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RESEARCH ARTICLE Open Access

The role of isolation on contrasting
phylogeographic patterns in two cave
crustaceans
Jorge L. Pérez-Moreno1*, Gergely Balázs2, Blake Wilkins1, Gábor Herczeg2 and Heather D. Bracken-Grissom1

Abstract

Background: The underlying mechanisms and processes that prompt the colonisation of extreme environments,
such as caves, constitute major research themes of evolutionary biology and biospeleology. The special adaptations
required to survive in subterranean environments (low food availability, hypoxic waters, permanent darkness), and
the geographical isolation of caves, nominate cave biodiversity as ideal subjects to answer long-standing questions
concerning the interplay amongst adaptation, biogeography, and evolution. The present project aims to examine the
phylogeographic patterns exhibited by two sympatric species of surface and cave-dwelling peracarid crustaceans
(Asellus aquaticus and Niphargus hrabei), and in doing so elucidate the possible roles of isolation and exaptation
in the colonisation and successful adaptation to the cave environment.

Results: Specimens of both species were sampled from freshwater hypogean (cave) and epigean (surface)
habitats in Hungary, and additional data from neighbouring countries were sourced from Genbank. Sequencing of
mitochondrial and nuclear loci revealed, through haplotype network reconstruction (TCS) and phylogenetic inference,
the genetic structure, phylogeographic patterns, and divergence-time estimates of A. aquaticus and N. hrabei surface
and cave populations. Contrasting phylogeographic patterns were found between species, with A. aquaticus showing
strong genetic differentiation between cave and surface populations and N. hrabei lacking any evidence of genetic
structure mediated by the cave environment. Furthermore, N. hrabei populations show very low levels of genetic
differentiation throughout their range, which suggests the possibility of recent expansion events over the last few
thousand years.

Conclusions: Isolation by cave environment, rather than distance, is likely to drive the genetic structuring observed
between immediately adjacent cave and surface populations of A. aquaticus, a predominantly surface species with only
moderate exaptations to subterranean life. For N. hrabei, in which populations exhibit a fully ‘cave-adapted’ (troglomorphic)
phenotype, the lack of genetic structure suggests that subterranean environments do not pose a dispersal barrier for this
surface-cave species.

Keywords: Adaptation, Biospeleology, Exaptation, Evolution, Phylogenetics, Subterranean, Troglomorphy

Background
One of the major recurring themes in evolutionary biology
and ecology is discerning the drivers of genetic differenti-
ation and diversity among populations, and their interplay
with the environment. These patterns can often be associ-
ated to a wide array of geographic and environmental
factors that influence population differentiation by means

of both adaptive (i.e. selection) and non-adaptive (i.e.
genetic drift) processes. As it is often observed in natural
systems, reduced gene flow due to geographic distance
can often result in distinct patterns of genetic differenti-
ation across a spatial continuum [1]. However, other
factors besides geographic distance often affect gene-flow
between populations. Biotic and abiotic interactions can
impact gene-flow through a variety of mechanisms (such as
local adaptation, selection against immigrants, and biased
dispersal), which result in populations being isolated by
environmental differences [2–4]. Isolation by environment
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can be identified as a driver for observed patterns of genetic
differentiation when there is a positive correlation between
genetic and environmental differentiation, but no correl-
ation between genetic differentiation and spatial distances
between populations (the latter being an indication of isola-
tion by distance) [4, 5]. It is important to note, however,
that isolation by distance and isolation by environment are
not mutually exclusive and their effects might be par-
ticularly challenging to disentangle when environmental
variables and geographic distances co-vary [3]. Caves
and other subterranean habitats show marked environ-
mental differences with adjacent surface ecosystems
with a sharp boundary, most notably the absence of
light and associated ecological and biogeochemical con-
ditions. Such habitat differences can constitute signifi-
cant barriers to gene flow and population connectivity,
which in turn lead to high levels of genetic differenti-
ation even at relatively small spatial scales [6, 7].
In addition to how genetic diversity is distributed across

distributional space, the underlying mechanisms and pro-
cesses that prompt the colonisation of extreme environ-
ments, and more specifically caves, constitute one of the
major research themes of evolutionary biology [8–10].
There are two major hypotheses generally regarded to ex-
plain the transition from surface to subterranean habitats.
The adaptive shift hypothesis suggests that the colonisation
of subterranean habitats is a result of founder populations
actively expanding into and colonising new niches [11],
rather than by accidental stranding and persistence in the
aphotic zones [12, 13]. The ability of a species to success-
fully colonise these extreme environments, however, might
be mediated by ecological filtering and thus requires spe-
cific exaptations to life in darkness [9, 14–16]. Possible
exaptations to cave life include morphological (e.g. reduced
dependence on vision, elongation of body and appendages)
and physiological (e.g. tolerance to oligoxic conditions)
characteristics that are already present in numerous species
inhabiting benthic and interstitial ecosystems [17–19]. On
the other hand, the climatic relict hypothesis states that a
species may be forced to adapt to cave life as a result of en-
vironmental change that results in uninhabitable conditions
on the surface (e.g. glaciation events) [18, 20, 21]. The
actual mechanisms that gave rise to contemporary cave
populations are likely to be a combination of both pro-
cesses, and continue to be a subject of investigation. The
estimation of phylogenetic relationships from genetic data
of cave-dwellers offers the possibility of elucidating the
mechanisms and processes that eventually lead to cave col-
onisations and the persistence of cave populations. This is
especially the case when genetic data of both surface and
cave-dwelling organisms are coupled with their present-day
geographic distributions to infer ancient events (e.g. [22]).
However, to fully understand the mechanisms behind cave
colonisation events through present-day phylogeographic

patterns it is imperative to incorporate approaches that
consider the environment and ecology of the species under
study, and therefore the underlying factors that ultimately
drive their evolution.
The isopod Asellus aquaticus and the amphipod

Niphargus hrabei are two aquatic crustacean species
that serve as ideal models to explore questions regarding
the colonisation, barriers to gene-flow, and evolution of
cave fauna. Asellus aquaticus is a widespread species of
freshwater isopod commonly found in surface waters
throughout Europe [23]. This species is also known to
occasionally colonise caves where its populations exhibit
“troglomorphic” phenotypes [23, 24]. Troglomorphy can
be defined as the set of morphological, physiological, and
behavioural characteristics associated with a species tran-
sition to life in caves (e.g. enlarged sensory and ambula-
tory appendages, lack of pigmentation, loss of vision, etc.
[25–28]. Contrastingly, the amphipod species N. hrabei is
an atypical representative of an almost exclusively cave-
dwelling genus that has escaped the confines of the sub-
terranean environment to colonise surface habitats. Its
distribution spans an extensive area of central and eastern
Europe with geographical ranges of up to 1300 km [29],
where it lives in sympatry with A. aquaticus (e.g. in the
Danube River and its floodplains). Observations suggests
that N. hrabei populations are troglomorphic throughout
its distribution in both caves and surface waters (Fig. 1;
[28]), perhaps due to the ancient cave-origin of the genus
Niphargus. The disposition to inhabit both surface and
cave environments, geographical distributions, and life-
history characteristics of these two crustacean species
make them ideal study organisms to disentangle the ef-
fects of isolation by distance and/or isolation by environ-
ment and to reveal the mechanisms and processes at play
during cave colonisation.
The present study examines the phylogeographic pat-

terns exhibited by sympatric surface and cave-dwelling

Fig. 1 Asellus aquaticus displays contrasting phenotypes in and out
of the cave, while Niphargus hrabei exhibits the same phenotype in
both environments
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populations of A. aquaticus and N. hrabei. We aim to
test the hypothesis that isolation by environment drives
the patterns of genetic differentiation of surface-exapted A.
aquaticus, but not those of cave-exapted N. hrabei, for
which isolation by distance is the expected mechanism.
The Molnár János thermal cave system and the immedi-
ately adjacent Malom Lake (Budapest, Hungary) provide a
perfect natural experiment to address questions of cave
colonisation, adaptation, and population differentiation.
Despite marked environmental differences between hypo-
gean and epigean habitats, both localities are inhabited by
the species under study and are hydrologically intercon-
nected with the Danube River Basin, one of the largest and
most species-rich natural floodplains in Europe [30, 31].
Therefore, the patterns of genetic differentiation that
emerge from this system will allow for a better under-
standing of the effects of isolation (distance and/or en-
vironment) and possible roles of exaptations in the
evolution of these cave and surface populations.

Methods
Sample collection
Specimens were sampled from three main sites in
Budapest, Hungary: The Molnár János thermal cave sys-
tem, the adjacent thermal Malom Lake, and the Soroksár

branch of the Danube River (Fig. 2). The three sites are in-
terconnected hydrologically and the two study species
(Asellus aquaticus and Niphargus hrabei) inhabit all the
sites. Additional specimens of A. aquaticus were sourced
from other locations in Hungary (Table 1) and sequence
data for N. hrabei from neighbouring countries were
obtained from GenBank to aid in the analyses [29]. All of
the samples were collected using a “Sket bottle” [32] and
preserved individually in 99% ethanol for subsequent
molecular analyses. All of the samples employed by this
study are housed in the Florida International Crustacean
Collection (FICC; North Miami, FL, USA). Additional
metadata associated with each specimen is securely stored
in the collection’s curated electronic database.

DNA extraction and amplification
Genomic DNA was extracted from each specimen’s
pereiopods and/or antennae using the commercially
available QIAGEN DNeasy Blood and Tissue Kit (Cat.
No. 69506). Several mitochondrial and nuclear loci
were selected in order to maximise the resolution at
the scale of interest (population level). Specifically, for
A. aquaticus the loci chosen were: two mitochondrial
ribosomal genes (12S and 16S), a mitochondrial protein-
coding gene (cytochrome c oxidase subunit I, COI), and a

Kessler Hubert
 Chamber

“Rákos Rock”

Tunnel

Malom
Lake

Entrance 2

E
ntrance 1

To Danube River

Molnár János Cave & Malom Lake

Soroksár (Danube River) Sampling Localities

Flooded Cave

Fig. 2 Schematic illustration of our thee main sampling localities within Budapest, Hungary. Red circles indicate exact sites within Molnár János
Cave (Rákos Rock) and surface environments (Malom Lake and Danube River [Soroksár])
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‘Numt’ (nuclear mitochondrial DNA segment) [33, 34] of
NADH dehydrogenase 2 (hereby referred to as Pseu-
doND2). For N. hrabei the sequenced loci included: a
mitochondrial ribosomal gene (16S), a mitochondrial
protein-coding gene (cytochrome c oxidase subunit I,
COI), a nuclear ribosomal gene (internal transcribed
spacer, ITS), and a nuclear protein-coding gene (NaK).
These loci have proved to be useful in inferring intra- and
interspecific relationships across the subphylum Crustacea
(12S, 16S, COI, ITS, NaK) [35–39] or were specifically tar-
geted to increase population-level resolution (PseudoND2)
[34]. Polymerase Chain Reaction (PCR) amplifications were
performed in reactions containing DNA template, sterile
non-DEPC treated water, forward and reverse primers, and
of GoTaq® Green Master Mix (Promega, M712). The ther-
mal cycling profiles consisted of an initial denaturing step of
1 min at 94 °C, followed by 35–40 cycles of 30 s at 94 °C, an-
nealing for 30s at 48°-62 °C (depending on primer set and
species, Additional file 1), 1 min extension at 72 °C, and then
a final extension of 7 min at 72 °C. PCR products were sent
to Beckman Coulter Genomics (Danvers, MA, USA) for
amplicon purification using solid-phase reversible immobil-
isation (SPRI) beads, and subsequent sequencing reactions
using BigDye Terminator v3.1. Post reaction dye terminator
removal was done using Agencourt CleanSEQ, after which
both forward and reverse strands were sequenced on an Ap-
plied Biosystems PRISM 3730xl DNA Analyzer.

Data preparation and analyses of selection
The obtained sequences were visually inspected, quality
trimmed, and cleaned manually with Geneious 8.0 [40].
Sequences from specimens heterozygous at nuclear loci
were phased with PHASE v2.1 [41, 42] and SeqPHASE
[43]. In instances where haplotype reconstruction during
phasing resulted in more than one pair of possible se-
quences, pairs with the highest posterior probabilities

were retained for subsequent analyses. To further verify
the appropriateness of the chosen loci for phylogenetic
inference, tests for selection in protein-coding loci were
conducted with MEGA 7 [44]. Due to the small number
of substitutions in most of the dataset, Fisher’s exact test
of neutrality was chosen as the preferred option to detect
evidence of selection [44, 45]. For this purpose, synonym-
ous and non-synonymous substitutions were estimated
using the Nei-Gojobori method [46].

Haplotype network reconstruction
Haplotype networks were subsequently built in PopArt
1.7 [47] using TCS (Templeton-Crandall-Sing) Networks
[48]. Haplotype networks allow for informative visualisa-
tion of genealogical information at shallow divergence
levels. Although several methodologies exist for construct-
ing these networks, TCS was chosen for its effectiveness at
recovering accurate population-scale phylogeographic
patterns even when genetic differentiation is low (e.g.
[49–52]). Subsequent to haplotype network reconstruc-
tion, the relative frequencies of the mitochondrial haplo-
types identified were plotted on maps to visualise their
geographic distributions in an intuitive manner.

Phylogenetic analyses
Individual and concatenated gene trees were estimated using
Maximum Likelihood (GARLI 2.01 [53]) and Bayesian infer-
ence (MrBayes 3.2.6 [54]) methods as implemented in the
CIPRES portal [55], after using PartitionFinder v1.1.1 [56] to
identify the best-fit models of molecular evolution and
partitioning schemes for the dataset (Additional file 1).
Maximum Likelihood phylogenetic trees were recon-
structed with an initial search for the best tree, using
10 parallel runs via GARLI 2.01. Additionally, 10,000
bootstrap replicates were generated in 40 independent
runs to assess nodal support of the best tree. All ML

Table 1 Specimens, locations, and type of habitat in which the crustacean populations were sampled

Species N Locality Coordinates Habitat

Asellus aquaticus 20 Soroksár, Budapest, Hungary 47.4360697 N, 19.0878143 E Epigean

20 Molnár János Cave, Budapest, Hungary 47.5181846 N, 19.036064 E Hypogean

20 Malom Lake, Budapest, Hungary 47.5181167 N, 19.036075 E Epigean

4 Lipót, Hungary 47.86316 N, 17.458875 E Epigean

6 Polgár, Hungary 47.869443 N, 21.200598 E Epigean

6 Balatonfenyves, Hungary 46.65515 N, 17.498538 E Epigean

10 Cserdi, Hungary 46.06575 N, 17.991012 E Epigean

Niphargus hrabei 20 Soroksár, Budapest, Hungary 47.4360697 N, 19.0878143 E Epigean

18 Molnár János, Budapest Hungary 47.5181846 N, 19.036064 E Hypogean

20 Malom Lake, Budapest Hungary 47.5181167 N, 19.036075 E Epigean
aNiphargus sp. nov. 13 Molnár János, Budapest, Hungary 47.5181846 N, 19.036064 E Hypogean
aNiphargus forroi 2 Diabáz Cave, Nagyvisnyo, Hungary 48.08809 N, 20.46627 E Hypogean
aUsed as outgroups for the analyses
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trees were then summarised with a 95% consensus rule
and annotated using the SumTrees.py python script
from the DendroPy library [57]. Bayesian phylogenetic
trees were inferred with the same partitioning scheme
as in the ML analyses. MrBayes 3.2.6 was executed with
two independent runs, each consisting of 4 chains running
for 10 M generations. The MCMC run was sampled every
1000 generations, and a relative burn-in frequency of 25%
was set for accurate posterior sampling. After assessing for
convergence (Tracer v1.6 [58], the SumTrees.py script was
again invoked to extract the Maximum Clade Credibility
Tree (MCCT) and to annotate the phylogenetic trees’ nodal
support as posterior probabilities. Further, population trees
were estimated under a multi-locus coalescent model using
*BEAST (BEAST 2.4.0 [59]). Intraspecific divergence times
of A. aquaticus and N. hrabei populations were concur-
rently estimated using molecular clock rate calibrations for
peracarid crustaceans’ COI (1.25% of substitutions per site
per million years [60]; and between 0.34% and 0.76% of
substitutions per site per Myr [61]), which were previously
estimated for taxa closely related to our species of study
(Stenasellidae and Niphargiidae). All of *BEAST and
BEAST analyses were run in triplicate at Florida Inter-
national University’s High Performance Computing cluster
(Panther) for 200 M generations after which they were
assessed for convergence using Tracer v1.6. The *BEAST
speciation models for which there was no evidence for
convergence were discarded. The runs using a Yule model
of speciation as a tree prior with a strict molecular clock
calibration were retained for subsequent analyses. After dis-
carding 25% of the sampled trees as burn-in, nodal support
was annotated as posterior probabilities on the MCCT of
each population tree analysis (TreeAnnotator; [59]. For
each species, population trees that included divergence
time estimates were plotted using the geoscale.phylo func-
tion of the R package ‘strap’ [62]. These were then georefer-
enced on precomputed maps with custom scripts that
made use of the R package ‘phytools’ [63].
Genealogical Sorting Indices (gsi) were calculated using

the R package ‘genealogicalSorting’ to quantify intraspe-
cific lineage divergence, which allowed for the evalu-
ation of monophyly in each population [64, 65]. Lastly,
a modified approach to calculate gsi (pairwise-gsi or
pwgsi) was used to independently quantify the diver-
gence of every population-pair [66]. This modified ap-
proach thus prevented possible bias and false-positives
that could have arisen as by-products of the trees’ top-
ologies outside the main groups of interest [66]. Out-
group populations of N. hrabei were excluded from this
final analysis due to sample size requirements of the
pwgsi approach. Nonetheless, this exclusion bears no
impact on the comparisons amongst the target popula-
tions (Molnár János Cave, Malom Lake, and the Danube
River’s Soroksár).

Demographic history
Additionally, we sought to better understand the demo-
graphic histories of A. aquaticus and N. hrabei, as reflected
in their sequence data, by estimating changes in their
population sizes over time. For this purpose, we con-
ducted Extended Bayesian skyline (EBS) analyses [67])
as implemented in BEAST [59]. Extended Bayesian sky-
line analyses allow for the incorporation of multi-locus
datasets to estimate population history over time along
with an assessment of the estimations’ uncertainty [67].
The parameters employed for these analyses were main-
tained as in the previous successful BEAST runs, with the
exception of the priors associated to the species tree,
which was set to “Coalescent Extended Bayesian Skyline”.
These analyses were also run in triplicate at Florida Inter-
national University’s High Performance Computing cluster
(Panther) for 200 M generations after which they were
assessed for convergence using Tracer v1.6. EBS run logs
were subsequently combined, after discarding 25% as
burn-in, and the demographic histories of both species
were plotted using custom R scripts for ease of visualisa-
tion and further inferences.

Results
DNA sequences and data deposition
A total of ~1690 and ~2757 base pairs (bp) of nucleotide
sequence data were recovered for A. aquaticus (81
sequences for 12S, 83 for 16S, 76 for COI, and 84 for
PseudoND2) and N. hrabei (55 sequences for 16S, 54
for COI, 51 for ITS, and 58 for NaK) respectively. All
sequence data from this project were curated, anno-
tated with their respective metadata, and deposited in
the NCBI’s Genbank database to allow for their dissemin-
ation and future use by other researchers (See Additional
file 1 for accession numbers).

Testing for neutrality of selected loci
Fisher’s exact test of neutrality was employed to determine
the suitability of the selected loci for phylogeographic
inference by ensuring that they are not being subject to
selective pressures. The probability (P) of rejecting the null
hypothesis of strict-neutrality in favor of the alternative
hypothesis of positive selection was larger than 0.05 for all
loci in both species, and therefore not considered signifi-
cant at an alpha value (α) of 5%. The chosen loci were
therefore deemed suitable for subsequent analyses.

Haplotype network reconstruction
Analyses of haplotype networks display evident genetic
structuring in surface and cave A. aquaticus, with par-
ticularly distinct haplotypes differentiating Molnár János
Cave’s population from Malom Lake’s despite their spatial
proximity (Fig. 3). The haplotypes found in Molnár János
Cave and Malom Lake are exclusive to each locality, with
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the exception of a single “surface-phenotype” cave speci-
men that shared a haplotype found in both Malom Lake
and the western population of Lipót (Figs. 3, 4). This strong
differentiation and lack of shared haplotypes between the
cave’s and adjacent surface populations is not the case for
N. hrabei, where Malom Lake’s and Molnár János Cave’s
mtDNA haplotypes are the same and no genetic structuring
is evident (Fig. 5). Mitochondrial haplotypes (COI and 16S)
of N. hrabei are not only closely related, but also found
widely distributed throughout its range (Figs. 5, 6).

Phylogeographic and genealogical sorting analyses
The patterns observed in the haplotype network reconstruc-
tions are reflected in and confirmed by the concatenated
phylogenetic trees (tree-files are available in the figshare
respository at: https://doi.org/10.6084/m9.fig-
share.5660542.v1). The final Maximum Likelihood and
Bayesian trees for each species are nearly identical, with the
exception of a few unsupported nodes, and are concord-
ant with the *BEAST population trees estimated with
all the sequenced loci (A. aquaticus, Fig. 4; N. hrabei,
Fig. 6; see Additional file 1 for evolutionary model se-
lection details). Furthermore, these population trees
show that cave and surface populations of A. aquaticus
diverged from each other at least 60 k years ago
(Table 2). There is no evidence for genetic structuring
between cave and surface populations of N. hrabei, and

a

b

Fig. 3 Haplotype networks of Asellus aquaticus: nuclear (a- PseudoND2)
and mitochondrial (b- 16S, 12S, and COI) loci. Node diameter and
annotation denote sample sizes, while hatch marks represent mutational
steps between haplotypes. Colours represent sampling locality, as
illustrated in the legend

Fig. 4 Divergence time estimates (x axis in thousands of years) of Asellus aquaticus populations (calculated with a multi-locus coalescent model in
*BEAST; outgroups not shown) and the distribution of its populations with relative mtDNA haplotype frequencies throughout Hungary. Phylogenetic
and population tree analyses support the inclusion of the cave phenotype as part of the species, but with evident population structuring as a result of
the cave environment
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the phylogenetic split between these is not supported.
The Pairwise Genealogical Sorting Index (pwgsi) esti-
mates follow patterns similar to those of the population
tree topologies recovered (A. aquaticus, Table 3; N. hrabei,
Table 4). In A. aquaticus, the distinction between the Mol-
nár János Cave population and the adjacent Malom Lake is
clear despite its proximity (pwgsi = 1.00, p < 0.001), with the
former having higher affinities to the south-western
population of Balatonfenyves (pwgsi = 0.22, p < 0.001). The
pwgsi between Molnár János Cave’s and Malom Lake’s N.
hrabei populations on the other hand, provides no evidence
of genealogical differentiation between these (pwgsi = 0.14,
p = 0.52). Nevertheless, both populations display a statisti-
cally significant but modest degree of reciprocal monophyly
when compared to the next geographically closest
population, the Soroksár branch of the Danube River
(pwgsi = 0.46 and 0.48 respectively, both p < 0.001).

Demographic history
We conducted Extended Bayesian Skyline (EBS) analyses
[67]), as implemented in BEAST [59], to evaluate the demo-
graphic history of our two study species and investigate if

there is any evidence of possible climate-associated popula-
tion changes. The EBS plot for A. aquaticus shows a gradual
population contraction reaching a minimum approximately
between 100 and 200 thousand years ago and a gradual
recovery thereafter (Fig. 7). Contrastingly, EBS analyses for
N. hrabei point to a sharper decline beginning at a later date
(~ 60 thousand years ago). The 95% H.P.D. interval suggests
that an evident population bottleneck followed by a rapid
expansion occurred approximately 10 thousand years before
present (Fig. 8), roughly corresponding to the end of the
Würm glaciation (~ 11,700 years ago).

Discussion
The most intriguing finding of the present study is the
population differentiation between cave and surface
populations of Asellus aquaticus, a pattern which is not
reflected in Niphargus hrabei. Here, we will discuss the
phylogeographic patterns in the light of alternate isolation
mechanisms (geographic distance vs. environment). Sec-
ond, we focus on the Molnár János Cave system, and
discuss its potential role as a climatic refugium together
with the role of exaptation in successful cave colonisation.
Lastly, we conclude by illustrating future possibilities and
directions for research in this emergent study system.

Contrasting phylogeographies: Isolation by distance,
environment or both?
Our first objective was to resolve the phylogeographic
patterns between sympatric surface and cave populations
of two crustaceans in order to investigate if the cave
environment is acting as a barrier for dispersal and con-
nectivity of populations. The A. aquaticus populations
throughout Hungary are genetically diverse with each
population being comprised mostly by distinct, but closely
related, mitochondrial haplotypes exclusive to their re-
spective localities. Phylogenetic and population tree ana-
lyses do provide strong statistical support for the genetic
differentiation between Molnár János Cave’s subterranean
population and its epigean counterparts. Our results fur-
ther suggest that the observed genetic and phenotypic dif-
ferentiation between cave and surface isopods result from
the cave acting as an isolating environment. Nevertheless,
despite this differentiation, the Molnár János Cave A.
aquaticus population still falls well within the species
range for A. aquaticus in a phylogenetic context (Fig. 4).
Furthermore, the presence of a single haplotype (mtDNA
H01) in all of the western Hungarian populations sampled
for this study suggests that movement over large distances
does occur, suggesting a smaller role for geographical
distance (vs. environment) as a driver of genetic differ-
entiation (Fig. 4). The relatively high haplotypic diversity
found in the Danube River (Soroksár, in comparison to
the other localities examined) further supports its role as a
dispersal avenue for isopods inhabiting surface waters.

a

b

c

Fig. 5 Haplotype networks of Niphargus hrabei: nuclear (a- ITS; b- NaK)
and mitochondrial (c- 16S and COI) loci. Node diameter and
annotation denote sample sizes (alleles in the case of nuclear genes),
while hatch marks represent mutational steps between haplotypes.
Colours represent sampling locality, as illustrated in the legend
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Effective dispersal in surface environments, but not into
the cave, is further evident in our phylogenetic analyses by
the lack of nodal support for the differentiation of the
surface populations.
Interestingly, movement of individuals from Malom

Lake into the cave was detected by the sampling of a
single isopod with both surface haplotype (mtDNA H14)
and phenotype (Figs. 3 & 4). Personal observations con-
firm that, in rare instances, surface isopods can be found
in the aphotic zone well within Molnár János Cave. How-
ever, surface isopods do not persist in the cave habitat and
the lack of shared mitochondrial and nuclear haplotypes
suggests infrequent or non-existent admixture between
these two genetically close but phenotypically distinct pop-
ulations (Figs. 3 & 4). A similar pattern was observed in
Slovenian and Romanian A. aquaticus where no population
connectivity was found between troglomorphic cave iso-
pods and other nearby populations from surface waters

[24]. This recurrent pattern could be explained by a variety
of mechanisms ultimately driven by the environmental dif-
ferences between subterranean and epigean habitats [2–4].
It is thus feasible that surface individuals who wander into
the cave are outcompeted by the troglomorphic resident
population (i.e. competitive exclusion) before successful
breeding takes place, and/or that hybrid individuals are
at a significant fitness disadvantage that prevents their
genes from persisting in the cave population [3]. Inves-
tigating and understanding which exact mechanisms
might be at play in the Molnár János Cave system un-
doubtedly constitutes an important question to address
in future studies.
Unlike that of A. aquaticus, haplotype network recon-

struction and population tree analyses of N. hrabei show
no evidence of genetic structuring between surface and
cave populations (Figs. 5 & 6). In fact, haplotypic diversity
seems to be relatively low throughout its range (Fig. 6). The
only phylogeographic pattern recovered is the segregation
of Hungarian populations as a distinct clade (Fig. 6). How-
ever, geography does not explain the inclusion of Danube
River (Soroksár) individuals within the clade comprised by
the Austrian, Serbian, and Romanian specimens. Low gen-
etic diversity, weak genetic structuring despite large geo-
graphical distances, and lack of statistical support for any of
the populations sampled, suggest that this species’ modern
populations resulted from a recent expansion event and do
not provide any clear evidence for isolation by distance nor

Fig. 6 Divergence time estimates (x axis in thousands of years) of Niphargus hrabei populations (calculated with a multi-locus coalescent model in *BEAST;
outgroups not shown) and the distribution of its populations with relative COI haplotype frequencies in our three main Hungarian sites and neighbouring
populations. Phylogenetic and population tree analyses do not support any evident genetic structuring between cave and surface populations

Table 2 Divergence time estimations between Molnár János
Cave and phylogenetically closest surface populations of the
peracarid crustaceans under study (thousands of years [95%
H.P.D.])

Molecular Clock Rate

Species Ketmaier et al. (2003) Lefébure et al. (2006)

Asellus aquaticus 60.81 (28.68, 96.53) 139.21 (67.07, 222.26)

Niphargus hrabei Surface/cave split not
supported

Surface/cave split not
supported
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environment. This is further evidenced by the results of our
EBS analyses that suggest a population bottleneck for N.
hrabei at approximately 10 thousand years ago followed by
a rapid expansion (Fig. 8). It is important to note that sam-
pling for some of the localities examined was limited and
this could have a negative effect on statistical support for
those populations. Nevertheless, the three main target pop-
ulations of the present study (Molnár János cave, Malom
Lake and Danube River [Soroksár]) were sufficiently sam-
pled to adequately evaluate the population structure of sur-
face vs. adjacent cave populations. Therefore, for N. hrabei,
whose populations exhibit a fully ‘troglomorphic’ pheno-
type in all environments, the lack of genetic structure at
this scale suggests that subterranean environments do not
pose a barrier for this species. Further analyses employing

high-resolution data (e.g. genome-wide SNPs) from next-
generation sequencing methodologies would undoubtedly
be of advantage to clarify whether this lack of genetic struc-
ture is truly due to unimpeded movement in and out of the
cave or a by-product of N. hrabei’s recent colonisation of
the habitats under investigation [10].

The Molnár János thermal cave system: A climatic
refugium and a possible role for exaptation
Divergence-time estimates, calibrated with peracarid COI
molecular clock rates [60, 61], place the divergence of A.
aquaticus populations from Molnár János Cave and Malom
Lake at approximately 60,000 to 140,000 years ago (Fig. 4).
This relatively recent split falls within the Pleistocene,
a period of time during which severe climatic changes

Table 3 Pairwise Genealogical Sorting Index estimates for each population pair of Asellus aquaticus

Bayesian Phylogeny Maximum Likelihood Phylogeny

Population 1 Population 2 pwgsi p-value pwgsi p-value

Molnár János Cave Soroksár (Danube) 0.71 < 0.001 0.68 < 0.001

Molnár János Cave Malom Lake 1.00 < 0.001 1.00 < 0.001

Molnár János Cave Lipót 0.46 < 0.001 0.35 < 0.001

Molnár János Cave Polgár 0.89 < 0.001 0.89 < 0.001

Molnár János Cave Balatonfenyves 0.22 < 0.001 0.22 < 0.001

Molnár János Cave Cserdi 0.56 < 0.001 0.57 < 0.001

Soroksár (Danube) Malom Lake 1.00 < 0.001 1.00 < 0.001

Soroksár (Danube) Lipót 0.49 < 0.001 0.43 < 0.001

Soroksár (Danube) Polgár 0.89 < 0.001 0.89 < 0.001

Soroksár (Danube) Balatonfenyves 0.17 0.003 0.13 0.001

Soroksár (Danube) Cserdi 0.46 < 0.001 0.43 < 0.001

Malom Lake Lipót 1.00 < 0.001 1.0 < 0.001

Malom Lake Polgár 1.00 < 0.001 1.0 < 0.001

Malom Lake Balatonfenyves 1.00 < 0.001 1.0 < 0.001

Malom Lake Cserdi 1.00 < 0.001 1.0 < 0.001

Lipót Polgár 1.00 < 0.001 1.0 < 0.001

Lipót Balatonfenyves 0.38 < 0.001 0.23 < 0.001

Lipót Cserdi 0.47 < 0.001 0.47 < 0.001

Polgár Balatonfenyves 0.78 < 0.001 0.78 < 0.001

Polgár Cserdi 0.83 < 0.001 0.83 < 0.001

Balatonfenyves Cserdi 0.15 0.012 0.15 < 0.001

P-values assess significance that exclusive ancestry observed for every population pair is greater than that which would be observed at random

Table 4 Pairwise Genealogical Sorting Index estimates for each population pair of Niphargus hrabei

Bayesian Phylogeny Maximum Likelihood Phylogeny

Population 1 Population 2 pwgsi p-value pwgsi p-value

Soroksár (Danube) Molnár János Cave 0.46 <0.001 0.15 <0.001

Soroksár (Danube) Malom Lake 0.48 <0.001 0.18 <0.001

Molnár János Cave Malom Lake 0.14 0.521 0.06 0.005

P-values assess significance that exclusive ancestry observed for every population pair is greater than that which would be observed at random
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associated with glaciation events impacted the geographical
distributions of numerous taxa across the globe [21, 68].
Even though Hungary was not directly glaciated, hydro-
logical changes in the region would have altered the viabil-
ity of this crustacean’s surface populations and shifted their
latitudinal distributions [21, 68].
Caves have been known to act as refuges during rapid

environmental changes on the surface [21, 23, 69–71].
Molnár János Cave’s waters are exclusively fed by ther-
momineral springs with a constant water temperature (~
24 °C), which increases its suitability as a refugium for
organisms with exaptations that help them subsist in

cave environments. Being a moderately exapted species,
it is possible that A. aquaticus would have been able to
take refuge in the cave where it remained isolated from
surface populations. This isolation eventually resulted in
the emergence of troglomorphic phenotypes via adaptive
and neutral processes. Upon cessation of this isolation, it
is possible that competitive exclusion prevented new
and/or returning surface populations from successfully
invading the cave and vice versa. This mechanism would
be in accordance with the observed phylogeographic pat-
terns. Extended Bayesian Skyline Plot analyses illustrate
a population decline for A. aquaticus and the possibility
of the aforementioned events occurring approximately
100–200 thousand years ago (Fig. 7). It is also possible
that A. aquaticus may have had a constant food source
independent from the surrounding surface environment,
as bacterial communities in Molnár János Cave, upon
which A. aquaticus feeds (pers. obs.), have been shown
to thrive via chemoautotrophic processes [72].
Niphargus hrabei is likely to have colonised Molnár

János Cave thousands of years later, as suggested by the
divergence-time estimates (Fig. 6). Niphargus hrabei cave
and surface populations appear to be panmictic and
show no evidence of isolation by the cave environment
or of competitive exclusion within the cave. They have
successfully colonised the cave from surface populations
and appear to have no limitations with dispersing from
and into cave environments. Niphargus hrabei’s facility
for dispersal and its exceptional adaptability to markedly
different habitats is reflected by an atypical large distri-
butional range [29]. This adaptability is also evidenced
by its unimpeded presence despite putative competitors
in Molnár János Cave: the isopod A. aquaticus and two
other species of Niphargus that are yet to be described
(pers. obs.). However, an alternative explanation would
be that older populations of N. hrabei once inhabited
the Molnár János Cave, but were outcompeted by the
obligate cave-dwellers in absence of migrants from sur-
face waters. In fact, our EBS analyses show an abrupt
population decline with a bottleneck and subsequent ex-
pansion at approximately 10 thousand years ago (Fig. 8)
that roughly coincides with the end of the Würm glaciation,
event which took place approximately between 115,000
and 11,700 years ago [73]. The end of the Würm glaci-
ation is known for great climatic variability [74] with
major temperature fluctuations that played a significant
role in shaping the modern distributional patterns of
other European species ([73, 75, 76]). Nevertheless,
niphargiid coexistence in other caves has also been pre-
viously explained by evolutionary and ecological pro-
cesses such as niche differentiation [77]. Understanding
the exact mechanisms by which these processes take
place continues to be an important research theme in
evolutionary biology and biospeleology.
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Fig. 7 An Extended Bayesian Skyline Plot illustrates the demographic
history of the sampled Hungarian Asellus aquaticus populations over
the last 800,000 years. The x-axis represents time before present in
thousands of years, while the y-axis denotes the estimated population
size (θ) assuming a generation time of one year
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Fig. 8 An Extended Bayesian Skyline Plot of Niphargus hrabei’s
demographic history, from 100,000 years ago to today, depicts a
possible genetic bottleneck at approximately 10,000 years ago. The
x-axis represents time before present in thousands of years, while
the y-axis denotes the estimated population size (θ) assuming a generation
time of one year
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Conclusions
The Molnár János Cave system and its inhabitants serve
as ideal models for phylogeographic and biospeleological
studies in an evolutionary context. While the present
study has provided significant insights into the phylo-
geographic histories of two species and their transition
into and out of caves, important questions remain to be
answered. Further analyses will greatly aid in the under-
standing of the exact causes of the observed patterns, as
well as in the elucidation of the mechanisms by which
exaptations have helped them thrive in such extreme
environments. An integrative approach incorporating
different sources of molecular data (e.g. genomic, tran-
scriptomic, epigenetic, etc.) has been initiated and will
be of definitive advantage to address these outstanding
questions [10]. Advances in modern molecular method-
ologies will undoubtedly enable future high-resolution
studies of the adaptive processes that underlie the con-
trasting phylogeographic patterns revealed by this study.
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