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1 Introduction
Let � ⊂ R

N be a bounded domain with a C2-boundary ∂�, and let 1 < p < +∞. In this
paper we study the following nonlinear nonhomogeneous Robin problem with convection:

⎧
⎨

⎩

– div a(Du(z)) = f (z, u(z), Du(z)) in �,
∂u
∂na

+ β(z)u(z)p–1 = 0 on ∂�, u > 0.
(1.1)

In this problem, a : RN −→ R
N is a continuous and strictly monotone map which satis-

fies certain regularity and growth conditions listed in hypotheses H(a) below. These hy-
potheses are mild and incorporate in our framework many differential operators of interest
such as the p-Laplacian and the (p, q)-Laplacian (that is, the sum of a p-Laplacian and a
q-Laplacian with 1 < q < p < ∞). The forcing term has the form of a convection term, that
is, it depends also on the gradient of the unknown function. This dependence on the gra-
dient prevents the use of variational methods directly on equation (1.1). In the boundary
condition, ∂u

∂na
denotes the conormal derivative of u and is defined by extension of the map

C1(�) � u �−→ (
a(Du), n

)

RN

to all u ∈ W 1,p(�), with n being the outward unit normal on ∂�. This generalized normal
derivative is dictated by the nonlinear Green’s identity (see, e.g., Gasiński and Papageor-
giou [1, Theorem 2.4.53, p. 210]) and was used also by Lieberman [2, 3].
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Problems with convection were studied in the past using a variety of methods. We men-
tion the works of de Figueiredo et al. [4], Girardi and Matzeu [5] for semilinear equations
driven by the Dirichlet Laplacian; the works of Faraci et al. [6], Huy et al. [7], Iturriaga et al.
[8] and Ruiz [9] for nonlinear equations driven by the Dirichlet p-Laplacian; and the works
of Averna et al. [10], Faria et al. [11] and Tanaka [12] for equations driven by the Dirichlet
(p, q)-Laplacian. Finally, we mention also the recent work of Gasiński and Papageorgiou
[13] for Neumann problems driven by a differential operator of the form div(a(u)Du).

In this paper, in contrast to the aforementioned works, we do not impose any global
growth condition on the convection term. Instead we assume that f (z, ·, y) admits a positive
root (zero) and all the other conditions refer to the behavior of the function x �−→ f (z, x, y)
near zero locally in y ∈ R

N . Our approach is topological based on the Leray–Schauder
alternative principle.

2 Mathematical background—hypotheses
In the analysis of problem (1.1) we will use the following spaces:

W 1,p(�) (1 < p < ∞), C1(�) and Lq(∂�) (1 ≤ q ≤ ∞).

By ‖ · ‖ we denote the norm of the Sobolev space W 1,p(�) defined by

‖u‖ =
(‖u‖p

p + ‖Du‖p
p
) 1

p ∀u ∈ W 1,p(�).

The Banach space C1(�) is an ordered Banach space with positive (order) cone given by

C+ =
{

u ∈ C1(�) : u(z) ≥ 0 for all z ∈ �
}

.

This cone has a nonempty interior

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ �,
∂u
∂n

|∂�∩u–1(0) < 0 if ∂� ∩ u–1(0) 
= ∅
}

which contains the set

D+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ �
}

.

In fact D+ is the interior of C+ when C1(�) is equipped with the relative C(�)-norm topol-
ogy.

On ∂� we consider the (N –1)-dimensional Hausdorff (surface) measure σ (·). Using this
measure, we can define the boundary Lebesgue spaces Lq(∂�) (1 ≤ q ≤ ∞) in the usual
way. We have that there exists a unique continuous linear map γ0 : W 1,p(�) −→ Lp(∂�)
known as the trace map such that

γ0(u) = u|∂� ∀u ∈ W 1,p(�) ∩ C(�).

So, the trace map γ0 extends the notion of boundary values to any Sobolev function. We
have

imγ0 = W
1
p′ ,p(∂�)

(
1
p

+
1
p′ = 1

)

and kerγ0 = W 1,p
0 (�).
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The trace map γ0 is compact into Lq(∂�) for all q ∈ [1, (N–1)p
N–p ) if p < N and into Lq(∂�) for

all q ∈ [1,∞) if p ≥ N . In what follows, for the sake of notational simplicity, we drop the
use of the trace map γ0. The restrictions of all Sobolev functions on ∂� are understood in
the sense of traces.

Now we introduce the conditions on the map a(y). So, let ϑ ∈ C1(0,∞) and assume that

0 < ĉ ≤ ϑ ′(t)t
ϑ(t)

≤ c0 and c1tp–1 ≤ ϑ(t) ≤ c2
(
tτ–1 + tp–1) ∀t > 0 (2.1)

for some 1 ≤ τ < p, c1, c2 > 0.
The hypotheses on the map a(y) are the following:
H(a): a(y) = a0(|y|)y for all y ∈R

N with a0(t) > 0 for all t > 0 and
(i) a0 ∈ C1(0,∞), t �−→ a0(t)t is strictly increasing on (0,∞) and

lim
t→0+

a0(t)t = 0 and lim
t→0+

a′
0(t)t

a0(t)
= c > –1;

(ii) there exists c3 > 0 such that

∣
∣∇a(y)

∣
∣ ≤ c3

ϑ(|y|)
|y| ∀y ∈R

N \ {0};

(iii) we have

(∇a(y)ξ , ξ
)

RN ≥ ϑ(|y|)
|y| |ξ |2 ∀y ∈R

N \ {0}, ξ ∈ R
N ;

(iv) if G0(t) =
∫ t

0 a0(s)s ds, then there exists q ∈ (1, p) such that

t �−→ G0
(
t

1
q
)

is convex on R+ = [0, +∞),

lim
t→0+

qG0(t)
tq = c∗ > 0

and

0 ≤ pG0(t) – a0(t)t2 ∀t > 0.

Remark 2.1 Hypotheses H(a)(i), (ii) and (iii) are dictated by the nonlinear regularity the-
ory of Lieberman [3] and the nonlinear strong maximum principle of Pucci and Serrin [14].
Hypothesis H(a)(iv) serves the needs of our problem. The examples given below show that
hypothesis H(f )(iv) is mild and it is satisfied in all cases of interest. Note that hypotheses
H(a) imply that G0 is strictly increasing and strictly convex. We set

G(y) = G0
(|y|) ∀y ∈R

N .

We have

∇G(y) = G′
0
(|y|) y

|y| = a0
(|y|)y = a(y) ∀y ∈ R

N \ {0}.
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So, G(·) is the primitive of a(·) and y �−→ G(y) is convex with G(0) = 0. Hence

G(y) ≤ (
a(y), y

)

RN ∀y ∈ R
N . (2.2)

Such hypotheses were also used in the works of Gasiński et al. [15] and Papageorgiou and
Rădulescu [16–18].

The next lemma is an easy consequence of hypotheses H(a) which summarizes the basic
properties of the map a.

Lemma 2.2 If hypotheses H(a)(i), (ii) and (iii) hold, then
(a) y �−→ a(y) is continuous and strictly monotone (hence maximal monotone, too);
(b) |a(y)| ≤ c4(1 + |y|p–1) for all y ∈R

N , for some c4 > 0;
(c) (a(y), y)RN ≥ c1

p–1 |y|p for all y ∈R
N .

Using this lemma together with (2.1) and (2.2), we have the following bilateral growth
restrictions on the primitive G.

Corollary 2.3 If hypotheses H(a)(i), (ii) and (iii) hold, then

c1

p(p – 1)
|y|p ≤ G(y) ≤ c5

(
1 + |y|p) ∀y ∈R

N

for some c5 > 0.

Example 2.4 The following maps a satisfy hypotheses H(a) (see Papageorgiou and Răd-
ulescu [16]).

(a) a(y) = |y|p–2y with 1 < p < ∞;
The map corresponds to the p-Laplace differential operator


pu = div
(|Du|p–2Du

) ∀u ∈ W 1,p(�).

(b) a(y) = |y|p–2y + |y|q–2y with 1 < q < p < ∞.
This map corresponds to the (p, q)-Laplace differential operator


pu + 
qu ∀u ∈ W 1,p(�).

Such operators arise in problems of mathematical physics (see Cherfils and Il’yasov
[19]).

(c) a(y) = (1 + |y|2)
p–2

2 y with 1 < p < ∞.
This operator corresponds to the generalized p-mean curvature differential

operator

div
((

1 + |Du|2)
p–2

2 Du
) ∀u ∈ W 1,p(�).

(d) a(y) = |y|p–2y(1 + 1
1+|y|2 ) with 1 < p < ∞.
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In what follows, by 〈·, ·〉 we denote the duality brackets for the dual pair (W 1,p(�)∗,
W 1,p(�)). Let A : W 1,p(�) −→ W 1,p(�)∗ be the nonlinear map defined by

〈
A(u), h

〉
=

∫

�

(
a(Du), Dh

)

RN dz ∀u, h ∈ W 1,p(�).

The next proposition is a special case of a more general result of Gasiński and Papageor-
giou [20].

Proposition 2.5 If hypotheses H(a)(i), (ii) and (iii) hold, then the map A : W 1,p(�) −→
W 1,p(�)∗ is bounded (that is, maps bounded sets to bounded sets), continuous, monotone
(hence maximal monotone, too) and of type (S)+, that is,

“if un
w−→ u in W 1,p(�) and lim supn→+∞〈A(un), un –u〉 ≤ 0, then un −→ u in W 1,p(�).”

The hypotheses on the boundary coefficient β are the following:
H(β): β ∈ C0,α(∂�) with α ∈ (0, 1) and β(z) ≥ 0 for all z ∈ ∂�.

Remark 2.6 When β ≡ 0, we recover the Neumann problem.

Let ϑq : W 1,q(�) −→R be the C1-functional defined by

ϑq(u) = ‖Du‖q
q +

∫

∂�

β(z)|u|q dσ ∀u ∈ W 1,q(�).

Also, we consider the following nonlinear eigenvalue problem:

⎧
⎨

⎩

–
qu(z) = λ̂|u(z)|q–2u(z) in �,
∂u
∂nq

+ β(z)|u|q–2u = 0 on ∂�.

Here 1 < q < +∞ is as in hypothesis H(a)(iv) and ∂u
∂nq

= |Du|q–2(Du, n)RN . If the above Robin
problem admits a nontrivial solution, then we say that λ̂ is an eigenvalue of –
q with
Robin boundary condition and the nontrivial solution û is an eigenfunction corresponding
to λ̂. From Papageorgiou and Rădulescu [17], we know that û ∈ L∞(�), and then from
Theorem 2 of Lieberman [2] (see also Lieberman [3]) we have that û ∈ C1(�).

From Papageorgiou and Rădulescu [21], we know that there exists a smallest eigenvalue
λ̂1(q) such that:

• λ̂1(q) ≥ 0 and it is isolated in the spectrum σ̂ (q) (that is, we can find ε > 0 such that
(̂λ1(q), λ̂1(q) + ε) ∩ σ̂ (q) = ∅) and if β ≡ 0 (Neumann problem), then λ̂1(q) = 0, while if
β 
≡ 0, then λ̂1(q) > 0.

• λ̂1(q) is simple (that is, if û, v̂ are eigenfunctions corresponding to λ̂1(q), then û = ξ v̂
for some ξ ∈ R \ {0}).

• we have

λ̂1(q) = inf

{
ϑq(u)
‖u‖q

q
: u ∈ W 1,q(�), u 
= 0

}

. (2.3)
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The infimum in (2.3) is realized on the one-dimensional eigenspace corresponding to
λ̂1(q). It follows that the elements of this eigenspace have constant sign. By û1(q) we de-
note the Lq-normalized (that is, ‖̂u1(q)‖q = 1) positive eigenfunction corresponding to
λ̂1(q). We have û1(q) ∈ C+ and, using the nonlinear strong maximum principle (see, e.g.,
Gasiński and Papageorgiou [1, p. 738]), we have û1(q) ∈ D+. An eigenfunction û corre-
sponding to an eigenvalue λ̂ 
= λ̂1(q) is necessarily nodal. Sometimes, in order to emphasize
the dependence on β , we write λ̂1(q,β) ≥ 0.

Recall that a function f : � ×R×R
N −→R is Carathéodory, if

• for all (x, y) ∈R×R
N , z �−→ f (z, x, y) is measurable;

• for a.a. z ∈ �, (x, y) �−→ f (z, x, y) is continuous.
Such a function is automatically jointly measurable (see Hu and Papageorgiou [22,

p. 142]).
The hypotheses on the convection term f in problem (1.1) are the following:
H(f ): f : � × R × R

N −→ R is a Carathéodory function such that f (z, 0, y) = 0 for a.a.
z ∈ �, all y ∈ R

N and
(i) there exists η > 0 such that

f (z,η, y) = 0 for a.a. z ∈ �, all y ∈R
N ,

f (z, x, y) ≥ 0 for a.a. z ∈ �, all 0 ≤ x ≤ η, all y ∈R
N ,

f (z, x, y) ≤ c̃1 + c̃2|y|p for a.a. z ∈ �, all 0 ≤ x ≤ η, all y ∈ R
N ,

with c̃1 > 0, c̃2 < c1
p–1 ;

(ii) for every M > 0, there exists ηM ∈ L∞(�) such that

ηM(z) ≥ c∗̂λ1(q) for a.a. z ∈ �,ηM 
≡ c∗̂λ1(q),

lim inf
x→0+

f (z, x, y)
xq–1 ≥ ηM(z) uniformly for a.a. z ∈ �, all |y| ≤ M

(here q ∈ (1, p) is as in hypothesis H(a)(iv));
(iii) there exists ξη > 0 such that, for a.a. z ∈ �, all y ∈R

N , the function

x �−→ f (z, x, y) + ξηxp–1

is nondecreasing on [0,η], for a.a. z ∈ �, all y ∈R
N and

λp–1f
(

z,
1
λ

x, y
)

≤ f (z, x, y) (2.4)

and

f (z, x, y) ≤ λpf
(

z, x,
1
λ

y
)

for a.a. z ∈ �, all 0 ≤ x ≤ η, all y ∈R
N and all λ ∈ (0, 1).
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Remark 2.7 Since we look for positive solutions and all the above hypotheses are for x ≥ 0,
without any loss of generality, we assume that

f (z, x, y) = 0 for a.a. z ∈ �, all x ≤ 0, all y ∈R
N .

Note that (2.4) is satisfied if, for example, for a.a. z ∈ �, all y ∈R
N , the function x �−→ f (z,x,y)

xp–1

is nonincreasing on (0, +∞).

Example 2.8 The following function satisfies hypotheses H(f ). For the sake of simplicity,
we drop the z-dependence:

f (x, y) =

⎧
⎨

⎩

η(xp–1 – xr–1) + c(xp–1 – xμ–1)|y|p if 0 ≤ x ≤ 1,

(xτ–1 ln x)|y|p if 1 < x,

with η > c∗̂λ1(q) ≥ 0, p < min{r,μ}, c < c1
2(p–1) , 1 < τ < ∞.

As we have already mentioned, our approach is topological based on the Leray–
Schauder alternative principle, which we recall here (see, e.g., Gasiński and Papageorgiou
[1, p. 827]).

Theorem 2.9 If X is a Banach space, C ⊆ X is nonempty convex and ϑ : C −→ C is a
compact map, then exactly one of the following two statements is true:

(a) ϑ has a fixed point;
(b) the set S(ϑ) = {u ∈ C : u = λϑ(u),λ ∈ (0, 1)} is unbounded.

Finally, let us fix our notation. For x ∈ R, we set x± = max{±x, 0}. Then, given u ∈
W 1,p(�), we define u±(·) = u(·)±. We know that

u± ∈ W 1,p(�), u = u+ – u–, |u| = u+ + u–.

Also, if u ∈ W 1,p(�), then

[0, u] =
{

h ∈ W 1,p(�) : 0 ≤ h(z) ≤ u(z) for a.a. z ∈ �
}

.

3 Positive solutions
Consider the following truncation-perturbation of the convection term f (z, ·, y):

f̂ (z, x, y) =

⎧
⎨

⎩

f (z, x, y) + ξη(x+)p–1 if x ≤ η,

f (z,η, y) + ξηη
p–1 if η < x.

(3.1)

Evidently f̂ is a Carathéodoty function.
Given v ∈ C1(�), we consider the following auxiliary Robin problem:

⎧
⎨

⎩

– div a(Du(z)) + ξηu(z)p–1 = f̂ (z, u(z), Dv(z)) in �,
∂u
∂na

+ β(z)u(z)p–1 = 0 on ∂�, u ≥ 0.
(3.2)
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Proposition 3.1 If hypotheses H(a), H(β) and H(f ) hold, then problem (3.2) admits a
positive solution uv ∈ [0,η] ∩ D+.

Proof Let

F̂v(z, x) =
∫ x

0
f̂
(
z, s, Dv(z)

)
ds

and consider the C1-functional ϕ̂v : W 1,p(�) −→ R defined by

ϕ̂v(u) =
∫

�

G(Du) dz +
ξη

p
‖u‖p

p +
1
p

∫

∂�

β(z)|u|p dσ –
∫

�

F̂v(z, u) dz

for all u ∈ W 1,p(�). From (3.1), Corollary 2.3 and hypothesis H(β), we see that ϕ̂v is coer-
cive. Also, using the Sobolev embedding theorem, the compactness of the trace map and
the convexity of G, we see that ϕ̂v is sequentially weakly lower semicontinuous. So, by the
Weierstrass–Tonelli theorem, we can find uv ∈ W 1,p(�) such that

ϕ̂v(uv) = inf
u∈W 1,p(�)

ϕ̂v(u). (3.3)

Let M > ‖v‖C1(�). Hypothesis H(f )(ii) implies that given ε > 0, we can find δ ∈ (0,η] such
that

f (z, x, y) ≥ (
ηM(z) – ε

)
xq–1 for a.a. z ∈ �, all 0 ≤ x ≤ δ, all |y| ≤ M,

so

f̂
(
z, x, Dv(z)

) ≥ (
ηM(z) – ε

)
xq–1 + ξηxp–1 for a.a. z ∈ �, all 0 ≤ x ≤ δ

(see (3.1)) and thus

F̂v(z, x) ≥ 1
q
(
ηM(z) – ε

)
xq +

ξη

p
xp for a.a. z ∈ �, all 0 ≤ x ≤ δ. (3.4)

Hypothesis H(a)(iv) implies that

G(y) ≤ c∗ + ε

q
|y|q for all |y| ≤ δ. (3.5)

Since û1(q) ∈ D+, we can find t ∈ (0, 1) small such that

t̂u1(q)(z) ∈ (0, δ], t
∣
∣Dû1(q)(z)

∣
∣ ≤ δ ∀z ∈ �. (3.6)

Then we have

ϕ̂v
(
t̂u1(q)

) ≤ c∗ + ε

q
tq̂λ1(q) –

tq

q

∫

�

(
ηM(z) – ε

)
û1(q)q dz

≤ tq

q

(∫

�

(
c∗̂λ1(q) – ηM(z)

)
û1(q)q dz + ε̂λ1(q)

)

(3.7)
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(recall that ‖̂u1(q)‖q = 1). Using hypothesis H(f )(ii) and the fact that û1(q) ∈ D+, we have

r0 =
∫

�

(
ηM(z) – c∗̂λ1(q)

)
û1(q)q dz > 0.

Then from (3.7) we have

ϕ̂v
(
t̂u1(q)

) ≤ tq

q
(
–r0 + ε̂λ1(q)

)
.

Choosing ε ∈ (0, r0
λ̂1(q) ), we see that

ϕ̂v
(
t̂u1(q)

)
< 0,

so

ϕ̂v(uv) < 0 = ϕ̂v(0),

thus

uv 
= 0.

From (3.3) we have

ϕ̂′
v(uv) = 0,

so

〈
A(uv), h

〉
+ ξη

∫

�

|uv|p–2uvh dz +
∫

∂�

β(z)|uv|p–2uvh dσ

=
∫

�

f̂ (z, uv, Dv)h dz ∀h ∈ W 1,p(�). (3.8)

In (3.8) we choose h = –u–
v ∈ W 1,p(�). Using Lemma 2.2 and (3.1), we have

c1

p – 1
∥
∥Du–

v
∥
∥p

p + ξη

∥
∥u–

v
∥
∥p

p ≤ 0,

so

uv ≥ 0, uv 
= 0.

Next in (3.8) we choose h = (uv – η)+ ∈ W 1,p(�). Then

〈
A(uv), (uv – η)+〉

+ ξη

∫

�

up–1
v (uv – η)+ dz +

∫

∂�

β(z)up–1
v (uv – η)+ dσ

=
∫

�

(
f (z,η, Dv) + ξηη

p–1)(uv – η)+ dz +
∫

�

ξηη
p–1(uv – η)+ dz
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(see (3.1) and hypothesis H(f )(i)), so

〈
A(uv) – A(η), (uv – η)+〉

+ ξη

∫

�

(
up–1

v – ηp–1)(uv – η)+ dz ≤ 0

(see hypothesis H(β) and note that A(η) = 0), thus

uv ≤ η.

So, we have proved that

uv ∈ [0,η]. (3.9)

Then, from (3.1), (3.8) and (3.9), we have

〈
A(uv), h

〉
+

∫

∂�

β(z)up–1
v h dσ =

∫

�

f (z, uv, Dv)h dz ∀h ∈ W 1,p(�),

so
⎧
⎨

⎩

– div a(Duv(z)) = f (z, uv(z), Dv(z)) for a.a. z ∈ �,
∂uv
∂na

+ β(z)uv(z)p–1 = 0 on ∂�
(3.10)

(see Papageorgiou and Rădulescu [21]). From (3.10) and Papageorgiou and Rădulescu [17],
we have

uv ∈ L∞(�).

Then from Lieberman [3] (see also Fukagai and Narukawa [23]), we have

uv ∈ C+ \ {0}.

Hypothesis H(f )(iii) implies that

f (z, x, y) + ξηxp–1 ≥ 0 for a.a. z ∈ �, all 0 ≤ x ≤ η, all y ∈ R
N .

Then from (3.10) we have

div a
(
Duv(z)

) ≤ ξηuv(z)p–1 for a.a. z ∈ �. (3.11)

From (3.11), the strong maximum principle (see Pucci and Serrin [14, p. 111]) and the
boundary point lemma (see Pucci and Serrin [14, p. 120]), we have uv ∈ D+. �

Next we show that problem (3.2) has a smallest positive solution in the order interval
[0,η]. So, let

Sv =
{

u ∈ W 1,p(�) : u 
= 0, u ∈ [0,η] is a solution of (3.2)
}

.
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From Proposition 3.1 we know that

∅ 
= Sv ⊆ [0,η] ∩ D+.

Given ε > 0 and r ∈ (p, p∗), where

p∗ =

⎧
⎨

⎩

Np
N–p if p < N ,

+∞ if N ≤ p

(the critical Sobolev exponent corresponding to p), hypotheses H(f )(i) and (ii) imply that
we can find c6 = c6(ε, r, M) > 0 (recall that M > ‖v‖C1(�)) such that

f
(
z, x, Dv(z)

) ≥ (
ηM(z) – ε

)
xq–1 – c6xr–1 for a.a. z ∈ �, all 0 ≤ x ≤ η. (3.12)

This unilateral growth restriction on f (z, ·, Dv(z)) leads to the following auxiliary Robin
problem:

⎧
⎨

⎩

– div a(Du(z)) = (ηM(z) – ε)u(z)q–1 – c6u(z)r–1 in �,
∂u
∂na

+ β(z)u(z)p–1 = 0 on ∂�, u ≥ 0.
(3.13)

Proposition 3.2 If hypotheses H(a) and H(β) hold, then for all ε > 0 small problem (3.13)
admits a unique positive solution u∗ ∈ D+.

Proof First we show the existence of a positive solution for problem (3.13). To this end, let
ψ : W 1,p(�) −→ R be the C1-functional defined by

ψ(u) =
∫

�

G(Du) dz +
1
p
∥
∥u–∥

∥p
p +

1
p

∫

∂�

β(z)|u|p dσ

–
1
q

∫

�

(
ηM(z) – ε

)(
u+)q dz +

c6

r
∥
∥u+∥

∥p
p ∀u ∈ W 1,p(�).

Using Corollary 2.3, we obtain

ψ(u) ≥ c1

p(p – 1)
∥
∥Du+∥

∥p
p +

c6

r
∥
∥u+∥

∥r
r +

c1

p(p – 1)
∥
∥Du–∥

∥p
p +

1
p
∥
∥u–∥

∥p
p

–
1
q

∫

�

(
ηM(z) – ε

)(
u+)q dz,

so

ψ(u) ≥ c7‖u‖p – c8
(‖u‖q + 1

)

for some c7, c8 > 0. Since q < p, it follows that ψ is coercive. Also, from the Sobolev embed-
ding theorem, the compactness of the trace map and the convexity of G, we have that ψ

is sequentially weakly lower semicontinuous. Invoking the Weierstrass–Tonelli theorem,
we can find u∗ ∈ W 1,p(�) such that

ψ
(
u∗) = inf

u∈W 1,p(�)
ψ(u). (3.14)
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As in the proof of Proposition 3.1, using the condition on ηM (see hypothesis H(f )(ii)), we
show that, for t ∈ (0, 1) and ε > 0 small, we have

ψ
(
t̂u1(q)

)
< 0,

so

ψ
(
u∗) < 0 = ψ(0)

(see (3.14)), thus

u∗ 
= 0.

From (3.14) we have

ψ ′(u∗) = 0,

so, for all h ∈ W 1,p(�), we have

〈
A

(
u∗), h

〉
–

∫

�

((
u∗)–)p–1h dz +

∫

∂�

β(z)
∣
∣u∗∣∣p–2u∗h dσ

=
∫

�

(
ηM(z) – ε

)((
u∗)+)q–1h dz – c6

∫

�

((
u∗)+)r–1h dz. (3.15)

In (3.15) we choose h = –(u∗)– ∈ W 1,p(�). Then

c1

p – 1
∥
∥D

(
u∗)–∥

∥p
p +

∥
∥
(
u∗)–∥

∥p
p ≤ 0

(see Lemma 2.2 and hypothesis H(β)), so

u∗ ≥ 0, u∗ 
= 0.

Hence (3.15) becomes

〈
A

(
u∗), h

〉
+

∫

∂�

β(z)
(
u∗)p–1h dσ =

∫

�

(
ηM(z) – ε

)(
u∗)q–1h dz – c6

∫

�

(
u∗)r–1h dz

for all h ∈ W 1,p(�), thus

⎧
⎨

⎩

– div a(Du∗(z)) = (ηM – ε)(u∗)(z)q–1 – c6(u∗)(z)r–1 for a.a. z ∈ �,
∂u∗
∂na

+ β(z)(u∗)p–1 = 0 on ∂�, u ≥ 0
(3.16)

(see Papageorgiou and Rădulescu [21]). As before, via the nonlinear regularity theory, we
have

u∗ ∈ C+ \ {0}.
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From (3.16) we have

div a
(
Du∗(z)

) ≤ c6
∥
∥u∗∥∥r–p

∞ u∗(z)p–1 for a.a. z ∈ �

(recall r > p), so

u∗ ∈ D+

(see Pucci and Serrin [14, pp. 111, 120]).
Next we show that this positive solution is unique. For this purpose, we introduce the

integral functional j : L1(�) −→ R = R∪ {+∞} defined by

j(u) =

⎧
⎨

⎩

∫

�
G(Du

1
q ) dz + 1

p
∫

∂�
β(z)u

p
q dσ if u ≥ 0, u

1
q ∈ W 1,p(�),

+∞ otherwise.

Let dom j = {u ∈ L1(�) : j(u) < +∞} (the effective domain of the functional j) and consider
u1, u2 ∈ dom j. We set u = (1 – t)u1 + tu2 with t ∈ [0, 1]. Using Lemma 1 of Díaz and Saá
[24], we have

∣
∣Du(z)

1
q
∣
∣ ≤ (

(1 – t)
∣
∣Du1(z)

1
q
∣
∣q + t

∣
∣Du2(z)

1
q
∣
∣q) 1

q for a.a. z ∈ �.

Recalling that G0 is increasing, we have

G0
(∣
∣Du(z)

1
q
∣
∣
) ≤ G0

((
(1 – t)

∣
∣Du1(z)

1
q
∣
∣q + t

∣
∣Du2(z)

1
q
∣
∣q) 1

q
)

≤ (1 – t)G0
(∣
∣Du1(z)

1
q
∣
∣
)

+ tG0
(∣
∣Du2(z)

1
q
∣
∣
)

(see hypothesis H(a)(iv)), so

G
(
Du(z)

1
q
) ≤ (1 – t)G

(
Du1(z)

1
q
)

+ tG
(
Du2(z)

1
q
)

for a.a. z ∈ �,

thus the map dom j � u �−→ ∫

�
G(Du

1
q ) dz is convex.

Since q < p and β ≥ 0, it follows that the map dom j � u �−→ 1
p
∫

∂�
β(z)u

p
q dσ is convex.

Therefore the integral functional j is convex.
Suppose that ũ∗ is another positive solution of (3.13). As we did for u∗, we can show that

ũ∗ ∈ D+.

Hence, given h ∈ C1(�) for |t| small, we have

u∗ + th ∈ dom j and ũ∗ + th ∈ dom j.

Using the convexity of j, we can easily see that j is Gâteaux differentiable at u∗ and at ũ∗ in
the direction h. Using the chain rule and the nonlinear Green’s identity (see Gasiński and
Papageorgiou [1, p. 210]), we have

j′
(
u∗)(h) =

1
q

∫

�

– div a(Du∗)
(u∗)q–1 h dz ∀h ∈ C1(�)
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and

j′
(
ũ∗)(h) =

1
q

∫

�

– div a(Dũ∗)
(̃u∗)q–1 h dz ∀h ∈ C1(�).

The convexity of j implies the monotonicity of j′. Therefore

0 ≤ 1
q

∫

�

(
– div(Du∗)

(u∗)q–1 –
– div a(Dũ∗)

(̃u∗)q–1

)
((

u∗)q –
(
ũ∗)q)dz

=
c6

q

∫

�

((
ũ∗)r–q –

(
u∗)r–q)((u∗)q –

(
ũ∗)q)dz

(see (3.13)), so

u∗ = ũ∗

(since q < p < r). This proves the uniqueness of the positive solution u∗ ∈ D+. �

Proposition 3.3 If hypotheses H(a), H(β), H(f ) hold and u ∈ Sv, then u∗ ≤ u.

Proof We consider the Carathéodory function e : � ×R −→R defined by

e(z, x) =

⎧
⎨

⎩

(ηM(z) – ε)(x+)q–1 – c6(x+)r–1 + ξη(x+)p–1 if x ≤ u(z),

(ηM(z) – ε)u(z)q–1 – c6u(z)r–1 + ξηu(z)p–1 if u(z) < x.
(3.17)

We set

E(z, x) =
∫ x

0
e(z, s) ds

and consider the C1-functional τ : W 1,p(�) −→ R defined by

τ (u) =
∫

�

G(Du) dz +
ξη

p
‖u‖p

p +
1
p

∫

∂�

β(z)|u|p dσ –
∫

�

E(z, u) dz ∀u ∈ W 1,p(�).

From (3.17) it is clear that τ is coercive. Also, it is sequentially weakly lower semicontin-
uous. So, we can find ũ∗ ∈ W 1,p(�) such that

τ
(
ũ∗) = inf

h∈W 1,p(�)
τ (h). (3.18)

As before, since q < p < r, we have

τ
(
ũ∗) < 0 = τ (0),

so

ũ∗ 
= 0.
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From (3.18) we have

τ ′(ũ∗) = 0,

so

〈
A

(
ũ∗), h

〉
+ ξη

∫

�

∣
∣̃u∗∣∣p–2ũ∗h dz +

∫

∂�

β(z)
∣
∣̃u∗∣∣p–2ũ∗h dσ

=
∫

�

e
(
z, ũ∗)h dz ∀h ∈ W 1,p(�). (3.19)

In (3.19) first we choose h = –(̃u∗)– ∈ W 1,p(�). Then

c1

p – 1
∥
∥D

(
ũ∗)–∥

∥p
p + ξη

∥
∥
(
ũ∗)–∥

∥p
p +

∫

∂�

β(z)
((

ũ∗)–)p dσ = 0

(see (3.17)), so

ũ∗ ≥ 0, ũ∗ 
= 0

(see hypothesis H(β)).
Next in (3.19) we choose h = (̃u∗ – u)+ ∈ W 1,p(�). Then

〈
A

(
ũ∗),

(
ũ∗ – u

)+〉
+ ξη

∫

�

(
ũ∗)p–1(̃u – u)+ dz

+
∫

∂�

β(z)
(
ũ∗)p–1(ũ∗ – u

)+ dσ

=
∫

�

((
ηM(z) – ε

)
uq–1 – c6ur–1)(ũ∗ – u

)+ dz

≤
∫

�

f (z, u, Dv)
(
ũ∗ – u

)+ dz

=
〈
A(u),

(
ũ∗ – u

)+〉
+ ξη

∫

�

up–1(ũ∗ – u
)+ dz

+
∫

∂�

β(z)up–1(ũ∗ – u
)+ dσ

(see (3.17), (3.12) and recall that u ∈ Sv), so

〈
A

(
ũ∗) – A(u),

(
ũ∗ – u

)+〉
+ ξη

∫

�

((
ũ∗)p–1 – up–1)(ũ∗ – u

)
dz ≤ 0

(see hypothesis H(β)), thus

ũ∗ ≤ u.

We have proved that

ũ∗ ∈ [0, u] \ {0}. (3.20)
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Then, from (3.17) and (3.20), equation (3.19) becomes

〈
A

(
ũ∗), h

〉
+

∫

∂�

β(z)
(
ũ∗)p–1h dσ

=
∫

�

((
ηM(z) – ε

)(
ũ∗)q–1 – c6

(
ũ∗)r–1)h dz ∀h ∈ W 1,p(�),

so ũ∗ = u∗ (see Proposition 3.2), thus

u∗ ≤ u. �

Using this proposition, we can show that problem (3.2) admits a smallest positive solu-
tion ûv ∈ D+ on [0,η].

Proposition 3.4 If hypotheses H(a), H(β), H(f ) hold, then problem (3.2) admits a smallest
positive solution ûv ∈ D+.

Proof Invoking Lemma 3.10 of Hu and Papageorgiou [22, p. 178], we can find a decreasing
sequence {un}n≥1 ⊆ Sv such that

inf Sv = inf
n≥1

un. (3.21)

For all n ≥ 1, we have

〈
A(un), h

〉
+

∫

∂�

β(z)up–1
n h dσ =

∫

�

f (z, un, Dv)h dz ∀h ∈ W 1,p(�), (3.22)

so

u∗ ≤ un ≤ η. (3.23)

Then, on account of hypotheses H(f )(i), H(β) and Lemma 2.2, we have that the sequence
{un}n≥1 ⊆ W 1,p(�) is bounded. Passing to a subsequence, we may assume that

un
w−→ ûv in W 1,p(�) and un −→ ûv in Lp(�) and in Lp(∂�). (3.24)

In (3.22) we choose h = un – ûv ∈ W 1,p(�), pass to the limit as n → ∞ and use (3.24). Then

lim
n→+∞

〈
A(un), un – ûv

〉
= 0,

so

un −→ ûv in W 1,p(�) (3.25)

(see Proposition 2.5). If in (3.22) we pass to the limit as n → +∞ and use (3.25), then

〈
A(̂uv), h

〉
+

∫

∂�

β(z)̂up–1
v h dσ =

∫

�

f (z, ûv, Dv)h dz ∀h ∈ W 1,p(�),

so u∗ ≤ ûv (see (3.23)).
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From the above it follows that

ûv ∈ Sv and ûv = inf Sv. �

Let

C =
{

u ∈ C1(�) : 0 ≤ u(z) ≤ η for all z ∈ �
}

,

and let ϑ : C −→ C be the map defined by

ϑ(v) = ûv.

A fixed point of this map is clearly a positive solution of problem (1.1). We will produce
a fixed point for ϑ using the Leray–Schauder alternative principle (see Theorem 2.9). To
this end, we will need the following lemma.

Lemma 3.5 If hypotheses H(a), H(β), H(f ) hold, {vn}n≥1 ⊆ C, vn → v in C1(�) and u ∈ Sv,
then we can find un ∈ Svn for n ≥ 1 such that un −→ u in C1(�).

Proof Consider the following nonlinear Robin problem:

⎧
⎨

⎩

– div a(Dw(z)) + ξη|w(z)|p–2w(z) = f̂ (z, u(z), Dvn(z)) in �,
∂w
∂na

+ β(z)|w|p–2w = 0 on ∂�, n ≥ 1.
(3.26)

Since u ∈ Sv ⊆ [0,η] ∩ D+, we see that

f̂
(·, u(·), Dvn(·)) 
≡ 0 ∀n ≥ 1

(see (3.1)) and

f̂
(
z, u(z), Dvn(z)

) ≥ 0 for a.a. z ∈ �, all n ≥ 1

(see hypothesis H(f )(i)). Therefore problem (3.26) has a unique nontrivial solution u0
n ∈

D+. Also we have

〈
A

(
u0

n
)
,
(
u0

n – η
)+〉

+ ξη

∫

�

(
u0

n
)p–1(u0

n – η
)+ dz

+
∫

∂�

β(z)
(
u0

n
)p–1(u0

n – η
)+ dσ

=
∫

�

(
f (z, u, Dvn) + ξηup–1)(u0

n – η
)+ dz

≤
∫

�

(
f (z,η, Dvn) + ξηη

p–1)(u0
n – η

)+ dz

=
∫

�

ξηη
p–1(u0

n – η
)+ dz
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(see (3.1), hypotheses H(f )(iii) and (i) and recall that u ∈ Sv ⊆ [0,η] ∩ D+), so

〈
A

(
u0

n
)

– A(η),
(
u0

n – η
)+〉

+ ξη

∫

�

((
u0

n
)p–1 – ηp–1)(u0

n – η
)+ dz ≤ 0

(see hypothesis H(β) and note that A(η) = 0), thus

u0
n ≤ η.

So, we have that

u0
n ∈ [0,η] \ {0} ∀n ≥ 1.

Moreover, the nonlinear regularity theory (see Lieberman [3]) and the nonlinear maxi-
mum principle (see Pucci and Serrin [14]) imply that

u0
n ∈ [0,η] ∩ D+ ∀n ≥ 1. (3.27)

We have
⎧
⎨

⎩

– div a(Du0
n(z)) = f (z, u(z), Dvn(z)) for a.a. z ∈ �,

∂u0
n

∂na
+ β(z)(u0

n)p–1 = 0 on ∂�.
(3.28)

Then {u0
n}n≥1 ⊆ W 1,p(�) is bounded (see (3.27), (3.28), Lemma 2.2 and hypothesis H(f )(i)).

So, on account of the nonlinear regularity theory of Lieberman [3], we can find μ ∈ (0, 1)
and c9 > 0 such that

u0
n ∈ C1,μ(�) and

∥
∥u0

n
∥
∥

C1,μ(�) ≤ c9 ∀n ≥ 1.

The compactness of the embedding C1,μ(�) ⊆ C1(�) implies that we can find a subse-
quence {u0

nk
}k≥1 of the sequence {u0

n}n≥1 such that

u0
nk

−→ ũ0 in C1(�) as k → +∞.

Note that
⎧
⎨

⎩

– div a(Dũ0(z)) = f (z, u(z), Dv(z)) for a.a. z ∈ �,
∂ũ0

∂na
+ β(z)(̃u0)p–1 = 0 on ∂�.

(3.29)

Since u ∈ Sv solves (3.29) which has a unique solution, we infer that

ũ0 = u ∈ Sv.

Hence, for the original sequence {u0
n}n≥1, we have

u0
n −→ u in C1(�) as n → +∞.
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Next consider the following nonlinear Robin problem:

⎧
⎨

⎩

– div a(Dw(z)) + ξη|w(z)|p–2w(z) = f̂ (z, u0
n(z), Dvn(z)) in �,

∂w
∂na

+ β(z)|w|p–2w = 0 on ∂�, n ≥ 1.

As above, we establish that this problem has a unique solution

u1
n ∈ [0,η] ∩ D+ ∀n ≥ 1.

Again we have

u1
n −→ u in C1(�) as n → +∞.

Continuing this way, we generate a sequence {uk
n}k,n≥1 such that

⎧
⎨

⎩

– div a(Duk
n(z)) + ξηuk

n(z)p–1 = f̂ (z, uk–1
n (z), Dvn(z)) in �,

∂uk
n

∂na
+ β(z)(uk

n)p–1 = 0 on ∂�, n, k ≥ 1,
(3.30)

uk
n ∈ [0,η] ∩ D+ ∀n, k ≥ 1 (3.31)

and

uk
n −→ u in C1(�) as n → +∞ ∀k ≥ 1. (3.32)

Fix n ≥ 1. As before we have that the sequence {uk
n}k≥1 ⊆ C1(�) is relatively compact. So,

we can find a subsequence {ukm
n }m≥1 of the sequence {uk

n}k≥1 such that

ukm
n −→ ũn in C1(�) as m → +∞,

so
⎧
⎨

⎩

– div a(Dũn(z)) + ξηũn(z)p–1 = f̂ (z, ũn(z), Dvn(z)) for a.a. z ∈ �,
∂ũn
∂na

+ β(z)̃up–1
n = 0 on ∂�, n ≥ 1

(3.33)

(see (3.30)). Using the nonlinear regularity theory of Lieberman [3], (3.32) and the double
limit lemma (see Aubin and Ekeland [25] and Gasiński and Papageorgiou [26, p. 61]), we
have

ũn −→ u in C1(�),

so

ũn ∈ [0,η] ∩ D+ ∀n ≥ n0,

and thus

ũn ∈ Svn ∀n ≥ n0 and ũn −→ u in C1(�). �
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Using this lemma, we can show that the map ϑ : C −→ C defined earlier is compact.

Proposition 3.6 If hypotheses H(a), H(β), H(f ) hold, then the map ϑ : C −→ C is compact.

Proof First we show that ϑ is continuous.
So, suppose that vn −→ v in C1(�), {vn}n≥1 ⊆ C, v ∈ C, and let ûn = ϑ(vn) for n ≥ 1. We

have

⎧
⎨

⎩

– div a(Dûn(z)) = f (z, ûn(z), Dvn(z)) for a.a. z ∈ �,
∂ûn
∂na

+ β(z)̂un(z)p–1 = 0 on ∂�, ûn ∈ [0,η], n ≥ 1.
(3.34)

From (3.34) we see that {̂un}n≥1 ⊆ W 1,p(�) is bounded and so, according to Lieberman [3],
we can find τ ∈ (0, 1) and c10 > 0 such that

ûn ∈ C1,τ (�) and ‖̂un‖C1,τ (�) ≤ c10 ∀n ≥ 1.

So, we may assume that

ûn −→ û in C1(�) as n → +∞. (3.35)

In (3.34) we pass to the limit as n → ∞ and use (3.35). Then

⎧
⎨

⎩

– div a(Dû(z)) = f (z, û(z), Dv(z)) for a.a. z ∈ �,
∂û
∂na

+ β(z)̂u(z)p–1 = 0 on ∂�.
(3.36)

From Proposition 3.3 we have

u∗ ≤ ûn ∀n ≥ 1

(in this case M > supn≥1 ‖vn‖C1(�)), so

u∗ ≤ û

(see (3.35)), thus

û ∈ Sv. (3.37)

We claim that û = ϑ(v). According to Lemma 3.5, we can find un ∈ Svn , n ≥ 1, such that

un −→ ϑ(v) in C1(�) as n → +∞. (3.38)

We have

ûn = ϑ(vn) ≤ un ∀n ≥ 1,
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so

û ≤ ϑ(v)

(see (3.35) and (3.38)), thus

û = ϑ(v)

(see (3.37)), and hence ϑ is continuous.
Next we show that ϑ maps bounded sets in C to relatively compact subsets of C. So, let

B ⊆ C be bounded in C1(�). As above, we have that the set ϑ(B) ⊆ W 1,p(�) is bounded.
But then the nonlinear regularity theory of Lieberman [3] and the compactness of the
embedding C1,s(�) ⊆ C1(�) (with 0 < s < 1) imply that the set ϑ(B) ⊆ C1(�) is relatively
compact, thus ϑ is compact. �

Now we are ready for the existence theorem.

Theorem 3.7 If hypotheses H(a), H(β), H(f ) hold, then problem (1.1) admits a solution
û ∈ [0,η] ∩ D+.

Proof We consider the set

S(ϑ) =
{

u ∈ C : u = λϑ(u), 0 < λ < 1
}

.

If u ∈ S(ϑ), then

1
λ

u = ϑ(u),

so
〈

A
(

1
λ

u
)

, h
〉

+
∫

∂�

β(z)
(

u
λ

)p–1

h dσ =
∫

�

f
(

z,
u
λ

, Du
)

h dz ∀h ∈ W 1,p(�). (3.39)

In (3.39) we choose h = u
λ

∈ W 1,p(�). Using Lemma 2.2 and hypothesis H(β), we have

c1

p – 1

∥
∥
∥
∥D

(
u
λ

)∥
∥
∥
∥

p

p
≤

∫

�

f
(

z,
u
λ

, Du
)

u
λ

dz ≤
∫

�

f (z, u, Du)
u
λp dz

≤
∫

�

f
(

z, u, D
(

u
λ

))

u dz ≤
∫

�

(

c̃1 + c̃2

∣
∣
∣
∣D

(
u
λ

)∣
∣
∣
∣

p)

dz

(see (2.4), hypotheses H(f )(iii) and (i)). Recalling that c̃2 < c̃1
p–1 (see hypothesis H(f )(i)), we

have
∥
∥
∥
∥D

(
u
λ

)∥
∥
∥
∥

p
≤ c11 ∀λ ∈ (0, 1),

for some c11 > 0, thus
{

D
(

u
λ

)}

u∈S(ϑ)
⊆ Lp(�;RN)

is bounded. (3.40)
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As above, from (3.39) with h = u
λ

∈ W 1,p(�), using hypotheses H(f )(i), (iii) and (3.40), we
obtain

c1

p – 1

∥
∥
∥
∥D

(
u
λ

)∥
∥
∥
∥

p

p
+

∫

∂�

β(z)
(

u
λ

)p

dz ≤ c12 ∀λ ∈ (0, 1),

for some c12 > 0, so

c1

p – 1
λ̂1(p, β̂)

∥
∥
∥
∥

u
λ

∥
∥
∥
∥

p

p
≤ c12,

where β̂ = p–1
c1

β (see (2.3)), thus

{
u
λ

}

u∈S(ϑ)
⊆ Lp(�) is bounded,

hence
{

u
λ

}

u∈S(ϑ)
⊆ W 1,p(�) is bounded (3.41)

(see (3.40)). From (3.39) we have

⎧
⎨

⎩

– div a(D( u
λ

)(z)) = f (z, u
λ

(z), Du(z)) for a.a. z ∈ �,
∂( u

λ
)

∂na
+ β(z)( u

λ
)p–1 = 0 on ∂�.

(3.42)

Hypothesis H(f )(iii) implies that

f
(

z,
u
λ

, Du
)

≤ λpf
(

z,
u
λ

, D
(

u
λ

))

for a.a. z ∈ �. (3.43)

Then, from (3.41), (3.42), (3.43) and the nonlinear regularity theory of Lieberman [3], we
have

∥
∥
∥
∥

u
λ

∥
∥
∥
∥

C1(�)
≤ c13 ∀u ∈ S(ϑ),

for some c13 > 0, thus S(ϑ) ⊆ C1(�) is bounded.
Since ϑ is compact (see Proposition 3.6), we can use the Leray–Schauder alternative

theorem (see Theorem 2.9) and find û ∈ C such that

û = ϑ (̂u),

so û ∈ [0,η] ∩ D+ is a solution of (1.1). �

4 Conclusion
This is the first work producing positive smooth solutions for problems driven by a nonho-
mogeneous differential operator with Robin boundary condition where the forcing term
has the form of a convection term, that is, it depends also on the gradient of the unknown
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function. In addition, in contrast to the previous works in the field, we do not impose
any global growth condition on the convection term. Our formulation incorporates (p, q)-
equations which are important in physical applications.
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13. Gasiński, L., Papageorgiou, N.S.: Positive solutions for nonlinear elliptic problems with dependence on the gradient.

J. Differ. Equ. 263, 1451–1476 (2017)
14. Pucci, P., Serrin, J.: The Maximum Principle. Birkhäuser, Basel (2007)
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