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Abstract
Neutrophil extracellular traps or NETs are released by highly activated neutrophils in response to infectious agents, sterile
inflammation, autoimmune stimuli and cancer. In the cells, the nuclear envelop disintegrates and decondensation of chromatin
occurs that depends on peptidylarginine deiminase 4 (PAD4) and neutrophil elastase (NE). Subsequently, proteins from neutro-
phil granules (e.g., NE, lactoferrin and myeloperoxidase) and the nucleus (histones) bind to decondensed DNA and the whole
structure is ejected from the cell. The DNA decorated with potent antimicrobials and proteases can act to contain dissemination of
infection and in sterile inflammation NETs were shown to degrade cytokines and chemokines via serine proteases. On the other
hand, overproduction of NETs, or their inadequate removal and prolonged presence in vasculature or tissues, can lead to
bystander damage or even initiation of diseases. Considering the pros and cons of NET formation, it is of relevance if the stage
of neutrophil maturation (immature, mature and senescent cells) affects the capacity to produce NETs as the cells of different age-
related phenotypes dominate in given (pathological) conditions. Moreover, the immune system of neonates and elderly individ-
uals is weaker than in adulthood. Is the same pattern followed when it comes to NETs? The overall importance of individual and
neutrophil age on the capacity to release NETs is reviewed in detail and the significance of these facts is discussed.
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Introduction

Neutrophils, polymorphonuclear cells (PMNs), are the first
leukocytes to reach the site of inflammation where they per-
form their effector functions, phagocytose microbes and kill
them intracellularly. Alternatively, neutrophils fight pathogens
extracellularly in either of two ways: upon discharge of potent
antimicrobials and proteases from their granules or on release
of neutrophil extracellular traps (NETs; Kolaczkowska and
Kubes 2013).

The first report on NETs revealed that neutrophils stimu-
lated by agents such as lipopolysaccharide (LPS), interleukin
8 (IL-8) or phorbol 12-myristate 13-acetate (PMA) form and
release structures similar to the network, hence their name

(Brinkmann et al. 2004). Detailed studies of NETs by electron
scanning and confocal microscopy as well as proteomic anal-
yses showed that NETs are composed of thin chromatin fibers
that are decorated with some 30 neutrophil proteins, including
neutrophil elastase (NE), bactericidal/permeability-increasing
protein (BPI), defensins, cathelicidin (LL-37), proteinase 3
and cathepsin G of granular origin and nuclear histones
(Brinkmann et al. 2004; Urban et al. 2009) (Fig. 1). NETs
can take different forms, from a band form, by a cloud-like
structure, when the NET is fully hydrated, to a network-like
shape, exceeding 10–15 times the volume of the releasing cell
(Brinkmann et al. 2004; Brinkmann and Zychlinsky 2012).
More recent studies, applying atomic force microscopy to re-
veal their nanoscale properties, reported that NETs are
branching filament networks with a substantially organized
porous structure and with openings in the size range of small
pathogens (Pires et al. 2016). Importantly, proteases attached
to NETs secure assembly of the whole structure and its me-
chanical properties. While such a structure increases the effi-
ciency of catching pathogens, it can also favor collateral dam-
age (Pires et al. 2016). The latter observation directly relates to
pros and cons of NET formation.
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Ying and yang of NETs

There are multiple reports on NETs being able to capture,
immobilize and neutralize pathogens. The microbes caught
by NET include both Gram-positive (e.g., Staphylococcus
aureus) and Gram-negative bacteria (e.g., Salmonella
typhimurium and Shigella flexneri; Brinkmann et al. 2004),
fungi (e.g., Candida albicans; Urban et al. 2006) and viruses
(Saitoh et al. 2012; Jenne et al. 2013). More controversial is
their capacity to kill trapped pathogens. As NETs are decorat-
ed with antimicrobial proteins and proteases, their killing po-
tential seemed to be unavoidable and in fact it was repeatedly
reported to occur (Brinkmann et al. 2004; Urban et al. 2006;
Guimarães-Costa et al. 2009). However, some studies ruled it
out (Gabriel et al. 2010). A recent paper by Menegazzi et al.
(2012) challenged the technical approach applied in the ma-
jority of the studies, most of which were performed on isolated
neutrophils and revealed that the results depended on the cho-
sen strategy; i.e., incubation with DNase prior or post-addition
of bacteria to the NET forming neutrophils. Overall, the study
concluded that NETs entrap but do not kill microbes
(Menegazzi et al. 2012). This is in line with some in vivo
studies showing that, after intravascular application of
DNase, colony-forming units (CFUs) of S. aureus do not in-
crease despite strong deposition of NETs in the vasculature of
mice with S. aureus sepsis (Kolaczkowska et al. 2015). But
even if NETs indeed do not kill pathogens, their role in

capturing and immobilizing microbes should not be
underestimated as NETs prevent microbial dissemination
throughout the body. This was, for example, shown in the
course of Escherichia coli sepsis (McDonald et al. 2012).
Moreover, one can speculate that NETs can indirectly contrib-
ute to pathogen killing, as immobilizedmicrobes are exposed to
microenvironmental immune factors present in serum or tissues
as well as cytotoxic leukocytes (macrophages and NK cells). In
addition, by means of proteases attached to NETs, virulence
factors of pathogens can be shed from their surface limiting
their virulency, e.g., IpaB on S. flexneri is being removed by
NE decorating the traps (Brinkmann et al. 2004). Another im-
portant, anti-inflammatory function of NETs comes from stud-
ies on sterile inflammation, as during gout, serine proteases
attached to NETs were shown to degrade pro-inflammatory
cytokines and chemokines contributing to the resolution of
the immune response (Schauer et al. 2014).

The importance of NETs is further strengthened by four
facts: (1) their evolutionary conservation, (2) release by mul-
tiple populations of leukocytes, (3) release of the NET back-
bone (DNA) from either nucleus or mitochondria and (4)
strategies of pathogens developed to escape from NETs. It
turns out that DNA decorated with antimicrobials and prote-
ases is preserved in evolution; not only do all vertebrates (only
data on amphibians are missing) release extracellular traps
(ETs; Brinkmann et al. 2004; Alghamdi and Foster 2005;
Palić et al. 2007; Pijanowski et al. 2013; Reichel et al. 2015)

Fig. 1 Basic characteristics of neutrophil extracellular traps (NETs):
I) inducing factors, II) involved pathways, III) composition and IV) fate
of NET-releasing neutrophils. The image captures NETs formed upon
LPS stimulation of murine neutrophils (green arrows extracellular
DNA, red arrows citrullinated histone H3), scale bar 50 μm. PAMP

pathogen-associated molecular pattern, DAMP damage-associated mo-
lecular pattern, PMA phorbol 12-myristate 13-acetate, ROS reactive oxy-
gen species, NO nitric oxide, PAD4 peptidylarginine deiminase 4,MPO
myeloperoxidase, BPI bactericidal/permeability-increasing protein, LL-
37 cathelicidins cathelicidin
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but also invertebrate species (Ng et al. 2013; Homa et al.
2016) and even plants (Wen et al. 2009, 2017) and social
amoebae (Zhang et al. 2016) do so. Moreover, although not
all cells releasing ETs are leukocytes or leukocyte-like, they
all seem to perform a kind of defense function, including root
border cells of plants (Hawes et al. 2000) and sentinel cells of
the multicellular slug stage of the social amoeba functioning
as a primitive innate immune system (Chen et al. 2007). Thus,
it is not surprising that, in vertebrates, as depicted in detail in
mammals, ET formation is universal among innate immune
leukocytes and also characterizes monocytes (Granger et al.
2017), macrophages (Chow et al. 2010; Liu et al. 2014), eo-
sinophils (Yousefi et al. 2008), basophils (Morshed et al.
2014) and mast cells (von Köckritz-Blickwede et al. 2008).
Furthermore, the source of DNA can vary since neutrophils
and eosinophils not only eject DNA of nuclear but also of
mitochondrial origin (mNETs; Yousefi et al. 2008, 2009).
The studies on neutrophils revealed that DNA of mNETs in-
deed contains mitochondrial (e.g., Cyb) and not nuclear (e.g.,
Gapdh) genes (Yousefi et al. 2008). Interestingly, mNETs are
released by vital neutrophils and they prolong survival of the
releasing cells (Yousefi et al. 2009). Finally, different strategies
of pathogens to avoid trapping by NETs, or to escape from the
released chromatin fibers, have been described. Streptococcus
pneumoniae and S.aureus are good examples of bacteria armed
against NETs but fungi (Lee et al. 2015; Rocha et al. 2015;
Johnson et al. 2016) and parasites (Guimarães-Costa et al.
2014) have also developed such mechanisms. S. pneumoniae
possesses the ability to form polysaccharide capsules protecting
them from binding to NETs (Wartha et al. 2007) and their
endonucleases degrade the network (Beiter et al. 2006).
Moreover, S. pneumoniae can change the electrical charge of
their membrane to positive, by incorporation of D-alanine res-
idues into LTAs (lipoteichoic acids). This strategy protects them
against positively-charged residues on NET antimicrobials and
proteases preventing the trapping (Beiter et al. 2006). S. aureus
also releases nucleases but not only to desintegrate NETs
(Berends et al. 2010), as they also degrade NET-DNA to inter-
mediate products that are converted to 2′-deoxyadenosine. The
latter deoxyribonucleoside induces apoptosis of macrophages
that otherwise could phagocytose pathogens immobilized in
NETs (Thammavongsa et al. 2013).

Having described the adventages of NET release, one
must also acknowledge the side effects of their formation
leading to either initiation of bystander damage or even dis-
eases. Numerous studies have reported that uncontrolled
and/or excessive release of NETs, as well as their inadequate
removal, leads, or at least contributes, to various pathologi-
cal conditions, including rheumatoid arthritis (RA; Sur
Chowdhury et al. 2014; Carmona-Rivera et al. 2017), sys-
temic lupus erythematosus (SLE; Lande et al. 2011;
Villanueva et al. 2011), atherosclerosis (Knight et al. 2014;
Wang et al. 2017), vasculitis (Kessenbrock et al. 2009;

Söderberg and Segelmark 2016), thrombosis (Gould et al.
2014; Martinod and Wagner 2014), sepsis (Kolaczkowska
et al. 2015) and cancer (Berger-Achituv et al. 2013;
Tohme et al. 2016). SLE and sepsis are representative ex-
amples of excessive/inapropiate NET release and inadequate
removal, respectively. SLE is manifested by benign skin
lesions to life-threatening symptoms resulting from overpro-
duction of autoantibodies and loss of tolerance to their own
antigens (Crispín et al. 2010; Dörner et al. 2011). The auto-
antibodies, anti-neutrophil cytoplasmic antibodies (ANCAs)
are directed against PR3, MPO, NE and the anti-nuclear
antibodies (ANAs) against DNA and histones, all of which
are components of NETs (Fauzi et al. 2004; Yu and Su
2013; Gajic-Veljic et al. 2015). Characteristic for SLE NETs
is the presence of LL-37 and human neutrophil peptide (HNP).
The DNA/LL-37/HNP complexes activate plasmacytoid den-
dritic cells (pDCs) resulting in increased production of IFN-α
(Lande et al. 2011), which plays a central role in the pathogen-
esis of SLE by promoting immune system activation that con-
tributes to tissue and organ inflammation and damage (Crow
2014). In addition, NETs of SLE patients are inadequately de-
graded as they are protected by DNase inhibitors (Hakkim et al.
2010) but also complement C1q bound to NET (Leffler et al.
2012), while LL-37 can protect DNA from degradation (Lande
et al. 2011). Of importance, during SLE, numbers of circulating
immature neutrophils are elevated (Bennett et al. 2003).

Correspondingly, during sepsis, NETs contribute to by-
stander damage of endothelium due to activity of histones
(Xu et al. 2009; Saffarzadeh et al. 2012; McDonald et al.
2017) and NE (Kolaczkowska et al. 2015) of NETs that are
not timely removed. Also, sepsis is characterized by a rapid
recruitment to blood of immature neutrophils (Mare et al.
2015) and not fully mature neutrophils are also present in
tumors where they display a pro-tumorgenic phenotype
(Sagiv et al. 2015). These data suggest that the age of neutro-
phils might not only impact the phenotype of neutrophils but
also their contribution to disease pathology.

On how NETs are created

Thirteen years into NET research and still we know little about
the mechanisms of NET formation, although numerous stud-
ies have been published on this topic. Not to underestimate
any of the studies, one must keep in mind that, to our estima-
tion, approximately 90% of studies on NETs are performed on
isolated neutrophils or tissues collected post-mortem. This
does not reflect on a complex in vivo milieu and behavior of
neutrophils and other leukocytes in situ, in blood or tissues.
However, the main concern is that most of what we know on
the mechanisms of NETs come from studies in which PMA
was used a sole stimulant. PMA is a syntetic phorbol 12-
myristate 13-acetate, a robust activator of two of the three
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families of protein kinase C (PKC; Liu and Heckman 1998;
Neeli and Radic 2013) and, as such, enforces particular sig-
naling pathways. A recent paper re-examing kinetics and sig-
naling pathways of NETs induced by various agents conclud-
ed that BPMA stimulation should be regarded as mechanisti-
cally distinct from NET formation induced by natural
triggers^ (van der Linden et al. 2017).

Very early in NET research, dependence on reactive oxy-
gen species (ROS) generated by the NADPH oxidase pathway
was reported to be a prerequisite for their formation (Fuchs
et al. 2007). The studies were subsequently strongly supported
by observation that patients with chronic granulomatous dis-
ease (CGD), with impaired NADPH oxidase activity, did not
release NETs but that this could be restored by a targeted gene
therapy (Bianchi et al. 2009). Subsequently, the Raf-MEK-
ERK pathway was identified as being involved in NET for-
mation through activation of NADPH oxidase (Hakkim et al.
2011). But then numerous studies reported ROS-
independence of NET formation, which resulted from both
in vitro (Gabriel et al. 2010; Byrd et al. 2013; Pijanowski
et al. 2013; Mejía et al. 2015) and in vivo studies (Chen
et al. 2012; Kolaczkowska et al. 2015; Barth et al. 2016a)
utilizing NADPH inhibitors and knockout mice. This discrep-
ancy in the data on ROS involvement in NET release is diffi-
cult to explain at this stage. It might be resulting from the
experimental milieu or the nature of NET-inducing factors as
not all agents activate NADPH oxidase (Farley et al. 2012).
The latter study reports on an interesting discrepancy: PMA
but not platelet-activating factor (PAF), generated ROS but the
NADPH oxidase inhibitor (DPI) reduced NET release by both
PMA and PAF. These data indicate that, once again, results
from PMA studies should be carefully reviewed unless sup-
ported by data from concominant studies applying pathogen-
or immune response-related agents to induce NETs. However,
most importantly, the study suggests an interesting explana-
tion of ROS involvement in NET formation as DPI also in-
hibits a range of flavoenzymes including mitochondrial oxi-
dase and nitric oxide synthase (Stuehr et al. 1991; Li and
Trush 1998), which could Bsubstitute^ for phagosomal ROS.
Thus, in some circumstances, NET formation might depend
on phagosomal ROS (NADPH-dependent; e.g., Fuchs et al.
2007) but also on mitochondrial ROS (as shown in Lood et al.
2016) or NO (as reported in Patel et al. 2010) or none. It is also
of note that the only family of endogenous inhibitors of NETs
known to date does not inhibit ROS formation and instead
blocks PAD4-dependent citrullination (see BNET formation
in neonates^) (Yost et al. 2016).

Another mechanism putatively involved in NET formation
is autophagy. This process is critical for the turnover of dam-
aged organelles and proteins during homeostasis but, during
infection, plays a role in the killing of phagocytosed patho-
gens and down-regulation of inflammasome activation
(Birmingham et al. 2006; Jabir et al. 2014). The majority of

studies showing involvement of autophagy in NET formation
applied pharmacological inhibitors of key pathways or mole-
cules involved in this process that however, were also
inhibiting ROS (Remijsen et al. 2011; McInturff et al. 2012;
Kenno et al. 2016; Ullah et al. 2017). Recently, the involve-
ment of autophagy in NET release was studied in transgenic
mice with conditionally deleted atg5 (its product is critical for
autophagosome formation) in either neutrophils or eosino-
phils (Germic et al. 2017). The study ruled out a role of au-
tophagy in NET formation. A similar controversy concerns
the involvement of necroptosis (a programmed necrosis-like
cell death), which is well illustrated by two contradictory pa-
pers published recently head-to-head (Amini et al. 2016;
Desai et al. 2016).

However, there are two enzyme-basedmechanisms of NET
formation that were confirmed to operate independently of the
in vitro or in vivo settings and the inducing agents. These
include the involvement of NE and peptidylarginine
deiminase 4 (PAD4) (Fig. 1). PAD4 belongs to the group of
Ca2+-dependent enzymes and is located in the nucleus and
granules of neutrophils (Asaga et al. 2001; Nakashima et al.
2002; Kearney et al. 2005). The enzyme is involved in cata-
lyzing the citrullination of histones H2/H3/H4, which is a
post-translational modification converting the methylarginine
residues to citrulline to form a carbonyl group (Hagiwara et al.
2002; Arita et al. 2006; György et al. 2006). The conversion of
positively charged methylarginine to neutral side chains of
citrulline affects protein (histone)-DNA stabilization and leads
to chromatin decondensation and NET release (Neeli et al.
2008; Wang et al. 2009). Studies on PAD4 knockout mice
(PAD4−/−) showed impaired ability to form NETs in compar-
ison to WT animals independently of stimuli, be it LPS or
ionomycin (Martinod et al. 2013). Similarly, the PAD4 inhib-
itor (Cl-amidine) also diminishes NET release both in vitro (Li
et al. 2010; Kusunoki et al. 2016) and in vivo (Knight et al.
2013, 2014). However, recently, PMA-induced NET forma-
tion was reported not to be connected with histone deamina-
tion (no citrullinated H3 histones were detected in PMA-
induced NETs), which was explained by the fact that PMA
activates the PKCα isoform that inhibits PAD4 while it is the
PMA-irresponsive PKCζ that activates deamination (Neeli
and Radic 2013). Nevertheless, there are also studies reporting
deposition of citrullinated histones in PMA-stimulated NETs,
although to a lower degree than upon other inducers
(Martinod et al. 2016; van der Linden et al. 2017).

Another enzyme required to form NETs is a serine prote-
ase: neutrophil elastase. The proposedmechanism of its action
is specific degradation of histones that destabilizes chromatin
(Papayannopoulos et al. 2010). In addition, blockade of NET
formation was also demonstrated in vivo on NE KO mice
infected with Gram-negative bacteria (Papayannopoulos
et al. 2010; Farley et al. 2012) or Gram-positive bacteria
(Kolaczkowska et al. 2015). Also, the use of NE inhibitor
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resulted in the inhibition of C. albicans-induced NET forma-
tion (Papayannopoulos et al. 2010). However, Martinod et al.
(2016) showed that numerous neutrophils derived from NE−/−

mice ejected NETs upon in vitro ionomycin stimulation, while
40% of them did not (Martinod et al. 2016). Interstingly, dur-
ing mouse sterile thrombosis, only 20% fewer NETs were
produced by NE KO neutrophils (Martinod et al. 2016).
This indicates that both PAD4 and NE are involved in NET
formation but might be more or less redundant depending on
the disease state and/or stimuli. For example, during S. aureus
sepsis, NE−/− neutrophils did not produce NETs while some
PAD4−/− PMNs (c. 20%) did (Kolaczkowska et al. 2015),
whereas during deep vein thrombosis, 80% of NE−/− neutro-
phils released NETs (Martinod et al. 2016) but no such struc-
tures were cast by the PAD4−/− cells (Martinod et al. 2013).
These findings reflect well on the diversity of NET types. The
traps seem to vary not only in their appearance, involved mol-
ecules and pathways but also in the consequences for the
producing cells. The first report on the existence of NETs
presented many arguments supporting that the trap-releasing
cells remain viable (Brinkmann et al. 2004) but subsequent
studies reported on the process being lethal (Fuchs et al. 2007)
and eventually a term NETosis was coined (Steinberg and
Grinstein 2007). However, Yipp et al. (2012) showed by
means of intravital microscopy of S. aureus-inflamed skin that
anuclear neutrophils that released NETs remain alive and keep
moving and phagocytosing (Yipp et al. 2012). This seems
more economical and efficient than the beneficial suicide
and was detected in the milieu of the live organism.
Successively, viable NET-forming neutrophils were also re-
ported in in vitro settings (Yousefi et al. 2009; Pilsczek et al.
2010). Most probably, the two modes represent another set of
parallel mechanisms by which NETs are released, either upon
cell rupture (Fuchs et al. 2007) or vesicular transport to the cell
surface (Pilsczek et al. 2010).

We still do not know how to understand this variety of
involved mechanisms and whether reported NETs are always
BNETs^, as adequate, multicomponent detection is a key but
not a golden standard. This issue is even becoming a topic of
open discussions with Bhealthy critisism^ such as the one of
Nauseef and Kubes (2016).

NETs and age of neutrophils

Immature neutrophils versus mature neutrophils

Neutrophils arise and mature in the bone marrow. The matu-
ration consists of the mitotic stage (myeloblasts,
promyelocytes and myelocytes) and postmitotic stage
(metamyelocyte, neutrophil band and mature segmented neu-
trophils) (Borregaard 2010; Amulic et al. 2012; Lahoz-
Beneytez et al. 2016). Neutrophil secretion from the bone

marrow into circulation is controlled by circadian oscillations
(Casanova-Acebes et al. 2013) and depends on the interac-
tions between the CXCL12 chemokine and its CXCR4 recep-
tor (retention of neutrophils in the bone marrow) and the
CXCL1 ligand with the CXCR2 receptor (release of neutro-
phils into blood) (Martin et al. 2003; Eash et al. 2010). In
circulation, neutrophil age and human neutrophil half-life is
less than 1 day, about 19 h (Lahoz-Beneytez et al. 2016) and
about 12 h in mice (Pillay et al. 2010a). Expression of CXCR4
increases on aging cells and causes neutrophils to return to the
bonemarrow, where they are removed bymacrophages (Furze
and Rankin 2008; Casanova-Acebes et al. 2013) but the cells
can also be removed in the spleen and the liver (Shi et al.
2001; Suratt et al. 2001). In turn, this leads to secretion from
the bone marrow of a correspondingly small number of ma-
ture but not immature (Bruegel et al. 2004; Nierhaus et al.
2013), neutrophils to the circulation (Semerad et al. 2002).
As shown recently, the process is controlled by gut microbiota
(Zhang et al. 2015) and most probably also by exosomes
whose numbers and content change during aging
(Prattichizzo et al. 2017). If during their life neutrophils are
recruited to the site of inflammation, their life-span is
prolonged and their death by apoptosis is delayed (Simon
2003; Milot and Filep 2011). During inflammation, especially
the systemic one, both mature and immature neutrophils are
recruited from the bone marrow (Drifte et al. 2013).
Interestingly, a recent study showed that the first neutrophils
to arrive at the site of inflammation are aged neutrophils and
they are followed by nonaged cells (Uhl et al. 2016). The fact
that aged cells disappear from circulation, neatly explains why
fresh cells are recruited to the blood from the bone marrow in
the course of inflammation.

Immature and mature neutrophils differ in their gene ex-
pression, the former having higher expression of genes con-
trolling their differentiation and granular protein synthesis,
including NE, MPO and BPI, whereas genes controlling che-
motaxis or apoptosis are down-regulated in immature neutro-
phils (Martinelli et al. 2004). Comparison of human immature
(bone marrow) and mature (blood) neutrophils in their capac-
ity to produce NETs upon IFN-α/γ priming and following
stimulation with complement factor C5, showed that only
the mature neutrophils released the traps (Martinelli et al.
2004). Other studies revealed diminished yet detectable NET
release by immature neutrophils. In the study by Taneja et al.
(2008), circulating neutrophils consisted of c. 35% of imma-
ture cells (vs. 5% in healthy volunteers) during sepsis. And
similar results were obtained by Pillay et al. (2010b). The
immature neutrophils had a lower ratio of phagocytosis and
Ca2+ signaling (Taneja et al. 2008), antimicrobial recognition
and killing and ROS generation (Pillay et al. 2010b). Also, in
patients with sterile burn injury, immature neutrophils were
numerously present in circulation and these patients had
higher levels of circulating free DNA (cfDNA) and citH3,
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clinical markers of systemic formation of NETs (Hampson
et al. 2017). This was especially apparent at times when num-
bers of immature neutrophils dominated in circulation.
However, when neutrophils were isolated from blood and ex
vivo-stimulated with PMA, the cells (a mixture of mature and
immature neutrophils) of patients with thermal injury released
fewer NETs (Hampson et al. 2017).

There is also a report on normal production of NETs by
human immature neutrophils present in circulation that comes
from studies on bone marrow transplantation (Glenn et al.
2016). Important, although not direct, information on NET
production by immature neutrophils comes from studies on
diseases during which the undeveloped cells are either present
in blood or tissues. One such example is SLE, as lupus pa-
tients display a varying degree of neutrophil maturation
(Denny et al. 2010; Villanueva et al. 2011). In particular,
two neutrophil subpopulations, low-density granulocytes
(LDGs) and high-density neutrophils, were identified in the
course of the disease. The LDGs do not carry any specific
markers identified to date but their nuclear morphology (c.
40% cells have lobular, band or myelocyte-like nuclei vs. c.
60% with segmented nuclei) suggests that many of these cells
represent the immature phenotype of neutrophils (Denny et al.
2010). The cells have higher expression of azurophilic granule
genes, including those encoding NE and MPO and exhibit
increased spontaneous NET production and overall release
more traps (Villanueva et al. 2011). A similar subset of neu-
trophils was also described in the course of psoriasis and pso-
riatic LDGs also tend to form NETs without any stimulation,
in contrast to control or psoriasis mature neutrophils (Lin et al.
2011). Low-density neutrophils, consisting of both immature
and mature neutrophils, have also been described in cancer
(Sagiv et al. 2015). Unlike high-density neutrophils, the low-
density cells have a pro-tumor phenotype (i.e., decreased che-
motaxis, phagocytosis and ROS production). The two pheno-
types of tumor-associated neutrophils (TANs), i.e., high-
density and low-density neutrophils, are also termed N1 and
N2, respectively (Fridlender et al. 2009). The N2 phenotype
dominates in the presence of TGF-β but is diminished by
IFN-β (Fridlender et al. 2009; Andzinski et al. 2016). It was
shown that blood neutrophils collected frommice with tumors
in which N2 phenotype was suggested to dominate (IFN-β
KOs), produced fewer NETs, either spontaneously or upon
PMA ex vivo stimulation (Andzinski et al. 2016). These, how-
ever, were not TANs and the exact phenotype of circulating
neutrophils was not examined, nevertheless immature neutro-
phils present in a course of disease might not always release
spontaneously higher amounts of NETs. In addition, the tumor
environment is unique and thus we can speculate that NET
release increases anti-tumoral response as NET components
might damage tumor cells. But NETs could also function as
scaffolds of tumor antigens, facilitating their take-up by DCs
and macrophages. On the other hand, NETs can trigger

metastasis, e.g., high-mobility group box 1 (HMGB1) re-
leased from NETs activates the TLR9-dependent pathway in
cancer cells promoting their adhesion, proliferation, migration
and invasion (Berger-Achituv et al. 2013; Tohme et al. 2016).
Similar results came from a study on immature and mature
granulocytes present in leukemic patients (Lukášová et al.
2013). In this study, only data on PMA-induced NETs were
reported and acute myeloid leukemia (ALM) granulocytes
were shown not to produce the traps as opposed to
granulocytes isolated from peripheral blood of healthy donors
(Lukášová et al. 2013). The immature cells expressed hetero-
chromatin protein 1 γ (HP1γ) and dimethylated histone H3 at
lysine 9 (H3K9me2). The two proteins interact to preserve the
spreading of heterochromatin and HP1γ is absent in mature
granulocytes. Terminally differentiated mature neutrophils are
characterized by a tightly condensed chromatin and gene re-
pression, while immature cells do not (Lukášová et al. 2013).
Lukášová et al. (2013) hypothesized that it might be necessary
for chromatin to be condensed to facilitate PAD4 action and
for this NET formation to be weaker in immature cells.

One has to bear in mind that the majority of data on NET
formation by immature neutrophils come from ill patients
(with sepsis, SLE, psoriasis or cancer). Nevertheless, many
of them, although not all, report on spontaneous release of
the traps by immature neutrophils (if this aspect was studied/
reported) and diminished, or at least not futher increased, pro-
duction of NETs upon stimulation (mostly with PMA) (Fig.
2). In addition, at least one study reported on concomitantly
elevated markers of NETs in circulation. Considering all the
above data, one might hypothesize that immature neutrophils
present in blood tend to spontaneously release NETs, hence
the presence of their markers in circulation and thus, when
isolated and ex vivo-stimulated to produce the traps, fail to
form them. This is either due to an exhausted phenotype of the
cells or the fact that all neutrophils with a potential to release
NETs have already done so once in vasculature. Especially, it
is only about 25% of neutrophils that release NETs (Nauseef
and Kubes 2016).

Aged or senescent neutrophils

Not much is known about NET production by senescent neu-
trophils. Aging neutrophils up-regulate CXCR4 and progres-
sively lose CD62L (L-selectin) expression that facilitates their
re-direction to the bonemarrow (Zhang et al. 2015). However,
they exhibit enhanced adhesion molecules (e.g., Mac-1,
ICAM-1) and TLR4 expression (Zhang et al. 2015), which
is in line with their rapid recruitment to the site of inflamma-
tion, prior to mature but not aged, neutrophils (Uhl et al.
2016). This aging phenotype is regulated by microbiota and
is lost in mice treated with broad-range antibiotics or germ-
free animals but restored by application of LPS or fecal trans-
plantation (Zhang et al. 2015). The CD62LloCXCR4hi aged
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neutrophils are significantly numerous in Selp−/− mice (P-
selectin KOs) or anti-P-selectin-treated animals (Zhang et al.
2015; Uhl et al. 2016). When NET production was studied in
the latter mice, neutrophils stimulated ex vivo with LPS dra-
matically increased trap formation. This was further con-
firmed in an endotoxemic model by intravital imaging of
NETs in liver vasculature (Zhang et al. 2015). Therefore, in
the case of scenescent neutrophils, the ex vivo and in vivo data
clearly correlated, indicating their enhanced capacity to re-
lease NETs, which is in line with a pro-inflammatory pheno-
type of these cells (Fig. 2). However, no data on human
scenescent neutrophils are available.

NETs and age of individuals

Immune system matures during fetal development and then
declines as we age. These facts have important impacts on
susceptibility to infection and the chances of surviving it.
And, as such, it is also important how NET release changes
with age. Especially, the world is undergoing a shift in demo-
graphics with low birth rates and aging of populations (Boule
and Kovacs 2017). Independently of the age of mothers, not
only fewer babies are being born but also many of them are
born preterm and therefore they are more likely to become ill

or die, as preterm infants are more vulnerable to infection
(Urquhart et al. 2017). In line with this, the risk of severe
sepsis in neonates increases dramatically with decreasing ges-
tational age (Sperandio et al. 2013). On the other hand, the
global population is aging and the number of indivuduals
older than 65 years will double by 2050 (Boule and Kovacs
2017). Elderly people are more susceptible to infection due to
inflamm-aging or immunosenescence, i.e., the age-related
dysfunction of the immune system but they also develop
chronic inflammatory states (Boe et al. 2017).

NET formation in neonates

The immune system plays a very important role during preg-
nancy, with the purpose of protecting the mother and the de-
veloping fetus (Mor et al. 2011). Pregnancy is a period that is
characterized by modulation of the immune system associated
with both the course and stage of pregnancy, as well as the
exposure to pathogens. Moreover, the pregnancy is character-
ized by a pro-inflammatory phase (first trimester), the anti-
inflammatory phase (second trimester) and by the end of the
pregnancy returns to the pro-inflammatory phase (Mor and
Cardenas 2010). Pregnant women have an increase in the total
number of leukocytes, which correlates with the course of
pregnancy (the highest level is in the third trimester) of which

Fig. 2 Neurophil maturation- and age-dependent changes in neutrophil
extracellular traps (NETs) formation. To strengthen the graphical visual-
ization, potential to form NETs is marked with – and +, where + < ++
< +++; −/+ indicates that, for immature neutrophils stimulated ex vivo,
some studies reported a lack of NET formation (−) whereas others

reported some NET release although weak (+). Phenotype of mature
versus aged neutrophils is defined by high or low expression of
CXCR4 and CD62L. Immature neutrophils were mostly defined by their
nucleus morphology. Reference data are included and discussed in the
main text
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the most abundant cells are circulating neutrophils (Crocker
et al. 2000). These neutrophils display a decreased respiratory
burst during the second and third trimesters; however, this
activity returns to normal within 7 weeks post-partum
(Crocker et al. 2000). With respect to NETs, increased levels
of cfDNA (nucleosome/MPO complexes) are observed in
pregnant women’s serum, compared to nonpregnant women
(Sur Chowdhury et al. 2016). Interestingly, the tendency to
form such complexes increasingly relates to the duration of
pregnancy. Nevertheless, the highest serum cfDNA level is
observed in preeclampsia women, as opposed to women with
normal pregnancy and nonpregnant women (Lo et al. 1999;
Sur Chowdhury et al. 2016). Moreover, the level of both fetal
and maternal circulating plasma DNA from preeclampsia
women correlates with the degree of disease severity (Zhong
et al. 2001).

The fetus, which is located in the uterus, develops its own
immune system (Dauby et al. 2012). After birth, both preterm
(<37 weeks) and term (37–42 weeks) neonates are character-
ized by a tolerogenic immune response due to the reduced
number of immune cells, including neutrophils or lympho-
cytes, which increase in the first weeks of life (Walker et al.
2011; Nguyen et al. 2016). In the developing human fetus, a
small number of neutrophils begin to appear in the clavicular
marrow after 11–12 weeks post-conception with the majority
observed after 13–15 weeks (Slayton et al. 1998a, b).
However, neutropoiesis starts prior to this in the fetal liver
(around week 5; Slayton et al. 1998a) and yolk sac (around
week 3; Sperandio et al. 2013). Neutrophils of a mature indi-
vidual display a capacity to migrate to the site of inflammation
and effectively fight pathogens through phagocytosis or de-
granulation (Kolaczkowska and Kubes 2013). In term neo-
nates, the phagocytosis and degranulation are equally efficient
as in adults but not in preterm neonates (Bektas et al. 1990;
Nupponen et al. 2002). However, both preterm and term neo-
nates show impaired migration of neutrophils to the inflam-
matory focus (McEvoy et al. 1996; Nussbaum et al. 2013).
Hence, the young organism is not able to defend itself as
efficiently as the adult and therefore neonates are highly sus-
ceptible to infections, including sepsis, which directly affect
increased morbidity and mortality (Gardner 2009; Lawn et al.
2010). Makoni et al. (2016) suggested that impairment of the
neonatal neutrophils may be due to the increased number of
developmentally immature neutrophils at birth rather than oth-
er abnormalities such as the expression of surface adhesion
molecules, which is low at birth but increases over time (Carr
et al. 1992; Makoni et al. 2016). Another reason could be
keeping down immunity to prevent side effects that might
result from its overactivity.

Furthermore, the formation of NETs in preterm or term
infants/neonates has been reported to be weaker (Fig. 3).
Neutrophils isolated from infants/neonates displayed impaired
NET production after stimulation with LPS, PAF and fMLP,

in contrast to neutrophils collected from adult individuals
(Yost et al. 2009; Lipp et al. 2017). This was despite the
presence of functional receptors that recognize these mole-
cules and uncompromised phagocytosis. Nevertheless, when
bacteria (E. coli, S. aureus) or PMA were used to induce
NETs, neonatal neutrophils did not form NETs (Yost et al.
2009). On the other hand, Lipp et al. (2017) reported that the
cells of term infants release some NETs in response to PMA
and those of preterm babies release significantly fewer of
these structures. Importantly, the defect of NET formation
by neutrophils of preterm and term neonates was not rescued
by the ROS donor (glucose oxidase) (Yost et al. 2009). Also,
the study by Byrd et al. (2016) showed that NETs induced by
neonates in response to a combination of fibronectin (Fn) with
purified fungal β-glucan or Fn with C. albicans hyphae are
ROS-independent, although in this case, NETs were formed
normally. Thus, neonate neutrophils seem to be sensitive to
fungal stimulation but not necessarily the bacterial compo-
nents (Byrd et al. 2016). However, in contrast to Lipp et al.
(2017), Marcos et al. (2009) showed that neonatal neutrophils
can cast NETs upon LPS (as well as other numerous TLR
agonists) although at first the signal is weaker (Marcos et al.
2009). Direct comparison of the two studies indicates that
neonate neutrophils release NETs but they require a longer
time for their maximal formation. In fact, further studies re-
vealed that even the most prematurely born infants gain the
capacity to release NET by day 3 post-birth and maximal
capacity to cast NETs is achieved between day 3 and 14 of
life (Yost et al. 2016). This characteristic seems also to be
present in other mammals, as the same phenomenon was ob-
served in pigs (Nguyen et al. 2016). Also, neutrophils of 21-
day-old mice produced fewer NETs than the cells of 60-day-
old animals (Barth et al. 2016b).

In the search for mechanisms of impaired/delayed NET
formation by neonates, a family of endogenous inhibitors of
NETs was discovered (Yost et al. 2016). The family, called
nNIF-related peptides (NRPs), after the first identified peptide
(NET-inhibitory factor, nNIF), also consists of cancer-
associated SCM recognition, immune defense suppression
and serine protease protection peptide (CRISPP) and a 44–
amino acid carboxy terminus cleavage fragment of A1AT
(α1-antitrypsin), A1ATm358 (Yost et al. 2016). The levels
of inhibitors rapidly decrease in the circulation of the infant
after delivery. This might explain why, in some studies, dif-
ferences in NET formation were reported between preterm
and term infants. The inhibitors were detected in different
tissues/body fluids - umbilical blood (nNIF), placenta
(A1ATm358), plasma (CRISPP-related peptides) -
underlinging their importance. They also inhibited NET for-
mation induced by bacteria (S. aureus), damage-associated
molecular pattern (DAMP; heme) and PMA (Yost et al.
2016) but did not destroy them. A mechanism of their action
is also very intriguing, as NRPs do not affect ROS production
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nor NE activity (although, after entering the cell, they localize
in its close proximity) but inhibit PAD4 and histone
citrullination. Importantly from a therapeutical point of view,
the injection of either nNIF or CRISPP into adult mice infect-
ed with E. coli or LPS prevented formation of NETs and
decreased mortality (Yost et al. 2016).

Why would such inhibitors function only in fetuses/neo-
nates? nNIF levels were negligible in healthy adults and un-
detectable in the plasma of adult individuals with chronic in-
flammatory disorders (Yost et al. 2016). It is possibly because,
during pregnancy, NET-inducing stimuli are present/
generated at the maternal fetal interface (Gupta et al. 2005;
Marder et al. 2016; Mizugishi and Yamashita 2017) and thus
excessive formatiom of the traps could cause inflammatory
pathology in the fetomaternal environment. But then, shortly
after birth, the inhbitors are degraded or neutralized by un-
known means. Intriguingly, the latter correlates with the time
when resident microbiota inhabits the human infant and the
microbiota was indeed shown to regulate granulocytosis and
host resistance to sepsis in the neonate (Deshmukh et al.
2014). The impact of microbiota on the life-span and func-
tioning of neutrophils in adulthood has just been established
(see BNETs and age of neutrophils^).

NET release by elderly individuals

An aging organism, like the newborn, is susceptible to a
variety of inflammatory pathogenesis, leading to increased
morbidity, which is due to impaired immune function
(Collerton et al. 2012; Tseng et al. 2012; Boe et al. 2017).

Therefore, the term immunosenescence has been introduced.
Immunsenescence, or inflamm-aging, is associated with low-
grade, chronic, pro-inflammatory status, resulting from an
imbalance between pro-inflammatory agents and anti-
inflammatory factors (Franceschi et al. 2007; Collerton
et al. 2012). It is characterized by elevated levels of pro-
inflammatory cytokines, including IL-6 and TNF-α, in phys-
iological conditions (Bruunsgaard et al. 2000; Krabbe et al.
2004; Ferrucci et al. 2005). One hypothesis says it is because
of the constant immune challenges over the lifetime leading
to a higher basal activation state of cells of the innate immune
system (Fulop et al. 2017). In addition, a recent study reports
that these age-associated changes depend on the microbiota
(Thevaranjan et al. 2017). On the other hand, the elderly have
a weaker response to vaccination (Goodwin et al. 2006;
Sasaki et al. 2011), which might result from an impaired
ability to present antigens to T cells, the latter leading to a
dysfunctional immune response (De Martinis et al. 2004;
Plowden et al. 2004; Wong and Goldstein 2013).

Neutrophils of elderly individuals are characterized by im-
paired bactericidal activity (Wenisch et al. 2000), chemotaxis
(Fulop et al. 2004), phagocytosis (Butcher et al. 2001; Simell
et al. 2011) and decreased ability to perform a respiratory burst
(Wenisch et al. 2000). However, some parameters are either
preserved (chemokinesis) or up-regulated (degranulation)
(Sapey et al. 2014). The changes are believed to reflect on
the behavior of the cells in aged individuals. They perform
aberrant migration (altered chemotaxis/chemokinesis ratio) so
they can spread more efficiently than those from younger in-
dividuals and, because they release more protease (as shown

Fig. 3 Impact of individual (human) age on neutrophil extracellular trap
(NET) release. Graphical representation of neutrophil capacity to produce
NETs upon stimulation. In the case of neonates, neutrophil potential to
release the traps changes in time. To strengthen the graphical visualiza-
tion, potential to form NETs is marked with – and + where + < ++ ; −/+

indicates that in the case of newborn infants some studies reported a lack
of NET formation (−) whereas others reported some NET release (+). The
presence of endogenous NET inhbitors shortly after birth is indicated by
circles with a diagonal line. Reference data are included and discussed in
the main text
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for NE; Sapey et al. 2014), possibly to facilitate migration
through the ECM, more collateral damage can occur.

Interestingly, high levels of NE, along with eleventated
pro-inflammatory cytokine levels, are also characteristic for
the low-grade inflammatory state accompanying obesity
(Talukdar et al. 2012). In fact, it is recognized now that such
an inflammatory state connects aging, metabolic syndrome
and cardiovascular disease (Guarner and Rubio-Ruiz 2015).

In physiological conditions, numbers of neutrophils in the
bone marrow are similar between old and young mice.
However, during inflammatory conditions, such as sepsis in-
duced by cecal ligation and puncture (CLP), fewer neutrophils
are observed in the peritoneal lavage in old versus young mice
(Xu et al. 2017). Thus, while in healthy aged organisms, the
pro-inflammatory state is apparent, in the course of inflamma-
tion, the immune response seems to be dimmed. Although not
many studies have been undertaken on NET formation by
elderly individuals, they all consistently reported weaker pro-
duction of the traps, in line with the data on other neutrophil
activities (Fig. 3). It was observed when the cells were first
primed with TNF-α and then activated to form NETs with
LPS or IL-8 (Hazeldine et al. 2014), stimulated with
Pam3CSK4, a TLR2 ligand (Xu et al. 2017), S. aureus
(Tseng et al. 2012) or mitochondrial DNA, a DAMP (Itagaki
et al. 2015). Notably, expression of nucleases by S. aureus (vs.
the nuclease null strains) led to increased bacterial dissemina-
tion in young but not old mice, suggesting that defective NET
formation in elderly mice permitted both nuclease and non-
nuclease expressing S. aureus to disseminate, altogether lead-
ing to more invasive S. aureus infection (Tseng et al. 2012).
Interestingly, neutrophils isolated from elderly periodontitis
patients also released fewer NETs than the young ones but
this was not observed in the case of healthy age-matched
controls (Hazeldine et al. 2014). In the studies applying
TLR2 and TLR4 ligands, neutrophils collected from elderly
people had normal expression of respective receptors required
for the cell activation but dimished ROS production
(Hazeldine et al. 2014; Xu et al. 2017). And thus the latter
was proposed as a mechanism of the lower NET release.
However, Hazeldine et al. (2014) as well as Tortorella et al.
(2004) showed that there is no impairment in p38 mitogen-
activated protein kinase (p38 MAPK) activity, the signaling
cascade activated by ROS, in TNF-α-primed neutrophils in
both the elderly and younger individuals. Furthermore, PMA,
a strong chemical inducer of ROS, induced similar quantities
of NETs in both age groups (Tortorella et al. 2004; Hazeldine
et al. 2014).

Another possible mechanism leading to dimished NET for-
mation in aged individuals is impaired autophagy. Although
involvement of autophagy in NET formation is controversial
(see BOn how NETs are created^), its impairment was sug-
gested to be co-responsible, along with ROS, for a weak NET
release by neutrophils of elderly individuals (Xu et al. 2017).

In particular, a defect of Atg5, involved in autphagosome for-
mation, was pointed out to contribute to dimmed NET release.
And instead of forming NETs, neutrophils were undergoing
apoptosis (Xu et al. 2017) .

There is one report on an increased capacity of neutro-
phils from aged individuals to produce NETs. This obser-
vation comes from studies on aortic lesions in atheroscle-
rotic mice and is strengthened by data from isolated neu-
trophils activated to produce NETs with 7-ketocholesterol,
an athero-relevant stimulus, the most abundant oxysterol
in human (Wang et al. 2017). Such an effect resulted from
increased mitochondrial oxidative stress, thus mitochon-
drial (mitoOS) and not cytosolic, ROS generation. The
former being indeed associated with atherosclerosis dur-
ing aging (Vendrov et al. 2015). Considering that numbers
of inflammatory neutrophils were the same in aged and
young mice, the young animals had smaller lesions and
their NET formation was mitoOS-dependent, indicating
intrinsic changes in neutrophils of aged subjects. This
experimental setting differs from the other studies on
NET formation by neutrophils of elderly individuals in
clear requirement of mitochondrial ROS and not
NADPH oxidase-dependent.

As for what we know to date, neutrophils of elderly sub-
jects in general cast fewer NETs (Fig. 3). No data indicate so
far that this is because of active inhibiton of their formation as
in neonates but rather it results from dysregulated activity of
neutrophils. It is tempting to speculate that one of the mecha-
nisms involved might be connected to the increased release of
NE via degranulation, as this enzyme is critical for NET for-
mation. For these NETs that require NADPH oxidase-
dependent ROS, a diminished respiratory burst by neutrophils
of elderly subjects can provide an additional explanation.
However, the observation that increased mitochondrial ROS
can in fact increase NET formation by neutrophils of aged
individuals suggests that the cells do not lose the capacity to
release NETs per se and that this is rather due to upstream
dysfunctional pathways.

Conclusions

The phenotype of any given cell reflects either its maturation
state or the impact of extrinsic factors and manifests itself by
changes in cell morphology, expression pattern of intracellular
and extracellular molecules but, foremost, its (altered) func-
tioning. This is also true for neutrophils and their capacity to
induce NETs. As, nowadays, NETs are the focus of biomed-
ical research, mostly due to the side effects of their formation,
a search for their inhibitors or removing agents dominates the
field. Owing to studies on neonate neutrophils is the discovery
of endogenous NET inhibitors. This is especially promising in
the light of finding that immature neutrophils, which are more
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abundant in numerous diseases in which NETs play a pivotal
role, release the traps spontaneously. Obviously, the cells do
not behave uniformly in all conditions and studies on NETs
are also technically challenging as they mostly rely on either
detection of singular NET components in body fluids or
ex vivo stimulation of isolated neutrophils. Although, in the
case of mice studies, these limitations can be overcome with
intravital microscopy, detecting the traps directly in blood
vessels or tissues of live animals, this technique cannot be
applied to human studies. And NET inhibition can also be
detrimental. For instance, at early stages of sepsis, the struc-
tures help to contain dissemination of infection and it is at later
time points that their persistent presence causes collateral
damage. Thus, NET inhibition or removal should also be time-
ly adjusted, which, however, is difficult to control. Now, a
new factor has to be taken into consideration when it comes
to the control of NET formation and its consequences, namely
the presence of neutrophils of certain ages (immature–mature–
senescent) as well as the age of the individuals.
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