
S C H E D A E I N F O R M A T I C A E

VOLUME 20 (2011) DOI 10.4467/20838476SI.11.001.0287

Cr-Lohner Algorithm1

Daniel Wilczak, Piotr Zgliczyński
Institute of Computer Science, Jagiellonian University,

 Lojasiewicza 6, 30–348 Cracow, Poland

e-mail: wilczak@ii.uj.edu.pl, umzglicz@cyf-kr.edu.pl

Abstract. We present a Lohner type algorithm for the computation of rigorous

bounds for the solutions of ordinary differential equations and its derivatives

with respect to the initial conditions up to an arbitrary order.

Keywords: rigorous integration of ODEs, variational equations.

1. Introduction

This paper is a sequel to [31]. We present here a Lohner-type algorithm for the
computation of rigorous enclosures of the partial derivatives with respect to the
initial conditions up to an arbitrary order r of the flow induced by an autonomous
ODE, hence the name ”Cr-Lohner algorithm”. Let r be a positive integer. By the
Cr-algorithm we will mean a routine which gives rigorous estimates for the partial
derivatives with respect to the initial conditions up to the order r. By the Cr-
computations we mean an application of the Cr-algorithm.

Our main motivation for the development of the Cr-algorithm was to provide
a tool, which will considerably extend the possibilities of computer assisted proofs
in the dynamics of ODEs requiring rigorous bounds on orbits. Till now, most of such
proofs have used the topological conditions (see for example [10, 16, 6, 30]) and ad-
ditionally the conditions on the first derivatives with respect to the initial conditions
(see for example [21, 23, 27, 11]), hence they required the C0- and C1-computations,
respectively. The spectrum of problems addressed includes the questions of the

1Research supported by an annual national scholarship for young scientists from the Foundation
for Polish Science and, in part, by Polish State Ministry of Science and Information Technology
grant N201 024 31/2163.

10

existence of periodic orbits and their local uniqueness, the existence of symbolic
dynamics, the existence of hyperbolic invariants sets, the existence of homo- and
heteroclinic orbits. To address other phenomena, like the bifurcations of periodic
orbits, the route to chaos, invariant tori through the KAM theory, one needs the
knowledge of partial derivatives with respect to the initial conditions of the higher
order.

In principle, one can think that a good rigorous ODE solver should be enough.
Namely, to compute the partial derivatives of the flow induced by

x′ = f(x), x ∈ R
n (1)

it is enough to rigorously integrate the system of variational equations obtained by
the formal differentiation of (1) with respect to the initial conditions. For example,
for r = 2 we have the following system:

x′ = f(x), (2)

d

dt
Vij(t) =

n∑

s=1

∂fi
∂xs

(x)Vsj(t), (3)

d

dt
Hijk(t) =

n∑

s,r=1

∂2fi
∂xs∂xr

(x)Vrk(t)Vsj(t) +

n∑

s=1

∂fi
∂xs

(x)Hsjk(x), (4)

with the initial conditions

x(0) = x0, V (0) = Id, Hijk(0) = 0, i, j, k = 1, . . . , n. (5)

It is well known that if by ϕ(t, x0) we denote the (local) flow induced by (1), then

∂ϕi

∂xj

(t, x0) = Vi,j(t),

∂2ϕi

∂xj∂xk

(t, x0) = Hijk(t).

Analogous statements are true for the higher order partial derivatives with respect
to the initial conditions.

Remark 1. The variational equations up to an arbitrary order might be generated
automatically by means of the automatic differentiation [5, 20]. The main reason
for which we discuss in this paper an explicit compact formula for the equations of
variations (see Eq. (3, 4) and Section 2) is to explain a method for the generation
of the rough enclosure for the solution of higher order variational equations. In the
practical implementation the use of any compact formulas for variational equations
can be avoided.

It turns out that a straightforward application of any rigorous ODE solver to the
system of variational equations (2–4) is very inefficient. Namely, it totally ignores
the structure of the system and sometimes it leads to a very poor performance
and unnecessary long computation times (see Section 3.1 for more discussion and
Section 7 for results of our tests).

11

Our algorithm is a modification of the Lohner algorithm [13], which takes into
account the structure of variational equations (2–4). Basically, it consists of the
Taylor method, a heuristic routine for a priori bounds for the solution of (2–4)
during a time step and a Lohner-type control of the wrapping effect, which is done
separately for x and the partial derivatives with respect to the initial conditions (the
variables V and H in (3,4)). The proposed algorithm has been already successfully
applied to several problems. In [12] a computer assisted proof of the existence
of the cocooning cascade of heteroclinic tangencies for the Michelson system [14]
was given. This proof required the C2 computations. That time we had a special
implementation of the C2 algorithm only.

In [28] the method for proving the existence of quadratic homoclinic tangencies
for maps is proposed. An application of the method to a Poincaré map for the
forced-damped pendulum system required C2 computations. In [29] an application
of the C3 algorithm to rigorous verification of period doubling bifurcations for the
Rössler system [22] is presented.

In [25] C3 and C5 computations were used to prove the existence of invariant tori
around some elliptic periodic orbits for hamiltonian and reversible systems. The
approach is based on the classical KAM theorem for twist maps on the plane. We
believe that the proposed algorithm has a wide spectrum of other applications.

2. Faá di Bruno formula

To effectively deal with the formulas involving the partial derivatives of the compo-
sition of maps we will extensively use a notation of multiindices, multipointers and
submultipointers throughout the paper. In particular, when used, the variational
equations can be written in a compact form.

2.1. Multiindices

By N we will denote the set of nonnegative integers, i.e. N = {0, 1, 2, . . .}.

Definition 1. An element τ ∈ N
n will be called a multiindex.

For a sequence α = (α1, . . . , αn) ∈ N
n and a vector x = (x1, . . . , xn) ∈ R

n we set

1. |α| = α1 + · · ·+ αn,

2. α! = α1 · α2 · · ·αn,

3. xα = (xα1
1 , . . . , xαn

n).

12

By eni ∈ N
n we will denote

eni = (0, 0, . . . , 0,

i
︷︸︸︷

1 , 0, . . . , 0, 0).

We will drop the index n (the dimension) in the symbol eni when it is obvious from
the context.

Put Nn
p := {a ∈ N

n : |a| = p}. For δ = (δ1, . . . , δk) ∈ N
n1 × · · · × N

nk we set

|δ| =
k∑

i=1

|δi|.

Let f = (f1, . . . , fm) : Rn → R
m be sufficiently smooth. For α ∈ N

n we set:

1. Dαfi =
∂|α|fi

∂xα1
1 · · ·∂xαn

n
,

2. Dαf = (Dαf1, D
αf2, . . . , D

αfm).

For a function f : R × R
n → R

n by Dαfi(t, x) we will denote Dαfi(t, ·)(x) and
similarly

Dαf(t, x) = (Dαf1(t, x), . . . , D
αfn(t, x)).

This convention means that Dα always acts on x-variables.

2.2. Multipointers

For a fixed n > 0 and p > 0 we define:

Nn
p = {(a1, a2, . . . , ap) ∈ N

p : 1 ≤ a1 ≤ · · · ≤ ap ≤ n} ,

N = Nn =

∞⋃

p=1

Nn
p .

Definition 2. An element of Nn will be called a multipointer.

Remark 2. A function

Λ : Nn
p ∋ (a1, . . . , ap) →

p
∑

i=1

enai
∈ N

n
p (6)

is a bijection.

Let f = (f1, . . . , fm) : Rn → R
m be sufficiently smooth. For a ∈ Nn

p we set:

1. Dafi =
∂pfi

∂xa1 . . . ∂xap

,

13

2. Daf = (Daf1, . . . , Dafm).

For a function f : R × R
n → R

n by Dafi(t, x) we will denote Dafi(t, ·)(x). In the
light of the above notations Dαf = DΛ(α)f .

For a = (a1, a2, . . . , an) ∈ N
n
p and b = (b1, b2, . . . , bn) ∈ N

n
q we define

a+ b = (a1 + b1, . . . , an + bn) ∈ N
n
p+q.

For α ∈ Nn
p and β ∈ Nn

q we define

α+ β = Λ−1 (Λ(α) + Λ(β)) ∈ Nn
p+q.

By ≤ we will denote a linear order (the lexicographical order) in N defined in
the following way. For a ∈ Nn

p and b ∈ Nn
q

(a ≤ b) ⇐⇒

{

either ∃i, i ≤ p, i ≤ q, ai < bi and aj = bj for j < i

or p ≤ q and ai = bi for i = 1, . . . , p.
(7)

Definition 3. For k ≤ p we set

N p(k) := {(δ1, . . . , δk) ∈ (N p)k : δ1 ≤ · · · ≤ δk, δ1 + · · ·+ δk = (1, 2, . . . , p)}. (8)

We will use N p(k) extensively in the next section. It will be used to label terms
in Dαfi(ϕ(t, x)). Observe that for p > 0

N p(1) = {(1, 2, . . . , p)},

N p(p) = {((1), (2), . . . , (p))}.

One can construct all elements of N p(k) using the following recursive procedure.
From the definition of N p(k) it follows that if (δ1, . . . , δm−1) ∈ N p−1(m − 1),
then (δ1, . . . , δm−1, (p)) ∈ N p(m) (notice that the order is preserved). Similarly,
if (δ1, . . . , δm) ∈ N p−1(m), then

(δ1, . . . , δs−1, δs + (p), δs+1, . . . , δm) ∈ N p(m)

and again the order of elements is preserved. Hence, for p > 2 and 1 < k < p we
have N p(k) = A ∪B, where:

A =
{
(δ1, . . . , δk−1, (p)) : (δ1, . . . , δk−1) ∈ N p−1(k − 1)

}
,

B =

k⋃

s=1

{
(δ1, . . . , δs−1, δs + (p), δs+1, . . . , δk) : (δ1, . . . , δk) ∈ N p−1(k)

} (9)

and the sets A and B are disjoint.
Another way to generate all elements of N p(k) can be described as follows:

• decompose the set {1, 2, . . . , p} into k nonempty and disjoints sets ∆i, i =
1, . . . , k,

• sort each ∆i and permute ∆i’s to obtain min(∆1) < min(∆2) < · · · <
min(∆k),

14

• define δi to be an ordered set consisting of all elements of ∆i for i = 1, . . . , k.

Definition 4. For an arbitrary a ∈ Nn
p and δ ∈ N p

k such that k ≤ p we define
a submultipointer aδ ∈ Nn

k by (aδ)i = aδi for i = 1, . . . , k, which can be expressed
using Λ as follows:

aδ := Λ−1

(
k∑

i=1

enaδi

)

∈ Nn
k .

2.3. The variational equations

Consider an ODE x′ = f(x), where f is CK+1. Let ϕ : D ⊂ R×R
n → R

n be a local
dynamical system induced by x′ = f(x). It is a well-known fact that ϕ ∈ CK and
one can derive the equations for partial derivatives of ϕ by differentiating equation
∂ϕ
∂t

(t, x) = f(ϕ(t, x)) with respect to the initial condition x. As a result we obtain a
system of so-called equations for variations, the size of which depends on the order
r of the partial derivatives we intend to compute. An example of such a system for
r = 2 is given by (2–4) with the initial conditions given by (5).

The equations for the higher order partial derivatives written in a compact form
using multipointers and multiindices are given by the Faá di Bruno formula.

Lemma 1 ([8], Faá di Bruno formula). For any p-times continuously differentiable
functions f, g : Rn → R

n and a ∈ Nn
p we have

Da(f ◦ g) =

p
∑

k=1

n∑

i1,...,ik=1

(
Dei1+···+eik fi

)
◦ g

∑

(δ1,...,δk)∈Np(k)

k∏

j=1

Daδj
gij . (10)

Proof: In the proof the functions Dei1+···+eik fi are always evaluated at g(x),
and various partial derivatives of g are always evaluated at x, therefore, to simplify
formulae, the arguments will always be dropped.

Put F = f ◦ g. We prove the lemma by induction on p = |a|. If p = 1, then
a = (c) for some c ∈ {1, . . . , n} and (15) becomes

D(c)F =

n∑

s=1

∂fi
∂xs

∂gs
∂xc

=

n∑

s=1

Desfi ·D(c)gs.

Assume (15) holds true for p− 1, p > 1. Let us fix a ∈ Nn
p . We have a = b+ (c),

where b = (a1, . . . , ap−1) ∈ Nn
p−1 and c = ap. Since (15) is satisfied for p − 1, we

15

have

DaFi = D(c) (DbFi)

= D(c)

p−1
∑

k=1

n∑

i1,...,ik=1
β:=ei1+···+eik

Dβfi
∑

(δ1,...,δk)∈Np−1(k)

k∏

j=1

Dbδj
gij

=

p−1
∑

k=1

n∑

i1,...,ik+1=1
β:=ei1+···+eik+1

Dβfi ·D(c)gik+1

∑

(δ1,...,δk)∈Np−1(k)

k∏

j=1

Dbδj
gij

+

p−1
∑

k=1

n∑

i1,...,ik=1
β:=ei1+···+eik

Dβfi
∑

(δ1,...,δk)∈Np−1(k)

k∑

s=1

Dbδs+(c)gis

k∏

j=1,
j 6=s

Dbδj
gij .

For k = 1, . . . , p we set

Tk :=

n∑

i1,...,ik=1

Dei1+···+eik fi
∑

(δ1,...,δk)∈Np(k)

k∏

j=1

Daδj
gij . (11)

Now our goal is to prove that:

DaFi =

p
∑

k=1

Tk. (12)

Our strategy of proof is as follows. We will define S1, . . . , Sp, such that

DaFi =

p
∑

k=1

Sk (13)

and we will show that Si = Ti for i = 1, . . . , p.
We set

S1 =

1∑

k=1

n∑

i1,...,ik=1
β:=ei1+···+eik

Dβfi
∑

(δ1,...,δk)∈Np−1(k)

k∑

s=1

Dbδs+(c)gis

k∏

j=1,
j 6=s

Dbδj
gij ,

Sp =

p−1
∑

k=p−1

n∑

i1,...,ik+1=1
β:=ei1+···+eik+1

Dβfi ·D(c)gik+1

∑

(δ1,...,δk)∈Np−1(k)

k∏

j=1

Dbδj
gij .

For m = 2, 3, . . . , p− 1 we set

Sm =

m−1∑

k=m−1

n∑

i1,...,ik+1=1
β:=ei1+···+eik+1

Dβfi ·D(c)gik+1

∑

(δ1,...,δk)∈Np−1(k)

k∏

j=1

Dbδj
gij

+

m∑

k=m

n∑

i1,...,ik=1
β:=ei1+···+eik

Dβfi
∑

(δ1,...,δk)∈Np−1(k)

k∑

s=1

Dbδs+(c)gis

k∏

j=1,
j 6=s

Dbδj
gij .

16

It remains to show that Si = Ti for i = 1, . . . , p. Consider first i = 1. Recall that
N p−1(1) = {(1, 2, . . . , p− 1)}, hence

S1 =

n∑

s=1

Desfi ·Db+(c)gs =

n∑

s=1

Desfi ·Dags.

Therefore
S1 = T1. (14)

Consider now i = p. For an arbitrary s > 0 N s(s) contains only one element
((1), (2), . . . , (s)). Therefore we obtain

Sp =

n∑

i1,...,ip=1

Dei1+···+eip fi ·D(c)gip
∑

(δ1,...,δp−1)∈Np−1(p−1)

p−1
∏

j=1

Dbδj
gij

=

n∑

i1,...,ip=1

Dei1+···+eip fi ·D(c)gip

p−1
∏

j=1

Dbjgij .

Since a = b+ (c), where c = (ap), we have

Sp =

n∑

i1,...,ip=1

Dei1+···+eip fi

p
∏

j=1

Daj
gij

=

n∑

i1,...,ip=1

Dei1+···+eip fi
∑

(δ1,...,δp)∈Np(p)

p
∏

j=1

Daδj
gij = Tp.

Consider now m = 2, 3, . . . , p− 1. We have

Sm =
n∑

i1,...,im=1

Dei1+···+eim fi ·D(c)gim
∑

(δ1,...,δm−1)∈Np−1(m−1)

m−1∏

j=1

Dbδj
gij

+

n∑

i1,...,im=1

Dei1+···+eim fi
∑

(δ1,...,δm)∈Np−1(m)

m∑

s=1

Dbδs+(c)gis

m∏

j=1,
j 6=s

Dbδj
gij .

Using the decomposition N p(m) = A ∪B as in (9) we obtain

Sm =

n∑

i1,...,im=1

Dei1+···+eim fi
∑

(δ1,...,δm−1,δm=(p))∈A

m∏

j=1

Daδj
gij

+

n∑

i1,...,im=1

Dei1+···+eim fi
∑

(δ1,...,δm)∈B

m∏

j=1

Daδj
gij

=
n∑

i1,...,im=1

Dei1+···+eim fi
∑

(δ1,...,δm)∈Np(m)

m∏

j=1

Daδj
gij = Tm.

We have shown that Ti = Si for i = 1, . . . , p. This finishes the proof.

From the above lemma we have immediately

17

Lemma 2. Assume f ∈ Cr+1 and let ϕ : R× R
n−→◦ R

n be a local dynamical system
induced by x′ = f(x). Then for a ∈ Nn

p such that p ≤ r holds

d

dt
Daϕi =

p
∑

k=1

n∑

i1,...,ik=1

(
Dei1+···+eik fi

)
◦ ϕ

∑

(δ1,...,δk)∈Np(k)

k∏

j=1

Daδj
ϕij (15)

for i = 1, . . . , n.

Formula (15) could be seen as a direct application of the chain rule for composi-
tion of multivariate power series. Using the automatic differentiation tools [7, 5, 20]
one can efficiently nonrigorously integrate ODEs together with higher order varia-
tional equations by means of floating point arithmetic.

The main goal of this paper is to present an efficient rigorous solver for higher
order variational equations which takes into account the structure of the equations
and the wrapping effect.

3. Cr-Lohner algorithm

3.1. Why one needs an C
r-algorithm?

In the literature there exist several effective algorithms for the computation of the
rigorous bounds for the solutions of ordinary differential equations, including the
Lohner method [13], the Hermite–Obreschkoff algorithm [18] or the Taylor model

[3]. For the Cr-computations the number of equations to solve is equal to n

(
n+ r
n

)

,

hence, even for r = 1 the direct application of such algorithms to the equations for
variations (16) leads to the integration in the high dimensional space and is usually
inefficient. Let us recall after [31, Sec. 6] the basic reason for this. In order to have
a good control over the expansion rate of the set of the initial conditions during a time
step these algorithms, while being C0, are C1 ’internally’ (or higher for the Taylor
models), because they solve non-rigorously the equations for (∂ϕ

∂x
) – the variational

matrix of the flow. This effectively squares the dimension of the phase space of the
equation and impacts heavily on the computation time. But as it was observed in
[31] the equations for the partial derivatives of the flow can be seen as the non-
autonomous and nonhomogenous linear system of equations, therefore we do not
need any additional equations for variations for them. As a result, the dimension of

the effective phase space for our Cr-algorithm is given by n

(
n+ r
n

)

instead of the

square of this number.
Another important aspect of the proposed algorithm is the fact that the Lohner-

type control of the wrapping effect is done separately for x-variables and variables
Daϕ. This feature is not present in the näıve application of C0 algorithm to the

18

system of variational equations and it turns out that it often practically switches
off the control of the wrapping effect on x-variables, as various choices used in this
control become dominated by the Daϕ-variables.

In Section 7 we will give a detailed comparison of the C0-solver applied to the
equations of variations and our Cr-solver.

3.2. An outline of the algorithm

Let us fix r ≤ K and consider the following system of differential equations

d

dt
ϕ = f ◦ ϕ

d

dt
Daϕ =

d∑

k=1

n∑

i1,...,ik=1

(
Dei1+···+eik f

)
◦ ϕ

∑

(δ1,...,δk)∈Nd(k)

k∏

j=1

Daδj
ϕij

(16)

for all a ∈ Nn
d , d = 1, . . . , r.

The initial conditions for (16) are

ϕ(0, x0) ∈ [x0] ⊂ R
n,

Dϕ(0, x0) = Id,

Daϕ(0, x0) = 0, for a ∈ Nn
2 ∪ . . . ∪ Nn

r .

(17)

In the sequel we will use the following notations:

• if a solution of the system (16) is defined for t > 0 and some x0 ∈ R
n, then for

a ∈ N by Va(t, x0) we denote Daϕ(t, x0),

• for [x0] ⊂ R
n by [Va(t, [x0])] we will denote a set for which we have Va(t, [x0]) ⊂

[Va(t, [x0])]. This set is obtained using a rigorous numerical routine described
below.

The Cr-Lohner algorithm is a modification of the C1-Lohner algorithm [31]. One
step of the Cr-Lohner is a shift along the trajectory of the system (16) with the
following input and output data.

Input data:

• tk - current time,

• hk - time step,

• [xk] ⊂ R
n, such that ϕ(tk, [x0]) ⊂ [xk],

• [Vk,a] = [Vk,a(tk, [x0])] ⊂ R
n, such that Daϕ(tk, [x0]) ⊂ [Vk,a] for a ∈ Nn

1 ∪
. . . ∪ Nn

r .

19

Output data:

• tk+1 = tk + hk - new current time,

• [xk+1] ⊂ R
n, such that ϕ(tk+1, [x0]) ⊂ [xk+1],

• [Vk+1,a] = [Vk+1,a(tk+1, [x0])] ⊂ R
n, such that Daϕ(tk+1, [x0]) ⊂ [Vk+1,a] for

a ∈ Nn
1 ∪ . . . ∪ Nn

r .

We will often skip the arguments of Vk,a when they are obvious from the context.
The values of [xk+1] and [Vk+1,a], a ∈ Nn

1 are computed using one step of the
C1-Lohner algorithm. After this is done, we perform the following operations to
compute [Vk+1,a] for a ∈ Nn

2 ∪ . . . ∪ Nn
r

1. Find a rough enclosure for Daϕ([0, hk], [xk]).

2. Compute [Vk+1,a]. This will also involve some rearrangement computations to
reduce the wrapping effect for V [15, 13].

4. Computation of a rough enclosure for Daϕ

For a fixed multipointer a ∈ Nn
d Eq. (16) can be written as follows:

d

dt
Daϕ(t, x) = Ba(t, x) +A(t, x)Daϕ(t, x), (18)

where

Ba =

d∑

k=2

n∑

i1,...,ik=1

(
Dei1+···+eik f

)
◦ ϕ

∑

(δ1,...,δk)∈Nd(k)

k∏

j=1

Daδj
ϕij ,

A = Df ◦ ϕ.

(19)

The procedure for computing the rough enclosure is based on the notion of the
logarithmic norm.

Definition 5. [9] For a square matrix A the logarithmic norm µ(A) is defined as
a limit

µ(A) = lim sup
h→0+

‖Id +Ah‖ − 1

h
,

where ‖ · ‖ is a given matrix norm.

The formulae for the logarithmic norm of a real matrix in the most frequently
used norms are (see [9]):

1. for ‖x‖1 =
∑

i |xi|, µ(A) = maxj(ajj +
∑

i6=j |aij |),

2. for ‖x‖2 =
√∑

i |xi|2, µ(A) is equal to the largest eigenvalue of (A+AT)/2,

20

3. for ‖x‖∞ = maxi |xi|, µ(A) = maxi(aii +
∑

j 6=i |aij |).

In order to find bounds for Daϕ we use the following theorem [9, Thm. I.10.6]

Theorem 3. Let x(t) be a solution of a differential equation

x′(t) = f(t, x(t)), x ∈ R
n. (20)

Let ν(t) be a piecewise differentiable function with values in R
n. Assume that

µ

(
∂f

∂x
(t, η)

)

≤ l(t) for η ∈ [x(t), ν(t)],

|ν′(t)− f(t, ν(t))| ≤ δ(t).

Then for t ≥ t0 we have

|x(t) − ν(t)| ≤ eL(t)

(

|x(t0)− ν(t0)|+

∫ t

t0

e−L(s)δ(s)ds

)

, (21)

with L(t) =
∫ t

t0
l(τ)dτ .

We apply the above theorem to Equation (18) to obtain

Lemma 3. Let us fix x ∈ R
n. Assume that |Ba(t, x)| ≤ δ(t) and µ(A(t, x)) ≤ l(t),

then for t > t0 holds

|Daϕ(t, x)| ≤ |Daϕ(t0, x)|e
L(t) + eL(t)

∫ t

t0

e−L(τ)δ(τ)dτ (22)

with L(t) =
∫ t

t0
l(τ)dτ .

Proof: Consider Eq. (18) and a homogenous problem for (18)

d

dt
w = f(t, w) := A(t, x) · w, w ∈ R

n. (23)

Using Theorem 3 we can estimate the difference between any solution of (23), w,
and a solution of (18), denoted by Daϕ.

|Daϕ(t)− w(t)| ≤ |Daϕ(t0)− w(t0)|e
L(t) + eL(t)

∫ t

t0

e−L(τ)δ(τ)dτ. (24)

After a substitution w(t) = 0, which is a solution of the homogenous equation, we
obtain our assertion.

Usually we do not have any control over the time dependence of δ and l, hence
we will use the following

Lemma 4. Assume that |Ba(t, x)| ≤ δ and µ(A(t, x)) ≤ l for t ∈ [0, h] then for
t ∈ [0, h] we have

|Daϕ(t, x)| ≤ |Daϕ(0, x)|max(1, ehl) + δ
elt − 1

l
, if l 6= 0, (25)

or
|Daϕ(t, x)| ≤ |Daϕ(0, x)|+ δt, when l = 0. (26)

21

4.1. The procedure for the computation of the rough enclosure for V

For a ∈ Nn
1 ∪. . .∪N

n
r by [Ea] we will denote the rough enclosure for the corresponding

variational equation. The procedure for the computation of the rough enclosure [Ea]
is iterative, which means that given the rough enclosure for ϕ([0, hk], [xk]) and the
rough enclosures Daϕ([0, hk], [xk]) for all a ∈ Nn

1 ∪ . . .∪Nn
p we are able to compute

the rough enclosure for Daϕ([0, hk], [xk]) for a ∈ Nn
p+1.

The procedures for the computation of the rough enclosures of ϕ([0, hk], [xk])
and Daϕ([0, hk], [xk]) for a ∈ Nn

1 were given in [31]. Below we present an algorithm
for computing [Ea] for a ∈ Nn

2 ∪ . . . ∪ Nn
r .

Input parameters:

• hk – time step,

• [xk] ⊂ R
n – the current value of x = ϕ(tk, [x0]),

• [E0] ⊂ R
n – a compact and convex set such that ϕ([0, hk], [xk]) ⊂ [E0],

• [Ea] ⊂ R
n, a ∈ Nn

1 ∪ . . . ∪ Nn
p such that Daϕ([0, hk], [xk]) ⊂ [Ea] for a ∈

Nn
1 ∪ . . . ∪Nn

p .

Output:

• [Ea] ⊂ R
n, a ∈ Nn

p+1 such that

Daϕ([0, hk], [xk]) ⊂ [Ea].

Before we present an algorithm let us observe that for a fixed a ∈ Nn
p+1, Ba

defined in (19) could be seen as a multivariate function of t, x and Vb = Dbϕ for
b ∈ Nn

1 ∪ . . .∪Nn
p . More precisely, put mp := ♯

{
Nn

1 ∪ . . . ∪ Nn
p

}
, where ♯ stands for

the number of elements of a set. Recall that we have defined by (7) a linear order
in Nn. Hence, there is a unique sequence of multipointers b1, . . . , bmp

, such that
bi ∈ Nn

1 ∪ . . . ∪ Nn
p for i = 1, . . . ,mp, b1 ≤ b2 ≤ · · · ≤ bmp

and bi 6= bj for i 6= j.
Let us define

B̃a : R× (Rn)
mp+1 → R

n,

Fa : R× (Rn)
mp+1 → R

n

by

B̃a(t, x, vb1 , . . . , vbmp
) =

p+1
∑

k=2

n∑

i1,...,ik=1

Dei1+···+eik f(ϕ(t, x))
∑

(δ1,...,δk)∈Np+1(k)

k∏

j=1

(

vaδj

)

ij
(27)

and

Fa(t, x, vb1 , . . . , vbm) = B̃a(t, x, vb1 , . . . , vbm) +Df(ϕ(t, x))Va(t, x). (28)

22

Algorithm:

To compute [Ea] for a ∈ Nn
p+1 we proceed as follows:

1. Find l ≥
(
maxx∈[E0] µ (Df(x))

)
.

2. Compute δa ≥ max ‖B̃a‖, i.e.

δa ≥ max
(x,vb1 ,...,vbmp

)∈[E0]×[Eb1
]×···×[Ebmp

]

∥
∥
∥B̃a(0, x, vb1 , . . . , vbmp

)
∥
∥
∥ .

For example, if a = (j, c) ∈ Nn
2 , then δa should be such that

δa ≥ max
x∈[E0],v1∈[E(1)],...,vn∈[E(n)]

∥
∥
∥
∥
∥

n∑

r,s=1

∂2f

∂xr∂xs

(x) (vj)s (vc)r

∥
∥
∥
∥
∥
.

3. Define [Ea]i = [−1, 1]δa
elt−1

l
, for i = 1, . . . , n, where [Ea]i denotes i-th coordinate

of [Ea].

One can refine the obtained enclosure by

[Ea] :=
(

[0, hk]Fa

(

0, [E0], [Eb1], . . . , [Ebmp
]
))

∩ [Ea].

Indeed, from (17) we have Daϕi(0, x0) = 0 for i = 1, . . . , n, x0 ∈ [E0] and for
t ∈ [0, hk] we have

Daϕi(t, x0) = Daϕi(t, x0)−Daϕi(0, x0)

= t (Fa)i (θi, x0, Db1ϕ(θi, x0), . . . , Dbmp
ϕ(θi, x0))

= t (Fa)i (0, ϕ(θi, x0), Db1ϕ(θi, x0), . . . , Dbmp
ϕ(θi, x0))

for some θi ∈ [0, t] ⊂ [0, hk]. In the above we have used the fact that

Fa(t, x, v1, . . . , vmp
) = Fa(0, ϕ(t, x), v1, . . . , vmp

).

Since ϕ(θi, x0) ∈ [E0] and Dbjϕ(θi, x0) ∈ [Ebj] for j = 1, . . . ,mp we get

Daϕi(t, x0) ∈ [0, hk] (Fa)i

(

0, [E0], [Eb1], . . . , [Ebmp
]
)

.

23

5. Computation of [Vk+1]

5.1. Composition formulae

We apply the Faá di Bruno formula (10) to f = ϕ(hk, ·) and g = ϕ(tk, ·) to obtain

Va(tk + hk, x0) =

p
∑

k=1

n∑

i1,...,ik=1

VΛ−1(ei1+...+eik)
(hk, xk)

∑

(δ1,...,δk)∈Np(k)

k∏

j=1

(

Vaδj

)

ij
(tk, x0)

for all x0 ∈ [x0]. Using notations [Vk+1,a] := [Va(tk + hk, [x0])] and [Vk,a] =
[Va(tk, [x0])] we can rewrite the above equation as

[Vk+1,a] =

p
∑

k=1

n∑

i1,...,ik=1

VΛ−1(ei1+...+eik)
(hk, [xk])

∑

(δ1,...,δk)∈Np(k)

k∏

j=1

[

Vk,aδj

]

ij
,

(29)
where Λ is defined by (6).

5.2. The procedure for the computation of [Vk+1]

We introduce new parameters od – the order of the Taylor method used in compu-
tations of Va for a ∈ Nn

d . It makes sense to take o1 ≥ o2 ≥ · · · ≥ or.
Input parameters:

• hk – time step,

• [xk] ⊂ R
n – the current value of x = ϕ(tk, [x0]),

• [Vk,a] ⊂ R
n – a current value of Vk,a(tk, [x0]), for a ∈ Nn

1 ∪ . . . ∪ Nn
r ,

• [E0] ⊂ R
n compact and convex, such that ϕ([0, hk], [xk]) ⊂ [E0] – a rough

enclosure for [xk],

• [Ea] ⊂ R
n, compact and convex, such that Daϕ([0, hk], [xk]) ⊂ [Ea], for a ∈

Nn
1 ∪ . . . ∪Nn

r .

Output: [Vk+1,a] ⊂ R
n such that

Va(tk + hk, x0) ∈ [Vk+1,a] (30)

for x0 ∈ [x0] and a ∈ Nn
1 ∪ . . . ∪Nn

r .

24

Algorithm: We compute [Vk+1] as follows:

1. Computation of Va(hk, [xk]) using the Taylor method for Eq. (16), i.e., for a ∈ Nn
p

we compute

[Fa] =

op∑

i=1

hi
k

i!

di−1

dti−1
Fa(0, [xk], Vb1 , . . . , Vbmp−1

) (31)

+
hop+1

(op + 1)!

dop

dtop
Fa(0, [E0], [Eb1], . . . , [Ebmp−1

]),

where Vbi = 0 for bi ∈ Nn
2 ∪ . . .∪Nn

p−1 and V(j) = enj for j = 1, . . . , n. Observe
that

Va(hk, [xk]) ⊂ [Fa]. (32)

Indeed, using the Taylor series expansion we obtain that for xk ∈ [xk] and
j = 1, . . . , n holds

(Va)j(hk, xk) =

op∑

i=1

hi
k

i!

di−1

dti−1
(Fa)j(0, xk, Vb1(0, xk), . . . , Vbmp−1

(0, xk))

+
hop+1

(op + 1)!

dop

dtop
(Fa)j(θi, xk, Vb1(θi, xk), . . . , Vbmp−1

(θi, xk))

for some θi ∈ [0, hk]. Observe, that

dop

dtop
(Fa)j(θi, xk, Vb1(θi, xk), . . . , Vbmp−1

(θi, xk)) =

dop

dtop
(Fa)j(0, ϕ(θi, xk), Vb1 (θi, xk), . . . , 0, Vbmp−1

(θi, xk)).

Since ϕ(θi, xk) ∈ [E0] and Vbs(θi, xk) ∈ [Ebs] for s = 1, . . . ,mp−1 we obtain
our assertion.

2. The composition. Put

[Jk] := ([F(1)], . . . , [F(n)])
T .

Using (29) for a ∈ Nn
p we have

[Vk+1,a] = [αa] + [Jk] · [Vk,a], (33)

where

[αa] =

p
∑

k=2

n∑

i1,...,ik=1

[FΛ−1(ei1+...+eik)
]

∑

(δ1,...,δk)∈Np(k)

k∏

j=1

[

Vk,aδj

]

ij
. (34)

25

5.3. Rearrangement for Va – the evaluation of Equation (33)

It is a well-known fact that a direct evaluation of Eq. (33) leads to the wrapping
effect [15, 13]. To avoid it, following the work of Lohner [13] we will use the scheme
proposed in [31] for the C1-algorithm.

Namely, observe that Eq. (33) has exactly the same structure as the propagation
equations for C1-method (see [31, Section 3]). Moreover, all vectors Vk,a, for a ∈
Nn

1 ∪ . . .Nn
r ’propagate’ by the same [Jk] as does the variational part in [31], hence

it makes sense to use the same approach.
To be more precise, each set [Vk,a] (for a ∈ Nn

1 ∪ . . . ∪Nn
r) is represented in the

following form:
[Vk,a] = vk,a + [Bk][rk,a] + Ck[qk,a],

where [Bk] is an interval matrix, Ck is a point matrix, vk,a is a point vector and
rk,a, qk,a are interval vectors. Observe that [Bk] and Ck are independent of a.

In the sequel we will drop the index a. Equation (33) leads to

[Vk+1] = [α] + [Jk](vk + [Bk][rk] + Ck[qk]). (35)

Let m([z]) denotes a center of an interval object, i.e., [z] is interval vector or interval
matrix and let ∆([z]) = [z]−m([z]).

Let [Q] be an interval matrix which contains an orthogonal matrix. Usually, [Q]
is computed by the orthonormalisation of the columns of m([Jk][Bk]).

Let

[Z] = [Jk]Ck,

Ck+1 = m([Z]),

[Bk+1] = [Q].

Then we rearrange formula (35) as follows:

[s] = [α] + [Jk]vk +∆([Z])[qk],
vk+1 = m([s]),

[qk+1] = [qk],
[rk+1] = [QT]∆([s]) +

(
[QT][Jk][Bk]

)
[rk].

(36)

Summarizing, we can use the following data structure to represent ϕ(tk, [x0]) and
Daϕ(tk, [x0]), for a ∈ Nn

1 ∪ . . . ∪Nn
r :

type CnSet = record

v0, r0, q0: IntervalVector;
C0, B0, C,B : IntervalMatrix;
{va, ra, qa : IntervalVector}a∈Nn

1 ∪...∪Nn
r

end;

The set ϕ(tk, [x0]) is represented as v0 + B0r0 + C0q0. The partial derivatives
Daϕ(tk, [x0]) are represented as va+Bra+Cqa. The matrices B,C are common for
all partial derivatives.

26

Notice, that if we start the Cr computation with an initial condition (17), then
there is no Lipschitz part at the beginning for the partial derivatives. Hence, the
initial values for C and B are set to the identity matrix and the initial values for
qa, ra are set to zero.

If the interval vectors ra become ’thick’ (i.e. their diameters are larger than some
threshold value) we can set a new Lipschitz part in our representation (it must be
done simultaneously for all Daϕ) and reset ra in the following way:

qa = ra + (BTC)qa, for a ∈ Nn
1 ∪ . . . ∪ Nn

r ,

ra = 0, for a ∈ Nn
1 ∪ . . . ∪ Nn

r ,

C = B,

B = Id.

This is a place where a discontinuity (non-monotonicity) appears in the algorithm.
A similar change of the Lipschitz part may be done when vectors ra become thick
in comparison to qa.

6. Derivatives of the Poincaré map

Consider a differential equation

x′ = f(x), x ∈ R
n, f ∈ CK+1. (37)

Let ϕ : R×R
n → R

n be a (local) dynamical system induced by (37). Let α : Rn → R

be a C1-map. Put Π = {x | α(x) = C}.

Definition 6. We will say that Π is a local section for the vector field f at y0 ∈ Π,
if

〈∇α(y0)|f(y0)〉 6= 0. (38)

Assume x0 ∈ R
n and t0 ∈ R are such that Π is a local section at ϕ(t0, x0).

Consider an implicit equation

α(ϕ(tP (x), x)) = C. (39)

It follows easily from (38) and from the implicit function theorem that there exists
a uniquely defined tP : Rn−→◦ R in a neighborhood of x0, such that tP (x0) = t0. The
function tP is as smooth as the flow ϕ. We will refer to tP as to the Poincaré return
time to section Π.

We define a Poincaré map P : Rn ⊃ dom (tP) → R
n by

P (x) = ϕ(tP (x), x). (40)

Usually the Poincaré map is defined as a map P : Π1−→◦ Π2, where Π1,Π2 are some
local sections in R

n. The approach taken here, i.e. treating the Poincaré map as
map P : Rn−→◦ R

n, allows us not to worry about the coordinates on the local section.

27

We are interested in the partial derivatives of P defined by (40).
From (40) we obtain

∂Pi

∂xj

(x) = fi(P (x))
∂tP
∂xj

(x) +
∂ϕi

∂xj

(tP (x), x). (41)

We need ∂tP
∂xj

. We differentiate (39) to obtain

n∑

k=1

∂α

∂xk

(P (x))

(

fk(P (x))
∂tP
∂xj

(x) +
∂ϕk

∂xj

(tP (x), x)

)

= 0,

〈∇α(P (x))|f(P (x))〉
∂tP
∂xj

(x) +

n∑

k=1

∂α

∂xk

(P (x))
∂ϕk

∂xj

(tP (x), x) = 0. (42)

Hence,

∂tP
∂xj

(x) = −
1

〈∇α(P (x))|f(P (x))〉

n∑

k=1

∂α

∂xk

(P (x))
∂ϕk

∂xj

(tP (x), x). (43)

6.1. Higher order derivatives of the Poincaré map

To make the formulae transparent we will drop the arguments of the functions in
this section, but reader should be aware that for tP and its partial derivatives the
argument is x, for ϕ and Daϕ the argument is always the pair (tP (x), x).

From (41) we obtain

D(j,c)P =
∂2

∂t2
ϕD(j)tPD(c)tP +

∂

∂t
D(c)ϕD(j)tP +

∂

∂t
ϕD(j,c)tP

+
∂

∂t
D(j)ϕD(c)tP +D(j,c)ϕ.

It is easy to see that partial derivatives of the high order give rise to quite complex
expressions and it is not entirely obvious how to organize it in some coherent and
programmable way. For this purpose we use the following

Lemma 5. For a multipointer a ∈ Nn
p we have

DaP = Daϕ+ ∂ϕ
∂t

DatP

+
∑p

k=2
∂kϕ
∂tk

∑

(δ1,...,δk)∈Np(k)

∏k
j=1 Daδj

tP

+
∑p

k=2

∑

(δ1,...,δk)∈Np(k)

∑k
s=1

∂k−1

∂tk−1Daδs
ϕ
∏

j 6=s Daδj
tP .

(44)

Proof: By induction on p. For p = 1 Eq. (44) is equivalent to (41), because the
last two sums are taken over the empty set. Assume (44) holds true for some p ≥ 1
and fix a ∈ Nn

p+1. Our goal is to show that

DaP = R1 +R2 +R3,

28

where

R1 = Daϕ+
∂

∂t
ϕDatP ,

R2 =

p+1
∑

k=2

∂k

∂tk
ϕ

∑

(δ1,...,δk)∈Np+1(k)

k∏

j=1

Daδj
tP ,

R3 =

p+1
∑

k=2

∑

(δ1,...,δk)∈Np+1(k)

k∑

s=1

∂k−1

∂tk−1
Daδs

ϕ
∏

j 6=s

Daδj
tP .

Write a = β + γ, where β ∈ Nn
p and γ = (ap+1) ∈ Nn

1 . From the induction
assumption we have

DaP = Dγ

(
Dβϕ+ ∂

∂t
ϕDβtP

)

+ Dγ

(
∑p

k=2
∂k

∂tk
ϕ
∑

(δ1,...,δk)∈Np(k)

∏k
j=1 Dβδj

tP

)

+ Dγ

(
∑p

k=2

∑

(δ1,...,δk)∈Np(k)

∑k
s=1

∂k−1

∂tk−1Dβδs
ϕ
∏

j 6=s Dβδj
tP

)

=
∑10

i=1 Si,

where

S1 = Daϕ+ ∂
∂t
ϕDatP ,

S2 = ∂
∂t
DβϕDγtP ,

S3 = ∂2

∂t2
ϕDβtPDγtP ,

S4 = ∂
∂t
DγϕDβtP ,

S5 =
∑p

k=2
∂k

∂tk
Dγϕ

∑

(δ1,...,δk)∈Np(k)

∏k
j=1 Dβδj

tP ,

S6 =
∑p

k=2
∂k+1

∂tk+1ϕDγtP
∑

(δ1,...,δk)∈Np(k)

∏k
j=1 Dβδj

tP ,

S7 =
∑p

k=2
∂k

∂tk
ϕ
∑

(δ1,...,δk)∈Np(k)

∑k
s=1 Dβδs+γtP

∏k
j=1
j 6=s

Dβδj
tP ,

S8 =
∑p

k=2

∑

(δ1,...,δk)∈Np(k)

∑k
s=1

∂k−1

∂tk−1Dβδs+γϕ
∏

j 6=s Dβδj
tP ,

S9 =
∑p

k=2

∑

(δ1,...,δk)∈Np(k)

∑k
s=1

∂k

∂tk
Dβδs

ϕDγtP
∏

j 6=s Dβδj
tP ,

S10 =
∑p

k=2

∑

(δ1,...,δk)∈Np(k)
∑k

s=1

∑k
r=1
r 6=s

∂k−1

∂tk−1Dβδs
ϕDβδr+γtP

∏

j 6=s
j 6=r

Dβδj
tP .

Obviously R1 = S1. We will show that R2 = S3 + S6 + S7 and R3 = S2 + S4 + S5 +
S8 + S9 + S10.

Denote by Ri,k, i = 2, 3 a part of sum Ri with fixed k = 2, . . . , p+ 1. Similarly,
let us denote by Si,k a part of sum Si, i = 5, . . . , 10, for k = 2, . . . , p.

Using decomposition of N p+1(2) as in (9) we obtain that R2,2 = S3 + S7,2.
Similarly, using (9) we observe that R2,k = S6,k−1 + S7,k for k = 3, . . . , p. Finally,
since N p+1(p+ 1) = {((1), (2), . . . , (p + 1))} and γ = (ap+1) we find that R2,p+1 =
S6,p. This shows that R2 = S3 + S6 + S7.

It remains to show that R3 = S2 + S4 + S5 + S8 + S9 + S10. We will classify
possible terms by the place of the appearance of p+1 in δi, i = 1, . . . , k and by how
this δi enters in R3 as δs or δj . There are four cases:

1. δs = (p+ 1),

29

2. δj = (p+ 1),

3. p+ 1 ∈ δs, |δs| ≥ 2,

4. p+ 1 ∈ δj , |δj | ≥ 2.

Let us fix k = 2. Let (δ1, δ2) ∈ N p+1(2). The term for case 1 is S4, for case 2 is S2,
for case 3 is S8,2 and for case 4 is S10,2. Hence, R3,2 = S2 + S4 + S8,2 + S10,2.

For k = 3, . . . , p and fixed (δ1, . . . , δk) ∈ N p+1(k) case 1 is given by S5,k−1, case
2 by S9,k−1, case 3 by S8,k and case 4 by S10,k Hence, for k = 3, . . . , p we have
R3,k = S5,k−1 + S9,k−1 + S8,k + S10,k.

Finally, for k = p+ 1 we observe, that R3,p+1 = S5,p + S9,p. Indeed, in this case
(δ1, . . . , δp+1) = ((1), (2), . . . , (p+ 1)). Hence, for δs = γ we have term S5,p and for
δs 6= γ we have S9,p.

We have shown that R3 = S2+S4+S5+S8+S9+S10 and the proof is finished.

Hence, if we know all the partial derivatives of tP up to order p we can compute
the partial derivatives of the Poincaré map up to the same order. In the next
subsection we show how to compute the partial derivatives of tP for affine sections.

6.2. Partial derivatives of tP for affine sections

Assume α : Rn → R is an affine map given by

α(x) = α0 +

n∑

i=1

αixi.

This is a quite restrictive assumption about sections, but it leads to relatively simple
formulae for DatP and it is sufficient for the applications we have in mind.

Lemma 6. For a multipointer a ∈ Nn
p holds

−DatP

〈

∇α|
∂

∂t
ϕ

〉

=

〈∇α|Daϕ〉+

p
∑

k=2

〈

∇α|
∂k

∂tk
ϕ

〉
∑

(δ1,...,δk)∈Np(k)

k∏

j=1

Daδj
tP

+

p
∑

k=2

∑

(δ1,...,δk)∈Np(k)

k∑

s=1

〈

∇α|
∂k−1

∂tk−1
Daδs

ϕ

〉
∏

j 6=s

Daδj
tP .

Proof: The proof is a direct consequence of Lemma 5 and (39). Since α is affine,
by differentiating of α(P (x)) = C we get 〈∇α|DaP 〉 = 0. Using formula (44) for
DaP we obtain our assertion.

Fix [x] ⊂ R
n and assume we have a rigorous bound for tP ([x]) ∈ [t1, t2] (see [31,

Section 6] for more details on this). Lemmas 6 and 5 show that given rigorous bounds

30

for the partial derivatives Daϕ([t1, t2], [x]) and
∂k

∂tk
Daϕ([t1, t2], [x]) up to some order

p we can compute recursively the rigorous bounds for the partial derivatives of

tP ([x]) and P ([x]) up to the same order. Notice, that ∂k

∂tk
Daϕ are given by Taylor

coefficients of the solution of (16) with initial conditions P ([x]) for the C0 part and
Daϕ(tP (x), [x]) for equations for variations. Hence, these coefficients can be easily
computed using the automatic differentiation algorithm.

7. Comparison to the C0-solver

In this section we present results of comparison of the C0-solver applied to the
second order variational equations with the C2-solver. We performed tests of these
algorithms on some classical low dimensional examples, such as the Volterra-Lotka
system

{

ẋ = x(2 − y),

ẏ = y(x− 3),
(45)

the pendulum equation
ẍ = − sin(x), (46)

the Lorenz system

ẋ = 10(−x+ y),

ẏ = 28x− y − xz,

ż = xy − 8
3z,

(47)

the Michelson system
...
x + ẋ+

1

2
x2 = 1, (48)

the Rössler system

ẋ = −(y + z),

ẏ = x+ 0.2y,

ż = 0.2 + z(x− 5.7),

(49)

and for the Hénon-Heiles system (Hamiltonian equation)

{

ẍ = −x− 2xy,

ÿ = y2 − y − x2.
(50)

31

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Voltera-Lotka system

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

pendulum equation

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2.5-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5

Michelson system

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

Lorenz system

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

-8 -6 -4 -2 0 2 4 6 8 10

Rossler system

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Henon-Heiles system

Fig. 1. Periodic orbits for the systems (45-50). The initial conditions are:
(2.5, 1.5) for the Volterra-Lotka system, (0.5, 0.5) for the pendulum equation,
(0, 1.52596, 0) for the Michelson system, (−2.14737, 2.07805, 27) for the Lorenz
system, (0.,−8.3809417428298, 0.029590060630665) for the Rössler system and
(x, y, ẋ, ẏ) = (0, 0.10903, 0, 0.567723) for the Hénon-Heiles system

32

General settings of the tests.

• We integrate the above systems together with second and third order varia-
tional equations along periodic orbits using C2, C3 and C0 solvers from the
CAPD library [4] to obtain bounds for the higher order derivatives. These
periodic orbits are presented in Fig. 1. In each case the integration time is
equal to an approximate period of the orbit. We believe that this is a relevant
time scale for the computer assisted proofs for these systems.

• When integrating the systems of variational equations using the C0 solver we
simply add the variational equations to the main equations and apply the C0

solver to the extended system that has dimension n

(
n+ k
k

)

, where n is the

dimension of the main problem and k is the order of the derivatives we require.

• For each ODE (45)–(50) we set as initial conditions to each routine three
boxes of diameters 0, 10−10 and 10−6 centered at a point very close to the
corresponding periodic solution. The actual initial conditions are given in the
caption of Fig. 1.

• In each case we use the Taylor method of order 20 with the variable time step.
The minimal acceptable time step has been set to 10−5. The computations
were performed using the interval arithmetic with double precision.

Comparison of the computation times. As it is expected the C2 and C3 solvers
are much faster than C0 applied to the equations for variations. In Tab. 1 we present
the computation time (in seconds) for each problem when computed from a point
initial condition (diam(x0) = 0). For 2–3 dimensional systems the speed up of the
computation of second order derivatives was between 16 and 126. For the third order
derivatives it is even larger and varies between 41 and 464.

For the Hénon-Heiles Hamiltonian the C0-solver was not able to integrate along
the periodic solution neither second nor third order derivatives even when starting
from a point initial condition. In Table 1 we gathered the computation times up
to the blow-up which occurred at t = 8.32874 for the second order derivatives and
t = 3.6712 for the third order derivatives. The total time of integration for this
system has been set to T = 13.

33

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 1 2 3 4 5 6

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 1 2 3 4 5 6

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 0 1 2 3 4 5 6

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 1 2 3 4 5 6

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Fig. 2. Plots of t → r
(
[D2φ(x0, t)]

)
and t → r

(
[D3φ(x0, t)]

)
for the Volterra-

Lotka system (45) obtained from C0 and Cr solvers for various diameters of initial
conditions

34

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 0 1 2 3 4 5 6 7

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 1 2 3 4 5 6 7

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0 1 2 3 4 5 6 7

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 1 2 3 4 5 6 7

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 1 2 3 4 5 6 7

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Fig. 3. Plots of t → r
(
[D2φ(x0, t)]

)
and t → r

(
[D3φ(x0, t)]

)
for the pendulum equa-

tion (46) obtained from C0 and Cr solvers for various diameters of initial conditions

35

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-15

-10

-5

 0

 5

 10

 15

 0 1 2 3 4 5 6 7

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Fig. 4. Plots of t → r
(
[D2φ(x0, t)]

)
and t → r

(
[D3φ(x0, t)]

)
for the Michelson

system (48) obtained from C0 and Cr solvers for various diameters of initial conditions

36

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Fig. 5. Plots of t → r
(
[D2φ(x0, t)]

)
and t → r

(
[D3φ(x0, t)]

)
for the Lorenz system

(47) obtained from C0 and Cr solvers for various diameters of initial conditions

37

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0 1 2 3 4 5 6

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0 1 2 3 4 5 6

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Fig. 6. Plots of t → r
(
[D2φ(x0, t)]

)
and t → r

(
[D3φ(x0, t)]

)
for the Rössler system

(49) obtained from C0 and Cr solvers for various diameters of initial conditions

38

-15

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10 12 14

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-15

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10 12 14

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

-15

-10

-5

 0

 5

 10

 0 2 4 6 8 10 12 14

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12 14

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12 14

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Fig. 7. Plots of t → r
(
[D2φ(x0, t)]

)
and t → r

(
[D3φ(x0, t)]

)
for the Hénon-Heiles

system (50) obtained from C0 and Cr solvers for various diameters of initial conditions

39

Tab. 1. Comparison of the computation times for C2, C3 and C0 solvers when applied
to the equations for variations. All computation times are given in seconds

The system Second order derivatives Third order derivatives

C2-solver C0-solver ratio C3-solver C0-solver ratio

V-L 0.30 4.89 16 0.61 25.35 41

Pendulum 0.09 1.96 21 0.21 9.71 46

Michelson 0.20 25.30 126 0.51 237.14 464

Lorenz 1.22 81.59 66 3.48 762.34 219

Rössler 0.71 58.96 83 1.87 521.37 278

H-H 1.40 430.21 – 4.96 3001.63 –

Comparison of the obtained enclosures. For an interval x = [a, b] we define
a function

r(x) = − log10

(
b− a

|mid(x)|

)

= − log10

(
2(b− a)

|a+ b|

)

.

For an interval x = [a, b] that does not contain zero, the function rmeasures a relative
diameter of x, i.e. an approximate number of significant decimal digits that are the
same for a and b.

With some abuse of notation we will denote by the same letter a relative diameter
of an interval vector [u] ⊂ R

m, i.e.

r([u]) = min {r([u]i) : i = 1, . . . ,m}

and of an enclosure of k-th order derivative of a smooth function f

r
(
[Dkf(x)]

)
= min {r ([Daf(x)]) : |a| = k} .

In Figs 2–7 we present the plots of the relative diameters of r
(
D2φ(x0, t)

)
and

r
(
D3φ(x0, t)

)
as a function of time t obtained from C0 and Cr solvers for various

diameters of initial conditions for systems (45–50). Here φ denotes the local flow
induced by the equation under consideration.

In principle, our Cr-algorithm may be less accurate than the C0-Lohner direct
solver in the computation of Daϕ for |a| ≥ 1, because we do not make use of the
dependence of Daϕ on x. Indeed, this can be seen for lower dimensional systems.
But we have paid for this with the serious increase of the computation times.

For point initial conditions this lack of accuracy can be compensated by switching
to the multiprecision arithmetic. In fact, for the systems under consideration we
were able to obtain much thinner enclosures for derivatives using higher precision
and within comparable or better time of computations.

For the initial conditions of nonzero diameters one can subdivide the sets. In
many cases this strategy allows us to obtain better accuracy within the same or better
time. In some cases, like the Volterra-Lotka system (45) and the Lorenz system
(47) obtained enclosures are significantly better when integrating the variational

40

equations using the C0 solver. For these systems and low order derivatives one can
choose between C0 and Cr solvers depending on the required accuracy of the result.

On the other hand, the C0 solver was not able to integrate third order derivatives
for the Lorenz and Michelson systems when diam(x0) = 10−6.

For higher dimensional systems, like the Hénon-Heiles Hamiltonian we see that
the C0-solver cannot compete with Cr-algorithm. Both, the time of computation
and obtained enclosures for second and third order derivatives are worse than those
resulting from the Cr-solver.

Memory usage. We would like to mention that the direct C0-solver, when applied
to the equations for variations, requires also a huge memory. This is due to the fact,
that the C0 solver extended by the k-th order variational equations builds a tree

for automatic differentiation for the system in n

(

n+ k

k

)

-dimensional space and

also its derivative. This squares the effective dimension for the C0 solver. For the
Hénon-Heiles system (50) and the third order derivatives the C0 solver used 22.31MB
of RAM while the C3 solver used 416kB only.

Conclusions. The proposed algorithm has been proved to be very useful in many
applications [12, 25, 28, 29]. In these papers we applied our C2–C5-algorithms to
study various kinds of dynamic and bifurcations of ODEs. In all of these applications
the desired accuracy of computed derivatives was not that large as we usually require
for the C0 image of the set – only a very few significant digits were necessary to get
the result. Our tests show that the Cr solver can compute high order derivatives
with acceptable accuracy in a very good CPU time.

Our tests show also, that when the high accuracy of derivatives is required, the
C0 solver applied to the equations for variations can compete with Cr solvers for low
dimensional systems and for low order derivatives, only. This is due to the following
facts:

• loss of control of the wrapping effect in the C0 solver when the dimension is
really high,

• memory usage; for example, using our C5 solver we integrated along a periodic
solution the fifth order derivatives of a Hamiltonian flow (n-body problem) in
8 dimensions. The program used 7GB of RAM. We were not able to build the
C0 solver for the fifth order derivatives on a computer with 64GB of memory,

• even if possible to build the necessary objects in the memory, the time of
computations for large problems would be very large.

41

8. References

[1] Alefeld G.; Inclusion methods for systems of nonlinear equations – the interval Newton

method and modifications, in: Herzberger J. (ed.), Topics in Validated Computations,
Elsevier Science B.V., 1994, pp. 7–26.

[2] Broer H.W., Huitema G.B., Sevryuk M.B.; Quasi-periodicity in families of dynamical

systems: order amidst chaos, Lecture Notes in Mathematics, 1645, Springer Verlag,
1996.

[3] Berz M., Makino K.; New Methods for High-Dimensional Verified Quadrature, Reliable
Computing, 5, 1999, pp. 13–22.

[4] CAPD – Computer Assisted Proofs in Dynamics group; a C++ package for rigorous
numerics. Available via http://capd.wsb-nlu.edu.pl.

[5] Griewank A.; Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-

ferentiation, Frontiers in Applied Mathematics, 19, SIAM, 2000.

[6] Galias Z., Zgliczyński P.; Computer assisted proof of chaos in the Lorenz system,
Physica D, 115(3–4), 1998, pp. 165–188.

[7] Jorba À., Zou M.; A software package for the numerical integration of ODE by means

of high-order Taylor methods, Experimental Mathematics, 14, 2005, pp. 99–117.

[8] Hardy M.; Combinatorics of Partial Derivatives, Electronic Journal of Combinatorics,
13, 2006.

[9] Hairer E., Nørsett S.P., Wanner G.; Solving Ordinary Differential Equations I, Nonstiff

Problems, Springer-Verlag, Berlin–Heidelberg, 1987.

[10] Hassard B., Zhang J., Hastings S., Troy W.; A computer proof that the Lorenz equa-

tions have ”chaotic” solutions, Applied Mathematics Letters, 7, 1994, pp. 79–83.

[11] Kapela T., Zgliczyński P.; The existence of simple choreographies for N-body problem

– a computer assisted proof, Nonlinearity, 16, 2003, pp. 1899–1918.

[12] Kokubu H., Wilczak D., Zgliczyński P.; Rigorous verification of cocoon bifurcations in

the Michelson system, Nonlinearity, 20, 2007, pp. 2147–2174.

[13] Lohner R.J.; Computation of Guaranteed Enclosures for the Solutions of Ordinary

Initial and Boundary Value Problems, in: Cash J.R., Gladwell I. (ed.), Computational

Ordinary Differential Equations, Clarendon Press, Oxford 1992.

[14] Michelson D.; Steady solutions of the Kuramoto–Sivashinsky equation, Physica D, 19,
1986, pp. 89–111.

[15] Moore R.E.; Interval Analysis, Prentice Hall, 1966.

[16] Mischaikow K., Mrozek M.; Chaos in the Lorenz equations: A computer assisted proof,
Mathematics of Computation, 67, 1998, pp. 1023–1046.

[17] Mrozek M., Zgliczyński P.; Set arithmetic and the enclosing problem in dynamics,
Annales Polonici Mathematici, 2000, pp. 237–259.

42

[18] Nedialkov N.S., Jackson K.R.; An Interval Hermite – Obreschkoff Method for Com-

puting Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary

Differential Equation, in: Csendes T. (ed.), Developments in Reliable Computing,
Kluwer, Dordrecht, Netherlands, 1999, pp. 289–310.

[19] Neumeier A.; Interval methods for systems of equations, Cambridge University Press,
1990.

[20] Rall L.B.; Automatic Differentiation: Techniques and Applications, Lecture Notes in
Computer Science, 120, 1981.

[21] Rage T., Neumaier A., Schlier C.; Rigorous verification of chaos in a molecular model,
Phys. Rev. E, 50, 1994, pp. 2682–2688.

[22] Rössler O.E.; An Equation for Continuous Chaos, Physics Letters A, 57(5), 1976, pp.
397–398.

[23] Tucker W.; A Rigorous ODE solver and Smale’s 14th Problem, Foundations of Com-
putational Mathematics, 2(1), 2002, pp. 53–117.

[24] Walter W.; Differential and integral inequalities, Springer-Verlag, New York 1970.

[25] Wilczak D.; Rigorous normal forms and the existence of KAM invariant curves for

Poincaré maps, in review.

[26] Wilczak D.; Symmetric heteroclinic connections in the Michelson system – a computer

assisted proof, SIAM Journal on Applied Dynamical Systems, 4(3), 2005, pp. 489–514.

[27] Wilczak D., Zgliczyński P.; Heteroclinic Connections between Periodic Orbits in Pla-

nar Restricted Circular Three Body Problem – A Computer Assisted Proof, Commu-
nications in Mathematical Physics, 234, 2003, pp. 37–75.

[28] Wilczak D., Zgliczyński P.; Computer assisted proof of the existence of homoclinic

tangency for the Henon map and for the forced-damped pendulum, SIAM Journal on
Applied Dynamical Systems, 8(4), 2009, pp. 1632–1663.

[29] Wilczak D., Zgliczyński. P.; Period doubling in the Rössler system – a computer as-

sisted proof, Foundations of Computational Mathematics, 9, 2009, pp. 611–649.

[30] Zgliczyński P.; Computer assisted proof of chaos in the Hénon map and in the Rössler

equations, Nonlinearity, 10(1), 1997, 243–252.

[31] Zgliczyński P.; C1-Lohner algorithm, Foundations of Computational Mathematics, 2,

2002, pp. 429–465.

Received March 18, 2010

