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Scale and spatial consistency of specialization
in an endemic and abundant freshwater diatom
from the Caribbean Basin

Viviana Mazzei1,2 and Evelyn Gaiser1,3

1Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami,
Florida 33199 USA

Abstract: We used populations of an abundant diatom in calcareous microbial mats, Encyonema evergladianum,
from 3 karstic wetlands in the Caribbean Basin to test whether the relative abundance of this species is more
strongly driven by macrohabitat features (landscape-scale gradients of conductivity and P availability) or mat mi-
crohabitat characteristics (biomass and mineral content), and whether specialization is maintained in populations
from geographically separated but environmentally similar wetlands. We found that, across Caribbean wetlands,
the abundance of E. evergladianum was most strongly tied to microbial-mat biomass, suggesting that this species
is specialized for, and probably contributes to, the unique conditions of these mats. However, the magnitude and
importance of micro- and macroscale drivers on E. evergladianum abundance differed among wetlands, which im-
plies that this diatom has differentiated ecotypically across its range. We found no morphological correlates to po-
tential ecotypes, making it difficult to distinguish between ecotypes without molecular studies. We also searched
for an engineering role of E. evergladianum in mat structure by examining freeze-fractured mat fragments under
scanning electron microscopy, but found no morphological evidence for functional contributions to mat cohesion.
Encyonema evergladianum is a consistently strong indicator of oligotrophic, freshwater conditions that promote
calcareous microbial mats in coastal karstic wetlands of the Caribbean. Variability in the scales of specialization by
microbial species requires calibration of quantitative, abundance-based approaches to habitat assessment in the
context of individual wetlands, particularly in these wetlands where ecosystem-scale changes are abrupt in re-
sponse to climate and anthropogenic changes in nutrient delivery and salinity.
Key words: ecological specialization, ecotypes, Encyonema evergladianum, diatom indicators, karstic wetlands, Ca-
ribbean Basin

The distribution and abundance of species are controlled
by environmental, spatial, and historical factors, the relative
importance of which varies according to the shape of envi-
ronmental gradients, taxon life-history strategies, and the
spatiotemporal scales of metapopulation dynamics (Chase
and Myers 2011, Weiher et al. 2011). For habitat specialists,
abundance patterns are thought to be under stronger con-
trol by environmental rather than dispersal-related or his-
torical processes because their narrow environmental toler-
ances restrict them to certain habitat features or conditions
(Kolasa and Romanuk 2005, Pandit et al. 2009, Devictor et al.
2010). Relative abundance provides a measure of species
performance and can be used to define specialization when

abundance is greatest within a narrow range of environmen-
tal and biological conditions (Futuyma and Moreno 1988).
Specialization also can be defined by the species’ role in or
effect on its environment (i.e., functional specialization), as
with ecosystem engineers (Devictor et al. 2010). The con-
finement of specialist species to certain environmental con-
ditions or habitats makes them potentially powerful indi-
cators of changes in environmental conditions and habitat
availability, including those caused by anthropogenic pres-
sures, such as climate change and eutrophication (Soininen
2007). However, a clear understanding of the drivers of spe-
cialization and the scale at which they operate is critical to
using specialists as indicators of environmental change. Fur-
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thermore, extrapolation of indicators developed in one lo-
cation to other similar environments is often desirable but
requires knowledge about the maintenance of specializa-
tion across space.

Key environmental factors influencing the abundance
and distribution of species can occur at different scales and
may have cascading effects on one another making it diffi-
cult to determine which factors exert the strongest control
on species performance and, thus, define its specialization.
For example, in the Florida Everglades and similar karstic
wetlands throughout the Caribbean Basin, P availability
and conductivity are landscape scale (macroenvironmental)
drivers of the quantity (i.e., biomass), quality (i.e., mineral
content), and species composition of the characteristic cal-
careous microbial mats found throughout these systems.
However, these 2 macroenvironmental drivers interact with
characteristics of the mat itself (microhabitat drivers) that
regulate and are regulated by mat-dwelling organisms and
their interactions. The integrity of calcareous mats and their
unique species composition depend on preservation of the
natural environmental conditions found in karstic wetlands,
particularly low conductivity and P (Rejmánková and Ko-
márková 2005, Gaiser et al. 2006, 2011, Slate and Stevenson
2007, Hagerthey et al. 2011). These landscapes are naturally
P-limited systems with low conductivity that exhibit a gra-
dient of increasing P and conductivity from interior fresh-
water marshes to the coast. However, saltwater intrusion
coupled with water-management practices are altering this
natural gradient with important consequences for the eco-
logical communities found there (Childers et al. 2006, Price
et al. 2006, La Hée 2010, Saha et al. 2011, La Hée and Gaiser
2012). Calcareous microbial mats are especially sensitive to
elevated P concentrations, which trigger biogeochemical
processes within the mats that cause them to break down
and eventually to be replaced by noncalcitic filamentous
mats or biofilms with different algal communities (Gaiser
et al. 2006, 2011, Hagerthey et al. 2011). Calcareous micro-
bial mats are usually absent in areas closer to the coast
where conductivity is higher, but their absence from these
areas has not been directly linked to conductivity and may
be a result of the relatively higher P concentrations that
occur there than in interior marshes (Childers et al. 2006).
Elevated P and conductivity are associated with decreased
abundance of calcareous microbial mats and replacement
by noncalcitic mats, but the effect of these macroenviron-
mental drivers on species composition, particularly of the
diatom community, can be confounded by their effect on
the structure of the mat microhabitat in which these spe-
cies live (i.e., microhabitat-scale drivers).

Shifts in microbial mat community composition, partic-
ularly the diatom assemblages, have been associated with
changes in P and conductivity, but the degree to which
the relative abundance of these diatoms reflects their prefer-
ences and tolerances for these macroenvironmental drivers
or the cascading effects of these drivers on mat structure

and function remains uncertain. P enrichment can initiate
compositional changes associated with mat breakdown in-
cluding the loss of calcium-carbonate precipitating cyano-
bacterial species (i.e., Schizothrix and Scytonema) that form
the backbone of calcareous mats and diatoms that contribute
to mat cohesion (i.e.,Mastogloi acalcarea (syn.M. smithii);
Gaiser et al. 2006, 2011, Hagerthey et al. 2011). Elevated
conductivity also creates unfavorable conditions for cal-
careous mat formation, as evidenced by their absence from
coastal marshes, because changes in ion concentrations al-
ter mat chemistry and trigger bacterial and algal commu-
nity composition shifts to species that form organic mats
and biofilms. However, these effects have not been tested
experimentally. Calcareous microbial mats contain several
endemic diatom species, some of which play important
roles in mat formation and cohesion (Slate and Stevenson
2007, Gaiser et al. 2010). The distribution and abundance
patterns of these endemic species suggest specialization
for the chemical and biological conditions found in these
microhabitats indicating that at least some of these species
respond to the loss of calcareous mat habitat, driven by
the replacement of ecosystem-engineer species that play
a functional role in mat formation rather than by elevated
P and conductivity directly. To understand specialization
properly in these diatom communities and in general, we
must address whether these apparent niche restrictions
are caused directly by tolerances for factors acting at the
macroenvironmental scale or indirectly through the effects
of those drivers on the immediate microhabitat experi-
enced by these microorganisms.

The consistency of the drivers across geographically sep-
arated but environmentally similar habitats also must be
addressed to extend species-based metrics of environmen-
tal change developed in one location to other ecologically
similar ecosystems. Extrapolation of habitat preferences
of a specialist in one location to other suitable habitats de-
pends on how and whether preferences are preserved across
the regional population. Their environmental specificity im-
plies that specialist species respond to environmental gra-
dients consistently across their geographic range, but the
environmental or biological circumstances under which spe-
cialization originated may have differed in some areas of the
species’ range causing the population to diverge into sub-
populations with differing levels of specialization (Futuyma
and Moreno 1988, van Tienderen 1991, Bolnick et al. 2003).
This process, called ecotypic differentiation, occurs through
the evolution of genotypes or when existing genetic variabil-
ity within a population is differentially expressed as environ-
ments change over time and can result in nonconformity of
ecological preferences or morphologies among subpopula-
tions (Sultan and Spencer 2002, Poisot et al. 2011). Non-
conformity could be a problem if species-based ecological
predictions developed for one ecosystem are applied else-
where because subpopulations from different locations can-
not be expected to respond in the same ways to changing
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environmental conditions. For example, diatom communi-
ties are used commonly as ecological indicators of nutrient
enrichment and elevated conductivity in the Everglades
where natural water quality is being altered by saltwater in-
trusion caused by sea-level rise and water-management
practices (Frankovich et al. 2006, Wachnicka et al. 2010,
La Hée and Gaiser 2012, Bramburger et al. 2013, Lee et al.
2013). However, similar metrics have not been well estab-
lished in other karstic wetlands in the Caribbean Basin. Un-
derstanding whether diatom indicators respond to the same
drivers across karstic wetlands in the Caribbean Basin or if
specialization is context dependent would allow us to extend
Everglades-based metrics to encompass the entire region.
Such knowledge also would contribute to an understanding
of ecotypic differentiation in microorganisms that are easily
dispersed, such as diatoms. Because the regional diatom spe-
cies pool of the Caribbean Basin probably is not limited by
dispersal given the relatively short distances among karstic
wetlands in the region (<1500 km; Potapova and Charles
2002, van der Gucht et al. 2007, Bennett et al. 2010), differ-
ences in specialization among populations from individual
wetlands can be assumed to reflect environmental differences
rather than dispersal barriers. Furthermore, the possibility
for ecotypic differentiation without morphological corre-
lates must be appreciated in studies of ecological indicator
species that are based solely on morphological traits, such
as diatoms whose identification is based largely on frustular
ornamentation.

We used populations of an abundant and endemic mat-
dwelling diatom, Encyonema evergladianum, from sub-
tropical and tropical karstic wetlands to test 3 hypotheses.
1) Microhabitat-scale features (i.e., mat ash-free dry mass
[AFDM] and mat mineral content) are stronger determi-
nants of the relative abundance of mat-dwelling diatom
species than macroenvironmental drivers (i.e., landscape
conductivity and P gradients). We propose that specializa-
tion at the micro scale is a result of the integration of macro-
scale environmental (abiotic) gradients with microhabitat
conditions mediated by biological interactions. 2) Micro-
habitat specialization has been maintained across karstic
wetland landscapes in the Caribbean Basin because the pre-
sumed environmental similarity and capacity for dispersal
among karstic wetlands should prevent divergent selection
into separate ecotypes. If this hypothesis is false, we expect
that long-term ecological differences among karstic wet-
lands in the Caribbean Basin have caused populations to di-
verge into distinct ecotypes that can be differentiated based
on morphology. We tested this hypothesis by comparing
morphometric data of E. evergladianum from each wetland
to assess whether populations exhibit distinct morphologies
based on location. 3) Mat-dwelling diatoms whose abun-
dance is most strongly related to microhabitat quantity and
quality can be expected to play a role in the creation and
maintenance of the mat microhabitat structure given that

dominant species often influence their surroundings. We
investigated the engineering role of E. evergladianum in
calcareous microbial mats by examining scanning electron
micrographs of freeze-fractured mat fragments, which cap-
ture the ultra-ecology and morphology of this diatom.

METHODS
Encyonema evergladianum was first described by Kram-

mer (1997) from samples collected in the Florida Ever-
glades (but see Mazzei 2014). It has been described as en-
demic to tropical and subtropical karstic wetlands with a
particularly high affinity for the calcareous microbial-mat
microhabitats found in these ecosystems (Slate and Ste-
venson 2007, La Hée and Gaiser 2012). It is reduced in
abundance when calcareous mats disappear in the presence
of high conductivity and P and, therefore, has been iden-
tified as a valuable indicator of oligotrophic, freshwater
conditions (Slate and Stevenson 2007, Gaiser et al. 2006,
Wachnicka et al. 2010). These characteristics make it an
ideal organism with which to address the ecological ques-
tions we pose. The results of our research will help establish
the strength of this species as a regional bioindicator for
freshwater karstic wetlands in the Caribbean Basin that are
threatened in similar ways by saltwater intrusion, freshwa-
ter diversion, and nutrient enrichment (Gaiser et al. 2015).

Scale and maintenance of drivers of specialization
across wetlands

We investigated specialization for drivers operating at
different scales by examining the response of E. evergla-
dianum relative abundance to 2 macroenvironmental driv-
ers, conductivity and mat total P (TP) concentration, and
2 micro-scale drivers, mat AFDM and mineral content, in
3 karstic wetlands of the Caribbean Basin: the Everglades
(Florida, USA), SianKa’an Biosphere Reserve (Yucatan,Mex-
ico), and the New River Lagoon (Belize). We used mat TP
to estimate TP in the environment and, therefore, we con-
sider mat TP a macroenvironmental driver in our paper.
Mat TP can be a more sensitive gauge of P loading than
concentrations in the water column because P inputs are
taken up rapidly by microbial mats and other vegetation,
and it is virtually undetectable in the water column (Gaiser
et al. 2004). Mat areal AFDM represents the amount of or-
ganic biomass per unit area available for occupation by di-
atoms and other organisms, and we used it as a measure of
habitat availability. We used % mat mineral (i.e., inorganic)
content as a proxy for mat calcareousness because mats
with higher mineral content also have high calcium carbon-
ate concentrations. Samples were collected during the wet-
test time of year along freshwater-to-coastal gradients of in-
creasing P availability and conductivity from 12 sites in the
Everglades (2013), Yucatan (2006), and Belize (2007) for a
total of 36 sites (see summary in La Hée and Gaiser 2012).
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At each site, we measured conductivity (lS/cm) with
a YSI 30 Pro meter (Yellow Springs Inc., Yellow Springs,
Ohio) and harvested microbial mats from a 1-m2 quadrat.
We placed the harvested material in a perforated graduated
cylinder to drain excess water and measured total mat bio-
volume (mL/m2). We placed a 120-mL subsample of the
total harvested material in a plastic sample bag, transported
it back to the laboratory on ice, and stored it in a 2207C
freezer until processed. We thawed samples and transferred
them to clean Tupperware dishes where plant material, rocks,
or other fragments were removed using forceps. We ho-
mogenized the cleaned periphyton in a 500-mL beaker
with a hand-held blender. The volume of the homogenized
sample was recorded to account for dilution with deionized
(DI) water used to facilitate cleaning and homogenizing the
sample. We placed the beaker on a stir plate and subsam-
pled for TP content, biomass, and E. evergladianum relative
abundance.

We placed the biomass subsample in a drying oven at
807C for ≥48 h to obtain a dry mass (DM; g) measurement
and then in a furnace where it was combusted at 5007C
for 1 h to obtain an ash (mineral) mass (g). We calculated
AFDM, organic biomass, by the loss-on-ignition method
as the difference between the ash mass and the total DM
and standardized to area (g/m2) by scaling the subsample
biomass to the total area sampled and correcting for dilu-
tion with deionized (DI) water during the cleaning process.
We calculated mat mineral content as the % ash mass of
the total DM. We dried the TP subsamples at 807C and
pulverized them with a mortar and pestle. We processed
a known amount of each subsample based on colorimetric
analysis to estimate TP concentration, expressed as lg/g mat
DM, following the methods of Solorzano and Sharp (1980).

We cleaned the diatom subsamples of mineral debris
and organic matter with the sulfuric acid oxidation methods
published by Hasle and Fryxell (1970). We pipetted a known
volume of cleaned diatom samples onto glass coverslips,
permanently mounted them on microscope slides with Na-
phrax(PhycoTech,St. Joseph,Michigan)mountingmedium,
and viewed them under a compound light microscope. We
identified E. evergladianum valves among ≥500 diatom valves
counted along random transects at 600� magnification
under oil immersion.

We organized the data into 4 groups for statistical anal-
ysis: Everglades, Belize, Yucatan, and the 3 locations com-
bined, and used 1-way analysis of variance (ANOVA) test
for differences in E. evergladianum abundance, TP, con-
ductivity, periphyton AFDM, and mineral content among
the 3 locations. When significant differences were present,
we used Tukey’s post hoc test to identify which locations
differed. We created Pearson correlation matrices for the
Everglades, Belize, and Yucatan data sets to explore the in-
dependent relationships among all 4 variables in each wet-
land. We then used multiple linear regressions for each of

the 4 data sets to assess which variable(s) best explained
E. evergladianum abundance at the local scale of individual
wetlands and at the regional scale of the Caribbean Basin
(combined data set). Conductivity, TP, and AFDM were
log(x)-transformed to improve linearity and 2 extreme con-
ductivity outliers were removed from the Yucatan data set.
Statistical analyses were performed in R (version 3.1.2; R
Project for Statistical Computing, Vienna, Austria) and SPSS
(version 23; IBM, Armonk, New York).

Morphological ecotypes
We compared morphometric data from each of the 3 lo-

cations to assess whether populations of E. evergladia-
num from different locations express distinct morpholo-
gies that reflect possible ecological difference among them.
We measured taxonomically diagnostic morphological fea-
tures, including length (L), width (W), L∶W ratio, striae
density, and dorsal valve curvature, for 35 individuals from
each location, and we attempted to capture the widest range
of valve sizes.We calculated curvature with themethods given
by Bixby and Zeek (2010). All morphometric measurements
were made from digital images taken through a light micro-
scope (Axioskop 2; Zeiss, Thornwood, New York) equipped
with differential interference contrast and a digital camera
(DFC425; Leica,Wetzlar,Germany).Digital imageswere an-
alyzed and prepared for publication using GIMP 2.8.10 (The
GIMP team; www.gimp.org). Nonmetric multidimensional
scaling (NMDS) and analysis of similarity (ANOSIM) were
performed using PRIMER 6 (PRIMER-E, Albany, Auckland,
New Zealand) to assess whether individuals of E. evergla-
dianum form significantly different groups corresponding
to the Everglades, Belize, and Yucatan locations based on
frustular morphology. Vectors were fitted onto the ordina-
tion to visualize which morphological features are driving
any observed clustering.

Functional specialization within the microhabitat
We investigated potential functional specialization in

E. evergladianum by examining scanning electron micro-
graphs of freeze-fracturedmat fragments to search for physi-
cal evidence that this diatom contributes tomicrohabitat for-
mation; e.g., mucilage secreting pores, mucilaginous sheaths,
stalks, or other structures that might contribute tomat cohe-
sion. We fixed calcareous microbial mats collected from the
12 Everglades sites in 2% glutaraldehyde and stored them in
20-mL scintillation vials until processed. Mat samples from
the Belize and Yucatan site were unavailable for scanning
electron microscope (SEM) analysis. We prepared the mats
for the SEMby first decanting the glutaraldehyde andwash-
ing the samples with DI water before freezing the samples
in liquid N and fracturing them with a hammer and chisel.
We transferred the fragments back to the scintillation vials
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where they were dehydrated in a series of increasing con-
centrations (40, 60, 80, and 100%) of ethyl alcohol. We fur-
ther dehydrated the samples by critical-point drying in a
Tousimis samdri-PVT-3D critical point dryer (Tousimis®,
Rockville, Maryland) to preserve the 3-dimensional struc-
ture of the mats. We mounted the dehydrated samples on
stubs and coated them with Au for observation with the
SEM (JEOL JSM 5900LV; Florida Center for Analytical Elec-
tron Microscopy, Florida International University, Miami,
Florida). In addition, we observed live specimens of E. ever-
gladianum from wet mounts of diatom samples from each
of the 3 wetlands to search for evidence of functional spe-
cialization that may have been destroyed during the prepa-
ration of samples for SEM analysis. For example, nonmotile
species of Encyonema often grow in colonies within muci-
laginous tubes that potentially contribute to mat structure
and cohesion. However, the growth form of E. evergladia-
num is not known and is important in understanding the
role of this species in microbial mat engineering.

RESULTS
Scale and maintenance of drivers of specialization
across wetlands

Mean E. evergladianum abundance did not differ among
the 3 karstic wetlands (Fig. 1A). Conductivity was signifi-
cantly higher in the Yucatan than the other 2 wetlands,
but all 3 locations had similar values of mat TP (Fig. 1B,
C). Periphyton from the Everglades did not have signifi-
cantly higher mineral content than either other location,
but AFDMwas significantly greater in the Everglades than
in the Yucatan and Belize (Fig. 1D, E).

Pearson correlations revealed that the Everglades, Be-
lize, and Yucatan wetlands have different environments with
unique interactions among drivers (Table 1). Mat mineral
content was negatively correlated with mat TP at all 3 lo-
cations and with conductivity only in the Everglades. Con-
ductivity and mat TP were positively correlated in the
Everglades and negatively correlated in the Yucatan. The
correlations among E. evergladianum abundance and en-
vironmental drivers were not consistent across the 3 loca-
tions (Table 1). Encyonema evergladianum abundance was
negatively correlated with mat TP and positively correlated
with mat mineral content (mat calcareousness) and AFDM
in the Everglades and Belize but not in the Yucatan. En-
cyonema evergladianum abundance and conductivity were
negatively correlated in the Everglades and the Yucatan.

The multiple linear regression analyses indicated that
E. evergladianum abundance responded more strongly to
microhabitat availability (periphytonAFDM) than tomacro-
environmental factors at the regional scale, but this response
was not always consistent at the local scale of individual wet-
lands (Table 2). AFDM was the strongest driver of abun-
dance in Belize and the Everglades, but not in the Yucatan

where conductivity, followed by TP, had the strongest influ-
ence on relative abundance (Fig. 2A–D, Table 2).

Morphological ecotypes
The ANOSIM and post hoc test on E. evergladianum

frustular morphology provided evidence for the existence
of morphological ecotypes among the 3 populations. The
ANOSIM was significant (R2 5 0.174, p5 0.001) and pair-
wise comparisons showed that specimens from the Ever-
glades, Belize, and Yucatan were all significantly different
from one another ( p < 0.05). However, based on the regres-
sion analyses, we expected only the Yucatan population to
express significantly different morphology from the other
2 wetlands. The unexpected significant morphological dif-
ferences between the Everglades and Belize populations do
not appear to have an ecological basis given that the regres-
sion analysis did not reveal ecotypic differentiation in these
populations. The NMDS plot shows considerable overlap
among wetlands, the separation of Everglades specimens
from Belize and Yucatan specimens is clear and is supported
by the results of the ANOSIM, which established that the
Everglades population is more dissimilar from the Belize
and Yucatan populations than these 2 are from each other
based on themorphological vectors fitted onto the ordination
(Fig. 3). Specimens from the Everglades have longer and
wider valves than those from Belize and Yucatan (Fig. 4A–
C, Table 3).

Functional specialization within the microhabitat
Encyonema evergladianum in calcareous microbial mats

(Fig. 5A) was embedded in the extracellular polymeric sub-
stance (EPS) matrix that cements the mats into cohesive as-
semblages (Fig. 5B). Contrary to our expectation, we did
not observe attachment structures or structures producing
extracellular mucilage that could contribute to mat cohe-
sion, or any evidence of calcium carbonate formation along
its margins (Fig. 5C, D). Wet mounts of the diatom samples
provided observations of live E. evergladianum specimens
when viewed under the light microscope. In these wet mounts,
we did not observe colonies of E. evergladianum growing in
tubes. Instead, this species was highly motile, which may
explain the lack of attachment structures.

DISCUSSION
Our results suggest that the relative abundance of the

regional E. evergladianum population is most strongly driven
by microscale features of the local habitat, particularly cal-
careous microbial-mat biomass, an important ecosystem
component of karstic, freshwater wetlands. However, sub-
populations from the 3 wetlands, particularly the Yucatan,
did not respond consistently to the environmental drivers
considered in our study. This result suggests that divergent
selection may have led to the evolution of ecotypes within
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the Caribbean Basin. Morphological differences among the
3 subpopulations did not reflect the ecological difference
observed in the Yucatan subpopulation. Furthermore, we
did not observe any structures that would confer an engi-
neering role in calcareous periphyton mat construction or
maintenance in E. evergladianum and, therefore, we found
no evidence of functional specialization. The occurrence of
ecotypic differentiation in diatom species, despite their lack
of significant dispersal barriers on intermediate spatial scales
and the absence of morphological correlates to help identify
ecotypes has important implications for the use of diatoms

in ecosystem assessments to infer or predict environmental
conditions on both regional and local scales.

Encyonema evergladianum is considered an indicator
species of low P and conductivity in the Everglades (Gaiser
et al. 2006, Wachnicka et al. 2010, Frankovich and Wach-
nicka 2015) and other karstic wetlands of the Caribbean
(La Hée and Gaiser 2012). However, we hypothesized that
the decline in E. evergladianum abundance along gradients
of increasing P and conductivity results from the replace-
ment of calcareous microbial mats by noncalcareous mats
at the high end of these gradients, rather than to these en-

Figure 1. Box-and-whisker plots for Encyonema evergladianum abundance (A), conductivity (B), periphyton total P (TP)
(C), periphyton mineral content (D), and periphyton ash-free dry mass (AFDM) (E) for Belize, Everglades, and Yucatan. Lines in
boxes are medians, box ends are quartiles, whiskers are max and min values, circles are outliers, and asterisks are extreme
outliers. Boxes with the same lowercase letter are not significantly different ( p ≥ 0.05).
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vironmental variables directly. Consistent with other stud-
ies, we found that high concentrations ofmat TP are associ-
ated with decreased mat biomass at all 3 locations (Gaiser
et al. 2006, La Hée and Gaiser 2012). However, calcareous
mat biomass was negatively affected by elevated conduc-
tivity only in the Everglades. This finding probably is a con-
sequence of elevated P in coastal waters of the Everglades

(Childers et al. 2006) rather than of conductivity directly,
especially considering that conductivity did not have a neg-
ative effect on mat biomass in the Yucatan or Belize, where
conductivity and TP were not correlated. As expected, the
low abundance of mat microhabitat when P was elevated
had a stronger influence on the relative abundance of the
regional E. evergladianum population than its presumed

Table 1. Correlations between Encyonema evergladianum % relative abundance, total P (TP), ash-free dry mass (AFDM), % mineral
content, and conductivity for each region given by Pearson correlation coefficients. * 5 p < 0.05.

Variable

Everglades Belize Yucatan

Mineral
(%)

Abundance
(%)

log
(TP)
(lg/g)

log
(AFDM)
(g/m2)

Mineral
(%)

Abundance
(%)

log
(TP)
(lg/g)

log
(AFDM)
(g/m2)

Mineral
(%)

Abundance
(%)

log
(TP)
(lg/g)

log
(AFDM)
(g/m2)

Abundance (%) 0.71* 0.88* 0.10

log(TP) (lg/g) 20.68* 20.76* 20.80* 20.82* 20.61* 0.00

log(AFDM)
(g/m2)

0.66* 0.85* 20.85* 0.87* 0.96* 20.86* 0.83* 0.04 20.69*

log(conductivity)
(lS/cm)

20.56* 20.62* 0.86* 20.86* 0.57 0.48 20.05 0.35 0.51 20.71* 20.73* 0.12

Table 2. Results of the multiple linear regressions on Encyonema evergladianum % relative abundance against total P (TP),
conductivity (cond), ash-free dry mass (AFDM), and % mineral content for the combined data set and each individual wetland.
SE 5 standard error. * 5 p < 0.1, ** 5 p < 0.05.

Region Adjusted R2 F p Predictors

Unstandardized coefficient
Standardized
coefficient

t pb SE b

Combined 0.582 11.78 0.000 (Constant) 46.715 35.867 1.302 0.204

log(TP) 29.164 13.332 20.128 20.687 0.498

log(Cond) 212.41 8.95 20.186 21.387 0.177

log(AFDM)* 11.361 5.779 0.406 1.966 0.060

Mineral 0.352 0.21 0.335 1.677 0.105

Everglades 0.725 8.264 0.009 (Constant) 2133.501 91.187 21.464 0.187

log(TP) 217.458 20.177 20.320 20.865 0.416

log(Cond) 53.056 33.524 0.579 1.583 0.158

log(AFDM)** 29.707 11.255 0.950 2.639 0.033

Mineral 0.171 0.199 0.193 0.855 0.421

Belize 0.925 34.698 0.000 (Constant) 26.145 52.119 20.118 0.909

log(TP) 240.780 32.106 20.366 21.270 0.245

log(Cond) 41.806 22.509 0.345 1.857 0.106

log(AFDM)** 28.938 8.087 0.730 3.579 0.009

Mineral 20.345 0.441 20.240 20.783 0.459

Yucatan 0.895 15.99 0.023 (Constant) 297.547 43.943 6.771 0.007

log(TP)** 243.522 12.242 20.739 23.555 0.038

log(Cond)** 251.504 8.957 21.369 25.750 0.010

log(AFDM)* 220.744 6.915 20.387 23.000 0.058

Mineral 0.483 0.229 0.333 2.115 0.125
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Figure 2. Partial regression plots with confidence intervals of significant predictors of Encyonema evergladianum abundance
in Belize (AFDM) (A), Everglades (AFDM) (B) Yucatan (conductivity) (C), and the 3 locations combined (AFDM) (D). AFDM 5
ash-free dry mass.

Figure 3. Nonmetric multidimensional scaling ordination of morphological data showing specimen groupings by location.
L∶W 5 length∶width ratio.



requirements for low conductivity and P. This finding is
supported by results of other studies in which microhab-
itat specialization was demonstrated in microorganisms.
For example, Besemer et al. (2012) studied community as-
sembly in stream biofilm microhabitats and found that

biofilm community structure was not a stochastic product
of random colonization by microbes from the overlying
water into the biofilm. Instead, the biofilm acted as a fine-
scale environmental filter that selected for a specific biofilm
community.

Despite the apparent response of the regional E. ever-
gladianum population tomicrohabitat availability, the 3pop-
ulations did not respond to the same drivers at the local
scale. Unlike the Everglades and Belize populations, where
microbial mat AFDM was the strongest predictor of abun-
dance, the Yucatan population responded most strongly
to conductivity and mat TP. Furthermore, inconsistent in-
teractions between predictor variables within individual
wetlands indicated that their environments differ to some
degree, despite reports of environmental and floristic sim-
ilarity among karstic wetlands in the Caribbean (Estrada-
Loera 1991, La Hée 2010, Gaiser et al. 2010). Therefore,
at the local scale, specialization appears to be context de-
pendent, such that historical or extant environmental con-
ditions at each locationmay have caused ecotypic differen-
tiation in this diatom.

Ecotypes evolve because of environmental heterogene-
ity or dispersal limitation (Whitaker 2006, Lee and Olds
2011). However, dispersal barriers are unlikely to exist for
diatoms at the distance between karstic wetlands in the
Caribbean Basin. Evidence for dispersal limitation of mi-
croorganisms has been mounting (Whitaker et al. 2003,
Vanormelingen et al. 2008), but dispersal limitation is highly
scale-dependent and most investigators have found that it
plays an important role only at large spatial scales (van der
Gucht et al. 2007, Potapova and Charles 2002). For exam-
ple, Bennett et al. (2010) found that dispersal limitation is
important for diatoms only at the intercontinental scale,
whereas at the regional scale (<1,000,000 km2) a single en-
vironmental factor explained 5� more of the community
variation than space. The maximum distance between wet-
lands in our study was <1500 km, supporting the idea that
environmental heterogeneity, and not restricted gene flow
caused by dispersal limitation, has facilitated divergent se-
lection and ecotypic differentiation of E. evergladianum
in the Caribbean Basin.

Ecological differences among ecotypes may be corre-
lated with morphological characteristics that can be used
to distinguish between ecotypes. Morphological difference
is particularly important in studies where species identifi-
cation is based largely on morphology, as is often the case
in diatom research. We were unable to detect morphological
correlates associated with the response of E. evergladianum
to ecological drivers in our study. The significant morpho-
logical differences among specimens from the 3 wetlands
were not consistent with the patterns of ecological differen-
tiation detected by the regression analysis. Molecular tests
could help to identify an underlying genetic component that
is not morphologically expressed and that might explain the

Figure 4. Size declinations of Encyonema evergladianum
from Belize (A), Everglades (B), and Yucatan (C). Scale
bar 5 10 lm.
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ecological differences observed for the Yucatan population.
Such data could indicate whether the ecological differences
are a result of ecotypic differentiation rather than sampling
biases or other confounding factors. Molecular studies also
would allow us to test the possibility that E. evergladianum

contains cryptic diversity, i.e., genetically distinct species
that are morphologically indistinguishable. Several diatoms
previously considered one species based on morphological
characteristics alone have been found to possess ecologically
differentiated cryptic species, including Navicula phyllepta

Table 3. Mean morphometric data for Encyonema evergladianum specimens from the Everglades, Belize, and Yucatan (n 5 35/site).
SD 5 standard deviation, min 5 minimum, max 5 maximum.

Location

Length (lm) Width (lm) Striae/10 lm L∶W Curvature (1/lm)

Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max

Combined 21.5 3.6 13.5 33.3 4.1 0.4 3.2 5.1 22.2 1.1 20.0 24.0 5.2 0.6 3.9 7.0 9.2 1.8 5.6 14.8

Everglades 23.5 3.7 16.4 33.3 4.5 0.3 3.8 5.0 21.1 0.7 20.0 22.0 5.3 0.6 3.9 6.6 9.9 2.1 6.7 14.8

Belize 19.6 3.2 14.8 27.2 3.8 0.4 3.2 5.1 22.7 0.9 21.0 24.0 5.1 0.6 4.0 6.4 8.9 1.6 5.9 11.7

Yucatan 21.3 2.9 13.5 26.7 3.9 0.3 3.2 4.6 22.9 0.8 21.0 24.0 5.4 0.6 4.2 7.0 8.8 1.4 5.6 11.7

Figure 5. Photograph of typical calcareous periphyton mat (A), scanning electron micrograph of the internal mat structure (B),
Encyonema evergladianum embedded within the mat matrix (C), and scanning electron micrographs of E. evergladianum (scale bar 5
5 lm) (D).
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(Vanelslander et al. 2009), Sellaphora pupula (Poulíčková
et al. 2008), and Skeletonema costatum (Balzano et al. 2010).
Therefore, investigators of ecotypic differentiation in spe-
cialist diatom species should use a combination of ecolog-
ical, morphological, and genetic tests to assess whether di-
vergent selection for locally favored genotypes has led to
the divergence of specialization across space and whether
these differences are expressed morphologically.

Observation of microbial mat fragments and E. evergla-
dianum ultrastructural features under the SEM did not re-
veal an engineering role in mat structure for this diatom.
This result suggests a lack of functional specialization and
was surprising because this diatom is found in high relative
abundance in calcareous mats and could be expected to have
some effect on its immediate environment. Gaiser et al.
(2010) found that Mastogloia calcarea, another dominant
mat-dwelling diatom from the Caribbean Basin, contributes
to mat structure via production of mucilaginous strands is-
sued frommarginal pores along the valve mantle. Encyonema
evergladianum does not possess anymucilage-secreting pores
or mucilaginous sheaths that might contribute to mat for-
mation and cohesion. However, its high relative abundance
within calcareous mats suggests that some other microhab-
itat characteristic not measured here is responsible for
E. evergladianum’s affinity to calcareous periphyton or that
it plays an important functional role in these mats that
has yet to be determined. For instance, calcareousmicrobial
mats may provide protection from grazing and desiccation
or may concentrate certain ions, such as Ca21 and HCO3

2

favored by E. evergladianum. Calcium carbonate in the mats
undergoes dissolution resulting in the production of soluble
calcium bicarbonate at night when pH becomes elevated in
the absence of photosynthesis (Merz 1992, Hagerthey et al.
2011). Ca is an important nutrient in diatom growth, par-
ticularly for the cymbelloid group to which E. evergla-
dianum belongs, and can enhance the adhesion of diatoms
to polysaccharides, an abundant component of periphyton
mats (Patrick 1977, Geesey et al. 2000, Potapova and Charles
2003). Cymbelloid diatoms also have high optima for HCO3

2

(the other ion produced through the dissolution of cal-
cium carbonate), which is used as the inorganic C source
for photosynthesis and may indicate that these diatoms
are able to precipitate calcium carbonate, thereby contrib-
uting to mat structure (Tortell et al. 1997, Potapova and
Charles 2003).

In conclusion, our study supports the idea that special-
ization is not a stable ecological trait (Barnagaud et al. 2011)
and that the degree of specialization is scale and context
dependent. Despite local specialization differences, E. ever-
gladianum is associated with pristine conditions found in
karstic wetlands and, thus, represents a potentially power-
ful tool to track and predict environmental modifications
caused by climate irregularities and anthropogenic pres-
sures that threaten these unique wetlands. However, the

application of this species as an indicator at the regional
scale may result in overlooking or misinterpreting local
change unless responses are calibrated based on conditions
within individual wetlands. Genetic studies of E. evergla-
dianum from karstic wetlands throughout the Caribbean
are necessary to be certain of ecotypic differentiation within
this species. In addition, the exact driver of E. evergladia-
num dominance within the calcareous periphyton diatom
community requires further elucidation to define its niche
adequately and to use it confidently as an ecological indica-
tor in karstic wetlands.
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