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ABSTRACT OF THE DISSERTATION 

NANOMATERIAL-BASED ELECTROCHEMICAL AND COLORIMETRIC 

SENSORS FOR ON-SITE DETECTION OF SMALL-MOLECULE TARGETS 

by 

Bhargav Guntupalli 

Florida International University, 2017 

Miami, Florida 

Professor Yi Xiao, Major Professor 

An ideal biosensor is a compact and in-expensive device that is able to readily and 

rapidly detects different types of analytes with high sensitivity and specificity. The 

affectability of a biosensing methodology is subject to the limit of nanomaterials to 

transduce the target binding process to an improved perceptible signal, while the 

selectivity is accomplished by considering the binding and specificity of certain moieties 

to their targets. Keeping these requirements in mind we have chosen nanomaterials such 

as carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) that has catalytic properties 

combined with their size, shape and configuration dependent chemical and physical 

properties as essential precursors and signaling components for creation of biosensors 

with tremendous sensitivity. The primary goal of the research work described in this 

dissertation is to develop and evaluate novel methods to detect various analytes using 

nanomaterials, at the same time making an affordable architecture for point-of-care 

(POC) applications. We report here in chapter 3 a simple and new strategy for preparing 

disposable, paper-based, porous AuNP/M-SWCNT hybrid thin gold films with high 

conductivity, rapid electron transfer rates, and excellent electrocatalytic properties to 
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achieve multiple analyte electrochemical detection with a resolution that greatly exceeds 

that of purchased flat gold slides. We further explored the use of nanomaterial-based 

paper films in more complex matrices to detect analytes such as NADH, which can act as 

a biomarker for certain cellular redox imbalances and disease conditions. Carbon 

nanotubes with their large activated surfaces and edge-plane sites (defects) that are ideal 

for performing NADH oxidation at low potentials without any help of redox mediators 

minimizing surface fouling in complex matrices is described in chapter 4. With an 

instrument-free approach in mind we further focused on a colorimetric platform using 

split cocaine aptamers and gold nanoparticles (AuNPs) to detect cocaine for on-site 

applications as described in chapter 5. In chapter 5, the split aptamer sequences were 

evaluated mainly on three basic criteria, the hybridization efficiency, specificity towards 

the analyte (cocaine), and the reaction time to observe a distinguishable color change 

from red to blue. The assay is an enzyme-assisted target recycling (EATR) strategy 

following the principle that nuclease enzyme recognizes probe–target complexes, 

cleaving only the probe strand releasing the target for recycling. We have also studied the 

effect of the number of binding domains with variable chain lengths on either side of the 

apurinic (AP) site. On the basis of our results, we finally shortlisted the sequence 

combination with maximum signal enhancement fold which is instrumental in 

development of colorimetric platform with faster, and specific reaction to observe a 

distinctive color change in the presence of cocaine. 
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CHAPTER 1: Introduction 

1.1 Overview 

There is a strong demand for analytical sensors that can perform quick and accurate 

analyses for applications in areas such as disease diagnosis, forensics, environmental 

protection, drug development, and hygiene. Considerable effort has been invested into the 

development of biosensors, which are devices containing biological elements capable of 

recognizing specific target molecules. These recognition events are subsequently 

transduced at the detector element into a semi-quantitative or quantitative signal that is 

proportional to the concentration of the analyte. The choice of materials employed in the 

fabrication of such biosensors is a crucial factor in determining their utility and suitability 

for accurate on-site detection. Similarly, the selection of an appropriate transduction 

process can minimize or even eliminate the need for expensive instrumentation or 

expertise to obtain a quick and accurate analysis. Biosensors, therefore, offer the potential 

to achieve scaled-down, inexpensive, label-free analysis with limited sample preparation 

requirements, making them potentially ideal for on-site detection applications. 

Electrochemical sensors are especially well suited for dealing with real-world sample 

matrices without the need for time-consuming and labor-intensive pre-treatment steps. 

These devices offer advantages that include excellent repeatability and accuracy, a wide 

linear response range, low detection limits, and the capacity for real-time measurements. 

Electrochemical sensors constructed from nanomaterials such as carbon nanotubes 

(CNTs) and gold nanoparticles (AuNPs), which have excellent plasmonic properties, 

offer numerous possibilities for accurate sensor design and multi-analyte detection 
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capabilities. Carbon nanotubes have become the focus of intense investigation since their 

discovery, as they can promote the electrochemical reactivity of important biomolecules 

and enhance electron-transfer reactions. In parallel, AuNPs have important applications 

in numerous areas, including the design of colorimetric sensors. Colorimetric sensors 

have many advantages for on-site and point-of-care (POC) detection because they can 

minimize, or even eliminate, the necessity for analytical instruments and can even enable 

naked-eye observation of assay readouts. The AuNPs are also readily compatible with 

surface modification with various entities that can aid in the detection process, such as 

DNA aptamers. DNA aptamers have emerged as a promising alternative to antibodies, as 

they can deliver high affinity and specificity for proteins, small-molecules, and other 

targets, but also have the important benefit of being chemically synthesized rather than 

produced in vivo. Aptamers and AuNPs have already been combined in a number of 

sensor formats.138  

Low cost and portability are important characteristics for on-site detection, especially in 

settings where time is of the essence, such as medical emergencies. Paper-based sensors 

are especially well-suited for such applications, as they enable the fabrication of simple, 

cheap, portable, and disposable devices. The adaptation of electrochemical sensing 

systems into paper-based devices could, therefore, facilitate access to simple, low-cost, 

on-site detection assays. For example, CNTs and AuNPs can be combined by using a 

simple fabrication strategy—such as vacuum filtration (VF), which requires only basic 

lab equipment—to produce a hybrid material with high surface area that is highly useful 

for electrochemical analyte detection, and which can readily be formed into electrodes of 

desired size and shape on a paper substrate.  



 3 

1.2 Motivation and goal 

To date, researchers have primarily focused on the fabrication of paper-based sensors for 

use in developing world diagnostic applications, where simplicity and ease-of-use are 

highly desirable.61 The goal of my project is to design platforms with simple fabrication 

strategies involving novel nanomaterials, and to pair them with energy-efficient 

transduction systems such as electrochemical and colorimetric sensors as a practical tool 

for on-site diagnostics and drug detection. We have developed a platform for the fast and 

reproducible manufacture of disposable, paper-based, conductive thin gold films, in 

which we utilize an efficient VF technique to deposit an underlayer of arbitrarily 

organized, electrochemically inert, metallic single-walled carbon nanotubes (M-

SWCNTs) onto a mixed cellulose ester (MCE) filter paper. The underlayer, in turn, 

serves as a rigid matrix for forming an upper layer of AuNPs, as described in Chapter 3. 

The method produces highly conductive porous gold films under ambient conditions, 

with no post-growth, cleaning or sintering steps, which offer excellent detection 

capabilities and can distinguish the presence of dopamine (DA) and serotonin (5-HT) – 

either individually or simultaneously – with a resolution greatly exceeding that of 

commercially-available flat gold slides or porous gold films prepared by more labor-

intensive electrodeposition techniques. Our hybrid film is designed to meet the 

requirements for assembling a cheap and portable device that also offers the capacity for 

detection with high sensitivity and selectivity, and multi-analyte discrimination. There are 

several methods by which CNTs can be chemically modified to tune their characteristics 

for a range of applications. However such modifications will ramp up the production 

cost, which runs counter to our objective in my work. We have therefore used unmodified 



 4 

PureTubes single-walled carbon nanotubes (P-SWCNTs). After using our VF technique 

to form a thin film of P-SWCNTs on MCE paper, we developed a sensor device for the 

electrochemical detection of beta-nicotinamide adenine dinucleotide disodium salt 

hydrate (NADH) in biosamples and other complex matrices, as described in Chapter 4. 

To further expand our goal of developing a detection platform that can eliminate the use 

of instrumentation, we propose a colorimetric detection strategy using AuNPs, DNA 

aptamers, and the exonuclease III (Exo III) enzyme for on-site cocaine detection. This 

enzyme-based amplification is an extremely straightforward detection method, as the 

change in color can readily be visualized by eye. We employ an enzyme-assisted target 

recycling (EATR) strategy, in which we have optimized the probe density to ensure 

sufficient hybridization efficiency with a rapid detection time and excellent specificity for 

cocaine, as described in Chapter 5.  

1.3 Scope of the dissertation 

Chapter 2 of the present thesis provides a broad literature review and background on the 

nanomaterials and methods used in the construction of our electrochemical biosensor. It 

also describes colorimetric sensors developed for cocaine detection and offers an 

introduction to carbon nanotubes, and the synthesis of AuNPs and their application in 

electrochemical and colorimetric detection platforms. This chapter also reviews current 

thin gold film fabrication strategies, along with materials and methods used for the 

detection of targets such as NADH. Finally, this chapter provides an introduction to the 

use of DNA aptamers for cocaine detection, and their use in conjunction with AuNPs for 

analyte detection. Chapter 3 details the fabrication of a paper-based porous gold film 

using our VF technique for electrochemical detection of DA and 5-HT. Chapter 4 focuses 
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on the application of VF fabricated P-SWCNT films for the electrochemical detection of 

NADH in complex biosamples. Chapter 5 examines the evolution of cocaine aptamer 

design to increase their specificity as well as the rate of the enzyme reaction required to 

generate a visible color change from the aggregation of AuNPs in our colorimetric 

sensor. Finally, Chapter 6 provides a summary of the dissertation and outlines a plan for 

further research. 
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CHAPTER 2: Background and literature review 

2.1 Biosensors 

The demand for sensitive monitoring technologies capable of rapid and accurate analysis 

is steadily growing across a range of fields, including disease diagnostics,1 forensics,2 

environmental protection,3 drug development,4 and hygiene.5 Among the most promising 

areas of development are biosensors, devices that contain biological elements capable of 

recognizing specific target molecules, where target binding is subsequently transduced 

into a semi-quantitative or quantitative signal that is roughly proportional to the target 

concentration (Figure 1). The field was born in 1962, when Leland Clark, Jr.—known 

today as ‘the father of biosensors’—described a system for glucose detection that used a 

dialysis membrane to trap the enzyme glucose oxidase (GOX) against a platinum 

electrode.6  

The affectability of a given biosensing platform is defined by its capacity to 

transduce the target binding process into a perceptible signal, while the selectivity is 

determined by the biosensor’s binding affinity and specificity for its target. 

  

Figure 1. The working principle of a biosensor. 

A variety of materials are now being investigated to assess their performance in different 

detection frameworks. 

Transducer

Analyte

Bio-receptor

Signal
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2.2 Nanomaterials 

Steady progress in nanotechnology has led to the development of improved 

nanomaterials that can perform different functions such as imaging, detecting, and 

targeting. By modulating their surface area, size, shape and configuration, it becomes 

possible to optimize their chemical and physical properties for use in the creation of 

biosensors with tremendous sensitivity. 

2.2.1 Carbon nanotubes  

Carbon nanotubes (CNTs) are one of the widely investigated nanomaterials of the, 21st 

century, and their extraordinary characteristics have been employed in diverse research 

areas. Since 2006, worldwide CNT production capacity has multiplied at least 10-fold, 

and the annual CNT-related journal publications and patents continue to grow steadily. 

Carbon nanomaterials exhibit considerable structural diversity, existing in allotropic 

forms such as nanodiamond, graphene, amorphous carbon, Fullerene C60, and single-

walled nanotubes (SWNTs). 

To date, CNTs, graphene, and their related species are most widely used for detecting 

strategies of analytes. Carbon nanotubes are tubular rolled sheets of graphene, and 

include both single-walled (SWNTs) and multi-walled (MWNTs) species.7, 8 The SWNTs 

exhibit metallic, semi-metallic and semiconducting properties that can be exploited for 

detecting applications.9 Chemical vapor deposition (CVD) is the standard means for high-

volume CNT production, and generally, uses fluidized bed reactors that promote gas 

diffusion and heat transfer to metal catalyst nanoparticles.8, 10 Carbon nanotubes have 

large activated surfaces and oxygen-containing activated sites that are ideal for 

performing electrocatalytic oxidation at low potentials.11 A number of methods have been 



 8 

established to functionalize CNT sidewalls for the purpose of expanding their potential 

applications, but their hydrophobic nature and insolubility in many solvents hinders their 

use.12 

2.2.2 Gold nanoparticles  

Colloidal metal nanoparticles have shown great potential in optical, electronic, and 

magnetic applications, and nanoparticle-based electroanalytical techniques are especially 

promising for the construction of advanced chemical- and biosensor-based detection 

platforms.13 Biocompatibility, chemical stability, and oxidation resistance are some of the 

salient characteristics of gold nanoparticles (AuNPs) that make them adaptable for 

applications such as chemical sensing,14 catalysis,15 electronics,16 imaging,17 and 

biological labeling.18 Colloidal AuNPs also exhibit high surface area,19 good surface 

chemistry for chemical modifications and high electrical conductivity,20 enabling them to 

effectively catalyze the redox process for molecules of analytical interest, leading to 

lower detection limits. The electrical conductivity, catalytic activity, and optical 

properties of these nanoparticles is largely dependent on their shape and size.21 Electronic 

absorption spectroscopy provides information regarding the UV/Vis region, which is 

dominated by transitions involving the transfer of electrons from ligand orbitals to metal 

upon absorption of a photon.22 Monodispersed AuNPs with a diameter of ~30 nm will 

exhibit concerted oscillations (surface plasmons) of electron charge by the free electrons 

of the colloidal nanoparticle due to the propagation of the light ray, such that the 

oscillations are in resonance with the frequency of the light.22 The observed surface 

plasmon absorption phenomenon results in absorption of light in the blue-green portion 
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size result in greater absorption of red light and reflection of blue or purple light.22  

2.2.2.1 Mechanisms of AuNP synthesis 

Citrate reduction (also known as the Turkevich method) is one of the most widely used 

methods for AuNP synthesis because of its simplicity, energy efficiency, inexpensive 

reagents, and the tunable size range of the resulting particles.23 The process, which yields 

colloidal AuNPs typically ranging in diameter from 10-100 nm, entails the reduction of 

total ionic Au+3 to atomic Au0 by citrate anions. This chemical reduction results in 

nucleation and successive growth in situ to produce spherical or quasi-spherical AuNPs. 

The first step is the oxidation of sodium citrate, yielding dicarboxy acetone or sodium 

acetone dicarboxylate (SADC), followed by reduction of the auric salt to aurous salt and 

then Au0.24 Depending on the pH of the reaction solution, AuCl4
- ions (pH 3.3) are 

hydrolyzed into different types of auric precursor ions: AuCl3 (OH)- (pH 6.2), AuCl2 

(OH)2
- (pH 7.1), AuCl (OH)3

- (pH 8.1), and Au(OH)4
- (pH 12.9).24 Their reactivity 

decreases in the following sequence: AuCl4
- > AuCl3(OH)- > AuCl2 (OH)2 - > AuCl 

(OH)3
- > Au(OH)4

-.24 To minimize the pH buffer effect of citrate, pre-mixed HAuCl4 

citrate can be rapidly added to the boiling mixture. The presence of just a single reactive 

ion species, such as AuCl3 (OH)-, can facilitate homogenous nucleation and is more 

likely to result in monodispersion than mixtures containing multiple precursor ions.25 

When the pH of the reaction solution is between 3.3 and 6.2 the solution is monodisperse. 

Rapid formation of SADC favors particles with a narrow size distribution, but increased 

pH and temperature, SADC decomposes to acetone, which reduces the auric precursor to 

AuCl.24, 25 This results in secondary nucleation, broadening the size distribution of the 

AuNPs. Forming macromolecular SADC/AuCl complexes requires a minimum of 2 

of the spectrum (~450 nm), while the red light is reflected. Further increases in particle 
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SADC to tether 3 AuCl (Au+), corresponding to a citrate:HAuCl4 molar ratio of 0.67. 

Citrate anions stabilize the surface of AuNPs during particle formation by acting as 

individual, noninteracting, negatively-charged adsorbed species on the AuNP surface. 

Steric repulsion by this citrate layer stabilizes the AuNPs.24 Citrate anions coordinate to 

the AuNP surface by inner-sphere complexation with their carboxylate groups, and there 

are trace amounts of AuCl4-, Cl-, and OH- on the metal surface. The hydroxyl group of 

citrate forms a 5-membered chelating coordination structure with the metal atom.24 

However, a few hydroxyl groups on the adsorbed citrate remain free and available for 

other interactions. Attenuated total reflectance infrared (ATR-IR) spectroscopy studies 

have revealed the presence of dangling citrate ions that are not in direct contact with the 

surface of the nanoparticle. The existence of these free carboxylate groups is responsible 

for the negative charge of the AuNPs, and recent studies indicate that the central 

carboxylate groups of the dangling citrate anion may be responsible for electrostatic 

repulsion between AuNPs.26 The addition of thiols to the citrate-stabilized AuNPs leads 

to coadsorption of thiols between the citrate layers.26 The presence of non-hydrogen-

bonded hydroxyl groups of surface citrates may be promoted by the addition of 

alkanethiols, which results in the removal of weakly-adsorbed hydroxyl carboxylate 

derivatives from the surface.26 

2.2.2.2 Factors governing AuNP size and dispersion 

The prediction of size and polydispersity is critical for systematic synthesis of AuNPs. 

High concentrations of gold salt or low concentrations of citrate often lead to aggregation 

and polydispersion, whereas high concentrations of citrate produce stable, smaller 

AuNPs.25 Both the ratio of gold salt to sodium citrate (in its capacity as a reducing agent) 
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and the rate of adsorption of sodium citrate (in its role as a stabilizer) will influence the 

size of the AuNPs.27 The reduction capability of citrate is limited to particles with 

diameter >10 nm.25 In general, monodispersion is seen in smaller-sized AuNPs, 

particularly <20-nm diameter, whereas polydispersion is observed in particles with 

diameter >20 nm.25 

The controlling factors for particle size and polydispersion include precursor 

concentration, rate of addition of precursors, state of mixing in the reactor, and other 

variables.24 The reaction rate largely depends on the temperature, as higher temperatures 

shorten the time required to reach the activation energy for the reduction reaction, and 

rapid coagulation yields more monodisperse spherical particles.24 Increased stirring speed 

at higher temperatures will result in smaller AuNPs, whereas slower stirring results in 

inhomogeneous mixing and nucleation of reactants, leading to a broad size distribution of 

AuNPs.24 In a modified Turkevich method, Xia et. al added pre-mixed HAuCl4/citrate to 

boiling water with trace amounts of AgNO3 in the mixture to achieve narrow size 

distribution and uniform quasi-spherical shape.28 The hydrodynamic size of the particles 

in solution can be measured using dynamic light scattering (DLS) to analyze the 

modulation of the intensity of scattered light that passes through the colloidal solution as 

a function of time. Comparison of DLS data to transmission electron microscopy (TEM) 

images reveals the aggregation state of the particles.29 For non-aggregated particles in 

suspension, the DLS diameter will be slightly higher than that shown by the TEM by an 

offset that is a function of the capping material and the solvent layer attached to the 

particle as it moves under the influence of Brownian motion, as expressed by Stokes-

Einstein equation.29 
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2.3 Point of care diagnostics  

Infectious diseases continue to collect a heavy toll regarding morbidity and mortality, 

especially in developing countries. Expanding access to timely treatment could prove 

transformative in combatting these diseases, but many patients in low and middle-income 

countries lack ready access to clinical centers with the means to provide a timely and 

accurate diagnosis to guide treatment. These communities would benefit greatly from 

access to the point of care (POC) tests that can be administered on-site by local medical 

practitioners.30 Historically, there has been relatively little interest in developing POC 

tests for maladies that are mostly prevalent in developing nations, but the situation is now 

evolving. Quick, affordable and reliable POC tests that require minimal hardware and 

negligible preparation are now available for HIV, syphilis and gastrointestinal infections, 

although much more POC tests for other biological analytes are desperately needed. Low 

cost and portability are critical for POC diagnostics, particularly for medical emergencies 

or for the diagnosis of highly virulent infections where time is of the essence.30  

2.4 Hybrid metallic thin films 

Metallic films that combine the unique properties of CNTs and AuNPs promise to bring 

out the best in both nanomaterials.31 The key goal of manufacturing CNT/AuNP hybrids 

is to improve their electrical, synthetic, and mechanical properties in material-based 

applications.31, 32 Methods for making such hybrids can be classified in terms of direct or 

indirect strategies. In direct methods, metal nanoparticles are made in a single-step on the 

surface of CNTs. Indirect methods rely on two separate steps, in which functionalized 

CNTs are manufactured first, followed by the synthesis of nanoparticles. Certain 

properties of the nanotubes could hypothetically be improved using surface treatments 
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utilizing silver, gold, platinum, palladium or rhodium for the immobilization of 

nanoparticles.33-35 Composite hybrid materials are created by joining the nanoparticles to 

the external surface of the CNTs either covalently or non-covalently.  

2.4.1 Gold thin films 

Porous thin gold films have shown promise for applications in catalysis,36 biosensors,37 

fuel cells37 and supercapacitors37 as a result of high surface-to-volume ratio, great in-

plane conductivity, and upgraded electron exchange rates.37 Such films can be 

manufactured by either layout-coordinated or template-free strategies. Layout-

coordinated techniques ordinarily comprise electrodeposition,38-41 filtration,42 or thermal 

evaporation/sputter coating43, 44 on unbending latex or SiO2 sphere templates, followed by 

hydrofluoric acid corrosive etching to remove the template. Gold films generated by such 

means exhibit uniform pore distribution, but post-dissolution of the template is time-

consuming. These strategies tend to deliver limited quantities of nanostructures in a given 

run, and the electrocatalytic and detecting capabilities of such films are inadequate.45-47 

Template-free techniques employ either direct48, 49 or hydrogen bubble-directed 

electrodeposition50, 51 of gold nanostructures onto a conductive surface. Hydrogen 

bubble-templated electrodeposition has been used to shape porous nickel, copper, tin, 

silver, palladium, and lead films.50, 52 However, the development of porous gold films 

requires a lot of NH4
+ (>0.5 M) because of the considerable hydrogen evolution on the 

film, producing flaky froths that regularly contain substantial numbers of cracks and thus 

increase the capacitance current.50, 52 Chemical dealloying is another option for 

generating porous gold films from gold−silver compounds. By changing the alloy 

composition and dealloying conditions, one can effortlessly control the pore structure. 
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However, it is difficult to efficiently extract the silver in the dealloying process, and trace 

measures of silver can alter or complicate the interface chemistry.53-55 

2.4.2 Paper as substrate 

The adaptation of electrochemical sensing systems into paper-based devices has proven a 

major boon for accessible diagnostic testing, with several prominent advantages relative 

to traditional polymer- and glass-based devices.56, 57 Paper substrates contribute to a 

biochemical analysis by capillary wicking of aqueous solutions through the cellulose 

fibers, providing a means of transport for fluids that does not require any external 

instrumentation or power source.58 Paper is lightweight and flexible, simplifying the 

logistics of transport and storage, and there are simple methods for patterning and 

processing paper that can be used to form microfluidic channels.58 Furthermore, the low 

cost and combustibility of paper make it suitable for disposable and safe single-use 

tests.59  

2.4.3 Paper-based gold thin films 

There is a clear need for a low-cost, simple and environmentally friendly way to quickly 

and dependably produce thin gold films with high surface-to-volume proportions, great 

mechanical properties, and excellent conductivity. Paper is adaptable and flexible 

substrate that offers a promising substrate for conductive gold nanostructure-based films 

on account of its inert and porous nature and relative abundance.60 For example, 

microfluidic paper-based analytical devices can use the passive capillary-driven flow of 

aqueous solutions through patterned paper channels to transport sample fluid into distinct 

detection zones, performing electrochemical detection with the help of an external 

potentiostat.61 The cost of each device is minimal, since gold electrode arrays can be 
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mass-produced on paper using various techniques to achieve flexible self-designed 

patterns and conductive interface platforms with excellent speed and reproducibility.61 

Velev et al. made permeable gold films on polycarbonate films by utilizing 1-µm 

polystyrene latex microspheres as a thickly-pressed template to decrease the film pore 

size, and then used filtration to create a 15−25 nm upper layer of colloidal gold 

particles.42 After removing the latex spheres from the composite, they got conductive 

gold flakes with a porous but split three-dimensional structure.42 Making a gold film on 

cellulose filter paper by ink-jet printing provides a simple, efficient, and inexpensive 

alternative for producing robust thin film electronics. To frame a conductive gold film on 

a kaolin-covered paper substrate with no layout, Määttänen et al. inkjet-printed a layer of 

dodecanethiol-altered AuNPs and then used infrared sintering to transform these 

nonconductive particles into a conductive gold film.62-65 These films exhibit ∼10% of the 

conductivity of solid bulk gold and have been used in a variety of different applications. 

However, the porosity of the paper-based gold film is decreased post-sintering.62-65 Hu et 

al. created permeable gold terminals on cellulose layers by consolidating inkjet-printed, 

non-conductive AuNPs with the self-catalytic development of the printed particles to 

frame a consistent gold leading layer on the paper.66 Although these paper-based 

permeable gold film clusters showed great conductivity and enabled sensitive 

electrochemical detection of oxygen, their manufacture required numerous creation 

steps—including seven rounds of inkjet printing and eight cycles of AuNP synthesis.66 

2.5 Electrochemical detection of dopamine and serotonin 

The basic principle for electrochemical biosensors is that chemical reactions between 

immobilized biomolecules and the target analyte produce or consume ions or electrons, 
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which affect electrical qualities of the solution such as electric currentor potential.67 

Excellent reproducibility and accuracy, a wide linear response range, low detection 

limits, and real-time measurement capabilities are among the key advantages of 

electrochemical sensors.67 The neurotransmitters dopamine (DA) and serotonin (5-HT) 

are electro-active molecules and hence can be detected electrochemically, and Retna Raj 

and co-workers fabricated an AuNP-modified gold electrode for the detection of DA,68 

using a self-assembled monolayer technique to deposit AuNPs on an amine-terminated 

monolayer of cystamine on a polycrystalline gold electrode. Recently, Xue et al. used a 

molecular imprinting technique to fabricate a conductive film of AuNP-doped molecular 

imprinted polymers (AuNP/MIPs) for the detection of trace amounts of DA in human 

serum.69 They introduced AuNPs functionalized with p-aminobenzenethiol (p-ATP) onto 

modified gold electrodes using an electropolymerization technique.69 Shim et al. 

described an electrochemical biosensor utilizing AuNPs decorated with indium tin oxide 

(ITO) substrate for highly sensitive detection of DA in human serum and urine.70 The 

augmented oxidation current and lower oxidation potentials achieved with this approach 

were attributed to the ability of AuNP/ITO electrodes to accelerate the rate of electron 

transfer and thus increase their electrocatalytic activity.70 

2.6 NADH and its biological significance 

Nicotinamide adenine dinucleotide (reduced) is a coenzyme that is ubiquitously found in 

all living cells, and which plays a prominent role in electron transfer as well as numerous 

metabolic reactions.71-73 Intracellular NADH serves as a biomarker for several 

physiological and pathological events.74-77 Fluctuations in NADH levels in cells and 

tissues can correspond with intracellular redox status,78 apoptosis,78 neurodegenerative 
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diseases,73, 75, 76 and mitochondrial anomalies associated with cancer.79 Nicotinamide 

adenine dinucleotide (reduced) also stimulates biosynthesis of dopamine and tyrosine 

hydroxylase, making it an effective candidate in the treatment of Parkinson's syndrome.80 

Conversion of NADH is also elevated in hyperplasic cancer cells compared to normal 

cells.79 In total, this biomolecule is known to participate in more than 300 enzymatic 

oxidation/reduction reactions in vivo.71-73 Accordingly, tools for sensitive measurement of 

NADH levels could prove very useful in a variety of diagnostic and prognostic contexts.  

2.6.1 Current methods for detecting NADH in biosamples and cell extracts 

Enzymatic assays are widely used for determining levels of intracellular NADH. One 

method for estimating free NADH in rat liver entails measuring concentrations of 

substrates of β-hydroxybutyrate and glutamate-dehydrogenase enzymes.81 Other 

enzymatic assays have targeted the role of NADH as an electron carrier in metabolic 

reactions.82 These assays utilize this function of NADH to determine its concentration. 

Although these assays can quantify the total amount of pyridine dinucleotides in a cell, 

they cannot directly differentiate between NAD and NADH. For the purpose of 

differentiation, quantification is usually done in two steps, in which an extraction step is 

followed by quantification. The process can entail either a separate extraction method,83 

where NADH is extracted in an alkaline solution to decompose NAD, or a single 

extraction in which both NAD and NADH are extracted using neutral or mild basic 

solutions.84 Nicotinamide adenine dinucleotide (reduced) was quantified in a mouse 

neuroblastoma cell line using an enzymatic cycling assay with a separate extraction 

method involving selective decomposition of NAD.83 Bench et al. extracted NADH from 

a lyophilized Saccharomyces cerevisiae extract using organic solvents, with further 
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quantitation achieved using HPLC and UV–Vis absorbance detection.85 Free and bound 

NADH have also been quantitated in complex samples using excited fluorescence 

spectra. Fluorometric methods exploit the strong fluorescence of NADH (λex=340nm, 

λem=460nm), relative to the minimal fluorescent properties of NAD.86 These assays are 

simple, but are plagued by strong background, and the autofluorescence of NADH is 

weak in comparison. Physical cell disruption methods such as ultrasonication, high-

pressure homogenization, high-speed bead milling, and chemical methods such as 

chemical permeation and enzymatic lysis are generally used for extraction of NADH for 

analysis.87-89 Extracts containing NADH prepared from yeast cells by treatment with 

snailase90 and SDS91 enable quantitation of levels of intracellular NADH when the 

fluorescence spectra are compared against standard NADH solutions. Indirect 

fluorescence assays based on principles such as the reduction of resazurin to resafurin by 

NADH in the presence of diaphorase92 work as an indicator for levels of intracellular 

NADH, and Amplex Red can also be used for assays based on a similar mechanism.93 A 

variety of microscopic techniques have also been developed for quantitation of 

intracellular NADH, but these are expensive and laborious when used only for this 

purpose. The limitations of the various assays described above make them ill-suited for 

routine use in diagnostic, clinical or forensic settings, and there remains a demand for 

rapid, inexpensive, and disposable sensing platforms.  

2.6.2 In vitro applications of NADH 

A cocaine metabolite assay developed by Syva detects the presence of benzoylecgonine 

in urine samples by using a competitive immunoassay strategy (EMIT), which causes a 

change in the reaction kinetics for NADH production depending on the presence or 



 19 

absence of the metabolite.94 The drug present in the biosample competes with the drug-

labeled enzyme for a limited number of binding sites on the antibody.94 If the 

concentration of drug in the sample is sufficient to competitively bind to the antibody 

sites, the enzyme-labeled drug is free in solution to break down glucose-6-phosphate, 

resulting in the release of a single hydrogen ion (H+). In contrast, if the conjugate is 

bound to the antibody, the enzyme activity is reduced.94 Nicotinamide adenine 

dinucleotide present in the assay reagents reacts with the released hydrogen ion to form 

NADH, and the amount of NADH produced during the EMIT reaction is directly 

proportional to the amount of drug present in the sample, and can generally be detected 

using ultraviolet spectrophotometry.94 However, spectroscopic methods possess an 

inherent disadvantage when working with complex samples due to spectral interference. 

Furthermore, although this assay uses NADH as a proxy for detecting other targets, it is 

not intended for detecting naturally occurring NADH concentrations in vivo. 

2.6.3 Electrochemical detection of NADH in complex samples 

Biosensors are still rarely used because of their unpredictable behavior in ‘real-world’ 

samples, despite strong performance with laboratory standards under experimental 

conditions. Researchers are therefore working to optimize existing platforms in order to 

improve their applicability in complex biosamples for routine use as commercial assays. 

Electrochemical methods have advanced considerably as a tool for detecting many 

important biological analytes, thanks to the impressive miniaturization of modern 

microelectronics and the relative paucity of electroactive contaminants in most biological 

samples.95 Nicotinamide adenine dinucleotide (reduced)-associated enzymatic reactions 

are of particular interest in this space; NADH is electrochemically active, and 
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conventional solid electrodes composed of gold,96 platinum97, and glassy carbon98 have 

been used for NADH oxidation. However, NADH can only be oxidized on these 

electrodes at potentials above +1.0 V. Consequently, researchers have employed various 

electron mediators such as organic dyes, conducting polymers and thio-substituted 

nucleobases to facilitate NADH oxidation. Although electron mediators appear to offer a 

promising potential solution, the utility of these assays is limited by defects in surface 

modification, and the adsorption of NADH and NAD+ to the electrode also leads to 

surface fouling, resulting in poor sensitivity, stability, and reproducibility.96-98 Jenkins et 

al. developed an alternative electrochemical method for quantifying NADH in whole 

blood using flow-injection analysis. In their approach, NADH produced by 

dehydrogenase is oxidized by an electron-transfer coupling reagent, 2,6-

dichloroindophenol (DCIP), and the reduced form of DCIP (DCIPH2) is measured via 

amperometry.99 Bala et al. developed an AuNP/reduced graphene oxide (GO) composite 

sensing platform, which was formed directly on a GCE via in situ electrochemical 

reduction of GO and Au3+ to detect NADH spiked into urine samples.100 The electrode 

surface provides many favorable sites for electron transfer to biomolecules, and would be 

helpful for accelerating electron transfer between the electrode and species in solution.100 

However, the number of steps involved in fabricating such electrodes is time-consuming. 

Therefore, it remains essential to find an efficient strategy for electrode fabrication that 

also accelerates the process of interfacial electron transfer between NADH and the 

electrode surface. 

2.6.3.1 CNT-based electrochemical detection of NADH  

The distinctive structural and electrical properties of CNTs have aroused considerable 
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interest as a tool for electrochemical detection. Carbon nanotubes have large activated 

surfaces and edge-plane sites that are ideal for performing NADH oxidation at low 

potentials without the help of any redox mediators, minimizing surface fouling.101 Boron-

doped carbon nanotube (BCNT) modified electrodes have been investigated for the 

detection of NADH, in which a polished GCE was used as a substrate onto which a 

suspension of BCNT was dropped and dried under an infrared lamp.102 The BCNTs 

exhibited faster electron-transfer rates as a result of the higher proportion of edge-plane 

sites and more oxygen-rich groups presented on the BCNT surface.102 Another report 

describes composite CNT-polymer electrodes, where poly-(3-methylthiophene) multi-

walled CNT hybrids were prepared on GCEs that were immersed into a monomeric 3-

methylthiophene (3MT) solution in acetonitrile and sodium perchlorate for 

electropolymerization.103 However, these electrodes suffered from poor selectivity. Most 

CNT films are prepared by solution-deposition methods, in which CNTs are dispersed in 

solvent (e.g., DMF, sulfuric acid or chitosan) and cast onto the electrode surface, and 

then dried in air or vacuum.104 However, CNT films made by this method are not stable, 

and are limited by high background and weak signal. Self-assembly methods overcome 

some of these drawbacks.105 The CNTs have been self-assembled onto electrode surfaces 

by electrostatic attraction, hydrophobic interactions or covalent bond. Most substrates 

used in this method are solid electrodes, such as gold electrodes or GCEs.105 Substrates 

and CNTs need additional modifications for self-assembly, which makes this method 

costly, complicated, and time-consuming. Recently, SWCNT-based "Bucky-paper” was 

used as a new substrate for NADH oxidation.106 However, it suffers from very high 

background due to the thickness of the paper (~350 µm), and the SWCNTs must be 
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modified with an electrocatalyst for NADH oxidation. The SWCNT films have also been 

used for electrochemical sensing without surface activation/functionalization. Several 

groups have explored paper-based substrates as rapid, inexpensive, and disposable 

sensing platforms for use in industrial and clinical settings. Eichhorn et al. examined the 

growth of CNTs on the surface of carbonized cellulose fibers.107 Using this approach, the 

overpotential of NADH decreased from over 0.8 to 0.6 V for the CNT-modified carbon 

fiber electrode, indicating that the presence of CNTs could lower the potential of NADH 

oxidation and thereby reduce the likelihood of electrode fouling.107 Our current research 

is focused on combining the electrocatalytic advantages of CNTs with inexpensive, 

disposable cellulose-based substrates, by fabricating thin CNT films on MCE filter paper 

with a simple VF technique. Many groups have previously reported such methods for 

fabricating thin, unmodified CNT films on paper, producing a homogenous porous film. 

However, these films have rarely been applied in the context of detection in biosamples.  

2.7 Cocaine abuse 

Cocaine is a central nervous system (CNS) stimulant derived from the leaves of the coca 

plant that has two major pharmacological actions.108 It function as both a local anesthetic 

and an indirectly-acting sympathomimetic, with properties similar to amphetamines.108 It 

is classified as a Schedule II drug, and is one of the main causes of emergency hospital 

visits and illicit drug-related deaths in the United States.108 According to the 2014 

National Survey on Drug Use and Health (NSDUH), roughly 1.5 million people aged 12 

or older have used cocaine.109 Cocaine binds differentially to the dopamine, serotonin, 

and norepinephrine transport proteins, and directly inhibits the re-uptake of these 

neurotransmitters into pre-synaptic neurons, resulting in euphoria, pleasure and 
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addiction.110, 111 Prolonged abuse of cocaine may cause increased heart rate, high blood 

pressure, irritability, anxiety, paranoia and hallucinations as well as other symptoms.111 

Overdoses may lead to coma or even death, and may cause birth defects and premature 

delivery in pregnant women.110  

2.7.1 Current methods for presumptive screening of cocaine 

Over the years, many techniques—both qualitative and quantitative—have been 

employed for cocaine detection, with varying sensitivity and specificity for this drug or 

its metabolites. Traditionally, detection is first achieved with a relatively rapid and low-

cost presumptive screening test, where a positive result is followed by a more sensitive 

and accurate, but also costly and labor-intensive, confirmatory test. Gas 

chromatography/mass spectrometry (GC/MS) is the most sensitive, reliable and 

extremely specific technique available today for the detection of cocaine, and is 

considered the gold standard for confirmatory testing in this regard.112-118 Immunoassays 

are the most common method for initial presumptive screening. Among the most popular 

commercially available tests are enzyme-linked immunosorbent assays (ELISA),119, 120 

EMIT,112 fluorescence polarization immunoassays (FPIA)121 and radioimmunoassays 

(RIA)113 for the quantitative and qualitative detection of cocaine and its major 

metabolites in biofluids. Most early immunoassays used ELISA , but these tests are time-

consuming and expensive. The EMIT testing is more commonly used at the moment and 

is the least expensive assay for simple, rapid screening, but is also plagued by low 

sensitivity. The RIA offers sensitive detection, but its expensive reagents (including the 

need for radioactive materials) and the technical skill required to perform the assay make 

it a less popular choice. In general, antibody-based screening tests suffer from the major 



 24 

drawback of not being able to distinguish between drugs of abuse and structurally similar, 

legal analogs, resulting in false positives.115 Therefore, there remains a need for assays 

that enable rapid, low-cost, sensitive and accurate on-site drug screening. 

2.7.2 Aptamers as biosensor recognition elements 

There is growing interest in the development of biosensors that make use of aptamers as 

an alternative to antibodies for recognition elements.122 Aptamers are short single-

stranded DNA or RNA molecules that bind to various targets with high affinity and 

specificity, which are typically generated through a process called systemic evolution of 

ligands by exponential enrichment (SELEX).123 In SELEX, an oligonucleotide library is 

combined with the target of interest, resulting in separation of sequences with binding 

affinity for that target molecule. These selected sequences are further amplified by 

polymerase chain reaction (PCR), and the products are subjected to another round of 

selection.123 The selection cycles proceed until one has isolated a pool containing 

DNA/RNA species with high affinity for the target.123 Since their discovery in the 1990s, 

numerous aptamers have been selected for various targets, including metal ions, 

biomolecules, organic molecules, or even whole microorganisms/cells. Aptamers possess 

numerous advantages for fabrication of biosensors relative to antibodies, including cost-

effective production, batch-to-batch reproducibility, high binding affinities for their 

targets and ease of modification for purposes of signal transduction and detection.124-133 

Aptamers are also not constrained by the immunogenicity issues that can confound 

antibody generation for certain antigens, and exhibit higher stability against degradation 

and denaturation.134 One can also design SELEX procedures that favor the isolation of 

aptamers that undergo a target-specific, binding-induced conformational change, and 
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these can readily be conjugated to a diverse array of substrates to produce biosensors with 

high sensitivity and specificity, and which produce minimal background signal in the 

absence of their target.124-133 For example, Soh et al. reported structure-switching 

aptamers (SSAs) that can act as biosensors without additional modification, optimization, 

or the use of DNA helper strands.135 The target-binding induced conformational change 

in SSAs is far greater than in conventional aptamers, and the major structural difference 

between the bound and unbound state enables the use of SSAs in a variety of detection 

methods.135 Recent work from Ebrahimi et al. describes the first successful in vitro 

selection for methamphetamine with a Kd in the nanomolar range.136  

2.7.3 Colorimetric AuNP-conjugated aptamer sensors 

Ramezani et al. reported an AuNP-based colorimetric triple-helix molecular switch 

(THMS) system for the detection of tetracycline. Their THMS used target-induced 

release of a single-stranded DNA signal transduction probe (STP) from the aptamer.137 In 

the absence of tetracycline, the THMS remains stably conjugated with the STP, and 

AuNPs present in the solution undergo salt-induced aggregation that produces a visible 

blue readout color. The presence of tetracycline induces a conformational change in the 

THMS, leading to the release of the STP; the released STP (which is negatively-charged) 

subsequently adsorbs onto the surface of the AuNPs (which are positively-charged). The 

presence of STPs on the AuNP surface prevents salt-induced aggregation, and the AuNP 

solution therefore produces a red color.137 Such colorimetric sensors have considerable 

advantages for on-site and point-of-care detection, because they can minimize or even 

eliminate the need for analytical instruments and may even allow naked-eye observation. 
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2.7.4 Aptamer-based biosensors for cocaine detection 

The Stojanovic group isolated an aptamer called MNS-4.1, which was the first aptamer to 

exhibit high specificity and selectivity towards cocaine relative to its major 

metabolites.132 Stojanovic et al. developed a sensor design that employed a fluorophore-

quencher-modified cocaine-binding aptamer based on MNS 4.1, where the aptamer 

remains unfolded and produces a fluorescent signal in the absence of cocaine.132 The 

presence of cocaine leads to the formation of a non-canonical three-way junction with a 

hydrophobic pocket in the aptamer, bringing the fluorophore and quencher into close 

proximity and causing ~50% quenching of the fluorescence signal.132 They described a 

limit of detection (LOD) of 10 µM cocaine in serum samples using this sensor design.132 

Cocaine-binding aptamers have been coupled with a variety of transduction 

methodologies, including colorimetry,138 chemiluminescence,139 electrochemistry,140 and 

surface-enhanced Raman scattering.141 Stojanovic’s group also reported a colorimetric 

sensing platform, in which a Cy-7 dye molecule is displaced from the aptamer’s three-

way junction in the presence of cocaine, generating a visible colorimetric signal.142 

However, such assays require the identification of specific dyes that can not only bind to 

the aptamer efficiently but which are also subsequently displaced by target binding. 

Although MNS-4.1 preferentially undergoes a conformational change in the presence of 

cocaine, the unbound aptamer also exists in equilibrium between folded and the unfolded 

states, which leads to higher background signal and limits the sensitivity of the aptamer. 

To address this issue, MNS-4.1 was subsequently split into two131 or three143, 144 smaller 

aptamer fragments that remain separated in the absence of cocaine but assemble in the 

presence of cocaine, thereby reducing the background. Stojanovic’s group used this split 
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aptamer for fluorescence detection of cocaine, with the two fragments tagged with a 

fluorophore and quencher respectively.131 Target-induced assembly in the presence of 

cocaine brought together both fragments, resulting in decreased fluorescence intensity.131 

However, the splitting of the aptamers had the drawback of reducing target affinity to a 

Kd of ~200 µM. yielding a poor LOD.131 This split aptamer strategy was further modified 

by the Plaxco group, which developed an electrochemical sensor in which one of the 

unmodified fragments was attached to a polished gold electrode surface, whereas the 

other was modified with a redox label (methylene blue) and remained free in solution.140 

The assembly of aptamer-cocaine tertiary structures upon addition of cocaine brought the 

redox label into proximity with the electrode surface, generating a large faradaic 

current.140 Willner’s group developed an exonuclease III (Exo III)-based aptamer sensor 

for the amplified detection of cocaine, using a split aptamer consisting of an unmodified 

fragment and a fluorophore/quencher-modified fragment.145 These fragments remain 

single-stranded in the absence of cocaine, preventing Exo III digestion and thus resulting 

in quenched fluorescence. The presence of cocaine triggers the assembly of these two 

fragments into a duplex that can be recognized and digested by Exo III, resulting in 

release of the quencher and producing a strong fluorescence signal.145 The target and 

unmodified fragment are then released, enabling recycling and signal amplification that 

results in a higher LOD of 50 nM.145 One group reported the colorimetric detection of 

cocaine based on the catalytic activity of the peroxidase-mimicking G-quadruplex 

DNAzyme, where one aptamer fragment was modified onto amine-functionalized 

magnetic nanoparticles while the other remained free in solution.146 Cocaine triggered the 

assembly of the two fragments on the nanoparticle, forming a three-way junction on its 
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surface. The G-quadruplex DNAzyme further catalyzed a TMB–H2O2 reaction, 

generating a visible color change with a LOD of 50 nM.146 The AuNPs are one of the 

most commonly-used nanomaterials for the construction of aptamer-based biosensors, 

including electrochemical, fluorometric, surface-enhanced Raman scattering, 

colorimetric, and chemiluminescence imaging arrays. Fan et al. developed a simple 

colorimetric assay for cocaine detection using unmodified AuNPs and split aptamer 

fragments in solution.147 In the absence of cocaine, the AuNPs remained red because of 

non-specific adsorption of the aptamer fragments onto the AuNP, while the presence of 

cocaine led to the formation of aptamer-cocaine ternary structures prevented this 

adsorption from occurring, resulting in AuNP aggregation and generating a blue color.147 

A LOD of 2 µM for cocaine was achieved with this assay, but higher concentrations of 

cocaine induced the aggregation of unmodified AuNPs.147 Another assay exploited 

cocaine-induced disassembly of aptamer-linked AuNP aggregates, where a target-

induced conformational change in the presence of cocaine triggers dissociation from the 

AuNP surface and subsequent disruption of AuNP aggregates.148  

2.7.5 Cooperative binding split aptamers  

Cooperative binding, which is defined as the increase in binding affinity observed due to 

binding at secondary sites, is commonly observed in ligand-binding proteins with 

multiple binding sites that are sensitive to ligand concentration, such as hemoglobin, ion 

channels and transcription factors.149-151 Breaker et al. in 2004 first noticed the 

cooperative behavior in some tandem riboswitches, where ligand concentrations were 

manipulated to control gene expression.152, 153 Different research groups further adapted 

this phenomenon into artificial systems, such as molecular beacons, ribozymes, and DNA 
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aptamers. Plaxco et al. tried to emulate this cooperative binding by introducing disorder 

into the parent aptamer to establish a ligand concentration-dependent “switch-like” 

response.154, 155 However, this proved ill-suited for a practical sensor platform. More 

recently, Xiao et al. introduced tandem target-binding domains into a split aptamer, 

which they termed a cooperative-binding split aptamer (CBSA), for fluorescence-based 

cocaine detection in complex samples.156 The initial cocaine-binding event stabilizes the 

structure of the split aptamer and aids in subsequent target binding at the second binding 

domain. The use of a fluorophore/quencher pair in this detection platform results in a 

sensitive LOD of 50 nM cocaine in 10% saliva within 15 min,156 although a fluorescence 

spectrophotometer is required to read the output. 
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CHAPTER 3: Ambient Filtration Method to Rapidly Prepare Highly Conductive, 

Paper-Based Porous Gold Films for Electrochemical Biosening 

3.1 Introduction 

Metallic thin films are basically utilized as a part of photonic157 and electronic gadgets.157 

Specifically, porous thin gold films have picked up extensive consideration in territories 

including catalysis,158 biosensors,159 fuel cells160 and supercapacitors161 due to their 

unique properties, which incorporate high surface-to-volume ratio,162 great in-plane 

conductivity,163 and upgraded electron exchange rates.164 Such films have been 

manufactured by both layout coordinated38-44and template−free48-51 strategies. Layout 

coordinated techniques ordinarily comprise of electrodeposition,38-41 filtration,42 or 

thermal evaporation/sputter coating43, 44 on unbending latex or SiO2 sphere templates took 

after by a hydrofluoric corrosive etching venture to evacuate the layouts. The gold films 

arranged by these rigid format coordinated strategies accomplish uniform pore 

distribution, however, post-dissolution of the template is tedious. These strategies tend to 

deliver just constrained amounts of nanostructures in every run, and the electrocatalytic 

and detecting capabilities of such films is inadequate.45-47Template-free techniques 

incorporate direct,48, 49 or hydrogen bubble-directed electrodeposition50, 51 of gold 

nanostructures onto a conductive surface. Hydrogen bubble-templated electrodeposition 

specifically has been generally used to shape porous nickel, copper, tin, silver, palladium, 

and lead films; be that as it may, the development of porous gold foam requires a lot of 

NH4
+ (>0.5 M) because of large amounts of hydrogen evolution on the film, bringing 

about flaky froths that regularly contain substantial number of cracks therefore increasing 

the capacitance current.50, 52 Chemical dealloying53, 54 is another famous option to prepare 
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porous gold films from gold−silver compounds. Changing the alloy composition and 

dealloying conditions can effortlessly control the pore structure.53-55 However, it is 

difficult to expel the greater part of the silver amid the dealloying process, and trace 

amount of silver can alter or complicate the interface chemistry.55 

There is an urgent need for a basic, conservative, and environmentally friendly way to 

prepare quickly thin gold films with high surface-range to-volume proportions, great 

mechanical properties, and phenomenal conductivity. Adaptable and flexible substrates, 

for example, paper have been restored for the improvement of conductive gold 

nanostructure-based films on account of their inert and porous feature, relative 

abundance, and practical production.165, 62-66 Velev et al. fabricated permeable gold films 

on polycarbonate matrix by utilizing 1µm polystyrene latex microspheres as a thickly 

pressed layer to decrease the film pore size, and after that utilized filtration to create a 

15−25 nm upper layer of colloidal gold particles.42 In the wake of expelling the latex 

spheres from the composite, they obtained conductive brown/gold flakes with a porous 

however split three-dimensional structure. To frame a conductive gold film on color 

(kaolin) covered paper substrate with no layout, Määttänen et al. inkjet-printed one layer 

of dodecanethiol-altered gold nanoparticles (AuNPs) and converted these nonconductive 

particles into a conductive gold film with infrared (IR) sintering.62-65 These created paper-

based AuNP terminals have ∼10% of the conductivity of solid bulk gold and have been 

used for different applications.62-65 However, the paper-based gold film decreased its 

porosity post IR-sintering. Hu et al. created permeable gold film prepared on cellulose 

layers by consolidating inkjet-printed, nonconductive AuNPs with self-catalytic 

development of the printed individual particles to frame a conductive gold layer on the 



 32 

paper. Although these paper-based permeable gold films showed great conductivity and, 

sensitive electrochemical detection of oxygen, numerous preparation steps, including 

seven rounds of inkjet printing and eight cycles of AuNP growth, were required for their 

manufacture.66 

In this chapter, we reported a simple strategy for the fast and reproducible manufacture of 

disposable, paper-based, conductive thin gold films, in which we utilize routine vacuum 

filtration (VF) technique to deposit an underlayer of arbitrarily adjusted, 

electrochemically inert, metallic single-walled carbon nanotubes (M-SWCNTs) onto a 

mixed cellulose ester (MCE) filter paper, which serves as a rigid matrix for forming a top 

layer of AuNPs. The readiness of these "VF-fabricated gold films" includes insignificant 

hardware, work, and reagents. The whole procedure takes just 20 min and requires just an 

essential vacuum-filtration contraption with only two aqueous solutions: Triton X-100-

dispersed M-SWCNTs and citrate-coated AuNPs. Since the rigid M-SWCNT underlay 

decreases the pore size of fiter paper and makes a hydrophobic, interconnected system 

where upon deposit the AuNPs, a permeable thin gold film (thickness ∼40 nm) can be 

prepared rapidly, without the requirement for thermal annealing, postgrowth, or sintering 

steps. The subsequent gold films demonstrated great conductivity, large surface area, and 

excellent electrocatalytic signal to electroactive biomolecules. We found that the porous 

elements of the VF-fabricated gold films allow simultaneous detection of two analytes in 

a mixture with determination that enormously surpasses either bought gold slides or 

electrodeposited, paper-based gold films. This indicates the potential for utilizing such 

films as a part of expendable sensors for the identification of numerous analytes. The size 

of these paper-based gold electrodes can be accurately controlled, and the subsequent 
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paper-based gold films could be post-transferred onto any wanted substrate without 

harming their structure or integrity. 

3.2 Materials and methods 

3.2.1 Chemicals: Gold(III) chloride trihydrate, trisodium citrate dihydrate, Triton X-100, 

dopamine hydrochloride, serotonin hydrochloride, phosphate-buffered saline (10X PBS, 

pH 7.4), sulfuric acid (95-98%), nitric acid (70%), hydrochloric acid (36.5-38%), 

hydrogen peroxide solution (30%), ethanol (99.5%), acetone (99.9%), and potassium 

hexacyanoferrate (III) were purchased from Sigma-Aldrich and used as received. MCE 

filter papers of varying pore sizes of 25-, 50- and 100-nm (47-mm diameter and 105-µm 

thickness) were purchased from Millipore. Bare gold slides (50-nm thickness), and fast-

drying silver paint were purchased from Ted Pella. 99% metallic single-walled carbon 

nanotubes (M-SWCNT) and PureTube Carbon Nanotubes (PSWCNTs) solutions were 

purchased from Nanointegris. All solutions were prepared with distilled water (18.2 MΩ 

cm-1) from a Milli-Q Direct-8 water system. 

3.2.2 Instrumentation: All electrochemical measurements were performed on a CHI 

700D Series electrochemical system with a three-electrode setup in a 1 mL voltammetric 

cell at room temperature. Our porous gold film was used as working electrode, with 

Ag/AgCl as a reference electrode and platinum wire as counter electrode. Cyclic 

voltammetry experiments were carried out at a scan rate of 10 mV/s over the relevant 

potential range between -0.1 V and 0.75 V in 0.1 M PBS (pH 7.4). Sheet resistance was 

measured using a Keithly source meter 4200 with four-probe setup. Electron transfer rate 

measurements of the porous gold film and the bare gold slide were collected using a 

K3Fe(CN)6
3-/K3Fe(CN)6

4- redox probe in aqueous solution. All measurements and 
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experiments were carried out at room temperature. Energy dispersive spectroscopy (EDS) 

was coupled to scanning electron microscopy (SEM) with a JEOL-JSM 5900 LV/EDAX 

to determine the composition of various films. Scanning electron microscopes (MERLIN, 

Carl Zeiss, Oberkochen, Germany) were used for the SEM analysis. SEM images of the 

film surface were obtained at the accelerating voltage of 3 kV, and JEOL JSM-6330F 

Field Emission Scanning Electron Microscope (FE-SEM) at an accelerating voltage of 

200 kV was used for comprehensive cross-section imaging. Contact angle measurements 

were performed by measuring the apparent contact angle of water (θw,a) using the 

KYOWA interface Measurement and Analysis System FAMAS – DropMaster (DM)-

CE1 instrument. The drop volume of 4.0 ± 1 µL (Millipore18.2 MΩ cm-1 DI water) was 

used in the measurement of contact angle using sessile drop method in time function for a 

period of 10 seconds with measurements performed at one-second intervals using 

FAMAS software utilizing both circular and tangent method drop fitting. Atomic force 

microscopy (AFM) topography images of various films were acquired in the tapping 

mode using a Multimode AFM IIID (Veeco Instruments) using Bruker AFM probes 

(TESP-V2; 0.01-0.025 Ohm/cm Antimony (n) doped Si). AFM was also used to measure 

the thickness of the AuNP/M-SWCNT hybrid film. During the measurement, the AFM 

tip scans across the lateral edge between the hybrid film and the bare glass substrate and 

the vertical distance (height) between the step of hybrid film and the bare glass substrate 

was determined. The scan range is more than 50 µm to avoid the inaccuracy originating 

from the difference between the hybrid film’s edge and its inner part. Several points have 

been measured to get an average height of the hybrid film with a scan rate of 0.5 Hz. 
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3.2.3 Preparation of colloidal gold nanoparticle solution: Prior to the synthesis of the 

gold nanoparticle solution, all glassware was incubated overnight at room temperature in 

HNO3-HCl (3:1 v/v), and washed with distilled, deionized (DI) water. Fren’s citrate 

reduction of HAuCl4 was used to prepare the AuNPs,166 with sodium citrate acting as 

both a stabilizing and reducing agent. Boiling DI water (96 mL) was mixed with freshly 

prepared and filtered 0.1 M HAuCl4
.3H2O (2.5 mL in DI water) in a round bottom flask 

under vigorous stirring. Then, 34 mM aqueous sodium citrate (2 mL in DI water) solution 

was rapidly added into the mixture at once with continuous stirring to reduce the oxidized 

Au3+ species to form gold nanoparticles with diameter ∼12±1 nm. Once the solution 

changed color to red, it was kept boiling for another 30 min and then cooled down to 

room temperature and filtered using a 0.22 µm syringe filter for immediate use. The 

solution was analyzed with a Cary 100 Bio UV-Vis spectrophotometer to establish the 

characteristic absorbance peak at 520 nm. 

3.2.4 Production of VF-fabricated gold films: 8 µg of 99% M-SWCNT solution (1 

mg/100 mL as stock concentration) was dispersed in 1% Triton X-100 with a Fisher 

Scientific FS-60D sonication system for 15 min prior to use. A Kontes Ultra-Ware 

vacuum filtration setup was used for the film preparation. MCE filter paper was 

moistened and washed with deionized (DI) water. 8 µg/10 mL of the dispersed M-

SWCNT solution was taken as the initial feed and added to the moistened filter paper 

under vacuum conditions to form a thin, uniform layer on the surface at a flow-rate of 0.6 

mL/minute. This film was washed with DI water to remove the Triton X-100 surfactant. 

The film was then left to vacuum dry for about 5 min. 35 picomoles/10 mL of citrate-

capped AuNP solution (3.5 nM as stock concentration) was added on top of the M-
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SWCNT underlayer to form a gold film at a flow-rate of 6 mL/minute. This VF-

fabricated gold film was washed with DI water and vacuum dried overnight. After 

complete drying, the hybrid gold film was cut into 14 strips (5 mm W × 8 mm L), using a 

cutting template to ensure reproducible results. These strips were connected to copper 

wires with fast-drying silver paste (Ted Pella Inc. USA) and wrapped around with 

Parafilm to form the working electrodes (Figure 2). Purchased gold slides were cut to 

have the same geometric surface area as the hybrid gold film electrode and cleaned with 

piranha solution before use. 

 

 

Figure 2: Schematic illustration of the preparation of working VF-fabricated gold film 
electrodes. The strip electrodes were attached to copper wires using fast drying silver 
paint for electrical contact and wrapped around with Parafilm. 
 
3.2.5 Alternative VF-fabricated gold film compositions: We also fabricated hybrid 

gold films with MCE filter papers of varying pore sizes of 25-, 50- and 100-nm, with 

AuNPs of varying diameters, and with different amounts of PureTube Carbon Nanotubes 

(P-SWCNTs).  
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First, we produced VF-fabricated gold films on MCE filter papers with different pore 

sizes (25, 50, and 100 nm). Eight µg of M-SWCNT and 35 picomoles of AuNPs were 

sequentially added as described above. Dense and uniform films with improved 

conductivity were formed with 25- and 50-nm filter papers in comparison with the 100-

nm pore MCE, with a decrease in sheet resistance from 113 Ω/sq with the 100-nm 

membrane to 37 Ω/sq with the 25-nm membrane (Figure 3A). This decrease in sheet 

resistance was correlated with a 52% increase in electron transfer rate from 2.76 × 10-3 

cm/s to 5.74 × 10-3 cm/s for the 100- and 25-nm films (Figure 3B), respectively. Dense 

packing of M-SWCNTs on the smaller paper pore sizes (25- and 50-nm) may be 

responsible for the improved conductivity of these films in comparison with the 100-nm 

film.   

 

Figure 3: Effect of pore-size of MCE filter papers on sheet resistance and electron 
transfer rate. (A) VF-fabricated gold films with smaller pores (25 and 50 nm) achieved 
dense packing of MSWCNTs on the MCE filter paper, which enabled formation of a 
dense and smooth gold film with a sheet resistance of 35 ohms/sq, relative to 126 
ohms/sq sheet resistance obtained with 100-nm MCE film. (B) An increase of electron 
transfer rates was also observed with decreasing pore size, which enabled denser packing 
of M-SWCNTs. 
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Next, we synthesized AuNPs with diameters of 30, 54, and 75 nm using this kinetically-

controlled seed-mediated growth process, with sequential addition of gold salt solution 

and sodium citrate.167 The molar extinction coefficients, concentrations and sizes of the 

synthesized AuNPs were roughly estimated based on previously published work.168 The 

concentration of these AuNPs were normalized relative to the concentration of our 13-nm 

AuNPs (3.5 nM) to adjust the volumes appropriately to form a thin layer of AuNPs on 

top of the M-SWCNT underlay. Finally, we prepared hybrid gold films with varying 

amounts of P-SWCNTs. We prepared 10 mL solutions containing 12.5, 25, 50, and 100 

µg of P-SWCNTs solution (25 mg/100 mL as stock concentration), which were dispersed 

in 1% Triton X-100 with a Fisher Scientific FS-60D sonication system for 15 min prior to 

use. MCE filter paper of 100 nm pore size was moistened and washed with DI water. The 

dispersed P-SWCNT solution was added to the moistened filter paper under vacuum 

conditions to form a thin, uniform layer on the surface at a flow-rate of 0.6 mL/minute. 

This film was washed with DI water to remove the residual Triton X-100 surfactant. The 

film was then left to vacuum dry for about 5 min. 35 picomoles/10 mL of citrate-capped 

AuNP solution was then added to form a smooth gold film at a flow-rate of 6 mL/minute. 

This VF-fabricated gold film was further washed with DI water and vacuum dried 

overnight. An estimated cost for the current system is ~$0.79/cm2 when M-SWCNTs are 

used as the underlayer. However, we have also demonstrated the feasibility of replacing 

this relatively expensive M-SWCNT underlayer with much cheaper P-SWCNTs without 

sacrificing conductivity or electrocatalytic activity, and this effectively brings down the 

cost to ~$0.03/cm2. 
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3.2.6 Template-free (TF) electrodeposition of AuNPs on paper-based M-SWCNT 

film: Electrodeposition was performed using a three-electrode setup in a 1 mL cell using 

a CHI760 electrochemistry station. Paper-based M-SWCNT films (8 or 40 µg) prepared 

as described above served as the working electrode, whereas Ag/AgCl and Pt wires were 

used as the reference and counter electrodes, respectively. Gold nanoparticles were 

electrochemically deposited on the paper-based M-SWCNT film layer by cyclic 

voltammetry,169 scanning from 1.25 V to −1.0 V in 0.01 M NaNO3 containing 1 mM 

HAuCl4 at a scan rate of 50 mV/s for 120 cycles.  

3.2.7 Hydrogen bubble (HB) - directed electrodeposition of AuNPs on paper-based 

M-SWCNT film: Hydrogen bubbles were used as a template to perform 

electrodeposition of AuNPs46 in a three-electrode setup in a 1 mL cell using a CHI760 

electrochemistry station. Hydrogen bubble-directed electrodeposition of AuNPs was 

performed by chronopotentiometry, with paper-based M-SWCNT film layer (8 or 40 µg) 

prepared as described above as a working electrode and with Ag/AgCl and Pt wires used 

as the reference and counter electrodes, respectively. An aqueous solution consisting of 

0.1 M HAuCl4 and 3 M NH4Cl was used to deposit AuNPs in the potential range of 1 to 

−8 V, with  a fixed cathodic current  of 0.007 A over 120 s.  

3.2.8 Contact angle measurements on various surface: Contact angle measurements 

were performed by measuring the apparent contact angle of water (θw,a) using the 

KYOWA interface Measurement and Analysis System FAMAS – DropMaster (DM)-

CE1 instrument on four different substrates. Commercially purchased gold slide and 

MCE filter paper (100-nm pore size) were used as controls in the measurement of contact 

angles of our M-SWCNT and M-SWCNT/AuNPs hybrid films. The drop volume of 4.0 ± 
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1 µL (Millipore18.2 MΩ cm-1 DI water) was used in the measurement of contact angle 

using sessile drop method in time function for a period of 10 seconds with measurements 

performed at one-second intervals using FAMAS software utilizing both circular and 

tangent method drop fitting. MCE filter paper, M-SWCNT, and M-SWCNT/AuNPs 

hybrid films were stored in the lab atmosphere prior to the contact angle measurements 

whereas commercial gold slides were thoroughly cleaned with acetone, ethanol, DI water, 

and piranha solution and dried in vacuum. 

3.2.9 Determination of surface roughness of fabricated gold films using cyclic 

voltammetry: A three-electrode setup was used to cycle the potential between -0.5 to 1.5 

V in 0.5 M H2SO4 at a scan rate of 50 mV/s using the as-prepared gold film working 

electrode, Ag/AgCl reference electrode, and Pt wire counter electrode. Reduction of the 

gold oxide peak at ~0.8 V was integrated to obtain the charge. We used the integrated 

charge to calculate the electroactive area and roughness factor of the film, assuming that 

386 µC/cm2 was required to reduce a single monolayer of gold oxide.170 

3.3 Results and Discussions 

Our porous gold films prepared in layer-by-layer fashion using a simple vacuum filtration 

apparatus offers excellent stability, good homogeneity, and reproducible with strong 

adhesive strength between the layers. The choice of the substrate such as mixed cellulose 

ester (MCE) filter membrane possesses many useful characteristics being biodegradable, 

combustible, eco-friendly, cheap, and portable, with the flexibility and strength to allow 

multiple sample loadings and washing steps without sacrificing surface integrity. Citrate- 

capped AuNPs (3.5 nM, 12±1-nm diameter) were synthesized as reported previously166 

ahead of our composite film fabrication. Transmission electron microscopy (TEM) and 
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image analysis confirmed that the AuNPs were uniform in size, with an average diameter 

of ~12±1-nm with good homogeneity (Figure 4).  

 

Figure 4: Transmission electron microscopy (TEM) image of (A) citrate-capped AuNPs 
using a Phillips CM-200 at 200 kV reveals roughly spherical, homogenous particles. (B) 
Frequency distribution histogram shows an average particle diameter of 12±1 nm, as 
calculated using Image J software.  
 
8 ug of 99% M-SWCNT stock solution was dispersed in 10 mL of 1% Triton X-100 

surfactant via sonication for 10 min. The film was prepared in three steps (Figure 5). 

First, we performed vacuum filtration of the M-SWCNT suspension through a Buchner 

funnel onto MCE paper to form a uniform, compact, randomly-aligned M-SWCNT layer 

(Figure 5A). A low vacuum pressure was maintained at a flow-rate of 0.6 mL/min to trap 

most of the M-SWCNTs on the filter paper. After washing away the Triton X-100 

surfactant from the M-SWCNT layer (Figure 5B), we performed a second vacuum 

filtration step with 10 mL of citrate-capped AuNP solution (35 picomoles). During this 

step, the AuNP solution was quickly drawn through the M-SWCNT-layered MCE paper 

at a fast flow-rate (6 mL/min) to avoid aggregation of AuNPs on the film surface. Once 

the second filtration step was complete, a gold film had formed atop the M-SWCNT 

underlay (Figure 5C).  
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Figure 5: Porous thin gold film preparation via vacuum filtration. (A) Vacuum filtration 
of a solution of 1% Triton X-100-dispersed M-SWCNTs results in a compact and 
uniform M-SWCNT underlay on the paper surface. (B) Triton X-100 surfactant is 
washed away with copious amounts of deionized (DI) water to provide a clean 
hydrophobic surface for the deposition of AuNPs on top of the M-SWCNT layer. (C) 
Subsequent vacuum filtration of a citrate-capped AuNP solution yields a highly 
conductive, AuNP/M-SWCNT hybrid thin film on the MCE paper. 
 
In light of the strategy for fabricating the hybrid gold film, we believe that the vacuum 

force is an essential source of binding between the citrate-capped AuNPs and the M-

SWCNTs deposited on the filter paper. Since the Triton X-100 surfactant is washed away 

from the M-SWCNT layer with copious amounts of DI water after depositing the M-

SWCNTs on the paper, we trust that the suction produced by the vacuum force is 

instrumental in forming hydrophobic-hydrophobic interactions between the M-SWCNTs 

and citrate-capped AuNPs. Vacuum filtration drives the all-around scattered M-SWCNTs 

to form a compact, arbitrarily displayed layer on the paper surface with greatest cover 

and interpenetration, yielding moderate conductivity and great mechanical strength all 

through the rigid film. Rapid filtration of the AuNP solution, in turn, forces the 

deposition of the particles onto the surface of the M-SWCNT layer, forming a highly 

conductive hybrid thin gold film. The subsequent thickness and physical properties of the 
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film can be controlled at the nanoscale by essentially changing either the concentration or 

the feed volume of the nanomaterials. This procedure brings about a conductive 

AuNP/M-SWCNT onto the filter paper. 

 

Figure 6:  X-ray energy dispersive spectroscopy (EDS) of (A) a single layer of M-
SWCNTs on MCE or (B) an AuNP/M-SWCNT hybrid film on MCE. Besides carbon, 
nitrogen, and oxygen no other element peaks were seen for the M-SWCNT film, 
confirming the absence of any metal catalyst impurity. These results confirmed a high Au 
content (the mass ratio of Au/C is about 25%) for the hybrid film, with no other 
detectable elements except for carbon and oxygen, demonstrating its purity. 
 
To assess the presence of impurities on the VF-fabricated films, we performed an 

elemental analysis using X-ray energy dispersive spectroscopy (EDS) (Figure 6). 

Experimental results demonstrated an absence of superfluous element peaks for the M-

SWCNT film, except for carbon, nitrogen, and oxygen, affirming the nonattendance of 

any metal catalyst impurity (Figure 6A). It is additionally imperative that a high Au 

content was acquired with no perceivable impurities on the VF-fabricated gold film, 

affirming that our procedure yields a pure gold layer on the M-SWCNT film (Figure 6B). 

Contact angle measurements were performed on various films to assess their wettabilities 

(Figure 7). Clearly, the apparent contact angle of water (θw,a ) on an M-SWCNT-only 

film was 81°, showing a hydrophilic surface. The hybrid film showed a marginally 
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diminished θw,a value (76°), which is somewhat higher than the θw,a  value (71°) of the 

purchased flat gold slide. In all cases, the θw,qualities were higher contrasted with the 

MCE paper substrate (56°). 

 

Figure 7: Apparent contact angle of water (θw,a) for the surface of various films.  

    To better understand the synergistic effect of the nanostructure of both layers on our 

film’s conductivity, we performed the measurements of sheet resistance (Ω/sq) of various 

films (Table 1) with a Keithly 4200 Semiconductor Characterization System with a four-

point probe setup. As expected, the MCE filter paper was not conductive, and we 

observed infinite resistance during measurement. When 35 picomoles of citrate-coated 

AuNPs were directly applied onto the filter paper using filtration with no M-SWCNT 

underlayer, we observed spillage of AuNPs through the membrane pores, producing a 

pink coating on the paper that demonstrated no conductivity. When we expanded the 

thickness of the gold coating by adding 5 layers of 35 picomoles of citrate-capped 

AuNPs, the color changed from pink to wine red yet at the same time displayed no 
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measurable conductivity, potentially because of the vast interstitial spaces among the 

AuNPs. 

Table 1: Sheet resistance (Ohm/sq) and calculated electron transfer rate (Ko) for different 

films. 

 

Conversely, 8 µg of M-SWCNTs formed an overlapping network on the paper due to 

their micro-scale length, giving cross-connected conductive channels to electron 

exchange and in this manner making the film tolerably conductive (~75,000 Ohm/sq). 

Such a thin underlay of M-SWCNTs offered a rigid mesh infrastructure that kept 

individual AuNPs from evading amid a consequent round of AuNP filtration. This was 

clearly evidenced by the immense conductivity observed for films comprising 35 

picomoles of AuNPs deposited on an underlay of 8 µg M-SWCNTs. The sheet resistance 

of this AuNP/M-SWCNT hybrid thin film was 126 ohm/sq, ~600-fold lower than that of 

the M-SWCNT underlay alone. The significant increment in conductivity is conceivable 

because of the way that the AuNPs were either in contact with the M-SWCNTs or filling 

the holes in the interconnecting M-SWCNT network to shape an all-around 

interconnected network. Because of the porosity of our VF-fabricated hybrid film, the 

conductivity is six-fold lower on the purchased gold slides (20 ohms/sq) (Table 1). We 
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believe that the M-SWCNT layer acts as both a conducting bed and a support matrix. To 

show the commitment of M-SWCNTs as a conductive layer, we fabricated films 

composed only of various measures of M-SWCNTs. These films were moderately 

conductive, and increasing amounts of M-SWCNTs resulted in a decline in sheet 

resistance; a sheet resistance of 13,049 Ω/sq was acquired from the film fabricated with 

20 µg M-SWCNT (Figure 8). 

 

Figure 8: Effect of variable amounts of M-SWCNTs on sheet resistance in the absence of 
AuNPs. A gradual decline in sheet resistance can be observed with increasing amounts of 
M-SWCNT from 7-20 µg. 
 
The M-SWCNTs also play a critical role as a rigid support and barrier layer for the 

AuNPs in the fabrication of the composite hybrid film, keeping them from going through 

the filter paper substrate. In parallel, the AuNPs decrease the contact resistance between 

the M-SWCNTs by acting as nanofillers that are physically attached at the inter-tube 

junctions, in this manner forming a conductive three-dimensional electron exchange 

pathway that incredibly increases the conductivity of the hybrid film. To demonstrate 

this, we measured the effect of variable amounts of M-SWCNTs with an upper layer of 

35 picomoles of AuNPs on the sheet resistance of hybrid film. We found that the film’s 

sheet resistance decreased from 571 Ω/sq to 342 Ω/sq (Figure 9) as we increased the M-
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SWCNT underlayer from 4.4 µg to 5.3 µg, and further increments in the amount of M-

SWCNTs brought about a relentless diminishing in sheet resistance until bottoming out at 

17.8 µg of M-SWCNTs with a sheet resistance of 21 Ω/sq. 

 

 

Figure 9: Effect of variable amounts of M-SWCNTs on sheet resistance in the presence 
of 35 picomoles AuNPs. Increasing amounts of M-SWCNTs (4.4-17.8 µg) with an upper 
layer of 35 picomoles AuNPs result in a steady decline in sheet resistance, with values 
starting to bottom out at around 8 µg. 
 
We then demonstrated the contribution of the AuNPs to the hybrid film conductivity by 

fabricating films with 8 µg M-SWCNTs and distinctive amounts of AuNPs (Figure 10). 

Compared with the sheet resistance of 75,000 Ω/sq acquired from a M-SWCNT-only 

film, we observed that the sheet resistance of the AuNP/M-SWCNT hybrid film 

decreased 51-fold upon loading only 14 picomoles of AuNPs (1,469 Ω/sq) and then 

additionally decreased to 230 Ω/sq with 28 picomoles AuNPs. Resistance bottomed out at 

67 Ω/sq with 53 picomoles AuNPs. The relatively high resistance of films formed from 

14 picomoles or less of AuNPs is apparently because the amount of AuNPs was just 

adequate to yield discrete patches of particles anchored to the sidewalls of the M-

SWCNTs, whereas increasing the amount of AuNPs to 28 picomoles or higher allows the 

particles to accumulate and form a continuous AuNP film with enhanced conductivity. 
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Figure 10: Effects of variable amounts of AuNPs on sheet resistance with fixed amount 
of M-SWCNTs. Increasing amounts of AuNPs with an underlayer of 8 µg M-SWCNT 
resulted in a steady decline in sheet resistance, with values starting to bottom out at 
around 28 pmole. The inset shows the declining trend more clearly, without the 8 µg M-
SWCNT-only control.  
 

 

Figure 11: Effect of variable amounts of M-SWCNTs on electron transfer rate with fixed 
amount of AuNPs (35 pmoles). Increasing amounts of M-SWCNTs as an underlayer for 
35 pmoles of AuNPs were associated with a steady increase in electron transfer rate (K0), 
with values starting to reach a plateau around 13.3 µg.  
 
We further characterized the electron transfer rate constants of these various films. The 

electron transfer rate is depicted as the procedure of exchange of electrons between the 

surface of the working electrode and its interfacial solution. It can be calculated by 

examining the peak-to-peak separation (ΔEp) of Fe(CN)6
3-/Fe(CN)6

4- in cyclic 

voltammograms using the Nicholson method,171 where a small ΔEp indicates faster 
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electron transfer. As expected, both MCE filter paper and AuNP-loaded paper were non-

conductive to electron transfer. The M-SWCNT film yielded a ΔEp of 393 mV, 

indicating a very low electron transfer rate constant, validating the sheet resistance 

presented in Table 1. However, the ΔEp of our AuNP/M-SWCNT hybrid thin film was 

reduced to 85 mV, with a calculated electron transfer rate of 2.73 × 10-3 cm/s—a two-fold 

slower than the bare purchased gold slide (4.92 × 10-3 cm/s). The measurement of M-

SWCNTs added greatly affects the gold film’s electron transfer rate. For instance, a top 

layer of 35 picomoles of AuNPs with an underlay made with 4.4 or 5.3 µg of M-

SWCNTs yielded an unmeasurable electron transfer because of poorly characterized 

peak-to-peak separation. In any case, the hybrid films made with 7.1 and 8.9 µg of M-

SWCNTs gave a well-defined peak-to-peak separation, with calculated electron transfer 

rates of 1.67 × 10-3 cm/s and 2.73 × 10-3 cm/s, respectively. This rate started to level with 

gold films fabricated with 13.3 µg of M-SWCNTs, which yielded a calculated electron 

transfer rate of 4.33 × 10-3 cm/s (Figure 11). Obviously, the large pores that formed in 

layers made from small amounts of M-SWCNTs permitted many AuNPs to escape 

through the film, forming a poorly-conductive pink coating on the paper (Figure 12, top 

B-C). As we increased the amount of M-SWCNTs above 8 µg, most of the AuNPs were 

held on the thick M-SWCNT film due to the smaller pores formed within this underlay, 

enabling the formation of a highly conductive gold film (Figure 12, top E-H).  

The increase in electron transfer rate with increasing amounts of M-SWCNTs might be 

viewed as a transition from dispersed particles to an accumulated single layer of AuNPs, 

coming about because of a diminishment in the pore size of the M-SWCNT underlayer. 

The side-angle view illustrates the shiny nature of the paper-based gold films, which is 
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particularly clear with 8 ug or more of M-SWCNTs (Figure 12, bottom E-H). 

Additionally, we also prepared hybrid gold films with 12.5, 25, 50, and 100 µg of P-

SWCNT solution which was dispersed in 1% Triton X-100. We observed that increasing 

amounts of P-SWCNTs (12.5-75 µg) as an underlayer for 35 pmoles of AuNPs were 

associated with a decline in sheet resistance and an increment in electron transfer rate 

(K0), with values starting to reach a plateau around 50 µg (Figure13). 

 

 

Figure 12: Front angle view (top) and side angle view (bottom) of films fabricated with 
35 pmoles AuNPs and variable amounts of M-SWCNTs. (A) MCE alone, (B) 4.4 µg M-
SWCNTs, (C) 5.3 µg M-SWCNTs, (D) 7.1 µg M-SWCNTs, (E) 8 µg M-SWCNTs, (F) 
8.9 µg M-SWCNTs, (G) 13.3 µg M-SWCNTs, (H) 17.8 µg M-SWCNTs. The reflective 
nature of the film is more clearly visible from the side-angle view, especially from films 
made with ≥ 8 µg M-SWCNTs (E-H). 
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Figure 13: Effects of variable amounts of P-SWCNTs on sheet resistance and electron 
transfer rate. (A) Sheet resistance measurements show that increasing amounts of P-
SWCNTs (12.5-75 µg) with an upper layer of 35 picomoles AuNPs result in a steady 
decline in sheet resistance, with values starting to bottom out at around 50 µg. (B) 
Electron transfer rate measurements show that increasing amounts of P-SWCNTs (12.5-
75 µg) as an underlayer for 35 pmoles of AuNPs were associated with a steady increase 
in electron transfer rate (K0), with values starting to reach a plateau around 50 µg.  
 

We observed a comparable pattern about electron transfer rate as we increased the 

amount of AuNPs deposited on a fixed amount of M-SWCNTs. The relatively poor 

conductivity of the film fabricated with 14 picomoles AuNPs atop an 8 µg M-SWCNT 

underlayer did not allow us to determine the electron transfer rate (Figure 14). However, 

increasing the amount of AuNPs to 28 picomoles greatly improved the film conductivity, 

yielding an electron transfer rate of 1.00 × 10-3 cm/s. This value reached a plateau at 

around 35 picomoles of AuNPs (electron transfer rate of 2.73 × 10-3 cm/s) with only 

small gains beyond this point (Figure 14). 
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Figure 14: Effects of variable amounts of AuNPs on electron transfer rate. Starting at 28 
pmole, increasing amounts of AuNPs with an underlayer of 8 µg M-SWCNTs led to a 
steady increase in the electron transfer rate (K0), with values starting to reach a plateau 
around 35 pmole.  
 
A change in color intensity can also be clearly observed with increasing concentrations of 

AuNPs: pink-tinged films made with 14 or 21 picomoles of AuNPs indicate scarce 

dispersion of particles (Figure 15, top B-C), whereas the darker and shinier films formed 

with 28 picomoles or more of AuNPs (Figure 15, top D-H) suggest accumulation of 

AuNPs atop the M-SWCNT underlay. 
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Figure 15:  Front (top) and side angle view (bottom) of films fabricated with 8 µg M-
SWCNTs and varying amounts of AuNPs. (A) 8 µg M-SWCNTs alone, (B) 14 pmole 
AuNPs, (C) 21 pmole AuNPs, (D) 28 pmole AuNPs, (E) 32 pmole AuNPs, (F) 35 pmole 
AuNPs, (G) 42 pmole AuNPs, (H) 53 pmole AuNPs. The reflective nature of the film is 
more clearly visible from the side-angle view, especially from films made with ≥ 32 
pmole AuNPs (E-H). 
 
Furthermore, different sizes of AuNPs (~13, 30, 54, and 75 nm) were also used to form a 

thin layer of AuNPs on top of the M-SWCNT underlay. We observed a gradual decrease 

in the electron transfer rate of films prepared from larger AuNPs, from 2.76 × 10-3 cm/s 

for 13-nm AuNPs to 1.77 × 10-3 cm/s for 75-nm AuNPs (Figure 16). This might be 

ascribed to the failure of the larger AuNPs to fill the interstitial spaces between the 

carbon nanotube networks.  
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Figure 16: Effect of AuNP size on sheet resistance and electron transfer rates. (A) Sheet 
resistance comparison of VF-fabricated gold films prepared from AuNPs with diameters 
of 12, 30, 54, and 75 nm. (B) Electron transfer rate comparison of the same films.  
 
To better understand how the structural features of these films contribute to their 

electrical properties, we characterized the morphology of MCE filter paper and various 

other films using atomic force microscopy (AFM). AFM is fundamental for studying 

surface roughness at the nanoscale. We used the average roughness (Ra), which is the 

mean height as calculated over the entire measured area, to detect general variations in 

overall profile height characteristics,172 where a small Ra value shows a smooth 

surface.173 MCE filter paper offers a high degree of the internal surface area for more 

prominent adsorption of material, and takes into account high stream rate of filtration 

because of its pores.174, 175 

 



 55 

 

Figure 17: Surface morphology as characterized by atomic force microscopy (AFM). 
Typical AFM images of (A) MCE filter paper, (B) M-SWCNT-loaded MCE paper, (C) 
VF-fabricated AuNP/M-SWCNT film, (D) AuNP-loaded MCE paper, and (E) a 
commercially-purchased gold slide. (F) Surface roughness measurements for the various 
films shown in A-E. The images were obtained in the tapping mode using a Multimode 
AFM IIID with Bruker AFM probes (TESP-V2, 0.01-0.025 Ohm-cm Antimony (n) 
doped Si). 
 
Experimental results demonstrated that MCE paper has a profoundly permeable structure 

with an interconnected framework, with a mean surface roughness of 72.0 nm (Figure 17, 

A and F). When only M-SWCNTs were loaded onto the MCE paper, the resulting 

network formed an interconnected, hydrophobic surface layer with 13.0 nm mean surface 

roughness, thus presenting a six-fold smoother surface (Figure 17, B and F). The 

subsequent deposition of 35 picomoles of AuNPs onto the M-SWCNT underlay resulted 

in an even smoother film (Figure 17C), with an average mean surface roughness of 7.0 

nm (Figure 17F). Despite the fact that most of the filter channels are sealed with AuNPs, 

this relatively smooth gold film still retains a porous architecture (Figure 17C). In 

contrast, the vast majority of the large channels in the MCE filter were open on the 

AuNP-only film, with small amounts of AuNPs deposited around the pore edges (Figure 
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17D). In this scenario, we observed no obvious interconnection/overlap among the 

AuNPs and a mean surface roughness of 20.3 nm (Figure 17F). We found that the 

purchased gold slide was extremely smooth, with a mean surface roughness of 2.8 nm 

(Figure 17, E and F). 

 

Figure 18: AFM images of (A) the AuNP/M-SWCNT hybrid film prepared with 8 µg M-
SWCNTs and 35 pmole AuNPs. (B) The frequency distribution histogram of the 
AuNP/M-SWCNT hybrid film shows that the average size of AuNPs is ~45 nm due to 
the compact overlapping arrangement of the particles, as calculated using Image J 
software. 
 
We noted that AuNPs deposited on the M-SWCNT film seem bigger (~45 nm) (Figure 

18, A and B) than the AuNPs (~13 nm) used for film preparation. This can be explained 

by the closely-packed nature of the AuNPs on the composite film, which arises from the 

strong vacuum force creating overlapping particle structures on the M-SWCNT surface.  
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Figure 19: AFM image of the edge of a VF-fabricated gold film prepared with 8 µg M-
SWCNTs and 35 pmole AuNPs. Measurement was made using Nanoscope 3D from 
Bruker-Nano (Veeco), with a Multimode-Tapping, TESP-V2; 0.01-0.025 Ohm-cm 
Antimony (n) doped Si AFM probe. The thickness of the edge was measured to be 40 
nm. 
 
We then transferred this paper-based AuNP/M-SWCNT hybrid film onto a clean glass 

substrate using acetone evaporation174 and measured the thickness of our hybrid film to 

be 40 nm via AFM (Figure 19).  

 

Figure 20: Surface morphology of various films as characterized by SEM. SEM images 
of (A) MCE filter paper, (B) M-SWCNT-loaded MCE paper, and (C) AuNP/M-SWCNT 
hybrid film on MCE paper. Scanning electron microscopes (MERLIN, Carl Zeiss, 
Oberkochen, Germany) were used for the SEM analysis. SEM images of surface of the 
films were obtained at the accelerating voltage of 3 kV.  
 
To further prove the hybrid gold film is permeable, we used scanning electron 

microscopy (SEM) to characterize various films. The porosity of MCE filter paper was 
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also evident from the SEM image (Figure 20A). Deposition of a layer of M-SWCNTs on 

the paper surface formed an inter-connected conductive network through and over the 

pores without totally obstructing the pore-space (Figure 20B). Sequential deposition of 

AuNPs on top of the interconnected network of M-SWCNTs resulted in the formation of 

a sponge-like, permeable, inter-connected gold film (Figure 20C). Obviously the porosity 

of the filter paper, with interstitial spaces in between the inter-connected network of 

AuNPs, remained, and pores and ligaments were interspaced uniformly throughout the 

surface of the film. 

 

Figure 21: Cross-sectional SEM images of our hybrid gold films. (A) A comprehensive 
view of the cross-section of the paper-based hybrid gold film. (B) An interior view of 
MCE paper and nanomaterial interfacial layer. Scanning electron microscopes (MERLIN, 
Carl Zeiss, Oberkochen, Germany) were used for the SEM analysis. SEM images of 
surface of the films were obtained at the accelerating voltage of 3 kV.  
 
Surface SEM images of the hybrid film correlate with the AFM findings, and further 

corroborate the evidence for the formation of a porous hybrid gold film. We have also 

performed cross-sectional SEM in order to investigate the infiltration depth of AuNPs 

within M-SWCNT films. A comprehensive view of the cross-section of the paper-based 

hybrid gold film can clearly differentiate between the filter paper and nanomaterial layers 

(Figure 21A). Additionally, an interior view of MCE paper and nanomaterial interfacial 
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layer suggested no seepage of AuNPs after its deposition onto the M-SWCNT-loaded 

paper (Figure 21B). 

 

Figure 22: Comparison of the electrochemical characteristics of a flat gold slide relative 
to our VF-fabricated porous gold film. Cyclic voltammograms were performed in 2 mM 
K3Fe(CN)6

3-/K3Fe(CN)6
4- solution at a scan rate of 10 mV/s.  

 
The VF-fabricated hybrid thin gold films generate a higher current than flat gold slides 

due to their porosity (Fig. 22). We utilized a single sheet of film to make fourteen 

working electrodes (5 mm W × 8 mm L) and compared the electroactive surface area of 

these electrodes in 0.5 M H2SO4 relative to a commercially-purchased flat gold slide with 

the same geometric surface area. The voltammograms of both gold electrodes 

demonstrated that oxidation started at ~1.2 V in the oxidation sweep, generating a broad 

anodic peak. The formed gold oxide was then electrochemically reduced at ~0.85 V in 

the reduction sweep (Figure 23). We calculated the charge transferred by integrating the 

reduction peak of gold oxide to obtain an electroactive surface area of 0.62 and 0.16 cm2 

for the VF-fabricated hybrid gold film and the flat gold slide, respectively, assuming that 

386 µC/cm2 is required to reduce a monolayer of gold oxide.170 This shows that the VF-

fabricated hybrid thin gold film is 3.2-fold rougher than the flat gold slide. The larger 

surface area of the VF-fabricated hybrid gold film may be due to a combination of the 
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high surface-to-volume ratio of the carbon nanotube support along with the porosity of 

the paper substrate.  

 

Figure 23: Comparison of the electrochemical characteristics of a flat gold slide relative 
to our VF-fabricated porous gold film. Cyclic voltammetry was performed in 0.5 M 
H2SO4 at a scan rate of 50 mV/s. 
 
The neurotransmitters dopamine (DA) and serotonin (5-HT) were utilized as benchmark 

analytes to evaluate our film’s electrocatalytic properties. We observed excellent 

electrocatalytic performance for detecting both molecules independently with our hybrid 

gold films (Figure 24A and C), with only a small background current in the absence of 

analytes. A solution of 1 mM DA or 5-HT exhibited quasi-reversible electrochemical 

behavior, with a respective 60-fold (DA, Figure 24A, red trace) and 45-fold (5-HT, 

Figure 24C, red trace) increase in electrocatalytic oxidation current at 0.19 V and 0.39 V. 

In contrast, film comprised entirely of M-SWCNTs produced only a small 

electrochemical response to DA (Figure 24A, blue trace) or 5-HT (Figure 24C, blue 

trace) at 0.8 V. Therefore, even though DA may diffuse through the M-SWCNT layer, its 

electrochemical response is relatively small. We obtained a 3-fold smaller oxidation 

current for DA at 0.18 V from a flat gold electrode with the same geometric surface area 
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as our VF-fabricated gold film (Figure 24B, black trace), presumably because of its 

absence of porosity. 

 

Figure 24: Comparison of the electrochemical responses of our VF-fabricated gold film 
relative to other films. (A) Cyclic voltammograms of our VF-fabricated gold film and a 
M-SWCNT-only film in 0.1 M phosphate-buffered saline (PBS, pH 7.4) with and without 
1 mM dopamine (DA). (B) Cyclic voltammograms of our VF-fabricated gold film and a 
purchased gold slide with the same geometrical dimensions in 0.1 M PBS (pH 7.4) in the 
absence or presence of 1 mM DA. (C) Electrocatalytic oxidation of 5-HT in 0.1 M PBS 
(pH 7.4) with a VF-fabricated gold film electrode with sheet resistance of 126 ohm/sq 
(red) versus M-SWCNT-only films with sheet resistance of 75,000 W/sq (blue). 5-HT 
yields a 45-fold increase in peak current at 0.39 V (vs. saturated calomel electrode) with 
our hybrid film versus film composed only of M-SWCNTs. 
 
The increased active surface area of our VF-fabricated gold film clearly produces a 

higher turnover for electrochemical reactions at the electrode surface, resulting in large 

faradic current and sensitive analyte detection. To demonstrate this, we performed 

electrocatalytic oxidation with different concentrations of DA and 5-HT using VF-

fabricated hybrid thin gold film electrodes. The electrocatalytic current increased linearly 

with increasing DA concentrations over a wide range from 50 nM to 1 mM (R2 = 0.996) 

(Figure 25), with a detection limit of 10 nM. 
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Figure 25: DA is electrocatalytically oxidized on our VF-fabricated porous gold film 
electrode. (A) Cyclic voltammetric responses of various concentrations of DA in 0.1 M 
PBS (pH 7.4). (B) The anodic current at 0.19 V increased linearly with increasing DA 
concentrations in the range of 50 nM to 1 mM, with inset showing linearity at 
concentrations ranging from 0 to 100 µM. The data reported are averages of three 
individual experiments.  
 

A similar linear response was observed with 5-HT: the peak current increased with 

increasing 5-HT concentration, exhibiting a linear relationship from 250 nM to 1 mM (R2 

= 0.997) with a detection limit of 50 nM (Figure 26).  

 

Figure 26: Electrocatalytic oxidation of 5-HT at different concentrations on VF-
fabricated gold film electrodes. (A) Cyclic voltammetric responses of various 
concentrations of 5-HT in 0.1 M PBS (pH 7.4). (B) The electrocatalytic anodic current at 
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0.39 V increased linearly with increasing 5-HT concentrations in the range of 200 nM to 
1 mM, with inset showing linearity at concentrations ranging from 0 to 200 µM. The data 
reported are averages of three individual experiments. 
 
Our hybrid gold films exhibited great reproducibility and storage stability for target 

detection; we obtained a standard deviation of 3% after testing 14 VF-fabricated gold 

film electrodes with DA (Figure 27A), and a standard deviation of 4% for DA response 

for electrodes tested every day over a storage period of two weeks (Figure 27B). 

 

 

Figure 27: (A) Electrodes constructed from our hybird gold film demonstrated great 
reproducibility in small molecule detection. Results are from 14 electrodes made from a 
single piece of hybrid gold film, tested with 1 mM DA in 0.1 M PBS (pH 7.4). (B) 
Stability of our hybrid gold film electrodes over a period of two weeks. Results are from 
14 electrodes made from a single piece of our hybrid gold film, with one electrode tested 
per day for electrocatalytic response of 1 mM DA in 0.1 M PBS (pH 7.4) over a period of 
two weeks. 
 
Additionally, surface cleaning of our hybrid gold film electrodes performed in NaOH and 

H2SO4 solution with the electrochemical protocol176 demonstrated a mere 1.5% increase 

in electron transfer rate, suggesting that these paper-based electrodes are suitable for 

immediate use (Figure 28). 
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Figure 28: Effect of surface cleaning treatment on our hybrid gold film on electron 
transfer rate. A 1.5% increase in electron transfer rate was observed after electrode 
pretreatment, suggesting that pretreatment is unnecessary. Electron transfer rate 
measurements were performed in 2 mM K3Fe(CN)6

3-/K3Fe(CN)6
4- solution at scan rates 

of 10, 20, 50, and 100 mV/s. 
 
The VF-fabricated gold film electrode also demonstrated good stability during 

measurement. Since the AuNPs were physically deposited on the surface of the M-

SWCNTs by vacuum force, we evaluated their stability with a film-soaking test where 

the as-prepared hybrid film electrodes were pre-soaked in 0.1 M PBS for various periods 

of time before measuring electron transfer rate. We did not observe any visible stripping 

of gold film during the test, and obtained only an 8% decrease in the electron transfer rate 

after a 45-min soaking (Figure 29). 
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Figure 29: Effect of solution soak time on electron transfer rate for our hybrid gold films. 
A small decline (8%) in the electron transfer rate was observed after soaking 45 min in 
0.1 M PBS solution, but with no visible stripping observed on the surface of the film. 
Measurements were performed in 2 mM K3Fe(CN)6

3-/K3Fe(CN)6
4- solution at scan-rates 

of 10, 20, 50, and 100 mV/s. 
 
We have also investigated the effect of solution pH on the stability of our AuNP/M-

SWCNT hybrid gold film. Specifically, we performed electron transfer rate 

measurements on the hybrid gold film after incubating in 0.1 M PBS solutions with 

different pH values (5.0, 6.0, 7.0, 8.0, and 9.0) for 10 minutes. Our experimental results 

demonstrated that our film is highly stable across all conditions (Figure 30). 

 

Figure 30:  Effect of pH on electron transfer rate of our hybrid gold film. Electron 
transfer rate measurements were performed with our hybrid gold film electrode after 
incubating in 0.1 M PBS solutions with different pH values (5.0, 6.0, 7.0, 8.0, and 9.0) 
for 10 min. The experimental results demonstrated that our film is highly stable across all 
tested pH conditions. 
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Additionally, we post-treated the hybrid gold film at 20, 50 or 80 °C for 6 hours to test 

the effect of temperature on electron transfer rate. We found that hybrid gold films 

treated at 50 and 80 °C showed a 8% and 14% respective decrease in electron transfer 

rate compared to the films left at 20 °C (Figure 31). This decrease is possibly due to a 

morphological change in the hybrid composite layers, which may have caused 

separations or breaks in the conductive network at higher temperatures. 

 

 

Figure 31: Effect of temperature on electron transfer rate of our hybrid gold film. An 8% 
and 14% decrease in electron transfer rate were observed at elevated temperatures of 50 
°C and 80 °C, respectively. This is possibly due to deformation within the structural 
integrity of the hybrid film. Measurements were performed in 2 mM K3Fe(CN)6

3-

/K3Fe(CN)6
4- solution at scan rates of 10, 20, 50, and 100 mV/s. 

 
We observed equally robust electrocatalytic responses for DA or 5-HT with our VF-

fabricated hybrid thin gold film when compared against similar hybrid gold films 

prepared by electrodeposition methods. We used template-free (TF)169 and hydrogen 

bubble (HB) directed46 electrodeposition to produce AuNP films atop MCE paper coated 

with 8 µg of M-SWCNTs. Experimental results demonstrated that both techniques 

yielded non-uniform, sparsely gold-deposited films, and this limited AuNP deposition 

resulted in a poor electrocatalytic response to DA oxidation at 0.5 V, yielding a broad 
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peak with an 8-fold lower electrocatalytic current relative to the signal obtained from our 

VF-fabricated hybrid gold film at 0.19 V (Figure 32A). 

 

 

Figure 32: Comparison of electrocatalytic response of DA on various paper-based gold 
films.  (A) We tested gold films fabricated on an underlayer of 8 µg M-SWCNTs using 
vacuum filtration (VF), template-free (TF) electrodeposition and hydrogen bubble (HB)-
directed electrodeposition. (B) Electrocatalytic response of DA on gold films fabricated 
on a 40 µg underlayer of M-SWCNTs using TF- and HB-directed electrodeposition 
versus a VF-fabricated gold film atop an 8 µg layer of M-SWCNTs. 
 
Indeed, we were unable to use 8 µg of M-SWCNTs as a conductive underlayer to 

electrochemically produce a highly conductive gold film, even after prolonged deposition 

times (~8h). The electrodeposition was hindered by the poorly conductive underlayer 

formed by 8 µg M-SWCNTs (75,000 Ω/sq). We therefore prepared a filter paper loaded 

with 40 µg of M-SWCNTs, which boasts 15-fold improved conductivity (5000 Ω/sq), and 

this provided a more robust foundation for the electrodeposition of AuNPs. In 

comparison with the shiny, yellow gold film produced by vacuum filtration, films 

generated by TF-directed electrodeposition showed a smooth, shiny brownish-red 

surface, while HB-directed deposition resulted in a rough and flaky dark brown surface. 

This TF-deposited gold film generated a great response for DA oxidation (Figure 32B), 
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with a 65-fold increase over background—comparable to the 60-fold increase observed 

with our VF-fabricated hybrid thin gold film. The low background current obtained with 

the TF-deposited gold film indicates the lack of porosity in this film. On the other hand, 

the porous, flaky gold film prepared by HB-directed electrodeposition showed only a 30-

fold increase in electrocatalytic signal from DA, as the increased porosity resulted in a 

high background current (Figure 32B). Although TF-deposited gold film achieved a 

slight higher electrocatalytic response, considerably more time is required to prepare the 

films (~3 hours per electrode) in comparison with our VF-fabricated gold film (~20 

minutes for 16 electrodes). Furthermore, at least a five-fold greater amount of M-

SWCNTs must be loaded onto the paper to produce conductive gold films with excellent 

electrocatalytic response, which considerably increases the cost of materials. 

 

Figure 33: Comparison of electrochemical characteristics and roughness factors of bare, 
flat gold slides, TF-deposited gold film, HB-directed gold film and VF-fabricated gold 
film. (A) Cyclic voltammograms of different electrodes in 0.5 M H2SO4 at a scan rate of 
50 mV/s. (B) The calculated roughness factors for our various films. 
 

The difference in porosity among films greatly affects their capacity to discriminate 

mixtures of analytes. Simultaneous detection of DA and 5-HT is generally difficult due to 

their similar oxidation potentials and overlapping signals at most solid electrodes.44 
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However, it has been demonstrated that porous films have a greater capacity for 

simultaneously distinguishing multiple analytes.177-180 Therefore, we examined the 

simultaneous detection of DA and 5-HT with VF-fabricated gold films relative to other 

smooth or porous gold films. We observed that smooth surfaces, such as purchased flat 

gold slides and TF-deposited gold films (roughness factors of 0.80 and 1.2, respectively; 

Figure 33) exhibited two broad, overlapping peaks at 0.18 V and 0.38 V, corresponding 

to the oxidation of DA and 5-HT, respectively (Figure 34A). 

 

Figure 34: Comparison of simultaneous target detection with various gold films. (A) 
Porous gold films prepared by HB-directed electrodeposition or VF-fabrication enable 
improved simultaneous detection of mixtures of DA and 5-HT compared to smooth 
surfaces such as TF-deposited gold films or purchased gold slides. TF-deposited and HB-
directed gold films were prepared on MCE filter paper loaded with 40 µg of M-
SWCNTs, whereas the VF-fabricated gold film was prepared with an underlayer of 8 µg 
of M-SWCNTs. (B) Simultaneous detection of a mixture of DA and 5-HT on M-
SWCNT-only or VF-fabricated gold film. Both films were prepared with 8 µg of M-
SWCNTs.  
 
These broad peaks were respectively resolved into two well-defined peaks at 0.19 V and 

0.39 V on porous gold film electrodes such as the VF-fabricated and HB-directed gold 

films (Figure 34A) (roughness factors of 3.5 and 5.6, respectively; Figure 33). However, 

the HB-directed film produced excessively high background current due to its loosely 
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bound structure. We observed the best discrimination on our VF-fabricated thin gold 

film, with a separation of 200 mV between the two sharp peaks—large enough to 

accurately distinguish the presence of DA and 5-HT simultaneously. In contrast, control 

experiments demonstrated that an M-SWCNT-only film was incapable of resolving these 

two oxidation peaks due to its poor conductivity (Figure 34B). The porous nature of the 

VF-fabricated hybrid gold film electrode, with its highly dispersed catalytic accessibility 

sites, makes it possible to achieve discriminative current amplification for species with 

slow reaction kinetics.181 Compared with the electrocatalytic current of 5-HT alone, we 

observed discriminative amplification when mixtures of DA and 5-HT were 

competitively oxidized on the same VF-fabricated gold surface. For example, we 

obtained a 45-fold increase in oxidation current from 1 mM 5-HT alone, while a mixture 

of DA/5-HT yielded a 60-fold increase in the oxidation current of 5-HT. However, we 

did not observe meaningful discriminative amplification for DA oxidation, with a 60-fold 

increase for DA alone versus a 65-fold increase for DA in a DA/5-HT mixture. We 

hypothesize that the pores in our VF-fabricated gold film may trap small volumes of 

solution even in the deeper regions of the film, making it possible to distinguish rates of 

electron transfer for multiple species due to negligible mass transfer and shorter diffusion 

time for molecules residing within the pores.181 Because DA has faster electron transfer 

kinetics than 5-HT,182-184 most DA molecules are oxidized completely at the outskirts of 

the pores before they are able to diffuse into the pores, and the effect of the pore-created 

inner surface on signal output is therefore greatly reduced.178 In contrast, the large active 

surface area of our porous gold film is favorable for detecting the slower electron transfer 

from 5-HT due to the confinement of 5-HT molecules within the pores,182 generating a 
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higher amplification of 5-HT oxidation relative to DA from mixtures of the two 

molecules. 

 

3.4 Conclusions 

We report here a simple and new approach for preparing dispensable, paper-based, 

porous AuNP/M-SWCNT hybrid thin gold films with high conductivity, rapid electron 

transfer rates, and excellent electrocatalytic properties. Our film preparation process takes 

~20 minutes and requires only two steps of ambient vacuum filtration with two aqueous 

solutions containing M-SWCNTs and AuNPs, respectively. We show that the M-

SWCNTs form a porous network of interconnected ligaments and pores, atop which the 

citrate-coated AuNPs gather into a conductive and porous thin gold film. Note that our 

VF-fabricated gold films can be prepared onto various types of filter papers, with 

different sizes of AuNPs or with different types of SWCNTs in a highly reproducible 

fashion without the requirement for sophisticated instruments or a clean-room 

environment. To our knowledge, this is the first report on using simple filtration with 

layer-by-layer deposition to rapidly manufacture such highly conductive gold films in a 

controlled manner under ambient conditions, with no post-growth, cleaning or sintering 

steps required after the initial two-stage fabrication. Importantly, the thickness and other 

properties of our hybrid thin gold film can be easily controlled by varying the 

concentrations or volumes of the two film preparation solutions. VF-fabricated gold films 

can distinguish the presence of DA and 5-HT either individually or simultaneously, with 

a resolution that greatly exceeds that of purchased flat gold slides or porous gold films 

prepared by more labor-intensive electrodeposition techniques. 
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Nanomaterials such as carbon nanotubes or graphene can be utilized as a conductive 

underlay for the deposition of a variety of different nanoparticles, including gold, silver, 

copper, platinum or palladium to form various pure or alternating layers of metal films. 

Such hybrid metal films could be used in electrochemical catalysis or electro-optical 

devices, as well as in reflective, conductive or energy-collecting metallic coatings. We 

believe that our technique gives a simple, adaptable and general means for the rapid 

fabrication of such diverse metal films onto membranes under ambient conditions, and 

that this process could likewise serve as a prelude to the transfer of such films to other 

metal or flexible substrates.  
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CHAPTER 4: Paper-Based SWCNT Thin Film Electrode for Drug Detection and 

Disease Diagnosis - Electrocatalytic Detection of NADH in Complex Matrices 

4.1 Introduction 

Nicotinamide adenine dinucleotide (reduced) is a coenzyme and a ubiquitous 

biomolecule found in all living cells, and it plays a significant role in the process of 

electron transfer, and several metabolic reactions.71-73 In particular, intracellular NADH 

serves as a biomarker for several physiological and pathological events.74-77 Fluctuations 

in the levels of NADH in the cells and tissues can correlate to the intracellular redox 

status,78 apoptosis,78 neurodegenerative diseases,73, 75, 76 and mitochondrial anomalies 

associated with cancer.79 The conversion of NADH in hyperplasia cancer cells was 

higher compared to the normal cells.79 To stimulate the biosynthesis of dopamine and 

tyrosine hydroxylase by NADH makes it an effective supplement in the treatment of 

parkinson’s disease.80 An example of another neurodegenerative disorder is Friedreich’s 

ataxia (FRDA)185. Friedrich’s ataxia is an autosomal recessive degenerative disorder 

generally characterized by the loss of deep tendon reflexes, progressive limb ataxia, and 

skeletal abnormalities typically seen before 25 years of age.185 The disease is generally 

caused by a deficiency of mitochondrial protein frataxin that results from decreased 

transcription of the FRDA gene.185 Energetic stress was caused in the frataxin deficient 

mitochondria because of compromised cellular respiration.185 Irregularities in the 

function of cellular respiration is known to alter the mitochondrial and cellular redox 

states (NAD+ / NADH) via impaired oxidation leading to the accumulation of NADH 

generated by the TCA cycle.185 In vivo studies in mice have shown that frataxin deficient 

mitochondrial NADH levels are at least 95 fold higher in comparison to wild-type 
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mitochondria, consistent with studies done in humans and with other animal models.186 

Therefore it is quite logical to understand the levels of NADH in the cell extract for a 

normal and FRDA patient. Generally, intracellular NADH levels were determined by 

enzymatic analysis,187-191 fluorometric analysis,192-194 fluorescence micro-imaging 

techniques,195 laser scanning confocal microphotographics,196 and two photon excitation 

micrographics.197 

Enzymatic assay methods are some of the most widely used methods in determination of 

levels of intracellular NADH because it participates in more than 300 kinds of enzymatic 

oxidation/reduction reactions in vivo.198, 199 The quantification is usually done in two 

steps with the first step being the extraction step followed by quantification.84 The 

extraction can either be a separate extraction method where NADH is extracted in an 

alkaline solution to decompose NAD83 or a single extraction where both NAD and 

NADH are extracted using neutral or mild basic solutions.84 Nicotinamide adenine 

dinucleotide (reduced) was then quantified using spectrophotometric techniques.84 An 

example of such method for the estimation of free NADH in rat liver was demonstrated 

by measuring the concentrations of substrates of dehydrogenases (β-hydroxybutyrate and 

glutamate-dehydrogenase systems), which are considered to be in equilibrium with the 

bound form.81 Another example of an enzymatic assay utilized the role of NADH as 

electron carrier in metabolic reactions where cytosolic and plasma membrane 

oxidoreductases oxidizes cytosolic NADH and NADPH and passes electrons to 

extracellular targets.82 

Fluorometric methods are another techniques that utilize the fluorescence change of 

NADH. It is known that NADH emits strong fluorescence at 460 nm when excited at 340 
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nm, which is not present for NAD.86 The fluorometric assay for NADH is simple, 

however, it is plagued by strong background fluorescence as the fluorescence of NADH 

is relatively weak in comparison in living cells. Usually, physical cell disruption methods 

such as ultrasonication,87 high-pressure homogenization,88 high-speed bead mill,89 and 

chemical methods such as chemical permeation89  and enzymatic lysis89  are generally 

used for extraction of NADH for analysis. The extraction of NADH from yeast cells by 

snailase lysing90 and SDS permeation91 clearly depicts the levels of intracellular NADH 

when the fluorescence spectra were compared against the standard NADH solution.91 

Indirect fluorescence methods such as resazurin to resafurin reduction by NADH in the 

presence of diaphorase works as an indicator for the level of intacellular NADH.92 

Similarly amplex red can also be used with the similar mechanism to detect NADH.93 

Patterson found a linear relationship between NADH level in cytoplasm and 

mitochondria and the fluorescence intensity in glucose metabolism using a two-photon 

excitation microscopy.200 These techniques help in monitoring the NADH concentrations 

in live tissue by using near-infrared excitation light that can also excite fluorescent dyes. 

Background fluorescence can be strongly suppressed as a result of multi-photon 

absorption in these techniques, however requires highly controlled conditions and 

expensive light sources for the imaging. 

NADH also has many in vitro applications. One of the in vitro applications is the cocaine 

metabolite assay developed by Syva to detect benzoylecgonine in urine samples.94 The 

competitive immunoassay strategy (EMIT) causes the change of reaction kinetics for 

NADH production depending on the presence or absence of the cocaine metabolite.94 The 

drug in the biosample competes with the drug-labeled enzyme for the limited binding 
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sites on the antibody. The conjugated-antibody reduces enzyme activity. Depending on 

the concentration of drug in the biosample that binds to the antibody sites, leaving the 

enzyme-labeled drug unbound in the solution to freely breakdown G-6-P resulting in the 

release of single hydrogen ion (H+). NAD present in the reagents reacts with the released 

hydrogen ion to form NADH. The amount of NADH produced during the EMIT reaction 

is directly proportional to the amount of drug present in the sample that can be detected 

using ultra-violet spectrophotometery.94 The EMIT strategy has been used for urine 

samples. However, spectroscopic methods are at a disadvantage when working with 

complex samples because of spectral interferences arising from the inherent presence of 

turbidity, and colored pigments resulting from biological processes.  

Electrochemical methods have been traditionally used to detect many important 

biological analytes due to its impressive miniaturization of modern microelectronics and 

the relative paucity of electroactive contaminants in samples.95 Nicotinamide adenine 

dinucleotide (reduced) itself is electrochemically active, and the conventional solid 

electrodes such as gold,96  platinum,97 and glassy carbon98  have been used as electrodes 

for NADH oxidation. However, NADH can only be oxidized on these electrodes at 

potentials above +1.0 V.96-98 Consequently, various electron mediators such as organic 

dyes,201 conducting polymers202 and thio-substituted nucleobases203 have been employed 

or modified on the electrode surface to facilitate NADH oxidation. Although the use of 

such electron mediators seems promising, problems such as defects of surface 

modification, the relatively cumbersome nature of these assays, lack of long-term 

electrode stability, low sensitivity and toxicity limit their practical applications.201-203 

Moreover, the adsorption of NADH and NAD+ on the electrode leads to surface fouling 
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resulting in poor sensitivity, stability, and reproducibility.204 Therefore it is essential to 

find a material that will accelerate the process of interfacial electron transfer between 

NADH and the electrode surface. 

The use of carbon nanomaterial electrodes came into light especially carbon nanotubes is 

of great interest because of their unique structural and electrical properties.205 Carbon 

nanotubes (CNTs) have large activated surfaces and edge-plane sites (defects) that are 

ideal for performing NADH oxidation at low potentials without any help of redox 

mediators minimizing surface fouling.206 Apart from the edge plane sites the CNTs also 

possess a three-dimensional electron-conductive network, which amplifies the response 

for NADH oxidation. To date, several different types of CNT films have been prepared 

and used for sensing application. The perpetual demand for rapid, inexpensive, and 

disposable sensing platforms in industrial and clinical settings led to the evolution of 

paper-based substrates.57 Combining the electrocatalytic advantages of CNTs with the 

non-expensive, disposable features of paper-based substrates, we were able to fabricate a 

thin CNT film on paper with a simple vacuum filtration technique. We further utilized the 

porous paper-based CNT film to directly detect NADH in cell-lysate, which serves as a 

biomarker for several disease conditions, and also act as a prelude to the general 

application of detecting NADH generated from enzymatic immunoassays for drug 

screening.   

4.2 Materials and methods 

4.2.1 Chemicals PureTubes Single-Walled Carbon Nanotubes (P-SWCNTs) solution 

(0.25 mg/mL) was purchased from Nanointegris. Beta-Nicotinamide Adenine 

Dinucleotide Disodium Salt Hydrate (NADH) was purchased from Acros Organics. 
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Sodium Dodecyl Sulphate (SDS), phosphate-buffered saline (10× PBS, pH 7.4), sulfuric 

acid (95-98%), nitric acid (70%), hydrochloric acid (36.5-38%), ethanol (99.5%), acetone 

(99.9%), and potassium hexacyanoferrate (III) were purchased from Sigma-Aldrich and 

used as received. Mixed Cellulose Ester (MCE) filter papers of 100-nm pore size (47-mm 

diameter and 105-µm thickness) were purchased from Millipore. Fast-drying silver paint 

was purchased from Ted Pella. EMIT II plus – Cocaine metabolite assay developed by 

syva (EMIT-Neogen), E. coli cell culture-BL21DE-3 2-DT strain, (Luria-Broth) media 

with tryptone, yeast extract, sodium chloride, Human lymphoblast cell lines GM02152 

(normal individual) and GM16207 (FRDA patient), fetal bovine serum, L-glutamine, 

Tris-HCl,  KCl, EDTA, glycerol, Nonidet P-40, DTT with proteinase inhibitors. All 

solutions were prepared with distilled water (18.2 MΩ cm-1) from a Milli-Q Direct-8 

water system unless otherwise specified. 

4.2.2 Instrumentation Cyclic voltammetry (CV) and differential pulse voltammetry 

(DPV) experiments were performed using a CHI760D electrochemical station (CHI 

Instruments) consisting of CHI software. The electrochemical cell was assembled with a 

conventional three-electrode system: paper-based P-SWCNT working electrode (2 mm 

width × 4 mm length), an Ag/AgCl reference electrode and a Pt counter electrode. Cyclic 

voltammetry experiments were performed at a scan rate of 10 mV/s over the relevant 

potential range using 1× PBS (pH 7.4), diluted and undiluted pooled saliva, diluted and 

undiluted E. coli and human normal and FRDA lymphoblast cell extracts. Sheet 

resistance was measured using a Keithly source meter 4200 with four-probe setup. 

Electron transfer rate measurements of the paper-based P-SWCNT electrodes were 

collected using a K3Fe(CN)6
3-/K3Fe(CN)6

4- redox probe in aqueous solution. All 
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measurements and experiments were carried out at room temperature. TECAN 

spectrophotometer was used to measure the absorbance of NADH produced from 

enzymatic reaction at 340nm. Atomic force microscopy (AFM) was used to measure the 

thickness of the P-SWCNT film. The AFM topography images of our P-SWCNT film 

was acquired in the tapping mode using a Multimode AFM IIID (Veeco Instruments) 

using Bruker AFM probes (TESP-V2; 0.01-0.025 Ohm-cm Antimony (n) doped Si).  

4.2.3 Preparation of paper-based P-SWCNT film: The procedure for the fabrication of 

our paper-based P-SWCNT film is schematically illustrated in Figure 1. A 10 mL 

solution containing variable amounts (12.5, 20, 25, 50, and 75 µg) of P-SWCNT solution 

(0.25 mg/mL as stock concentration), was dispersed in 1% SDS with a Fisher Scientific 

FS-60D sonication system for 10 min prior to use. The MCE filter paper with 100 nm 

pore size was moistened and washed with DI water. The dispersed P-SWCNT solution 

was added to the moistened filter paper under vacuum conditions at a flow-rate of 0.6 

mL/minute to form a thin, uniform layer on the surface. This film was washed with DI 

water to remove the residual SDS surfactant. The film was then left to vacuum dry 

overnight before using for making electrodes. Working electrodes were prepared by 

cutting the dried P-SWCNT thin film into rectangular shapes with dimensions of 2 mm 

width and 4 mm in length. Electrical connection was made to the copper wire with quick 

drying silver paint and wrapped together in place. Thus prepared electrodes are ready to 

use and require no further modification. 

4.2.4 E. coli cell extract preparation E. coli cell culture was prepared by inoculation of 

a loop-full of wild type E. coli BL21DE-3 2-DT strain from a glycerol broth slurry stored 

at -800 C into 50 mL of autoclaved L-broth (Luria) media, which was prepared from 10 
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g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl. The inoculated culture was placed in 

an incubator at 37 °C with orbital shaking in an Erlenmeyer flask. Cells were harvested at 

an optical density (OD600) reading of 1.62 after a 24-hour growth. The resultant cell 

suspension was centrifuged for 15 min at 8500× g and 4 °C, pelleted cells were collected 

and resuspended in 1.62 mL of 0.1M phosphate buffer solution (pH 7.4) to perform the 

cell-lysis with Misonix Microson XL2000 ultrasonic cell disruptor for 10s pulse and 30s 

intervals for 4 times in a cold room environment. Ice-water bath was used during the 

sonication to prevent significant heating in the sample vial. The lysate was centrifuged 

for 10 min at 5000× g at 4°C. The final decanted supernatant was used to make 10% (v/v) 

crude cell lysate solution in 0.1M phosphate buffer solution (pH 7.4). 

4.2.5 Human cell extract preparation Human lymphoblast cell lines GM02152 (normal 

individual) and GM16207 (FRDA patient) were purchased from Coriell Institute for 

Medical Research (Camden, NJ) and cultured in RPMI 1640 medium supplemented with 

15% fetal bovine serum and 2.05 mM L-glutamine at 37°C under 5% CO2. Cell pellets 

from normal or FRDA patient lymphoblasts were resuspended in lysis buffer that 

contained 10 mM Tris-HCl (pH 7.8) including 200 mM KCl, 1 mM EDTA, 20% 

glycerol, 0.1% Nonidet P-40, 1 mM DTT with proteinase inhibitors (Roche Diagnostics 

Corporation, Indianapolis, IN). Cell suspension was subsequently subjected to rotation at 

4 °C for 2 hrs. After rotation, cell lysates were centrifuged at 14,000 rpm at 4 °C for 30 

min to remove cell debris. The supernatant was recovered and further dialyzed into buffer 

containing 50 mM Tris-HCl (pH 7.5) including 50 mM KCl, 0.1 mM EDTA, 0.1 mg/ml 

bovine serum albumin, and 0.01% Nonidet P-40. Protein concentration of cell extracts 
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was determined by Bradford assay. Cell extracts were stored at -80 °C for subsequent 

assays. 

4.2.6 Saliva collection and preparation of the pooled saliva matrix Saliva samples 

were collected from seven individuals from varying ethnic backgrounds both male and 

female, which are pooled together before processing. Resting drooling (minimal oral 

movements) was used to collect whole mouth saliva from the oral cavity with the head 

down slightly to pool saliva in the mouth. The subsequent sample was then expectorated 

into a pre-labeled sterile container and ~ 5 mL saliva was collected. The collected saliva 

sample was centrifuged (Max. speed for 15 minutes) to remove cellular debris and to 

minimize the turbidity of saliva. The supernatant was transferred into a fresh Eppendorf 

tube for further analysis. Saliva thus obtained is used directly for the experiments or 

stored at 4 °C refrigerator for further use. 

4.2.7 EMIT assay and electrochemical detection of NADH production in saliva 

samples The enzymatic reaction was initiated by adding 90 uL of the enzyme reagents 

(reagent-1 and reagent -2) in the optimized ratio to 4.5 uL of undiluted biosample (saliva) 

or calibrators. The final ratio of reagent to sample was the same as described in the 

original assay package insert but with slight optimization for TECAN spectrophotometer. 

Sample dilution was 21-fold, as usual, for the enzyme assay with no further dilution. The 

mixture of the two reagents along with the sample after 30 minutes of incubation is 

directly measured for absorbance using TECAN and used as electrolyte in 

electrochemical system to measure the produced NADH. 
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4.3 Results and Discussions 

 

Figure 35: Preparation of Porous P-SWCNT film via vacuum filtration. (A) Vacuum 
filtration of a solution of 1% SDS-dispersed M-SWCNTs results in a compact and 
uniform P-SWCNT underlay on the paper surface. (B) SDS surfactant is washed away 
with copious amounts of deionized (DI) water to provide a clean hydrophobic surface. 
 
A simple vacuum filtration technique enabled us to fabricate our thin P-SWCNT films on 

MCE paper substrate with minimal requirements of reagents, labor, and resources at 

room temperature that produced homogenous and reproducible films (Figure 35). A 

dispersed solution of our P-SWCNTs in 1% SDS surfactant solution with variable carbon 

nanotube concentrations was used as the initial feed to deposit them onto a pre-wetted 

MCE filter paper (100 nm pore size) rested on a filtration system under vacuum force. A 

thin compact film of P-SWCNTs formed onto the surface of MCE paper by allowing the 

dispersed P-SWCNT solution pass through at a rate of ~0.6 mL/min under a low vacuum 

suction (Figure 35A). The P-SWCNT layer formed on the MCE paper was then washed 

with copious amounts of DI water to remove the residual surfactant from the carbon 

nanotube surface (Figure 35B), and let it dry at room temperature. Vacuum filtration 

forced the carbon nanotubes to form a compact layer on top of the MCE paper with 

maximum overlap thus resulting in a rigid and uniform film. 

B: DI washing

Vacuum

A: P-SWCNT loaded



 83 

4.3.1 Effect of amount of P-SWCNT on conductivity and electron transfer rate of 

the P-SWCNT film 

Paper-based film with excellent conductivity and faster electron transfer capabilities with 

minimum material cost is essential in achieving a highly efficient electrode surface. To 

understand, optimize and evaluate the conductive properties of variable P-SWCNTs 

loaded MCE paper substrate, we conducted measurements of sheet resistance (Ω/sq) of 

various films (Figure 36) with a Keithly 4200 Semiconductor Characterization System 

with a four-point probe setup. As expected, the MCE paper itself was not conductive, and 

we observed infinite resistance during the measurement. Upon adding 12.5 µg of P-

SWCNTs onto the MCE paper, a thin pale-grey film formed on its surface exhibiting a 

moderate conductivity (∼ 4085 Ω/sq). The conductivity of our P-SWCNT film along with 

its color intensity gradually increased to a darker shade with increasing amounts of P-

SWCNTs loaded onto the MCE paper. The relative increase (60%) in the conductivity to 

∼1602 Ω/sq with 20 µg P-SWCNT may be attributed to the increased density of carbon 

nanotubes forming an interconnected network on the surface of porous MCE paper. The 

conductivity of our film began to reach saturation ∼716 Ω/sq at 50 µg P-SWTCNT after 

which only a small increase of 4% was observed. 
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Figure 36: Effect of variable amounts of P-SWCNTs on sheet resistance of the fabricated 
film. Increasing amounts of P-SWCNTs (12.5-75 µg) loaded on MCE paper resulted in a 
steady decline in sheet resistance, with values starting to bottom out at around 50 µg. 
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Figure 37: Effect of variable amounts of P-SWCNTs on electron transfer rate. Increasing 
amounts of P-SWCNTs on MCE paper were associated with a steady increase in electron 
transfer rate (K0), with values starting to reach a plateau around 50 µg. 
 

Thin P-SWCNT film electrodes were fabricated with dimensions of 2 mm width and 4 

mm length and the electrode characteristics were studied by understanding the electron 

transfer kinetics. Electron transfer rate is described as the process of transfer of electrons 

between the electrode surface and its interfacial solution. It can be calculated by 
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examining the peak-to-peak separation (ΔEp) of Fe(CN)6
3-/Fe(CN)6

4- in cyclic 

voltammograms using the Nicholson method171, where a small ΔEp indicates faster 

electron transfer. As expected, MCE filter paper was non-conductive to electron transfer, 

and the behavior was extended to 12.5 µg P-SWCNTs loading, exhibiting moderate 

conductivity. The 20 µg P-SWCNT loading yielded an ΔEp of 113 mV at a scan rate of 

10 mV/s, indicating a very low electron transfer rate constant (Figure 37), corroborating 

the change in conductivity presented in Figure 36. However, the ΔEp gradually decreased 

with increasing amounts of P-SWCNTs saturating around 75 mV with a calculated 

electron transfer rate of 3.87 × 10-3 cm/s for 75 µg P-SWCNT loading on the paper. The 

saturation kinetics of electron transfer however began to appear at 50 µg P-SWCNT 

loading, yielding a ΔEp of 76 mV at a scan rate of 10 mV/s, with a calculated electron 

transfer rate of 3.73 × 10-3 cm/s showing a mere 2.6 % change from its successor (Figure 

37).  The rate of electron transfer at the electrode surface is largely dependent on the 

structure and the morphology of the conductive material. The presence of higher amounts 

edge plane defects at higher P-SWCNT loaded films is responsible for increased electron 

transfer electron transfer rates however saturation of surface led to the plateau at 75 µg P-

SWCNT.  

The electrocatalytic activity of paper-based P-SWCNT film electrode along with its 

performance in complex biosample matrices serves as some of the important optimizing 

parameters in choosing the amount utilized to make our P-SWCNT film. The films 

prepared with different amounts of P-SWCNTs (12.5, 20, 25, 50, and 75 µg) are tested 

for their electrocatalytic ability for detection NADH oxidation in buffer as well as some 

selected complex biological matrices.  
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4.3.2 Effect of amount of P-SWCNT on NADH electrocatalytic responses in PBS 

buffer 
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Figure 38: Effect of amount of P-SWCNT on NADH electrocatalytic responses in PBS 
buffer Cyclic voltammograms of P-SWCNT films in 0.1 M PBS. (A) Electrochemical 
oxidation of NADH with 12.5 µg P-SWCNT electrode in the presence and absence of 1 
mM NADH. (B) Increase in the capacitance current observed with the increased P-
SWCNT loading on the surface of the MCE paper in 0.1 M PBS buffer.  
 
All of our paper-based P-SWCNT films prepared with varying amounts of P-SWCNTs 

showed excellent electrocatalytic activity for NADH oxidation owing to their 

electrocatalytic surface areas and porous architectures formed as a result of vacuum 

filtration onto a porous MCE paper substrate. Among all P-SWCNT films tested, the 

highest electrocatalytic response for NADH oxidation in 0.1 M PBS buffer against a very 

small capacitance current observed in the absence of NADH was seen for the lowest P-

SWCNT loading (12.5 µg) (Figure 38). However, lowering the amount below 12.5 µg 

resulted in the formation of non-uniform layer on the surface of the MCE paper.  

 

The signal enhancement fold decreased gradually with increasing amounts of P-SWCNT 

(Figure 39A). This gradual decrease is attributable to the increase in the capacitance 

current in the absence of NADH at higher P-SWCNT loadings. However, there is a 
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positive oxidation potential shift observed at lower P-SWCNT loadings indicating the 

requirement of higher energy for the oxidation reaction to occur (Figure 39B). The 

positive shift at lower P-SWCNT loadings may be attributed to the availability of limited 

catalytic sites fouled by the adsorption of NADH and NAD+ on the surface.204 A signal 

enhancement of 77-fold was observed with 50 µg P-SWCNT loaded film at a lower 

oxidation potential of 0.22 V, which further decreased to 39-fold with 75 µg P-SWCNT 

loaded film at 0.17 V. Based on above results, the paper-based PSWCNT film prepared 

with 50 µg P-SWCNT was chosen as the optimum amount considering the factors such as 

signal enhancement, oxidation potential and material cost. 
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Figure 39: Comparison of the electrochemical catalytic responses of our various paper-
based P-SWCNT films in 0.1 M PBS buffer using cyclic voltammetry. (A) Comparison 
of signal enhancement fold for electrochemical detection of 1 mM NADH in 0.1 M 
phosphate-buffered saline (pH 7.4) (B) NADH oxidation peak potential shift observed 
with variable paper-based P-SWCNT films. 
 
 
 
 
 
 
 



 88 

4.3.3 Effect of amount of P-SWCNT on NADH electrocatalytic responses in 

biosamples 
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Figure 40: Comparison of the electrochemical responses of our various paper-based P-
SWCNT film electrodes in pooled saliva using cyclic voltammetry. (A) Comparison of 
signal enhancement fold for electrochemical detection of 1 mM NADH in 50% saliva (B) 
NADH oxidation peak potential shift observed with variable P-SWCNT films in 50% 
saliva. 
 
The NAD+/NADH redox couple is a significant cofactor participating in more than 300 

dehydrogenase enzymatic reactions.83 The electrochemical oxidation of NADH at the 

electrode surface has garnered a lot of interest in the area of biosensors, because of the 

commercially available nature of these dehydrogenase enzymes, that can be applicable in 

clinical, environmental, and food analysis.80, 83, 97 Drug screening usually utilizes these 

dehydrogenase-based systems to generate NADH as a signal indicator for the presence of 

target. Biosample matrix such as saliva is probably the idea matrix for on-site drug 

detection owing to its non-invasive procurement, relatively clean, and ease of 

accessibility. Therefore, we evaluated the performance of our paper-based P-SWCNT 

film electrodes in saliva matrix. The choice of using 50 µg P-SWCNTs as the optimum-

loading amount is further strengthened by the film’s performance in saliva. Specifically, 
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the films prepared with variable amounts of P-SWCNTs are tested for their 

electrocatalytic oxidation of 1 mM NADH in saliva. Saliva sample was pre-diluted to 

50% with 0.1 M PBS and spiked with 1 mM NADH to evaluate the signal enhancement 

performance (Figure 40A) and oxidation peak potential (Figure 40B) of different paper-

based P-SWCNT film electrodes. We found that P-SWCNT film with 12.5 µg gave the 

smallest signal enhancement of 3.5 fold at an oxidation potential of 0.57 V. The signal 

enhancement however gradually increased with increasing amounts of P-SWCNT 

loadings at more negative oxidation potentials (Figure 40).  

This shift in peak potential seen in 0.1 M PBS buffer because of the presence of inherent 

background peaks from the saliva sample matrix. The presence of proteins in the 

biosamples or the adsorbed NAD+ can passivate the electrode surface at higher potentials, 

causing decreased current response. A signal enhancement fold of 7.5 was observed with 

50 µg P-SWCNT loaded film electrode at a lower oxidation potential of 0.37 V, which 

further increased only by a fraction to 8.5-fold with 75 µg loading at 0.35 V. In addition, 

saliva sample matrix has inherent background as evident from the cyclic voltammogram 

with an interference oxidation peak at 0.2 V, possibly arising due to ascorbic acid.207 

When spiked with NADH, the interference peak does not interfere with NADH oxidation 

at 0.37 V (Figure 41). 
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Figure 41: Cyclic voltammograms of 50 µg P-SWCNT film in 50% saliva in the 
presence (red trace) and absence (black trace) of 1 mM NADH.  
 
4.3.4 Characterization of surface morphology of paper-based P-SWCNT film   

The paper-based P-SWCNT film was further characterized by atomic force microscopy 

(AFM) to understand the morphology and transferred onto a clean glass substrate using 

acetone evaporation174 to measure the edge thickness. An edge thickness of 80 nm was 

obtained from the AFM analysis (Figure 42A) for our 50 µg P-SWCNT loaded film 

indicating the formation of a thin compact layer on the surface of the MCE paper. The 

AFM image shows that our P-SWCNTs are randomly oriented on the surface of the MCE 

paper (Figure 42B). We used the average roughness (Ra)172, 173 parameter  which is the 

mean height as calculated over the entire measured area, to detect general variations in 

overall height profile of our P-SWCNT film on paper (Figure 42B). A small measured Ra 

value of 10 nm indicates a smooth surface with uniformly embedded carbon nanotubes 

over the surface of the MCE paper as seen from the AFM morphology. 
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Figure 42: Surface morphology of our 50 µg P-SWCNT loaded film as characterized by 
atomic force microscopy (AFM). (A) Typical AFM image analyzing the film edge to 
measure the thickness of the P-SWCNT layer. (B) AFM image analyzing the film 
morphology and surface roughness. 
 
The films prepared with variable amounts of P-SWCNTs were tested for their 

electrocatalytic responses of NADH spiked in E Coli cell lysate diluted to 50% with 0.1 

M PBS. The paper-based P-SWCNT film electrode loaded with 12.5 µg gave the smallest 

signal enhancement fold (5.8) at an oxidation potential of 0.53 V. The signal 

enhancement fold gradually increased with increasing amounts of P-SWCNT loadings at 

lower oxidation potentials (Figure 43A). This increase in signal enhancement fold is 

similar to the trend seen in 50% saliva buffer because of the presence of inherent 

background peaks from cell lysate. A signal enhancement fold of 9 was observed with 50 

µg P-SWCNT loaded film electrode at a lower oxidation potential of 0.36 V, which 
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further decreased to 5.8-fold with 75 µg P-SWCNT loaded film electrode at 0.32 V 

(Figure 43B). 
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Figure 43: Effect of E. coli cell extract dilution for NADH oxidation on P-SWCNT 
electrode (A) Signal enhancement fold obtained from DPV for different dilution ratios of 
E. coli cell extract matrix with 0.1M PBS and 1 mM NADH.  (B) DPV of 50 µg P-
SWCNT film at 60% cell extract in the presence and absence of 600 µM NADH. 
 
The lysate obtained from Human lymphoblast cell lines GM02152 (normal individual) 

and GM16207 (FRDA patient) is chosen as another complex matrix to evaluate the 

electrocatalytic signal of our paper-based P-SWCNT film electrodes for disease diagnosis 

as intracellular NADH levels can serve as a biomarker for abnormal conditions.71-77 As it 

is evident from the figure below (Figure 44) showing a noticeable spike in the peak 

current at 0.62 V for FRDA cell extract using 50 µg P-SWCNT loaded film electrode 

possibly arising because of higher levels of NADH compared to the normal cells. 
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Figure 44: Differential pulse voltammograms of 50 µg P-SWCNT film in un-diluted 
human cell extract after dialysis from normal (red trace) and FRDA patient (black trace) 
lymphoblasts.  
 
4.3.5 Paper-based P-SWCNT film electrodes for detection of enzyme-generated 

NADH in saliva  

In order to evaluate the performance of our paper-based P-SWCNT film electrode in 

electrochemical oxidation of enzyme-produced NADH, we first spiked NADH (1 mM) 

into 100% saliva followed by serial dilutions in 0.1M PBS buffer to investigate different 

dilution effects. Differential pulse voltammetry (DPV) technique was used to detect 

oxidation of NADH, instead of cyclic voltammetry (CV) to increase the sensitivity and 

signal gain while working in complex biosamples. We found that using 50 µg P-SWCNT 

loaded film as a working electrode, 40% dilution of saliva matrix [e.g. 400 µM NADH] 

gave the optimum signal enhancement fold with the spiked NADH (Fig.10A). NADH 

peak at 0.38 V with 400 µM NADH concentration (Figure 45, red trace) can be clearly 

distinguished from the saliva interference peaks in the background (Figure 45, black 

trace) with 40% dilution. 



 94 

0 30 60 90

2

4

6

8
Si

gn
al

 E
nh

an
ce

m
en

t F
ol

d

Saliva Dilution (%)
-0.28 0.00 0.28 0.56 0.84
0

-15

-30

-45

-60

Without NADH

With 400 uM NADH

I (
uA

)

E (V)  

Figure 45: Effect of Pooled saliva dilution for NADH oxidation on P-SWCNT electrode 
obtained from DPV (A) Signal enhancement fold of different dilution ratios of saliva 
matrix with 0.1M PBS and 1 mM NADH.  (B) DPV of 50 µg P-SWCNT loaded film in 
40% saliva dilution with or without 400 µM NADH.  
 
We then tested enzyme-produced NADH with both spectrophotometry and 

electrochemistry. A commercial immunoassay kit112 has been used to evaluate the 

performance of our 50 µg P-SWCNT loaded film to detect NADH produced as a result of 

enzymatic reaction from the Syva reagents and cocaine metabolite (benzoylecgonine) in 

the biosample.  
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Figure 46: A hyperbolic response was observed for the enzyme-produced NADH as the 
concentration of benzoylecgonine increased from 5 ng/mL to 1000 ng/mL. The 
measurements were performed with TECAN spectrophotometer at 340 nm. 
 
In the absence of drug, some enzyme-labeled drug molecules do remain free to generate 

NADH, resulting in a background response at 340 nm. Different concentrations of 

benzoylecgonine were spiked into saliva to test the linearity of response for enzyme-

generated NADH as a function of drug concentration in the saliva. The saliva samples 

with or without benzoylecgonine were added to the EMIT reagents to generate NADH 

after competitive binding with the antibody. The analysis was done both by using a 

TECAN spectrophotomer (Figure 46) and electrochemistry (Figure 47) that was 

performed with our 50 µg P-SWCNT loaded film electrode. A hyperbolic response was 

observed as the concentration of benzoylecgonine increased from 5 ng/mL to 1000 

ng/mL using both TECAN spectrophotomer and our paper-based P-SWCNT film 

electrodes. 
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Figure 47: A similar hyperbolic response was observed for the enzyme-produced NADH 
as the concentration of benzoylecgonine increased from 5 ng/mL to 1000 ng/mL. The 
measurements were performed with electrochemistry using 50 ug P-SWCNT loaded film 
electrodes. 
 
4.4 Conclusions 

In this chapter, we challenged our porous P-SWCNT film electrodes with the 

electrochemical detection of both naturally available and enzyme-generated reduced form 

of beta-nicotinamide adenine dinucleotide (NADH) in complex matrices such as saliva, 

and cell extracts. Quantification of NADH in these complex matrices provided us 

valuable information for disease diagnosis, drug detection and often comparable with the 

commercial colorimetric assays. Using filter paper as a substrate to support the 

nanomaterials add to the virtues of the composite film, making it flexible, cheap, and 

biodegradable. Meanwhile, utilizing the macroporous paper matrix to trap the nanotubes 

during the vacuum filtration provides a suitable and simple film-fabrication strategy. 

These facts offer a boarder application in the disposable NADH biosensors without 

modification of P-SWCNT electrode surface. 
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CHAPTER 5: Evolution of Probe Sequence Design Using Split Aptamers to 

Facilitate Efficient Enzyme Amplified Target Recycling for Onsite Colorimetric 

Detection of Cocaine 

5.1 Introduction 

Rapid, simple and sensitive detection of drugs onsite with limited and portable 

instrumentation remains a challenge in today’s fast paced world. Colorimetric methods 

and sensors are some of the oldest measuring principles used in the laboratories, where 

the color change can be readily visualized and interpreted for the presence or absence of a 

particular analyte in the sample.208 Gold nanoparticles (AuNPs) have a unique surface 

plasmon resonance absorption tends to change color depending on their binding or non-

binding with certain moieties in their local environment resultant of a change in their 

physical properties.209 DNA aptamers have emerged as a promising alternative to 

antibodies, as they are specific binding to proteins or small-molecule targets with high 

affinity,210, 211 and have the benefit of being chemically synthesized rather than produced 

in vivo.123 The conjugation between AuNPs and DNA aptamers212 has wide applications 

in detection strategies owing to their novel catalytic, electronic, and optical properties.213, 

214 Usually, the attachment was well-established thiol adsorption chemistry215 [1, 2]where 

multiple DNA strands can be attached onto the surface of the AuNPs. 

The number of DNA strands on the surface of the AuNP plays a significant role in the 

sensitivity, reaction time and window of a biosensor system as the surface probe density 

dictates the hybridization efficiency with the target owing to the accessibility constraints 

caused by steric hindrance, and electrostatic repulsions between them. This hybridization 

efficiency will ultimately affect the reaction time and sensitivity. At high surface-
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coverage situations the electrostatic repulsions may hinder the accessibility of the target 

to bind with the probe resulting in poor hybridization efficiency and longer reaction 

time.216, 217 On the other hand, very low DNA surface densities also are not favorable for 

the reaction as the conformation of the probes may attain a flattened architecture due to 

the strong interaction with the target, which can delay the degradation by nucleases.218 

Therefore it is essential to optimize the probe density to achieve efficient hybridization, 

sensitive detection, and fast reaction times. This surface density of DNA on AuNP can be 

optimized using a well-established two-step ligand-exchange reaction using sequential 

addition of thiolated DNA probes followed by varying concentrations of a smaller 

thiolated compound such as DTT or MCH.219-222 The addition of DTT possessing two 

thiol functional moieties and hydrophilic nature can bind strongly to the gold surface, 

readily displacing the immobilized probe DNA from the surface of the AuNP. The 

displacement efficiency of DTT is directly proportional to its concentration in the ligand-

exchange reaction.  

The objective of this chapter is to evaluate and understand the effect of different aptamer 

sequences on the efficiency of enzyme-assisted target recycling (EATR) to enable 

colorimetric onsite detection of cocaine. Cocaine is a schedule-II drug that is highly 

addictive stimulant, having the potential to alter the structure and function of the brain 

when used repeatedly.108 National Survey on Drug Use and Health (NSDUH) published 

the statistics showing a steady abuse of cocaine since 2009, rampant in the age-group of 

18-25 year adults, translating to nearly one in three emergency room visits that involved 

cocaine in 2011.109 Cocaine abuse can lead to several health complications such as 

psychosis, anxiety, paranoia, heart attacks, seizures, abdominal pain, nausea, or even 
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death in some instances.110 There have been reports of intracerebral hemorrhage causing 

bulges in the walls of cerebral blood vessels that can occur due to long-term cocaine 

use.111 Therefore it is important to detect and apprehend cocaine users from bringing 

harm to them and people around them. A lot of research has been going on to develop 

different techniques involving both screening as well as confirmatory tests to detect 

cocaine and its metabolites qualitatively and quantitatively in biofluids.112 Immunoassays 

among them are one of the widely used presumptive screening techniques such as 

enzyme-linked immunosorbent assay (ELISA),119, 120 enzyme-multiplied immunoassay 

technique (EMIT),112 radioimmunoassay (RIA),113 and fluorescence polarization 

immunoassay (FPIA),121 using antibodies, to detection of cocaine and its major 

metabolites. Although immunoassays such as ELISA provide the ease for quick 

screening, cross-reactivity with structurally similar compounds can generate false 

positives apart from being expensive, laborious, and time-consuming.120 Immunoassays 

such as EMIT although offer a cheaper alternative, were still hampered by the lack of 

sensitivity.223 Immunoassay techniques involving RIA enables sensitive detection, 

however required to handle the expensive radioactive waste materials therefore needed 

special training.113 Confirmatory tests based on mass spectrometry (MS) on the other 

hand are highly accurate, quantitative, and are considered gold standard in detection of 

cocaine in biofluids.112-118 The high specificity and reliability of the MS instruments has a 

downside for being expensive requiring a designated lab set-up with the expertise of 

trained personnel to analyze and interpret the results. Though the sensitivity, and 

specificity of the MS techniques are unparalleled, working with thousands of samples 

with these techniques is laborious, time consuming and very expensive.114-118 Therefore it 
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is of paramount importance to develop an alternative screening method that can 

incorporate the advantages of immunoassays, while being fast, specific, relatively 

inexpensive, and less laborious thereby serving the purpose of rapid screening. 

The use of aptamers and aptamer-based sensors revolutionized the field of small 

molecule detection and nucleic acid therapeutics.122 Aptamers are chemically 

synthesized, short, single-stranded (ss) RNA or DNA oligonucleotides that can bind 

specific targets via hydrogen bonding, electrostatic or ven der waals forces, possessing 

dissociation constants usually in the pico- to nano-molar range.211 Isolation of aptamers 

with high binding proclivity for small molecules, proteins, or even whole cells was made 

conceivable via in vitro selection of oligonucleotides (termed SELEX: systematic 

evolution of ligands by exponential enrichment).123 Aptamers can rival antibodies due to 

the huge discrimination showed by aptamers even in case of very closely related 

structures highlighting their huge potential in therapeutic, bioanalytic, and diagnostic 

applications.124-133 Compared to monoclonal antibodies aptamers were proven to have 

good binding affinity to their targets and assure high reproducibility, purity, stability even 

after repeated cycles of denaturation and regeneration, which is not true in case of 

proteins at elevated temperatures.134 The expense of screening large number of colonies 

in production of monoclonal antibodies is laborious and requires massive mammalian cell 

culture and the activity of antibodies varies from batch to batch,224 whereas aptamers 

once selected, can be reproduced with great accuracy via chemical reactions. Aptamers 

also offer great flexibility in design, and chemical modification as they undergo 

pronounced conformational change upon binding to the target, which elevates sensitivity 

and selectivity.225 
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Many researchers over the past decade have started developing aptamers for drugs of 

abuse. Recent work from Ebrahimi is the first in-vitro selection successfully reported for 

methamphetamine aptamer with Kd in nM range.136 The first cocaine binding aptamer 

(MNS-4.1) was isolated Stojanovic had very good specificity to the parent cocaine as 

opposed to its metabolites and used in a fluorescence-based detection platform.131 This 

MNS-4.1 aptamer in theory undergoes a conformational change in the presence of 

cocaine, however the equilibrium between the folded and the unfolded states found in 

practice led towards higher background signals, limiting the sensitivity of the aptamer.131, 

226 To address this issue, MNS-4.1 was subsequently split into multiple aptamer 

fragments (2130 or 3143, 144) that remain separated in the absence of cocaine, however 

come together in the presence of cocaine, thereby reducing the background. Although the 

background is reduced with the split aptamer the sensitivity remained limited owing to 

the low binding affinity with single binding domain.227 To challenge this problem a 

cooperative binding-based approach is developed with multiple binding domains, where 

binding at one domain enhances the affinity of the other domain, resulting in a ‘switch-

like’ binding curve.156  

In this chapter, aptamer sequences were evaluated mainly on three basic criteria, the 

hybridization efficiency, specificity towards the analyte (cocaine), and the reaction time 

to observe a distinguishable color change from red to blue. The split cocaine-binding 

aptamer was chosen as a model to understand the above-mentioned phenomenon 

involving probe-aptamer design for Exo III-assisted amplification systems and its ability 

to digest the aptamer-target complex on the surface of AuNPs. 
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5.2 Materials and Methods 

Gold(III) chloride trihydrate, trisodium citrate dehydrate, Tris(2-carboxyethyl)phosphine 

hydrochloride, sodium chloride, magnesium chloride, Trizma pre-set crystals, 

hydrochloric acid, sodium hydroxide, 1,4-Dithiothreitol, cocaine hydrochloride, Tris-

EDTA buffer were purchased from Sigma-Aldrich and used as received. Quant-iT™ 

OliGreen® ssDNA Reagent was purchased from Thermo Fisher Scientific and aliquot 

upon arrival. Exonuclease III (E. coli) was purchased from New England BioLabs and 

aliquot upon arrival. Amicon Ultra-4 Centrifugal Filter columns (100KD) were purchased 

from Millipore. All the solutions were prepared with distilled water (18.2 MΩ cm-1) from 

a Milli-Q Direct-8 water system unless otherwise specified. All DNA sequences were 

synthesized by Integrated DNA Technologies (USA), purified with HPLC and confirmed 

by mass spectrometry. The list of DNA sequences used is in Table 1. 

Table 2. DNA sequences employed in this work. 

5.2.1 Thiolated short aptamer fragmets: 

(S-1) SF-SSA: 5'-HS-C6-TTT TTT GAG ACA AGG /iSpC3/ ACA AGG AG -3' 

(S-2) SF-5345: 5'-HS-C6-TTT TTT GAG ACA AGG /iSpC3/ AGA CAA GGA G -3' 

(S-3) SF-5335: 5'-HS-C6-TTT TTT GAG ACA AGG /iSpC3/ GAC AAG GAG -3' 

(S-4) SF-5335-10T: 5'-HS-C6-TTT TTT GAG ACA AGG /iSpC3/ GAC AAG GAG 

TTT TTT TTT T -3' 

(S-5) S-5335-2X: 5'-HS-C6-TTT TTT GAG ACA AGG /iSpC3/ GAC AAG GAG TTT 

TTT GAG ACA AGG /iSpC3/ GAC AAG GAG -3' 

5.2.2 Long aptamer fragments: 

LF-225: 5'-CTC CTT CAA CGA AGT GGG TTC C -3' 
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LF-425: 5'-CTC CTT CAA CGA AGT GGG TTC CTT -3' 

LF-525: 5'-CTC CTT CAA CGA AGT GGG TTC CTT G -3' 

LF-725: 5'-CTC CTT CAA CGA AGT GGG TTC CTT GTC -3' 

LF-925: 5'-CTC CTT CAA CGA AGT GGG TTC CTT GTC TC -3' 

LF-5325: 5'-CTC CTT CAA CGA AGT GGG TTC CTT CAA CGA AGT GGG TCT C -

3' 

LF-5345: 5'-CTC CTT CAA CGA AGT GGG TCT TCC TTC AAC GAA GTG GGT 

CTC -3' 

LF-5335: 5'-CTC CTT CAA CGA AGT GGG TCT CCT TCA ACG AAG TGG GTC 

TC -3' 

5.2.3 Synthesis of AuNPs: Preceding the synthesis of AuNPs solution, all glassware was 

incubated in HNO3-HCl (3:1 v/v) overnight at room temperature, and washed with 

deionized (DI) water. Fren's citrate reduction of HAuCl4 was utilized to set up the 

AuNPs, with sodium citrate going about as both reducing and stabilizing operator.166 

Boiling DI water (45 mL) was mixed with freshly dissolved and filtered 0.1 M 

HAuCl4�3H2O (5 mL in DI water) in a round bottomed flask under energetic mixing in a 

reflux setup. At that point, 38.8 mM aqueous sodium citrate (5 mL) was quickly added 

into the HAuCl4 solution with nonstop mixing to reduce the oxidized Au3+ species to 

form AuNPs with a diameter of ∼12±1 nm. Once the solution changed shading to red, it 

was continued boiling for another 10 min subsequently cooled down to room temperature 

and filtered utilizing a 0.22 µm syringe filter for immediate use. The concentration of 

AuNP solution was measured using a Cary 100 Bio UV-Vis spectrophotometer with a 

characteristic absorbance peak at ~520 nm. 
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5.2.4 Modification of thiolated short aptamer fragment on AuNPs: The modification 

of thiolated short aptamer fragment on the surface of AuNP was performed using a well-

known method utilizing gold-thiol chemistry.229 Prior to the modification all glassware 

and stirbars were incubated in HNO3-HCl solution (3:1 v/v) overnight, and followed by 

incubation with 12M NaOH solution to minimize the adsoption of AuNPs onto the walls 

of the glassware and stirbar during salt aging. The thiolated short aptamer fragment with 

a measured concentration (7.95 nmoles) was mixed with freshly prepared solution of 

Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) (601.8 nmoles) in deionized water 

(3 mg/100 µL) at room temperature and stored in a dark place for at least 2 hours. The 

disulphide functionality of the oligonucleotide probes was cleaved by the addition and 

incubation with TCEP into a reduced form,220, 230 that is then added to the AuNP (3 mL, 9 

nM) solution in small amounts (10 µL) under continuous stirring at maximum speed. The 

final AuNP solution obtained after the complete addition of aptamer fragment was 

covered loosely with a cap and protected from light with an aluminum cover. Salt aging 

was performed by the addition of 4M sodium chloride to the AuNP solution in 3 

installments after 12, 6, and 6 hours time difference between each addition adding 50, 

100, and 100 µL respectively to reach a final NaCl concentration of 0.3 M. The stirring 

process is continued at room temperature in the dark for another 12 hours after the last 

salt addition, after which the resultant aptamer-modified AuNPs were washed, filtered, 

and concentrated using a centrifugal filter (100 KD) 1000 rcf, 4 °C for 10 minutes for a 

total of 6 times. The supernatant solution after each washing step was collected to 

measure the DNA concentration, whereas the retained pellet in the centrifugal filter was 
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resuspended with 1 mL of Trizma buffer (10mM, pH 7.4). The aptamer-modified AuNPs 

were finally re-suspended in Trizma buffer to achieve a final particle concentration of 

100 nM and stored at 4 °C refrigerator until further use. 

5.2.5 Characterization of short aptamer fragment density on the surface of AuNP 

before and after DTT-displacement: To perform the assay to determine the surface 

coverage of short aptamer fragment, a set of calibration standard solutions of thiolated 

short aptamer fragment were prepared in 1× Trizma buffer (pH 7.4), ranging from 0 to 1 

µM with a volume of 25 µL in each tube. DTT displacement was performed by adding 

different concentrations of DTT to the aptamer-modified AuNPs, with a control prepared 

in 10 mM Trizma buffer (pH 7.4). The addition of DTT possessing two thiol functional 

moieties and hydrophilic nature can bind strongly to the gold surface, readily displacing 

the immobilized probe DNA from the surface of the AuNP. The displacement efficiency 

of DTT is directly proportional to its concentration in the ligand-exchange reaction. The 

samples were then placed on the rotator at room temperature for 30 min to let the DTT 

displacement reaction to completion followed by removing the displaced DNA and 

excess DTT in the supernatant and washing with 10 mM Trizma buffer (pH 7.4) twice. 

To characterize the surface coverage of the DTT-treated, aptamer-modified AuNPs, the 

pellet was resuspended to 25 µL of 10 mM Trizma buffer (pH 7.4), to which 75 µL of 1M 

DTT solutions was added both to samples and standard solutions. All the samples and 

standards were placed on the rotator for 12 hours after which 20 µL of the supernatant 

was collected from the sample tubes after centrifugation at 25,000 rcf for 10 min. Quant-

iT™ OliGreen® ssDNA Reagent has strong specific binding to ssDNA with a strong 

fluorescence emission at 525 nm. To all the standards along with the samples in a 384-
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well microtitre plate, 80 µL of Quant-iT™ OliGreen® ssDNA Reagent 1× was added and 

fluorescence intensities were measured at 525 nm using a TECAN M1000 pro 

spectrophotometer. The fluorescence intensities of the samples were extrapolated to the 

concentrations from the standard curve, and the respective probe surface coverage was 

calculated by dividing with the concentration of AuNPs. 

5.2.6 Effect of the surface density of short aptamer fragment modified AuNPs on 

Exo III-assisted cocaine recycling: To understand the effect of probe densities on the 

efficiency of an aptamer-target complex and exonuclease digestion in the presence of 

analyte, we first treated the short aptamer fragment modified-AuNPs with different 

concentrations of DTT as described above. The cocaine target and the long aptamer 

fragment (100 nM), were then introduced into 10 mM Trizma buffer (pH 7.4) solution 

along with NaCl (100 mM) and MgCl2 (1 mM) comprising of the reaction buffer. After 

the DTT displacement, half of the sample mixture with the probe and target was spiked 

with cocaine solution (250 µM) whereas the other half with deionized water for control in 

a microtitre plate. The samples and control were incubated at room temperature. After 30 

minutes, Exo III (20 U/100 µL) was added to all the solutions where the digestion of the 

aptamer-target complex in the presence and absence of cocaine was measured 

spectrophotometrically over a time period by recording the absorbance ratio at 650 to 522 

nm (A650/A522) as an indicator of the level of AuNP aggregation. Different sequence 

modifications on the short aptamer fragment, the long aptamer fragment, and target 

concentration and their effect on the efficiency of cocaine-induced, Exo III-assisted target 

recycling were studied in a similar manner as described above with the exception of a 

fixed or optimized DTT concentration and variable long fragment concentration. 
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5.3 Results and Discussions 

Gold nanoparticles are one of the most widely used colorimetric reporters owing to their 

unique localized surface plasmon resonance (LSPR) absorption properties and their 

ability to change color depending on their local environment.231-233 It is therefore 

necessary to characterize the size and shape of the synthesized AuNPs before their use in 

further modifications. A modified Turkevich method23 has been used to synthesize 

AuNPs, after which they were filtered using a 0.22 µm syringe filter. The filtered AuNPs 

was measured using a Cary 100 Bio UV-Vis spectrophotometer (Figure 48A), and the 

concentration was calculated by using Beer’s law (A=εbc) (ε= 2.7x10-8 M-1cm-1 at the 

maximum absorption at 519 nm). The wavelength and shape of the LSPR peak provide 

the information regarding the size and shape of the AuNPs due to the total refractive 

index on the AuNP surface.231 An estimated theoretical diameter of 13 nm with a 

spherical shaped conformation can be attributed for our synthesized AuNPs. The 

characteristic bright red color of our synthesized AuNPs also indicates the non-

aggregated form of the colloids that can irreversibly change color accompanied by a red 

shift upon aggregation.234 The homogeneity and size distribution of the synthesized 

AuNPs was estimated by measuring the hydrodynamic size and the polydispersity index 

(PDI) using dynamic light scattering (DLS) technique.235 The illuminated laser beam 

when passed through the suspension of AuNPs enables the DLS instrument to analyze the 

scattered light to obtain the velocity of particle’s Brownian motion, thereby interpreting 

the hydrodynamic diameter of the AuNP to be 21nm (Figure 48B) with a PDI of 0.1, 

indicating a very narrow and uniform size distribution. The hydrodynamic diameter is 

larger than the actual diameter of the AuNPs as it reflects the core diameter of the 
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nanoparticle along with the surface coating and the solvent layer associated with the 

particle.236 
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Figure 48. Concentration and dispersion of synthesized AuNPs. (A) UV-Vis spectrum of 
the synthesized AuNPs with a maximum wavelength of 519 nm. (B) Particle size 
distribution measurement using dynamic light scattering showing the average 
hydrodynamic diameter of the AuNP to be 21 nm, with polydispersity index (PDI) of 0.1. 
 
Though DLS technique gave us a rough estimate of the size of the synthesized AuNP, it 

is inconclusive about the structural morphology and physical size of the core. The actual 

shape and size of the AuNPs were characterized using Transmission Electron Microscopy 

(TEM). TEM images were obtained with a Phillip CM 200 microscope at 200 kV, where 

a tiny drop of AuNP suspension was placed on the copper grid and allowed to evaporate 

at room temperature. TEM image revealed a roughly spherical AuNPs appeared as small 

dots in the image (Figure 49A). Image analysis using Image J software, by taking the 

average of at least 200 AuNPs confirmed that the particles were uniform in size, with a 

diameter of ∼ 12 ± 1 nm (Figure 49B). 
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Figure 49. Transmission electron microscopy (TEM) image of (A) citrate-capped AuNPs 
using a Phillips CM-200 200 kV reveals similarly sized, roughly spherical particles. (B) 
Frequency distribution histogram shows an average particle diameter of 12±1-nm, as 
calculated using Image J software. 
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Figure 50. Formation of folded split aptamers with single binding domain (SSA) from its 
single cocaine-binding parent aptamer (38GC). These folded split aptamers assembled 
with cocaine are comprising of a short and long fragments. 
 
Cocaine-binding aptamer (termed 38GC)236 with a single binding domain developed from 

the original MNS-4.1,237 contained a three-way junction with the target-binding domain 

at its center, surrounded by three double-stranded stems (stems 1, 2 and 3) and two loops 

(GAA and AAA) (Figure 50, 38GC). Previous studies identified the significance of stem 

3 in cocaine binding, whereas stems 1 and 2 contribute for the overall thermal-stability of 

the target-aptamer complex in the event of target binding.236 

To increase target-responded signal, this 38GC aptamer was split by removing the AAA 

loop and engineering several base-pairs in stem 1. Each split aptamer having a single 
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binding domain (termed SSA-225, SSA-425, SSA-525, SSA-625, SSA-725, SSA-925) 

consists of a different long fragment (LF) and a shared short fragment (SF-SSA)(Figure 

50). Note that the thermal-stability of SSA is increased with the increase of number of 

base pairs in stem 1. A C3 spacer was introduced in the short fragment to form an AP site 

(highlighted in the box) with a thymine in the opposite position within the long fragment 

upon cocaine binding (Figure 50). We found that this introduction of the AP site suggests 

an enhanced reaction speed through faster Exo III apurinic endonucleolytic digestion of 

the cocaine-aptamer complex. The thiolated SF-SSA was attached covalently onto the 

surface of AuNP by thiol-gold chemistry forming a self-assembled monolayer. We used 

various LF-SSA including LF-925, LF-725, LF-525, LF-425 and LF-225 with this SF-

SSA-modified AuNPs to demonstrate Exo III-assisted target recycling for cocaine 

detection. 
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Figure 51. AuNP-reported, Exo III-assisted colorimetric detection of cocaine. (A) 
Schematic principle of the assay. (B) UV-vis spectra of the short fragment-modified 
AuNPs in the absence (black trace) and presence (red trace) of cocaine. 
  

Non-specific adsorption of short aptamer fragment could occur during this detection, 

which limits the accessibility of the long aptamer fragment to form the complex. In order 

to prevent this, multiple thymine bases in the form of a spacer (poly(T)10 spacer) were 
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added to the short aptamer fragments (Figure 50). This poly(T)10 spacer enables reducing 

non-specific adsorption due to their lower binding affinity towards gold surfaces as 

compared to other deoxynucleotides.238 Initially, the thiolated short fragment was 

modified on freshly synthesized AuNPs with it 5’ thiol end attached to the surface. The 

aptamer modification on the surface of AuNP protects the particles from aggregation, 

even under high salt concentrations.(Figure 51A, I) Long fragment is then introduced into 

the reaction buffer and forms a target-aptamer complex in the presence of cocaine.(Figure 

51A, II) After a 30-min incubation, Exo III was then added into the reaction mixture to 

initiate exonuclease cleavage process. The enzyme’s apurinic endonucleolytic helps in 

cleaving the duplexed abasic site of the target-aptamer complex.(Figure 51A, III) Once 

the digestion of the short fragment is completed, the long fragment along with cocaine 

molecule are released into the solution that are available to assemble with another short 

fragment immobilized on the AuNP.(Figure 51A, IV) The digestion mechanism repeats 

until all the short aptamer fragments are cleaved from the surface of AuNPs (Figure 51A, 

V) leaving the surface unprotected therefore causing them to aggregate to form a red-to-

blue color change.(Figure 51A, VI and Figure 51B, with cocaine) In contrast, no target-

aptamer complex is formed in the absence of cocaine, therefore inactivating the activity 

of Exo III. The sample still retains the red color of the AuNPs (Figure 51B, without 

cocaine).   
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Figure 52. Effect of DTT concentration on the surface coverage of SF-SSA resulting in 
change of Exo III kinetics for cocaine detection. The SF-SSA-modified AuNPs were first 
treated with different concentration of DTT (0 - 1200 µM); (A) 0 µM; (B) 900 µM; (C) 
1000 µM; (D) 1100 µM; and (E) 1200 µM to obtain different surface coverages. (F) 
Signal enhancement fold between cocaine and DI calculated with A650/A522 after 30-min 
Exo III digestion.  
 
The colorimetric detection of cocaine was performed in a final reaction volume of 25 µL 

reaction buffer containing 10 mM Tris buffer (pH 7.4), with 100 mM NaCl, 1 mM 

MgCl2, optimized concentration of long aptamer fragment, 100 nM SF-SSA-modified 

AuNPs and 20 U Exo III, in the presence and absence of cocaine (250 µM) giving 30 

minutes to form the aptamer-target complex, at room temperature before adding the 

Exonuclease III. The change in the color was characterized by measuring the UV-Vis 

spectra of both the samples with and without cocaine over time, and plotted against each 

other in-terms of absorbance ratio of A650/A522 (Figure 52). The efficiency of forming the 

target-aptamer complex and the kinetics of Exo III digestion are greatly affected by 

stability of the target-aptamer complex, density of SF-SSA on the surface of AuNPs, and 
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concentration of long aptamer fragment. As mentioned before the aptamer density on the 

surface of AuNP plays a crucial role as it affects the target-aptamer binding process with 

the long aptamer fragment and cocaine, thereby affecting the specificity, and reaction 

time. Thus, we used different concentrations of DTT to treat our SF-SSA-modified 

AuNPs and perform the colorimetric detection of cocaine at each of those concentrations. 

To obtain the optimal concentration of DTT that would ultimately result in higher target-

assembly efficiency, we first incubated different concentrations of DTT with SF-SSA-

modified AuNPs for 30 minutes at room temperature. During this incubation step, the SF-

SSA was displaced from the surface of AuNPs proportional to the concentration of DTT 

to yield different DNA surface coverages. The DTT-treated SF-SSA-modified AuNPs 

were initially mixed with the long fragment of 525 (LF-525) (100nM as final 

concentration) that was able to form five complementary bases above the inserted AP site 

with AuNP-conjugated SF-SSA in the presence of cocaine. Cocaine (250 µM) was added 

into half of above reaction mixture whereas deionized water (DI) was added to the other 

half. Both samples were incubated at room temperature for 30 minutes in a microtitre 

plate. Exo III enzyme was then added to all wells to record the change in absorption ratio 

(A650/A522) for each set of DTT concentration along with the control set without DTT 

treatment (Figure 52).  

We observed that the SF-SSA-modified AuNPs without DTT treatment resulted in slower 

kinetics for Exo digestion with a poor color differentiation between the samples with and 

without cocaine.  Both samples were red in color even after several hours of Exo reaction 

as evident in Figure 52A. As the DTT concentrations increased from 900 µM to 1200 

µM, we observed the change in reaction rate evident from the digestion kinetics of Exo 
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III (Figure 52, B to E). Although the rate of Exo digestion was visualized in the form of a 

color change from red to light purple in both samples, the signal enhancement fold of 

A650/A522 between cocaine and DI after 30-min of Exo III digestion was still below 0.6 

which is used as a threshold to identify distinguished color change in cocaine sample. 

The values of A650/A522 on the y-axis of the plots represent the aggregation state of the 

AuNPs and the starting point on the y-axis of each plot represents the aggregation state of 

the DTT-treated AuNPs irrespective of the presence or absence of cocaine. At lower DTT 

concentrations such as 900 µM, the probe density on the AuNPs is too high therefore 

limiting the binding efficiency of the aptamer fragments with the target, and preventing 

the specific enzyme digestion. However, very high DTT concentrations such as 1200 µM 

resulted in very few aptamer fragments remained on the surface, indicated by an 

aggregated state even before addition of Exo III, therefore unfavorable for sensitive 

colorimetric detection. Thus we chose an optimum DTT concentration of 1000 µM, 

which left enough SF-SSA fragments on the surface of the AuNP for remaining non-

aggregated state and facilitating high target-binding efficiency and faster enzyme kinetics 

in the presence of cocaine compared to its absence (Figure 52F).  
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Figure 53. Calculation of surface coverage of SF-SSA-modified AuNPs treated with 
different concentrations of DTT from 0 µM to 1200 µM using Oligreen assay (Quant-
iT™ OliGreen® ssDNA Reagent) (A) Calibration curve based on fluorescence, (B) 
Calculation of DNA strands per AuNP at different DTT concentrations. 
 
To identify the number of SF-SSA fragments on the AuNP at DTT concentration of 1000 

µM, we have performed Oligreen assay using Quant-iT™ OliGreen® ssDNA Reagent 

(Figure 53). We used a standard curve generated from unconjugated, thiolated SF-SSA 

with DTT under the same experimental conditions (Figure 53A) to calculate aptamer 

surface coverage. We determined that SF-SSA-modified AuNPs treated with 

concentration of DTT of 0, 900, 1000, 1100, and 1200 µM respectively displayed 84±6, 

38±4, 30±3, 29±2, and 26±2 oligonucleotides per particle (Figure 53B), equivalent to 

surface coverage of 26.3±1.3, 11.9±1.1, 9.4±0.8, 9.1±0.6, and 8.1±0.6 pmole/cm2, 

respectively. Our experimental results demonstrated that 30 SF-SSA strands per AuNP at 

1000 µM DTT concentration was optimum surface coverage required to give a color 

change specific to the presence of cocaine after Exo III digestion. However, the time 

required for the sample with cocaine to turn blue is about 50 min, which is too long for an 

onsite drug screening. Additionally, when the cocaine sample changed color from red to 

blue after a 50-min Exo III digestion, the control sample without cocaine also changed to 

purple therefore making it hard to differentiate between the colors.  

As mentioned earlier one of the variables to improve the cocaine-assembly efficiency is 

the availability of the target-aptamer complexes. The concentration of LF thus plays a 

crucial role, and need to be optimized to achieve a high signal enhancement fold. 

Therefore, we tested the effect of LF-525 concentrations on the cocaine-assembled Exo 

III digestion (Figure 54). As expected, we observed no color difference between the 

samples with and without cocaine when there is no LF-525 existed in the solution, 
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evidently due to the lack of formation of target-aptamer complex. This phenomenon is 

also true for the lowest LF-525 concentration of 50 nM because the insufficient amount 

of LF-525 was able to use for cocaine specific binding. At higher concentrations of LF-

525 such as 1 µM or 5 µM, more target-aptamer complexes were formed in both cocaine 

and DI samples and the enzymatic reactions seem faster.  However, the signal 

enhancement fold of A650/A522 between cocaine and DI after 30-min of Exo III digestion 

was decrease. We found that 100 nM LF-525 gave the highest signal enhancement fold of 

0.35 and optimum color difference between the samples with and without cocaine (Figure 

54F). However, the specificity still remains a problem along with no improvement in the 

reaction time. 

The length of stem 1 on the long fragment usually contributes to thermal-stability of 

cocaine-aptamer complex. It is known that long stems may result in poor specificity due 

to pre-assembly of target-aptamer complexes even in the absence of cocaine, whereas 

short stems may not enable formation of aptamer-target complexes in the presence of 

cocaine due to poor thermal-stability. In an attempt to improve the specific formation of 

the target-aptamer complex in the presence of cocaine, we studied the effect of different 

long fragment’s stem lengths on target-aptamer assembly and Exo digestion. Specifically, 

we used LF-525 to respectively elongated two or four base pairs at its 3’ end to form LF-

725 and LF-925, or truncated one or three base pairs from the 3’ end of LF-525 to 

engineer LF-425 and LF-225, respectively.  
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Figure 54. Effect of the LF-525 concentration on the efficiency of target-aptamer 
assembly and Exo III kinetics for cocaine detection. The SF-SSA-modified AuNPs were 
first treated with optimized DTT concentration of 1000 µM to obtain the surface coverage 
of 30 DNA strands per particle, to which variable concentrations of LF-525 were added 
ranging from 5 to 0 µM. (A) 0 µM; (B) 0.05 µM; (C) 0.1 µM; (D) 1 µM; (E) 5 µM. (F) 
Signal enhancement fold between cocaine and DI calculated with A650/A522 after 30-min 
Exo III digestion.  
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Figure 55. Effect of LF-925 concentration on the efficiency of target-aptamer assembly 
and Exo III kinetics for cocaine detection. The SF-SSA-modified AuNPs were first 
treated with optimized DTT concentration of 1000 µM to obtain the surface coverage of 
30 DNA strands per AuNP, to which variable concentrations of LF-925 DNA were added 
ranging from 100 nM to 0 nM. (A) 0 nM; (B) 5 nM; (C) 10 nM; (D) 50 nM; and (E) 100 
nM. (F) Signal enhancement fold between cocaine and DI calculated with A650/A522 after 
30-min Exo III digestion.  
 
Note that all these LFs bind a common AuNP-conjugated SF-SSA to form a single AP 

site and a single binding domain in the presence of cocaine. To investigate the effect of 

different LFs on target-aptamer assembly and Exo digestion, we have fixed the number of 

SF-SSA on the AuNP by fixing the optimized DTT concentration and changed the 

concentration of the LF with variable lengths in order to find out the best LF length 

combined with optimized concentration that gives the highest signal enchancement fold 

after a 30-min Exo reaction. Therefore, the optimized probe density of 30 DNA strands / 

AuNP was used to test the effect of LF-925 concentration on target-aptamer assembly 

and Exo digestion. Although we observed faster enzyme reaction in the samples with and 

without cocaine for all tested LF-925 concentrations, the specificity was poor due to 
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higher stability of the complex resulted by the longer stem 1 (Figure 55, A, B, C, D and 

E). As expected, a small LF concentration was required for LF-925 and a 10 nM LF-925 

gave the highest signal enhancement fold of 0.18 (Figure 55F). 

From the experimental results obtained with LF-925, it is evident that the two aptamer 

fragments were assembled even in the absence of target due to a high thermo-stability. 

We then used the optimized probe density of 30 DNA strands/AuNP to test the effect of 

LF-725 concentration on target-aptamer assembly and Exo digestion. We observed faster 

enzyme reaction in the samples with and without cocaine, and a slight improvement of 

the specificity with Ls-725 was obtained (Figure 56, A, B, C, D and E). We found that a 

50 nM LF-725 gave the highest signal enhancement fold of 0.4 (Figure 56F). 
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Figure 56. Effect of LF-725 concentration on the efficiency of target-aptamer assembly 
and Exo III kinetics for cocaine detection. The SF-SSA-modified AuNPs were first 
treated with optimized DTT concentration of 1000 µM to obtain the surface coverage of 
30 DNA strands per AuNP, to which variable concentrations of LF-725 DNA were added 
ranging from 1 µM to 0 nM. (A) 0 µM; (B) 0.01 µM; (C) 0.05 µM; (D) 0.1 µM; and (E) 1 
nM. (F) Signal enhancement fold between cocaine and DI calculated with A650/A522 after 
30-min Exo III digestion.  
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Figure 57. Effect of LF-225 concentration on the efficiency of target-aptamer assembly 
and Exo III kinetics for cocaine detection. The SF-SSA-modified AuNPs were first 
treated with optimized DTT concentration of 1000 µM to obtain the surface coverage of 
30 DNA strands per AuNP, to which variable concentrations of LF-225 DNA were added 
ranging from 10 µM to 0 nM. (A) 0 µM; (B) 0.1 µM; (C) 1 µM; (D) 5 µM; and (E) 10 
nM. (F) Signal enhancement fold between cocaine and DI calculated with A650/A522 after 
30-min Exo III digestion.  
 
A short stem length of LF would destabilize the aptamer complex in the absence of 

cocaine, thereby greatly decreasing background assembly. We further tested the effect of 

concentration of short LF such as LF-425 and LF-225 on target-aptamer assembly and 

Exo digestion. When LF-225 was added in the concentration range of 0 µM to 10 nM, the 

Exo reaction was the slowest for all employed concentrations due lower stability of the 

target-aptamer complex and no specificty was observed between cocaine sample and DI 

sample (Figure 57). When the LF-425 was used for cocaine assembly and Exo digestion, 

we observed similar reaction kinetics as that of LF-225, with the complex formation 

between the AuNP-conjugated SF-SSA and LF-425 without much improvement 

specificity for the presence or absence of cocaine (Figure 58). 
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Clearly, LF-725 showed a slight improvement of specificity over all other LFs we tested. 

However, the difference was not significant to observe a distinguished color change in 

the presence of cocaine.  
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Figure 58. Effect of LF-425 concentration on the efficiency of target-aptamer assembly 
and Exo III kinetics for cocaine detection. The SF-SSA-modified AuNPs were first 
treated with optimized DTT concentration of 1000 µM to obtain the surface coverage of 
30 DNA strands per AuNP, to which variable concentrations of LF-425 DNA were added 
ranging from 5 µM to 0 nM. (A) 5 µM; (B) 1 µM; (C) 0.5 µM; (D) 0.1 µM; and (E) 0 nM. 
(F) Signal enhancement fold between cocaine and DI calculated with A650/A522 after 30-
min Exo III digestion.  
 
To achieve more specific and switch-like binding of the aptamer to cocaine target, we 

introduced a second target-binding domain into our SSA with a single target-binding 

domain and studied new aptamer sequence affect on formation of cocaine-aptamer 

complex. We confirmed that the binding of aptamer to cocaine target at the first binding 

domain stabilizes the structure of the aptamer, facilitating the cocaine binding at the 

second binding domain.156 This kind of phenomenon called cooperative behavior was 
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first observed in ligand-binding proteins that are highly responsive to ligand 

concentration, such as hemoglobin.149 

                            

Figure 59. Utilizing SSA-925 to derivate CBSA-5325. Both structures demonstrated 
cocaine-bound status. 
 
Our SSA contains a three-way junction target-binding domain, surrounded by three 

double-stranded stems (stems 1, 2 and 3). We have determined that stem 3 is essential for 

cocaine binding, while both stem 1 and stem 2 contribute to the stability of the three-way 

junction structure that forms upon target binding.60 We derived a cooperative binding 

split aptamer (CBSA) utilizing SSA-925. Specifically, we replaced thymine at position 6 

from 3’ end with the intact stem 3 to form CBSA-5325 (Figure 59).  
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Figure 60. Effect of LF-CBSA-5325 concentration on the efficiency of target-aptamer 
assembly and Exo III kinetics for cocaine detection. The SF-SSA-modified AuNPs were 
first treated with optimized DTT concentration of 1000 µM to obtain the surface coverage 
of 30 DNA strands per AuNP, to which variable concentrations of LF-CBSA-5325 were 
added ranging from 1 µM to 0 nM. (A) 0 µM; (B) 0.01 µM; (C) 0.05 µM; (D) 0.1 µM; 
and (E) 1 nM. (F) Signal enhancement fold between cocaine and DI calculated with 
A650/A522 after 30-min Exo III digestion. 
 
The resulting CBSA also consists of a short fragment (SF-SSA) and a long fragment (LF-

CBSA-5325). Note that LF-CBSA-5325 can utilize the same AuNP-conjugated SF-SSA 

to form target-aptamer complex in the presence of cocaine. Because the AP site is 

inserted between two binding domains, we assume that Exo III is able to recognize the 

duplexed AP site and perform its endonucleolytic cleavage. To confirm this, we first 

tested the digestion of Exo III using the LF-CBSA-5325 to confirm that the cocaine-

CBSA assembly is a preferred substrate for Exo III. Specifically, the colorimetric 

detection of cocaine was performed in a final reaction volume of 25 µL reaction buffer 

containing 10 mM Tris buffer (pH 7.4), with 100 mM NaCl, 1 mM MgCl2, various 

concentrations of LF-CBSA-5325, 100 nM SF-SSA-modified AuNPs with optimized 
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probe density and 20 U Exo III, in the presence and absence of cocaine (250 µM) at room 

temperature.  Experimental results indicated that the CBSA-5325 system did not show 

much improvement in the specificity of the reaction, however further slowed down the 

reaction speed primarily due to the formation of destabilized cocaine-CBSA complexes 

(Figure 60, A, B, C, D and E). Highest signal enhancement fold of 0.13 was observed 

with 100 nM LF-CBSA-5325 (Figure 60B, 13F).   

There is very poor color distinction between the samples with and without cocaine when 

the concentration of the LF-CBSA-5325 increased or decreased from 100 nM (Figure 

60F). The poor digestion kinetics observed as a slow color change (Figure 60A) when the 

concentration of the LF-CBSA-5325 is 1 µM, which may be attributed to the limited 

number of duplex formed on the particle surface due to excessive long fragments causing 

steric hindrance. On the other hand, reducing the LF-CBSA-5325 concentration to 50 nM 

gave an increased digestion kinetics, however with poor specificity (Figure 60C). Further 

decreasing the LF-CBSA-5325 concentration to 10 nM did not yield an improved 

specificity without distinctive color change (Figure 60F) possibly due to the scarcity of 

the cocaine-specific duplex formation at lower LF concentration (Figure 60D). As 

expected, the signal enhancement fold of 0.04 (Figure 60F) obtained in the absence of the 

long fragment is similar to the fold observed with 10 nM LF-CBSA-5325 due to the non-

specific Exo digestion (Figure 60E). 
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Figure 61. Utilizing CBSA-5325 to engineer CBSA-5345. CBSA Structure of folded 
split cocaine aptamer with dual binding domain assembled in the presence of cocaine 
comprising of short fragment and a long fragment. 
 
To improve the stability and specificity of the cocaine-CBSA complex, we converted 

CBSA-5325 into CBSA-5345 by adding two new base pairs between two binding domain 

(Figure 61). Specifically, two additional bases (A, G) were added after the AP site of LF-

CBSA-5325, towards the 3’ end of the sequence. Thus, the introduction of these two 

bases will increase the length between two binding domains from five bases in CBSA-

5325 to seven bases in CBSA-5345. This increased length may greatly improve the 

stability of cocaine-CBSA complex as observed in case of SSA-725 but with additional 

benefit of cooperative target-binding behavior. The long fragment LF-CBSA-5325 is also 

modified by the addition of two complementary bases T and C to hybrid the added A, and 

G bases in SF-CBSA-5345, will therefore be referred to as LF-CBSA-5345. 

Other CBSA aptamer (SF-CBSA-5335) was engineered from the SF-CBSA-5325 apart 

from SF-CBSA-5345. This modified aptamer added one additional base (G) between two 

binding domain (Figure 62), towards the 3’ end of the short sequence. The addition of an 
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extra base in SF-CBSA-5335 increased the length between two binding domain and 

improved the stability of the cocaine-CBSA complex. The overall thermo stability of the 

duplex for easy access of Exonuclease to the AP site may be improved when the binding 

domains are equidistant from the AP site on either side rather than variable lengths in SF-

CBSA-5345 and SF-CBSA-5325. The presence of one less base in SF-CBSA-5335 

compared to SF-CBSA-5345 will ensure faster dissociation of the complex once the 

cocaine-CBSA complex is digested. The long fragment complementary to the SF-CBSA-

5335 will be modified from the existing LF-CBSA-5325 by adding a complementary C 

base to the added G base in SF-CBSA-5335 and therefore will be referred to as LF-

CBSA-5335. 

 

Figure 62. Utilizing CBSA-5325 to engineer CBSA-5335. CBSA Structure of folded 
split cocaine aptamer with dual binding domain assembled in the presence of cocaine 
comprising of short and a long fragments. 
 
To optimize the SF-CBSA density on the AuNP surface for maximum target-CBSA 

binding with the LF-CBSA in presence of cocaine we used different concentrations of 

DTT to achieve maximum signal enhancement fold with a rapid reaction time. DTT 
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incubation assay was performed on the SF-CBSA-5345 modified AuNPs, the same way 

as described above. As the DTT concentrations increased from 0 µM to 400 µM, we 

observed the change in reaction rate relative to the digestion kinetics of Exo III (Figure 

63, B to E). Although the rate of Exo digestion was visualized in the form of a color 

change from red to light purple in both samples with and without cocaine, the maximum 

signal enhancement fold of 0.28 for cocaine after 30-min of Exo III digestion was 

observed at 300 µM (Figure 63 D and F).  At low concentrations of DTT such as 100 and 

200 µM, the surface density of SF-CBSA-5345 on the AuNPs is too high therefore 

limiting the assembly efficiency of the SF-CBSA-5345 with the LF-CBSA-5345 to form 

the cocaine-CBSA complex, and preventing the specific enzyme digestion (Figure 63B 

and 63C) resulting in a poor signal enhancement fold of 0.08 and 0.25, respectively 

(Figure 63F). At very high DTT concentration such as 400 µM resulted in very few SF-

CBSA-5345 fragments remained on the surface, indicated by an aggregated state even 

before addition of Exo III (Fig. 63E), therefore unfavorable for sensitive colorimetric 

detection. Thus, we chose an optimum DTT concentration of 300 µM, which has enough 

SF-CBSA-5345 fragments on the surface of the AuNP to remain in non-aggregated state 

and facilitate high assembly efficiency of cocaine-CBSA complex and faster Exonuclease 

kinetics in the presence of cocaine compared to its absence.  
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Figure 63. Effect of DTT concentration on the surface coverage of SF-CBSA-5345 
resulting in change of Exo III kinetics for cocaine detection. The SF-CBSA-5345-
modified AuNPs were first treated with different concentration of DTT (0 - 400 µM); (A) 
0 µM; (B) 100 µM; (C) 200 µM; (D) 300 µM; and (E) 400 µM to obtain different surface 
coverages. (F) Signal enhancement fold between cocaine and DI calculated with 
A650/A522 after 30-min Exo III digestion. 
 
Using the optimized surface coverage of SF-CBSA-5345, we further tested the LF-

CBSA-5345 concentration effect on target-CBSA assembly and Exo digestion by varying 

the concentrations from 1 to 0 µM (Figure 64 A, B, C, D and E). Faster enzyme digestion 

was observed in the samples with and without cocaine, when the concentration of LF-

CBSA-5345 is 1 µM (Figure 64A) without any specificity, whereas slight improvement 

in specificity was observed at LF-CBSA-5345 concentrations of 100 and 50 nM with 

optimum signal enhancement fold of 0.2 for both (Figure 64F). Clearly, there is only a 

slight improvement in the stability and specificity of the cocaine-CBSA complex when 

we increased the number of bases after the AP site to 4 at the 3’ end of SF-CBSA-5345. 
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Therefore, we tested the newly designed CBSA-5335 to further improve the stability of 

the cocaine-CBSA complex and enhance the specificity of enzyme digestion. 
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Figure 64. Effect of LF-CBSA-5345 concentration on the efficiency of target-aptamer 
assembly and Exo III kinetics for cocaine detection. The SF-CBSA-5345-modified 
AuNPs were first treated with optimized DTT concentration of 300 µM to obtain the 
surface coverage of 26 DNA strands per AuNP, to which variable concentrations of LF-
CBSA-5345 were added ranging from 1 µM to 0 nM. (A) 1 µM; (B) 0.1 µM; (C) 0.05 
µM; (D) 0.01 µM; and (E) 0 nM. (F) Signal enhancement fold between cocaine and DI 
calculated with A650/A522 after 30-min Exo III digestion. 
 
DTT incubation assay was performed on the SF-CBSA-5335-modified AuNPs, the same 

way as described above to optimize the surface density of SF-CBSA-5335 to achieve 

maximum signal enhancement fold with faster reaction rate. An optimum surface 

coverage of the SF-CBSA-5335 was obtained with the DTT concentration of 100 µM 

(Figure 65C) with a maximum signal enhancement fold of 0.5 (Figure 65E). This is quite 

a significant improvement in the specificity and the speed of the CBSA-based, Exo 

digestion compared to the cocaine-aptamer complex formed with the CBSA-5345. 

Therefore, we decided to keep the AP site equidistant from the two binding domains in an 
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attempt to improve stability and duplex formation so that Exo III can bind to the AP site 

of the folded cocaine-CBSA complex in the presence of cocaine. Optimizing the surface 

coverage was however essential to get maximum signal enhancement fold.  
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Figure 65. Effect of DTT concentration on the surface coverage of SF-CBSA-5335 
resulting in change of Exo III kinetics for cocaine detection. The SF-CBSA-5335-
modified AuNPs were first treated with different concentration of DTT (0 - 150 µM); (A) 
0 µM; (B) 50 µM; (C) 100 µM; and (D) 150 µM to obtain different surface coverages. (E) 
Signal enhancement fold between cocaine and DI calculated with A650/A522 after 30-min 
Exo III digestion. 
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Figure 66. Effect of LF-CBSA-5335 concentration on the efficiency of target-aptamer 
assembly and Exo III kinetics for cocaine detection. The SF-CBSA-5335-modified 
AuNPs were first treated with optimized DTT concentration of 100 µM to obtain the 
surface coverage of 30 DNA strands per AuNP, to which variable concentrations of LF-
CBSA-5335 were added ranging from 5 µM to 0 nM. (A) 5 µM; (B) 0.1 µM; (C) 0.05 
µM; (D) 0.01 µM; and (E) 0 nM. (F) Signal enhancement fold between cocaine and DI 
calculated with A650/A522 after 30-min Exo III digestion. 
 
The concentration of LF-CBSA-5335 was further optimized to improve the assay’s 

specificity. Using the optimized surface coverage of SF-CBSA-5335 treated with 100 µM 

DTT, we further tested the LF-CBSA-5335 concentration effect on cocaine-CBSA 

assembly and Exo digestion by varying the concentrations from 5 to 0 µM (Figure 66 A, 

B, C, D and E). When the LF-CBSA-5335 concentration was decreased to 50 nM, we 

observed a clear distinct purple color change occurring at 45 min in the presence of 

cocaine and achieved the highest signal enhancement fold of 0.6 (Figure 66C, 66F). 

However, it took at least 45 min to observe a distinct deep purple color change even with 

the optimized SF-CBSA-5335 surface coverage and LF-CBSA-5335 concentration 

(Figure 66C), whereas the control without cocaine still remained red. Therefore we 
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engineered another CBSA based on CBSA-5335 to further increase specific Exo 

digestion speed and reduce the formation of non-specific target-CBSA complex. 

10T 

Figure 67. Utilizing CBSA-5335 to engineer CBSA-5335-10T. CBSA Structure of 
folded split cocaine aptamer with dual binding domain assembled in the presence of 
cocaine comprising of short fragment and a long fragment. 
 
Building on the sequence design of SF-CBSA-5335 for improved specificity of the stable 

cocaine-CBSA complex, another modification was made to the 3’ end of SF-CBSA-5335 

by adding 10T linker therefore referred to as SF-CBSA-5335-10T (Figure 67). We also 

assume that the addition of 10T linker in SF-CBSA-5335-10T may favor the formation of 

cocaine-CBSA complex and Exonuclease digestion at a relatively faster rate. These 

thymine bases at the 3’ end of the SF-5335-10T may reduce the non-specific enzyme 

digestion in the absence of cocaine, therefore improving the signal enhancement fold. 

Note that the LF-CBSA-5335-10T remains the same as the LF-CBSA-5335.  

We first changed the DTT concentrations from 0 to 500 µM, however keeping the long 

fragment concentration to 50 nM as optimized earlier for S-CBSA-5335, to optimize the 

surface coverage using DTT incubation assay on the SF-CBSA-5335-10T-modified 

AuNPs, the same way as described above. An optimum surface coverage of the SF-
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CBSA-5335-10T was obtained with the DTT concentration of 400 µM (Figure 68D) with 

a maximum signal enhancement fold of 0.6 (Figure 68F). This is a slight improvement in 

the specificity and the speed of the Exo digestion compared to the cocaine-CBSA 

complex formed with the CBSA-5335, but the samples without cocaine are digested at a 

slower rate (Figure 68 A, B, C, D, and E). The long fragment remains same as the one we 

used for SF-CBSA-5335. An optimum signal enhancement fold was observed for 400 

µM DTT with the color change occurring at around 40 min (Figure 68F). Using the 

optimized DTT, the concentration of long fragment was optimized again. As expected, 50 

nM LF-CBSA-5335 gave the highest signal enhancement fold of 0.65 (Figure 69F) with 

the color change reaction in the presence of cocaine after 40 min (Figure 69C).  
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Figure 68. Effect of DTT concentration on the surface coverage of SF-CBSA-5335-10T 
resulting in change of Exo III kinetics for cocaine detection. The SF-CBSA-5335-10T-
modified AuNPs were first treated with different concentration of DTT (0 - 500 µM); (A) 
0 µM; (B) 200 µM; (C) 300 µM; (D) 400 µM; and (D) 500 µM to obtain different surface 
coverages. (E) Signal enhancement fold between cocaine and DI calculated with 
A650/A522 after 30-min Exo III digestion. 
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Figure 69. Effect of LF-CBSA-5335 concentration on the efficiency of target-aptamer 
assembly and Exo III kinetics for cocaine detection. The SF-CBSA-5335-10T-modified 
AuNPs were first treated with optimized DTT concentration of 400 µM to obtain the 
surface coverage of 30 DNA strands per AuNP, to which variable concentrations of LF-
CBSA-5335 were added ranging from 5 µM to 0 nM. (A) 0 µM; (B) 0.01 µM; (C) 0.05 
µM; (D) 0.1 µM; and (E) 5 µM. (F) Signal enhancement fold between cocaine and DI 
calculated with A650/A522 after 30-min Exo III digestion. 
 
5.4 Conclusions 

To conclude this chapter, we first compared different aptamer sequence combinations 

with single binding domain by optimizing the surface coverage of the short aptamer 

fragment on the AuNP using the DTT displacement assay. We further characterized the 

accurate surface coverage at each of those DTT concentrations using the OliGreen assay. 

The effect of long aptamer fragment concentration was studied and optimized for 

improved specificity. We have also studied the effect of incorporation of the second 

binding domain with variable chain lengths on either side of the AP site. Based on our 

results, we finally shortlisted the sequence combination with maximum signal 

enhancement fold to modify and synthesize the sequence with two AP sites, which is 
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instrumental in faster, and specific reaction to observe a distinctive color change in the 

presence of cocaine. In the future, we will focus on application of the system in the real 

world samples such as saliva to evaluate its sensing performance. 
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CHAPTER 6: Summary and Future Work 

6.1 Summary 

This dissertation describes the combination of CNTs and AuNPs with simple fabrication 

techniques like vacuum filtration to create sensor platforms for multi-analyte detection in 

complex samples, as well as the generation of an instrument-free platform that combines 

AuNPs and DNA aptamers for the colorimetric detection of cocaine. The focus of this 

study was to develop suitable on-site small-molecule detection strategies using low-cost 

nanomaterials and energy-efficient methods for sensitive analyte detection based on the 

following strategies: i) using M-SWCNTs and unmodified AuNPs for the construction of 

highly-conductive porous gold films on MCE filter paper using vacuum filtration, which 

are suitable for electrochemical detection of multiple analytes (e.g. DA and 5-HT); ii) 

using vacuum filtration to fabricate a thin P-SWCNT film on MCE paper to detect 

NADH in complex biosamples; and iii) engineering aptamer sequences as a means to 

optimize the speed and specificity of an enzymatic reaction for amplified colorimetric 

cocaine detection using AuNPs. 

We report here a simple and novel strategy for preparing disposable, paper-based, porous 

AuNP/M-SWCNT hybrid thin gold films with high conductivity, rapid electron transfer 

rates and excellent electrocatalytic properties that take ~20 minutes to prepare. The entire 

process requires only two steps of ambient vacuum filtration with two aqueous solutions 

containing M-SWCNTs and AuNPs, which respectively form a porous underlayer 

comprising a network of interconnected ligaments and pores and an upper layer of 

citrate-coated AuNPs that assemble into a conductive and porous thin gold film. These 

films are prepared at room temperature in a highly reproducible fashion without the need 
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for sophisticated instruments or a clean-room environment. Our vacuum filtration 

fabricated gold films can distinguish the presence of DA and 5-HT either individually or 

simultaneously, with a resolution that greatly exceeds that of commercially available flat 

gold slides or porous gold films prepared by more labor-intensive electrodeposition 

techniques. We have also further expanded our vacuum filtration fabrication technique to 

generate porous P-SWCNT film electrodes for the electrochemical detection of both 

naturally available and enzymatically-generated NADH in complex matrices such as 

saliva and cellular extracts. Quantification of NADH in such complex matrices can 

provide valuable information for disease diagnosis and drug detection, and our assay 

yielded results that are comparable with commercial colorimetric assays. By using filter 

paper as a substrate to support these nanomaterials, we were in both instances able to add 

to the virtues of our composite films by making the resulting devices flexible, cheap, and 

biodegradable, while providing a porous matrix that traps the nanotubes during the 

vacuum filtration to simplify the fabrication process. Finally, we have developed an 

instrument-free colorimetric detection strategy for practical POC applications, in which 

we used AuNPs modified with DNA aptamers to sensitively detect cocaine. Importantly, 

by comparing different sequence combinations with single and dual binding domains and 

optimizing the surface coverage of aptamer fragments on the AuNP, we were able to 

further enhance the performance of our detection assay. 

6.2 Future work 

Looking at existing paper-based sensors, it is evident that there has been extensive 

development over the last few years that has led to “smarter” paper-based sensors. 

Nanomaterials such as carbon nanotubes or graphene can potentially be used as a 



 139 

conductive underlay for the deposition of a variety of different nanoparticles, including 

gold, silver, copper, platinum or palladium, to form various pure or alternating layers of 

metal films. Such hybrid metal films could be used in electrochemical catalysis or 

electro-optical devices, as well as in reflective, conductive or energy-collecting metallic 

coatings. We believe that our technique delivers a simple, adaptable and general means 

for the rapid fabrication of such diverse metal films onto membranes under ambient 

conditions, and that this process could likewise serve as a prelude to the transfer of such 

films to other metal or flexible substrates for diverse applications. Although there is huge 

potential in paper as a substrate for on-site detection devices, current strategies for 

fabrication and analysis still lack the performance and robustness of standard analytical 

techniques. Further research related to fabrication techniques and the incorporation of 

novel functional materials onto the surface is needed to overcome the challenges involved 

with developing a more stable platform capable of measuring multiple analytes in 

complex samples with high sensitivity. And although colorimetric techniques offer a 

suitable strategy, as described in this thesis, for achieving EATR-amplified cocaine 

detection with high specificity, working with real-world samples such as saliva is likely 

to pose additional challenges that will need to be addressed in future research.   
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