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ABSTRACT OF THE DISSERTATION 

THE EFFECT OF VITAMIN D3 SUPPLEMENTATION ON KIDNEY FUNCTION 

AND CARDIOVASCULAR DISEASE MARKERS AMONG HISPANICS AND 

AFRICAN AMERICANS WITH TYPE 2 DIABETES 

by 

Gustavo G. Zarini 

Florida International University, 2017 

Miami, Florida 

Professor Fatma G. Huffman, Major Professor 

Serum vitamin D deficiency/insufficiency, Chronic Kidney Disease (CKD) and 

elevated blood pressure are important health concerns especially among 

minorities with type 2 diabetes. The effect of vitamin D3 supplementation 

(cholecalciferol) at 6,000 IU/day (d) vs. 4,000 IU/d on kidney function and 

cardiovascular disease markers among Hispanics and African Americans with 

type 2 diabetes and hypovitaminosis D (<30 ng/ml) was evaluated. Subjects 

(n=63) were recruited from two clinics in Miami-Dade County, FL. Fasting venous 

blood and fresh, single-voided first morning urine samples were collected from 

each participant by a certified phlebotomist and analyzed by Solstas Lab 

Partners, Davie, FL. Linear mixed models were used to compare the interaction 

between time and intervention. Least Significant Difference (LSD) comparisons 

were used to detect significant differences within and between 4,000 IU/d and 

6,000 IU/d groups from baseline, 3 and 6 months. In the 4,000 IU/d and 6,000 

IU/d groups, a significant increase in serum 25-hydroxy vitamin D [25(OH)D] 
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levels were observed from baseline [(19.9±1.1 ng/mL) and (21.4±1.3 ng/mL)] to 3 

months [(36.1±2.2 ng/mL, p<.001) and (43.0±2.7 ng/mL, p<0.001)]; and 6 

months [(37.1±2.4 ng/mL, p<0.001) and (39.2±3.0 ng/mL, p<0.001)], 

respectively. Significant increase in estimated Glomerular Filtration Rate (eGFR) 

creatinine equation values were observed from baseline (81.2±3.0 mL/min) to 6 

months (90.2±2.8 mL/min, p<0.001) in the 4,000 IU/d group. Significant decrease 

in eGFR creatinine - cystatin C equation values were found from 3 months 

(109.2±3.9 mL/min) to 6 months (100.9±3.7 mL/min, p=0.006) in the 4,000 IU/d 

group. Systolic blood pressure levels significantly decreased from baseline 

(144.1±4.0 mmHg) to 6 months (134.5±3.5 mmHg, p=0.020) only for the 6,000 

IU/d group. Supplementation with vitamin D3 longer than 6 months may be 

needed to determine sustained long term effects in kidney and cardiovascular 

disease markers. Further research could provide more information for translation 

of these findings into recommendations for individuals with CKD, hypertension 

and type 2 diabetes. The efficacy of vitamin D3 supplementation as 

complementary therapy for CKD and blood pressure in minority and other ethnic 

groups needs further investigation in larger and longer duration randomized 

controlled trials. 
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CHAPTER I: INTRODUCTION 

Kidney Disease  

Kidney disease is the ninth leading cause of death in the U.S. (National 

Center for Health Statistics, 2012) affecting 31 million (10%) of American adults 

with the majority unaware of their conditions (CDC, 2011). Diabetes accounted 

for 44% of the incidence of kidney failure in 2012 (American Kidney Fund, 2015). 

Furthermore, complications from kidney disease are more prevalent in minorities: 

End Stage Renal Disease (ESRD) was nearly 1.5 times more likely in Hispanics 

as compared to non-Hispanic Whites (CDC, 2012). 

 

The Kidney Disease Improving Global Outcomes (KDIGO) guidelines 

(KDIGO, 2013) recommends using the Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equation with serum creatinine for initial evaluation and 

staging of kidney disease. The Modification of Diet in Renal Disease (MDRD) 

equation may not be as reliable as the CKD-EPI equation for Glomerular 

Filtration Rate (GFR) levels between 60 and 90 mL/min/1.73m2 (Levey et al., 

2009). Although the CKD-EPI equation (eGFR creatinine) adjust for age, gender 

and race, serum creatinine is affected by variations in diet and lean muscle mass 

(National Kidney Foundation, 2009). Cystatin C, a 13-kDa, single-chain amino 

acid present in almost all nucleated cells (Abrahamson et al., 1990), has been 

proposed as a confirmatory marker to add to the CKD-EPI equation, alone 

(eGFR cystatin) or with serum creatinine (eGFR creatinine- cystatin C), when 

eGFR creatinine is assumed inaccurate (KDIGO, 2013).  
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Microalbuminuria is considered an early biomarker for loss of kidney function. 

Microalbuminuria a sensitive marker recommended by the Kidney Disease 

Outcomes Quality Initiative (KDOQI) Clinical Practice guidelines to be used to 

assess and monitor kidney function in early stages of kidney disease (KDOQI, 

2000). Reported in previous studies, microalbuminuria was associated with 

cardiovascular disease and mortality in individuals with type 2 diabetes 

(Mogensen, 1984; Valmadrid et al., 2000). The American Diabetes Association 

recommends that individuals with type 2 diabetes be tested for microalbuminuria 

at the diagnosis of diabetes and subsequently every year (American Diabetes 

Association, 2009). Decrease in microalbuminuria values represents an 

improvement in kidney function and possible reduction in cardiovascular disease 

risk (KDOQI, 2000).  

 

Kidney Disease and Vitamin D 

The prevalence of chronic kidney disease (CKD) and hypovitaminosis D 

disproportionately affects minorities and individuals with type 2 diabetes (Diaz et 

al., 2009; Melamed et al., 2009; Zadshir et al., 2005). Data from the National 

Health and Nutrition Examination Survey (NHANES) indicated that cases of 

kidney disease were distributed disproportionally among Hispanics, with 

Hispanics presenting the highest proportion of kidney disease (38.5%), followed 

by non-Hispanic Blacks (36.2 %) and non-Hispanic Whites (27.8%) (Diaz et al., 

2009). Vitamin D status differ across ethnic groups. Non-Hispanic Blacks and 

Hispanics have higher rates (80.4% and 59.0%) of serum 25-hydroxy vitamin D 
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[25(OH)D] levels considered deficient as compared to Whites (39.5%, p<0.01) 

(Diaz et al., 2009). Individuals with kidney disease had higher rates of serum 

vitamin D deficiency (53.2%) as compared to those with normal kidney function 

(47.0%) (Diaz et al., 2009). Individuals with kidney disease were shown to have 

hypovitaminosis D even in the early stages of kidney disease (Lee et al., 2010). 

Moreover, since their kidneys are deteriorated, the ability to activate adequate 

amounts of vitamin D decline. Reduction in renal function over a 4-year period 

was greater for individuals with insufficient serum 25(OH)D and diabetes in 

Caucasian adults as compared to controls (de Boer et al., 2011). In a 5-year 

follow-up study of a random sample of Caucasians (n=4,330), aged 30-60 years, 

low 25(OH)D levels predicted higher protein excretion (Skaaby et al., 2013). 

Serum 25(OH)D levels have been inversely associated with albuminuria in a U.S. 

representative population and this association remained after controlling for 

diabetes (de Boer et al., 2007).   

 

Insufficient dietary and serum 25(OH)D levels could contribute to morbidity 

and mortality (Heaney et al., 2005; Zimmermann & Gummert, 2010). In the 

longitudinal study by Pilz et al. (2011), with a median follow-up time of 9.4 years, 

the risk of mortality in 444 individuals with CKD (stages 3-5) was higher in those 

with serum vitamin D deficiency as compared to those with normal vitamin D 

status (hazard ratios: 4.38, 95% CI 2.13–9.00). The mechanism that could 

explain the association between vitamin D status and mortality; however, 

remains unknown. Sufficient levels of serum 25(OH)D are protective of the renal 
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and cardiovascular systems; conversely, hypovitaminosis D may accelerate 

disease progression (Judd and Tangpricha, 2008; Li, 2012).  

 

Kidney Disease and Vitamin D Supplementation  

Supplementation that raises serum 25(OH)D levels has been recommended 

to prevent health problems in adults (Heaney et al., 2005; Williams, et al., 2009). 

Investigations of the effect of vitamin D3 supplementation on minorities with type 

2 diabetes; however, have been limited. Most vitamin D supplementation trials in 

patients with kidney disease have been conducted primarily in Caucasians 

without diabetes. Vitamin D3 supplementation at high doses [>2000 IU/day (d)] 

has promise for achieving vitamin D sufficiency for persons with CKD (Alvarez et 

al., 2012). On the other hand, studies concerning vitamin D2 supplementation 

and vitamin D status in kidney disease were less conclusive (Alvarez et al., 

2012). Vitamin D3 may provide a safer and more cost-effective strategy for the 

treatment of early CKD than oral vitamin D2 or synthetic analogues. There are 

some studies available on vitamin D3 supplementation in adults, in which kidney 

function was measured (Kim et al., 2011; Rucker et al., 2009; Molina et al., 

2014). Vitamin D3 supplementation, provided according to the participant’s 

vitamin D status, for 4 months showed a reduction of albuminuria, but no change 

in GFR for ethnically diverse (43% Caucasian, 22% Black, and 45% Asian) 

patients (n=63) with CKD stages 2-4 and hypovitaminosis D (Kim et al., 2011). 

Supplementation of 1000 IU/daily of vitamin D3 among 128 Canadian adults with 

later stages of kidney disease (stages 3-5) found no improvements in kidney 
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function (GFR) compared with a control group; however, supplementation was of 

short duration (3 months) and mean 25(OH)D levels were below vitamin D 

sufficiency (30 ng/mL) by the end of the study (Rucker et al., 2009). 

Supplementation of vitamin D3 at 666 IU/d for 6 months significantly lowered 

albuminuria in a Caucasian older adult cohort (n= 101) with CKD stages 3-4, but 

no significant improvements were found for estimated GFR (Molina et al., 2014). 

Early supplementation with vitamin D3 might provide a more valuable treatment 

and possibly delay adverse kidney disease outcomes.  

 

Blood Pressure and Vitamin D  

The Centers for Disease Control and Prevention (CDC) indicated that one in 

3 individuals living in the U.S., an estimated 70 million adults, have high blood 

pressure (CDC, 2015) which place them at higher risk to die from heart disease 

(Nwankwo et al., 2013). The CDC recommended decreasing individual’s systolic 

blood pressure by 12 to 13 mmHg because it could potentially reduce deaths 

from cardiovascular disease by 25%. Still, high levels of blood pressure among 

Hispanics and Blacks continue to be a challenge (CDC, 2013). 

 

Serum vitamin D deficiency/insufficiency and elevated blood pressure are 

important health concerns especially among minorities. Available evidence from 

observational studies indicated that low 25(OH)D levels are related to elevated 

blood pressure. A study by Schmitz et al. (2009) conducted in Hispanics and 

African Americans (n=1334) found an inverse association between 25(OH)D 
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levels and blood pressure, after adjusting for age, gender, ethnicity and seasons. 

When BMI was included in the final model, blood pressure was no longer 

associated with 25(OH)D levels. In this study, only a small proportion of subjects 

had systolic blood pressure ≥ 140 mmHg (n=72; 5%) and diastolic blood 

pressure ≥ 90 mmHg (n=93; 7%). Data from NHANES that included 12,644 

individuals ≥ 20 years old showed that after adjusting for age, gender, ethnic 

background, and physical activity, 25(OH)D levels were inversely linked with 

blood pressure (Scragg et al., 2007). When the highest quintile of 25(OH)D (≥ 87 

nmol/L) was compared to the lowest quintile (40.4 nmol/L), both mean systolic 

blood pressure and diastolic blood pressure were 3.0 mmHg and 1.6 mmHg 

lower in those in the highest quintile (Scragg et al., 2007). As in the study by 

Schmitz et al. (2009), addition of BMI as an adjustment variable in the model 

weakened the relationship between 25(OH)D and blood pressure levels. In the 

study by Scragg et al. (2007), systolic blood pressure continued to be significant 

despite adjustment. Likewise, Forman et al. (2007) found an inverse association 

between 25(OH)D and incident risk of hypertension by exploring two cohorts 

(men=613) from the Health Professionals’ Follow-up Study and Nurses’ Health 

Study (women=1198) ages 40-75.  

 

In contrast with the findings from observational studies, the relationship 

between vitamin D3 supplementation and its effect on blood pressure is not as 

clear. Clinical trials and meta-analyses have tried to elucidate the relationship 

between vitamin D supplementation and blood pressure; however, findings from 
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these studies are inconsistent. Results from some clinical trials and meta-

analysis were not able to determine significant reductions in blood pressure 

levels (Pittas et al., 2010; Witham et al., 2009; Jorde et al., 2010; Beveridge et 

al., 2015; Larsen et al., 2012) while other investigations did find significant 

improvements in blood pressure (Witham et al., 2010; Forman et al., 2013; 

Pfeifer et al., 2001; Sugden et al., 2008). The mechanism of how vitamin D 

affects blood pressure is poorly understood. Nonetheless, it has been postulated 

that vitamin D could affect blood pressure regulation through the Renin-

Angiotensin-Aldosterone System (RAAS) (Li et al., 2004; Pilz et al., 2009).  

 

Deficient/insufficient 25(OH)D levels could be corrected by vitamin D3 

supplementation which may be of significance and have a potential impact on 

health of minority groups with type 2 diabetes. Furthermore, improving blood 

pressure levels using vitamin D3 may prevent future complications associated 

with kidney and cardiovascular disease. The clinical importance of vitamin D3 

supplementation as adjunct therapy is to prevent kidney and cardiovascular 

disease complications.  

 

Significance of the Study 

Even though hypovitaminosis D, type 2 diabetes, kidney disease and 

cardiovascular disease are major health problems affecting minorities, no study 

so far has investigated the effect of two high doses of vitamin D3 

supplementation (4,000 IU/d and 6,000 IU/d) exclusively among Hispanics and 
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African Americans with type 2 diabetes and hypovitaminosis D. Supplementation 

with vitamin D3 may have the potential of delaying and managing the progression 

of CKD and cardiovascular disease. As an inexpensive and safe supplement, 

vitamin D3 (cholecalciferol) could have significant benefit in reducing diabetes 

complications and health disparities among Hispanics and African Americans 

with type 2 diabetes.  

 

Aims and Hypotheses 

Aim 1: To evaluate the effect of vitamin D3 supplementation (cholecalciferol) at 

6,000 IU/d vs. 4,000 IU/d on kidney function among Hispanics and African 

Americans with type 2 diabetes and hypovitaminosis D (<30 ng/ml). 

Hypothesis 1: Vitamin D3 supplementation at 6,000 IU/d will be more effective in 

raising 25-hydroxy vitamin D [25(OH)D] levels from deficient/insufficient to 

sufficient as compared to 4,000 IU/d over 6 months. 

Hypothesis 2: Vitamin D3 supplementation at 6,000 IU/d will be more effective in 

increasing estimated glomerular filtration rate (eGFR) using CKD-EPI creatinine 

equation (Chronic Kidney Disease Epidemiology Collaboration) when compared 

to 4,000 IU/d over 6 months. 

Hypothesis 3: Vitamin D3 supplementation at 6,000 IU/d will be more effective in 

increasing eGFR using CKD-EPI creatinine - cystatin C equation (Chronic Kidney 

Disease Epidemiology Collaboration) when compared to 4,000 IU/d over 6 

months. 
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Hypothesis 4: Vitamin D3 supplementation at 6,000 IU/d will be more effective 

than the 4,000 IU/d over 6 months in lowering microalbuminuria measured by 

first morning urine samples.  

 

Aim 2: To evaluate the effect of vitamin D3 supplementation at 6,000 IU/d vs. 

4,000 IU/d on markers of cardiovascular disease risk among Hispanics and 

African Americans with type 2 diabetes and hypovitaminosis D (<30 ng/ml).  

Hypothesis 1: Vitamin D3 supplementation at 6,000 IU/d will be more effective 

than the 4,000 IU/d over 6 months in lowering systolic and diastolic blood 

pressure levels.  
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Table 1: Summary of Aims, Hypotheses and Statistical Analyses 

Aims Hypotheses 

Dependent & 

Independent 

Variables 

Controlled 

Variables 

Statistical 

Analysis 

Aim 1: To evaluate the 

effect of vitamin D3 

supplementation 

(cholecalciferol) at 

6,000 IU/d vs. 4,000 

IU/d on kidney function 

among Hispanics and 

African Americans with 

type 2 diabetes and 

hypovitaminosis D 

(<30 ng/ml). 

 

Hypothesis 1: Vitamin D3 

supplementation at 6,000 IU/d 

will be more effective in raising 

25-hydroxy vitamin D 

[25(OH)D] levels from 

deficient/insufficient to 

sufficient as compared to 

4,000 IU/d over 6 months. 

H1 –  

DV: DV: 

25(OH)D 

IV: vitamin D3 

supplementation 

Age gender, 

BMI, known 

years with 

diabetes, A1c, 

diabetes 

medications, 

blood pressure 

medications, 

vitamin D 

intake, sun 

exposure. 

All data analyses 

for the study was 

conducted on an 

“intent to treat” 

basis. Normal 

distribution of all 

variables was 

assessed. 

Independent t-

test (parametric) 

or Mann-Whitney 

U-test 
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 Hypothesis 2: Vitamin D3 

supplementation at 6,000 IU/d 

will be more effective in 

increasing eGFR using CKD-

EPI creatinine equation 

(Chronic Kidney Disease 

Epidemiology Collaboration) 

when compared to 4,000 IU/d 

over 6 months. 

H2 –  

DV: eGFR 

creatinine 

IV: vitamin D3 

supplementation 

BMI, known 

years with 

diabetes, A1c, 

diabetes 

medications, 

blood pressure 

medications, 

25(OH)D, 

vitamin D 

intake, sun 

exposure. 

(nonparametric) 

for continuous 

variables and chi-

square test for 

categorical 

variables were 

used to compare 

differences in 

baseline 

characteristics of 

participants 

across the two 

intervention 

groups. For aims 

1 and 2, mixed 

models were 

Hypothesis 3: Vitamin D3 

supplementation at 6,000 IU/d 

will be more effective in 

increasing estimated 

glomerular filtration rate 

H3 –  

DV: eGFR 

creatinine – 

cystatin C 

IV: vitamin D3 

BMI, known 

years with 

diabetes, A1c, 

diabetes 

medications, 
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(eGFR) using CKD-EPI 

creatinine - cystatin C equation 

(Chronic Kidney Disease 

Epidemiology Collaboration) 

when compared to 4,000 IU/d 

over 6 months. 

supplementation blood pressure 

medications, 

25(OH)D, 

vitamin D 

intake, sun 

exposure. 

performed using 

estimated 

glomerular 

filtration (eGFR) 

rates, 

microalbuminuria, 

systolic and 

diastolic blood 

pressure levels 

as the dependent 

variable, 

respectively. The 

interaction 

between time 

and intervention 

were included to 

Hypothesis 4: Vitamin D3 

supplementation at 6,000 IU/d 

will be more effective than the 

4,000 IU/d over 6 months in 

lowering microalbuminuria 

measured by first morning 

urine samples. 

H4 –  

DV: MAU 

IV: vitamin D3 

supplementation 

Age gender, 

BMI, known 

years with 

diabetes, A1c, 

diabetes 

medications, 

blood pressure 

medications, 

25(OH)D, 

vitamin D 
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intake, sun 

exposure. 

evaluate the 

dosage effect on 

the change of the 

dependent 

variable over 

time. 

Aim 2: To evaluate the 

effect of vitamin D3 

supplementation at 

6,000 IU vs. 4,000 IU/d 

on markers of 

cardiovascular disease 

among Hispanics and 

African Americans with 

type 2 diabetes and 

hypovitaminosis D 

(<30 ng/ml). 

Hypothesis 1: Vitamin D3 

supplementation at 6,000 IU/d 

will be more effective than the 

4,000 IU/d over 6 months in 

lowering systolic and diastolic 

blood pressure levels.  

 

 

H1 –  

DV: SBP & DBP 

IV: vitamin D3 

supplementation 

Age gender, 

BMI, known 

years with 

diabetes, A1c, 

diabetes 

medications, 

blood pressure 

medications, 

25(OH)D, 

vitamin D 

intake, sun 

exposure. 
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CHAPTER II: METHODS 

The clinical trial conducted by our laboratory entitled “The effect of vitamin D 

supplementation on cardiovascular risk factors among Hispanics and African 

Americans with type 2 diabetes” was approved by the Institutional Review Board 

(IRB) at Florida International University (IRB Protocol Approval #: IRB-13-0155). 

 

Recruitment of Subjects 

Subjects were recruited from two clinics in Miami-Dade County, Florida 

(Borinquen Health Care Center and Clinical Care Medical Center) from July 2011 

to March 2013 using flyers explaining the purpose of the study, 

inclusion/exclusion criteria and containing investigators’ emails and phone 

numbers. The non-randomized study screened subjects based on the inclusion/ 

exclusion criteria described as follows:  

Inclusion criteria:  

▪ Serum vitamin D insufficiency [25(OH)D< 30 ng/ml];  

▪ Age 30-70 years old;  

▪ Hispanic or African American; and  

▪ Having type 2 diabetes 

 Exclusion criteria:  

▪ Taking vitamin D supplements other than standard multivitamin formula;  

▪ Pregnant or lactating;  

▪ Kidney disease (glomerular filtration rate lower than 30 ml/min/1.73m2, 

stages 4-5) and kidney failure (defined as currently on dialysis).   
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▪ Using insulin to manage blood glucose; 

▪ Major psychiatric disorders; 

▪ Cancer;  

▪ HIV/AIDS; and 

▪ Hepatitis  

 

Enrollment and Intervention 

All subjects signed an informed consent in Spanish or English based on their 

preference prior to participation in the study. Participants in both intervention 

groups were required to take either 4,000 IU or 6,000 IU of vitamin D3 given in 

the form of a pill in a single daily dose. Subjects in the 4,000 IU/d group were 

recruited first and intervention was provided. Subjects were included on a first 

come, first served basis until the required calculated sample size was attained. 

After recruitment for the 4,000 IU/d group was completed, we conducted the 

recruitment for the 6,000 IU/d group. Hence, group selection was not conducted 

randomly and did not run in parallel. The number of subjects in the 6,000 IU/d 

group was reduced to the minimum sample size required to find significant 

differences in the main outcome variables.  

 

Ninety-two participants were screened [4,000 IU/d group (n= 63) and 6,000 

IU/d group (n= 29)]. Sixty-three qualified for the study and were enrolled for the 

vitamin D3 intervention [4,000 IU/d group (n=39) and (6,000 IU/d (n=24)]. Four 

participants were lost to follow-up after baseline [4,000 IU/d group (n=1) and 
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6,000 IU/d group (n=3)]. Additionally, two participants were lost to follow-up after 

the 3 months’ assessment in the 6,000 IU/d group (Figure 1). Participants CKD 

stages at baseline: (n=45, 71.0%) CKD stage 1 (≥ 90 eGFR ml/min/1.73 m2); 

(n=15, 24%) CKD stage 2 (60-89 eGFR ml/min/1.73 m2); (n=3, 5.0%) CKD stage 

3 (30-59 eGFR ml/min/1.73 m2). The study used an intent to treat approach, all 

63 subjects were included in the statistical analysis. Each participant was seen 4 

times during the study (screening, baseline, 3 and 6 months). Table 1 describes 

assessments and assays conducted at each visit.  
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Figure 1. Flow Diagram Showing Recruitment and Follow-Up of Participants 

 

 

 

 

 

 

 

 

 

 

Abbreviations: AA= African Americans; H= Hispanics.  
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Table 1. Assessments Frequency  

Abbreviations: 25(OH)D= 25-hydroxy vitamin D, PTH= parathyroid hormone, hs-CRP= 

High-sensitivity C-reactive Protein, A1C= hemoglobin A1c, FFQ= food frequency 

questionnaire, (S)=screening, (B)=baseline. 

 

Safety of the Intervention and Monitoring 

Participants were monitored monthly for any symptoms of vitamin D3 toxicity 

(nausea, vomiting, polyuria, polydipsia, weakness, nervousness, etc.) by 

telephone, and at each follow-up visit that measured serum 25(OH)D levels. 

Study adherence and compliance was assessed using serum 25(OH)D and PTH 

levels change, pill count and attendance of scheduled visits at the clinics. 

Compliance to the vitamin D3 supplementation was defined as taken more than 

80% of the pills. To facilitate reporting to the clinics at data collection times, a 

modest compensation for time and travel and laboratory reports were provided. A 

Data Safety Monitoring Board (DSMB) monitored the safety of vitamin D3 

supplementation every 12 month intervals for two years. This included evaluation 

Activity S B 3 6 

Blood collection and analysis: serum 25(OH)D, PTH, creatinine, 

cystatin C, hs-CRP, FPG and A1c 
X  X X 

Urine: albumin and creatinine X  X X 

Anthropometrics: height, weight and BMI  X  X X 

Demographics, FFQ & blood pressure X X X X 

Sun Exposure: (Skin Color - reflectance colorimetry using the IMS 

SmartProbe 400) 
X X X X 

Determine medications for diabetes and hypertension and monitor 

medication changes 
X X X X 

Study adherence/compliance: pill count and compliance  X X X 

Monitor safety and toxicity  X X X 

Vitamin D3 (cholecalciferol) supplements distribution  X X  
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of participant’s enrollment, follow-up visits, compliance, laboratory results, and 

data management.  

 

Vitamin D3 Supplements 

Vitamin D3 (cholecalciferol) supplements at 4,000 IU and 6,000 IU were 

custom manufactured by Biotech Pharmacal, Inc. (Fayetteville, AZ, U.S.) in a 

single batch for each strength to avoid variation between lots. Since there was a 

three-year expiration date, participants received the same 4,000 IU or 6,000 IU 

lots accordingly. A certificate of Analysis was provided by the manufacturer to 

assure that the product meets research specifications.   

 

Blood Collection 

Fasting venous blood (20 ml) was collected from each participant by a 

certified phlebotomist using standard laboratory methods. After coagulation, 

blood was centrifuged at 2500 RPM for 30 minutes. Solstas Lab Partners, Davie, 

FL, U.S. performed blood and urine analyses using the standard procedures as 

outlined. 

 

Serum 25(OH)D levels were measured with an enzyme-immunoassay kit by 

absorbance (Immunodiagnostic Systems; Scottsdale, AZ, U.S.), where the color 

intensity is proportional to the concentration of 25(OH)D. 
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Parathyroid Hormone was tested by a two-sided ELISA (Enzyme-Linked 

ImmonoSorbent Assay) for the measurement of the biologically active 84 amino 

acid chain of PTH. 

 

Hemoglobin A1c was measured from whole blood samples using the Roche 

Tina Quant methods and fasting plasma glucose was measured by hexokinase 

enzymatic methods by Solstas Lab Partners, Davie, FL, U.S. 

 

Creatinine (Serum) was measured using the Roche enzymatic method (Roche-

Hitachi P-Module instrument with Roche Creatininase Plus assay, Roche Applied 

Science, IN, U.S.). 

 

Cystatin C (Serum) was measured in serum using an enzyme-linked 

immunosorbent assay (ELISA) method (BioVendor LLC, NC, U.S.). 

 

High Sensitivity-CRP (hs-CRP) was analyzed by Immulite (Diagnostic Products 

Corporation, Los Angeles, CA). The Immulite assay is a 2-site chemiluminescent 

enzyme immunometric assay with one monoclonal and one polyclonal anti-CRP 

antibody. 

 

Urine Collection 

Fresh, single-voided, first morning urine samples were collected from each 

participant to determine the following biomarkers of kidney function. 
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Urinary Albumin: Albumin was determined by immunoturbidmetric assay using 

the Beckman Coulter microalbumin reagent with polyclonal antiserum. Turbidity 

was measured at 340nm and 700nm on a spectrophotometer and albumin was 

quantitatively determined using calibration curves. The immunoturbidometric 

assay has been established as high sensitivity and high selectivity method for 

detection of urinary albumin in normal and abnormal ranges for persons with 

diabetes. 

 

Creatinine (Urine): This procedure is a modification of the Jaffe method in which 

creatinine reacts with picric acid at alkaline pH to form a yellow orange complex. 

Color intensity is measured against a standard curve. 

 

Estimation of Glomerular Filtration Rate (GFR) 

Glomerular Filtration Rate equations were calculated using the online calculator 

from the National Kidney Foundation 

http://www.kidney.org/professionals/KDOQI/gfr_calculator). The online calculator 

takes into consideration both serum creatinine and serum cystatin C 

concentrations (CKD-EPI creatinine and CKD-EPI creatinine - cystatin C) as well 

as age, gender, and race.  
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Sociodemographic Data were collected with trained, bilingual interviewers 

(English/ Spanish). Subjects were asked to complete a sociodemographic 

questionnaire which included questions related to gender, age, education, 

income, employment status, health insurance, smoking, and medications.  

 

Vitamin D Intake 

A short food frequency questionnaire containing 22 foods and beverages 

designed to assess vitamin D and calcium intake was administered. The 

questionnaire included participants’ frequency of consumption of each food and 

the serving size. Total vitamin D intake was calculated following the original 

rubric (Blalock et al., 2003). 

 

Anthropometric Measures 

Height and weight were measured using a Seca balance scale with 

stadiometer (Seca Corp, Columbia, MD, U.S.). Body mass index (BMI) was 

calculated as weight in kg/height in m2. Waist circumference to the nearest 0.1 

cm was measured horizontally with a non-stretchable measuring tape placed 

midway between the 12th rib and iliac crest at minimal respiration to determine 

central obesity (NHLBI, 1998). Each measurement was taken twice and 

averaged.  

 

 

 



                                                      

23 

Sun Exposure – (Skin Color) 

Skin color was determined by reflectance colorimetry using the IMS 

SmartProbe 400, Milford, CT. The instrument uses the International Commission 

on Illumination Scale which ranges from 0 (black) to 100 (white) for skin color. 

Two readings for each participant were taken, one on the right-hand wrist (area 

most exposed to the sun) and other under the right upper arm (area least 

exposed to the sun). The differences between the two measures were 

determined to calculate the delta of skin color due to sun exposure. 

 

Statistical Analysis 

All data analyses were conducted on an “intent to treat” basis. Normal 

distribution of all continuous variables was assessed using Shapiro-Wilk test. 

Data was reported as means with standard deviation for continuous variables 

and count and percentages for categorical variables. Independent t-test 

(parametric) or Mann-Whitney U-test (non-parametric) for continuous variables 

and chi-square test for categorical variables were used to compare differences in 

baseline characteristics of participants across the two intervention groups (4,000 

IU/d vs. 6,000 IU/d). Paired t-test was used evaluated pre- and post-intervention 

(time effect) for normally distributed variables and Wilcoxon signed-rank test was 

used for non-normally distributed variables for each study group.  

 

Results from aims 1 and 2 were reported as mean with standard error. Linear 

mixed models were performed using, 25(OH)D levels, estimated glomerular 
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filtration rate (eGFR) equations, microalbuminuria, systolic and diastolic blood 

pressure levels as the dependent variables, respectively. The interaction 

between time and intervention was included to evaluate the dosage effect on the 

change of the dependent variables over time. Least Significant Difference (LSD) 

comparisons test were used to detect significant differences within and between 

4,000 IU/d and 6,000 IU/d groups from baseline, 3 and 6 months on the outcome 

variables without and with the adjustment of confounders. Linear mixed models 

included the adjustment variables that were major confounders of serum 

25(OH)D, kidney function and cardiovascular disease. Potential additional 

covariates were tested by correlation with the dependent variable. Adjustment 

variables included: age; gender; BMI; duration of diabetes; hemoglobin A1c; 

vitamin D intake; sun exposure; serum vitamin D; and medication(s) usage. 

Covariates that were related to outcomes were included as needed. The 

analyses were conducted using SPSS software (SPSS Inc., Chicago, IL, U.S.) 

version 23. All tests were analyzed two-sided and a significance level of <0.05 

was used to decide the statistical significance.  

 

Sample Size and Power Analysis 

A statistical power analysis was performed using PASS 15 (Power Analysis 

and Sample Size) 2017 Statistical Software (UT, U.S.) for Mixed Models, within-

between groups interaction. Given an alpha of 0.05, a sample size of n=63 (n=39 

for the group 4,000 IU/d and n=24 for the 6,000 IU/d) will have 82.0% power to 

detect difference in eGFR (CKD-EPI) creatinine from baseline to 6 months. Thus, 
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the sample size of n=63 was more than adequate for the main outcome of this 

study and allowed to adjust for possible confounding factors. Additionally, power 

analyses were calculated for other outcomes in the study (Table 2). 

 

Table 2. Outcomes Power Calculation 

 

 

 

 

 

 

 

 

Outcomes Power 
Sample 

Size 
Alpha 

25-hydroxy vitamin D 82.0% 57 0.05 

eGFR (CKD-EPI creatinine) 82.0% 57 0.05 

eGFR (CKD-EPI creatinine - cystatin C) 84.0% 57 0.05 

Microalbuminuria  70.0% 57 0.05 

Systolic Blood Pressure 84.0% 57 0.05 

Diastolic Blood Pressure 79.0% 57 0.05 

Abbreviations: eGFR= Estimated Glomerular Filtration Rate; CKD-EPI=Chronic 
Kidney Disease Epidemiology.  
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CHAPTER III: RESULTS 

Baseline Comparisons of Vitamin D3 Intervention Groups  

The participants in this study were 53.4±8.3 years old (4,000 IU/d group) and 

55.0±10.3 years old (6,000 IU/d group), the majority were female in both groups 

71.8% (4,000 IU/d group) and 58.3% (6,000 IU/d group) respectively. The mean 

known duration of diabetes was 6.1±4.7 years in the 4,000 IU/d group and 

6.8±6.4 years in the group receiving 6,000 IU/d, and BMI above 30 kg/m2 in both 

intervention groups classified them in the obesity category. All participants 

started the study with serum 25(OH)D levels considered as deficient/insufficient 

(20.7±6.0 ng/mL in the 4,000 IU/d group and 21.7±5.6 ng/mL in the 6,000 IU/d 

group). At baseline, participants at the 4,000 IU/d group had significantly lower 

systolic blood pressure levels (126.9±18.2 mmHg) and diastolic blood pressure 

levels (82.3±10.7 mmHg) as compared with those in the 6,000 IU/d group 

[(146.2±22.1 mmHg, p<.001) and (91.9±10.9 mmHg, p=0.001) respectively]. The 

4,000 IU/d group had lower percentage of smokers (7.7% vs. 25.0%, p=0.057) 

and higher serum creatinine levels (0.92±0.24 mg/dL vs. 0.80±0.20 mg/dL, 

p=0.066) as compare with the 6,000 IU/d group. Participants in the 4,000 IU/d 

group had significantly lower CKD-EPI creatinine values (84.6±18.4 mL/min) 

compared with those in the 6,000 IU/d group (94.2±17.5 mL/min, p=0.027) 

(Table 1).  
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Table 1. Baseline Comparisons of Vitamin D3 Intervention Groups 

 Intervention  

 4,000 IU/d 6,000 IU/d  
Variables n=39 n=24 P-Value 

Age (years) 53.4±8.3 55.0±10.3 0.499 
Sex (Female) n (%) 28(71.8) 14(58.3) 0.271 
BMI (kg/m2) 34.7±7.6 32.7±6.0 0.492 
Waist circumference (cm) 109.6±18.6 107.3±12.4 0.388 
Known years with diabetes 6.1±4.7 6.8±6.4 0.983 
Smoking (yes) n (%) 3(7.7) 6(25.0) 0.057 
Marital Status (married, yes) n (%) 22(56.4) 11(45.8) 0.862 
Employment (yes) n (%) 22(56.4) 15(62.5) 0.383 
Medical insurance (yes) n (%) 19(48.7) 11(45.8) 0.824 
Diabetes medications (yes) n (%) 36(92.3) 22(91.7) 0.927 
Blood pressure medications (yes) n (%) 26(66.7) 14(58.3) 0.505 
Systolic blood pressure (mmHg) 126.9±18.2 146.2±22.1 <0.001 
Diastolic blood pressure (mmHg) 82.3±10.7 91.9±10.9 0.001 
Blood Biomarkers     
   25(OH)D (ng/mL) 20.7±6.0 21.7±5.6 0.457 
   PTH (pmol/L) 39.4±19.5 42.6±16.5 0.322 
   Insulin (μU/mL) 14.1±14.1 11.5±7.2 0.697 
   FGP (mg/dL) 189.0±88.7 184.4±71.6 0.944 
   A1c (%) 8.4±2.3 8.8±2.2 0.282 
   Hs-CRP (mg/L) 9.7±13.4 5.7±4.0 0.860 
   Cystatin C (mg/L) 0.70±0.19 0.70±0.25 0.865 
   Serum creatinine (mg/dL) 0.92±0.24 0.80±0.20 0.066 
Urinary Biomarkers    
   Creatinine (mg/dL) 127.6±57.8 131.9±65.0 0.777 
   MAU (mg/dL) 4.5±15.2 6.9±15.1 0.152 
Estimated GFR Equations    
   CKD-EPI creatinine (mL/min) 84.6±18.4 94.2±17.5 0.027 
   CKD-EPI creatinine - cystatin C                      112.6±21.5 114.0±23.2 0.112 
   (mL/min)    
Sun exposure     
   Upper arm skin color  58.9±9.8 60.4±7.3 0.837 
   Forearm skin color  55.2±8.7 56.6±6.0 0.915 
   Delta of skin color 3.7±3.6 3.9±5.0 0.510 
Dietary     
   Vitamin D intake (IU/d) 127.0±82.7 122.2±86.4 0.692 
   Multivitamins (yes) n (%) 9(23.1) 5(20.8) 0.835 
   Alcohol intake n (%)   0.781 
      None  28(71.8) 18(75.0)  
      1 or more servings per week 11(28.2) 6(25.0)  

Abbreviations: BMI= body mass index; 25(OH)D=25-hydroxy vitamin D; 
PTH=parathyroid hormone; A1c=glycated hemoglobin; FPG=fasting plasma glucose; 
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MAU=microalbuminuria; GFR= Glomerular filtration rate; CKD-EPI=Chronic Kidney 
Disease Epidemiology Collaboration; d=day; SD= standard deviation. Data reported as 
Mean±SD; unless otherwise indicated. P is considered significant at <0.05.    
 
 
 

Paired Comparisons of Vitamin D3 at 4,000 IU from Pre- to Post- 

Intervention 

Findings from paired comparisons of vitamin D3 at 4,000 IU/d from pre- to post- 

interventions are shown in Table 2. Serum 25(OH)D levels significantly 

increased from baseline (20.7±6.0 ng/mL) to 6 months (37.9±13.2 ng/mL, 

p<0.001). Cystatin C levels were significantly different from baseline (0.70±0.19 

mg/L) to 6 months (0.79±0.28 mg/L, p=0.045). Serum creatinine levels 

significantly decreased from baseline (0.92±0.24 mg/dL) to 6 months (0.83±0.25 

mg/dL, p=0.001). CKD-EPI creatinine values significantly increased from 

baseline (84.6±18.4 mL/min) to 6 months (92.4±18.9 mL/min, p<0.001). On the 

other hand, CKD-EPI creatinine - cystatin C values significantly decreased from 

baseline (112.6±21.5 mL/min) to 6 months (98.6±24.0 mL/min, p=0.022) (Table 

2).    
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Table 2. Paired Comparisons of Vitamin D3 at 4,000 IU from Pre- to Post- 
Intervention 

Abbreviations: BMI= body mass index; 25(OH)D=25-hydroxy vitamin D; 
PTH=parathyroid hormone; A1c=glycated hemoglobin; FPG=fasting plasma glucose; 
MAU=microalbuminuria; GFR= Glomerular filtration rate; CKD-EPI=Chronic Kidney 
Disease Epidemiology Collaboration; d=day; SD= standard deviation. Data reported as 
Mean±SD; unless otherwise indicated. P is considered significant at <0.05.    

 

 

 

 

 

 Intervention (4,000 IU/d)   
 n=39  

Variables Baseline 6 months P-Value 

BMI (kg/m2) 34.7±7.6 35.4±7.5 0.136 
Waist circumference (cm) 109.6±18.6 109.0±17.8 0.913 
Systolic blood pressure (mmHg) 126.9±18.2 127.9±17.0 0.690 
Diastolic blood pressure (mmHg) 82.3±10.7 83.5±9.1 0.459 
Blood biomarkers     
   25(OH)D (ng/mL) 20.7±6.0 37.9±13.2 <0.001 
   PTH (pmol/L) 39.4±19.5 37.2±17.8 0.149 
   Insulin (μU/mL) 14.1±14.1 11.4±8.1 0.267 
   FGP (mg/dl) 189.0±88.7 170.1±73.6 0.133 
   A1c (%) 8.4±2.3 8.2±2.1 0.787 
   Hs-CRP (mg/L) 9.7±13.4 7.4±7.0 0.602 
   Cystatin C (mg/L) 0.70±0.19 0.79±0.28 0.045 
   Serum creatinine (mg/dL) 0.92±0.24 0.83±0.25 0.001 
Urinary biomarkers    
   Creatinine (mg/dL) 127.6±57.8 143.3±67.8 0.500 
   MAU (mg/dL) 4.5±15.2 3.4±9.0 0.816 
Estimated GFR Equations    
   CKD-EPI creatinine (mL/min) 84.6±18.4 92.4±18.9 <0.001 
   CKD-EPI creatinine - cystatin C  112.6±21.5 98.6±24.0 0.022 
   (mL/min)    
Sun exposure     
   Upper arm skin color  58.9±9.8 59.3±9.9 0.346 
   Forearm skin color  55.2±8.7 55.5±8.6 0.827 
   Delta of skin color 3.7±3.6 3.8±4.2 0.971 
Dietary     
   Vitamin D intake (IU/d) 127.0±82.7 132.8±90.4 0.913 
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Table 3 shows findings from paired comparisons of vitamin D3 at 6,000 IU/d 

from pre- to post- intervention. Systolic blood pressure levels (146.2±22.1 

mmHg) significantly decreased from baseline to 6 months (135.0±17.8 mmHg, 

p=0.009) and diastolic blood pressure marginally decreased (91.9±10.9 mmHg to 

87.9±10.7 mmHg, p=0.077). Serum 25(OH)D levels significantly increased from 

baseline (21.7±5.6 ng/mL) to 6 months (38.9±16.3 ng/mL, p<0.001). Serum 

creatinine levels significantly decreased from baseline (0.80±0.20 mg/dL) to 6 

months (0.74±0.20 mg/dL, p=0.004). CKD-EPI creatinine values significantly 

increased from baseline (94.2±17.5 mL/min) to 6 months (97.9±18.0 mL/min, 

p=0.047). There were marginally significant differences from baseline (56.6±6.0) 

to 6 months (57.0±6.6, p=0.077) in forearm sun exposure scores. 
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Table 3. Paired Comparisons of Vitamin D3 at 6,000 IU from Pre- to Post- 
Intervention 

Abbreviations: BMI= body mass index; 25(OH)D=25-hydroxy vitamin D; 
PTH=parathyroid hormone; A1c=glycated hemoglobin; FPG=fasting plasma glucose; 
MAU=microalbuminuria; GFR= Glomerular filtration rate; CKD-EPI=Chronic Kidney 
Disease Epidemiology Collaboration; d=day; SD= standard deviation. Data reported as 
Mean±SD; unless otherwise indicated. P is considered significant at <0.05.    

 
 
 
 

 

 

 Intervention (6,000 IU/d)   
 n=24  

Variables 
Baseline 6 months 

P-
Value 

BMI (kg/m2) 32.7±6.0 33.1±6.3 0.970 
Waist circumference (cm) 107.3±12.4 102.7±24.9 0.404 
Systolic blood pressure (mmHg) 146.2±22.1 135.0±17.8 0.009 
Diastolic blood pressure (mmHg) 91.9±10.9 87.9±10.7 0.077 
Blood biomarkers     
   25(OH)D (ng/mL) 21.7±5.6 38.9±16.3 <0.001 
   PTH (pmol/L) 42.6±16.5 38.3±17.3 0.052 
   Insulin (μU/mL) 11.5±7.2 11.4±7.1 0.577 
   FGP (mg/dl) 184.4±71.6 180.7±73.9 0.697 
   A1c (%) 8.8±2.2 8.6±2.0 0.139 
   Hs-CRP (mg/L) 5.7±4.0 7.4±7.1 0.270 
   Cystatin C (mg/L) 0.70±0.25 0.75±1.9 0.365 
   Serum creatinine (mg/dL) 0.80±0.20 0.74±0.20 0.004 
Urinary biomarkers    
   Creatinine (mg/dL) 131.9±65.0 117.1±48.4 0.306 
   MAU (mg/dL) 6.9±15.1 7.0±14.2 0.370 
Estimated GFR Equations    
   CKD-EPI creatinine (mL/min) 94.2±17.5 97.9±18.0 0.047 
   CKD-EPI creatinine - cystatin C  114.0±23.2 107.4±20.1 0.270 
   (mL/min)    
Sun exposure     
   Upper arm skin color  60.4±7.3 61.1±6.5 0.173 
   Forearm skin color  56.6±6.0 57.0±6.6 0.072 
   Delta of skin color 3.9±5.0 4.2±4.6 0.417 
Dietary     
   Vitamin D intake (IU/d) 122.2±86.4 115.9±82.9 0.638 
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Aim 1: To evaluate the effect of vitamin D3 supplementation (cholecalciferol) at 

6,000 IU/d vs. 4,000 IU/d on kidney function among Hispanics and African 

Americans with type 2 diabetes and hypovitaminosis D (<30 ng/ml). 

 

Hypothesis 1: Vitamin D3 supplementation at 6,000 IU/d will be more effective in 

raising 25(OH)D levels from deficient/insufficient to sufficient as compared to 

4,000 IU/d over 6 months. 

 

Unadjusted linear mixed models indicated statistically significant effect of 

time on serum 25(OH)D levels (p<0.001). However, the effect of intervention 

(p=0.294) and interaction between time and intervention (p=0.120) were not 

statistically significant. Post-hoc LSD analyses showed significant improvements 

in serum 25(OH)D levels over time in both intervention groups. In the 4,000 IU/d 

and 6,000 IU/d groups respectively, significant increase in serum 25(OH)D levels 

were observed from baseline [(20.7±0.9 ng/mL) and (21.7±1.2 ng/mL)] to 3 

months [(37.0±2.1 ng/mL, p<0.001) and (42.6±2.6 ng/mL, p<0.001)] and to 6 

months [(37.9±2.3 ng/mL, p<0.001) and (38.9±2.9 ng/mL, p<0.001)] respectively 

(Table 4). 
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Table 4. Unadjusted and Adjusted Intervention Groups Comparisons of 25(OH)D at Different Time Points 

 Intervention 

 4,000 IU/d 6,000 IU/d 
Unadjusted n=39 n=24 

25(OH)D (ng/mL) Mean±SE 
   Baseline 20.7±0.9 21.7±1.2 
   3 months  37.0±2.1*  42.6±2.6* 
   6 months  37.9±2.3*  38.9±2.9* 
P-value time=0.001 P-value intervention=0.294 P-value interaction=0.120 

Adjusted   

25(OH)D (ng/mL) Mean±SE 
   Baseline 19.8±1.1 21.4±1.2 
   3 months  36.1±2.2*      43.0±2.7*; ** 
   6 months  37.1±2.4*  39.2±3.0* 
P-value time=0.001 P-value intervention=0.143 P-value interaction=0.088 
Abbreviations: BMI= body mass index; 25(OH)D=25-hydroxy vitamin D; A1c=glycated hemoglobin; SE=standard error. 
*Represents significant differences from baseline; **represents significant differences from 3 to 6 months.  
Adjustment variables: age gender, BMI, known years with diabetes, A1c, diabetes medications, blood pressure 
medications, 25(OH)D, vitamin D intake, sun exposure. Data reported as Mean±SE. P is considered significant at <0.05.      
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Adjusted linear mixed models after including covariates in the analysis, a 

statistically significant effect of time on 25(OH)D levels (p<0.001) was observed. 

However, the effect of intervention between groups was not statistically 

significant (p<0.143). There was a marginally significant result for the interaction 

between time and intervention (p=0.088). In the 4,000 IU/d and 6,000 IU/d 

groups, a significant increase in serum 25(OH)D levels were observed from 

baseline [(19.9±1.1 ng/mL) and (21.4±1.3 ng/mL)] to 3 months [(36.1±2.2 ng/mL, 

p<.001) and (43.0±2.7 ng/mL, p<0.001)] and 6 months [(37.1±2.4 ng/mL, 

p<0.001) and (39.2±3.0 ng/mL, p<0.001)], respectively. Moreover, in the 6,000 IU 

group, there was a significant decrease in serum 25(OH)D levels from 3 months 

(43.0±2.7 ng/mL) to 6 months (39.2±3.0 ng/mL, p=0.046) (Table 4).  

 

Hypothesis 2: Vitamin D3 supplementation at 6,000 IU/d will be more effective in 

increasing eGFR using CKD-EPI creatinine when compared to 4,000 IU/d over 6 

months. 

 

Unadjusted linear mixed models showed that the effect of time on CKD-EPI 

creatinine was statistically significant (p<0.001), intervention effect was 

marginally significant (p=0.067); however, the interaction between time and 

intervention was not statistically significant (p=0.110). Post-hoc LSD analyses 

showed that there was a marginally significant increase in CKD-EPI creatinine 

values from baseline (84.6±2.8 mL/min) to 3 months (88.0±2.9 mL/min, p=0.077) 

and significant increase in CKD-EPI creatinine values to 6 months (92.5±2.9 
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mL/min, p<0.001) in the 4,000 IU/d group. Moreover, significant increase was 

found from 3 months to 6 months (p=0.004) in the 4,000 IU/d group. In the 6,000 

IU/d group, marginally significant increase in mean CKD-EPI creatinine were 

observed from baseline (94.2±3.6 mL/min) to 6 months (97.9±3.7 mL/min, 

p=0.082).  

 

Adjusted linear mixed models indicated that the effect of time (p<0.001) on 

CKD-EPI creatinine was statistically significant. However, the intervention effect 

(p=0.0162) and the interaction effect of time and intervention were not statistically 

significant (p=0.121). Post-hoc analysis showed marginally significant increase in 

CKD-EPI creatinine values from baseline (83.8±3.2 mL/min) to 3 months 

(88.0±3.0 mL/min, p=0.074) and statistically significant increase to 6 months 

(93.0±3.1 mL/min, p<0.001) in the 4,000 IU/d group. Moreover, significant 

improvements in CKD-EPI creatinine values were also observed from 3 months 

(88.0±3.0 mL/min) to 6 months (93.0±3.1 mL/min, p=0.002) in the 4,000 IU/d 

group. Marginally significant increase in mean CKD-EPI creatinine values from 

baseline (90.1±3.9 mL/min) to 6 months (96.0±3.9 mL/min, p=0.059) were found 

in the 6,000 IU/d group (Table 5). 
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Table 5. Unadjusted and Adjusted Intervention Groups Comparisons of CKD-EPI creatinine at Different Time 
Points 

 Intervention 

 4,000 IU/d 6,000 IU/d 
Unadjusted n=39 n=24 

CKD-EPI creatinine (mL/min) Mean±SE 
   Baseline 84.6±2.8 94.2±3.6 
   3 months       88.0±2.9*; ** 97.7±3.7 
   6 months  92.5±2.9* 97.9±3.7 
P-value time<0.001 P-value intervention=0.067 P-value interaction=0.110 

Adjusted    

CKD-EPI creatinine (mL/min) Mean±SE 
   Baseline 83.8±3.2 91.0±3.9 
   3 months       88.0±3.0*; ** 96.0±3.8 
   6 months   93.0±3.2* 96.0±3.9 
P-value time<0.001 P-value intervention=0.162 P-value interaction=0.095 
Abbreviations: BMI= body mass index; 25(OH)D=25-hydroxy vitamin D; A1c=glycated hemoglobin; CKD-EPI=Chronic 
Kidney Disease Epidemiology Collaboration; SE=standard error. *Represents significant differences from baseline; 
**represents significant differences from 3 to 6 months.  
Adjustment variables: BMI, known years with diabetes, A1c, diabetes medications, blood pressure medications, 25(OH)D, 
vitamin D intake, sun exposure. Data reported as Mean±SE. P is considered significant at <0.05. 
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Hypothesis 3: Vitamin D3 supplementation at 6,000 IU/d will be more effective in 

increasing eGFR using CKD-EPI creatinine - cystatin C when compared to 4,000 

IU/d over 6 months. 

 

Unadjusted linear mixed models showed that the effect of time on CKD-EPI 

creatinine - cystatin C was statistically significant (p<0.011). However, the 

effect of intervention (p=0.105) or the interaction between time and intervention 

(p=0.636) were not statistically significant. LSD post-hoc analyses showed a 

significant decrease in CKD-EPI creatinine - cystatin C values from baseline 

(104.9±3.4 mL/min) to 6 months (97.6±3.2 mL/min, p=0.029) and from 3 months 

(106.7±3.5 mL/min) to 6 months (97.6±3.2 mL/min, p=0.002) in the 4,000 IU/d 

group. Additionally, changes in CKD-EPI creatinine - cystatin C values between 

intervention groups (4,000 IU/d vs. 6,000 IU/d) at 6 months were observed at the 

marginal significance level (97.6±3.2 mL/min vs. 107.4±4.1 mL/min, p=0.066) 

(Table 6). 

 

Adjusted linear mixed models indicated that the effect of time on CKD-EPI 

creatinine - cystatin C values were statistically significant (p=0.020). However, 

the effect of intervention (p=0.289) and time and intervention interaction 

(p=0.740) were not statistically significant. LSD post-hoc analyses showed a 

significant decrease in CKD-EPI creatinine - cystatin C values from 3 months 

(109.2±3.9 mL/min) to 6 months (100.9±3.7 mL/min, p=0.006) in the 4,000 IU/d 

group.   
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Table 6. Unadjusted and Adjusted Intervention Groups Comparisons of CKD-EPI creatinine - cystatin C at 
Different Time Points 

 Intervention 

 4,000 IU/d 6,000 IU/d 
Unadjusted n=39 n=24 

CKD-EPI creatinine - cystatin C 
(mL/min) 

Mean±SE 

   Baseline 104.9±3.4 112.6±4.3 
   3 months    106.7±3.5** 112.2±4.5 
   6 months    97.6±3.2* 107.4±4.1 
P-value time=0.011 P-value intervention=0.105 P-value interaction=0.636 

Adjusted    

CKD-EPI creatinine-cystatin C 
(mL/min) 

Mean±SE 

   Baseline 106.0±4.3 110.4±4.9 
   3 months    109.2±3.9** 112.4±4.7 
   6 months 100.9±3.7 107.1±4.3 
P-value time=0.020 P-value intervention=0.289 P-value interaction=0.830 
Abbreviations: BMI= body mass index; 25(OH)D=25-hydroxy vitamin D; A1c=glycated hemoglobin; CKD-EPI=Chronic 
Kidney Disease Epidemiology Collaboration; SE=standard error. *Represents significant differences from baseline; 
**represents significant differences from 3 to 6 months.  
Adjustment variables: BMI, known years with diabetes, A1c, diabetes medications, blood pressure medications, 
25(OH)D, vitamin D intake, sun exposure. Data reported as Mean±SE. P is considered significant at <0.05. 
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Hypothesis 4: Vitamin D3 supplementation at 6,000 IU/d will be more effective 

than the 4,000 IU/d over 6 months in lowering microalbuminuria measured by 

first morning urine samples.  

 

Unadjusted and Adjusted linear mixed models showed that the effect of 

time [(p=0.889) and (p=0.954)], intervention [(p=0.254) and (p=0.425)] and the 

interaction between time and intervention [(p=0.370 and (p=0.435)] on 

microalbuminuria were not statistically significant within and between 4,000 

IU/d and 6,000 IU/d groups, respectively (Table 7).  
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Table 7. Unadjusted and Adjusted Intervention Groups Comparisons of Microalbuminuria at Different Time 
Points 

 Intervention 

 4,000 IU/d 6,000 IU/d 
Unadjusted  n=39 n=24 

MAU (mg/dL) Mean±SE 
   Baseline 4.5±2.4 6.8±3.0 
   3 months 3.1±1.9 8.1±2.5 
   6 months 3.5±1.8 7.0±2.3 
P-value time=0.889 P-value intervention=0.254 P-value interaction=0.370 

Adjusted   

MAU (mg/dL) Mean±SE 
   Baseline 4.5±2.9 5.9±3.5 
   3 months 3.5±2.3 7.5±2.8 
   6 months 3.9±2.2 6.7±2.5 
P-value time=0.954  P-value intervention=0.425 P-value interaction=0.435 

Abbreviations: BMI= body mass index; 25(OH)D=25-hydroxy vitamin D; A1c=glycated hemoglobin; MAU=microalbuminuria; 
SE=standard error.  
Adjustment variables: age gender, BMI, known years with diabetes, A1c, diabetes medications, blood pressure medications, 
25(OH)D, vitamin D intake, sun exposure. Data reported as Mean±SE. P is considered significant at <0.05.       
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Aim 2: To evaluate the effect of vitamin D3 supplementation at 6,000 IU/d vs. 

4,000 IU/d on markers of cardiovascular disease risk among Hispanics and 

African Americans with type 2 diabetes and hypovitaminosis D (<30 ng/ml). 

 

Hypothesis 1: Vitamin D3 supplementation at 6,000 IU/d will be more effective 

than the 4,000 IU/d over 6 months in lowering systolic and diastolic blood 

pressure levels.  

 

Unadjusted mixed models showed marginally significant effect of time 

(p=0.080) and significant effect of intervention (p=0.001) on systolic blood 

pressure. A significant effect of the interaction between time and intervention 

(p=0.032) was observed. LSD post-hoc analyses indicated that systolic blood 

pressure levels significantly decreased from baseline (146.2±4.0 mmHg) to 3 

months (139.8±3.3 mmHg, p=0.035) and significantly higher decrease at 6 

months (135.0±3.5 mmHg, p=0.003) only in the 6,000 IU/d vitamin D group. 

Additionally, significant differences were observed in systolic blood pressure 

levels between 4,000 IU/d and 6,000 IU/d groups at 3 months [(126.5±2.6 mmHg 

vs. 139.8±3.3 mmHg, p=0.002)] (Table 8).  

 

Adjusted linear mixed models showed no significant effect of time on 

systolic blood pressure (p=0.490). However, the effect of intervention 

(p=0.006) and the interaction between time and intervention (p=0.026) were 

statistically significant. Post-hoc LSD analyses showed a significant decreased in 
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mean systolic blood pressure levels from baseline (144.1±4.0 mmHg) to 6 

months (134.5±3.5 mmHg, p=0.020) only for the 6,000 IU/d group. Furthermore, 

a marginal decrease in systolic blood pressure levels were observed in the 6,000 

IU/d group from 3 months (139.9±3.4 mmHg) to 6 months (134.5±3.5 mmHg, 

p=0.088). Significant differences between intervention groups (4,000 IU/d vs. 

6,000 IU/d) in systolic blood pressure levels were found at 3 months (128.5±2.6 

mmHg vs. 139.9±3.4 mmHg, p=0.007) but not in 6 months (Table 8).  

 

Unadjusted mixed models indicated that the effect of intervention on 

diastolic blood pressure was statistically significant (p=0.003). However, the 

effect of time (p=0.538) or the interaction between time and intervention 

(p=0.110) were not statically significant. LSD post-hoc analyses indicated that 

changes in diastolic blood pressure levels were marginally significant from 

baseline (91.8±2.2 mmHg) to 6 months (87.9±2.0 mmHg, p=0.055) in the 6,000 

IU/d group. Additionally, significant differences in mean diastolic blood pressure 

levels were observed at 3 months (83.2±1.5 mmHg vs. 89.3±1.9 mmHg, 

p=0.015) and marginally significant at 6 months (83.5±1.5 mmHg vs. 87.9±2.0 

mmHg, p=0.086) (Table 8).  

 

Adjusted linear mixed models analysis showed that the effect of 

intervention on diastolic blood pressure was statistically significant (p=0.004); 

however, the effect of time (p=0.703) or the interaction of between time and 

intervention (p=0.108) were not significant. Post-hoc LSD analyses revealed 
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marginally significant decrease in mean diastolic blood pressure levels from 

baseline values (91.3±2.6 mmHg) to 6 months (87.3±2.2 mmHg, p=0.086) only 

for the 6,000 IU/d group. Significant differences between intervention groups 

(4,000 IU/d vs. 6,000 IU/d) in diastolic blood pressure levels were observed at 3 

months (82.7±1.9 mmHg vs. 88.7±2.2 mmHg, p=0.017) (Table 8). 
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Table 8. Unadjusted and Adjusted Intervention Groups Comparisons of Blood Pressure at Different Time 
Points 

 Intervention 

 4,000 IU/d 6,000 IU/d 
Unadjusted n=39 n=24 

Systolic blood pressure (mmHg) Mean±SE 
   Baseline 126.8±3.1 146.2±4.0 
   3 months  126.5±2.6†  139.8±3.3* 
   6 months 127.9±2.7  135.0±3.5* 
P-value time=0.080 P-value intervention=0.001 P-value interaction=0.032 
Diastolic blood pressure (mmHg)   
   Baseline 82.3±1.7 91.8±2.2 
   3 months  83.2±1.5†  89.3±1.9 
   6 months 83.5±1.5  87.9±2.0 
P-value time=0.538 P-value intervention=0.003 P-value interaction=0.110 

Adjusted   

Systolic blood pressure (mmHg) Mean±SE 
   Baseline 127.1±3.3 144.1±4.0 
   3 months 128.5±2.6† 139.9±3.4 
   6 months 130.3±2.8   134.5±3.5* 
P-value time=0.490 P-value intervention=0.006 P-value interaction=0.026 
Diastolic blood pressure (mmHg)   
   Baseline 81.7±2.2 91.3±2.6 
   3 months  82.7±1.9† 88.7±2.2 
   6 months 82.9±1.9 87.3±2.2 
P-value time=0.703 P-value intervention=0.004 P-value interaction=0.108 

Abbreviations: BMI= body mass index; 25(OH)D=25-hydroxy vitamin D; A1c=glycated hemoglobin; SE=standard error. 
*Represents significant differences from baseline; † represents significant differences at 3 months between intervention 
groups.  Adjustment variables: age gender, BMI, known years with diabetes, A1c, diabetes medications, blood pressure 
medications, 25(OH)D, vitamin D intake, sun exposure. Data reported as Mean±SE. P is considered significant at <0.050.       
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CHAPTER IV: DISCUSSION 

Serum 25-hydroxy vitamin D 

The study focused on vitamin D3 supplementation interventions for Hispanics 

and Blacks with hypovitaminosis D and type 2 diabetes. All participants in our 

study had 25(OH)D levels below 30 ng/mL at baseline. Our findings showed that 

vitamin D3 supplementation noticeably increased 25(OH)D levels in both 

intervention groups which indicated that the supplement doses were adequately 

bioavailable, well absorbed and tolerated by the participants. It was expected that 

serum 25(OH)D levels would improve at 6 months in both groups; however, we 

found no significant differences between the 4,000 IU/d and 6,000 IU/d groups at 

the end of the study. Despite the high doses of vitamin D3 used in this study, 

there were no adverse events or signs of toxicity reported by any of the 

participants throughout the study.    

 

Several previous studies are available where vitamin D3 (cholecalciferol) was 

used to replenish serum 25(OH)D levels. Kim et al. (2011), used 

supplementation with vitamin D3 for participants with serum vitamin D deficiency 

(≤ 16 ng/ml) with 40,000 IU/week for 8 weeks and 40,000 IU/month for additional 

8 weeks; and participants with vitamin D insufficiency (16-32 ng/mL) with 40,000 

IU/month. They found significantly increased mean serum 25(OH)D levels from 

baseline (15.6±7.0 ng/mL) to 4 months (39.7±12.8 ng/ml) in individuals with type 

2 diabetes. In our study, mean 25(OH)D levels at baseline were 20.7 ng/mL for 

the 4,000 IU/d group and 21.7 ng/mL for the 6,000 IU/d. By the end of the 
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intervention (6 months), mean 25(OH)D levels increased to sufficient levels 37.9 

ng/mL for the 4,000 IU/d group and 38.9 ng/mL for the 6,000 IU/d group. In 

another study, individuals were supplemented with the equivalent of 10,000 IU/d 

for 3 months, mean 25(OH)D levels significantly increased (pre-intervention = 

13.4 ng/mL to post-intervention = 82.8 ng/mL). Conversely, there are studies 

where vitamin D3 supplementation did not replenish serum 25(OH)D levels above 

(30 ng/mL). These studies used doses of vitamin D3 supplementation ≤ 1000 IU/d 

or the equivalent (Oksa et al., 2008 and Rucker et al., 2009).    

 

The Institute of Medicine (IOM) guidelines (Institute of Medicine, 2011) 

specified that the Recommended Dietary Allowance (RDA) for >97.5% of the 

population for vitamin D intake is 600-800 IU/d. In our study, none of the 

participants met the RDA for vitamin D for their age, the mean vitamin D intake 

was 127.0±82.7 IU for the 4,000 IU/d group and 122.2±86.4 IU for the 6,000 IU/d 

group (Table 1).  Nevertheless, greater dosages than the RDA of vitamin D 

intake are needed it to replenish those with deficient and insufficient 25(OH)D 

levels. We investigated the effect of vitamin D3 supplementation using the IOM 

(Institute of Medicine, 2011) recommended tolerable upper intake level (4,000 

IU/d) and a higher dose (6,000 IU/d); however, the IOM recommendations for 

vitamin D are not formulated for those with preexisting conditions (such as 

diabetes). The Endocrine Society Clinical Practice Guideline advise that 

individuals with 25(OH)D levels below 20 ng/mL be supplemented with vitamin D3 

(6,000 IU/d) for eight weeks to restore normal vitamin D levels above 30 ng/mL. 
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After reaching sufficiency, vitamin D3 supplementation needs to be continued by 

a maintenance phase of 1,500-2,000 IU/d. Due to the high prevalence of vitamin 

D deficiency/insufficiency in individuals with type 2 diabetes, achieving normal 

25(OH)D levels should be considered an important therapeutic goal. The amount 

of vitamin D3 necessary to achieve adequate serum 25(OH)D levels for 

populations with multiple chronic conditions has yet to be established and may 

be confounded by variations in geographic region, seasons, skin color, sun 

exposure, race/ethnicity, diet, and body fat. The optimal 25(OH)D level that 

would have a clinical effect on health risk outcomes remains to be defined.  

 

Our study did not include a placebo or control arm, since the intervention 

groups were not recruited and conducted in parallel and due to the inclusion 

criterion, we included individuals with 25(OH)D levels with 

deficiency/insufficiency (<30 ng/mL). Ethically it was not appropriate or advisable 

to treat vitamin D deficient/insufficient participants with placebo for 6 months. 

Participants were not allowed to take any type or form of vitamin D supplement 

other than a multivitamin, and we encouraged them to not change their dietary 

and sun exposure habits during the study. The high doses of vitamin D3 used in 

this study were not only intended to replenish serum 25(OH)D levels but also to 

improve study outcomes (kidney and cardiovascular disease markers).  
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Glomerular Filtration Rate (GFR) 

Studies showed that diabetes and kidney disease are associated with low 

25(OH)D levels (Husemoen et al., 2012; Levin et al., 2007). Existing data 

indicate the relationship between hypovitaminosis D and mortality in individuals 

with chronic kidney disease (CKD) (Navaneethan et al., 2011). CKD is a 

predictor of vitamin D insufficiency/deficiency because the kidney is involved in 

the metabolism of vitamin D (Echida et al., 2012).  Findings from our study 

suggest the possible beneficial role of vitamin D3 supplementation on kidney 

function biomarkers in individuals with type 2 diabetes. Our study showed that 

individuals with type 2 diabetes had significantly improved kidney function by 

increasing CKD-EPI creatinine equation over time (pre-intervention = 84.6±18.4 

mL/min – post-intervention = 92.4±18.9 mL/min) in the 4,000 IU/d group and 

(pre-intervention = 94.2±17.5 mL/min to post-intervention = 97.9±18.0 mL/min) in 

the 6,000 IU/d group. The effect of vitamin D3 supplementation on markers of 

kidney function persisted after adjusting for major confounding variables only on 

the 4,000 IU/d group. This could be due to small number of participants in the 

6,000 IU/d group (n=24) and higher CKD-EPI creatinine values at baseline as 

compared to the 4,000 IU/d.  On the other hand, CKD-EPI creatinine - cystatin C 

equation indicated significant decrease over time (pre-intervention = 112.6±21.5 

mL/min to post-intervention = 98.6±24.0 mL/min) in the 4,000 IU/d group. There 

are several possible explanations for the different results from the eGFR 

equations. The study by Fan et al. (2014) compared the effectiveness of eGFR 

equations: CKD-EPI creatinine and CKD-EPI creatinine - cystatin C. Results 
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showed that CKD-EPI creatinine equation underestimated more individuals with 

elevated BMI as compared to the CKD-EPI creatinine - cystatin C equation. The 

CKD-EPI creatinine - cystatin C equation was more precise than CKD-EPI 

creatinine while estimating GFR values for those with diabetes and obesity. 

However, the study by Fan et al. (2014) have limitations. Pooled analyzed data 

from that study cannot distinguish between individuals with type 1 or type 2 

diabetes, the approaches used to estimate glomerular filtration rate, or factors 

that affected creatinine values.  

 

In a longitudinal study with a follow-up of over 4 years (n=1705) (De Boer et 

at., 2011), lower 25(OH)D levels were linked a faster change in eGFR rate loss 

among older adults, especially for those with 25(OH)D level below 15 ng/mL, 

diabetes and hypertension. Vitamin D3 supplementation (666 IU/d) for 6 months 

did not significantly change in eGFR values in either the intervention or control 

group and non-significant differences were found between study groups with 

CKD stages 3-4 (Molina et al., 2014). Vitamin D3 supplementation of 1000 IU/d 

versus a control for Canadian adults with later stages (3-5) of kidney disease 

study found no improvements in kidney function (GFR and albuminuria). 

Negative findings could be due to the mean 25(OH)D levels post-intervention 

being below the 30 ng/mL sufficiency and short duration of the supplementation 

(3 months) (Rucker et al., 2009). Two additional studies by Kim et al. (2011) and 

Basturk et al. (2011) found no significant changes in eGFR after vitamin D3 

supplementation. All the studies reported included participants in the later stages 
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of CKD 3-5 contrary to our study where we included participants with early 

stages of CKD (1-3). Early supplementation with vitamin D3 might provide a more 

valuable treatment and possibly delaying adverse kidney disease outcomes.  

  

 The National Kidney Foundation clinical guidelines indicated that individuals 

with CKD stages 3-4 and serum 25(OH)D levels (<30 ng/mL) to be treated with 

vitamin D2 instead of vitamin D3 (National Kidney Foundation, 2003). At the time 

(year 2003) when this guideline was written no controlled clinical studies were 

available comparing the safety and efficacy of vitamin D2 versus vitamin D3. 

Additionally, access to commercial high doses up to 50,000 IU are available for 

vitamin D2 (Houghton and Vieth, 2006). The dosage recommendation by the 

National Kidney Foundation clinical guidelines is according to the vitamin D 

status. Individuals with vitamin D deficiency [serum 25(OH)D levels (<5 ng/mL 

and 5-15 ng/mL)] should receive 50,000 IU/week for 4-12 weeks and then same 

dose monthly for 6 months. Individuals with vitamin D insufficiency [serum 

25(OH)D levels 16-30 ng/mL)] should receive 50,000 IU/month for 6 months 

(National Kidney Foundation, 2003). Nevertheless, previous studies 

demonstrated that supplementation with vitamin D2 were less consistent in 

reaching ideal serum 25(OH)D levels (> 30mg/mL) as compared to vitamin D3 

(Houghton and Vieth, 2006; Armas et al., 2004; Heaney et al., 2011). Several 

studies found a reduction in kidney disease markers using vitamin D analogues 

(paricalcitol) (Alborzi et al., 2008; de Zeeuw et al., 2010; Fishbane et al., 2009); 

however, vitamin D3 has been shown to be equally effective. The equal 
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effectiveness of vitamin D3 may be of importance since hypercalcemia has been 

observed with some vitamin D analogues (Moe et al, 2009). Vitamin D analogues 

are biologically active and individuals using them need to be monitored for 

hypercalcemia and hyperphosphatemia more closely than with vitamin D3 

(Kandula et al., 2011). There are no formal recommendations for vitamin D3 

supplementation for individuals with early CKD by the National Kidney 

Foundation. Still clarification and a more precise definition needs to be 

implemented for the vitamin D3 supplementation dosage, frequency, serum 

25(OH)D levels before intervention starts, and whether complications from kidney 

dysfunction can be prevented. Therefore, available guidelines from Kidney 

Disease Outcomes Quality Initiative (KDOQI) needs to be revised.   

 

Current study contributes to the scientific knowledge for understanding of the 

role of vitamin D3 supplementation on kidney function among minority groups. 

Early interventions could delay progression of the disease which would have a 

profound effect on lowering health care costs and burden to society as well as 

improving the quality of life (Jungers, 2002). Medical costs were doubled for 

individuals with kidney disease from a large Health Maintenance Organization 

(HMO) as compared to those without kidney disease (Smith et al., 2004). 

Therefore, approaches to manage kidney disease such as vitamin D3 

supplementation are important in clinical practice.   
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Microalbuminuria 

Reduction of urinary albumin levels is an important therapeutic goal that slow 

the progression of kidney dysfunction. Previous studies indicated that 

microalbuminuria was associated with cardiovascular disease and mortality in 

individuals with type 2 diabetes (Mogensen, 1984; Valmadrid et al., 2000). 

Microalbuminuria, abnormal increase in urinary albumin excretion, is an early 

sign of kidney dysfunction (Mogensen, 1984). In a prospective population-based 

study, individuals with type 2 diabetes (n=1,253) were followed for 7 years, 

microalbuminuria was linked to a 42% increase in the progression to 

nephropathy (Bruno et al., 2003). The usual course of microalbuminuria is 

progressive in individuals with type 2 diabetes (Bruno et al., 2003); therefore, 

early screening and treatment of microalbuminuria can reduce the risk for kidney 

dysfunction and possibly decrease the burden associated with diabetes 

complications.  

 

Several studies found an inverse association between 25(OH)D levels and 

albuminuria (de Boer et al., 2007; Skaaby et al., 2013; Isakova et al., 2011). Data 

from NHANES III that included (n=15,068) participants, found an inverse 

association between 25(OH)D levels and prevalence of albuminuria (de Boer et 

al., 2007). Furthermore, after excluding participants with macroalbuminuria from 

the statistical analysis, significant similar results were also found for 

microalbuminuria (de Boer et al., 2007). In a five-year follow-up study of a 

random sample of Caucasians (n=4,330), aged 30-60 years, low 25(OH)D levels 
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predicted higher urinary protein excretion (Skaaby et al., 2013). Hypovitaminosis 

D frequently occurs in minorities groups, especially in those with type 2 diabetes 

and kidney dysfunction. The clinical implications of monitoring microalbuminuria 

and 25(OH)D levels among individuals with type 2 diabetes may delay future 

adverse complications, especially among individuals with other concomitant 

conditions (i.e. hypertension).  

 

In our study, microalbuminuria did not improve over time by either dose of 

vitamin D3 supplementation. The findings from several studies corroborate our 

study results. In a randomized, double blind, clinical trial, fifty-two individuals 

[hemodialysis treated (n=27)/ non-hemodialysis treated (n=25)] with serum 

25(OH)D levels <20 ng/mL received vitamin D3 supplementation (40,000 

IU/week) or placebo. After 8 weeks, vitamin D3 supplementation did not 

significantly change urinary protein excretion (Marckmann et al., 2012). Urinary 

protein excretion showed no significant improvements in a Brazilian cohort 

(n=45) with CKD stages 3-4 that were supplemented with vitamin D3 (50,000 

IU/week) for 6 months (Garcia-Lopes et al., 2012). In contrast, several studies 

described that vitamin D3 supplementation reduce albuminuria. In a prospective 

study, individuals (n=63) with type 2 diabetes and CKD stages 2-4 were given 

vitamin D3 supplementation according to their serum vitamin D status. Results 

showed a reduction of albuminuria for those receiving vitamin D3 

supplementation (Kim et al., 2011). In the study by Molina et al. (2014), 

Caucasian older adult participants (n=101) with advance CKD (stages 3-4) 
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received either vitamin D3 supplementation (666 IU/d) or placebo for 6 months. 

Urinary albumin-to-creatinine ratio significantly decreased only in participants 

who received vitamin D3 supplementation. Improving kidney function in 

individuals with type 2 diabetes play a vital role in preventing cardiovascular 

disease and development of end-stage renal disease (ESRD). 

 

Blood Pressure 

This study demonstrated that vitamin D3 supplementation improved systolic 

blood pressure in the higher dose group (6,000 IU/d). Our study found a 

reduction in systolic blood pressure of approximately 11 mmHg (pre-intervention= 

146.2±22.1 mmHg – post-intervention= 135.0±17.8 mmHg) by the end of the 6 

months’ intervention. Results of this study are consistent with some previous 

studies. A randomized, double-blind, clinical trial investigated the effect oral 

vitamin D3 cholecalciferol (50,0000 IU/per week) on blood pressure among 

individuals with type 2 diabetes (n=30 intervention/ n=30 placebo). Thirty-two 

participants in the study had either serum 25(OH)D levels classified as deficient 

(n=5) or insufficient (n=27). Vitamin D3 supplementation (50,000 IU per week) 

reduced systolic and diastolic blood pressure from baseline (121.0±13.0 mmHg 

and 80.5±8.0 mmHg) to 12 weeks’ follow-up (110.0±9.0 mmHg, p=0.001 and 

76.3±7.0 mmHg, p=0.046 respectively), only in the intervention group (Nasri et 

al., 2014). The efficacy of 8 weeks of vitamin D3 (800 IU/d) and calcium 

supplementation (1200 mg) vs. calcium supplementation (1200 mg/d) on blood 

pressure was measured on elderly women (n=148) with 25(OH)D levels below 
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(20 ng/mL). A significant reduction in systolic blood pressure of 9.3% 

[(baseline=144.1±20.4 mmHg) and (8-week follow-up=131.0±16.9 mmHg)] was 

found in the intervention with vitamin D3 and calcium group as compared to 

calcium alone group [(baseline=140.6±14.7 mmHg) and (8-week follow-up= 

134.9±19.9 mmHg)]; however, no significant decrease in diastolic blood pressure 

was found (Pfeifer et al., 2001). Another study (Sugden et al., 2008) investigated 

the effect of vitamin D2 (100,000 single oral dose) supplementation vs. placebo 

on blood pressure in individuals with type 2 diabetes and low 25(OH)D (<20 

ng/mL). After 8-week follow-up, participants in the vitamin D2 group (n=17) had 

reduced systolic blood pressure by 14 mmHg compared to those in the placebo 

group (n=17); however, no significant changes were found for diastolic blood 

pressure.  

 

In contrast, results from other studies found no improvements in blood 

pressure after vitamin D3 supplementation. Findings from the DAYLIGHT trial, a 

double-blind, randomized controlled study, which included (n=534) participants 

with age range of 18-50 years old, 25(OH)D levels (≤ 25 ng/ml), and 

prehypertension and/or untreated stage 1 hypertension indicated no beneficial 

effect of vitamin D3 supplementation groups (400 IU/d or 4,000 IU/d) on systolic 

or diastolic blood pressure after 6 months of intervention (Arora et al., 2014). This 

study is one of the largest sampled (46% Whites, 48% Blacks and 6% other 

ethnicity) clinical trial conducted were the primary endpoint was blood pressure. 

In a randomized controlled, double-blind clinical trial, vitamin D3 supplementation 
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(a single oral dose of 100,000 IU) did not significantly reduce blood pressure 

during the 5-week duration in elderly adults during winter (n=95 intervention 

group, n=94 placebo group) (Scragg et al., 1995). Vitamin D3 supplementation 

(Schleithoff et al., 2006) (intervention group, n=42, 2000 IU + Calcium 500 mg/d) 

or (placebo group, n=51, placebo + 500 mg calcium/d) did not change systolic or 

diastolic blood pressure after 9 months’ intervention in individuals with congestive 

heart failure. In the Women’s Health Initiative Randomized Trial (Margolis et al., 

2008), postmenopausal women (n= 36 282) were given vitamin D3 (400 IU/d) + 

calcium (1000 mg/d) or placebo. After a median of 7-year follow-up, there were 

no significant differences between the intervention and placebo groups in systolic 

or diastolic blood pressure. A randomized double-blind clinical trial with 1-year 

duration (Zittermann et al., 2009), provided vitamin D3 (3320 IU/d - 5 drops of oily 

vitamin D) or placebo (5 drops of vitamin D-free oil) to n=200 healthy overweight 

individuals with mean 25(OH)D levels of 12ng/mL (n=100 each group). Results 

from this study showed no significant time and intervention interaction effects for 

systolic or diastolic blood pressure. Jorde et al. (2010) conducted double-blind 

clinical randomized clinical trial including 438 overweight or obese participants 

using two dosages of vitamin D3 and placebo. One vitamin D3 group received 

40,000 IU/week, the second vitamin D3 group received 20,000 IU/week and the 

third group received placebo. Additionally, all vitamin D3 groups and placebo 

received 500 mg of calcium/d. After 1-year of intervention, findings do not 

support the efficacy of vitamin D3 supplementation in reducing blood pressure.  
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Inconsistent findings from these clinical trials could be due to: 1) studies were 

conducted and/or analyzed using different ranges of vitamin D supplementation 

alone or combined with calcium; 2) age range and gender of the participants; 3) 

duration of the studies; 4) comorbidities and ethnic background of the 

participants and 5) covariates included in the statistical analyses (Pittas et al., 

2010; Witham et al., 2009; Jorde et al., 2010; Beveridge et al., 2015; Larsen et 

al., 2012; Witham et al., 2010; Forman et al., 2013; Pfeifer et al., 2001; Sugden 

et al., 2008; Margolis et al. 2008). In our study, significant differences in blood 

pressure at baseline between vitamin D3 supplementation groups (4,000 IU vs. 

6,000 IU/d) could have make the interpretation of findings complex. The 6,000 

IU/d vitamin D3 group started with significantly higher levels of systolic and 

diastolic blood pressure as compared to the 4,000 IU/d group. On the other hand, 

the 4,000 IU/d had a higher percentage of participants on hypertension 

medications at baseline. We cannot dismiss that hypertensive medications might 

have contributed to the decrease in blood pressure levels in either intervention 

group. Nevertheless, throughout the duration of the study any medication change 

by the participants were recorded and adjustment for medications were taken 

into consideration in the statistical analysis. Those in the 4,000 IU/d group might 

benefited less from vitamin D3 supplementation because they had well-treated 

blood pressure levels.   
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The mechanism on how vitamin D affects blood pressure is poorly 

understood. Nonetheless, it has been postulated that vitamin D could affect blood 

pressure by regulating through the renin-angiotensin-aldosterone (RAAS) system 

(Li et al., 2004; Pilz et al., 2009). Our study did not include RAAS as an outcome 

measurement.  

 

Despite the high prevalence of both vitamin D deficiency/insufficiency and 

hypertension among our minority population groups, there are no efforts to 

establish preventive measures that could benefit individuals by screening for 

25(OH)D levels and providing vitamin D3 supplementation. These results ought to 

encourage researches to further examine the clinical significance and 

implications of vitamin D3 supplementation on elevated blood pressure levels that 

could have benefits for individuals with type 2 diabetes. Because evidence is still 

inconclusive, our findings support the potential therapeutic role of vitamin D3 

supplementation as complementary treatment for blood pressure; however, more 

rigorous clinical trials with larger sample sizes are required before recommending 

vitamin D3 supplementation exclusively to treat hypertension.  
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CHAPTER V: SUMMARY AND CONCLUSIONS 

Vitamin D deficiency/insufficiency is still a public health concern particularly 

affecting minorities with type 2 diabetes; therefore, more public health awareness 

is required to prevent consequences of vitamin D deficiency/insufficiency by 

identifying potential risk factors and develop effective interventions. This clinical 

trial sought to clarify the effect of vitamin D3 supplementation on kidney function 

and cardiovascular disease markers which goes beyond the prevention of bone 

health. The study included a sample of Hispanics and African Americans with 

type 2 diabetes and hypovitaminosis D who were given two high dosages of 

vitamin D3 supplementation (4,000 IU/d and 6,000 IU/d). Although, we found 

significant changes in kidney and cardiovascular disease markers, 

supplementation with vitamin D3 longer than 6 months may be needed to 

determine sustained long term effects in kidney and cardiovascular disease 

markers. Vitamin D3 supplements are relatively inexpensive and safe and can be 

used as adjunct treatment option to improve kidney function and decrease blood 

pressure and consequent cardiovascular disease. Individuals with type 2 

diabetes and kidney dysfunction and high blood pressure could benefit from 

vitamin D3 supplementation, especially those with low levels of serum 25(OH)D 

levels. Clinical recommendations should contain screening and monitoring of 

serum 25(OH)D levels: including the measurement of serum 25(OH)D as a 

routine assay for high risk populations to provide health care professionals with 

the information required to recommend and treat, as well as offering the 

appropriate resources as preventive health benefits. 
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Our results have set the foundations for further examination of the 

mechanisms and metabolic pathways associating vitamin D status with kidney 

and cardiovascular disease. Further research could provide more appropriate 

means for translation of these findings into recommendations for individuals with 

CKD, hypertension and type 2 diabetes. The efficacy of vitamin D3 

supplementation as complementary therapy for CKD and blood pressure in 

minority and other ethnic groups needs further investigation in larger and longer 

duration randomized controlled trials. 
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CHAPTER VI: STRENGTHS AND LIMITATIONS 

Strengths  

Major strengths of the study include: The study included two minority groups 

(Hispanics and Blacks) with high prevalence of serum 25(OH)D levels 

deficiency/insufficiency and type 2 diabetes. We tested the safety of vitamin D3 

supplementation at two high dose levels: 4,000 IU/d and 6,000 IU/d. Throughout 

the duration of the study, no adverse effects or signs of toxicity were observed 

[IOM tolerable upper limit intake (4,000 IU/d)] for 6 months. These two doses 

were safe and effective in increasing participant’s serum 25(OH)D levels in a 

population sample who started the study with hypovitaminosis D. We had a low 

number of drop-outs [(in the 4,000 IU/d group, n=1) and (in the 6,000 IU/d group, 

n=5)] and low non-compliance to the vitamin D3 supplementation [(in the 4,000 

IU/d group (n=3), and in the 6,000 IU/d group (n=2)]. We took in consideration 

several measurements and confounder variables that could affect the outcomes 

such as diet, sun exposure, body mass index (BMI), medications, years with 

diabetes where other studies were lacking. Our study recorded any medication 

change throughout the duration of the study and adjusted for that in the statistical 

analyses. We carefully selected the inclusion criteria to test our outcomes [(i.e. 

participants with serum 25(OH)D considered deficient and insufficient, CKD 

stages 1-3, etc.]. For the statistical analyses, we used linear mixed models since 

we had a longitudinal data with unbalanced number of participants in each study 

group (in the 4,000 IU/d group, n=39 and in the 6,000 IU/d group, n=24).   
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Limitations 

This study had several limitations. The study sample was a convenience 

sample and was not randomly selected from the general adult population in 

Miami-Dade County; therefore, results of this study cannot be generalized or 

extrapolated to the entire U.S. adult population nor Miami-Dade County. Non-

randomized groups could create selection bias because of the non-random 

assignment. The advantage of this convenience sample was its large minority 

representation; it was recruited from two clinics that have culturally diverse 

populations in Miami-Dade County. The relatively small sample size and greater 

numbers of female participants were other limitations of the study. Additionally, 

not having sufficient number of participants prevented the investigators to 

measure differences between ethnic groups (only few Black participants), and 

the uneven numbers of participants in each vitamin D3 supplementation group 

may have decreased the statistical power of the study. The study lacked a 

control group - changes observed in the pre- and post-test might be due not only 

to the supplementation with vitamin D3, but to other factors such as change in the 

diet, sun exposure, or vitamin D supplements; however, we assessed for 

changes in these parameters during the study. We did not assess which 

mechanisms underlining vitamin D3 function were acting in kidney disease or 

blood pressure and how they were affected or changed by supplementation. 

Although trained interviewers who were bilingual in English and Spanish were 

present to administer the questionnaires to assess dietary habits of vitamin D, 

participants might under- or overestimated their intakes. There was more than 
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50% of participants in each vitamin D3 supplementation group taking 

hypertension medications, which possibly influenced blood pressure outcome 

over time; however, changes in medications were recorded and medication 

usage was used as a control variable in the analysis. Additionally, we advised 

participants to keep their medication use constant during the duration of the 

study, as prescribed by their primary physician. Lastly, conclusions beyond the 6 

months’ supplementation could not be drawn to understand the impact of long 

term effects of vitamin D3 supplementation. Studies with longer duration of 

supplementation and follow-up maybe needed to see these effects of vitamin D3 

supplementation in this sample or other ethnic groups. 
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CHAPTER VII: FUTURE RESEARCH 

It will be important to comprehend the role and impact of high levels of 

vitamin D3 supplementation in larger cohorts with different geographical and 

ethnic backgrounds. Additionally, it will be important to examine longitudinal 

trajectories of kidney and cardiovascular disease markers, especially in high risk 

populations with existing comorbidities. Further evidence will allow for a greater 

understanding of the influence of changes in serum 25(OH)D values on kidney 

function, cardiovascular disease markers and type 2 diabetes. Investigation of 

these mechanisms and metabolic pathways are critical for developing effective 

interventions for the translation of findings into recommendations for care among 

individuals with type 2 diabetes. As the source for future research, findings from 

this study may have public and clinical health implications that could contribute to 

the expansion of ethnic-tailored interventions to reduce health disparities and 

prevent the high incidence of these chronic diseases in minorities.  
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