compound 71 (62%). Subsequently, 

oxidation of 70 or 71 with Collins reagent (CrO3, pyridine and Ac2O) gave mesyl β –keto 

derivative 72 (93%) or tosyl β –keto derivative 73 (94%, Scheme 18). 
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Scheme 18. Overall synthesis of β-keto gemcitabine sulfonate analogue 

3.1.1.3. 4-N-Alkyl β-keto sulfonate gemcitabine analogue: Fluorination studies 

The β-keto sulfonates 72 and 73 were subjected to the same fluorination conditions 

(18-crown-6, KF) at different temperatures with the ultimate goal of finding the optimal 

fluorination conditions. Table 2 shows a summary of the reactions that were attempted. 

Briefly, temperature was found to be critical for this reaction. As the temperature was 

increased, the yield also increased. Reactions at room temperature did not yield any product 

(entry 1 and 5) with substrate recovered back in both cases. When comparing the two 

different leaving groups, tosyl showed to be the better option for its displacement with KF 

(entry 6) than mesyl (entry 3). Aside from yield, tosylate 73 provided the cleaner 

fluorinated product with no formation of side products. On the other hand, the fluorination 
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of the mesylated β-keto 72 formed several biproducts in addition to the targeted 74. The 

three set of signals in 19F NMR were diagnostic for the presence of three fluorine atoms in 

74 [-119.41 (d, J = 245.1 Hz, 1F) and -120.17 ppm (br d, J = 245.1 Hz, 1F) for the C2' 

gem-difluoro unit and triplet at -227.42 (J = 47.7) for the terminal CH2F]. 

 

Table 2. Fluorination reactions with different conditionsa 

Entry Sulfonate F- source Solvent Temperature (oC) Yield (%) 

1 Mesyl KF CH3CN 20 0 

2 Mesyl KF CH3CN 30 10 

3 Mesyl KF CH3CN 60 40 

4 Mesyl KF CHCl3 60 30 

5 Tosyl KF CH3CN 20 0 

6 Tosyl KF CH3CN 60 60 

a  0.1 mmol reaction scale, KF (4 eq.), K2CO3 (4 eq.), 18-Crown-6 (4 eq.)  

After fluorination conditions were optimized, the final step was the removal of the 

benzoyl protection. The conditions for deprotection require fast and effective   removal of 

the benzoyl groups, but also should be mild enough not to cause any unwanted side 

reactions on the fluorinated side chain. A series of reactions with model fluoro keto 

derivative 75 (synthesized similarly to 66; see experimental section 4.2. for detailed 

procedure) were performed using common debenzoylation methods (e.g., methanolic 

ammonia or sodium methoxide) in order to study the stability of the fluoro β-keto 

compounds (Table 3). Briefly, varying both the temperature and the base did not yield any 
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significant decomposition in the model compound, to showing us that these bases are 

compatible with the required deprotection. Methanolic ammonia is a milder base than 

sodium methoxide (entries 1-3), but it has been shown to remove benzoyl groups from 

nucleosides requiring longer reaction times. The reaction time is a drawback when time 

sensitive radiochemical protocols need to be followed. Deprotection with sodium 

methoxide takes less time and also does not affect the fluorine atom of the fluoro β-keto 

model compound 75 (entries 4-6). It is also noteworthy that, even though model 75 bears 

the benzoyl protection, it is an amide moiety, not an ester, therefore it is less reactive and 

requires harsher conditions (strong acid/base) for its hydrolysis.  

 

Table 3. Stability studies of fluoro β-keto model compound 75 

Entry Base Temperature (°C) Time (min) Result 

1 NH3/MeOH 0 30 No change 

2 NH3/MeOH 25 30 No change 

3 NH3/MeOH 80 120 Minimal 

decomposition 

4 NaOCH3
a 0 30 No change 

5 NaOCH3
a 25 30 No change 

6 NaOCH3
a 80 120 Minimal 

decomposition 

a 0.5 M NaOCH3 in methanol 

With these model studies in hand, I found that deprotection of gemcitabine analogue 

74 with MeOH/NH3 gave β-keto fluorine 76 (55%, Scheme 19). The next step was 

simulating conventional radiosynthetic conditions with both of these substrates to prepare 

the deprotected fluorinated product in a short amount of time and in suitable purity.  
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aReagents and Conditions: a) KF/Kryptofix222/CH3CN, 75°C, 1h; b) MeOH/NH3, 0°C, 30 

min. 

Scheme 19. Fluorination of β-keto sulfonate gemcitabine analogues and subsequent 

deprotection under conditions compatible with 18F-radiolabeling protocolsa 

 

Using both β-keto sulfonate analogues 72 and 73, attempts were made to use common 

18F-radiolabeling protocols. Treatment of 72 or 73 with Kryptofix 2.2.2 and KF (75oC, 30 

min), followed immediately by deprotection with MeOH/NH3 or NaOMe yielded 

compound 76, but at a low yield (~25%). Additionally, separation of the targeted 

compound from side products required extensive HPLC purification as a consequence of 

the proximities of the peaks. Also, when these steps were analyzed further, the use of 

Kryptofix 222 instead of 18-crown-6, another cryptand, for the fluorination step using both 

substrates proved to be intricate by giving several byproducts in addition to the target 76. 

Through TLC (not shown) and HPLC analysis, the fluorination of tosylated substrate 73 

(Figure 16) was shown to cleaner than for the mesylated substrate 72 (Figure 17). It is 

expected that radiochemical yields would be even lower than those experienced in cold 

conditions. The RP-HPLC analysis of these reaction suggests that isolation of the desired 

product would be difficult. Synthesis of this 4-N-alkyl fluoro β-keto gemcitabine analogue 



38 
 

was successful, but the require fluorination and deprotection conditions coupled with the 

necessary extensive purification make this method impractical for medical radiolabeling. 

 

Figure 16.  Fluorination of 4-N-alkyl 73 (chromatogram A: 73 standard, chromatogram 

B: Crude fluorination reaction) in 50% CH3CN/H2O. 

 

 

 
Figure 17.  Fluorination of 4-N-alkyl 72 (chromatogram A: 72 standard, chromatogram 

B: Crude fluorination reaction) in 50% CH3CN/H2O. 
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3.1.2. 4-N-Alkyl and alkanoyl gemcitabine analogues with silicon-fluoride acceptors 

3.1.2.1. Silicon-fluoride acceptors gemcitabine analogues: Rationale 

In continuation of syntheses of stable gemcitabine analogues with fluorine atom 

compatible for PET imaging, my next goal was the synthesis of 4-N-modified gemcitabine 

analogues with silicon-fluoride-acceptor building blocks suitable for 18F radiolabeling. As 

it has been previously discussed, the addition of an aliphatic chain should affect 

pharmacodynamics and cellular uptake of the parent drug. More importantly, the use of 

silicon-fluoride-acceptor building block will provide another option for to study PET 

imaging through the “Si-F” bond which is stronger than “C-F” bond.87 Also, the “Si-F” 

bond, in the presence of bulky groups, is hydrolytically stable in physiological conditions 

(discussed in section 1.2.3.). The strategy for the synthesis of gemcitabine analogues 

bearing silicon fluoride acceptors attached to an exo-amino group of cytosine ring involve: 

(a) synthesis of gemcitabine analogues having terminal azido or alkyne group at an alkyl 

chain attached to 4-amino group, and (b) copper(I) catalyzed click reaction with the 

corresponding silane reagent having terminal alkyne or azido group, followed by its 

fluorination. This synthesis provide two clear advantages: i) it does not require the sugar 

protection of nucleoside and ii) it utilizes high-yielding copper(I)-catalyzed click 

chemistry. Both of these synthetic approaches lower the number of steps, have increased 

reaction yields and low reaction times. (Figure 18). 
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Figure 18. General synthetic goal of gemcitabine silicon-fluoride acceptors analogues 

3.1.2.2. Silicon-fluoride acceptors gemcitabine analogues: Synthesis 

The condensation of gemcitabine 1 with 11-azidoundecanoic acid  80 under peptide 

coupling conditions [(N-dimethylaminopropyl)-N′-ethyl-carbodiimide (EDC)/1-

hydroxybenzotriazole (HOBt)/ N,N-Diisopropylethylamine (DIPEA)] in DMF at 65°C 

afforded 4-N-(11-azidoundecanoyl)gemcitabine 81 (70%; Scheme 21). The 11-

azidoundecanoic acid 80 was prepared by esterification of the commercially available 11-

bromoundecanoic acid and subsequent azidation (NaN3/DMF) followed by saponification 

with the overall 81% yield (Scheme 20). 

Scheme 20. Synthesis of 11-azidoundecanoic acida 
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 Condensation of 1 with 5-hexynoic acid under similar conditions gave 4-N-

(hexynoyl)gemcitabine 82 but with lower yield and contaminated with mono and/or di 

sugar 5-hexynoate esters. However, transient protection45 of 1 with trimethylsilyl group 

followed by condensation with 5-hexynoic acid in the presence of EDC provided 8245 

(63%; Scheme 21).  

Scheme 21. Synthesis of 4-N-alkanoyl gemcitabine substrates for click reactionsa 

The synthesis of the 4-N-alkyl gemcitabine analogues with silicon-fluoride acceptor 

started from displacement of a 4-N-tosylamine group from 62 with freshly prepared 7-

azidohepylamine 85. Thus, reaction of transient protected with trimethylsilyl group 

gemcitabine with TsCl in the presence of pyridine followed by deprotection with 

methanolic ammonia afforded protected 4-N-tosylgemcitabine28 62 (90%, Scheme 23). 

Treatment of 62 with 7-azidohepylamine 85 effected displacement of the p-

toluenesulfonamido group from the C4 position of the cytosine ring to give 4-N-(7-

azidoheptanyl) gemcitabine 86 (82%).  
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Scheme 22. Synthesis of 7-azido-1-aminoheptanea 

The 7-azidoheptylamine 85 was prepared from 1,7-dibromoheptane by treatment with 

2 eq. of NaN3, followed by selective Staudinger reduction of one of the azido group in 

intermediary 1,7-diazidoheptane 84 with triphenylphosphine in 83% overall yield (Scheme 

22). 

Scheme 23. Synthesis of 4-N-alkyl gemcitabine derivatives for click reactionsa 

Two bifunctional silicon building blocks 88 and 89 (Scheme 24) were synthesized from 

commercially available 4-di-isopropylsilyl-benzylalcohol 87. Benzyl alcohol 87 was 

successively treated with mesyl chloride and NaN3 to give 88 (95%). Benzyl alcohol 87 

was treated with propargyl bromide in the presence of sodium hydride to give 89 (82%). 
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Scheme 24. Synthesis of silane building blocks for click reactionsa 

The 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues were then reacted  with these 

two different bifunctional silicon-fluoride-acceptor building blocks (Scheme 25) using 

copper-catalyzed click reaction conditions (sodium ascorbate and copper(I) sulfate) to give 

90 (92%), 91 (87%), and 92 (90%).  

3.1.2.3. Silicon-fluoride acceptors gemcitabine analogues: Fluorination studies 

Once the silane-modified 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues were 

prepared, in the next step I investigated the fluorination of these compounds with KF, a 

cryptand (18-crown-6) and AcOH in CH3CN under a time frame compatible with 18F 

radiochemical reaction conditions. Model studies were performed with silicon-fluoride-

acceptor benzyl alcohol 87 using temperature and time as variables maintaining KF and 

18-crown-6 constant (Table 4). 

Table 4.  Summary of model fluorination studies 
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Entry Temperature 

(°C) 

Time (min) Fluorination? Yield Comments 

1 30  30 No -  

2 40 30 No -  

3 60 20 Yes 20%  

4 80 20 Yes 50%  

5 80 20 Yes 60% Catalytic 

AcOH added 

                                      

Briefly, when different temperatures were tested (30-80°C) it was clearly concluded 

that increasing temperature led to the fluorinated product 93 in an increased yield. 

Temperatures slightly above room temperature (30 and 40°C), did not give any product 

(entry 1 and 2). When the temperature was increased to 80°C, product formed in acceptable 

yields (entry 4) but the addition of acetic acid (AcOH) increased the yield even more (entry 

5). When Silicon building blocks have been used as fluoride acceptors, many reports have 

shown that addition of acetic acid leads to an increased yield.89, 90, 94, 126 It is important to 

note that the time was always kept under 30 minutes in an attempt to replicate 18F 

radiochemical fluorination conditions. 

It is critical to mention that once the reaction time was over, the crude mixture was 

carefully filtered and diluted to keep the pH of the reaction neutral. Any deviation from 

neutral pH leads to hydrolysis of the Si-F bond to the silanol (Si-OH). This was clearly 

seen when the reactions were followed by TLC since a more polar spot appeared. After 

column isolation, this lower spot was shown to be the corresponding silanol by 1H NMR 

through the absence of the Si-H peak and 19F NMR through the absence of peak at 189 

ppm. This issue was discussed extensively in section 1.2.3. This model study showed that 
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20 minutes at 80°C with the addition of acetic acid was the optimal fluorination condition 

and extra precautions are needed to avoid hydrolysis. This optimized fluorination condition 

was then applied to gemcitabine derivatives 90, 91 and 92.  

 

Scheme 25. Synthesis of the 4-N-acyl/alkyl gemcitabine analogues with the silicon-

fluoride-acceptors a 
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Reaction of  gemcitabine analogues 90, 91 or 92 with KF in the presence of 18-Crown-

6 were carried out in CH3CN at 80 ºC for 20 min followed by quick cooling and filtration, 

followed by column chromatography gave their respective fluorinated products 94 (63%), 

95 (65%) and 96 (62%), respectively (Scheme 25). Besides desired 94-96, the 

corresponding silanols resulting from the hydrolysis of Si-F to Si-OH were also isolated 

during the purification on column (~20-25%). The structure of the silanols were confirmed 

by the absence of hydrogen from of Si-H bond (e.g., in 96 at 3.92 ppm) and lack of fluorine 

signal (e.g., in 96 at -188.86 ppm) by 1H or 19F NMR and additionally defined by HRMS. 

This hydrolysis was not observed in any other reaction that involved silicon-fluoride 

acceptors 87-89.  

3.1.2.4. Silicon-fluoride acceptors gemcitabine analogues: Stability studies 

Stability of 4-N-alkanoyl 90 and 4-N-alkyl 92 substrates as well as their fluorinated 

products 94 and 96 were examined employing RP-HPLC with isocratic mobile phase of 

CH3CN/water containing 0.1% of TFA which is compatible with the purification protocols 

for the [18F]-labeled products (vide infra). In the presence of 0.1% TFA, the 4-N-alkanoyl 

90 were found to be prone to hydrolysis of the amide bond. For example gemcitabine (10-

15%, 30 min) was detected after 90 was dissolved in 35% CH3CN/0.1% TFA (Figure 19).  
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Figure 19.  Stability of 4-N-alkanoyl 90 (chromatogram A: 1, chromatogram B: 90 after 

30 min) in 35 %CH3CN /0.1% TFA 

 

The RP-HPLC of the fluoro product 94 also showed hydrolysis of the acyl chain to 

gemcitabine (15%, 30 min) and Si-F bond to the corresponding silanol (20%, 30 min). 

HPLC after 2 h showed larger amounts of silanol (30%) and gemcitabine (20%; Figure 20).  

 

Figure 20.  Stability of 4-N-alkanoyl 94 (chromatogram A: 1, chromatogram B: 94 after 

2 h) in 35% CH3CN/0.1% TFA. 
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On the other hand, the 4-N-alkyl substrate 92 was found to be stable with only very 

minor formation of byproduct peak(s) (e.g., gemcitabine) observed after long exposure (8 

h) to 35% CH3CN/0.1% TFA (Figure 21).  

 

 
Figure 21. Stability of 4-N-alkyl 92 (chromatogram A: 1, chromatogram B: 92 after 8 h) 

in 25% CH3CN/0.1% TFA. 

 

The fluorinated product 96 in the 25% CH3CN/0.1% TFA in water hydrolyzes to silanol 

(25%, 1 h, 55%, 3 h; Figure 22). However, hydrolysis of 96 in TFA-free system (25% 

CH3CN/water) occurred to a lesser extent (25%, 1 h, 30%, 3 h; Figure 23). These studies 

show that the 4-N-alkyl silanes and fluorosilanes are more stable under acidic conditions, 

indicating an advantage when discussing their potential as PET imaging agents. Moreover, 

the 4-N-alkyl derivatives have a lower chance to decompose/break down as they travel 

through the different environments for biological testing (cell/mice/human). 
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Figure 22. Analysis of stability of 4-N-alkyl 96 (chromatogram A: 96 after 1 h, 

chromatogram B: 96 after 3 h) in 25%CH3CN/0.1% TFA. 

 

 

Figure 23.  Analysis of stability of 4-N-alkyl 96 (chromatogram A: 1, chromatogram B: 

96 after 3 h) in 25%CH3CN/H2O (NO TFA). 
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3.1.2.5. Biological evaluation of the 4-N-alkyl & alkanoyl gemcitabine analogues 

The biological aspect of the 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues was 1) 

assess their cytotoxic activity through preliminary biological evaluations in cancer cell 

lines; 2) to assess their cell permeability, due to their lipophilic nature; 3) to examine their 

resistance to deamination from cytosine to uracil base; and 4) to study their rate of 

hydrolysis to the parent gemcitabine. All of these points would reflect a change in the 

pharmacokinetics and more importantly, the anti-cancer potency of the designed analogues 

compared to the parent drug. Some of these pharmacokinetics deviations have been 

observed and reported in 4-N-alkanoyl derivatives21, 24 and to a much lesser extent with 4-

N-alkyl analogues.28 Most of the examples in literature are lipophilic 4-N-alkanoyl 

gemcitabine analogues, with focus on their resistance to deamination as well as slow 

hydrolysis for a slow release to the parent drug.19, 21, 24  4-N-alkyl modifications have shown 

to be chemically and enzymatically resistant to cleavage, therefore having little to no 

release of gemcitabine, showing very little biological effect on cells.28  

Cytostatic evaluation of 4-N-modified gemcitabine analogues 

In collaboration with the Ramachandran’s group at Nicklaus Children Hospital, Miami 

Children’s Health System cytostatic activities of the 4-N-modified gemcitabine analogues 

81, 86, 90, 91, 92 and 94 were analyzed in L1210 mouse lymphocytic leukemia cell line. 

All compounds were directly tested in free-base form, and were found to have different 

levels of inhibition in a dose-dependent manner. This is demonstrated by the cytostatic 

activity curves in Figure 24 and Table 5. The 4-N-alkylgemcitabines 86 and 92, with both 

IC50 >200 µM, demonstrated no cytostatic activities in L1210 cells (after 72 h incubation) 

in comparison to the 4-N-alkanoylgemcitabine analogues 81, 90, 91 and 94 with IC50 = 
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7.99 μM , IC50 = 7.47 μM, IC50 = 65.3 μM and IC50 = 39.96 μM respectively. These results 

confirmed what previous studies have shown, that the 4-N-alkanoylgemcitabine analogues 

do undergo slow hydrolysis and release the parent gemcitabine for DNA incorporation and 

apoptosis. In the case of the 4-N-alkylgemcitabine analogues, there appears to be no such 

release of the parent drug, leading to the small biological effect on the L1210 cells studied. 

These results also in conformity with our group’s previous studies in other 4-N-alkyl 

gemcitabine analogues.28, 38  With these results in hand, we were intrigued in the outcome 

of the 4-N-alkyl analogues.  

 

Figure 24. In vitro cytotoxicity curve of 4-N-alkanoyl and 4-N-alkyl gemcitabine 

analogues on L1210 mouse leukemic cell lines. Cells were treated with analogues for 72 h 

before the viability of treated cells was determined by MTT assay. Results represent the 

mean of triplicates with error bars indicating standard deviation. 
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Table 5. In vitro cytostatic activity of 4-N-modified gemcitabine analogues on L1210 cell 

line 

 

Analogs IC50 (µM) IC75 (µM) 

 81  7.99±0.41 14.87± 2.40 

86 >200 >200 

90 7.47±0.41 13.33±1.14 

91 65.3±0.61 88.33±1.15 

92 >200 >200 

94  39.96±1.95 78.33±5.51 

 

Additionally, in collaboration with Dr. Barbieri from FIU Department of Biological 

Sciences, we tested cell proliferation of gemcitabine 1 as well as the 4-N-alkyl modified 

gemcitabine analogues 86 and 92, and 4-N-alkanoyl 81 and 92 in HEK 293 cell line (48h).  

Again, all compounds were directly tested in free-base form, and were found to have 

different levels of inhibition in a dose dependent manner. As with the L1210 cell line, as 

the concentration of the nucleosides was increased (50 to 100 µM), cell proliferation 

decreased. Furthermore, all of the 4-N-modified gemcitabine analogues showed lower 

proliferation than the parent drug (57-21% in 50 µM versus 64% in 50 µM gemcitabine; 

Figure 25). This evidently shows that the addition of the lipophilic chain, either in the 

alkanoyl or alkyl analogues, affords a greater incorporation of the drug into cells. Also, 

these results might be due to HEK 293 cells having higher specific activity of CDA, than 

that reported for many other cells and organs, than that reported for many other cells and 

organs. In many tumoral tissues/cells, the CDA activity is lower than 0.1 mU/mg.127, 128 

Additionally, CDA activity is present at higher levels in human cell lines than in rodents 

(L1210 cell line).129, 130 This increase in CDA activity might explain the relatively low 

gemcitabine cytotoxicity but it does not explain the higher cytotoxicity of the 4-N-
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gemcitabine analogues, other than show their lack of potential as CDA substrates. At this 

moment, no further conclusion can be made about these results, and future studies in this 

cell line as well as other cancer cell lines is required. 

 

Figure 25. In vitro cytotoxicity graph of 4-N-alkanoyl (81 & 91) and 4-N-alkyl (86 & 92) 

gemcitabine analogues on HEK 293 cell lines. Cells were treated for 48 h before the 

viability of treated cells was determined by MTT assay. Results represent the mean of 

triplicates  

 

4-N-Alkylgemcitabine analogues membrane permeability studies 

 

As previously discussed, studies done by Pulido et al. showed 4-N-alkylgemcitabines 

9 and 10 showed  relatively weak to modest cytostatic activity in a number of cancer cell 

lines due to a lack of conversion to gemcitabine.28 These outcome with this type of 

analogue was not clear, and it was assumed that 4-N-alkylgemcitabines either undergo a 

different metabolic process or a cellular uptake was poor. In collaboration with Dr. 

Barbieri, we studied a series of biological experiments to better understand the 

outcome/effect of 4-N-alkylgemcitabine analogues in cells.  
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Cell Permeability: 4-N-Alkylgemcitabine analogue 86 HPLC studies 

We decided to monitor the outcome of the analogue 86 after 24 h incubation period in 

HEK 293 human embryonic kidney cell line. The initial goal of this experiment was to 

investigate if 4-N-alkylgemcitabine analogues enter the cells, and if so, are they being 

hydrolyzed to the parent molecule, leading to incorporation in DNA or were they trapped 

in the cell and/or nucleus. Analogue 86 was used as a model and HPLC analysis was 

performed to examine if the analogue is incorporated into the cell. 

After 24 h incubation of HEK 293 cells with 86, the culture medium, which contained 

the gemcitabine analogue and the cells adhered to the flask were separated. The cells were 

then lysed. With the two samples in hand, each was then extracted with an organic solvent 

to recover the analogue and analyzed using reversed-phased HPLC by comparing each 

sample to the retention time of standard 86 (25 min, Figure 26). 

 

Figure 26. HPLC chromatograph of 86 in 20% CH3CN/H2O 

HPLC analysis was done of three samples: the blank cell sample that did not contain 

86, the cell culture and cell sample of HEK 293 cells after they were incubated with 86 for 
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24 hours. The results clearly confirm that in both the cell culture sample, and the cell 

sample contained 86. These results evidently demonstrate that 86 passes through the cell 

and even after 24 h of incubation, does not undergo hydrolysis (Figure 27). 

 

Figure 27. HPLC analysis of 86 in CH3CN/H2O after incubation in HEK 293 cell line 

(chromatogram A: cell blank, chromatogram B: supernatant after 24 h, chromatograph C: 

cell sample after 24 h) in 20% CH3CN/H2O. 

 

Cell Permeability: Fluorescence microscopy studies with 4-N-Alkylgemcitabine 

analogue 86 

 

In addition to the HPLC analysis of incorporation of 86 into the cell, we decided to use 

confocal fluorescence microscopy in order to visualize where in the cell 86 is incorporated. 

Specifically, we wanted to evaluate the ability of 86 to be metabolically incorporated into 

the cell by exploring its ability to be used for click chemistry. 

Visualization of cells, its components and its interaction with small and large 

biomolecules such as proteins, peptides and nucleosides have been done through the use of 

highly fluorescent probes.131-135 These probes or dyes, which are fluorophores, are typically 
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designed to react within a specific region of the sample, such as a specific functional group 

like amines or thiols, or in my case, an azido group for a copper catalyzed click reaction 

(CuAAC) with a fluorescent dye that contains a terminal alkyne.136, 137 

HEK 293 cells were treated with 100 µm of 86 for 24 h, fixed, and stained with Fluor 

488 alkyne in the presence of copper(I) in order to perform a click reaction with the azido 

bearing 86. If the click reaction occurs in the cell, we would then observe fluorescence, 

which would then demonstrate that 86 crosses the cell membrane but also show where in 

the cell 86 is incorporated and trapped (Figure 28).  

Figure 28. General outline for fluorescence labeling experiment 

Incubation of HEK 293 cells with  4-N-alkylgemcitabine 86 followed by treatment with 

Fluor 488 alkyne was successful after 1 hour and exhibited strong CuAAC staining (seen 

in green) that colocalized with the strong nuclear noncovalent stain DAPI (seen in blue, 

Figure 29). This shows that 86 is incorporated into the cell but also trapped in the nucleus 

(seen through DAPI staining). Additionally, it appears that it does not undergo hydrolysis 

compared to 4-N-alkanoylgemcitabine analogues. In their design, it appears that 4-N-alkyl 

analogues are not substrates for dCK, as the cytotoxicity activity in L1210 cells are low, 
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but chemical stability is gained. In accordance with the HPLC stability studies, our imaging 

studies show that 4-N-alkyl are stable and that they are trapped inside the cell/nucleus. 

Based on the activity of 4-N-alkanoyl analogues of gemcitabine, whose lipophilicity are 

similar to our 4-N-alkyl analogues, we can expect that the 4-N-alkyl analogues would be 

up taken by variety types of cells but have a lower chance to decompose/break down as 

they travel through the different environments for biological testing (cell/mice/human), 

including PET imaging. 

 

Figure 29. Labeling of 86 in HEK 293 cells for 24 h, followed by fixation and addition 

of Fluor 488 alkyne and copper(I). 

 

 

3.1.2.6. [18F]-Labeling of 4-N-alkanoyl and alkyl gemcitabine radioligands 

Following cold fluorination studies, radiosynthesis of [18F]-4-N-alkanoyl and 

alkylgemcitabine radioligands 94 and 96 were performed in the laboratory of Dr. Michael 

van Dam from the Crump Institute for Molecular Imaging using macroscale and microscale 

in simple microfluidic chip protocols.  

 



58 
 

Macroscale radiosyntheses of 4-N-alkanoyl [18F]94 and 4-N-alkyl [18F]96 

The one-pot syntheses of 4-N-alkanoyl [18F]94 and 4-N-alkyl [18F]96 were performed 

on the ELIXYS FLEX/CHEM radiosynthesizer and adapted from literature.99 Thus, by 

adding silane precursor 90 in DMSO with 1% v/v AcOH  to the previously dried 

[18F]KF/K222 complex and reacting at 100°C for 25 min, followed by HPLC purification, 

4-N-alkanoyl [18F]94  in ~0.5% (n = 1) decayed-corrected crude radiochemical yield (Table 

6, Figure 30). Analogously, the [18F] fluorination of precursor 92 gave 4-N-alkyl [18F]96 

with 6.6 ± 3.2% (n = 5) decayed-corrected isolated yield and  >99% radiochemical 

purity.(Figure 31, see experimental section for more detailed protocol).  

Scheme 26. Radiosynthesis of [18F] 4-N-alkanoyl and alkyl gemcitabine analogues with 

silicon-fluoride acceptors 

 

 

Table 6. 18F radiosynthetic yields of 4-N-modified gemcitabine analogues 94 and 96 

 

Entry Analogue Macroscale 

radiosynthesisa 

Microscale 

radiosynthesisb 

Average decay-

corrected isolated 

RCY (%) 

Decayed corrected 

crude RCY (%) 

 

1 94 0.5 10 

2 96 6.6 ± 3.2 (n = 5) 24.4 ±  4.1 (n = 5)  

 

a 2-3 mg scale reactions 

b 0.2 mg scale reactions 
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Figure 30. Macroscale radiosynthesis of 4-N-alkanoyl [18F]94 (chromatogram A: UV 

detector, chromatogram B: gamma detector, radiolabeled product in green) in 80% 

CH3CN/0.1% TFA 

 

Figure 31. Macroscale radiosynthesis of 4-N-alkyl [18F]96 (chromatogram A: UV detector, 

chromatogram B: gamma detector, radiolabeled product in green) in 60% CH3CN/H2O 
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Microscale radiosyntheses of 4-N-alkanoyl [18F]94 and 4-N-alkyl [18F]96 

The microscale synthesis of [18F]94 and 96 was performed in microdroplets on simple 

microfluidic chips.138, 139 By adding silane precursor 90 or 92 in DMSO with 1% v/v AcOH 

to the previously dried [18F]KF/K222 residue on one chip, covering with a second chip, and 

heating at 100°C for 20 min, a decay-corrected crude radiochemical yield(without 

purification) for 4-N-alkanoyl [18F]94 was 10% (n = 1) (Figure 32) and for 4-N-alkyl 

[18F]96 was 24.4 ±  4.1% (n = 5) (Figure 33; for more detailed protocol see experimental 

section). 

 

Figure 32. Microscale radiosynthesis of 4-N-alkanoyl [18F]94 (chromatogram A: UV 

detector, chromatogram B: gamma detector, radiolabeled product in red) in 80% 

CH3CN/0.1% TFA 
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Figure 33. Microscale radiosynthesis of 4-N-alkyl [18F]96 (chromatogram A: UV detector, 

chromatogram B: gamma detector) in 70% CH3CN/H2O 

 

3.1.2.7. Biological and PET evaluation of [18F]-4-N-alkyl gemcitabine radioligand 96 

In continuing collaboration with Dr. Michael van Dam from the Crump Institute for 

Molecular Imaging, a series of preliminary biological evaluations were performed with 

[18F]-4-N-alkyl gemcitabine radioligand 96. These studies included formulationstability 

analysis, in vivo imaging and metabolite analysis. 

Saline Formulation stability studies of [18F]-4-N-alkyl gemcitabine radioligand 96 

In order to understand the stability of radioligand 96, the radioligand was dissolved in 

saline solution and passed through a sterilization filter to obtain its final formulation. The 

sample was then analyzed via radio-HPLC in 1 h intervals for a total of 4 h. The majority 

of the tracer remains intact (100% to ~90%, purity >95%) for at least 4 h (n = 2). More 
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studies need to be performed in order to have a real conclusion of the stability of 

radioligand 96.  

In vivo imaging of [18F]-4-N-alkyl gemcitabine radioligand 96 

The distribution of [18F]96 in vivo was studied using static and dynamic PET, 

immediately followed by computed tomography (CT) acquisition of non-tumor bearing 

mice (WT C57B/6). For static PET scans, a WT C57BL/6 mouse was injected with 

approximately 75 µCi [18F]96 via tail vein and imaged after 1 h.  For dynamic PET scans, 

dynamic microPET imaging was started concurrently at the beginning of a 10 sec infusion 

via a catheter with approximately 75 µCi of [18F]96. All images were corrected for CT-

based photon attenuation, detector normalization and radioisotope decay (scatter correction 

was not applied) and converted to units of percent injected dose per gram (%ID/g). 

The dynamic uptake of [18F]96 is shown as a series of frames (0 h to 1 h; Figures 34 

and 35). Figure 36 shows the time course of uptake in various organs. Note that the higher 

%ID/g in the latter figure, especially in the bladder may indicate a poor injection for the 

dynamic scan (i.e. much of the tracer did not get into the circulation). In the dynamic PET 

experiment, we observe the tracer first in the GI tract, gallbladder and liver but significant 

bone uptake is evident after 15-20 min post-injection (Figure 34, 35 and 36). One cause of 

bone uptake is defluorination of the PET tracer, releasing [18F]fluoride, which is strongly 

taken up by bone. Biodistribution from the 10 min static scan (Figure 37) also shows 

significant bone uptake. More detailed analysis of tracer metabolites in vivo is needed to 

determine whether defluorination is occurring or some other effect is leading to high bone 

uptake. 
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Figure 34. Series of frames from dynamic PET scan of WT C57BL/6 mouse injected 

with [18F]96 (up to 1 h). Images are coronal maximum intensity projections. 

 

Figure 35.  Series of frames from dynamic PET scan of WT C57BL/6 mouse injected 

with [18F]96 (up to 1 h). Images are sagittal maximum intensity projections. 
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Figure 36. (Left) Dynamic biodistribution of [18F]96  in WT C57BL/6 mouse. (Right) 

Maximum intensity projection at 1 h post-injection (left: coronal; right: sagittal). 

 

 

Figure 37. (Left) Biodistribution of [18F]96 from 10 min static scan in WT C57BL/6 mouse 

at 1 h post-injection. (Right) Maximum intensity projection of 10 min static scan at 1 h 

post-injection (left: coronal; right: sagittal). 
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Metabolite analysis of [18F]-4-N-alkyl gemcitabine radioligand 96 

In order to study the uptake of radioligand 96 by red blood cells, ex vivo and in vivo 

experiments were performed with mouse blood. Ex vivo incubation of 0.5 mCi of [18F]96 

for 30 min at 37°C shows that 2.5% of radioactivity is in the cells, while 97.5% is found in 

the plasma. In the in vivo experiment, a mouse was injected via tail vein with 1 mCi of 

[18F]96. After 30 min, 800 µL was collected. Analysis shows 3.2% of radioactivity in the 

cells and 96.8% is found in the plasma. These results show that after 30 incubations, most 

of [18F]96 is available to the tissues, but the samples need to be analyzed via radio-HPLC 

in order to check that this radioactivity is due to intact [18F]96.  

3.2. Reduction of sugar lactones to hemiacetals using lithium triethylborohydride 
 

3.2.1. Reduction with LTBH: Rationale 

The goal of this project was to explore the use of lithium triethylborohydride (LTBH) 

as a reducing agent for the conversion of sugar lactones to hemiacetals without the over 

reduction to their diol products. As it was discussed in the introduction, there are several 

reducing agents that have been utilized for the transformation of lactones to hemiacetals. 

These reducing agents range from the common NaBH4 and DIBAL-H, to more 

sophisticated methods such as catalytic reduction with generated in situ titanocene(III) 

hydride.121, 122Although the application of LTBH in organic synthesis is well 

documented,140-143 including the reduction of lactams to cyclic hemiaminals 

(azahemiacetals), including in sugar lactams,110 the reduction of lactones to the lactols with 

LTBH is underdeveloped. In the synthesis of 4-C-alkyl/aryl-substituted S-

ribosylhomocysteine (SRH) analogues,112 which were prepared by coupling of 

homocysteine with 4-substituted ribonolactone derivatives, a project that I was involved 
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in, LTBH was used to reduce a series 4-C-alkyl/aryl-modified lactones to their 

corresponding hemiacetals (Scheme 27). These hemiacetals were then coupled to 

homocysteine to yield 4C-SRH analogues.  

Scheme 27. Synthesis of 4C-SRH analogues involving  reduction of ribonolactones with 

LTBH112 
 

 In a series of selective reduction papers from 1980, Brown reported that LTBH, when 

used in excess (2 equiv.), efficiently reduced esters to alcohols and lactones (γ-

butyrolactone) to diols.144 This protocol has been extensively used in organic synthesis, but 

reduction to hemiacetals has not been explored. This lead to this intensive study on LTBH 

to better understand its use for sugar lactones. 

3.2.2. Reduction optimization and study of parameters  

Initially, I wanted to test the reduction of lactones to hemiacetals with LTBH with a 

readily available sugar lactone. We chose 5-O-benzyl-2,3-O-isopropylidene-D-ribono-1,4-
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lactone 97 (Scheme 28). In a previous project done by our group, reduction of protected 

sugar lactams was done with CH2Cl2 at 0 oC in 30 min-1 h. Because of this, we decided to 

start with similar conditions.  

Thus, treatment of 97 with 1.0 equiv. or 1.1 equiv. of LTBH (CH2Cl2/0 oC/30 min) 

showed about 90-95% conversion to the ribofuranose 98 with ~5-10% of substrate 97 

remaining unchanged (1H NMR; Table 7, entries 1 and 2). However, treatment of 97 with 

1.2 equiv. of LTBH gave a complete conversion to hemiacetal 98 (α/β, 1:4) after 30 min 

without noticeable detection of the peaks for the lactone 97 and diol 99 on the 1H NMR 

spectra of the crude reaction mixture (entry 3). Effect of different ratios of LTBH to lactone 

97 as well as temperature, reaction time and solvent are summarized in Table 7. 

 Briefly, increasing the ratio of LTBH to 1.5 equiv. still gives hemiacetal 98 as a single 

product (entry 4). However, the increase to 2.5 equiv. of LTBH led to substantial formation 

of diol 99 (entry 5). Yet, even when the reduction was carried out for longer time (up to 22 

h) hemiacetal 98 was still isolated although in lower yields. Interestingly, temperature did 

not have a significant effect on the reduction of lactone 98 to hemiacetal 99 and similar 

results were obtained at -78 °C, 0 °C, or r.t. (entries 4, 6 and 7). Additionally, reduction of 

97 in toluene or chloroform did not affect the reduction (entries 8 and 9) but interestingly, 

reduction in THF gave substantially lower yield (entry 10).  

 

Scheme 28. Reduction of the protected ribono-1,4-lactone 97 with LTBH 
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Table 7. Effect of various reaction parameters on reduction of 97 with LTBHa 

Entry Solvent LTBH 

(equiv.) 

Temperature 

(°C) 

Yieldb 98 

(%) 

Yieldb 

99 (%) 

Ratiob 

97:98:99 

1 CH2Cl2 1.0 0 90 - 1:9:0 

2 CH2Cl2 1.1 0 95 - 1:19:0 

3 CH2Cl2 1.2 0 99 (95)c - 0:1:0 

4 CH2Cl2 1.5 0 99 - 0:1:0 

5 CH2Cl2 2.5 0 40 (34)c 60 (55) c 0:4:6 

6 CH2Cl2 1.5 20 94 - 0:1:0 

7 CH2Cl2 1.5 -78 95 - 0:1:0 

8 Toluene 1.5 0 93 - 0:1:0 

9 CHCl3 1.5 0 95 - 1:19:0 

10 THF 1.5 0 30 - 7:3:0 

a Reduction was performed on 0.15 mmol scale of 97 with 1 M solution of LTBH in THF. 
b Determined by 1H NMR of the crude reaction mixture. 
c Isolated yield. 

 

3.2.3. Reaction profile of reduction of lactone 97 to hemiacetal 98 

The reaction profile for the conversion of lactone 97 to hemiacetal 98 and diol 99, was 

studied using 1H NMR using 1.2 equiv. and 2.5 equiv. of LTBH. In both cases (1.2 and 2.5 

equiv.), complete conversion of lactone 97 to lactol 98 was observed in less than 5 min, 

making it important to further investigate how quickly the reaction actually is and how it 

is affected by time.  
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 Figure 38. Reduction of lactone 97 (36 mM) with 1.2 equiv. of LTBH (0 oC/CH2Cl2). The 

profile for the reactions was measured by integrating the peaks of the 1H NMR spectra 

(e.g., disappearance of the H4 peak at 4.65 ppm for 98 and appearance of the H1 peak at 

5.28 ppm for 99). 

 

Figure 39. Reduction of lactone 97 (42 mM) with 2.5 equiv. of LTBH (0 oC/CH2Cl2). The 

profile for the reactions was measured by integrating the corresponding peaks of the 1H 

NMR spectra (e.g., disappearance of the H4 peak at 4.65 ppm for 97 and 

appearance/disappearance of the H1 peak at 5.28 ppm for 98 and appearance of the H3 

peak at 4.10 ppm for 99). 
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It is important to also note that in the reaction with 1.2 equiv. of LTBH no diol 99 was 

ever detected. Reduction of 97 with 2.5 equiv. of LTBH was completed within 1 min 

showing exclusive formation of lactol 98. Interestingly, longer reaction time showed a slow 

disappearance of lactol 133 with increasing formation of diol byproduct 99 [0.5 h, 98 

(72%)/99 (28%); 2 h, 98 (65%)/99 (35%), see 1H NMR reaction profile in experimental 

section 4.6.1., which was also observed in our preliminary reaction parameters. Using 1.2 

equiv. of LTBH leads to no diol formation, even if left reacting for long periods of time 

and at room temperature, but when excess of LTBH is used, such as 2.5 equiv., diol 

formation requires longer time, making the conditions optimal for fast reaction time. 

3.2.4. Reduction of several sugar lactones  

To probe the generality of the reduction of sugar lactones to the corresponding 

hemiacetals with LTBH, several γ- and δ-lactones were tested (Table 8). Thus, reduction 

of 2,3-O-isopropylidene-ribono-1,4-lactones with trityl (100), benzoyl (102) or acetyl 

(104) protection at 5-hydroxyl provided the corresponding lactols 101, 103, and 105 

(entries 2-4). The trityl and benzoyl protection groups were found to be stable under these 

reducing conditions. Reduction of the 5'-O-acetyl lactone 104 yielded also substantial 

amount of 2,3-O-isopropylidene-α/β-D-ribofuranose after 30 min as a result of the 

reduction of the acetyl ester. However, reduction with 1.1 equiv. of LTBH and shorter 

reaction time (10 min) provided lactol 105 in 70% yield (entry 4). Reduction of 2,3,5-tri-

O-acetyl lactone 106 gave hemiacetal 107 but in low yield (30%, entry 5), again, due to 

the reductions of the acetyl esters. Conversion of 2,3-O-isopropylideneribono-1,4-lactone 

108 to ribose 109 required an increased amount of LTBH (1.6 equiv.; entry 6). Reduction 

of the 3,5-O-TBDMS-2-deoxy-D-ribono-1,4-lactone 110 also proceeded efficiently to give 
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the 2-deoxyribose product 111 when 1.5 equiv. of LTBH was used (entry 7). However, 

reduction of 5-O-TBDMS-2,3-dideoxy-D-ribono-1,4-lactone 112 yielded both the 2,3-

dideoxyribose 113 and the corresponding diol byproduct (entry 8). Moreover, reduction of 

D-ribono-1,5-lactone 114 efficiently produced the corresponding ribopyranose derivative 

115 in 88% yield (entry 9). 

The lactones derived from hexoses were also efficiently reduced with LTBH to the 

corresponding hemiacetals. Thus, reduction of 2,3:5,6-Di-O-isopropylidene-D-gulono-

1,4-lactone 116 gave gulonofuranose 117 (91%, entry 10). Treatment of trimethylsilyl 

protected glucono-1,5-lactones 118 with LTBH yielded glucopyranose 119 (α/β, 2:1; entry 

11). Analogous reduction of the fully acetylated D-glucono-1,5-lactone 120 provided 

glucose 121 in low yield due to concomitant reduction of the ester protecting group (entry 

12). Attempted reduction of the fully benzoylated glucono-1,5-lactone gave similar results 

(entry 12). However, reduction of glucono-1,5-lactone 122 bearing benzylidene and tert-

butyldimethylsilyl protection groups proceeded efficiently to give lactol 123 in 80% yield 

(entry 13). Hence, reduction of sugar lactones with LTBH to lactols appears to have a 

general character and is clearly compatible with acid-, base- and fluoride-labile protecting 

groups commonly used in carbohydrate chemistry. 

Table 8. Reduction of various sugar lactones with LTBH to lactolsa 
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Entr

y 

Substrate Product LTBH 

(equiv.

) 

Yield b 

(%) 

1 

  

1.2 90c 

2 

  

1.2 89 

3 

  

1.2 85 

4 

  

1.1 70d 

5 

  

1.1 30 

6 

  

1.6 90 

7 

  

1.5 72 
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8 

  

1.2 37e 

9 

  

1.2 88 

10 

  

1.2 91 

11 

  

1.2 84 

12 

  

1.1 20f 

13 

 

 

1.2 80 

 a Reduction was performed on 0.1-1.0 mmol scale of lactones with 1 M solution of LTBH/THF.  
b Isolated yield as a mixture of α/β anomers. 
c Reduction on 1.0 mmol scale. 
d With 1.2 equiv. of LTBH the 2,3-O-isopropylidene-α/β-D-ribofuranose was isolated in 37% yield. 
e (R)-5-(benzyloxy)pentane-1,4-diol (42%) and the residual amount of unchanged 112 (~5%) was 

also isolated. 
f Analogous reduction of 2,3,4,6-tetra-O-benzoylglucono-1,5-lactone145 yielded 2,3,4,6-tetra-O-

benzoylglucopyranose (~15-20%; TLC, 1H NMR). 
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Reduction of some sugar lactones was also performed with NaBH4 and DIBAL-H in 

order to compare our LTBH protocol with these commonly used reducing agents. Thus, 

reduction of 100 or 110 with NaBH4 (1.1 equiv.) in EtOH (0 °C) after 30 min showed only 

a small conversion to the lactol products 101 and 111 (~5-10%) with the unchanged 

lactones (~80%) and the corresponding diols (~5-10%) present (TLC, 1H NMR). 

Increasing the amount of NaBH4 (5 equiv.) resulted in the formation of the corresponding 

diols as the major product (~70%). Reduction of 110 with DIBAL-H in CH2Cl2 (-78 °C, 

30 min.) yielded lactol 111 (90%). However, analogous treatment of 5-O-acetyl lactone 

104 with DIBAL-H yielded mixture (~2:3) of desired lactol 105 and the lactol 109 as a 

result of the concomitant reduction of the acetyl ester.  

Reduction of γ-butyrolactone 124 with LTBH (1.8 equiv./CH2Cl2/0 oC; Method A, 

Scheme 29] gave 1,4-butanediol 125 as the sole product. Various modifications of the 

reduction protocol [LTBH (0.5-1.2 equiv.)/CH2Cl2/-78 oC or 0 oC or r.t./30 min to 2 h] 

produced diol 125 in addition to different quantities of the unchanged lactone 124, but the 

corresponding lactol was not observed. This is in agreement with the results reported by 

Brown that reduction of 124 with LTBH (2.0 equiv.; THF/-78 oC; Method B) gave 125 in 

94%.144  

 

Scheme 29. Reduction of γ-butyrolactone with LTBH to 1,4-butanediol 
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Typically, the reduction of the tested sugar lactones with LTBH in CH2Cl2 is higher 

yielding when the lactone had a larger number of hydroxyl groups (e.g., ribonolactone > 

2-deoxyribonolactone >> 2,3-dideoxyribonolactone). The fact that reduction of 2,3-

dideoxyribonolactone with LTBH can be controlled to give the lactol product, while under 

similar conditions γ-butyrolactone is converted to the diol provides support for the 

assumption that chelation of the borane reagent to the exocyclic sugar hydroxyl group 

(oxygen) is critical in this reduction process (Figure 40). Buchwald invoked coordination 

of the titanium center to the lactone's oxygen atoms during reduction of lactones to lactols 

with titanocene(III) hydrides.121 The fact that reduction with LTBH gave much better yields 

in CH2Cl2 than in THF (Table 7) may be attributed to the additional coordination of LTBH 

reagent to the more polar THF solvent which can result in weakening of the LTBH 

chelation to the lactone oxygens. Our studies also showed that lactones containing an ester 

protection group (acetyl or benzoyl) can be chemoselectively reduced to the lactols under 

certain reduction conditions with LTBH/CH2Cl2 combination while the ester moiety 

remains intact. 

 

Figure 40. Proposed chelating of borane with exocyclic sugar oxygens 
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4. EXPERIMENTAL 

4.1. General Procedures 

The 1H (400 MHz), 13C (100 MHz), or 19F (376 MHz) NMR spectra were recorded at 

ambient temperature in solutions of CDCl3 or MeOH-d4, as noted. The reactions were 

followed by TLC with Merck Kieselgel 60-F254 sheets, and products were detected with 

a 254 nm light or with Hanessian’s stain. Column chromatography was performed using 

Merck Kieselgel 60 (230−400 mesh). Reagent-grade chemicals were used and solvents 

were dried by reflux distillation over CaH2 under nitrogen gas unless otherwise specified. 

The carboxylic acid and amine derivatives used for the coupling with gemcitabine were 

either commercially available or prepared as described. 4-(di-iso-propylsilyl)benzylalcohol 

was commercially available from Sigma Aldrich.  Reactions were carried out under a N2 

atmosphere. Phenomenex Gemini RP-C18 with an isocratic mobile phase (various % 

CH3CN/H2O) was used for some HPLC purification.  

4.2. Synthesis of 4-N-Alkyl β-keto sulfonate gemcitabine analogues 

tert-Butyl N-(10-undecenyl) carbamate (57). di-tert-Butyl-dicarbonate (2.20 g, 10.04 

mmol) was added to a solution of 56 (1.00 g, 5.91 mmol) in MeOH (20 mL) and stirred at 

ambient temperature. After 18 h, the volatiles were evaporated under reduced pressure and 

the resulting residue was then column chromatographed (30% EtOAc/hexane) to give 57146 

(1.45 g, 92%) as a white solid. 1H NMR (CDCl3) δ 1.27 (s, 11H, C(CH3)3 + CH2), 1.33-

1.38 (m, 10H, 5 × CH2), 1.56-1.59 (m, 2H,  CH2), 2.03 (dd, J = 6.8, 14.4 Hz, 2H, CH2), 

3.10 (t, J = 7.1 Hz, 2H, CH2), 4.48 (br, 1H, NH), 4.96 (m, 2H, CH2), 5.81 (m, 1H, CH). 

tert-Butyl N-(10,11-Dihydroxyundecan-1-yl) carbamate (58). 5% mol of OsO4 (50 

μL, cat. amount) and N-methylmorpholine-N-oxide (87.8 mg, 0.75 mmol) was added to a 
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solution of 57 (130 mg, 0.50 mmol) in acetone (2 mL) and water (0.2 mL), and the mixture 

was stirred at 0 °C to ambient temperature under Nitrogen. After 4 h, the reaction mixture 

was diluted with CH2Cl2 (20 mL) and partitioned with H2O. The organic layer was washed 

with saturated NaHCO3/H2O (15 mL), and brine (15 mL), dried over Na2SO4, and 

evaporated, and the resulting residue was column chromatographed (70% EtOAc/hexane) 

to give 58 (140 mg, 92 %). 1H NMR (CDCl3) δ 1.27 (s, 11H, C(CH3)3 + CH2), 1.35-1.37 

(m, 14H, 7 × CH2), 3.07 (t, J = 7.1 Hz, 2H, CH2), 3.41 (dd, J = 7.7, 11.0 Hz, 1H, CH), 3.63 

(dd, J = 3.0, 11.0 Hz, 1H, CH), 3.67-3.70 (m, 1H, CH). 

tert-Butyl N-(10,11-Dihydroxy-11-O-Benzyl-undecane) carbamate (59). Benzyl 

bromide (47 µL, 67.7 mg, 0.40 mmol) and Ag2O (115 mg, 0.50 mmol) was added to a 

solution of 58 (100 mg, 0.33 mmol) in CH2Cl2 (4 mL). The mixture was stirred at ambient 

temperature under Nitrogen. After 18 h, the reaction mixture was diluted with CH2Cl2 (20 

mL) and washed with saturated NaHCO3/H2O (20 mL), and brine (15 mL), dried over 

Na2SO4, and evaporated, and the resulting residue was column chromatographed (30% 

EtOAc/hexane) to give 59 (66 mg, 51 %). 1H NMR (CDCl3) δ 1.26 (s, 11H, C(CH3)3 + 

CH2), 1.43-1.45 (m, 14H, 7 × CH2), 3.07-3.10 (m, 2H, CH2), 3.32 (dd, J = 8.0, 9.4 Hz, 1H, 

CH), 3.50 (dd, J = 3.0, 9.4 Hz, 1H, CH), 3.78-3.82 (m, 1H, CH), 4.51 (s, 2H, CH2), 7.26-

7.43 (m, 5H, Ar). 

tert-Butyl N-(11-O-Benzyl-10-oxoundecanyl) carbamate (60). A freshly prepared 

solution of Collins reagent [CrO3 (100 mg, 1.00 mmol), pyridine (81 µL, 100 mg, 1.00 

mmol), and Ac2O (190 µL, 204 mg, 2.00 mmol) in CH2Cl2 (2 mL)] was added to a stirred 

solution of 59 (100 mg, 0.25 mmol) in CH2Cl2 (8 mL) at ambient temperature. The resulting 

mixture was stirred for 1 h. and was immediately column chromatographed (EtOAc) to 
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give 60 (84.5 mg, 86 %). 1H NMR (CDCl3) δ 1.26 (s, 11H, C(CH3)3 + CH2), 1.44 (m, 10H, 

5 × CH2), 1.56-1.59 (m, 2H, CH2), 2.44 (t, J = 7.5 Hz, 2H, CH2), 3.09 (m, 2H, CH2), 4.06 

(s, 2H, CH2), 4.59 (s, 2H, CH2), 7.28-7.42 (m, 5H, Ar). 

tert-Butyl N-(10,11-Dihydroxy-11-O-methanesulfnonylundecanyl) carbamate 

(64). Mesyl chloride (29.8 mg, 20 µL, 0.26 mmol) was added to a solution of 58 (80 mg, 

0.26 mmol) in anhydrous CH2Cl2 (2 mL) in the presence of Et3N (39.5 mg, 54 µL, 0.39 

mmol). The mixture was stirred at -20 °C. After 20 minutes, the reaction mixture was 

diluted with CH2Cl2 and partitioned with HCl (0.1 M, 15 mL) and H2O (15 mL). The 

organic layer was washed with saturated NaHCO3/H2O (15 mL), and brine (15 mL), dried 

over Na2SO4, and evaporated, and the resulting residue was column chromatographed 

(40% EtOAc/hexane) to give 64 (54 mg, 55 %). 1H NMR (CDCl3) δ 1.28 (s, 11H, C(CH3)3 

+ CH2), 1.44 (m, 14H, 7 × CH2), 3.08 (s, 3H, Ms), 3.09 (m, 2H, CH2), 3.70 (m, 1H, CH), 

4.10 (dd, J = 7.2, 10.6 Hz, 1H, CH), 4.25 (dd, J = 2.9, 10.5 Hz, 1H, CH).  

tert-Butyl N-(11-O-Mesyl-10-oxoundecanyl) carbamate (65). A freshly prepared 

solution of Collins reagent [CrO3 (52 mg, 0.52 mmol), pyridine (8 µL, 52 mg, 0.52 mmol), 

and Ac2O (102 µL, 107 mg, 1.04 mmol) in CH2Cl2 (2 mL)] was added to a stirred solution 

of 64 (50 mg, 0.13 mmol) in CH2Cl2 (8 mL) at ambient temperature. The resulting mixture 

was stirred for 1 h. and was immediately column chromatographed (45 % EtOAc/hexane) 

to give 65 (45 mg, 92 %). 1H NMR (CDCl3) δ 1.28 (s, 11H, C(CH3)3 + CH2), 1.44 (m, 10H, 

5 × CH2), 1.58 (m, 2H, CH2), 2.45 (t, J = 7.4 Hz, 2H, CH2), 3.10 (m, 2H, CH2), 3.20 (s, 

3H, Ms), 4.49 (s, 2H, CH2). 

tert-Butyl N-(11-Fluoro-10-oxoundecanyl) carbamate (66). To a solution of KF (6.4 

mg, 0.11 mmol), K2CO3 (15.2 mg, 0.11 mmol), Kryptofix 2.2.2 (41 mg, 0.11 mmol) in 
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CH3CN (2 mL), 65 (10.0 mg, 0.026 mmol) was added and stirred at 80 °C. After 25 min, 

the reaction mixture was quickly cooled in a water bath and filtered. The crude product 

was evaporated, and the resulting residue was column chromatographed (35% 

EtOAc/hexane) to give 66 (4.1 mg, 50 %). 1H NMR (CDCl3) δ 1.28 (s, 11H, C(CH3)3 + 

CH2), 1.44 (m, 10H, 5 × CH2), 1.58 (m, 2H, CH2), 2.44 (t, J = 7.5 Hz, 2H, CH2), 3.10 (m, 

2H, CH2), 4.75 (d, J = 47.7 Hz, 2H, CH2F). 19F NMR δ -227.41 (t, J = 47.7, 1F). 

4-N-(p-Toluenosulfonyl)-2′-deoxy-2′,2′-difluorocytidine (62). TMSCl (2.5 mL) was 

added to a suspension of Gemcitabine 1 (300 mg, 1.0 mmol) in anhydrous pyridine (5 mL), 

and the mixture was stirred at ambient temperature under Nitrogen. After 2 h, TsCl (1.80 

g, 10.01 mmol) was added, and the reaction mixture was heated to 60°C and kept stirring. 

After 24 h, volatiles were evaporated, and the resulting residue was treated with 

MeOH/NH3 (5 mL) and stirred at ambient temperature for 8 h. The volatiles were then 

evaporated under reduced pressure, and the resulting residue was column chromatographed 

(90% EtOAc/Hexane) to give 6228 (378.7 mg, 90%) as a white-yellow solid. 1H NMR 

(CD3OD) δ 2.42 (s, 3H,CH3), 3.78 (dd, J = 3.4, 12.8 Hz, 1H, H5′), 3.90−3.95 (m, 2H, 

H4,H5″),4.28 (dt, J = 8.4, 12.0 Hz, 1H, H3′), 6.13 (dd, J = 5.3, 9.5 Hz,1H, H1′), 6.65 (d, J 

= 8.2 Hz, 1H, H5), 7.36 (d, J = 8.0 Hz, 2H, Ar), 7.79 (d, J = 8.3 Hz, 2H, Ar), 7.99 (d, J = 

8.1 Hz, 1H, H6). 13C NMR δ 21.43, 60.34 (C5′), 70.21 (dd, J = 18.8, 27.2 Hz, C3′), 82.99 

(d, J = 8.4, C4′), 85.46 (dd, J = 23.9, 41.3 Hz, C1′), 98.46 (C5), 123.84 (t, J = 258.7 Hz, 

C2′), 127.58 (Ar), 130.52 (Ar), 140.71 (Ar), 142.62 (C6), 144.66 (Ar), 150.21 (C2), 160.54 

(C4). 19F NMR δ −120.17 (br s, 1F), −119.41 (dd, J = 4.1, 12.7 Hz, 1F). 

4-N-(Uundec-10-en-1-yl)-2′-deoxy-2′,2′-difluorocytidine (67). 10-undecene amine 

(0.49 mL, 2.16 mmol) was added to a suspension of 62 (300 mg, 0.72 mmol) in 1,4-dioxane 
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(4.1 mL) and Et3N (0.302 mL, 219 mg, 2.16 mmol) and the mixture was left stirring at 

65°C. After 24 h, volatiles were evaporated and the resulting residue was column 

chromatographed (5% MeOH/CHCl3) to give 6728 (254 mg, 85 %). 1H NMR (CD3OD) δ 

1.30−1.43 (m, 12H, 6 × CH2), 1.56−1.65 (m, 2H, CH2), 2.03−2.09 (m, 2H, CH2), 3.39 (t, J 

= 7.1 Hz, 2H, CH2), 3.80 (dd, J = 3.3, 12.6 Hz, 1H, H5′), 3.89 (td, J = 2.8, 8.3 Hz, 1H, 

H4′), 3.95 (d, J = 12.6 Hz, 1H, H5″), 4.26 (dt, J = 8.3, 12.1 Hz, 1H, H3′), 4.91−5.02 (m, 

2H, CH2), 5.82 (tdd, J = 6.7, 10.3, 17.0 Hz, 1H, CH), 5.87 (d, J = 7.6 Hz, 1H, H5), 6.23 (t, 

J = 8.0 Hz, 1H, H1′), 7.74 (d, J = 7.6 Hz, 1H, H6). 13C NMR δ 28.01, 29.98, 30.12, 30.19, 

30.42, 30.51, 30.63, 34.88, 41.75, 60.56 (C5′), 70.67 (dd, J = 22.4, 23.8 Hz, C3′), 82.26 

(dd, J = 3.6, 5.0 Hz, C4′), 85.94 (dd, J = 26.0, 38.0 Hz, C1′), 97.33 (C5), 114.68, 124.05 

(t, J = 258.4 Hz, C2′), 140.16, 140.77 (C6), 158.30 (C2), 165.37 (C4). 19F NMR δ −119.89 

(br d, J = 240.1 Hz, 1F), −118.80 (br d, J = 240.1 Hz, 1F). 

4-N-(Uundec-10-en-1-yl)-3′,5′-di-O-benzoyl-2′-deoxy-2′,2′-difluorocytidine (68). 

BzCl (140 μL, 1.2 mmol) was added to a solution of 67 (200 mg, 0.48 mmol), 2,6-lutidine 

(223 μL, 1.92 mmol), and 4-dimethylaminopyridine (117.3 mg, 0.96 mmol) in CH2Cl2 (10 

mL), and the mixture was stirred at 35 °C under Nitrogen. After 6 h, the reaction mixture 

was diluted with CH2Cl2 (40 mL) and partitioned with H2O, and the aqueous layer was 

extracted with CH2Cl2 (2 × 15 mL). The combined organic layers were sequentially washed 

with 1 M HCl (15 mL), saturated NaHCO3/H2O (15 mL), and brine (15 mL), dried over 

Na2SO4, and evaporated, and the resulting residue (240 mg) was column chromatographed 

(2% MeOH/CHCl3) to give 68 (230 mg, 78 %) as a mixture of isomers. The major isomer 

had the following peaks: 1H NMR (CDCl3) δ 1.16−1.41 (m, 12H, 6 × CH2), 1.49−1.63 (m, 

2H, CH2), 1.93−2.05 (m, 2H, CH2), 3.37 (t, J = 7.1 Hz, 2H, CH2), 4.48-4.58 (m, 1H, H4′), 
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4.62-4.82 (m, 2H, H5′, H5′′), 4.87-5.01 (m, 2H, CH2), 5.53-5.66 (m, 1H, H3′), 5.76-5.84 

(tdd, J = 6.7, 10.3, 17 Hz, 1H, CH), 5.73 (d, J = 7.6 Hz, 1H, H5), 6.57-6.60 (m, 1H, H1′), 

7.29 (dd, J = 0.6, 7.3, 1H, H6), 7.37-7.49 (m, 4H, Ar), 7.51-7.66 (m, 2H, Ar), 7.89-8.10 

(m, 4H, Ar). 13C NMR δ 26.67, 28.65, 28.87, 29.02, 29.28, 29.34, 29.69, 33.78, 43.97, 

62.55 (C5′), 71.35 (dd, J = 17.1, 35.2 Hz, C3′), 79.57 (C4′), 83.54 (br s, C1′), 91.04 (C5), 

114.17, 120.93 (t, J = 263.1 Hz, C2′), 126.78, 128.48, 128.73, 128.83, 129.36, 129.63, 

129.72, 130.17, 133.58, 134.50, 139.16 (C6), 157.82 (C2), 165.99 (C4), 171.67.  19F NMR 

δ −120.35 (br d, J = 203.2 Hz, 1F), −115.31 (br d, J = 246.5 Hz, 1F).  

4-N-(10,11-Dihydroxyundecan-1-yl)-3′,5′-di-O-benzoyl-2′-deoxy-2′,2′-

difluorocytidine (69). 5% mol of OsO4 (100 μL, catalytic amount) and N-

methylmorpholine-N-oxide (56.20 mg, 0.48 mmol) was added to a solution of 68 (200 mg, 

0.32 mmol)  in acetone (3 mL) and water (0.3 mL), and the mixture was stirred at 0 °C to 

ambient temperature under nitrogen. After 2 h, the reaction mixture was diluted with 

CH2Cl2 (30 mL) and partitioned with H2O (15 mL). The organic layer was washed with 

saturated NaHCO3/H2O (15 mL), and brine (15 mL), dried over Na2SO4, and evaporated, 

and the resulting residue (198 mg) was column chromatographed (90% EtOAc/hexane) to 

give 69 (202 mg, 96 %) as a mixture of rotamers. The major rotamer had the following 

peaks: 1H NMR (CDCl3) δ 1.21−1.40 (m, 12H, 6 × CH2), 1.39-1.43 (m, 2H, CH2), 1.57-

1.60 (m, 2H, CH2), 3.43-3.45 (m, 2H, CH2), 3.63-3.66 (m, 1H, CH), 3.71-3.73 (m, 1H, 

CH2), 4.54-4.56 (m, 1H, H4′), 4.75 (dd, J = 4.6, 12.2 Hz, 1H, H5′), 4.77 (dd, J = 3.3, 12.1 

Hz, 1H, H5′′), 5.60-5.63 (m, 1H, H3′), 5.71 (d, J = 7.6 Hz, 1H, H5), 6.59-6.62 (m, 1H, 

H1′), 7.33 (d, J = 7.0, 1H, H6), 7.39-7.51 (m, 4H, Ar), 7.52-7.67 (m, 2H, Ar), 7.98-8.10 

(m, 4H, Ar). 13C NMR δ 25.28, 26.41, 26.61, 28.57, 28.70, 28.85, 29.19, 33.02, 43.70, 
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62.55 (C5′), 66.85, 71.61 (m, C3′), 72.22, 77.81, 79.25, 91.34 (C5), 121.14 (t, J = 263.1 

Hz, C2′), 127.64, 128.70, 128.80, 129.07, 129.71, 130.15, 133.56, 133.72, 134.17, 134.43, 

158.82, 164.79, 165.97. 19F NMR δ −120.42 (br d, J = 243.4 Hz, 1F), −115.30 (br d, J = 

260.1 Hz, 1F). HRMS (ESI+) m/z calcd for C34H41F2N3O8 [M + H]+, 658.2934; found, 

658.2930 

4-N-(10,11-Dihydroxy-11-O-methanesulfnonylundecanyl)-3′,5′-di-O-benzoyl-2′-

deoxy-2′,2′-difluorocytidine (70). Mesyl chloride (14 µL, 20.7 mg, 0.18 mmol) was added 

to a solution of 69 (100 mg, 0.15 mmol) in anhydrous CH2Cl2 (4 mL) in the presence of 

Et3N (32 µL, 23 mg, 0.23 mmol). The mixture was stirred at -20 °C. After 20 minutes, the 

reaction mixture was diluted with CH2Cl2 and partitioned with HCl (0.1 M, 15 mL) and 

H2O (15 mL). The organic layer was washed with saturated NaHCO3/H2O (15 mL), and 

brine (15 mL), dried over Na2SO4, and evaporated, and the resulting residue was column 

chromatographed (50% EtOAc/hexane) to give 70 (93 mg, 55%) as a mixture of rotamers. 

The major rotamer had the following peaks. 1H NMR (CDCl3) δ 1.21−1.40 (m, 12H, 6 × 

CH2), 1.44-1.47 (m, 2H, CH2), 1.56-1.59 (m, 2H, CH2), 3.08 (s, 3H, Ms), 3.48-3.50 (m, 

2H, CH2), 3.91-3.94 (m, 1H, CH), 4.12 (dd, J = 2.8, 9.9 Hz, 1H, CH), 4.25 (dd, J = 3.1, 

10.5 Hz, 1H, CH), 4.50-4.54 (m, 1H, H4′), 4.65 (dd, J = 4.5, 12.2,  1H, H5′), 4.79 (dd, J = 

3.2, 12.1, H5′′), 5.58-5.61 (m, 1H, H3′), 5.69 (d, J = 7.6 Hz, 1H, H5), 6.58-6.61 (m, 1H, 

H1′), 7.30 (d, J = 7.3, 1H, H6), 7.39-7.51 (m, 4H, Ar), 7.52-7.67 (m, 2H, Ar), 7.98-8.10 

(m, 4H, Ar). 13C NMR δ 25.24, 26.79, 29.08, 29.14, 29.25, 29.28, 29.31, 32.87, 37.69, 

41.12, 63.03 (C5′), 69.74, 71.81 (br s, C3′), 73.92, 77.95, 79.27 (C4′), 83.79 (s, C1′), 96.12 

(C5), 120.89 (t, J = 263.2 Hz, C2′), 126.95, 128.14, 128.75, 128.85, 129.44, 129.86, 130.32, 
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133.65, 134.33, 140.05, 155.69, 165.09, 166.12. 19F NMR δ −120.26 (br d, J = 222.8 Hz, 

1F), −115.21 (br d, J = 246.2 Hz, 1F). 

4-N-(10,11-Dihydroxy-11-O-toluenosulfonylundecanyl)-3′,5′-di-O-benzoyl-2′-

deoxy-2′,2′-difluorocytidine (71). Tosyl chloride (29.6 mg, 0.15 mmol) was added to a 

solution of 70 (100 mg, 0.15 mmol) in anhydrous CH2Cl2 (4 mL) in the presence of Et3N 

(32 µL, 23 mg, 0.23 mmol). The mixture was stirred at 40 °C. After 15 h, the reaction 

mixture was diluted with CH2Cl2 and partitioned with HCl (0.1 M, 5 mL) and H2O (15 

mL). The organic layer was washed with saturated NaHCO3/H2O (15 mL), and brine (15 

mL), dried over Na2SO4, and evaporated, and the resulting residue was column 

chromatographed (45% EtOAc/hexane) to give 71 (76 mg, 62%) as a mixture of rotamers. 

The major rotamer had the following peaks. 1H NMR (CDCl3) δ 1.23−1.31 (m, 12H, 6 × 

CH2), 1.44-1.46 (m, 2H, CH2), 1.62-1.65 (m, 2H, CH2), 2.44 (s, 3H, CH3), 3.46-3.49 (m, 

2H, CH2),  3.82-3.85 (m, 1H, CH), 3.91 (m, 1H, CH), 4.11 (dd, J = 2.9, 9.8 Hz, 1H, CH), 

4.51-4.54 (m, 1H, H4′), 4.66 (dd, J = 4.4, 12.2 Hz, 1H, H5′), 4.81 (dd, J = 3.4, 12.3 Hz, 

1H, H5′′), 5.38-5.41 (m, 1H, H3′), 5.61 (d, J = 7.6 Hz, 1H, H5), 6.64-6.66 (m, 1H, H1′), 

7.33-7.36 (m, 3H, H6, Ts), 7.39-7.51 (m, 4H, Ar), 7.52-7.67 (m, 2H, Ar), 7.98-8.10 (m, 

4H, Ar). 13C NMR δ 21.80, 25.21, 26.87, 29.32, 29.35, 29.41, 29.58, 29.85, 32.77, 41.17, 

63.03 (C5′), 69.62, 71.15 (m, C3′), 74.14, 96.02 (C5), 121.19 (t, J = 262.8 Hz, C2′), 128.11, 

128.75, 128.89, 129.45, 129.49, 129.86, 130.10, 130.33, 132.91, 133.65, 134.32, 145.19, 

164.85, 165.09, 166.11. 19F NMR δ −120.51 (br d, J = 241.2 Hz, 1F), −115.34 (d, J = 246.8 

Hz, 1F). 

4-N-(11-O-Mesyl-10-oxoundecanyl)-3′,5′-di-O-benzoyl-2′-deoxy-2′,2′-

difluorocytidine (72). A freshly prepared solution of Collins reagent [CrO3 (28 mg, 0.28 
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mmol), pyridine (7 µL, 28 mg, 0.28 mmol), and Ac2O (53 µL, 60 mg, 0.56 mmol) in 

CH2Cl2 (4 mL)] was added to a stirred solution of 71 (50 mg, 0.07 mmol) in CH2Cl2 (8 mL) 

at ambient temperature. The resulting mixture was stirred for 1 h. and was immediately 

column chromatographed (EtOAc) to give 72 (48 mg, 93%) as a mixture of isomers. The 

major isomer had the following peaks. 1H NMR (CDCl3) δ 1.22−1.35 (m, 12H, 6 × CH2), 

1.53-1.56 (m, 2H, CH2), 2.45 (t, J = 7.3 Hz, 2H, CH2), 3.19 (s, 3H, Ms), 3.48-3.50 (m, 2H, 

CH2), 4.51-4.53 (m, 1H, H4′), 4.66 (dd, J = 4.6, 12.3 Hz, 1H, H5′), 4.78 (s, 2H, CH2), 4.79 

(dd, J = 3.6, 12.1 Hz, 1H, H5′′), 5.40-5.42 (m, 1H, H3′), 5.60 (d, J = 7.6 Hz, 1H, H5), 6.61-

6.63 (m, 1H, H1′), 7.32 (d, J = 7.3, 1H, H6), 7.41-7.52 (m, 4H, Ar), 7.55-7.67 (m, 2H, Ar), 

8.02-8.11 (m, 4H, Ar). 13C NMR δ 23.14, 26.70, 28.92, 29.02, 29.07, 29.20, 29.83, 38.98, 

39.67, 39.78, 44.37, 48.37, 62.91 (C5′), 71.63 (dd, J = 17.2, 35.4 Hz, C3′), 71.79, 79.38 

(C4′), 83.85 (br s, C1′), 91.32 (C5), 120.93 (t, J = 263.1 Hz, C2′), 127.79, 128.85, 128.95, 

129.24, 129.86, 130.30, 133.56, 133.71, 134.21, 134.42, 138.78 (C6), 146.88 (C4), 158.12, 

164.93, 166.09, 203.17. 19F NMR δ −120.21 (br d, J = 224.5 Hz, 1F), −115.21 (d, J = 245.4 

Hz, 1F). 

4-N-(11-O-Toluenosulfonyl-10-oxoundecanyl)-3′,5′-di-O-benzoyl-2′-deoxy-2′,2′-

difluorocytidine (73). A freshly prepared solution of Collins reagent [CrO3 (24.6 mg, 

0.246 mmol), pyridine (5 µL, 24.6 mg, 0.246 mmol), and Ac2O (45 µL, 51 mg, 0.493 

mmol) in CH2Cl2 (2 mL)] was added to a stirred solution of 71 (50 mg, 0.062 mmol) in 

CH2Cl2 (4 mL) at ambient temperature. The resulting mixture was stirred for 1 h. and was 

immediately column chromatographed (EtOAc) to give 73 (47.2 mg, 94%) as a mixture of 

isomers. The major isomer had the following peaks. 1H NMR (CDCl3) δ 1.23−1.31 (m, 

12H, 6 × CH2), 1.44-1.46 (m, 2H, CH2), 2.44 (s, 3H, CH3), 2.48-2.50 (m, 2H, CH2), 3.50-
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3.52 (m, 2H, CH2), 4.49 (s, 2H, CH2), 4.51-4.53 (m, 1H, H4′), 4.67 (dd, J = 4.4, 12.1 Hz, 

1H, H5′), 4.81 (dd, J = 3.4, 12.2 Hz, 1H, H5′′), 5.30-5.32 (m, 1H, H3′), 5.58 (d, J = 7.6 Hz, 

1H, H5), 6.64-6.66 (m, 1H, H1′), 7.30-7.34 (m, 3H, H6, Ts), 7.39-7.51 (m, 4H, Ar), 7.52-

7.67 (m, 2H, Ar), 7.98-8.10 (m, 4H, Ar). 13C NMR δ 21.72, 22.77, 26.77, 28.82, 28.99, 

29.00, 29.08, 29.11 38.93, 41.01, 62.91 (C5′), 71.53 (dd, J = 17.2, 35.4 Hz, C3′), 71.83, 

77.36 (C4′), 84.01 (br s, C1′), 96.17 (C5), 120.90 (t, J = 263.1 Hz, C2′), 125.99, 128.72, 

128.82, 128.94, 129. 38, 129.41, 129.45, 129.57, 130.03, 130.54, 130.86, 130.91, 133.16, 

134.28, 134.35, 135.12, 135.24, 140.69 (C6), 146.42 (C4), 156.51, 164.39, 165.88, 166.99, 

203.43. 19F NMR δ −120.69 (br d, J = 252.5 Hz, 1F), −115.28 (d, J = 248.2 Hz, 1F). 

4-N-(11-Fluoro-10-oxoundecanyl)-3′,5′-di-O-benzoyl-2′-deoxy-2′,2′-

difluorocytidine (74). To a solution of KF (2.8 mg, 0.048 mmol), K2CO3 (6.5 mg, 0.048 

mmol), Kryptofix 2.2.2 (17.9 mg, 0.048 mmol) in CH3CN (3 mL) 73 (Ts derivative, 10 

mg, 0.012 mmol) was stirred at 80 °C. After 25 min, the reaction mixture was quickly 

cooled in a water bath and filtered. The crude product was evaporated, and the resulting 

residue was column chromatographed (40% EtOAc/hexane) to give 74 (4.7 mg, 60 %) as 

a mixture of isomers. The major isomer had the following peaks: 1H NMR (CDCl3) δ 

1.22−1.35 (m, 12H, 6 × CH2), 1.54-1.56 (m, 2H, CH2), 2.55 (t, J = 7.3 Hz, 2H, CH2), 3.48-

3.50 (m, 2H, CH2), 4.52-4.55 (m, 1H, H4′), 4.65 (dd, J = 4.6, 12.3 Hz, 1H, H5′), 4.79 (d, J 

= 47.7 Hz, 2H, CH2), 4.79 (dd, J = 3.6, 12.1 Hz, 1H, H5′′), 5.51 (d, J = 7.6 Hz, 1H, H5), 

5.62 (m, 1H, H3′), 6.60-6.63 (m, 1H, H1′), 7.32 (d, J = 7.3, 1H, H6), 7.41-7.55 (m, 4H, 

Ar), 7.56-7.69 (m, 2H, Ar), 8.01-8.12 (m, 4H, Ar). 13C NMR δ 22.72, 26.69, 28.68, 28.97, 

29.06, 29.21, 29.85, 38.30, 38.32, 38.41, 44.03, 62.66 (C5′), 71.65 (dd, J = 17.2, 35.4 Hz, 

C3′), 79.38 (C4′), 83.91 (br s, C1′), 85.04 (d, J = 185.2 Hz, CH2F), 91.13 (C5), 120.67 (t, 



86 
 

J = 263.1 Hz, C2′), 127.62, 128.89, 128.98, 129.12, 129.85, 130.31, 133.77, 133.45, 

134.39, 134.67, 137.68 (C6), 145.20 (C4), 158.00, 164.93, 166.11, 203.34. 19F NMR δ -

227.42 (t, J = 47.7, 1F), −120.37 (br d, J = 217.9 Hz, 1F), −115.21 (dd, J = 245.1 Hz, 1F). 

HRMS (ESI+) m/z calcd for C34H38F3N3O7 [M + H]+, 658.2747; found, 658.2745. 

4-N-(11-Fluoro-10-oxoundecanyl)-2′-deoxy-2′,2′-difluorocytidine (76). Compound 

74 (20 mg, .031 mmol) was dissolved in methanolic ammonia (2 mL) and stirred at ambient 

temperature. After 2 h, volatiles were evaporated under reduced pressure, and the resulting 

residue was chromatographed (5% MeOH/CHCl3) to give 76 (7.5 mg, 55%) as a clear oil. 

1H NMR (MeOD) δ 1.21−1.35 (m, 12H, 6 × CH2), 1.53.1.56 (m, 2H, CH2), 2.41 (t, J = 7.3 

Hz, 2H, CH2), 3.35 (t, J = 7.1 Hz , 2H, CH2), 3.74-3.76 (m, 1H, H5), 3.90-3.92 (m, 2H, 

H4′, 5′′), 4.21-4.23 (m, 1H, H3′), 4.80 (d, J = 47.7 Hz, 2H, CH2F), 5.99 (d, J = 7.9 Hz, 1H, 

H5), 6.08-6.10 (m, 1H, H1′), 7.96 (d, J = 7.9, 1H, H6). 13C NMR δ 23.88, 27.94, 29.94, 

30.17, 30.31, 30.72, 38.55, 41.70, 60.56 (C5′), 71.43 (dd, J = 17.1, 35.4 Hz, C3′), 82.22 

(C4′), 85.04 (d, J = 185.2 Hz, CH2F), 87.96 (C1′), 97.36 (C5), 124.00 (t, J = 262.8 Hz, 

C2′), 140.77 (C6), 158.29 (C2), 165.35 (C4), 202.21. 19F NMR δ -227.44 (t, J = 47.7 Hz, 

1F), −120.15 (br s, 1F), −119.35 (dd, J = 4.1, 12.7 Hz, 1F). HRMS (ESI+) m/z calcd for 

C20H30F3N3O5 [M + H]+, 450.2210; found, 450.2244. 

N-(10-undecenyl) benzamide (125). Benzoyl chloride (0.670 mL, 0.810 g, 5.74 

mmol) and Et3N (1.5 mL, 1.09 g, 10.6 mmol) was added to a solution of 56 (0.810 mL, 

4.78 mmol) in CH2Cl2 (10 mL) and stirred at ambient temperature. After 8 h, the volatiles 

were evaporated under reduced pressure and the resulting residue was diluted with CH2Cl2 

and partitioned with HCl (0.1 M) and H2O (15 mL). The organic layer was washed with 

saturated NaHCO3/H2O (20 mL), and brine (20 mL), dried over Na2SO4, and the resulting 
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mixture was then column chromatographed (25% EtOAc/hexane) to give 125 (1.22 g, 

93%) as a white solid. 1H NMR (CDCl3) δ 1.31-1.35 (m, 10H, 5 × CH2), 1.61-1.63 (m, 4H, 

2 × CH2), 2.04 (dd, J = 6.9, 14.2 Hz, 2H, CH2), 3.45 (t, J = 7.1 Hz, 2H, CH2), 4.97-4.99 

(m, 2H, CH2), 5.81 (ddt, J = 6.7, 10.2, 16.9 Hz, 1H, CH), 6.11 (br s, 1H, NH), 7.44-7.46 

(m, 3H, Ar), 7.74-7.77 (m, 2H, Ar). 

N-(10,11-Dihydroxyundecan-1-yl) benzamide (126). 5% mol of OsO4 (50 μL, cat. 

amount) and N-methylmorpholine-N-oxide (87.8 mg, 0.75 mmol) was added to a solution 

of 125 (137 mg, 0.50 mmol) in acetone (2 mL) and water (0.2 mL), and the mixture was 

stirred at 0 °C to ambient temperature under Nitrogen. After 4 h, the reaction mixture was 

diluted with CH2Cl2 (20 mL) and partitioned with H2O. The organic layer was washed with 

saturated NaHCO3/H2O (15 mL), and brine (15 mL), dried over Na2SO4, and evaporated, 

and the resulting residue was column chromatographed (75% EtOAc/hexane) to give 126 

(138 mg, 90 %). 1H NMR (CDCl3) δ 1.31-1.35 (m, 16H, 8 × CH2), 3.41 (dd, J = 7.7, 11.0 

Hz, 1H, CH), 3.44 (t, J = 7.1 Hz, 2H, CH2), 3.63 (dd, J = 3.0, 11.0 Hz, 1H, CH), 3.68-3.70 

(m, 1H, CH), 6.13 (br s, 1H, NH), 7.44-7.46 (m, 3H, Ar), 7.74-7.77 (m, 2H, Ar).  

N-(10,11-Dihydroxy-11-O-toluenesulfnonylundecanyl) benzamide (127). Tosyl 

chloride (65.1 mg, 0.33 mmol) was added to a solution of 126 (100 mg, 0.33 mmol) in 

anhydrous CH2Cl2 (5 mL) in the presence of Et3N (65 µL, 47 mg, 0.50 mmol). The mixture 

was stirred at 40 °C. After 18 hours, the reaction mixture was diluted with CH2Cl2 and 

partitioned with HCl (0.1 M) and H2O (15 mL). The organic layer was washed with 

saturated NaHCO3/H2O (15 mL), and brine (15 mL), dried over Na2SO4, and evaporated, 

and the resulting residue was column chromatographed (50% EtOAc/hexane) to give 127 

(91 mg, 60%). 1H NMR (CDCl3) δ 1.32-1.35 (m, 14H, 7 × CH2), 1.59-1.61 (m, 2H, CH2), 



88 
 

2.45 (s, 3H, CH3), 3.44 (dd, J = 7.1, 13.1 Hz, 2H, CH2), 3.82 (dd, J = 2.8, 7.0, Hz, 1H, CH), 

3.87-3.89 (m, 1H, CH), 4.02 (dd, J = 2.8, 9.8 Hz, 1H, CH), 6.17 (br s, 1H, NH), 7.35 (d, J 

= 8.2 Hz, 2H, Ts), 7.42 (d, J = 8.2 Hz, 2H, Ts), 7.46-7.49 (m, 1H, Ar), 7.75-7.79 (m, 4H, 

Ar).  

N-(10-oxo,11-O-toluenesulfnonylundecanyl) benzamide (128). A freshly prepared 

solution of Collins reagent [CrO3 (52 mg, 0.52 mmol), pyridine (8 µL, 52 mg, 0.52 mmol), 

and Ac2O (102 µL, 107 mg, 1.04 mmol) in CH2Cl2 (2 mL)] was added to a stirred solution 

of 127 (60 mg, 0.13 mmol) in CH2Cl2 (8 mL) at ambient temperature. The resulting mixture 

was stirred for 1.5 h. and was immediately column chromatographed (45% EtOAc/hexane) 

to give 128 (56 mg, 94 %). 1H NMR (CDCl3) δ 1.29-1.32 (m, 10H, 5 × CH2), 1.57-1.59 

(m, 4H, 2 × CH2), 2.45 (s, 3H, CH3), 2.48 (t, J = 7.4 Hz, 2H, CH2), 3.44 (dd, J = 7.1, 13.1 

Hz, 2H, CH2), 4.48 (s, 2H, CH2), 6.15 (br s, 1H, NH), 7.36 (d, J = 8.2, 2H, Ts), 7.42 (d, J 

= 8.2, 2H, Ts), 7.46-7.49 (m, 1H, Ar), 7.75-7.79 (m, 4H, Ar). 

N-(10-oxo,11-O-Fluoroundecanyl) benzamide (75). To a solution of KF (26 mg, 0.44 

mmol), K2CO3 (60 mg, 0.44 mmol), 18-Crown-6 (163 mg, 0.44 mmol) in CH3CN (6 mL), 

128 (50 mg, 0.11 mmol) was stirred at 75°C. After 25 min, the reaction mixture was quickly 

cooled in a water bath and filtered. The crude product was evaporated, and the resulting 

residue was column chromatographed (40% EtOAc/hexane) to give 75 (20 mg, 58%). 1H 

NMR (CDCl3) δ 1.29-1.32 (m, 10H, 5 × CH2), 1.59-1.62 (m, 4H, 2 × CH2), 2.53 (t, J = 7.4 

Hz, 2H, CH2), 3.45 (dd, J = 7.1, 13.1 Hz, 2H, CH2), 4.79 (d, J = 47.7 Hz, 2H, CH2F), 6.09 

(br s, 1H, NH), 7.46-7.49 (m, 3H, Ar), 7.74-7.77 (m, 2H, Ar). 19F NMR δ -227.48 (t, J = 

47.7, 1F). 
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4.3. Synthesis of 4-N-alkanoyl and 4-N-alkyl clickable gemcitabine analogues with 

silicon-fluoride acceptors 
 

Methyl 11-azidoundecanoate (79). Sodium azide (175 mg, 2.7 mmol) was added to a 

stirred solution of methyl 11-bromoundecanoate 78 (500 mg, 1.8 mmol) in DMF. After 3 

hours, the crude mixture was diluted with water and extracted with Et2O. The organic layer 

was then washed with brine, dried over Na2SO4 and evaporated under reduced pressure to 

give 79147 (420 mg, 97%). 1H NMR (400 MHz, CDCl3) δ 1.30 (s, 12H), 1.49-1.66 (m, 4H), 

2.29 (t, J = 7.5 Hz, 2H), 3.24 (t, J = 7.0 Hz, 2H), 3.65 (s, 3H). 

11-Azidoundecanoic acid (80). NaOH (1M, 1.5 mL) was added to a solution of 79 

(400 mg, 1.7 mmol) in MeOH (1mL) and stirred at ambient temperature. After 2 h, the 

reaction mixture was diluted with water and was extracted with Et2O to remove any 

unreacted starting material. The aqueous layer was then acidified with HCl (1 M) and 

extracted with fresh portions of Et2O (2 x 10 mL). The combined organic layer was then 

washed with brine, dried over Na2SO4 and evaporated under reduced pressure to give 80147 

(350 mg, 88%). 1H NMR (400 MHz, CDCl3) δ 1.32 (s, 12H), 1.51-1.71 (m, 4H), 2.35 (t, J 

= 7.5 Hz, 2H), 3.25 (t, J = 7.0 Hz, 2H). 

4-N-(11-Azidoundecanoyl)-2′-deoxy-2′, 2′-difluorocytidine (81). N,N-

Diisopropylethylamine (35 μL, 0.2 mmol), 1-hydroxybenzotriazole (27 mg, 0.2 mmol), 80 

(46 mg, 0.2 mmol), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (45 μL, 0.2 

mmol) were sequentially added to a stirred solution of gemcitabine hydrochloride (50 mg, 

0.17 mmol) in DMF (4 mL) at ambient temperature under Nitrogen. The reaction mixture 

was then gradually heated to 65 °C (oil-bath) and was kept stirring overnight. The crude 

mixture was evaporated and column chromatographed (0 → 10% MeOH/CHCl3) to give 
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81 (56 mg, 70%): UV (CH3OH) λ max 299 nm (ε 6500), λ min 250 nm (ε 12 900); 1H 

NMR (CD3OD) δ 1.24−1.47 (m, 12H, 6 × CH2), 1.51−1.75 (m, 4H, 2 x  CH2), 2.45 (t, J = 

7.4 Hz, 2H, CH2), 3.27 (t, J = 6.9 Hz, 2H, CH2), 3.81 (dd, J = 2.8, 12.4 Hz, 1H, H5′), 

3.89−4.05 (m, 2H, H5′, H4′), 4.30 (td, J = 8.5, 12.2 Hz, 1H, H3′), 6.17−6.35 (m, 1H, H1′), 

7.50 (d, J = 7.6 Hz, 1H, H5), 8.34 (d, J = 7.6 Hz, 1H, H6); 13C NMR δ 25.92, 27.80, 29.90, 

30.11, 30.20, 30.33, 30.41, 30.50, 38.17, 52.47, 60.30 (C5′), 70.27 (dd, J = 22.2, 23.6 Hz, 

C3′), 82.92 (d, J = 8.6 Hz, C4′), 86.42 (dd, J = 26.6, 37.6 Hz, C1), 98.25 (C5), 120.87 (t, J 

= 259.9 Hz, C2′), 145.96 (C6), 157.68 (C2), 164.83 (C4), 176.00 (CO); 19F NMR δ -120.05 

(d of m, J = 239.7 Hz, 1F), -119.10 (d of m, J = 240.1 Hz, 1F). HRMS (ESI+) m/z calcd 

for C20H30F2N6O5 [M+Na]+ 495.2146; found 495.2141. 

4-N-(5-Hexynoyl)-2′-deoxy-2′, 2′-difluorocytidine (82). Trimethylsilyl chloride (250 

μL, 2 mmol) was added to a solution of gemcitabine hydrochloride (200 mg, 0.7 mmol) in 

CH3CN (2 mL) and pyridine (3 mL) at 0 °C. The mixture was stirred for 4 h from 0 °C to 

room temperature. A solution of commercially available 5-hexynoic acid (230 μL, 2.1 

mmol) in CH3CN (2 mL), previously activated by EDC (50 μL, 1 mmol), was added to the 

reaction mixture, which was heated at 60°C for 18 hours. After the solution was cooled 

down to room temperature, ethanol (5 mL) was added and the mixture was heated at 45 °C 

for 4 h. After evaporation under vacuum, the resulting residue was column 

chromatographed (80 → 100% EtOAc/hexane) to give 8245 (157.6 mg, 63%): 1H NMR 

(CD3OD) δ 1.83-1.86 (m, 2H, CH2), 2.25-2.28 (m, 3H, CH2, CH), 2.60 (t, J = 7.3 Hz, 2H, 

CH2), 3.82-3.84 (m, 1H, H5′), 3.89−4.07 (m, 2H, H5′′, H4′), 4.31 (dd, J = 12.1, 20.6 Hz, 

1H, H3′), 6.24-6.26 (m, 1H, H1′), 7.49 (d, J = 7.6 Hz, 1H, H5), 8.34 (d, J = 7.6 Hz, 1H, 

H6); 13C NMR δ 18.42, 24.96, 33.47, 60.50 (C5′), 68.14 (CH), 70.20 (C) 70.34 (t, J = 23.1 
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Hz, C3′), 82.35 (d, J = 8.6 Hz, C4′), 86.1 (dd, J = 26.6, 38.3 Hz, C1′), 96.30 (C5′), 123.91 

(t, J = 259.3 Hz, C2′), 142.51 (C6), 157.78 (C2), 167.74 (C4), 175.97 (CO); 19F NMR δ -

120.14 (d of m, J = 244.4 Hz, 1F), -119.23 (d of m, J = 243.6 Hz, 1F).   

7-Azido-1-aminoheptane (85). Step A. Sodium azide (272 mg, 4.0 mmol) was added 

to a stirred solution of the 1,7-dibromoheptane 83 (424 mg, 1.6 mmol) in DMF at 60 °C 

(oil bath). After 6 h, the crude mixture was diluted with water and extracted with Et2O. The 

organic layer was then washed with brine, dried over Na2SO4 and evaporated under 

reduced pressure to give 1,7-diazidoheptane 84 which was used immediately in next step.  

Step B. To a solution of 1,7-diazidoheptane 84 (182 mg, 1 mmol) in Et2O (1 mL), ethyl 

acetate (1 mL) and 5% aqueous HCl (3 mL) was added Ph3P  (256 mg, 0.98 mmol) portion 

wise over 1 h and stirred for 16 h at ambient temperature. The organic layer was discarded 

and the aqueous layer was washed with (2 × 10 mL) CH2Cl2. The resultant aqueous phase 

was basified with sodium hydroxide (pH>12), and then extracted with (3 × 6 mL) CH2Cl2. 

The combined extracts were dried over Na2SO4, filtered and evaporated under reduced 

pressure to give 85148 (130 mg, 83%): 1H NMR (CDCl3) δ 1.26-1.48 (m, 10H), 1.57-1.59 

(m, 2H), 2.66 (t, J = 7.0 Hz, 2H, CH2), 3.22 (t, J = 6.9 Hz, 2H, CH2). 

4-N-(7-Azidoheptanyl)-2′-deoxy-2′, 2′-difluorocytidine (86). Freshly prepared 7-

Azido-1-aminoheptane 85 (112.5 mg, 0.72 mmol) was added to a suspension of 62 (100 

mg, 0.24 mmol) in 1,4-dioxane (5 mL) and Et3N ( 0.10 mL, 63 mg, 0.72 mmol) and the 

mixture was left stirring at 65°C. After 24 h, volatiles were evaporated and the resulting 

residue was column chromatographed (5% MeOH/CHCl3) to give 86 (238 mg, 82%): UV 

(CH3OH) λ max 267 nm (ε 8200), λ min 227 nm (ε 7400); 1H NMR (CD3OD) δ 1.31−1.41 

(m, 12H, 6 × CH2), 1.51−1.70 (m, 4H, 2 x  CH2), 3.25 (t, J = 6.9 Hz, 2H, CH2), 3.45 (t, J 
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= 7.0, 2H, CH2) 3.77−3.83 (m, 1H, H5′), 3.91−3.99 (m, 2H, H5′, H4′), 4.25 (dt, J = 10.5, 

20.8 Hz, 1H, H3′), 5.85 (d, J = 7.6 Hz, 1H, H5), 6.23-6.25 (m, 1H, H1′) , 7.71 (d, J = 7.6 

Hz, 1H, H6); 13C NMR δ 27.75, 27.86, 29.84, 29.88, 29.92, 41.65, 52.45, 60.56 (C5′), 70.66 

(t, J = 23.1 Hz, C3′), 82.22 (d, J = 8.6 Hz, C4′), 86.26 (dd, J = 26.6, 38.3 Hz, C1′), 97.32 

(C5), 124.02 (t, J = 259.2 Hz, C2′), 140.80 (C6), 158.29 (C2), 165.38 (C4); 19F NMR δ -

119.86 (d of m, J = 246.2 Hz, 1F), -119.89 (d of m, J = 240.2 Hz, 1F). HRMS (ESI+) m/z 

calcd for C16H24F2N6O4 [M+H]+ 403.1902; found 403.1913. 

4-(Azidomethyl)phenyldiisopropylsilane (88). Step A. Methanesulfonyl chloride (39 

μL, 0.4 mmol) was added to a stirred solution of 4-(di-iso-propylsilyl)benzylalcohol 87 

(100 mg, 0.4 mmol) and triethylamine (110 μL, 81 mg, 0.8 mmol) in CH2Cl2 (5 mL) at 0 

ºC under N2 atmosphere. After stirring for 5 min, the resulting mixture was allowed to 

warm up to ambient temperature and kept stirring for 1 h. The reaction mixture was then 

diluted with CH2Cl2 (15 mL) and partitioned between H2O (20 mL) and the aqueous layer 

extracted with fresh portions of CH2Cl2 (2 x 20 mL). The combined organic layer was then 

washed with brine (20 mL), dried over Na2SO4 and evaporated under reduced pressure to 

give 4-(O-mesylmethyl)phenyldiisopropylsilane (91%) of sufficient purity to use directly 

in next step: 1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 7.3 Hz, 6H), 1.05 (d, J = 7.3 Hz, 

6H), 1.21-1.30 (m, 2H), 2.92 (s, 3H), 3.94 (t, J = 3.1 Hz, 1H),  5.24 (s, 2H), 7.35 (d, J = 

7.7 Hz, 2H), 7.45 (d, J = 7.9 Hz, 2H).  

Step B. Sodium azide (34 mg, 0.5 mmol) was added to a stirred solution of the 4-(O-

mesylmethyl)phenyldiisopropylsilane (105 mg, 0.3 mmol) in DMF. After 6 h, the crude 

mixture was diluted with water and extracted with Et2O. The organic layer was then washed 

with brine, dried over Na2SO4 and evaporated under reduced pressure. The resulting 
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residue was column chromatographed (20% EtOAc/hexanes) to give 88149 (118 mg, 95%). 

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 7.3 Hz, 6H), 1.07 (d, J = 7.3 Hz, 6H), 1.20-1.28 

(m, 2H), 3.96 (t, J = 3.1 Hz, 1H), 4.36 (s, 2H), 7.30 (d, J = 7.7 Hz, 2H), 7.54 (d, J = 7.9 

Hz, 2H). 

Diisopropyl(4-((prop-2-yn-1-yloxy)methyl)phenyl)silane (89). 4-(Di-iso-

propylsilyl)benzylalcohol 87 (100 mg, 0.4 mmol) was added to a stirred solution of sodium 

hydride ( 11.5 mg, 0.48 mmol) in dry THF. After stiring for 2 h at 65°C, propargyl bromide 

(80% weight in toluene, 89 μL, 0.8 mmol) was added to the reaction mixture. The stirred 

solution was stirred at 65 °C overnight. The reaction mixture was cooled at room 

temperature and extracted with Et2O (20 mL). The organic layer was then washed with 

brine, dried over Na2SO4 and evaporated under reduced pressure. The resulting residue was 

column chromatographed (20% EtOAc/hexanes) to give 89 as an oil (85 mg, 82%). 1H 

NMR (400 MHz, CDCl3) δ 0.98 (d, J = 7.3 Hz, 6H), 1.06 (d, J = 7.3 Hz, 6H), 1.18-1.26 

(m, 2H), 2.47 (t, J = 2.3 Hz, 1H), 3.94 (t, J = 3.1 Hz, 1H), 4.20 (d, J = 2.4 Hz, 2H), 4.61 (s, 

2H), 7.35 (d, J = 7.7 Hz, 2H), 7.51 (d, J = 7.8 Hz, 2H); 13C NMR δ 10.69, 18.45, 18.64, 

57.30, 71.62, 74.65, 79.67, 127.32, 134.87, 135.65, 138.14. 

Synthesis of silicon-fluoride acceptors: General procedure for the click reactions  

Sodium ascorbate (0.02 mmol), copper sulfate (0.02 mmol) modified nucleoside (0.1 

mmol) and silane (0.1 mmol) were suspended in a mixture of tert-butanol/water (3:1 (v/v), 

3 mL). The reaction mixture was left at room temperature for 1-6 hours. The reaction 

mixture was extracted with CHCl3 (10 mL). The organic layer was washed with sat NH4Cl 

(10 mL), brine (10 mL), dried over Na2SO4, filtered and evaporated under reduced 
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pressure. The crude product was purified by chromatography (CHCl3/MeOH 95:5) to 

afford the desired triazole adducts: 

4-N-[11-Undecanoyl-(diisopropylsilyl)-O-propargylbenzyltriazol)]-2′-deoxy-2′,  

2′difluorocytidine (90). Treatment of 81 (30 mg, 0.06 mmol) with 89 (15.6 mg, 0.06 

mmol) using procedure reported in section gave 90 (40.5 mg, 92%). UV (CH3OH) λ max 

299 nm (ε 6500), 250 nm (ε 12900),  λ min 278 nm (ε 3800); 1H NMR (CD3OD) δ 0.96 (d, 

J = 7.3 Hz, 6H, iPr), 1.05 (d, J = 7.3 Hz, 6H, iPr), 1.24−1.47 (m, 12H, 6 × CH2), 1.51−1.75 

(m, 4H, 2 x  CH2), 2.38 (t, J = 7.3 Hz, 2H, CH2), 3.81 (dd, J = 2.8, 12.4 Hz, 1H, H5′), 

3.89−3.96 (m, 3H, H5′, H4′, Si-H), 4.30 (td, J = 8.5, 12.2 Hz, 1H, H3′), 4.33 (t, J = 7.1 Hz, 

2H), 4.55 (s, 2H, CH2), 4.61 (s, 2H, CH2),  6.19 (t, J = 7.5, 1H, H1′), 7.33-7.35 (m, 3H, 

H5, Ar), 7.51 (d, J = 8.0 Hz, 2H. Ar), 7.74 (s, 1H), 8.10 (d, J = 7.6 Hz, 1H, H6); 13C NMR 

δ 25.92, 27.80, 29.90, 30.11, 30.20, 30.33, 30.41, 30.50, 38.17, 52.47, 60.30 (C5′), 70.27 

(dd, J = 22.2, 23.6 Hz, C3′), 82.92 (d, J = 8.6 Hz, C4′), 86.42 (dd, J = 26.6, 37.6 Hz, C1), 

98.25 (C5), 120.87 (t, J = 259.9 Hz, C2′), 145.96 (C6), 157.68 (C2), 164.83 (C4), 176.00 

(CO); 19F NMR δ -120.09 (d of m, J = 239.2 Hz, 1F), -119.13 (d of m, J = 240.2 Hz, 1F). 

HRMS (ESI+) m/z calcd for C36H54F2N6O6Si [M+Na]+ 755.3738; found 755.3731. 

4-N-[6-Hexynoyl-(diisopropylsilyl)-O-propargylbenzyltriazol)]-2′-deoxy-2′,  

2′difluorocytidine (91). Treatment of 82 (35 mg, 0.1 mmol) with 88 (24.7 mg, 0.1 mmol) 

using procedure reported in section gave 91 (52.6 mg, 87%). UV (CH3OH) λ max 299 nm 

(ε 6700), 248 nm (ε 13000); 1H NMR (CD3OD) δ 0.96 (d, J = 7.3 Hz, 6H, iPr), 1.03 (d, J 

= 7.3 Hz, 6H, iPr), 1.18-1.20 (m, 4H, 2 x CH2), 2.46 (t, J = 7.3 Hz, 2H, CH2). 2.71 (t, J = 

7.4 Hz, 2H, CH2), 3.74-3.76 (m, 1H, H5′), 3.89−3.95 (m, 3H, H5′, H4′, Si-H), 4.24-4.26 

(m, 1H, H3′), 5.50 (s, 2H, CH2), 6.19 (t, J = 7.5 Hz, 1H, H1′), 7.28 (d, J = 8.0 Hz, 2H. Ar), 
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7.35 (d, J = 7.6 Hz, 1H, H5), 7.51 (d, J = 8.0 Hz, 2H. Ar), 7.56 (s, 1H), 8.10 (d, J = 7.6 Hz, 

1H, H6); 13C NMR δ 11.18, 18.65, 18.83, 24.96, 25.17, 37.04, 54.09, 59.93 (C5′), 69.68 

(CH), 70.34 (t, J = 23.1 Hz, C3′), 81.82 (d, J = 8.6 Hz, C4′), 85.70 (dd, J = 26.6, 38.3 Hz, 

C1′), 97.03 (C5′), 122.39 (t, J = 259.3 Hz, C2′), 128.07, 134.96, 136.86, 138.11, 145.43 

(C6), 148.04, 155.77 (C2), 163.85 (C4), 174.28 (CO); 19F NMR δ -120.10 (d of m, J = 

233.4 Hz, 1F), -119.20 (d of m, J = 240.9 Hz, 1F). HRMS (ESI+) m/z calcd for 

C28H38F2N6O5Si [M+Na]+ 627.2538; found 627.2522. 

4-N-[7-heptanyl-(diisopropylsilyl)-O-propargylbenzyltriazol)]-2′-deoxy-2′,  

2′difluorocytidine (92). Treatment of 86 (40 mg, 0.1 mmol) with 89 (silane, 26.0 mg, 

0.1mmol) using procedure reported in section gave 92 (59.6 mg, 90%). UV (CH3OH) λ 

max 267 nm (ε 8200), λ min 228 nm (ε 7500); 1H NMR (CD3OD) δ 0.99 (d, J = 7.3 Hz, 

6H, iPr), 1.05 (d, J = 7.3 Hz, 6H, iPr), 1.31−1.41 (m, 12H, 6 × CH2), 1.50-1.52 (m, 2H, 

CH2), 1.90-1.92 (m, 2H, CH2), 3.41-3.43 (m, 2H, CH2), 3.80-3.82 (m, 1H, H5′), 3.91−4.02 

(m, 3H, H5′, H4′, Si-H), 4.41-4.45 (m, 3H, H3′, CH2),  4.60 (s, 2H, CH2), 4.65 (s, 2H, CH2),  

5.82 (d, J = 7.6 Hz, 1H, H5), 6.23-6.25 (m, 1H, H1′) , 7.38 (d, J = 8.0 Hz, 2H, Ar), 7.48 (d, 

J = 8.0 Hz, 2H, Ar), 7.71 (d, J = 7.6 Hz, 1H, H6), 7.99 (s, 1H, CH); 13C NMR δ 11.26, 

18.76, 18.96, 27.01, 27.34, 30.93, 40.97, 50.50, 60.31 (C5′), 64.42, 70.26 (t, J = 23.1 Hz, 

C3′), 72.37, 81.75 (d, J = 8.6 Hz, C4′), 84.92 (dd, J = 26.6, 38.3 Hz, C1′), 95.97 (C5), 

124.04 (t, J = 259.3 Hz, C2′), 127.88, 133.36, 140.78, 135.56, 136.34, 138.84, 140.78 (C6), 

141.02, 155.92 (C2), 164.77 (C4); 19F NMR δ -119.86 (d of m, J = 246.2 Hz, 1F), -119.89 

(d of m, J = 240.2 Hz, 1F). HRMS (ESI+) m/z calcd for C32H48F2N6O5Si [M+Na]+ 

685.3322; found 685.3324. 
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General Procedure for Fluorination Reactions 

Solid KF (4.7 mg, 0.08 mmol, 4 eq.) was added to a stirred solution of 90 (15 mg, 0.02 

mmol,) and 18-Crown-6 ether (21 mg, 0.08 mmol, 4 eq.) in CH3CN (3 mL) in a round 

bottom flask under N2 atmosphere. To this mixture acetic acid (2 µL, 0.02 mmol. 1 eq.) 

was then added and the resulting reaction mixture was stirred at 80 ºC for 25 min. The 

reaction mixture was then left to cool (~5 min) and filtered to remove the left over 18-

crown ether and KF. The filtrate was washed with CH3CN (2 mL) and the combined mother 

liquors were then concentrated under reduced pressure to give crude 94. The resulting 

residue was chromatographed (MeOH/CHCl3 10:90) to give pure 94 (9.5 mg, 63%). 

4-N-[11-Undecanoyl-((fluoro)diisopropylsilyl)-O-propargylbenzyltriazol)]-2′-

deoxy-2′, 2′difluorocytidine (94). Treatment of 90 (15 mg, 0.02 mmol) using procedure 

reported in general procedure section gave 94 (9.5 mg, 63%). UV (CH3OH) λ max 299 nm 

(ε 6500), 250 nm (ε 12900),  λ min 278 nm (ε 3800); 1H NMR (CD3OD) δ 0.99 (d, J = 7.3 

Hz, 6H, iPr), 1.07 (d, J = 7.3 Hz, 6H, iPr), 1.24−1.47 (m, 12H, 6 × CH2), 1.78-1.80 (m, 2H, 

CH2), 1.90-1.92 (m, 2H, CH2), 2.44 (t, J = 7.4 Hz, 2H, CH2), 3.81 (dd, J = 2.8, 12.4 Hz, 

1H, H5′), 3.89−3.99 (m, 2H, H5′, H4′), 4.29 (t, J = 10.4 Hz, 1H, H3′), 4.40 (t, J = 7.0 Hz, 

2H), 4.60 (s, 2H, CH2), 4.66 (s, 2H, CH2),  6.26 (t, J = 7.5, 1H, H1′), 7.41 (d, J = 7.8 Hz, 

2H, Ar), 7.49 (d, J = 7.6 Hz, H5), 7.54 (d, J = 8.1 Hz, 2H, Ar), 7.99 (s, 1H), 8.34 (d, J = 

7.6 Hz, 1H, H6); 13C NMR δ 13.22, 25.92, 27.80, 29.90, 30.11, 30.20, 30.33, 30.41, 30.50, 

38.17, 52.47, 60.30 (C5′), 70.27 (dd, J = 22.2, 23.6 Hz, C3′), 82.92 (d, J = 8.6 Hz, C4′), 

86.42 (dd, J = 26.6, 37.6 Hz, C1), 98.25 (C5), 120.87 (t, J = 259.9 Hz, C2′), 128.07, 135.53, 

135.56, 136.34, 138.84, 145.93 (C6), 148.76, 145.93 (C6), 157.66 (C2), 164.78 (C4), 

175.25 (CO); 19F NMR δ - 188.86 (s, 1F), -120.09 (d of m, J = 239.2 Hz, 1F), -119.13 (d 
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of m, J = 240.2 Hz, 1F). HRMS (ESI+) m/z calcd for C36H53F3N6O6Si [M+H]+ 751.3753; 

found 751.3770. 

4-N-[6-Hexynoyl-((fluoro)diisopropylsilyl)-O-propargylbenzyltriazol)]-2′-deoxy-

2′,  2′difluorocytidine (95). Treatment of 91 (15 mg, 0.025 mmol) using procedure 

reported in general procedure section gave 95 (10 mg, 65%). UV (CH3OH) λ max 299 nm 

(ε 6700), 248 nm (ε 13000); 1H NMR (CD3OD) δ 0.99 (d, J = 7.3 Hz, 6H, iPr), 1.06 (d, J 

= 7.3 Hz, 6H, iPr), 1.18-1.20 (m, 2H, CH2), 1.91-1.93 (m, 2H, CH2), 2.50 (t, J = 7.3 Hz, 

2H, CH2). 2.78 (t, J = 7.4 Hz, 2H, CH2), 3.80-3.82 (m, 1H, H5′), 3.93−4.05 (m, 2H, H5′, 

H4′), 4.29-4.31 (m, 1H, H3′), 5.59 (s, 2H, CH2), 6.21 (t, J = 7.5 Hz, 1H, H1′), 7.35 (d, J = 

7.9 Hz, 2H. Ar), 7.47 (d, J = 7.6 Hz, 1H, H5), 7.57 (d, J = 8.1 Hz, 2H. Ar), 7.81 (s, 1H), 

8.33 (d, J = 7.6 Hz, 1H, H6); 13C NMR δ 13.22, 13.35, 16.82, 17.01, 25.46, 25.53, 37.18, 

54.70, 60.30 (C5′), 70.01 (CH), 70.34 (t, J = 23.1 Hz, C3′), 81.72 (d, J = 8.6 Hz, C4′), 82.92 

(dd, J = 26.6, 38.3 Hz, C1′), 98.27 (C5′), 123.93 (t, J = 259.3 Hz, C2′), 128.39, 134.45, 

135.53, 135.56, 136.34, 138.84, 145.93 (C6), 148.76, 157.66 (C2), 164.78 (C4), 175.25 

(CO); 19F NMR δ - 188.89 (s, 1F), -120.10 (d of m, J = 233.4 Hz, 1F), -119.20 (d of m, J 

= 240.9 Hz, 1F). HRMS (ESI+) m/z calcd for C28H37F3N6O5Si [M+Na]+ 645.2445; found 

645.2392. 

4-N-[7-heptanyl-((fluoro)diisopropylsilyl)-O-propargylbenzyltriazol)]-2′-deoxy-

2′,  2′difluorocytidine (96). Treatment of 92 (15 mg, 0.023 mmol) using procedure 

reported in general procedure section gave 96 (9 mg, 62 %). UV (CH3OH) λ max 267 nm 

(ε 8200), λ min 228 nm (ε 7500); 1H NMR (CD3OD) δ 0.99 (d, J = 7.3 Hz, 6H, iPr), 1.05 

(d, J = 7.3 Hz, 6H, iPr), 1.31−1.41 (m, 12H, 6 × CH2), 1.50-1.12 (m, 2H, CH2), 1.91 (m, 

2H, CH2), 3.39 (m, 2H, CH2), 3.81 (m, 1H, H5′), 3.91−4.02 (m, 3H, H5′, H4′, Si-H), 4.25 
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(m, 1H, H3′), 4.41 (t, J = 6.9, 2H, CH2), 4.60 (s, 2H, CH2), 4.65 (s, 2H, CH2),  5.82 (d, J = 

7.6 Hz, 1H, H5), 6.22 (m, 1H, H1′) , 7.41 (d, J = 8.0 Hz, 2H, Ar), 7.52 (d, J = 8.0 Hz, 2H, 

Ar), 7.71 (d, J = 7.6 Hz, 1H, H6), 8.01 (s, 1H, CH). 13C NMR δ 11.26, 18.76, 18.96, 27.01, 

27.34, 30.93, 40.97, 50.50, 60.31 (C5′), 64.42, 70.26 (t, J = 23.1 Hz, C3′), 72.37, 81.75 (d, 

J = 8.6 Hz, C4′), 84.92 (dd, J = 26.6, 38.3 Hz, C1′), 95.97 (C5′), 124.04 (t, J = 259.3 Hz, 

C2′), 127.88, 133.36, 140.78, 135.56, 136.34, 138.84, 140.78 (C6), 141.02, 155.92 (C2), 

164.77 (C4); 19F NMR δ - 188.82 (s, 1F), -119.75 (d of m, J = 244.1 Hz 1F), -119.98 (d of 

m, J = 239.1 Hz, 1F). HRMS (ESI+) m/z calcd for C32H47F3N6O5Si [M+Na]+ 703.3227; 

found 703.3234. 

4.4. Reduction of sugar lactones to hemiacetals with LTBH 

4.4.1. Typical procedure for reduction of the sugar lactones to hemiacetals with 

LTBH and selected products150  
 

LTBH (1 M/THF; 0.24 mL, 0.24 mmol) was added to a solution of the appropriate 

sugar lactone (0.2 mmol) in anhydrous CH2Cl2 (3 mL) at 0 °C. After 30 min, the reaction 

mixture was quenched with MeOH and the volatiles were evaporated. The resulting residue 

was dissolved in CH2Cl2 (10 mL) and washed with NaHCO3/H2O. The organic layer was 

then dried (Mg2SO4), evaporated and the residue was column chromatographed (7:3 / 1:1, 

hexane/ EtOAc, unless stated otherwise) to afford the corresponding sugar hemiacetals. 

5-O-Benzyl-2,3-O-isopropylidene-α/β-D-ribofuranose (98)151, 152  Reduction of 97151 

(275 mg, 1.0 mmol) according to the general procedure gave 98 (α/β, 1:4; 250 mg, 90%). 

Major anomer had: 1H NMR δ 1.31 and 1.48 (2 x s, 2 x 3H, 2 x CH3), 3.58 (dd, J = 2.5, 

10.2 Hz, 1H, H5), 3.66 (dd, J = 2.5, 10.2 Hz, 1H, H5'), 4.38 (t, J = 2.2 Hz, 1H, H4), 4.52 

(d, J = 5.9 Hz, 1H, H2), 4.57 (d, J = 11.7 Hz, 1H, Bn), 4.65 (d, J = 11.7 Hz, 1H, Bn), 4.74 
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(d, J = 5.9 Hz, 1H, H3), 5.28 (d, J = 6.0 Hz, 1H, H1), 7.29-7.30 (m, 5H, Ph); 13C NMR δ 

24.9 (CH3), 26.5 (CH3), 71.2 (C5), 74.1 (Bn), 82.0 (C3), 85.6 (C2), 87.5 (C4), 103.8 (C1), 

112.1 (CMe2), 127.5 (Ar), 128.5 (Ar), 136.2 (Ar); HRMS (TOF-ESI) m/z calcd for 

C15H20O5Na+ [M+Na]+  303.1197; found 303.1188. 

Minor anomer had: 1H NMR δ 1.38 and 1.55 (2 x s, 2 x 3H, 2 x CH3), 3.54 (dd, J = 

2.5, 10.2 Hz, 1H, H5), 3.61 (dd, J = 2.5, 10.2 Hz, 1H, H5'), 4.22 (t, J = 2.2 Hz, 1H, H4), 

4.41 (d, J = 11.7 Hz, 1H, Bn), 4.48 (d, J = 11.7 Hz, 1H, Bn), 4.57 (dd, J =4.4, 6.5 Hz, 1H, 

H2), 4.71 (dd, J = 4.4, 6.5 Hz, 1H, H3), 5.47 (dd, J = 3.8, 11.9 Hz, 1H, H1), 7.29-7.30 (m, 

5H, Ph). 13C NMR peaks for the ribose moiety: δ 72.0 (C5), 73.7(Bn), 79.4 (C3), 79.7 (C2), 

81.8 (C4), 97.8 (C1). 

5-O-Benzyl-2,3-O-isopropylidene-D-ribitol (99).152 Treatment of 97 (55 mg, 0.20 

mmol) with 2.5 equiv. of LTBH according to the general procedure gave 98152 (19 mg, 

34%) followed by 99 (31 mg, 55%). Diol 3 had: 1H NMR δ 1.33 and 1.38 (2 x s, 2 x 3H, 2 

x CH3), 2.86 (m, 2H, 2 x OH), 3.55 (dd, J =6.7, 9.6  Hz, 1H, H5), 3.74 (dd, J = 9.6, 3.0 Hz, 

1H, H5'), 3.78 (m, 1H, H1), 3.86 (dd, J = 7.8, 11.6 Hz, 1H, H1'), 3.96 (m, 1H, H4), 4.10 

(dd, J = 5.8, 9.6 Hz, 1H, H3), 4.35 (dt, J = 5.2, 8.1 Hz, 1H, H2), 4.59 (s, 2H, Bn), 7.34 (m, 

5H, Ph). 

4,6-O-Benzylidene-2,3-bits-O-(tert-butyldimethylsilyl)-α/β-D-glucopyranose 

(158) Reduction of 157 (50 mg, 0.1 mmol; prepared by standard silylation 4,6-O-

benzylidene-D-glucopyranose153 with TBDMS/imidazole/DMF) according to the general 

procedure gave 158 (α/β, 1:1, 39 mg, 80%): 1H NMR δ 0.010-0.17 (6 x s, 12H, MeSi), 

0.75-0.98 (2 x s, 18H, t-BuSi), 3.92-4.00 (m, 1.5H), 4.13-4.20 (m, 2H), 4.25 (m, 1H), 4.35 

(m, 0.5H), 4.44 (m, 1H), 5.07 (m, 0.5H, H1), 5.65 (m, 0.5H, H1), 6.12 (s, 0.5H, CHPh), 
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6.16 (s, 0.5H, CHPh), 7.35-7.48 (m, 5H, Ph); 13C NMR δ -5.49, -5.46, -5.44, -5.17, -4.84, 

-4.77, -4.74, -4.71 (MeSi), 18.1 (CMe3), 18.2 (CMe3), 18.3 (CMe3), 25.7 (Me), 25.8 (Me), 

26.0 (Me), 26.1 (Me), 66.3 (C6), 66.4 (C6), 72.6 (C5), 74.7 (C5), 75.2 (C4), 75.3 (C4), 

76.2 (C3), 79.8 (C3), 80.0 (C2), 80.7 (C2), 96.0 (CH-Ph), 97.5 (CH-Ph), 100.1 (C1), 103.8 

(C1), 126.1 (Ar), 126.4 (Ar), 128.5 (Ar), 128.6 (Ar), 129.3 (Ar), 129.9 (Ar), 138.2 (Ar), 

138.5 (Ar); HRMS (TOF-ESI) m/z calcd for C25H44O6Si2Na+ [M+Na]+  519.2569; found 

519.2587 

4.4.2. 1H NMR reaction profile for reduction of sugar lactone 97 

 

 

Figure 41. 1H NMR spectra of reaction profile with 1.2 equiv. of LTBH 
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Figure 42. 1H NMR spectra of reaction profile with 2.5 equiv. of LTBH 

4.5. Biological evaluation and studies for 4-N-alkanoyl and alkyl gemcitabine 

analogues 
 

Cytostatic evaluation in L1210 mouse leukemic cells 

The L12010 cells were cultured in DMEM medium supplemented with 10% fetal 

bovine serum and antibiotics (Penicillin and Streptomycin) in a 5% CO2 incubator 

maintained at 37 °C. Log phase cells were harvested and plated at 1.0 x 104 cells/well in 

96-well microtiter plates. After cell attachment was assured, cells in microtiter plates were 

treated with increasing concentrations of gemcitabine analogs (0-200 μg/ml) and incubated 

in the CO2 incubator at 37 °C for 72 h to induce cell death. MTT assay was performed 
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using the Cell Proliferation kit I (MTT) from Roche Biochemicals (Indianapolis, IN) and 

the plates were read in a Bio-Rad Benchmark multiwell plate reader at 570 nm wavelength 

with a reference wavelength of 655 nm. The percentage of surviving cells (% of control) 

was calculated and plotted against drug concentrations for estimating the IC (inhibitory 

concentration) values. 

Cytostatic evaluation in HEK 293 cells 

 

HEK 293 cells were cultured in DMEM medium supplemented with 10% fetal bovine 

serum and antibiotics (Penicillin and Streptomycin) in 5% CO2 incubator maintained at 37 

°C. Log phase cells were harvested and plated at 1.0 x 104 to 1.0 x 105 cells/well in 24-well 

microtiter plates. After 24 h incubation, cells were treated with increasing concentrations 

of gemcitabine analogs (0-200 μg/ml) and incubated in the CO2 incubator at 37 °C for 24 

to 72 h. Then, MTT reagent (Roche Diagnostics Corporation, Indianapolis, IN) was added 

at a final concentration of 50 µg/ml, and further incubated at 37°C and 5% CO2. Next, the 

formazan crystals were dissolved in a detergent reagent, and each condition was then 

quantified via spectrophotometry (Bio-Rad Benchmark multiwell plate reader) at an optical 

density of 570 nm (OD570).   

Cell proliferation: HPLC studies with HEK 293 cells 

For intracellular localization of 86, HEK 293 cells were washed twice with PBS and 

then lysed with cell lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1% SDS, 0.5% sodium 

deoxycholate, 1% NP-40) in the presence of protease and phosphatase inhibitors. Lysates 

were collected with cell scrapers and cleared by centrifugation. Prior to HLPC analysis, 

cell lysates were re-suspended in H2O, extracted with EtOAc and then subject to RP-HPLC 

analysis.  
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HEK 293 Cell Fluorescence Procedure 

Cell incubation 

HEK 293 cells were seeded in plates containing glass coverslips and incubated 

overnight. After incubation, fresh media solutions containing 86 (100 µM) was added and 

then incubated for various durations (6, 12 and 24 h). Cells were fixed in paraformaldehyde 

(3.7%) for 15 min at room temperature, quenched, and washed with PBS as essentially 

described by Neef et al.131 

CuAAC-mediated staining in fixed cells 

HEK 293 Cells on coverslips were incubated upside-down with 50 μL of freshly 

prepared staining mix (10 μM Fluor alkyne, 1 mM CuSO4, and 10 mM sodium ascorbate 

in PBS) for 1 h at room temperature in the dark.  Cells were then to be washed with 0.1% 

Triton X-100 (in order to efficiently dissolve cellular membranes) in PBS, and PBS. Cells 

were then stained with DAPI for 15 min at room temperature in the dark. After incubation, 

cells were washing with PBS and coverslips were mounted and viewed on an Olympus 

FV1200 Laser confocal microscope. 

Statistical analysis  

All experiments were independently performed in triplicate. The standard error of the 

mean (SEM) of triplicates was utilized and significance was analyzed by one-way 

ANOVA. All statistical data were from averages of the three independent experiments. 

Results with *P<0.01 was considered statistically significant. 
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4.6. Radiosynthesis of 18F Fluoro-silane probes 

 Materials 

No-carrier-added [18F]fluoride was produced by the 18O(p,n)18F reaction of [18O]H2O 

(84% isotopic purity, Zevacor Pharma, Noblesville, IN, USA) in an RDS-112 cyclotron 

(Siemens; Knoxville, TN, USA) at 11 MeV using a 1 mL tantalum target with havar foil. 

Anhydrous grade acetonitrile (CH3CN), dimethylsulfoxide (DMSO), potassium carbonate 

(K2CO3), 200-proof ethanol (EtOH), and glacial acetic acid (AcOH) were purchased from 

Sigma-Aldrich (Milwaukee, WI, USA).  HPLC grade acetonitrile was purchase from 

Fisher Scientific (Pittsburg, PA, USA). 4,7,13,16,21,24-Hexaoxa-1,10-

diazabicyclo[8.8.8]hexacosane (Kryptofix K222) and pre-conditioned quarternary 

methylammonium (QMA) cartridges were purchased from ABX Advanced Biochemical 

Compounds (Radeberg, Germany). The t-C18 plus short cartridge (WAT036810) was 

purchased from Waters (Milford, MA, USA).   

For microfluidic radiochemistry chip fabrication, sulfuric acid (96%, cleanroom MB), 

hydrogen peroxide (30%, cleanroom LP), acetone (99.5%, cleanroom MB), and methanol 

(99.9%, cleanroom LP) were purchased from XMG Electronic Chemicals Inc. (Houston, 

TX, USA). Tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane (silane) was purchased 

from Gelest, Inc. (Morrisville, PA, USA), and Teflon AF 2400 1% solution was purchased 

from DuPont Fluoroproducts (Wilmington, DE, USA). Tape (TimeMed Label Tape) was 

obtained from Fisher Scientific. 

Chromatography and analytical methods 

Purification of [18F]108 was performed by semi-preparative HPLC using a WellChrom 

K-501 HPLC pump (Knauer; Berlin, Germany), reversed-phase Gemini-NX (5 µm, 10 x 
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250 mm, Phenomenex) column, ultraviolet (UV) detector (254 nm, WellChrom 

Spectrophotometer K-2501, Knauer) and gamma-radiation detector and counter (B-FC-

3300 and B-FC-1000; Bioscan Inc.; Washington, DC, USA). Injection was performed 

using the ELIXYS HPLC injection valve connected to a 5 mL loop. The flow rate was 5 

mL/min and a gradient elution of CH3CN in H2O was used (5% v/v CH3CN for 0-5 min, 

ramp to 20% MeCN at 10 min, ramp to 30% CH3CN at 20 min). The collected HPLC 

fraction was diluted with H2O (30 mL) and trapped on a tC18 plus cartridge previously 

conditioned with 5 mL of EtOH and 10 mL of H2O. The cartridge was then rinsed with 

additional H2O (5 mL) and eluted with EtOH (1 mL). After complete evaporation of EtOH 

at 80°C, the purified product was dissolved in 2-3 mL PBS. [18F]94 was synthesized but 

not purified.   

Analytical HPLC was used to confirm the identity and radiochemical purity of the 

synthesized compound. Analytical HPLC was performed on a Knauer Smartline HPLC 

system with a C18 reverse-phase (Luna column (5 µm, 4.6 x 250 mm, Phenomenex) with 

in-line Knauer UV (254 nm) and gamma-radiation coincidence detector and counter (B-

FC-4100 and B-FC-1000). Injections were performed with a manual injection valve 

(Rheodyne 7725i) with a 200 µL loop. For analysis of [18F]96, the mobile phase with 60% 

v/v CH3CN in H2O and flow rate was 1 mL/min. Retention times of 92 and 96 were 8.0 

and 6.2 min, respectively. For analysis of [18F]94, the mobile phase was 80% v/v CH3CN 

in H2O and flow rate was 1.5 mL/min. Retention times of 90 and 94 were 6.1 and 4.3 min, 

respectively. 

Radio-thin-layer-chromatography (radio-TLC) was performed on precut silica plates 

(Baker-flex®, J.T.Baker; Phillipsburg, NJ, USA). After spotting a tiny sample volume (~1-
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5 µL) using a glass capillary, the plate was developed in the mobile phase. Chromatograms 

were obtained using a radio-TLC scanner (miniGita Star, Raytest USA, Inc.). The mobile 

phase was 95% v/v CH3CN in H2O. The Rf values for unreacted [18F]fluoride, [18F]94 and 

[18F]96 were 0.0, 0.64, and 0.72, respectively. 

Radiochemical purity (RCP) was determined by using both the radio-TLC and radio-

HPLC radiation-detector chromatograms. The radio-TLC chromatogram enabled 

estimation of the fraction of [18F]fluoride that had been converted to product (plus any by-

products). The radio-HPLC chromatogram (ignoring the [18F]fluoride peak) enabled 

estimation of the fraction of the desired product among 18F-labeled species. The RCP was 

computed as the product of these two fractions. Crude radiochemical yield (crude RCY) 

was computed as the RCP multiplied by the fraction of the starting radioactivity collected 

at the end of the reaction (corrected for radioactive decay). Isolated RCY was determined 

by dividing the radioactivity of the purified, formulated product by the starting 

radioactivity (corrected for radioactive decay). 

Macroscale radiosyntheses of 4-N-alkanoyl [18F]94 and 4-N-alkyl [18F]96 

The one-pot syntheses of 4-N-alkanoyl [18F]94 and 4-N-alkyl [18F]96 were adapted 

from literature90, 99 and performed on the ELIXYS FLEX/CHEM radiosynthesizer (Sofie 

Biosciences, Inc., Culver City, CA, USA). Briefly, [18F]fluoride in [18O]H2O (1.9–37 GBq 

[50-1000 mCi]; average 15 GBq [400 mCi]) was trapped on a pre-conditioned QMA 

cartridge and eluted with 0.8 mL of a 3:5 H2O: CH3CN (v/v) solution containing 7 mg 

K2CO3 and 23 mg K222 into the reaction vessel. This solution was then dried at 110°C under 

nitrogen stream (7psi) and vacuum. To remove residual water, additional CH3CN (1.2 mL) 

was added and the mixed solution again evaporated. This step was repeated a second time 
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to ensure water was fully removed. 2.5 mg of precursor (90 or 92) in DMSO with 1% v/v 

AcOH was then added to the dried [18F]KF/K222 residue and reacted at 100°C for 25 min. 

After cooling, 2 mL of HPLC mobile phase was added, and the crude mixture was 

transferred to a 5 mL injection loop for HPLC purification.  

The synthesis of [18F]94 was performed only once. The crude radiochemical yield was 

0.5% (n = 1) and further purification or synthesis optimization was not pursued.  For 

[18F]96, the radiochemical yield was 6.6 % (n = 5) and the radiochemical purity was >99%. 

The synthesis time was 84 min, including purification and formulation.  

The detailed ELIXYS synthesis program is describe in table 9, and the reagent setup is 

described in table 10. 

Table 9. Details of ELIXYS radiosynthesis program. 

Index Operation Source Destination Duration 

(s) 

Temperature 

(°C) 

Pressure 

(psi) 

Other 

Parameters 

1 Trap 

radionuclide 

Source 

vial 

Reactor 3 90 -- 7 
 

2 Elute 

radionuclide 

Reagent 

1 

Reactor 3 90 -- 7 
 

3 Evaporate -- Reactor 3 210 110 7 Stirring 

(500rpm); 

Cooling: 

35°C 

4 Elute 

radionuclide 

Reagent 

2 

Reactor 3 60 -- 7 
 

5 Evaporate -- Reactor 3 105 110 7 Stirring 

(500rpm); 

Cooling: 

35°C 

6 Add 

Reagent 

Reagent 

3 

Reactor 3 15 -- 3 Add needle: 

1; 

No stirring 

7 Evaporate -- Reactor 3 105 110 8 Stirring 

(500rpm); 

Cooling: 

35°C 
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8 Add 

Reagent 

Reagent 

4 

Reactor 3 15 -- 3 Add needle: 

1; No 

stirring 

9 React -- Reactor 3 1500 100 -- Seal 

position: 1; 

Stirring 

(500rpm); 

Cooling: 

35°C 

10 Add 

Reagent 

Reagent 

5 

Reactor 3 15 -- 3 Add needle: 

1; 

Stirring 

(20s at 

500rpm 

after 15s 

delay) 

11 Transfer Reactor 

3 

HPLC 0 -- 0 Flow path: 

out; 

Loop 

loading 

mode: 

manual; 

No stirring 

 

Table 10. Details of reagent positions in ELIXYS cassette. 

Cassette # Reagent Position 

1 2 3 4 5 

1 Eluent 

(7mg K2CO3 

+ 23 mg 

K222 in 300 

μL H2O + 

500 μL 

CH3CN) 

CH3CN 

(1.2 mL) 

CH3CN 

(1.2 mL) 

Precursor 

(2-3 mg in 

400 μL 

DMSO +1% 

v/v AcOH) 

CH3CN/H2O 

(2 mL, 5/95 

v/v) 

 

Microscale radiosyntheses of 4-N-alkanoyl [18F]94 and 4-N-alkyl [18F]96 

Microscale radiochemistry chip fabrication 

The microscale synthesis was performed in microdroplets on a simple microfluidic 

chip.138, 139 Glass microscope slides were cut into square pieces (25 x 25 x 1 mm), and 

cleaned by sonication in acetone (5 min), sonication in MeOH (5 min), rinsing with DI 
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water, and were then dried with nitrogen. Additional cleaning was then performed by 

submerging the glass pieces into Pirahna cleaning solution (3:1 v/v mixture of sulfuric acid 

(96%) and hydrogen peroxide (30%)) for 15-30 min, then rinsing with DI water and drying 

with nitrogen. Cleaned substrates were silanized by placing then in a sealed chamber with 

a few drops of silane under reduced pressure overnight, followed by heating at 110°C for 

10 min on a hot plate. Teflon AF solution was spin-coated (Headway PWM 32, Headway 

Research Inc., Garland, TX, USA ) on one side of each chip using the following 3-step 

program: 500 RPM for 5 s (ramp rate 100 RPM/s), 1000 RPM for 30 s (ramp rate 500 

RPM/s) and 0 RPM (ramp rate 1000 RPM/s). After coating, the glass chips were heated on 

a hotplate at 160°C for 10 min, then at 245°C for 10 min. Finally, the Teflon-coated chips 

were baked in a Carbolite oven (HTCR6 28 with 3216P1 programmer option, Carbolite 

Gero Ltd., UK) at 340°C for 3.5 h. 

Temperature control 

A custom temperature control system was assembled to heat and cool the glass chip. 

Heating was accomplished on top of a small rectangular 180 W ceramic heater with a built-

in thermocouple (CER-1-01-00098 Ultramic heater, Watlow Electric Manufacturing Co., 

St. Louis, MO, USA). The heater temperature was controlled with a LabView program 

(National Instruments, Austin, TX, USA) using the thermocouple signal received through 

a data acquisition module (USB-201, Measurement Computing, Norton, MA, USA) via an 

on-off algorithm. The heater was affixed to a thermoelectric (Peltier) device for heat 

insulation and accelerated cooling of the when necessary. The Peltier device was fixed on 

an aluminum heatsink and fan. A small amount of thermal paste was used for adhesion and 

better thermal contact between chip and heater, heater and Peltier, and Peltier and heatsink. 
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On-chip synthesis 

The microdroplet synthesis was performed using two Teflon-coated glass chips as 

shown in Figure 43. The first was placed (Teflon-coated side up) on the heater. 

[18F]fluoride in [18O]H2O (10 μL; ~150 MBq [4 mCi]) was mixed with 12 μL of a 70:30 

v/v CH3CN/H2O solution containing K222 (0.23 µg) and K2CO3 (0.07 µg) and deposited in 

the center of the chip. Additional CH3CN (10 μL) was added to aid in azeotropic drying, 

and the chip was heated at 105°C until the droplet on chip shrank to a small volume (~1μL). 

Next, 0.2 µg precursor (90 or 92) in 30 µL of DMSO with 1% v/v AcOH was added to the 

dried [18F]KF/K222 residue, and the reaction droplet was covered with the second glass chip 

(Teflon-coated side down). Tape affixed to the edges of the top chip resulted in a gap of 

~150 μm between the substrates. The chip was heated at 100°C for 20 min. Crude product 

was extracted from chip by adding 20 μL of 1:1 v/v MeOH:H2O solution and then 

collecting the diluted mixture with a pipette. This process was repeated 2x for each 

substrate (~80 μL total volume).  

Without purification, the microscale synthesis took ~45 min. Decay-corrected crude 

radiochemical yield for 4-N-alkanoyl [18F]94 was 10 % (n = 1) and for 4-N-alkyl [18F]96 

was 24.4% (n = 5). The crude yield for 4-N-alkanoyl [18F]94 was 10% (n = 1) and for 4-N-

alkyl [18F]96 was 27.2% (n = 5). Purification and formulation added additional time to the 

synthesis. 

 

Figure 43. Schematic of the microdroplet radiosynthesis process. 
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4.7. Biological and PET evaluation of [18F]-4-N-alkyl gemcitabine radioligand 96 

Stability in formulation 

Methods 

After purification, the collected HPLC fraction (3-4 mL) of [18F]96 was collected in a 

V-vial. The mobile phase was evaporated to dryness at 75°C with nitrogen stream. The 

dried residue was then dissolved in 0.3 mL EtOH. 2.7 mL saline was added to the vial, and 

the mixture was passed through a sterilization filter. Samples of the formulated tracer were 

analyzed via radio-HPLC (analytical conditions previously described) at various 

timepoints. 

In vivo imaging 

Methods 

PET/CT was performed on the Genisys 8 PET/CT (Sofie Biosciences, USA). The 

Genisys 8 PET/CT is an integrated scanner with a PET subsection that consists of 8 

detectors with BGO scintillator array arranged in a box geometry and a back section 

consisting of a rotating CT gantry. 

For static PET scans, a WT C57BL/6 mouse was injected with approximately 75 µCi 

[18F]96 via tail vein. After 60 min of conscious uptake, mice were anesthetized with 1.5% 

isoflurane and placed in a dedicated imaging chamber. microPET images were acquired 

for 600 sec with an energy window of 150-650 keV, reconstructed using maximum-

likelihood expectation maximization as recommended by the vendor. All images were 

corrected for CT-based photon attenuation, detector normalization and radioisotope decay 

(scatter correction was not applied) and converted to units of percent injected dose per 

gram (%ID/g). 



112 
 

For dynamic PET scans, a WT C57BL/6 mouse was anesthetized with 2% isoflurane, 

placed in a dedicated imaging chamber with heating, and catheterized. Dynamic microPET 

imaging was started concurrently at the beginning of a 10 sec infusion via the catheter with 

approximately 75 µCi of [18F]96. Data was acquired in listmode for 3600 sec with an 

energy window of 150-650 keV and histogrammed into a frame sequence of 4 x 15 sec, 8 

x 30 sec, 5 x 60 sec, 4 x 300 sec, 3 x 600 sec. Images were reconstructed using maximum-

likelihood expectation maximization as recommended by the vendor. All images were 

corrected for photon attenuation, detector normalization and radioisotope decay (scatter 

correction was not applied) and converted to units of percent injected dose per gram 

(%ID/g). 

All PET acquisitions were immediately followed by CT acquisition. The CT section 

consists of a gantry and flywheel that uses a 50 kVp, 200 uA x-ray source and flat-panel 

detector. The CT acquires images in a continuous-rotation mode and with standard CT 

acquisition time of 50 s. Standard scans are acquired with 720 projections at 55 ms per 

projection, and reconstructed using a Feldkamp algorithm. 

Metabolite analysis 

Methods 

In one experiment, mouse blood was incubated with 0.5 mCi of [18F]96 for 30 min at 

37°C. A sample of this mixture was taken and centrifuged for 5 min. The supernatant 

(plasma fraction) was collected. The pellet (cell fraction) was washed twice with PBS and 

the collected liquid mixed with the previous plasma fraction. The radioactivity in each 

fraction was measured. 
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In a second experiment, a mouse was injected via tail vein with 1 mCi of [18F]96 and 

800 µL was drawn from the mouse 30 min after injection, and was separated and counted 

as above. 
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5. CONCLUSION 

In this dissertation I reported the synthesis of gemcitabine analogues with 4-N-alkanoyl 

and 4-N-alkyl modifications bearing i) β-keto sulfonate moiety or ii)  silicon-fluoride 

acceptor building blocks with both chemotherapeutic properties and ability for the 18F 

incorporation with possible application  as gemcitabine PET radiotracers.  

The 4-N-alkylgemcitabine analogues with a β-keto sulfonate moieties were synthesized 

with the goal of overcoming defluorination that can occur with the presence of hydrogens 

at the β- carbon to the fluorine atom. The presence of these hydrogens have shown to occur 

in previous PET-imaging results with other 4-N-alkylgemcitabine analogues.38 The target 

analogue was synthesized by coupling the p-toluenesulfonamido group in 4-N-

tosylgemcitabine with an alkyl amine possessing a terminal olefin. This terminal olefin was 

then modified through several oxidation steps to β-keto with sulfonate groups that have the 

ability to be fluorinated.  

The synthesis of 4-N-alkanoylgemcitabines with silicon fluoride acceptor building 

blocks was achieved by coupling of gemcitabine 1 with the various carboxylic acids using 

peptide coupling conditions (HOBt/EDC). This method was versatile in that it allowed 

introduction of aliphatic chains with different terminal functional groups such as azido and 

alkynes that are compatible for click chemistry. The click reaction with dialkylsilyl-

fluoride acceptor building blocks afforded the 4-N-alkanoylsilanegemcitabine analogues 

in short reaction times and high yield. The synthesis of the 4-N-alkylgemcitabine with 

silicon fluoride acceptor building block was achieved by displacement of the p-

toluenesulfonamido group in 4-N-tosylgemcitabine with the corresponding alkyl amine 

with the terminal azido moiety. Analogously to the alkanoyl analogues, they were coupled 
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with dialkylsilyl fluoride acceptor building blocks through click chemistry to afford the 4-

N-alkylsilanegemcitabine analogue. 

Evaluation on mice tumor cell lines (L1210) revealed potent cytotoxic activities for the 

4-N-alkanoylgemcitabines, with IC50 values in the nM range, comparable to the parent 

gemcitabine while the 4-N-alkylgemctiabines displayed almost no cytotoxic activity. 

Additionally, biological studies were performed to observe the cellular uptake of 4-N-alkyl 

analogue 86 in HEK293 cells using both HPLC analysis and fluorescence microscopy. 

These experiments clearly showed that these type of analogues are incorporated into the 

cell and their lack of hydrolysis into the parent drug inside explain their low cytotoxic 

activity.  

Both 4-N-alkanoyl and 4-N-alkyl modified gemcitabine analogues were then 

successfully fluorinated following protocols that are used in radiosynthetic settings using 

KF and Kryptofix-222 at elevated temperatures. In the case of the analogues bearing the 

silicon-fluoride acceptors, the protocol did not require harsh deprotection steps after 

fluorination, but the caution of silicon-fluoride hydrolysis was taken into consideration. 

The 4-N-alkylgemcitabine with β-keto sulfonate analogue was successfully fluorinated via 

both mesylate and tosylate intermediates followed by a deprotection step. The developed 

fluorination protocol was then successfully applied for the synthesis of both [18F]-4-N-[11-

undecanoyl-(fluoro-di-iso-propylsilyl)-O-propargylbenzyltriazol)]gemcitabine and [18F]-

4-N-[7-heptanyl-(fluoro-di-iso-propylsilyl)-O-propargylbenzyltriazol)]gemcitabine 

radioligands using macroscale and microscale radiolabeling protocols. These radioligands 

were then evaluated through preliminary stability in formulation studies, in vivo PET 

imaging and metabolite analysis in blood. 
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Lastly, in studying the efficient reduction of lactones to hemiacetals, I developed an 

efficient protocol for the reduction of sugar γ- and δ-lactones with LTBH (1.2 equiv.) in 

CH2Cl2 (0°C, 30 min.) to the corresponding hemiacetals. Several ribono- and gulono-1,4-

lactone as well as glucono-1,5-lactones were reduced to the corresponding pentose or 

hexose derivatives in high yields. The reduction with LTBH can be carried out in the 

presence of protecting groups such as trityl, benzyl, silyl (TMS or TBDMS), 

isopropylidene/benzylidene and to some extent acyl (Bz, or Ac) that are commonly used 

in the synthetic carbohydrate chemistry. 
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