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Abstract. We study an order-relation induced by m-subharmonic func-
tions. We shall consider maximality with respect to this order and a
related notion of minimality for certain m-subharmonic functions. This
concept is then applied to the problem of convergence of measures in the
weak*-topology, in particular Hessian measures.
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1. Introduction

In this paper we study an order-relation between measures on an m-hyperco-
nvex domain Ω in C

n. Let μ and ν be measures on Ω. We say that μ is m-
subharmonically greater than ν if

∫
Ω

(−ϕ)dμ ≥ ∫
Ω

(−ϕ)dν, ∀ ϕ ∈ E0,m(Ω) ∩
C(Ω) and write μ � ν, where E0,m(Ω) is the Cegrell class of negative m-
subharmonic functions defined in Sect. 2. It is easy to see that the condition
μ ≥ ν implies μ � ν. But the inverse is not true (see Example 1). We also
show that if u, v are functions in the Cegrell class Fm(Ω) such that u ≤ v,
then their complex Hessian measures are in the relation Hm(u) � Hm(v) (see
Proposition 2). But the inverse is not true (see Example 2).

In Sect. 4, we study maximality with respect to the �-ordering, and a
related notion of minimality for m-subharmonic functions in the class Fm(Ω).
A finite measure μ on Ω is said to be maximal if for any measure ν on Ω such
that ν(Ω) = μ(Ω), the relation ν � μ implies that ν = μ. The Dirac measure
is a maximal measure. Theorem 9 shows that each finite measure on Ω with
compact support is majorized in the �-ordering by a maximal measure with
the same total mass. A function u ∈ Fm(Ω) is said to be minimal if for any
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function v ∈ Fm(Ω) with the same total Hessian mass, the relation v ≤ u
implies that v = u. We show that if a function u ∈ Fm(Ω) and Hm(u) is
maximal measure, then u is minimal function (see Proposition 5). But the
converse is still unknown. Theorem 10 shows that if u ∈ Fm(Ω) is such that
Hm(u) is carried by an m-polar set, then u is a minimal function. However,
there are functions in Fm(Ω) whose Hessian measure are maximal and are
not carried by an m-polar set. We also prove that each function in Fm(Ω) is
minorized by a minimal function with the same total Hessian mass.

In Sect. 5, we apply the m-subharmonic ordering to the problem of
convergence in the weak*-topology. First, we prove that if {μj} is an m-
subharmonically increasing sequence of measures on Ω with uniformly bounded
total mass then μj converges to a measure μ in the weak*-topology. And fi-
nally, we use the notion of maximal measure to prove a sufficient condition of
convergence in the weak*-topology for the class Fm(Ω) (see Theorem 14).

2. Preliminaries

Let Ω be an open set in C
n and let m be a natural number 1 ≤ m ≤ n.

As usual let d = ∂ + ∂̄, dc = i(∂̄ −∂), and let β = ddc|z|2 be the canonical
Kähler form in C

n. Denote by SHm(Ω) the set of all m-subharmonic functions
in Ω, and SH−

m(Ω) for the set of all nonpositive m-subharmonic functions in
Ω. For u1, . . . , um ∈ SHm(Ω) ∩ L∞

loc(Ω), the operator

Hm(u1, . . . , um) : = ddcu1 ∧ · · · ∧ ddcum ∧ βn−m

= ddc(u1ddcu2 ∧ · · · ∧ ddcum ∧ βn−m)

is a nonnegative Radon measure. In particular, when u = u1 = · · · = um, the
Hessian measures

Hm(u) := (ddcu)m ∧ βn−m

are well-defined for u ∈ SHm(Ω) ∩ L∞
loc(Ω) (see [4]).

Definition 1. Let E be a subset of Ω. The m-relative extremal function hm,E,Ω

is defined by

hm,E,Ω(z) = sup{u(z) : u ∈ SHm(Ω), u ≤ 0 and u ≤ −1 on E}.

By [11, Proposition 1.5], we have that h∗
m,E,Ω is m-subharmonic on Ω.

Definition 2. Let Ω be an open set. A function u ∈ SHm(Ω) is called m-
maximal if v ∈ SHm(Ω), v ≤ u outside a compact set subset of Ω implies that
v ≤ u in Ω.

Theorem 1 [4]. Assume that u ∈ SHm(Ω) ∩ L∞
loc(Ω). Then Hm(u) = 0 in Ω

if and only if u is m-maximal.

Now let us recall the definition of m-hyperconvex domain.
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Definition 3. A bounded domain Ω ⊂ C
n is called an m-hyperconvex if there

exists an m-subharmonic function ρ : Ω → (−∞, 0) such that the closure of
the set {z ∈ Ω : ρ(z) < c} is compact in Ω for every c ∈ (−∞, 0). In other
words, the sublevel set {z ∈ Ω : ρ(z) < c} is relatively compact in Ω. Such a
function ρ is called the exhaustion function.

Theorem 2 [9, Proposition 1.4.11]. Let Ω be an m-hyperconvex bounded domain
and K � Ω is compact. Then h∗

m,K,Ω is m-maximal in Ω\K.

Let us recall the definition of m-polar sets.

Definition 4. A set E ⊂ C
n is called m-polar if for any z ∈ E there exists a

neighbourhood V of z and v ∈ SHm(V ) such that E ∩ V ⊂ {v = −∞}.

The following theorem was proved by Lu.

Theorem 3 [9, Theorem 1.6.5]. If E is m-polar set, then there exists u ∈
SH−

m(Cn) such that E ⊂ {u = −∞}.
Throughout this paper Ω will denote a bounded m-hyperconvex domain

in C
n. Now we recall the definitions of the Cegrell classes.

Definition 5. (1) We let E0,m(Ω) denote the class of bounded functions in
SHm(Ω) such that

lim
z→∂Ω

u(z) = 0 and
∫

Ω

Hm(u) < +∞.

(2) A function u ∈ SHm(Ω) belongs to Em(Ω) if for each z0 ∈ Ω, there
exists an open neighborhood U ⊂ Ω of z0 and a decreasing sequence
{uj} ⊂ E0,m(Ω) such that uj ↓ u in U and supj

∫
Ω

Hm(uj) < +∞.
(3) Denote Fm(Ω) be the class of functions u ∈ SHm(Ω) such that there ex-

ists a sequence {uj} ⊂ E0,m(Ω) decreases to u in Ω and supj

∫
Ω

Hm(uj) <
+∞.

We have the following inclusions

E0,m ⊂ Fm ⊂ Em and SH−
m(Ω) ∩ L∞

loc(Ω) ⊂ Em.

Below we present some of the basic properties of the Cegrell classes.

Theorem 4 [2,9]. For each u ∈ SH−
m(Ω), there exists a sequence {uj} ∈

E0,m(Ω) ∩ C(Ω) such that uj ↓ u in Ω.

Proposition 1. Let K be one of the classes E0,m,Fm, Em. Then K is a convex
cone. Moreover, if u ∈ K and v ∈ SH−

m(Ω) then max{u, v} ∈ K.

The following lemma explains why the functions in E0,m(Ω) are some-
times called test functions.

Theorem 5 [2,9]. For ϕ ∈ C∞
0 (Ω), there exist two functions u, v in E0,m∩C(Ω)

such that ϕ(z) = u(z) − v(z),∀z ∈ Ω.
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Following Cegrell’s idea Lu proved that the Hessian operator is well-
defined for the functions in the class Em(Ω).

Theorem 6 [9, Theorem 1.7.14]. Let uk ∈ Em(Ω), k = 1, . . . , m and {uk
j }j

be sequences in E0,m(Ω) such that uk
j ↓ uk, for each 1 ≤ k ≤ m. Then the

sequence of measures

ddcu1
1 ∧ · · · ∧ ddcum

j ∧ βn−m

converge to a Radon measure in weak*-topology independent to the choice of
sequences {uk

j }. We define ddcu1 ∧ · · · ∧ ddcum ∧ βn−m to be this limit.

Integration by parts formula is true for the function from the Cegrell class
Fm(Ω).

Theorem 7 [9, Theorem 1.7.18]. Assume that u, v, w1, . . . , wm−1 ∈ Fm(Ω).
Then we have

∫

Ω

uddcv ∧ T =
∫

Ω

vddcu ∧ T,

where T = ddcw1 ∧ · · · ∧ ddcwm−1 ∧ βn−m and the equality means that if one
of the two terms is finite then they are equal.

The following theorem is sometimes called the Cegrell decomposition the-
orem.

Theorem 8. Let μ be a finite, positive measure on Ω. Then there exist ϕ ∈
E0,m(Ω) and 0 ≤ f ∈ L1(Hm(ϕ)) such that

μ = fHm(ϕ) + ν,

where ν is carried by a m-polar set.

Proof. By the proof of [10, Theorem 4.14], we can find a function u ∈ E1,m(Ω)
and 0 ≤ f ∈ L1(Hm(u)) such that μ = fHm(u) + ν, where ν is charged by an
m-polar subset of Ω. The rest of the proof goes verbatim as the proof of [10,
Theorem 5.3]. �

3. The m-Subharmonic Ordering

Let μj , μ be measures on Ω. By Theorem 5, we can see that following conditions
are equivalent

(1) limj→∞
∫

Ω
ϕdμj =

∫
Ω

ϕdμ, ∀ϕ ∈ C0(Ω);
(2) limj→∞

∫
Ω

ϕdμj =
∫

Ω
ϕdμ, ∀ϕ ∈ C∞

0 (Ω);
(3) limj→∞

∫
Ω

ϕdμj =
∫

Ω
ϕdμ, ∀ϕ ∈ E0,m(Ω) ∩ C0(Ω).

If one of above assertion is satisfied, we say that μj tends to μ on Ω in the
weak*-topology.
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Remark 1. (1) If μj → μ in the weak*-topology on Ω, then

μ(Ω) ≤ lim inf
j→∞

μj(Ω).

(2) Assume that {μj}j is a sequence measures on Ω and supj μj(Ω) < ∞,
then there exists a subsequence {μjk}k ⊂ {μj}j such that μjk converges
to a measure μ in the weak*-topology as k → ∞.

Definition 6. Let μ and ν be measures on Ω. We write μ � ν if and only if
∫

Ω

−ϕdμ ≥
∫

Ω

−ϕdν, ∀ϕ ∈ E0,m(Ω) ∩ C(Ω).

And we say that μ is m-subhamonically greater than ν.

Remark 2. (1) If μ � ν, then
∫

Ω
−ϕdμ ≥ ∫

Ω
−ϕdν, ∀ϕ ∈ SH−

m(Ω) by The-
orem 4. In particular, μ(Ω) ≥ ν(Ω).

(2) If μ ≥ ν, then μ � ν. But Example 1 shows that the opposite implication
is not true.

Example 1. For a ∈ Ω, let δa be the Dirac measure at a. Let σr be the
normalized measure on the sphere ∂B(a, r), where r enough small such that
B(a, r) ⊂ Ω. Then for each ϕ ∈ SH−

m(Ω), by the subharmonicity we have
∫

Ω

ϕdδa = ϕ(a) ≤
∫

∂B(a,r)

ϕdσr =
∫

Ω

ϕdσr.

Thus δa � σr, but it is clear that δa is not greater than σr even though
δa(Ω) = σr(Ω) = 1.

Proposition 2. If u, v ∈ Fm(Ω) and u ≥ v, then Hm(v) � Hm(u).

Proof. For ϕ ∈ E0,m(Ω), by Theorem 7
∫

Ω

−ϕHm(u) =
∫

Ω

−uddcϕ ∧ ddcum−1 ∧ βn−m

≤
∫

Ω

−vddcϕ ∧ (ddcu)m−1 ∧ βn−m

=
∫

Ω

−ϕddcv ∧ (ddcu)m−1 ∧ βn−m

≤ · · · ≤
∫

Ω

−ϕ(ddcv)m ∧ βn−m =
∫

Ω

−ϕHm(v).

Thus Hm(v) � Hm(u). �

The following example shows that the converse implication to the state-
ment given in Proposition 2 is not true.

Example 2. Let Ω is the unit ball B in C
n
, n ≥ 2 and define the functions

v(z) = 2
3 (t3 − 1), w(z) = t2 − 1. Then v, w ∈ E0,2(B) ∩ C2(B) and w ≤ v on
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B, so H2(w) � H2(v) by Proposition 2. For more details, we can compute (see
[12])

H2(w)(z) = 4nn!dV, H2(v)(z) = 22n−1(2n + 2)(n − 1)!|z|2dV,

where dV is the Lebesgue measure on C
n. By [12] one can compute the solution

u to the equation

H2(u) =
H2(v) + H2(w)

2
, u ∈ E0,2(B) ∩ C2(B). (1)

The solution is given by

u(z) =
√

2
3

(|z|2 + 1
) 3

2 − 4
3
.

We have H2(u) � H2(v) by (1). Otherwise, u(0) > −1 = v(0), so v � u.

Remark 3. The relation � defines a partial order on the set of positive Borel
measures on Ω. But it is not a total order. To see that consider the Dirac
measures δz and δw, where z, w ∈ Ω and z 
= w. Choose ϕ,ψ ∈ SH−

m(Ω)
such that ϕ(z) < ϕ(w) and ψ(z) > ψ(w). Then

∫
Ω

−ϕdδz >
∫

Ω
−ϕdδw and∫

Ω
−ψdδz <

∫
Ω

−ψdδw, so δz and δw are not comparable with respect to �.

Definition 7. For a set E ⊂ Ω, we define the convex hull of E in Ω with respect
to the family SHm(Ω) ∩ C(Ω̄), denoted by Ê as followed

Ê = {z ∈ Ω : ϕ(z) ≤ sup
E

ϕ, ∀ϕ ∈ SHm(Ω) ∩ C(Ω)}.

Remark 4. We have that Ê is closed in Ω. Moreover, if E is relatively compact
in Ω, so is Ê.

Proposition 3. Let μ, ν be finite regular measures on Ω such that μ(Ω) = ν(Ω).
If ν � μ then supp ν ⊂ ŝupp μ.

Proof. Put K = suppμ. If K̂ = Ω then Proposition 3 is clear. Therefore we
assume that Ω\K̂ 
= ∅. Suppose that suppν � K̂. Since K̂ is closed in Ω,
it follows that ν(Ω\K̂) > 0. By the regularity of ν, we can find a compact
set L ∈ Ω\K̂ such that ν(L) > 0. From the definition of K̂, for each z ∈ L,
there exist a neighborhood U(z) of z and a function ϕ ∈ SHm(Ω) ∩ C(Ω)
such that ϕ(ξ) > supK ϕ, ∀ξ ∈ U(z). We choose z1, . . . , zk ∈ L such that
L ⊂ ⋃k

i=1 U(zi). Let ϕ1, . . . , ϕk be the associated functions and Mi = supK ϕi,
M = M1 + · · · + Mk. Define

ψ = max{ϕ1,M1} + · · · + max{ϕk,Mk}.

Then we have ψ ∈ SHm(Ω) ∩ C(Ω), ψ ≥ M on Ω, ψ = M on K and ψ > M
on L. Define ψ0 = ψ − maxΩ̄ ψ and let M0 = M − maxΩ ψ. Then ψ0 ∈
SH−

m(Ω) ∩ C(Ω), ψ0 ≥ M0 on Ω, ψ0 = M0 on K and ψ0 > M0 on L. Hence,
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∫

Ω

−ψ0dν < −M0ν(Ω) = −M0μ(Ω) =
∫

Ω

−ψ0dμ.

Proposition 3 is proved by a contradiction. �

4. Maximal Measures and Minimal Functions

We want to study the maximality with respect to the m-subharmonic ordering
by using some kind of normalization.

Definition 8. A finite measure μ on Ω is said to be maximal if for any measure
ν on Ω such that ν(Ω) = μ(Ω), the relation ν � μ implies that ν = μ.

Example 3. For 1 ≤ m < n, we define

ϕj(z) = max
{

−1
j
|z|2− 2n

m ,−1
}

∈ SH−
m(B)

and δ0 is the Dirac measure defined on the unit ball B in C
n. Then for each

measure ν, ν(Ω) = 1 and ν � δ0 we have

lim
j→∞

∫

B
−ϕjdν = −ν({0})

and

−1 ≤
∫

B
−ϕjdδ0 ≤

∫

B
−ϕjdν ≤ 1, ∀j.

Thus we get ν({0}) = 1, so ν = δ0 which implies δ0 is maximal.

Remark 5. (1) If we can write a maximal measure as the sum μ = μ1 +μ2 of
two finite measures, then these are maximal too. To prove this, assume
that μ1 is not maximal. Then there is a finite measure ν 
= μ1 such that
ν(Ω) = μ1(Ω) and ν � μ. We have (ν + μ2)(Ω) = μ(Ω) and ν + μ2 � μ,
but ν + μ2 
= μ, which is a contradiction.

(2) If μ is maximal measure, so is cμ, for c > 0.
(3) We will show that the condition μ1, μ2 are maximal does not imply the

maximality of μ1 + μ2 (see Example 5). This implies that the set of
maximal measures on Ω is not a convex cone.

Definition 9. We say that a set K � Ω is an interpolation set for SH−
m(Ω) if

for each f ∈ C(K), f < 0 there exists a function ϕ ∈ SH−
m(Ω) such that ϕ = f

on K.

Proposition 4. If μ is a finite measure on Ω such that ŝuppμ is contained in
some interpolation set K for SH−

m(Ω), then μ is maximal.
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Proof. Assume that ν is a measure on Ω such that ν(Ω) = μ(Ω) and ν � μ.
By Proposition 3, we have suppν ⊂ ŝuppμ ⊂ K. For a given f ∈ C(K), f ≤ 0,
there exists a function ϕ ∈ SH−

m(Ω) such that ϕ = f on K. We get
∫

Ω

−fdν =
∫

Ω

−ϕdν ≤
∫

Ω

−ϕdμ =
∫

Ω

−fdμ.

This implies that
∫

Ω
fdμ ≥ ∫

Ω
fdν holds for any f ∈ C0(Ω), f ≤ 0. Hence

μ ≤ ν, so μ = ν. �

Example 4. Let a1, . . . , ak ∈ Ω. For 1 ≤ j ≤ k, we choose Mj such that

ψj(z) =
k∑

l �=j

ln |z − al| + Mj ∈ SH−
m(Ω).

For each value cj < 0, we take dj > 0 such that djψj(aj) = cj . Define
ϕ = max(d1ψ1, . . . , dkψk). Then we have ϕ ∈ SH−

m(Ω) and ϕ(aj) = cj . Thus
the finite set {a1, . . . , ak} is an interpolation set for SH−

m(Ω). And Proposi-
tion 4 implies that the measure

∑k
j=1 bjδaj

is maximal, where δaj
is the Dirac

measure at the point aj and b1, . . . , bk are given nonnegative numbers.

We will show that each finite measure with compacted support is ma-
jorized by a maximal measure with the same total mass.

Lemma 1. Assume that μ and ν are measures on Ω such that ν � μ. If∫
Ω

ϕdμ =
∫

Ω
ϕdν > −∞ for some negative strictly m-subharmonic function

ϕ. Then μ = ν.

Proof. For given f ∈ C∞
0 (Ω), choose a constant c > 0 so that (±f + cϕ) ∈

SH−
m(Ω). Then we have

∫

Ω

(±f + cϕ)dμ =
∫

Ω

±fdμ + c

∫

Ω

ϕdμ ≥
∫

Ω

(±f + cϕ)dν

=
∫

Ω

±fdν + c

∫

Ω

ϕdν,

which implies that
∫

Ω
±fdμ ≥ ∫

Ω
±fdν. So μ = ν. �

Theorem 9. Let μ be a finite measure on Ω with compact support. Then there
is a maximal measure μ0 such that μ0 � μ and μ0(Ω) = μ(Ω).

Proof. Put K = ŝuppμ and

Mμ = {ν : ν � μ, ν(Ω) = μ(Ω)}.

Because μ ∈ Mμ, so Mμ 
= ∅. By Proposition 3, suppν ⊂ K for each ν ∈ Mμ.
Let ρ be the exhaustion function of Ω that is negative, continuous strictly
m-subharmonic. We define

A = sup
ν∈Mµ

∫

Ω

(−ρ)dν.
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Since ρ is bounded on K, it follows that A is finite. Let {νj}j be a sequence
in Mμ such that

∫
Ω

(−ρ)dνj → A, as j → ∞. By Remark 1, we may assume
that νj tend to some measure μ0 in the weak*-topology and μ0(Ω) ≤ μ(Ω).
For each ϕ ∈ E0,m ∩ C(Ω),

∫

Ω

(−ϕ)dμ0 = lim
j→∞

∫

Ω

(−ϕ)dνj ≥
∫

Ω

(−ϕ)dμ,

which implies that μ0 � μ. By Remark 2 and the fact μ0 ≤ μ(Ω), we get
μ0(Ω) = μ(Ω). Thus μ0 ∈ Mμ. Take a function f ∈ C0(Ω), f = 1 on K. We
get

∫

Ω

(−ρ)dμ0 =
∫

Ω

(−ρ)fdμ0 = lim
j→∞

∫

Ω

(−ρ)fdνj = lim
j→∞

∫

Ω

(−ρ)dνj = A.

Suppose that ν be any measure on Ω such that ν ≥ μ0 and ν(Ω) = μ(Ω).
Then ν ∈ Mμ and A ≥ ∫

Ω
(−ρ)dν ≥ ∫

Ω
(−ρ)dμ0 = A. Hence

∫
Ω

(−ρ)dν =∫
Ω

(−ρ)dμ0 = A. Lemma 1 implies that ν = μ0, so Theorem 9 is finished. �

Definition 10. A function u ∈ Fm(Ω) is said to be minimal if for any function
v ∈ Fm(Ω), the conditions Hm(u)(Ω) = Hm(v)(Ω) and v ≤ u imply v = u.

Proposition 5. Let u ∈ Fm(Ω) be such that Hm(u) is a maximal measure.
Then u is minimal.

To prove this proposition we need the following lemma.

Lemma 2. If u, v ∈ Fm(Ω), Hm(u) = Hm(v) and u ≤ v then u = v.

Proof. We use a method from [7]. Using integration by parts, we have
∫

Ω

−(u − v)(ddcρ)m ∧ βn−m =
∫

Ω

d(u − v) ∧ dcρ ∧ (ddcρ)m−1 ∧ βn−m

≤
[∫

Ω

d(u − v) ∧ dc(u − v) ∧ (ddcρ)m−1 ∧ βn−m

] 1
2

×
[∫

Ω

dρ ∧ dcρ ∧ (ddcρ)m−1 ∧ βn−m

] 1
2

,

where ρ ∈ E0,m(Ω) ∩ C∞(Ω) is a strictly m-subharmonic exhaustion function
of Ω (see [2]). Hence, to prove u = v it is enough to show that

∫

Ω

d(u − v) ∧ dc(u − v) ∧ (ddcρ)m−1 ∧ βn−m = 0. (2)
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If m = 1 then (2) is clear. For m ≥ 2 and j + k = m − 1, we have

0 ≤
∫

Ω

−(u − v)(ddcu)j ∧ (ddcv)k ∧ ddcρ ∧ βn−m

=
∫

Ω

−ρddc(u − v) ∧ (ddcu)j ∧ (ddcv)k ∧ βn−m

≤
∫

Ω

−(u − v)
∑

a+b=m−1

(ddcu)a ∧ (ddcv)b ∧ ddcρ ∧ βn−m

=
∫

Ω

−ρddc(u − v) ∧
∑

a+b=m−1

(ddcu)a ∧ (ddcv)b ∧ βn−m

=
∫

Ω

−ρ(Hm(u) − Hm(v)) = 0.

Thus, for every couple j, k, j + k = m − 2 we have
∫

Ω

−uddc(u − v) ∧ (ddcu)j ∧ (ddcv)k ∧ ddcρ ∧ βn−m

=
∫

Ω

−ρddc(u − v) ∧ (ddcu)j+1 ∧ (ddcv)k ∧ βn−m = 0.

Similarly,
∫

Ω
−vddc(u − v) ∧ (ddcu)j ∧ (ddcv)k ∧ ddcρ ∧ βn−m = 0. So

∫

Ω

−(u − v)ddc(u − v) ∧ (ddcu)j ∧ (ddcv)k ∧ ddcρ ∧ βn−m

=
∫

Ω

d(u − v) ∧ dc(u − v) ∧ (ddcu)j ∧ (ddcv)k ∧ ddcρ ∧ βn−m = 0, (3)

for every couple j, k, j + k = m − 2. Assume that
∫

Ω

d(u − v) ∧ dc(u − v) ∧ (ddcu)j ∧ (ddcv)k ∧ (ddcρ)l ∧ βn−m = 0 (4)

for j + k = m − l − 1. By (3), (4) is true for l = 1. For j + k = m − l − 2 we
have

∫

Ω

d(u − v) ∧ dc(u − v) ∧ (ddcu)j ∧ (ddcv)k (ddcρ)l+1 ∧ βn−m

=
∫

Ω

−ρ(ddc(u − v))2 ∧ (ddcu)j ∧ (ddcv)k ∧ (ddcρ)l ∧ βn−m

=
∫

Ω

dρ ∧ dc(u − v) ∧ ddc(u − v) ∧ (ddcu)j ∧ (ddcv)k ∧ (ddcρ)l ∧ βn−m

≤
∣
∣
∣
∣

∫

Ω

dρ ∧ dc(u − v) ∧ (ddcu)j+1 ∧ (ddcv)k ∧ (ddcρ)l ∧ βn−m

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

Ω

dρ ∧ dc(u − v) ∧ (ddcu)j ∧ (ddcv)k+1 ∧ (ddcρ)l ∧ βn−m

∣
∣
∣
∣
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≤
[∫

Ω

dρ ∧ dcρ ∧ (ddcu)j+1 ∧ (ddcv)k ∧ (ddcρ)l ∧ βn−m

] 1
2

×
[∫

Ω

d(u − v) ∧ dc(u − v) ∧ (ddcu)j+1 ∧ (ddcv)k ∧ (ddcρ)l ∧ βn−m

] 1
2

+
[∫

Ω

dρ ∧ dcρ ∧ (ddcu)j ∧ (ddcv)k+1 ∧ (ddcρ)l ∧ βn−m

] 1
2

×
[∫

Ω

d(u − v) ∧ dc(u − v) ∧ (ddcu)j ∧ (ddcv)k+1 ∧ (ddcρ)l ∧ βn−m

] 1
2

= 0,

by assumption (4). So (2) is true by taking l = m − 1 in (4). �

Proof of Proposition 5. Assume that v ∈ Fm(Ω),Hm(v)(Ω) = Hm(u)(Ω) and
v ≤ u. Since v ≤ u, Proposition 2 implies that Hm(v) � Hm(u). From the
assumption Hm(u) is maximal, we get Hm(u) = Hm(v). Now Proposition 5
follows from Lemma 1. �

Lemma 3. Assume that u, v ∈ Em(Ω) and u ≥ v. Then χ{u=−∞}Hm(u) ≤
χ{v=−∞}Hm(v).

Proof. We use a method from [1]. For ε > 0 small enough, set wj = max{(1 −
ε)u−j, v}. Then we have wj = (1−ε)u−j on the open set {v < − j

ε}. Therefore

Hm(wj) = (1 − ε)mHm(u) on {v < −j

ε
}.

Hence Hm(wj) ≥ (1 − ε)mχ{u=−∞}Hm(u). Letting j → ∞, then we get
Hm(v) ≥ (1−ε)mχ{u=−∞}Hm(u). The proof is complete by letting ε → 0+. �

Lemma 4. For each u ∈ Fm(Ω), if Hm(u) is carried by an m-polar set, then
Hm(u) = χ{u=−∞}Hm(u).

Proof. We use the same idea as in [5]. We choose a sequence {uj} ∈ E0,m(Ω)∩
C(Ω), uj ↓ u. Then uj

1−uj
↓ u

1−u ∈ Fm(Ω) ∩ L∞(Ω). For each v ∈ C2(Ω),

∂

∂zl∂z̄k

(
v

1 − v

)

=
vlk̄

(1 − v)2
+

2vlvk̄

(1 − v)3
,∀ 1 ≤ l, k ≤ n.

This implies that

Hm(uj)
(1 − uj)2m

≤ Hm

(
uj

1 − uj

)

.
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The function 1
(1−t)2m is convex on [−∞, 0], hence by [11, Proposition 2.1],

1
(1−u)2m − 1 ∈ SH−

m(Ω). For every fixed k,
(

1
(1 − uk)2m

− 1
)

Hm(u) ≥ lim
j→∞

(
1

(1 − uk)2m
− 1

)

Hm(uj)

≥ lim
j→∞

(
1

(1 − uj)2m
− 1

)

Hm(uj) ≥ lim
j→∞

(
1

(1 − u)2m
− 1

)

Hm(uj)

=
(

1
(1 − u)2m

− 1
)

Hm(u).

Letting k → ∞, we get Hm(uj)
(1−uj)2m

tends weakly to Hm(u)
(1−u)2m . Moreover, Hm(

uj

1−uj

)
tends weakly to Hm

(
u

1−u

)
. Hence,

Hm(u)
(1 − u)2m

≤ Hm

(
u

1 − u

)

. (5)

Theorem 8 shows that there exist ϕ ∈ E0,m(Ω) and f ∈ L1(Hm(ϕ)) such that

Hm(u) = fHm(ϕ) + ν,

where ν is carried by an m-polar set. Moreover, (5) implies that Hm(u)
(1−u)2m has

no mass on m-polar sets. Hence, ν
(1−u)2m = 0, so ν is carried by the set

{u = −∞}. �

Theorem 10. Let u ∈ Fm(Ω) be such that Hm(u) is carried by an m-polar set.
Then u is a minimal function.

Proof. Assume that v ∈ Fm(Ω), v ≤ u and Hm(v)(Ω) = Hm(u)(Ω). By
Lemmas 3 and 4,

∫

Ω

Hm(v) ≥
∫

Ω

χ{v=−∞}Hm(v) ≥
∫

Ω

χ{u=−∞}Hm(u) =
∫

Ω

Hm(u).

Hence, Hm(v) = χ{v=−∞}Hm(v). By Lemma 3 again, Hm(u) ≤ Hm(v). Com-
bine this with Hm(u)(Ω) = Hm(v)(Ω), we get Hm(u) = Hm(v). Lemma 2
implies that u = v. �

Proposition 6. Assume that μ is a finite measure on Ω such that ŝuppμ is
contained in a level set {z ∈ Ω : ψ(z) = c}, where c > −∞ and ψ < 0 is a
strictly m-subharmonic function on Ω. Then μ is maximal.

Proof. Suppose that ν � μ and ν(Ω) = μ(Ω). By Proposition 3, suppν ⊂ {z ∈
Ω : ψ(z) = c}. Thus,

∫

Ω

−ψdν =
∫

Ω

−cdν =
∫

Ω

−cdμ =
∫

Ω

−ψdμ < ∞.

Therefore, Lemma 1 implies that ν = μ, and the proof is complete. �

The following example confirms Remark 5(3).
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Example 5 [3, Examples 4.15, 4.16]. We consider the unit disc D in C. Define
the sets S1 = {z = 1

2eiθ : 0 ≤ θ ≤ π} and S2 = {z = 1
2eiθ : π < θ < 2π}. Let σ

be the area measure on the circle ∂D(0, 1
2 ) and define μj = σ|Sj

, for j = 1, 2.
We have Sj ⊂ {ψ = |z|2 − 1 = − 3

4}. Let hj = h
1,Sj ,D

be the 1-relative

extremal function for Sj over D. Then hj ∈ E0,1(D) ∩ C(D) and hj = −1 on
Sj . Moreover, hj is harmonic on the connected set D\Sj , which implies that
h > −1 on D\Sj . Hence Ŝj = Sj and Proposition 6 deduces that μ1 and μ2

are maximal measures. But σ = μ1 + μ2 is not maximal (see Example 1).

We will show that each function in Fm(Ω) is minorized by a minimal
function with the same total Hessian mass.

Proposition 7. Let {uj} be a decreasing sequence in Fm(Ω) such that uj ↓ u
and Hm(uj)(Ω) = Hm(uj+1)(Ω) for all j. Then u ∈ Fm(Ω) and Hm(u)(Ω) =
Hm(uj)(Ω).

Proof. We have u ∈ SH−
m(Ω), and by Theorem 4, there exists a sequence

{wj} ⊂ E0,m(Ω) ∩ C(Ω̄) such that wj ↓ u as j → ∞. Set vj = max(wj , uj).
Then vj ≥ uj , vj ∈ E0,m(Ω) and vj ↓ u as j → ∞. Theorem [10, Theorem
3.22] implies that

sup
j

∫

Ω

Hm(vj)(Ω) ≤ sup
j

Hm(uj) = Hm(u1) < ∞,

Thus, u ∈ Fm(Ω). Since the sequence of measures Hm(vj) converges to the
measure Hm(u) in the weak*-topology, we get

lim inf
j→∞

Hm(vj)(Ω) ≥ Hm(u)(Ω).

Moreover, by [10, Theorem 3.22] again, we obtain Hm(u)(Ω) ≥ Hm(uj) since
u, uj ∈ Fm(Ω), u ≤ uj . �

Theorem 11. For each u ∈ Fm(Ω), there exists a minimal function u0 ∈
Fm(Ω) such that u0 ≤ u and Hm(u0)(Ω) = Hm(u)(Ω).

Proof. Define S = {v ∈ Fm(Ω) : v ≤ u,Hm(v)(Ω) = Hm(u)(Ω)}. Let T be
the totally ordered subset of S and let t(z) = infv∈T v(z). We shall prove that
t ∈ S. It is obvious that t ≤ u. Let {Ki} be a compact exhaustion sets of Ω
and let {tj} be a sequence of continuous functions such that tj ≥ t and tj ↓ t
as j → ∞. For each z ∈ Ki, choose vz ∈ T such that vz(z) < tj(z) and define
the open set Uz = {w ∈ Ω : vz(w) < tj(w)}. Take z1, . . . , zN ∈ Ki such that
∪N

k=1Uzk
⊃ Ki. Since T is totally ordered, we may choose vj

i to be the smallest
of the functions vz1 , . . . , vzN

, which implies that vj
i < tj on Ki. Now let u1 = v1

1

and uj be the smallest of the functions {u1, . . . , uj−1, v
j
j} if j ≥ 2, since T is

totally ordered. Then {uj} is a decreasing sequence of functions in T such that
uj ≤ vj

j < tj on Kj . Therefore uj ∈ Fm(Ω),Hm(uj)(Ω) = Hm(u)(Ω) and uj ↓
t, as j → ∞. Proposition 7 implies t ∈ Fm(Ω) and Hm(t)(Ω) = Hm(u)(Ω).
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Hence t ∈ S. Since T is arbitrary, Zorn’s lemma deduces that there is a minimal
element u0 of S, so the proof is complete. �

5. Convergence in the Weak*-Topology

We will use the m-subharmonic ordering to obtain some results on weak*-
convergence of measures. If Ω is a bounded domain in C

n and {uj} is a
sequence of locally bounded m-subharmonic functions on Ω which is decreasing
to a function u ∈ SHm(Ω) ∩ L∞

loc(Ω), then Hm(uj) converges to Hm(u) in the
weak*-topology (see [4]). The same conclusion holds if SHm(Ω) ∩ L∞

loc(Ω) is
replaced by the class Em(Ω), where Ω is a bounded m hyperconvex domain
(see [9]).

The following example shows that Hessian operator is discontinuous with
respec to the convergence in L1

loc. This example follows the idea in [8].

Example 6. For n ≥ 2, we define

uj(z1, . . . , zn) =

∣
∣
∣
∣
∣

n∑

k=1

z2j
k

∣
∣
∣
∣
∣

1
2j

We can compute

∂2u

∂zp∂z̄q
=

1
4

∣
∣
∣
∣
∣

n∑

k=1

z2j
k

∣
∣
∣
∣
∣

1
2j −2

z2j−1
p z̄2j−1

q , ∀1 ≤ p, q ≤ n.

Thus, Hm(uj) = 0, for all j. We have 0 ≤ uj ≤ n
1
2j u, where u(z1, . . . , zn) =

max{|z1|, . . . , |zn|}. Hence, we get uj → u in L1
loc(C

n) as j → ∞. We can
show that Hm(u) 
= 0. Assume the contrary. Then Hm(u) = 0 on the polydisc
Δn(r) = D(0, r) × · · · × D(0, r), i.e., u is m-maximal function on Δn(r). Note
that u ≥ r1 outside the compact subset Δn(r1), where r1 < r but we do not
have u ≥ r1 on Δn(r).

The following theorem give us a sufficient condition for weak*-convergence
for the class Fm(Ω).

Theorem 12. If uj → u in L1
loc(Ω) and there is a strictly m-subharmonic

function v ∈ E0,m(Ω) such that
∫

Ω

vHm(uj) →
∫

Ω

vHm(u) as j → ∞,

then Hm(uj) tends to Hm(u) in the weak*-topology.

Proof. We use the idea from [6]. For w ∈ E0,m(Ω), using integration by parts
(Theorem 7) we have
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∫

Ω

wHm(uj) ≤
∫

Ω

wHm

[
(sup
s≥j

us)∗]⏐�
∫

Ω

wHm(u) as j → ∞.

Hence,

lim sup
j→∞

∫

Ω

wHm(uj) ≤
∫

Ω

wHm(u). (6)

Theorem 4 implies that (6) is true for w ∈ SH−
m(Ω). Let ϕ ∈ C∞

0 (Ω) be given.
By assumption v is strictly m-subharmonic we can choose A > 0 large enough
such that (±ϕ + Av) ∈ E0,m(Ω). By (6) we have

lim sup
j→∞

∫

Ω

(±ϕ + Av)Hm(uj) ≤
∫

Ω

(±ϕ + Av)Hm(u).

Combining this with assumption limj→∞
∫

Ω
vHm(uj) =

∫
Ω

vHm(u) we obtain

lim sup
j→∞

∫

Ω

±ϕHm(uj) ≤
∫

Ω

±ϕHm(u),

which implies the desired result. �

Definition 11. If {μj} is a sequence of measures such that μj+1 � μj for all j,
then we say that {μj} is m-subharmonically increasing.

Theorem 13. Let {μj} be an m-subharmonically increasing sequence of mea-
sures on Ω such that supj μj(Ω) < ∞. Then μj converges to a measure μ in
the weak*-topology. Moreover,

∫
Ω

(−ϕ)dμj ↑ ∫
Ω

(−ϕ)dμ for each ϕ ∈ SH−
m(Ω).

Proof. Let ϕ ∈ SH−
m(Ω) ∩ L∞(Ω). Then

0 ≤
∫

Ω

(−ϕ)dμ1 ≤
∫

Ω

(−ϕ)dμ2 ≤ · · · ≤ sup
Ω

(−ϕ) sup
j

μj(Ω) < ∞.

so limj→∞
∫

Ω
(−ϕ)dμj < ∞. Thus the limit exists for each ϕ ∈ C0(Ω). It

follows that this defines a measure μ on Ω that μj converges to μ in the
weak*-topology. Moreover, we know that limj→∞

∫
Ω

(−ϕ)dμj =
∫

Ω
(−ϕ)dμ for

each ϕ ∈ E0,m(Ω) ∩ C(Ω̄). Now, let ϕ ∈ SH−
m(Ω). As above {∫

Ω
(−ϕ)dμj} is

an increasing sequence. We always have

lim
j→∞

∫

Ω

(−ϕ)dμj ≥
∫

Ω

(−ϕ)dμ. (7)

To show the equality in (7), we assume the contrary, i.e.,

lim
j→∞

∫

Ω

(−ϕ)dμj >

∫

Ω

(−ϕ)dμ.

Choose j0 enough large such that
∫

Ω
(−ϕ)dμj0 >

∫
Ω

(−ϕ)dμ, and a sequence
{ϕk} ∈ E0,m ∩ C(Ω̄) such that ϕk ↓ ϕ. Then we might choose k0 such that∫

Ω
(−ϕk0)dμj0 >

∫
Ω

(−ϕ)dμ. It follows that
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∫

Ω

(−ϕk0)dμ = lim
j→∞

∫

Ω

(−ϕk0)dμj ≥
∫

Ω

(−ϕk0)dμj0

>

∫

Ω

(−ϕ)dμ ≥
∫

Ω

(−ϕk0)dμ,

which is a contradiction. �

If {uj} ⊂ Fm(Ω) converges to u ∈ Fm(Ω) in L1
loc(Ω), then we can relate

the limit measure of sequence {Hm(uj)} in Theorem 13 to Hm(u) as follows.

Corollary 1. Assume that {uj} ⊂ Fm(Ω) such that

(1) uj converges to u ∈ Fm(Ω) in L1
loc(Ω),

(2) {Hm(uj)} is m-subharmonically increasing,
(3) supj Hm(uj) < ∞.

Then Hm(uj) converges to a measure μ in the weak*-topology such that μ �
Hm(u). Moreover,

∫
Ω

(−ϕ)Hm(uj) ↑ ∫
Ω

(−ϕ)dμ for each ϕ ∈ SH−
m(Ω).

Proof. By Theorem 13 it remains to show that μ � Hm(u). By the proof
of Theorem 12, assumption (1) implies that lim infj→∞

∫
Ω

(−ϕ)Hm(uj) ≥∫
Ω

(−ϕ)Hm(u) for each ϕ ∈ SH−
m(Ω). �

The following theorem gives us a bridge between convergence in weak*-
topology and the concept of maximal measures defined in Sect. 4.

Theorem 14. Let {uj} ⊂ Fm(Ω) such that

(1) uj converges to u ∈ Fm(Ω) in L1
loc(Ω),

(2) Hm(u) is a maximal measure,
(3) limj→∞ Hm(uj)(Ω) = Hm(u)(Ω).

Then Hm(uj) converges to Hm(u) in the weak*-topology.

Proof. Assumption (3) implies that there is a subsequence {Hm(ujk)} ⊂
{Hm(uj)} which converging to a measure μ in the weak*-topology. Let ϕ ∈
E0,m(Ω)∩C(Ω̄) be given. As in the proof of Corollary 1, assumption (a) implies
that μ � Hm(u). Moreover, by (3) we have μ(Ω) ≤ lim infj→∞ Hm(ujk)(Ω) ≤
Hm(u)(Ω). Thus, μ(Ω) = Hm(u)(Ω). By assumption (2) we can conclude that
μ = Hm(u). �

Open Question

One might ask if there is a converse of Proposition 5. The answer is affirmative
if n = m = 1 (see [3, Proposition 4.11]). In higher dimension, the answer is
unknown.
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