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Taking the velocity dispersion term into account in the Jeans equa-
tion describing the disk model, counterintuitively allows to reduce the lo-
cal mass-to-light ratio at the outskirts of flattened galaxies, and stop the
unbound growth of mass function. This is possible thanks to a more inter-
twined relation between the gravitational potential and the rotation curve
than for spheroidal systems. This effect is illustrated on the example of
galaxy UGC 6446 by finding iteratively the column mass density from the
rotation curve supplemented with an isotropic velocity dispersion profile in
the disk plane. Along with galactic magnetic fields, this effect would allow
to reduce the local mass-to-light ratio at the galactic outskirts.
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1. Introduction

Modeling of rotation curves presupposes that galaxies are in virialized
steady state rotation. To simplify things, one usually assumes: axial sym-
metry, a number of fixed shape mass subcomponents, constrained den-
sity-luminosity (most often a constant mass-to-light ratio), and constrained
density-dispersion profiles in the disk component; see Sofue [1] for a review.
The simplifications reduce a complicated dynamical model of a galaxy to
only several analytical formulas with free parameters. For example, based on
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the van der Kruit and Searle [2] result, Leroy et al. [3] relate the stellar verti-
cal velocity dispersion σ∗,z and the stellar disk mass density Σ∗ by assuming
the stellar disk to be isothermal in the vertical direction, with exponential
radial and vertical profiles and a width-scale independent of the radial vari-
able. Similar constraints and constant mass-to-light ratio are adopted by
Watson et al. [4] and Martinsson et al. [5]1. The obtained gravitating mass
is higher than expected based on the brightness curve [7]. The difference
between the dynamical mass and the observed distribution of stars and gas
is too high to be attributable entirely to nonluminous baryonic component
(brown dwarfs, molecular gas). The missing mass manifests itself especially
in the outer galactic regions where the mass-to-light ratio is significantly
higher than that characteristic of stellar populations [8]2.

In this paper, we study the effect of the velocity dispersion term in Jeans
equations on the predicted mass distribution and on the resulting local mass-
to-light ratio behavior at the outskirts of flattened galaxies. In calculating
the local mass-to-light ratio, we consider the total gravitating mass after
subtraction of the gas contribution. We assume as a working hypothesis
that there is no significant spheroidal mass component dominating other
mass components at larger distances. We abandon at the same time the
assumption of constant mass-to-light ratio. Of interest in this paper is the
gravitational field at larger distances only, where the shape of the central
regions, whether spherical or disk-like, is not much important as their contri-
bution to the gravitational potential in the far region is dominated by their
monopole term. Then, the use of the thin disk model is better justified than
the use of a spherical model. With nonzero dispersion term in this situation,
as we show in this paper, it is possible to significantly reduce the local mass-
to-light ratio at the galactic outskirts without any noticeable change in the
mass function. The reduction effect is best seen at the galactic edge, where
the density is small, thus perturbations of the density relatively more pro-
nounced, by which these regions become interesting due to the sensitivity of
the rotation curve in disk model to local gradients in the mass distribution.

Under such circumstances, particularly interesting are galaxies for which
the disk model with vanishing velocity dispersion would lead to divergent
local mass-to-light ratio, suggesting significant amounts of nonluminous mat-
ter. One perfect candidate to be studied is the UGC 6446 galaxy. As sug-
gested by Jałocha et al. [11], this galaxy might be flattened rather than
dominated by a spherical component. Some features of this galaxy suggest
large amounts of nonbaryonic dark matter, and other that the dark matter

1 For a detailed discussion of the stellar mass-to-light ratio estimation from galactic
spectra, see [6] and the references therein.

2 We refer to Schaye [9] and van der Kruit [10] for complete picture on the star formation
threshold and the gaseous disk structure at the galaxy edge.
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mass may be not that high. For example, the local mass-to-light ratio cal-
culated after subtraction of the gas contribution, grows rapidly at the edge
of the stellar disk. It is then important to consider other factors, which the
high mass-to-light ratio is sensitive to in the boundary region, as they could
occur to reduce this ratio. The velocity dispersion is such a factor, influenc-
ing the rotation-density relation and, therefore, the resulting mass-to-light
ratio behavior.

The dynamical role of the velocity dispersion can be intuitively under-
stood in terms of a reduced dispersion tensor described by a single scalar
pressure. The sign of the corresponding term in Jeans equations is opposite
to that of the gravitational term in regions where the density and pressure
decreases with the distance. This implies an increase of the gravitational
force for a pressure supported galaxy model with a given rotation curve.
In particular, approximately spherical such a system must be more massive
than that with the same rotation curve and neglected pressure. This is the
case also for a pressure supported gaseous disk in the potential of a dom-
inating, nearly spherical mass component [12]3. However, the increase of
mass characteristic of nearly spherical systems does not generally hold for
flattened systems of which rotation curves are strongly modified by local
gradients in the density, and these variations are crucial for the disk model,
unlike for spherical models sensitive only to the amount of mass encircled
by a given orbit. The dispersion term introduces further structural modi-
fications in the rotation law and is also dependent on the required density,
which is a functional of the rotation curve (note, that the starting quantity
from which the mass density is inferred is the rotation curve only). In con-
sequence of this “backreaction”, the relation between the circular rotation
and the density profile becomes very complicated in the disk model. The
effect of the interplay between the dispersion and the gravitational term for
flattened systems can be such that the mass density is locally reduced while
leaving the rotation curve unaffected. The effect will be important in regions
where the relative variations in the density are large, that is, in the disk edge
neighborhood where the density is already low. Therefore, the local mass-
to-light ratio of flattened systems can be strongly modified or reduced at the
disk edge without significant increase in the amount of mass.

The dispersion term in the disk model gives a tool for strongly modifying
the local mass-to-light ratio predicted by models neglecting the velocity dis-
persion. In this context, it is important to note that finding solutions of the
Jeans equations for disk-like mass distributions requires a freely deformable
density profile, otherwise the sensitivity of the disk model to local gradients

3 In this article, it is assumed that the gas pressure is mainly due to turbulent motions
and defined as p = ρσ2 (where σ describes the radial velocity dispersion and ρ is the
density), while the thermal pressure is neglected as less important.
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in the density could not be fully used. In principle, this excludes the popular
method of rotation curves fitting that makes use of assumed shape density
profiles for various mass components. The method which could be effectively
used in this situation is to find solutions by iterations.

The disk model neglecting the dispersion velocity (‘cold’ disk) was orig-
inally proposed by Toomre [13] and developed further by Nordsieck [14].
The rotation curve and mass density in this model are convolutions of each
other [15]. Unlike for spheroidal models for which the circular velocity is
determined by the amount of encircled mass, in the disk model, the circular
velocity is strongly dependent on the radial gradients in the mass density
and also on masses distributed outside the circle of a given orbit. For ex-
ample, pronounced local declines in the density reflect in largely increased
velocity followed by correspondingly steep decrease. This can be observed
for truncated disks [16]. Similarly, an increase in the density results in corre-
spondingly large local decrease in the velocity [17] — an effect impossible for
spherical systems. For this reason, one should refrain from making a priori
assumptions about the distribution of masses in various mass components
in models where the gravitation of disk component is important. In such
situations, more appropriate than parametric models are relaxation meth-
ods that converge to a self-consistent model with the minimum number of
assumptions. Such a model would allow to describe more general situations
and provide a tool for testing the assumptions made by parametric models.

In the disk model, the mass density is not uniquely determined by the
observed fragment of rotation curve known out to the so-called cutoff radius,
e.g. Sackett [18] and Bratek et al. [17]. This drawback can be sometimes
overcome by using additional data about the mass density and by finding
iteratively a global rotation curve consistent with these data [19]. In this
method, the mass density profile is not a priori assumed. On comparing
the density and brightness profiles, it is then possible to predict the local
mass-to-light ratio. In Sect. 2, we generalize the iterative method to the
case with the velocity tensor isotropic in the disk plane and varying with
the radius.

2. Determining the mass distribution in the disk model
by iterations

We use iteration methods to find the column mass density from the
rotation curve and other available data in galaxy models involving disks
representing flattened mass subcomponent. The iteration method can be
used if, for some reasons, one chooses to give up the less exact method of
using fixed-shape density profiles with free parameters. In the disk model
neglecting the velocity dispersion term, the mass density calculated for the
cut rotation curve with the help of the forward (velocity-to-density) integral,
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would not lead to the original rotation curve after substituting the density
to the backward (density-to-velocity) integral. Therefore, iterations are nec-
essary. The other advantage of the iterations is that the final density can
be controlled by the measured density of hydrogen, especially if the latter
extends further than the rotation curve. In a disk model with the disper-
sion term included, things complicate further, because the dispersion term
also involves the unknown density. Again, one can use iterations and find a
self-consistent model of mass density that exactly accounts for the measured
rotation curve. An example of iteration method is described in [19]. Below,
we extend it to the disk model with the velocity dispersion term included.

In the Jeans theory framework, we consider a stationary axi-symmetric
and infinitesimally thin disk in the plane z = 0 with polar coordinates
(R,φ). The disk surface mass density Σ, the planar velocity components,
and the gravitational potential Ψ are related through the Poisson equation,
the continuity equation and the second moment Jeans equations. We split
the total mass density Σ(R) into the stellar density Σ∗(R) and the gas
density Σgas(R)

Σ(R) = Σ∗(R) +Σgas(R) .

2.1. The vanishing velocity dispersion

We begin with a simpler case when the dispersion tensor is zero. In the
approximation of circular orbits, Σ(R) and the circular velocity v(R) are
related through integral convolutions [15] that for a thin disk can be recast
to a particularly simple explicit form [20]

v2(R) =

∞∫
0

w(x)µ(Rx) dx , (1)

µ(R) =

∞∫
0

w(x) v2
(
Rx−1

)
dx , (2)

where µ(R) ≡ 2πGRΣ(R). The integral kernel w(x) involves the complete
elliptic integrals of the first and second kind, K and E 4, and is singular at
x = 1

w(x) =
1

π

(
K[k(x)]

1 + x
+
E[k(x)]

1− x

)
, k(x) =

2
√
x

1 + x
.

Accordingly, the integration in Eq. (1) and Eq. (2) should be understood in
the Cauchy principal value sense. Given a v(R), theΣ(R) could be calculated
directly from Eq. (2).

4 K(k) =
∫ π/2
0

dϕ√
1−k2 sin2 ϕ

, E(k) =
∫ π/2
0

dϕ
√

1− k2 sin2 ϕ .



2076 S. Sikora et al.

In the literature, there are known integral expressions equivalent to
Eq. (2) on an infinite domain 0 < x < ∞, for example [13], but they dif-
fer from each other by surface terms when cut off at a finite radius (this
happens for real rotation curves measured only out to finite radii). Associ-
ated with this is the property of disk model, that the mass density in the
region below the cutoff radius is affected by the assumed continuation of
the rotation curve beyond the cutoff radius (see [17] for a more detailed
discussion). The nonuniqueness in the mass density cannot be overcome
without additional physical premises. The cutoff problem can be reduced
when some data complementary to the rotation curve are available. At the
galactic outskirts, where the density of stars is low enough, Σgas is the main
contribution to the total disk density Σ. One can approximate the amount
of gas by Σgas = (4/3)ΣH, with ΣH(R) being the hydrogen column density
and the factor 4/3 is introduced to take the helium abundance into account.
Then, the iterative scheme proposed by Jałocha et al. [19] (or any equiva-
lent) can be used. Based on the rotation curve and Σgas observations, one
is led, through repetitive use of integral transforms Eq. (1) and Eq. (2),
to a global surface density profile (that continuously overlaps with Σgas in
the outer regions) and a global velocity profile (consistent with the rotation
curve out to the cutoff radius).

In the subsequent section, we assume that the global profiles Σ0(R) and
v0(R) have been already derived with the help of any method analogous to
that in [19]. Then, we show how to modify the Σ0(R) further so that the
isotropic velocity dispersion σ(R) could be accounted for.

2.2. Nonvanishing velocity dispersion

For (axi-symmetric) circular streaming motion in the z = 0 plane with
the dispersion tensor isotropic in that plane (vφ2 − v2c = σ2 = vR2), the
radial part of Jeans equations reduces to

R−1 v2c = Ψ ′ +Σ−1
(
Σ σ2

)′
. (3)

For such a motion, the azimuthal component of Jeans equations and the
continuity equation are identically satisfied. For z 6= 0, we assume reflection
symmetry z → −z. By assuming the bulk density to be of a step function
form: Σ(R)/H for |z| < H/2 and 0 for |z| > H/2, and integrating the
z-component of the second moment Jeans equation in the direction normal
to the disk plane (∂zΨ = 2πGΣ for an infinitesimally thin disk), we would
end up with σ2z = 2πGH Σ as an estimation of the vertical pressure needed
to support a thin and finite width disk against its gravitational compression.
Knowing σ2z and H from measurements, the formula would allow one to
infer the column mass density Σ (up to a geometric factor of order unity,
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depending on the vertical structure of the disk). Our study differs in this
point from the usual approach: we will obtain the disk mass density Σ(R)
in a way independent of the disk’s vertical structure.

We find it convenient to split v2c into a gravitational contribution v2Ψ ≡
RΨ ′, where

v2Ψ = 2πGR

∞∫
0

Σ(Rx)xw(x)dx , (4)

and a contribution from the velocity dispersion term v2σ

v2σ ≡ RΣ−1
(
Σ σ2

)′ (5)

(the symbol v2σ is formal, it can be also negative). In accord with Eq. (3),
our task is to find a Σ(R) which for a given σ2(R) gives a circular velocity
profile

vc(R) ≡
√
v2Ψ (R) + v2σ(R)

overlapping with the rotation curve. Below, we present an iterative scheme
realizing this idea.

2.2.1. The iterative procedure

We assume that σ(R) = σ0 f(R) with fixed function f(R) and variable
parameter σ0. The iterations begin with a small σ0, and a disk mass density
Σ0(R) that precisely accounts for the observed rotation curve for σ0 = 0.
Each iteration step consists of three stages: (i) v2σ (1) is calculated from
Eq. (5) with Σ0 substituted for Σ, (ii) the v2σ (1) is inserted into the trans-
form Eq. (2), which yields a correction to the density profile δΣ1 and hence
the corrected density Σ1(R) = Σ0(R) − δΣ1, (iii) v2σ (2) is calculated from
Eq. (5) with Σ1 substituted for Σ. The v2σ (2) will differ from v2σ (1), there-
fore, the next iteration cycle must be performed. Again, v2σ (2) is inserted
into Eq. (2) which results in a correction δΣ2 and a second corrected density
Σ2(R) = Σ0(R)− δΣ2. By going on with repeating the steps (i)–(iii) until
the difference v2σ (k) − v2σ (k−1) decreases to an acceptably small value, one
obtains a kth corrected profile Σk(R) = Σ0(R) − δΣk. Now, by applying
the integral transform Eq. (1) separately to all three terms in the equation
Σk(R) = Σ0(R) − δΣk, one has v2Ψ = v20 − v2σ satisfied by construction.
The iteration procedure can be repeated with a slightly different dispersion
parameter, σ0 → σ0 + δσ0, and with the previous Σ(R) now regarded as
the first-step iteration density. This way, corresponding to a sequence of σ0
values, a sequence of iterative solutions Σ(R) is obtained.
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3. Application of the iterative procedure to galaxy UGC 6446

3.1. The vanishing velocity dispersion (a comment on smoothing)

Figure 1 shows a disk mass density Σ0(R) obtained for UGC 6446 by
iterations, similarly as in [19], based on the rotation curve and the hydrogen
density ΣH(R) published by Verheijen and Sancisi [21]. We assumed that
Σgas(R) = 4

3ΣH(R). In the same figure, the Σ0(R) is compared with the
luminosity profile. It is seen that the corresponding local mass-to-light ratio
would grow rapidly at R ≈ 12 kpc. Considering the high abundance of
hydrogen, this growth could be explained by introducing a small fraction of
unseen baryonic matter [11]. But, taking the velocity dispersion into account
modifies this picture.
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Fig. 1. The UGC 6446 disk mass density Σ0(R) derived from the rotation curve by
the iterative method without the velocity dispersion. The thin solid line represents
a smoothed cubic spline interpolation of Σ0(R), and it is compared with the usual
cubic spline shown with the gray/blue line. The thick solid line is the gas column
mass density (4/3)ΣH(R). In the same plot, the Tully et al. [22] B-band luminosity
profile is shown with the dashed line.

Below, we restrict ourselves to a simple model of the dispersion scalar
σ(R). This simplification neglects possible fluctuations in the dispersion
due to the density fluctuations present at lower radii, however, the relative
change in the density is small for lower radii on account of the density being
high in that region. It is then reasonable to neglect small fluctuations in
the density Σ(R) by smoothing them out. Each time a Σ(R) is found using
Eq. (2) at a discrete number of points, we obtain a smooth Σ(R) profile
with the help of a smoothing cubic spline interpolation method. Although
the difference between the smoothing cubic splines and the ordinary cubic
splines is quite small, as seen in Fig. 1, this is not so for the derivatives
Σ′(R). This is to be remembered when using Eq. (5).
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The rotation curve measurements are shown in Fig. 2. The circular veloc-
ity vc(R) (solid line) was calculated with the help of the integral Eq. (1) for
a smoothing cubic spline interpolation of Σ0(R). The smoothing affects the
calculated rotation curve, nonetheless, the smoothed rotation curve agrees
with the original rotation data well enough. For comparison, with the dotted
line in Fig. 2, we show the best fit of the step profile v(R) = Va tanh(R/rs).
A similar profile was used by the Disk Mass Survey [23] for a large number of
galaxies. In Sect. 3.2.2, this will help us to estimate the order of magnitude
of the stellar velocity dispersion expected for UGC 6446.
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Fig. 2. The points represent the rotation curve of UGC 6446 determined by Ver-
heijen and Sancisi [21]. The solid line is the rotation curve vc(R) corresponding to
the smoothing cubic spline of Σ0(R). The dotted line is the best fit of the step-like
profile described in the text.

3.2. The nonvanishing velocity dispersion

To our knowledge, there are no measurements of the velocity dispersion
available for UGC 6446 and we must rely on measurements available for
other galaxies. Although the velocity dispersion observations are difficult,
there is a hope more that such observations will be available in the nearest
future. As for now, the Disk Mass Survey [24] provides data on the line-of-
sight stellar velocity dispersion at particular galactocentric distances for a
sample of 30 galaxies [23], while Tamburro et al. [25] give the gas velocity
dispersion as a function of radius for selected 11 galaxies. Currently, there
are precise methods of determining stellar column mass densities and the
related stellar mass-to-light ratio profiles [26, 27].

In comparing the model predictions with the measurements, it should be
remembered that the only direct observable is the velocity dispersion along
the line of sight σLOS . Splitting it into the normal and vertical components
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is model-dependent. For simplicity, we assume isotropic dispersion, that is,
σ = σLOS . This assumption may overestimate the σz (e.g., Bershady et al.
[28] find σz/σR = 0.6± 0.15 for the stellar component, however this estima-
tion is based on many simplifying assumptions). Thanks to this choice, we
avoid unnecessary complications and make the presentation of our method
more transparent (if need be, the procedures can be generalized to more
complicated forms of the dispersion tensor).

3.2.1. Nonzero velocity dispersion for gas regions

We start with by assuming that the velocity dispersion is nonzero only
for the gas: σ = σgas. This is motivated by the fact that the rotation curve
we use was obtained from the neutral hydrogen observations. The shape of
the σ(R) profile can be inferred based on those observed for other galaxies.
The characteristic feature of this shape should be a significant drop-off at
the stellar disk edge (where the Hα surface brightness drops off) followed
by a linear decrease, as observed for galaxy NGC 6946 (Fig. 6 in Boomsma
et al. [29]). Similar features are observed also in Tamburro et al. [25]: the
dispersion profiles are decreasing functions of the distance with one or more
step-like structures, often correlated with luminosity falloff, followed by a
linear decrease from a value of about 10 km/s down to about 5 km/s. These
values are consistent with σgas = 11 km/s adopted for the UGC 6446 by
Watson et al. [4], which is the value characteristic of warm neutral medium.

We consider three model dispersion profiles σ(R) (labeled as model A,
B and C, shown in Fig. 3) and study their influence on the local mass-
to-light ratio in UGC 6446. These profiles are decreasing functions of the
radius with a dropoff located at R ≈ 12 kpc (where the observed brightness
drops off significantly) followed by a linear decrease at the galaxy outskirts.
The profiles differ between each other by their slopes at R ≈ 12 kpc. In
applying the method of Sect. 2.2 to the three model profiles, one should put
Σ = Σgas in Eq. (5) in order to calculate v2σ. Because Σgas is known from
measurements, the v2σ is fixed, and it is not necessary to repeat steps (i)–
(ii) in each iteration. This will change when we include the stellar velocity
dispersion as then the Σ(R) in Eq. (5) is altered in each iteration step.

By applying the iterative procedure, we obtain column mass densities
Σ(R) corresponding to the gas velocity dispersion profiles A, B and C shown
in Fig. 4. The resulting local mass-to-light ratio is shown in Fig. 5. As can be
seen, in the region where the gradient of the velocity dispersion is large and
the local mass density is low, the mass distribution is changed significantly.
Then the local mass-to-light ratio could be reduced to values comparable to
those in the inner part of the galaxy.
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Fig. 3. The three toy models of the velocity dispersion profile for UGC 6446 de-
scribed in detail in the text.
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Fig. 4. The disk mass density Σ(R) reconstructed iteratively for the gas velocity
dispersion models A, B and C, respectively. The dashed line is the density distri-
bution in the case without the velocity dispersion taken into account, and the thick
black line is the gas density.

The presence of regions with substantial slopes in the dispersion pro-
file is crucial. Such features are characteristic of the dispersion profiles in
Tamburro et al. [25] and there may be more of them present in a particular
galaxy, as it occurs for NGC 4736 and NGC 5055. Therefore, such a feature
is likely to appear also for UGC 6446 close to r = 10 kpc, with the dispersion
above 15 km/s. Although the proposed profiles are only toy models, they
mimic the situation expected for UGC 6446. Of course, any doubts would
be dispersed by a real measurement for UGC 6446.
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Fig. 5. The local mass-to-light ratio as a function of radius (we consider the B-band
luminosity and the total gravitating mass after subtraction of the gas contribution),
corresponding to the density distribution for models A, B and C, respectively. The
dashed line is the local mass-to-light ratio for a mass density distribution without
the velocity dispersion.

In the subsequent sections, we analyze to what extent this behavior could
be changed in situations when also the stellar velocity dispersion is taken
into account, and the velocity dispersion of gaseous regions was compared to
the stellar velocity dispersion. In general, there could be separate rotation
curves available, one for gas and another for stars, that would overlap with
each other within some error limits. This assumption would be justified if
the motion of matter was entirely driven by the gravitational interaction.
In reality, there are other processes involved (like magnetic fields or SN
explosions) that make the motion of gas regions different slightly from that
of stars.

3.2.2. The expected stellar velocity dispersion

We should emphasized the importance of the Disk Mass Survey observa-
tions [23] with precise data on the stellar velocity dispersion σLOS as a func-
tion of radius for 30 galaxies from the UGC catalog. Although UGC 6446 is
not included in their PPak sample, the expected velocity dispersion profile
can be constrained based on these data. Martinsson et al. [23] model the
projected rotation curves using a step-like profile

vc(R) sin i = Varot tanh(R/rs) , (6)

with Varot and rs as parameters. A de-projection Va = Varot/ sin i involves
the inclination angle i, and assumes the stellar σLOS to follow an exponential
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decrease law
σLOS(R) = σLOS,0 exp (−R/hσ,LOS) . (7)

In Fig. 6, we show the σLOS,0 and Va parameters for 30 galaxies from the
PPak sample (Fig. 2 shows the best fit we obtained for UGC 6446, with
Va = 77 km/s and rs = 2.57 kpc). A linear regression σLOS,0 = a Va + b
to these data (with the best fit values a = 0.44 and b = −16.48 km/s)
gives for UGC 6446 an estimate of the stellar velocity dispersion σLOS,0 =
17.4 km/s at the galaxy center. This shows that the order of magnitude of
the stellar velocity dispersion for this galaxy is comparable with the values
of the velocity dispersion expected for the gas. Based on this premise, in the
next section, we consider the situation in which the gas and the stars have
the same velocity dispersion model profiles (shown in Fig. 3). This should
be made with care, because the profile shapes could be slightly different.
Nonetheless, the toy model profiles enable to fully use the iterative method
presented in Sect. 2.2, and test to what extent the stellar velocity dispersion
could change the results obtained in the previous section.
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Fig. 6. The velocity dispersion parameter σLOS,0 and the de-projected rotation
speed Va for the PPak sample of the Disk Mass Survey. The solid line is a linear fit.

3.2.3. The velocity dispersion of gas regions equated to that of stars

Corresponding to a sequence of dispersion profiles σ(R) = σ0 f(R), with
a fixed function f(R) for model A (defined by σ0 = 17 km/s) and free pa-
rameter σ0, the iterations of Sect. 2 give in steps of δσ = 1km/s a sequence
of corrected density profiles, as shown in Fig. 7 (for clarity, only selected σ0
values are shown). As it is seen in Fig. 8, the density changes substantially
at R ≈ 11 kpc, thus it will strongly influence the local mass-to-light ratio
only in the neighborhood of the stellar disk edge. Figure 9 shows the local
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Fig. 7. A sequence of the velocity dispersion profiles σ(R)=σ0 f(R) with various σ0.
The model A profile (black curve) has σ0 = 17 km/s.
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Fig. 8. Solid lines — a sequence of the disk density profiles Σ(R) corresponding
to the step-like velocity dispersion with parameters σ0 = 7, 12, 14, 16, 17 km/s,
respectively. The profiles are shown using gray scale ranging from light gray for
σ0 = 7 km/s to dark gray for σ0 = 17 km/s. For comparison, with the dashed line
is shown the density Σ(R) without the velocity dispersion taken into account, and
the black thick line represents the gas distribution.

mass-to-light ratio, obtained after subtraction of the gas contribution for the
same sequence of Σ(R) profiles. As follows from this figure, the behavior of
the local mass-to-light ratio can be strongly modified at the stellar disk edge,
from that rapidly increasing to decreasing. This proves that the inclusion of
the velocity dispersion term in the disk model strongly influences the local
mass-to-light ratio in regions with low mass density.
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Fig. 9. The local mass-to-light ratio for the B-band luminosity and the total grav-
itating mass after subtraction of the gas contribution, shown for a sequence of
density profiles Σ(R) corresponding to a step-like velocity dispersion with param-
eters σ0 = 7, 12, 14, 16, 17 km/s, respectively. As in Fig. 8, these lines are
represented on the gray scale, starting from light gray for σ0 = 7 km/s to dark
gray for σ0 = 17 km/s. The dashed line shows the local mass-to-light ratio for the
case without velocity dispersion.

To convince ourselves that our procedure works well, we iteratively ap-
plied steps (i)–(iii) to find the corrected density Σk(R) for an example value
of σ0 = 15 km/s. Figure 10 shows a sequence v2σ (k) converging quickly after
four iterations only. Although the difference v2σ (k) − v2σ (k−1) appears not to
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Fig. 10. A sequence of v2σ (k) lines converging to the black line after four iterations
steps (i)–(iii) described in Sect. 2.2.
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tend to zero for greater k but to a small value (probably due to poor nu-
merical resolution), the difference between

√
vΨ (k)

2
+ v2σ (k) and vc remains

lower than ≈ 1 km/s, which is enough for our purposes. The v2σ term is
negative, which means that the gravitational contribution vΨ is greater than
the corresponding velocity on the rotation curve vc. This is intuitively clear
as the action of the velocity dispersion term is similar in effect to a hydrody-
namical pressure that must be balanced in the stationary case by increased
gravitational force. In view of Eq. (1), the gravitational component vΨ is
the velocity for which the centrifugal force would equal the increased gravi-
tational force. This is why we expect vΨ > vc and this agrees with what is
seen in Fig. 11. Contrary to the conclusion valid under spherical symmetry
[12], we remind the remarks given earlier, that in disk model the increase in
vΨ does not necessarily imply higher abundance of mass.
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Fig. 11. The gravitational component of rotation, vΨ (R), (dash-dotted line) cal-
culated for the model A velocity dispersion profile with σ0 = 15 km/s, compared
with the rotation curve (solid line) and the data points.

Below, we compare the model A with the results obtained for models
B and C. In Fig. 12, we present the disk density distributions (obtained
iteratively as described in Sect. 2.2) and in Fig. 13, we show the resulting
local mass-to-light ratios, obtained after subtracting the gas contribution.
It is evident from these figures that various kinds of the local mass-to-light
ratio behavior are possible in the outer parts of the galaxy, depending on
the velocity dispersion values in the stellar disk edge vicinity. The ratio may
be left unchanged compared to that with no velocity dispersion (model C),
in which case the local mass-to-light ratio diverges at R = 12 kpc; it may
converge to zero in the neighborhood of the stellar disk edge (model A); or
remain oscillating around a value characteristic for the galaxy as a whole
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(model B). This proves that the velocity dispersion term may significantly
modify the reconstructed values of the local mass-to-light ratio in the outer
galactic regions.
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Fig. 12. The disk mass density Σ(R) obtained iteratively for the velocity dispersion
models A, B and C, respectively. The dashed line is the density distribution in the
case without the velocity dispersion taken into account, and the thick black line is
the gas density.
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Fig. 13. The local mass-to-light ratio as a function of radius corresponding to the
density distribution for models A, B and C, respectively (we consider the B-band
luminosity and the total gravitating mass after subtraction of the gas contribution).
The dashed line is the local mass-to-light ratio for a mass density distribution
without the velocity dispersion.
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Figure 14 shows the gravitational part of the rotation curve vΨ for the
considered dispersion models. Similarly as for model A, the values attained
by vΨ are higher than the corresponding values attained by the rotation
curve vc. The mass distribution in the disk has been modified in comparison
with the situation without dispersion, such that the resulting correction
to the gravitational force counterbalances the effective pressure due to the
velocity dispersion term.
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Fig. 14. The gravitational vΨ velocity component obtained iteratively for the
UGC 6446 galaxy with fixed model dispersion profiles A, B and C described in
the text. For comparison, solid black line is the smoothed rotation curve vc and
the points show the rotation curve measurements.

3.3. The consequences of the velocity dispersion term for the mass function
in the disk model

We would like to draw attention to the important fact that the expected
increase in the gravitational potential due to the included dispersion term
does not translate in the disk model into a noticeable increase in the mass
function (or the total mass, in particular). This shows that the intuition
about the role of the dispersion term in models with dominating spherical
mass component, even those containing disks, does not apply for flattened
galaxies — the increased gravitational potential due to the dispersion term
does not mean accordingly increased mass function.

The mass functions corresponding to the surface densities of the consid-
ered models are shown in Fig. 15.

On comparing it with Fig. 11, it is seen that the relative increase of
the mass function is much lower than the corresponding absolute value of
the relative change in the gravitational term vΨ (the relative change of the
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gravitational term in the disk model can be positive or negative). We stress
this important result, because in models with dominating spherical mass
distribution, the relative increase in the mass function would be everywhere
exactly twice larger than the relative change in vΨ (and the latter could not
be negative).
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Fig. 15. The mass function for models A, B and C corresponding to the surface
mass densities from Fig. 12. The dashed line is the mass function in the case
without the velocity dispersion.

4. Summary

4.1. The model description

In this work, we investigated the influence of the velocity dispersion
term on the local mass-to-light ratio in the vicinity of the stellar disk edge
in the framework of disk model of flattened galaxies, assuming a streaming
motion about concentric circular orbits under axial symmetry and reflection
symmetry with respect to the mid-plane, and that the mass distribution is
flattened, that is, without a spherical mass component dominating at larger
radii. The input quantities consist of the rotation curve vc(R), the hydrogen
column density ΣH(R), and (isotropic in the disk plane, described by a single
scalar σ(R)) a model of the velocity dispersion profile consistent with the
measurements for a number of galaxies.

Our approach differs from other models in that we gave up the method
of assumed shape disk density profile. This allows for precise fit into the
measured rotation curve and for fully making use of the sensitivity of the
disk model on the local structure in the mass density. Since the velocity dis-
persion contribution also involves the mass density, the relation between the
circular velocity, the velocity dispersion and the mass density, becomes very
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intertwined. To overcome this difficulty, we found solutions by iterations.
Furthermore, in our method, the local mass-to-light ratio is a variable output
quantity, not a constant model parameter. These qualitative changes make
our model more general and potentially useful in judging the importance of
assumptions made by simpler models.

4.2. The possible application

The presented method can be applied to any spiral galaxy for which
vc(R), ΣH(R) and σ(R) are known. The dynamical models of spiral galax-
ies usually ignore the role of the velocity dispersion in the surface mass
density derivation. As we have shown on the example of galaxy UGC 6446,
this simplification could be too restrictive when the outer parts of the galaxy
are concerned, especially for flattened mass subcomponents. We chose the
UGC 6446, because this galaxy is characterized by very high local mass-to-
light ratio at the outskirts and, at the same time, there are features pointing
to a disk-like distribution of baryonic matter with a possible small admix-
ture of nonbaryonic dark matter. We already studied this galaxy in the past
by neglecting the velocity dispersion, and found the above-mentioned pecu-
liarity in the behavior of the local mass-to-light ratio at the boundary of the
stellar disk. In this paper, we examined three model dispersion profiles and
showed that in a region of low stellar mass density, the velocity dispersion
may affect the resulting local mass-to-light ratio of this galaxy. Certainly,
one cannot be sure if the influence of the dispersion is indeed responsible
for the increase in the local mass-to-light ratio in UGC 6446. To estab-
lish this with certainty, a measurement of the velocity dispersion for this
particular galaxy is indispensable, because the significance of the dispersion
effect depends on the shape of the dispersion profile, its value, and where
the increased slopes are located and how high they are. The availability
of the precise velocity dispersion profile measurements is the main model
limitation.

4.3. Conclusions

The most important result of our work is to notice that the velocity
dispersion term in Jeans equations for flattened systems, may strongly in-
fluence the mass density profile in regions of low mass density. As a result of
this, the local mass-to-light ratio at the galactic outskirts (where the density
of matter is already low) can be substantially reduced without significant
increase in the galaxy mass, which we illustrated on the example of galaxy
UGC 6446. Along with galactic magnetic fields [30, 31], this is another fac-
tor which allows to reduce the local mass-to-light ratio, of which large values
obtained in spherical models could be wrongly attributed to nonluminous
matter.



The Influence of the Velocity Dispersion on the Velocity–Density Relation . . . 2091

In the context of standard modeling of spiral galaxies, which usually
splits the rotation curves into several subcomponents (the bulge, the disk and
a dark matter halo), it is important to note that for nonvanishing velocity
dispersion, the gravitational contribution to the rotation curve vΨ of the
flattened mass subcomponent may differ significantly from that curve, as it
is evident from Fig. 14. Unlike in spherical symmetry, this difference may be
explained merely by variations in the mass density, not necessarily implying
an increase of the galaxy mass. This result strongly suggests that in addition
to the standard components of the rotation curve, also the contribution
from the velocity dispersion vσ should be taken into account. This effect
may have consequences on the distribution of mass between various galactic
components, in particular, in the disk and in the external halo.
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