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The aim of the paper was to discuss the accuracy of the multiple indexes used for random sequences generation results 
calculation. In the first part of the paper the models explaining deviations from randomness were presented. The key role 
of the structural limitations interpretation was suggested. Secondly, the multiple indexes of the deviation from randomness 
used in random sequence generation task studies were presented. The authors concluded that too many indexes are used 
in the studies of deviation from randomness. In order to avoid such problems two indexes were proposed: entropy and 
correlation function. The last part of the paper presents the preliminary version of the mathematical of random sequences 
generation in which the limited capacity of the short-term memory assumption was introduce. 
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Introduction

Random sequences generation [RSG] is a popular task 
in experimental psychology. Using this task multiple studies 
on quite remote problems where examined. First of all, 
RSG was used to examine whether humans could produce 
random sequences and whether they can judge randomness 
of the sequences (see: Falk & Konold, 1997; Lopes & Oden, 
1987; Vandierendonck, 2000). RSG is also used as a test 
of executive functions (dual task paradigm, see: Miyake, 
Witzki & Emerson, 2001; Friedman & Miyake, 2004). The 
task is also used in neuropsychological research (frontal 
lobe damages, see: Brugger, Monsh, Salmon & Butters, 
1996; Brown, Soliveri & Jahanshahi, 1998).

Random generation of numbers, letters, or time intervals 
seems to be a very difficult task. Multiple studies suggested  
that people cannot react randomly. Sequences produced 
by humans deviate from randomness in numerous ways: 
the distribution of the possible options is usually unequal 
(Rapoport & Budescu, 1997; Budescu, 1987; Kareev, 1992; 
Falk & Konold, 1997), participants tend to avoid immediate 

repetitions of the same reaction (Brugger, 1997) and 
usually some type of counting is observed (Baddeley, 
Emslie, Kolodny & Duncan, 1998). The conclusion that 
humans cannot generate random sequences seems to be 
well-founded. Therefore the question occurs, why people 
failed to produce random sequences?

Why the deviations from randomness are observed?
At least a few concurrent accounts of cognitive 

processes involved in RSG were proposed, most of them 
being very limited. Wagenaar (1972) summed up the RSG 
studies done till early seventies. Researchers cited in this 
metaanalysis explained deviation from randomness with 
respect either to deficiency of understanding the concept of 
randomness or to the limitations of short term memory. 

Deficiency of understanding the concept of randomness 
was investigated in Lopes and Oden (1987) studies. In one 
of their experiments they have proved that randomness 
was improved when appropriate feedback information is 
provided. Nevertheless, in another study they have observed 
that even professional statisticians cannot produce random 
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sequences. These results suggest that even understanding 
the concept of randomness does not guarantee randomness 
of produced sequences.

The second approach, relating deviation from 
randomness to the limitations of short-term memory, was 
investigated by Kareev (1992). This author has claimed 
that people understand the concept of randomness quite 
well – when only short fragments of sequences generated 
by participants in the RSG experiment were analyzed, the 
basic criteria of randomness were fulfilled. Therefore, he 
has argued, deviation from randomness in longer sequences 
occurred mainly due to short-term memory limitations. 
Similar conclusions can be found in Rapoport and Budescu 
(1997). They expleined the deviation from randomness 
in RSG task as a result of structural limitations (working 
memory capacity) as well as a result of using specific 
heuristics (local representativness - tendency to balance 
frequency of different possibilities in short fragments of 
sequences).

In a more recent metaanalysis proposed by Brugger 
(1997) deviation from randomness has been explained in 
terms of control processes. This view is currently quite 
popular. Vandierendonck (2000), for example, proposed 
the model of control processes involved in the random time 
interval generation task. One of the processes is responsible 
for generating responses and the other process is responsible 
for monitoring the results (involving a decision whether the 
string is random enough or not). In the case of a negative 
decision the second control process modifies the outcomes 
of the first process. Similar model was proposed by Towse 
and Valentine (1997) that included two sets of processes: 
those responsible for generating reactions (or rather 
candidates for reaction) and those involved in assessing the 
randomness.

The role of control processes in RSG was investigated 
also in the neuropsychological studies. Brugger et al. 
(1996) have observed that Alzheimer patients exhibit a 
strong tendency for counting in RSG task. This tendency 
was also positively correlated with a degree of dementia, 
as well as with results of other neuropsychological tests 
assessing executive functions. Very interesting results were 
also obtained by Brown, Soliveri & Jahanshahi (1998). 
They have reported that patients with Parkinson disease 
and a control group did not differ at general indexes of 
randomness in RSG task, although the two groups differed 
in terms of strategies used to generate the sequences. The 
evolution of Baddeley explanations of deviations from 
randomness provides a good example of the progress in the 
field. In one of his first studies on randomness Baddeley 
(1966) has argued that capacity limited mechanism must 
be involved in RSG task because randomness depends 
on pace of generating numbers. In his study randomness 
was decreasing when participants were asked to speed up. 
However, he has not specified the exact nature of these 

limitations. In his more recent works Baddeley (1996; 
Baddeley et al., 1998) stresses the role of control processes 
in random generation suggesting that switching between 
different retrieval strategies is the most important factor 
behind (but also e.g. monitoring). 

To sum up, the deviations from randomness could 
be explained as a result of: (a) a poor understanding of a 
concept of randomness or a lack of experience in random 
sequence production; (b) structural limitations (e.g. short-
term memory capacity limits); or (c) limitations of control 
processes. 

In this paper we focus on the structural limitation 
explanation. We believe that in order to understand 
mechanisms of generation of randomness by humans it is 
necessary to explain the structural limitations, which affects 
information processing. We think that other explanations 
are secondary to this basic kind of limits. In order to 
explain control processes operating on the structures which 
are involved in the generation of random sequences, the 
basic processes and a role of these structures (e.g. working 
memory) should be explained.

How the randomness could be measured?
To assess the randomness of sequences generated by 

humans, many different indexes were suggested. Each 
index emphasizes only one part of the phenomenon and 
measures its slightly different aspects (e.g. distribution 
of elements in the sequence, dependencies between 
contiguous reactions, counting tendencies, etc.), but they 
could be classified into one of a few groups (Miyake et. al., 
2000; Friedman & Miyake, 2004; Towse & Neil, 1998). 
The first group identifies concerns equality of distribution 
of different possibilities. Second factor contains indexes 
concerning relationships between consecutive responses. 
The third factor concerns repetitions of the same options in 
different distances. Towse and Neil (1998) have described 
main indexes used in random generation tasks. We present 
them in short bellow. 

In the first group we can mention R (redundancy, Towse 
& Neil, 1998) – an index describing the distribution of 
possible responses. This measure is based on the information 
theory assumption (Shannon, 1948) - a sequence with 
equal distribution of elements yields maximum amount of 
information. If the distribution of the possibilities is not 
equal, the redundancy in the material could be observed, 
so the predictions about the likelihood of appearance of 
certain items are increased. The second index in this group 
is Random Number Generation (RNG; Evans, 1978), 
describing a distribution of pairs of elements. Similar index 
is RNG2, describing a distribution of pairs of reactions 
separated by one other reaction.

The examples of indexes from the second group are: 
number of ascending pairs (ASC) reflecting a tendency for 
counting, number of descending pairs (DESC) measuring 
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backward counting tendency and  TPI (Turning Point 
Index; Towse & Neil, 1998), which allows to estimate the 
regularity of the sequence by counting turning points. These 
points can be observed when the order of the sequence 
switches from increasing into decreasing, or the other way 
around (e.g. the sequence “1, 3, 5, 2, 1” has one turning 
point - 5, while at the sequence “1, 3, 7, 5, 2, 4” two of them 
could be observed - 7 and 2). It is possible to determine 
the number of such points in a real random sequence of a 
given length

 
and TPI is calculated by dividing number of 

observed turning points by the number of expected turning 
points. Another index in this group is RUNS  (Towse & 
Neil, 1998), defined as a variance of length of ascending 
subsequences. 

Indexes in the third group measure biases for repeating 
the same reaction over different distances, as exemplified 
by the Phi index, described by Towse & Neil (1998).

In the most of the previous studies only selected indexes 
were used and therefore only selected features of randomness 
were analyzed. We think that this practice is inappropriate 
for at least a few reasons. First of all, it is difficult to 
compare the results across various RSG experiments when 
different measures are used. Secondly and perhaps more 
importantly, results of studies that claim the relationships 
between ability to generate randomness and level of other 
cognitive variables may be confusing. These variables may 
be connected only with a specific aspect of randomness 
generation ability. On the other hand, it is always possible 
that the connection between two variables really exists, but 
it simply cannot be found by using only selected measures. 
Finally, using many measures in one study at the same 
time may be confusing as well, providing results which are 
difficult to  analyze, understand and interpret. Therefore we 
think there is a need of simple measures of randomness that 
would cover most aspects of the phenomena measured by 
the indexes described above. Therefore, we would like to 
propose two mathematical indexes that meet these criteria.

The first index is entropy proposed by the mathematical 
theory of communication (Shannon, 1948), defined by 
equation: 
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where: H(x) is entropy, p(i) is probability of ith events, n is 
number of possible events. For example, maximal entropy 
for a sequence of 10 different events is 3.32193 bits/
character.

The redundancy index described above (Towse & Neil, 
1998) is resolved to enropy.  Redundancy is calculated as a 
difference between entropy of ideal chaotic sequence and 
entropy of analyzed sequence. The entropy index was used 
in a few of RSG studies (Vandierendonck, 2000b). 

The adequacy of the entopy index is well documented, 
but we can find sequences in which events are correlated 
and its entropy equals maximal value. Let us consider 

sequence SE as an example. 

SE=(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,
8,9,10)				                                                 (2)

The entropy of the SE sequence equals 3.32193… bits/
character (maximal value), but with no doubt the events 
in the sequence are correlated. The example suggests 
that entropy index is not always sufficient for randomess 
estimation. Thus, to characterize the sequence better, 
one more index should be used. We propose to use the 
correlation function (Cf) as the additional measure of the 
deviations from randomness. 

The Cf index inform us about distance of interactions 
between two elements in a sequence. Using Cf it is possible 
to measure how distant items could interact each other. 
We believed that the index could be interpratated as an 
information about structural limitations of the information 
processing. The index gives information about distant 
relations which could be interpretated as an information 
about limitation of the working memory capacity. From 
this perspective other indexes describe above give us an 
information about a strategy that people use to generate 
random sequences. The Fig. 1 present the plot of Cf for the 
sequence SE (2).
Equlibrum defined Cf, is given by:
		       ( )

( )
i

i
n

=
X

C f
	   			 

		   (3)
where X(i) is a number of pairs of an identical events 
separated by i position at the sequence with the n number 
of elements. A Cf can be calculated for 1...( 1)i n= − , 
but usable range in most of the RSG experiments, where 
participants produce more or less one-houndred elements 
sequences, is <1,20>. From statistical point of view, to use 
higer i we should ask participants to produce much longer 
sequences. Maximal value of X(i) (for sequence of all 
identical events) can be calculated from equation:
		       Xmax(i) = n – i   		  (4)

Where n stands for length of the sequence and i 
represents the position of the element in the sequence.
By substituting Eq.(4) into Eq.(3) we could calculate the Cf 

max (maximal value of Cf)
			      

Cf
max

(i) =
n − i

n                        (5)
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Figure 1. Plot of Cf for example sequence SE.
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To asses the power of connections between the elements 
of the sequence the integral of Cfmax can be calculated. 
Equilibrium is defined by:
 			  1 1 1
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If not all elements of the set are correlated in 100 percent:
							     
	

1 1

( ) ( )
n n

i i

i i
− −

<∫ ∫Cf Cfmax                           (7)
Let us compare two sequences with different Cf   to the 

sequence with the maximal corelations as an illustration of 
the equlibrum (7) (see table 1). 

This data shows that S1 is correlated more strongly then 
S2.
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Figure 2 presents the plots of Cf  for the sequences.
In our opinion, the SE and Cf   indexes gives us enough 

information about randomness of the sequences and could 
substitute the indexes described  previously. The indexes 
could be also used as a measure of the human randomness 
generation data as well as to fit the results of experiments 
with data obtained by using computational model of the 
random sequences generation which we would like to 
propose below.	

The mathematical model of the random sequence 
generation

Our model assumes the limited capacity of the short-
term memory. This assumption was proposed by Miller 
(1956), and since that time is present at most of the short-
term memory (Atkinson & Schiffrin, 1968) and working 
memory models (Baddeley & Hitch, 1974).  Simmilarly 
to Miller (1956), we assume that the short-term memory 
capacity is constant in time. 

When the first value is generated by the random number 
generator, it is located in the first cell of memory (M1). In 
the second step, the next value is generated and it is put to 
M1 while the value from M1 is moved to M2 (generally value 
from Mi is moved to M(i+1)). Importantly, the probability of 
generating of a particular value changes, when the value 
has been already allocated to any of the memory cells. 
For different memory cells probability of value generation 
is independent, but the changes are summed up. It is 
implemented by correction filter. It compares generated  
value with all memory cells and passes it with certain 
probability depending on contents of short-term memory  
cells.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9

Figure 2. Plot of Cf for sequences: dot line – S1, dash line – S2, continuous line – Smax.

Figure 3. Schematic diagram of mathematical model of random sequence generation. 
RNG – random number generator, F – correction filter, S – output sequence, MEM – 
short-term memory, M1…Mn – cells of memory. 

S1=(1,1,2,1,0,2,3,0,2,3) S2=(1,4,2,1,0,5,1,2,7,6) Smax=(1,1,1,1,1,1,1,1,1,1)

Cf(1)=0.1 Cf(1)=0 Cfmax(1)=0.9

Cf(2)=0.1 Cf(2)=0 Cfmax(2)=0.8

Cf(3)=0.5 Cf(3)=0.2 Cfmax(3)=0.7

Cf(4)=0 Cf(4)=0 Cfmax(4)=0.6

Cf(5)=0 Cf(5)=0.1 Cfmax(5)=0.5

Cf(6)=0.1 Cf(6)=0.1 Cfmax(6)=0.4

Cf(7)=0 Cf(7)=0 Cfmax(7)=0.3

Cf(8)=0 Cf(8)=0 Cfmax(8)=0.2

Cf(9)=0 Cf(9)=0 Cfmax(9)=0.1

9

1

( ) 0.81 i =∫Cf
9

1

( ) 0.42 i =∫Cf
9

1

( ) 4.5max i =∫Cf

Table 1
The values of Cf for two different sequences and the sequence with the maximal value of Cf.
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Model is fitted to experimental data by selecting changes 
of probability for all memory cells. The fit of the model is 
good when error between indexes for sequence generated 
by it and human is smaller then assumed before (admissible 
error of model).  

General disscusion
We have sugessted that ethropy and correlation 

function could be used as measures of randomness of 
sequences generated by humans, as well as to assess the 
performance of the random sequences generation task using 
computational models of memory. We believed, that these 
indexes can describe the most important deviations from 
randomness, so using any of the other indexes desribed in 
the paper for assessing the random sequence generation 
task performance would note be necessery. We have also 
suggested that the proposed indexes could be used to build 
the mathematical model of generation the pseudo-random 
sequences by humans. In the second part of the paper, such 
a model was proposed. We believed that models assuming 
the structural limitations of the short-term memory could 
generate similar results as humans. In a  future publications 
the results of model fitting will be presented. 

The capacity model of random sequence generation can 
be used as a simple mathematical model of human short-term 
memory. The proposed methodology - the mathematical 
computational models with structural limitations of the 
memory - is the new way of modeling the results of random 
sequence generation task.  

Typicaly, the computational models utilises algorithms 
of human performance, whereas our mathematical model 
reproduce the human data without the suggestion, that such 
rules simulates human information processing. Most of the 
computational models were critisised for the suggestion, 
that they were build analogicaly to the human information 
processing system. Our approach suggest to simulate the 
human data using most elementary computational model.
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