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Zusammenfassung

Meine Dissertation zum Thema FExtension Theorems for differential forms on low-dimensional
good quotients beschéftigt sich mit der Frage nach Fortsetzungen von Differentialformen auf
Quotienten von Wirkungen reduktiver Gruppen auf glatten Varietéten.

Es sei G eine reduktive Gruppe und V eine glatte G-Varietit iiber C, dann kénnen wir einen
guten Quotienten 7 : V' — X (kurz: X = V/G) definieren. Wie Boutot im Jahre 1987 bewiesen
hat (siehe [Bou87]), hat X rationale Singularititen.

Es sei o eine Differentialform auf X die auf dem reguldren Ort von X definiert ist und
n: X — X ecine Auflésung von X. Wir wollen zeigen, dass der Pullback n*(o) als regulire
Differentialform auf X fortsetzt. Ist dim(X) = n so folgt der Fortsetzungssatz fiir 0- und n-
Formen aus der Tatsache, dass X normal ist und rationale Singularitdten hat.

Im Allgemeinen ist nicht klar, dass n*(o) eine regulire Form ist, da ihre Fortsetzung auf
X Pole entlang der exzeptionellen Menge haben kann. Im Jahr 2014 haben Graf und Kovacs
bewiesen, dass 1*(o) auf ganz X fortsetzt, solange wir logarithmische Pole entlang der exzep-
tionellen Menge zulassen (siche [GK14]). In dieser Dissertation verwenden wir zwei Methoden
um zu zeigen, dass n*(o) unter speziellen Voraussetzungen keine solchen Pole hat.

In einem ersten Schritt verwenden wir Hodge-theoretische Methoden, die man aus [Nam01]
und [SS85] kennt, um zu zeigen, dass der Fortsetzungssatz fiir 1-und 2-Formen auf X gilt.
Zusammen mit der obigen Aussage tiber 0- und n-Formen erhalten wir so den Fortsetzungssatz
fiir gute Quotienten der Dimensionen 0 bis 3.

In einem zweiten Schritt reduzieren wir uns auf den Fall eines GIT-Quotienten eines Vektor-
raumes. Dies ermdglicht es uns die partielle Auflésung von Kirwan (siehe [Kir85]) zu verwenden,
um 7 : X — X in eine Sequenz von Aufblasungen zu zerlegen. Auf diese Sequenz wenden wir
eine modifizierte Version der Residuen Sequenz (sieche [EV92]) an, um folgendes Resultat zu
erhalten:. Angenommen der Fortsetzungssatz gilt fiir alle Formen auf allen guten Quotienten
von Dimension kleiner n, dann gilt der Fortsetzungssatz auch fir (n — 1)-Formen auf dem
guten n-dimensionalen Quotienten X. Zusammen mit dem ersten Teil erhalten wir so den
Fortsetzungssatz fiir gute Quotienten der Dimension 4.



Abstract

In my thesis with the title Extension Theorems for differential forms on low-dimensional good
quotients I am analysing the extension of differential forms on quotients of smooth varieties by
the action of reductive groups.

Let G be a reductive group and V a smooth G-variety over C. Then we can define a good
quotient w : V — X and write X = V/G. In 1987, Boutot has proven that X has rational
singularities (see [Bou87]).

Let o be a differential form on X that is defined on the smooth locus on X and 7 : XX
a resolution of X. We want to show that the pull-back n*(o) extends as a regular differential
form to all of X. If dim(X) = n, the Extension Theorem for 0- and n-forms follows from the
fact that X is normal with rational singularities.

In general it is not clear that n*(o) is a regular form, since it might have poles along the
n-exceptional set in X. In 2014, Graf und Kovécs have proven that n*(o) extends to all of X as
long as we allow logarithmic poles along the exceptional set (see [GK14]). In this thesis we will
present two methods to show that in certain settings 1* (o) has no poles along the exceptional
set.

In a first step we use Hodge-theoretic methods, known from [Nam01] and [SS85], to show,
that the Extension Theorem is true for 1-and 2-forms on X. In combination with the previ-
ous results about 0- and n-forms this yields the Extension Theorem for all good quotients of
dimension 0 to 3.

In a second step we reduce the problem to an Extension Theorem for a GIT-quotient of
a vector space. In this situation we can use the partial resolution algorithm of Kirwan (see
[Kir85]) to split 7 : X — X into a sequence of blow-ups. We then apply a modified version of
the residue sequence (see [EV92]) to each blow-up to get the following result: Assume that the
Ezxtension Theorem is true for all differential forms on all good quotients of dimension less that
n. Then the Eztension Theorem is true for (n — 1)-forms on the n-dimensional good quotient
X. In combination with the results from the previous step, this yields an Extension Theorem
for good quotients of dimension 4.
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0. Introduction and main results

0.A. Introduction

In algebraic geometry we analyse algebraic objects to determine the geometric structure of
algebraic varieties. In this context differential forms and the sheaves of differential forms
are a rich source of information. To give two examples they are used as invariants to
classify algebraic varieties and can also provide information on types of singularities.

On a smooth variety traditionally one considers Kéhler differential forms. On a normal
but singular variety however the sheaf of Kéhler differential forms might have torsion and
near a singular point a differential form can no longer be evaluated on a vector field. A
natural solution to both of the problems is to use differential forms that are defined on
the smooth locus instead. From an algebraic point of view these differential forms can be
considered as global section of the reflexive hull of the sheaf of Kdhler differential forms
and are therefore called reflexive differential forms.

Let X be a normal variety over C and o a reflexive differential form on X. Since certain
features of the smooth case (e.g. the Kodaira vanishing and the Serre duality) do not hold
for 0 on X in general, we would like to consider a resolution 7 : X — X of the singulari-
ties of X and analyse the pull-back n*(¢) on X instead. This leads to the following problem:

Extension Problem. Let X be an n-dimensional normal variety over C and 7 : XX
any resolution of X. For all 0 < p < n, we want to show that given a reflexive p-form
o€ H(X, Q) on X the pull-back

* 0(v
n*(c) € H°(X, Q%)
is a regular p-form on X.

__For an arbitrary normal variety X it is not clear, that the pull-back n*(o) is regular on
X, since it might have poles along the n-exceptional set E. In [GK14] Graf and Kovacs
have proven that for a variety X with rational singularities the pull-back n*(o) extends as
a p-form to all of X , as long as we allow logarithmic poles (log-poles) along E. In general
it is not known that one can avoid these logarithmic poles. However, there are some results
for varieties with rational singularities in special cases.

If p = dim(X) or p = 0 the result follows from the definition of a normal variety with
rational singularities. For p = 1, the result was proven by Graf-Kovacs [GK14] for du Bois
singularities. For p = 2, there is a result by Namikawa [Nam01b], who works on varieties
with rational Q-Gorenstein singularities. For arbitrary values of p, the result has been
proven by van Straaten-Steenbrink [SS85| for varieties with isolated singularities and by
Greb-Kebekus-Kovacs-Peternell [GKKP11] for klt-pairs.

Remark. In all these papers the authors show that n*(o) extends to E without poles.
This is the reason why we call a result like this Eztension Theorem.

Notation. If we can prove the assertion of the Extension Problem for a given variety X
(and an integer 0 < p < dim(X)) we say that the Extension Theorem is true for (p-forms
on) X.

Some of the results above work with a different formulation of the Extension Theorem,
which uses reflexive sheaves.

1ii



0 Introduction and main results iv

Formulation with reflexive sheaves. As [GKKP11] show in Observation 1.3 the Ex-
tension Theorem (in our formulation) is true if and only if m(Q%) is a reflexive sheaf

for all 0 < p < n. If F is a locally free sheaf on X then n«F might not necessarily be
reflexive. Since codimy (n(E)) > 2, the sheaf n,F is reflexive if and only if any section of
(1+F)|x\n(E) extends to X. Equivalently, n.F is reflexive if and only if any section of F
defined on an open set of the form =1 (U)\E extends to n~*(U).

Remark. Since the reflexivity of a sheaf is a local property, this also shows that proving
the Extension Theorem is a local problem.

Based on the results presented above it is natural to assume that an Extension Theorem
might be proven for varieties with rational singularities in general. As a matter of fact, to
this day no counter example has been presented. Besides klt-pairs, who play an important
role in the minimal model program, good quotients are another interesting class of varieties
with rational singularities.

Let G be a reductive group and V' a smooth irreducible G variety over the complex
numbers C. Then, we can define a good quotient 7 : V' — X := V/G. By Boutot we
know that X is a normal variety with rational singularities ([Bou87, Cor.|). Examples for
good quotients are Geometric Invariant Theory (GIT)-quotients (see [MFK94]), that are a
useful tool in the study of moduli spaces. These varieties come with an extensive amount
of extra structures and additional properties. In this thesis we will take advantage of these
extra information about the good quotient X to show that for dimension dim(X) < 4 one
can extend n*(0) as a regular p-form to all of X, regardless of the value of p.

0.B. Main results

In all the theorems of this chapter X := VG is a good quotient, where G is a reductive
group and V' is a smooth G-variety over C. A precise definition and the main properties of
a good quotient can be found in Chapter [3] The main result of the thesis essentially says
that a reflexive p-form on a good quotient of dimension less than or equal to 4 lifts to a
p-form on any log resolution.

Theorem 0.1 (Extension Theorem for good quotients of dimension 4 or lower). Let X :=
VG be a good quotient of dimension dim(X) =n < 4. Then for all values 0 < p < n we
have the following result: Let n : XX bea log resolution and let o € H° (X, Q[)Ié]) be a
reflexive p-form on X. Then N

n*(0) € H(X, Qg’?)

Remark. The notions of reflexive differential forms and log resolutions will be discussed
in Chapter [Il We use a log resolution since it provides additional information about the
n-exceptional set. However, as we will see in Chapter .A] the result is independent of the
choice of resolution.

Remark. The result is only new in dimension 3 and 4. Since the quotient is normal, it
is smooth if the dimension dim(X) < 1. Then X = X and the resolution 7 is just the
identity. In dimension 2 the Theorem follows from the fact that X has finite quotient
singularities (see [Gur91, Cor. 1]). More information on finite quotient singularities and
the Extension Theorem in this case can be found in Chapter .C|

We will prove Theorem [0.1| by analysing the cases p € {1,2} and p = (n — 1) separately.
It is a corollary of the following two more general results:
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Theorem 0.2 (Extension of 1- and 2-forms on good quotients). Let X := VG be a good

quotient of dimension dim(X) =n. Letn : X > Xbea log resolution and o € H° (X, QE?])
a reflexive p-form on X, for p € {1,2}. Then

n*(o) € HO()?, Q’)’?)

Theorem [0.2] directly implies Theorem [0.1] in dimension 3. Furthermore, it ensures that
in dimension 4 we only have to prove the Extension Theorem for p = 3. This case is
covered by the following theorem.

Theorem 0.3 (Extension of (n — 1)-forms on good quotients). Let X := V|G be a good

quotient of dimension n > 1. Let n: X >3 Xbea log resolution and o € H° (X, Q[)?*l]) a
reflezive (n — 1)-form on X. Assume that the Extension Theorem is true for all reflexive
p-forms on any good quotient of dimension less than n. Then

n*(0) € H(X, le).

Theorem [0.1] to [0.3] hold for good quotients in general and particularly when X is a GIT-
quotient. Since the assertions of the three Extension Theorems are local on X, in Chapter
we will show that for the proofs of these Extension Theorems we can reduce to the
case where V' is an affine G-variety (or V is a vector space with a linear action of G) and
X is the induced affine GIT-quotient. These reductions are crucial for the success of this
thesis since they allow us to use properties of certain GIT-quotients such as Luna’s Slice
Theorem (see Chapter , the existence of the partial resolution of Kirwan (see Chapter
and also provide information about the types of singularities (see Chapter of a
good quotient. As a consequence, the proofs of the Theorems to only work for our
precise set-up and cannot be generalised for arbitrary varieties with rational singularities.
Nevertheless, using this special properties of GIT-quotients also means that the proofs
presented in this theses are much more concrete and can provide additional insight.

0.C. Outline of the thesis

There are mainly two approaches to study the extension of reflexive differential forms to
a resolution. The first is by studying Hodge-theoretic methods, the other is by using a
residue sequence. To arrive at Theorem we have to use both methods. This thesis is
divided into four parts.

In Part I we introduce the main definitions and present results that will simplify the
proofs of the main results. Chapter [I| covers the basic notions of the Extension Problem.
After we motivate and define reflexive differential forms we discuss resolutions and rational
singularities. Chapter[2]and [3|are designed to given an overview about good quotients and
GIT-quotients. After we introduce reductive groups, we define good quotients and (affine
or projective) GIT-quotients and discuss their relations and properties. We will see that
every good quotient can locally be expressed as an affine GIT-quotient. Using Luna’s Slice
Theorem (see [Lun73|) we then show that the local structure of an affine GIT-quotient
can be analysed by examening a quotient of a vector space by a reductie group insted.
Then we explain a method of Luna-Richardon (see [LR79]) that allows us to consider
varieties with non-empty staple locus. This reduction later allows us to use the partial
resolution algorithm of Kirwan (see Chapter . In Chapter |4] we start with the analysis
of Extension Theorems. We first present general results such as the independence of the
choice of resolutions and the relation between regular differential forms on smooth varieties
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and holomorphic forms on manifolds. After this we prove the important reductions of the
Extension Theorems for good quotients to affine GIT-quotients of an affine varieties or a
vector spaces. The later reduction once again uses Luna’s Slice Theorem. We then proof
some Extension Theorems for special good quotients that are already known. Finally in
Chapter [5| we prepare the proof of Theorem by introducing Hodge-theoretic methods
and show that cutting down an affine GIT-quotient with hyperplanes results in a variety
that is still an affine GIT-quotient.

Part II is devoted to the proof of Theorem In Chapter [] we use the fact that
2-dimensional affine GIT-quotients have finite quotient singularities (see [Gur91, Cor. 1])
and a standard cutting-down technique presented in [GKKP11l Ch. 9.C] to show that good
quotients have finite quotient singularities in codimension 2. This implies the Extension
Theorem for good quotients in codimension 2 and allows us to use the Hodge-theoretic
methods to proof Theorem in dimension 3. We then prove Theorem in Chapter
by modifying a result of Namikawa [Nam0Ib, Prop. 3]. This proof also relies on the
Hodge-theoretic methods presented in Chapter

In Part III we prove Theorem by combining the partial resolution algorithm of Kir-
wan with a residue sequence (see Chapter . In Chapter [8) we introduce the partial
resolution algorithm of Kirwan and show that by Luna-Richardson [LR79| an affine GIT-
quotient X of a vector space by a reductive group has a representation X := VG such
that the partial resolution algorithm of Kirwan can be applied to X (or V respectively).
This allows us to split a resolution into a finite sequence of easier to analyse morphisms.
In Chapter [9] we first prove the existence of a residue sequence on certain pairs of good
quotients and show that we can apply it to every step in the constructed sequence. We
then explain that it is enough to show that the assertion of Theorem holds to be true
in every step of the partial resolution of Kirwan and reduce the problem to an Extension
Theorem in one Kirwan step only. Finally, in Chapter we apply the residue sequence
to this single Kirwan step to prove Theorem [0.3]

In Part IV we present additional corollaries that follow from the proof of Theorem
and explain improvements of certain result in this thesis, that are needed to perfect The-
orem [0.1I] such that it is true for good quotients in arbitrary dimension.
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Part I.
Preliminaries

The aim of this thesis is to prove Extension Theorems for good quotients of smooth varieties
by reductive groups. In general these varieties are singular and the analysis of them requires
knowledge about resolutions of singularities and differential forms on normal varieties. This
first part is designed to introduce the main definitions and to present useful results that
will simplify the proofs of our main theorems.

In this thesis a variety is an integral separated scheme of finite type over C. Varieties
are also assumed to be irreducible. A vector space is an affine variety isomorphic to C" for
some n € N. In particular a vector space is always assumed to be finite dimensional.

1. Differential forms, resolutions and singularities

In this chapter we give a short introduction on differential forms, present useful resolutions
and discuss the singularities that can occur on good quotients. The first topic is based on
[GKKP11], the last two topics are based on [KM9S].

1.A. Kahler differential forms and reflexive differential forms

Differential forms on varieties play an important role in this thesis. Usually by that one
means (logarithmic) Kéhler differential forms. Let X be a normal variety and D a re-
duced Weil divisor on X. Then we denote the sheaf of (logarithmic) Kéhler 1-forms by
QL (or Qk(log D) respectively). For p € N, we set Q% := A’ Q% and Qg((logD) =
N’ QY (log D). Then for the sheaf of (logarithmic) O-forms we have Q% = Q% (log D) =
Ox (see [GKKP11l Ch. 2.A]). More information on logarithmic differential forms can be
found in [[it82) Ch. 11c¢].

On smooth varieties the Kéahler differential forms are a good choice. On singular va-
rieties however working with Kahler differentials is disadvantageous in many cases. The
following two facts explain the problems that come with Kéhler differentials on singular
varieties and also motivate the differential forms we use instead.

Algebraic viewpoint: On smooth varieties the sheaf of Kéhler differential forms is lo-
cally free. Let X be a singular variety. Then the sheaf Q% is not locally free and might
have both torsion and co-torsion. A natural solution would be to consider the reflexive
hull of OQF instead.

Geometric viewpoint: On smooth varieties a useful property of Kéhler differential forms
is their pairing with vector fields. Let X be a singular variety. Then near a singular point
x € X a Kéhler differential form can no longer be evaluated on a vector field. A natural
geometric solution would be to consider differential forms that are defined on the smooth
locus of X instead.

These two viewpoints give rise to the following definition of a reflexive differential form

on a normal variety.

Definition 1.1 (Reflexive (logarithmic) differential forms [GKKP11, Not. 2.16]). Let X
be a normal variety and D a reduced divisor on X. For 0 < p < dim(X), let Q% and
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Qg((log D) be the sheaves of Kdhler p-forms and logarithmic Kdahler p-forms on X. Then
Q[)zé] = (%)Y and Q[)Ié}(log D) = (9% (log D))vv, where (- )YV is the double dual, are
called sheaf of reflexive p-forms and sheaf of reflexive logarithmic p-forms on X.

Remark. For more details on reflexive sheaves the reader is referred to [GKKP11, Ch. 2D].
Independently, we would like to make two remarks to show that the reflexive differential
forms present a natural solution to both the algebraic and the geometric problem presented
above.

1. By definition the sheaves Q[)I;] and QE’;] ( log D) are reflexive and in particular torsion-
free.

2. Consider the pair (X, D) and its regular part U := (X, D)sp (see [GKKP11l Def. 2.2, 2.4)).
If we denote by ¢ : U — X the embedding of U into X, then Q[)]?] ( log D) =
i (Q (log Dyy)) (see [GKKPII, Not. 2.16]).

3. Let X be a smooth variety. Using the previous remark it is clear that on X the reflex-
ive (logarithmic) differential forms coincide with the (logarithmic) Kéhler differential
forms.

Definition 1.2 (Reflexive relative differential forms). Let ¥ : X — T be a morphism from

a normal variety X to a smooth variety T. For 0 < p < dim(X), let Q’;{/T be the sheaf of

relative p-forms on X (see [Har77, II. Prop. 8.11]). Then by Q! (QF

xr = xr we denote
the sheaf of reflexive relative p-forms on X.

)\/V

Although reflexive differential forms solve some of the problems of Kahler differential
forms on normal varieties, their downside is that they do not have a pull-back in general.
To be able to explain this problem in greater detail we first like to recall the definition of
a resolution.

1.B. Resolutions of singularities

Definition 1.3 (Resolution [KM98| Not. 04.(9)]). Let X be a variety. A resolution of X is
a surjective birational morphism n: X — X such that X is smooth. By abuse of notation
we will sometimes call X the resolution of X.

This is the traditional definition of a resolution. In many cases of practical interest
however it is useful to have addition information on the exceptional locus.

Definition 1.4 (Log resolution [GKKP11), Def. 2.12]). Let X be a variety. A logresolution
1s a surjective birational morphism n: X — X such that

(1.4.1) the variety X is smooth,
(1.4.2) the n-exceptional set exc(n) is a divisor with simple normal crossing (snc).

We call n : X—>Xa strong log resolution if the following property holds in addition:
(1.4.8) The morphism 1,-1(x,,) : 7 Y (Xsm) — Xem 45 an isomorphism.

Remark. By Hironaka’s Theorem (c.f. [KM98, pp. 3-4]) (strong) log resolutions exist in

our setting. The definition of an snc divisor can be found in [KM98| 0.4.(8)]. Since the
n-exceptional set is a divisor, we will sometimes call it n-ezceptional divisor.
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1.C. Pull-back of reflexive differential forms

To illustrate the problem that arises when pulling back a reflexive differential form, we like
to consider the following artificial situation:

Let X be a normal variety with only one singular point € X and n: X5 Xa strong
log resolution such that F is the reduced snc divisor with support supp(E) = n~(x).
For 0 < p < dim(X), a reflexive p-form o € H° (X ) Q[)};]) is a differential form defined
outside the singular point z € X. Over X\{x} however the strong log resolution 7 is an
isomorphism. Thus, the pull-back 77*(0)|X'\E is a regular K&hler differential form on )Z'\E

but the extension n*(o) to all of X might have poles along E. A concrete example where
n*(o) has a pole along E can be found in [GKKI10, Ex. 6.3]. In conclusion the pull-back
of a reflexive differential form on X might not be a reflexive differential form on X.

In a general set-up it is not clear that one can control the poles along the exceptional set
of a pull-back of a reflexive form to a resolution. However, for certain types of singularities
of X these poles have already been analysed.

1.D. Rational singularities

Definition 1.5 (Rational singularities [KM98|, Def. 5.8]). Let X be a normal variety. We
say that X has rational singularities if there exists a proper birational map f 1Y — X
from a smooth variety Y, such that R'f,Oy =0 for i > 0.

Example 1.6. The typical example is the singularity of the quadric cone given by the
equation z2 4 y? + 22 = 0.

Proposition 1.7 ([KM98, Lemma 5.12]). Let X be a variety of dimensionn and f 1Y —
X a resolution of singularities of X. Then X has rational singularities if and only if X is
Cohen-Macaulay (CM) and f.Qy = Qgg].

Proof. See [KM98, Lemma 5.12]. O

If X has rational singularities we get the following useful results.

Corollary 1.8 (Extension of 0 and n-forms). Let X be a normal n-dimensional variety

with rational singularities. Let 1 : X = X be any resolution and let o € H° (X, Q)[’;}) be a
reflexive p-form on X, for p € {0, n}. Then

n*(o0) € H°(X, Q’)’?)

Proof. Since X has rational rational singularities we get the equation n*Q’)l( = Q[;] (see
Proposition . This implies that 77*(2’}( is a reflexive sheaf and thus the Extension Theo-
rem for reflexive n-forms on X is true. Since the normality of X implies that 7.0 = Ox,
the same is true for reflexive 0-forms on X. O

Proposition 1.9 (Extension with log-poles [GK14, Thm. 4.1]). Let X be a normal n-
dimensional variety with rational singularities and let n : X — X be a log resolution with
exceptional divisor E := exc(n). Let o € HO(X, Q[)I;]) be o reflexive p-form on X, for
0<p<n. Then
* 0(v
n*(c) € H (X, Q%(logE)).

We say that n*(o) has log-poles along E.
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Proof. By Theorem S in [Kov99| the variety X is Du Bois. Thus the result follows from
[GK14, Thm. 4.1]. O

2. Reductive groups and G-varieties

In this thesis we are analysing Extension Theorems for quotients of smooth varieties by
reductive groups. The varieties have to be smooth to allow us to use certain results such
as the partial resolution of Kirwan (see Chapter |8) or Luna’s Slice Theorem (see Chapter
. The group has to be reductive to ensure that we can define the quotients we are
interested in.

In this chapter we are going to discuss (linear) algebraic groups and reductive groups
and give important examples.

Definition 2.1 ((Affine) algebraic group [Dol03l Ch. 3.3], [Spr81], Def. 2.1.1]). An (affine)
algebraic group G is an (affine) algebraic variety with a group structure, such that the
inversion map ¢ : G — G and the group operation u : G x G — G are morphisms of
algebraic varieties.

Example 2.2. Standard examples for affine algebraic groups are GL,, := GL(n,C) (see
[Spr81l Ex. 2.1.3.(3)] and (C*)™ = (GLy)™ for n, m € N.

The following example will be important for the definition of linear algebraic groups.

Example 2.3. Let G be an algebraic group. Let H C G be a closed subgroup of G and
i : H — G the inclusion map. Then there exists a algebraic group structure on H such
that 4 is a morphism of varieties (see [Spr81] 2.1.2.(3)]).

Definition 2.4 (Linear algebraic group [Spr81, Ex. 2.1.3.(4)]). A linear algebraic group
15 a closed subgroup of GL,,, for some n € N.

Remark (|[Dol03| p. 37]). The affine algebraic groups form a category. One can prove that
there exists a closed embedding from any affine algebraic group into GL,,, for some n € N.
Thus, every affine algebraic group is isomorphic to a linear algebraic group.

Example 2.5. The notions of subgroups and group quotients of a linear algebraic group
G exist as well.

1. Let H C G be a closed subgroup of G and 7 : H — G the inclusion map. With
the algebraic group structure from Example [2.3] H is an algebraic subgroup and the
composition

H— G— GL,

makes H into a linear algebraic group.

2. Let H C G be a closed normal subgroup of G. Then the group quotient G/H is
an affine variety and provided with the usual group structure it becomes a linear

algebraic group. The canonical projection G — G/H is a morphism of varieties (see
[Spr81l Prop. 5.2.5]).

Definition 2.6 (G-variety [Dol03| p. 37|, [Kra84, Def. 2.1|). Let G be a linear algebraic
group that acts on a variety V via p : G x V. — V (with the usual properties of a group
action). Then V is called G-variety if p is a morphism of varieties. If g € G and v € V,
we will sometimes use the short notation g.v := p(g,v).
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Example 2.7 (Linear representation [Kra84l Ch. 2.3]). Let V be a vector space and G a
linear algebraic group with linear representation o : G — GL(V) on V. Then p induced a
G-action p: G xV — V on V with p(g,v) := 0(g) - v that makes V into a G-variety. We
call such an action linear action of G on V.

Remark ([Kra84, Ch. 2.4]). Let G be a linear algebraic group and V' an affine G-variety.
Then the G-action p: G x V — V on V induces a G-action p' : G x C[V] — C[V] on the
affine coordinate ring via

P'(g. /)W) = fplg™" ), forv e V.

A natural way to construct a quotient of an affine variety V' by a linear algebraic group
G is to consider the sub-algebra C[V]¢ C C[V] of G-invariant polynomials on V. We want
the quotient to be the affine variety corresponding to C[V]. Thus we have to ensure that
C[V]% is reduced (which is clear since the algebra is contained in a reduced C-algebra)
and finitely generated. The second property is crucial to the definition of the quotient and
in general not true. For a non-reductive group G a counter-example was given by Nagata
and is explained in [Dol03, Ch. 4.5]. As a consequence we want to restrict ourselves to
reductive groups to guarantee that C[V]% is finitely generated.

Definition 2.8. The following definitions can be found in [Dol03, Ch. 3.4].

(2.8.1) A linear algebraic group T' that is isomorphic to (C*)™, for some m € N, is called
(algebraic) torus.

(2.8.2) Each linear algebraic group G contains a mazimal connected solvable normal sub-
group called radical.

(2.8.3) The group G is called semi-simple if G is connected and its radical is trivial.

(2.8.4) The group G is called reductive if its radical is a torus.

Definition 2.9 (Linear and geometrically reductive group [Dol03, Ch. 3.4|). A linear
algebraic group G is called geometrically reductive if for any rational representation o :
G — GL(V) (see [Dol03, p. 37]) and any non-zero G-invariant vector v € V in a vector
space V' there exists a homogeneous G-invariant polynomial f on V' such that f(v) # 0.
The group G is called linear reductive if there exists a linear function f with that property.

Remark. Since we work over a field of characteristic zero the notions linear reductive,
geometrically reductive and reductive are equivalent (see [Dol03, Ch. 3.4]).

Example 2.10. The following examples can be found in [Kra84, Ch. 3.1] and will play
an important role in Chapter [.D] By definition of a reductive group every torus (e.g.
(C*)™, for m € N) and every semi-simple group (e.g. SL,, for n € N) are reductive. Other
important examples of reductive groups are finite groups, products of these three types of
groups and GL,, for n € N.

3. Good, geometric and GIT-quotients

In this chapter we want to give a short introduction on Mumfords’ Geometric Invariant
Theory, [MFK94]. The chapter covering the affine case is based on [Kra84]. Our discussion
of the projective case is based on [Dol03]. After these introductions we deal with the
properties of a GIT-quotient of C™ in detail and present techniques to reduce to this case.
At the end of this chapter we discuss useful properties of affine GIT-quotients and analyse
the stable locus of an affine G-variety. Throughout this chapter G will be a reductive
group. We start with a general definition of good and geometric quotients.
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Definition 3.1 (Good and geometric quotient [Ses72, Def. 1.5, Def. 1.6], [BBS97, p. 143]).
Let G be a reductive group and V a G-variety. A morphism m : V — X, where X is
an algebraic space, is called good quotient (of V' by (the action of) G) if the following
properties are fulfilled:

(3.1.1) m is G-invariant,
(3.1.2) 7 is affine,
(3.1.3) Ox = m,(0%).
It is called geometric quotient if the following property holds in addition:
(3.1.4) For each point x € X, the fiber 7~ 1(x) is a G-orbit.

By abuse of notation we call X good or geometric quotient and use the notation X = VG
or X =V/G respectively.

Remark (Properties of good and geometric quotients [BBS97, Ch. 1]). Recall from [BBS97,
Ch. 1] that a subset W C V is called G-saturated (in V'), if for all v € W the closures of the
orbit G(v) in V and W coincide. The good quotient X has the following useful properties:

1. Let W C V be open and G-saturated in V. Then n(W) C X is open in X and
mw : W — 7(U) is a good quotient. Moreover, for any (open) sub-variety U C X
the preimage 71 (U) is a G-saturated (open) subset of V.

2. Let Wy, Wy C V be two disjoint, closed and G-invariant subsets of V. Then the
images w(W1) and 7(Ws) are disjoint in X.
A consequence of the second property is that every fiber of 7 contains exactly one closed

G-orbit. In the special case where X is a geometric quotient, this G-orbit coincides with
the fiber of .

3.A. Affine GIT-quotients

When V is an affine G-variety there exists a intuitively accessible description of an affine
GIT-quotient. In most of the proofs we will reduce to this case.

Definition 3.2 (Affine GIT-quotient [Kra84, 11.3.2]). Let G be a reductive group and V' an
affine G-variety. Then the ring of G-invariant polynomials C[V| is a finitely generated
algebra. We call V|G := spec(C[V]%) the affine GIT-quotient of V by G. The natural
projection 'V — V|G is called quotient map.

Remark. The quotient VG might not be a geometric quotient, but is a good quotient
(the necessary properties are discussed in [Kra84, 11.3.2]). In particular, the quotient map
is affine and surjective.

The converse relation between good and affine GIT-quotients is covered by the following
lemma.

Lemma 3.3 (Reduction to affine GIT-quotients). Let G be a reductive group and V a
G-variety admitting a good quotient X := V|G. Then X can locally be described as an
affine GIT-quotient.

Proof. Let x € X be a point in X and 7 : V — X the quotient map. Using the definition
of a good quotient and the first assertion of the remark to Definition one can find
an affine open neighbourhood U C X of z, such that the preimage W := 7= (U) Cc V
is an affine open G-saturated subset of V. The induced quotient W/G = U is an affine
GIT-quotient. O
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We will consider the following example many times in this thesis. Although it does not
provide an insight into the Extension Theorem of good quotients (the affine GIT-quotient
we are going to construct is smooth), it is easy to understand and illustrates most of the
constructions and results concerning special good quotients.

Example 3.4. Consider the action of the group G = C* of invertible complex numbers
on the 2-dimensional complex space V = C? via t.(21,22) := (t- 21,t 7' - 22). We can write
V = spec(A), where A := C[Z1, Z3] is the polynomial ring of V. The ring of G invariant
polynomial is A® = C[Z; - Z»]. Thus the quotient X = VG is isomorphic to the space of
complex numbers C.

3.B. Semi-stable and stable points and GIT-quotients of projective varieties

When V is a projective G-variety, we need to restrict ourselves to the open subsets of
(semi-)stable points V® C V* C V to be able to define a GIT-quotient. To give the
definition of a (semi-)stable point we first need to recall the definition of a G-linearisation.

Definition 3.5 (G-linearisation of a line bundle [Dol03, Ch. 7.1]). Let V' be a G-variety
(with a G-action p: G xV — V) and let L be a line bundle on V. A G-linearisation of £
15 an G-action p: G x L — L such that

(3.5.1) the diagram
GxL-t—>rC

L,

GxV-LsvV
commutes and
(3.5.2) the zero section of L is G-invariant.
By abuse of notation we will refer to L as a G-linearisation on V.
Remark (The induced action on global sections [Dol03, Ch. 7.3]). The G-linearisation p
of £ induces a G-action 7' on the space of global sections H(V, £) of £. This action is
given by
?'(g,5)(v) :=plg,s(p(g™",v)))
forallge G, s € HO(V, L) and v € V.
Example 3.6. Let V be an affine G-variety and £ := V x C the trivial line bundle. Then
a G-linearisation p of L is given by (g, (v, 2)) := (p(g,v), 2), where g € G, (v,2) € V x C
and p: G xV — V is the G-action on V. We will refer to this as the trivial G-linearisation
onV.
Definition 3.7 ((Semi-)stable point [Dol03, Ch. 8.1]). Let V be a G-variety and L a
G-linearised line bundle on V.
(8.7.1) A point v € V is called semi-stable (with respect to L) if there exists an integer
m > 1 and a G-invariant section s € H°(V, £®m)G, such that Us == {u € V|
s(u) # 0} C V is affine and v € Us.
(3.7.2) A semi-stable point v € V*° is called stable (with respect to L) if all orbits of G

in Us are closed and the stabiliser G, is finite.

Remark. Note, that the definitions of V* and V* do not change, if we replace £ by a
positive tensor power of £ (see [Dol03, Rem. 8.1.4]).
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Remark. If V is affine, then we can choose £ := V x C and the trivial G-linearisation
introduced in Example on V. Every section s € HY (V, E)G corresponds to a G-
invariant polynomial on V' (because the G-action on the space of global sections corresponds
to the G-action on the affine coordinate ring). If for every v € V' we choose s to be the
section that corresponds to a G-invariant constant non-zero polynomial, we get V5% = V.

Example 3.8. Let V and G be as in Example [3.4] If we consider the trivial linearisation
on V we get V% = V. We want to identify those v € V that are stable.

First let us show that the axes are not in V*. The origin 0 ¢ V*, because the stabiliser
Gop = G of 0 € V is not finite. Any other vector v # 0 on one of the two axes has finite
stabiliser G, = {1} C C* but its orbit G(v) is not closed. In fact G(v)\G(v) = {0}.

Let v € V be any vector that is not contained in one of the axes. Then the stabiliser G,
is trivial and the orbit G(V') is closed. Thus v € V.

Construction of the GIT-quotient. In the setting of the previous definition one can
construct the GIT-quotient V*°/G in the following way: We first cover V*° by finitely
many Us,, where s; € HO(V, [,®mi)G for i € I (I is a finite set) and m; > 1. Then, gluing
the affine GIT-quotients Us, /G, we get a quotient X := V*3/G. More details on this can
be found in [Dol03, Thm. 8.1].

Remark. The quotient X := V*5/G is a good quotient with quotient map = : V* — X.
The set V* C V* is a saturated open subset and V*/G is a geometric quotient (see [Dol03),
Thm. 8.1]). We are mainly interested in the following two special cases:

1. If V is projective and L is ample, then the quotient X is projective and given by
X := proj(R), where R := @,>, H*(V, L") (see [Dol03, Prop. 8.1]).
2. If V is affine and £ is the trivial linearisation, then there exists a section s €

HO (V, E)G that corresponds to a non-zero constant polynomial on V and Us = V.
Thus the quotient X is the affine GIT-quotient defined in Definition [3.2]

Definition 3.9 (Projective GIT-quotient). Let G be a reductive group and V' a projective
G-variety with a G-linearisation L such that we can construct a quotient X := V°|G. If
(some power of ) L corresponds to a projective embedding V' — P™ for some n € N (i.e. it
is ample), then we call X projective GIT-quotient of V by G.

3.C. The case V = C" and C*-actions

Let V be an affine variety with affine coordinate ring A := C[V]. Let p : C* xV — V
be any action of the group C* on V. Then p induces an action p’ : C* x A — A on the
coordinate ring A via p/(t, f)(v) := f(p(t~1,v)) for all v € V. For every integer d € Z,
we consider the corresponding character xg4 : G — C* of the reductive group G = C* (see
[CLST1 §1]). Then Ag:={f:V = C | p/(t, f) = xa(t)- f} defines a grading A = @5, Ad
on A, where Ay - A; C Agy;. We call the C*-action on V good if Ay = 0 for all d < 0
and Ay = C. In this case the only fix-point vg € V of the C*-action (corresponding to the
maximal ideal @ ., Aq) is called vertez (see [Pin77, Ch. 1]).

Example 3.10. Let V = C"” and p : C* x C" — C" a C*-action on C" given by
p(t, (z1,...,2n)) == (t9-21,...,t% - z,). Then pis a good C*-action if and only if ¢; > 0 for
allie€{1,...,n} and g.c.d.(q1,...,¢n) = 1. The vertex of this good C*-action is 0 € C".

The following result will be useful in Chapter



3 Good, geometric and GIT-quotients 9

Lemma 3.11 (Good C*-action on GIT-quotients). Let G be a reductive group acting
linearly on V.= C". We denote the GIT-quotient by X := VJG. Then the good C*-action
on V, introduced in the previous example (with q; = 1 for all i € {1,...,n}), induces a
good C*-action on X.

Proof. Let G x V. — V| (g,v) — o(g)v be the linear action of G on V, where 9o : G —
GL(V) is a linear representation of G. As we have seen in the previous example, there
exists a good C*-action

m:C*"xV =V, (t,v) —mwu

on V', where m; € GL(V) is the multiplication with ¢ € C*. By definition, for each g € G
and each t € C* we have p(g)m; = myo(g) and the two actions commute. Therefore, m in-
duces a C*-action on X. The coordinate ring of X is finitely generated (since G is reductive)
and given by C[X] := C[V]¢ = Daen, ClX](a), where C[X]q) = (C[V](Cil) = ((C[V](d))G are
the G-invariant polynomials on V' of degree d. We may see that C[X]) = (C[V]o)¢ =C.
Thus, XJC* = {pt} and the C*-action has a unique fixpoint zo € 7~ 1(X/[C*) given by the
unique closed orbit. This point xo corresponds to the maximal ideal @ ey, C[X](q) and
is the vertex of the good C*-action on X. O

3.D. Properties and reductions

Our main results are formulated for an arbitrary good quotient X := V//G of a smooth
variety V by a reductive group G and we would like to analyse the properties of these types
of quotients. Some of the properties (e.g. singularities) can be analysed locally. We already
mentioned that every good quotient can locally be described as an affine GIT-quotient (see
Lemma [3.3). In this chapter we will present a result of Gurjar [Gur9l], who uses Luna’s
Slice Theorem [Lun73| to reduce from the affine case to the case V' = C". We then recall
that any good quotient of a smooth variety has rational singularities.

3.D.1. Luna’s Slice Theorem and reduction to GIT-quotients of vector spaces

Our formulation of Luna’s Slice Theorem and the preparations are based on [Dré04|. Before
we can recall Luna’s Slice Theorem, we first need the following result by Matsushima.

Lemma 3.12 (Reductive stabiliser). Let G be a reductive group and V an affine G-variety.
Assume that v € V' has a closed orbit G(v). Then the stabiliser G, is reductive.

Proof. This result was proven by [Mat60]. O

For the convenience of the reader we like to recall some of the definitions that will be
used in our formulation of Luna’s Slice Theorem.

Definition 3.13. Let G be a reductive group and V, V' affine G-varieties.

(3.13.1) A morphism @ : V. — V' is called G-morphism if &(g.v) = g.®(v) for all g € G
and v €V (see [Dré04), Def. 2.4]).

(3.13.2) A G-morphism @ : V. — V' is called strongly étale if the induced morphism
D : VG — V|G of affine GIT-quotients is étale and the quotient morphism
vy oV = V)G induces a G-isomorphism V. = V' xyuq (V)JG) (see [Dré0j),
Def. 4.14]).
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Remark. The definition of étale morphisms and useful results about them can be found in
[Dré04] Ch. 4.1]. More details on (strongly) étale (G-)morphisms can be found in ([Dré04]
Ch. 4.4)).

Theorem 3.14 (Luna’s Slice Theorem [Dré04, Thm. 5.3; Thm. 5.4]). Let G be a reductive
group and V' an affine G-variety. Let v € V be a point such that the orbit G(v) is closed
(and thus G, reductive (see Lemma[3.19)). Then there exists a locally closed sub-variety
S CV of V, called slice, such that

(8.14.1) S is affine and v € S,
(8.14.2) S is G, invariant,

(3.14.3) the image of the G-morphism Gx g, S := (GxS)JG, — V induced by the G-action
on V is a saturated open subset U C V,

(3.14.4) the restriction G xg, S — U is a strongly étale surjective G-morphism.

If in addition v € V is smooth, we get an étale G,-invariant morphism @ : S — T,S to
the tangent space to S at v such that &(v) =0, TP, = Id and such that

(3.14.5) T,V = Ty(Gy) ® T,S,
(3.14.6) the image of ® is a saturated open subset U' C T,S,
(3.14.7) the restriction S — U’ is a strongly étale surjective G,-morphism.

Proof. A proof and more details on the theorem can be found in [Dré04, Ch. 5] O

Remark. Since the surjective G-morphism in[3.14]4 is strongly étale, it induces a surjective
étale morphism

G xq, S|G = S)G, — UJG.
Similarly, the G,-morphism in [3.14]7 induces a surjective étale morphism

S|G, — U'|G,.

Building on this, Gurjar proves the following result that will help us to analyse the
singularities of good quotients in Chapter [6.A]

Corollary 3.15 (c.f. [Gur91, Thm.]). Let G be a reductive group and V a smooth affine
G-variety. Let X := V|G be the induced quotient and x € X any point. Then there exists
a reductive group H acting linearly on some C™, such that the analytic local ring of X in
x 1s isomorphic to the analytic local ring of C"JH at the image of 0 € C" in C"JH.

Proof. The proof can be found in [Gur91l, §1]. O

Remark. In the setting of the previous corollary, let 7 : V' — X be the quotient map
and v € 7~ !(z) a point with closed orbit. We know that v € V is smooth, H = G, is
the stabilizer of v and C" is isomorphic to the tangent space T,S to the slice S at v (see

Theorem [3.14)).

3.D.2. Good quotients have rational singularities

In this chapter we want to present a famous result by Boutot that ensures, that the good
quotients we are considering are normal varieties with rational singularities. Thus, we can

use the results from Chapter in the proofs of the Theorems [0.1] to [0.3]
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Lemma 3.16. Let G be a reductive group and V an affine G-variety with affine GIT-
quotient X := VJG. If V is normal then X is normal.

Proof. The following proof is based on [Dol03, Prop. 1.3]. Let A be the affine coordinate
ring of V. Then A is normal. Since X = spec(A®) we have to show that A% is normal.
Let K be the fractions field of A and let L be the fraction field of AY. By definition L ¢ K
and every point x € L is fixed by the G-action. Thus L € K“. We have to show that A
is integrally closed in L. Let x € L satisfy the equation

"4 ap 12" 4+ 4+ ag=0

with coefficients a; € A® for 0 < i <n—1and n > 1. We know that z € K and since A4 is
normal, the equation implies that x € A. Since z is fixed by the G-action we get z € A®. O

Lemma 3.17 (Boutot). Let G be a reductive group and V an affine G-variety with affine
GIT-quotient X := VJG. If V has rational singularities then X has rational singularities.

Proof. This Lemma is a famous result by Boutot [Bou87, Cor.|. A proof can also be found
in [Kov00]. 0

Proposition 3.18. Let G be a reductive group and V' a smooth G-variety admitting a good
quotient X := VJG. Then X is normal and has rational singularities.

Proof. Since being normal and having rational singularities are local properties, it is enough
to prove them in the case where V' is an affine G-variety and X is an affine GIT-quotient
(see Lemma [3.3). The proposition then follows from the previous two lemmas. O

3.E. Principal points and finite stabiliser

Let G be a reductive group and V a smooth affine G-variety with affine GIT-quotient
X = V/G. If we choose the trivial G-linearisation on V', then all points v € V' are semi-
stable, V* = V. The stable points are exactly the v € V with finite stabiliser and closed
orbit. In this chapter we want to present a method by Luna-Richardson to find an affine
variety F' and a reductive group W, such that F/W = X and F* # (). More details on this
method can be found in [LR79). In this chapter we will denote by O(z) the unique closed
G-orbit in the fiber of x € X.

Definition 3.19 (Principal point [LR79, Def. 3.2]). Let G be a reductive group and V an
affine G-variety with affine GIT-quotient X := VJG. A point x € X is called principal
point, if there exists an open neighbourhood U C X of x, such that for all ' € U the
following condition is fulfilled: If O(x) is the closed orbit in the fiber of x and O(x') is the
closed orbit in the fiber of '. Then O(x) and O(z') are G-isomorphic homogeneous spaces.
We denote by Xy, the space of all principal points.

Remark. If v € O(x) and v' € O(z’). Then O(z) and O(a’) are G-isomorphic homo-
geneous spaces if and only if the stabilisers G, and G,/ are conjugated subgroups of G
(see [LR79, Rem. 3.3]). The space X, C X is a dense open subspace of X (see [LRT79,
Lem. 3.4]).
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Lemma 3.20. Let H C G be a closed reductive subgroup of G and X" = {x € X |
h.x = x for all h € H} the space of all H-invariant points in X. Then the normaliser
Ng(H) :={g € G| gH = Hg} is a reductive group with an induced action on X

Proof. The proof of the first assertion can be found in [LR79, Lem. 1.1]. The second as-
sertion follows directly from the definitions. O

Proposition 3.21 ([LR79, Thm. 4.2|). Let G be a reductive group and V an affine G-
variety with affine GIT-quotient X := VG. Let x € Xy be a principal point and a €
O(x) C V. Then H := G, is reductive by Lemma [3.14 Set W := Ng(H)/H and
F := X", Assume that FJW is irreducible. Then X = F)W.

Proof. The proof can be found in [LR79, Thm. 4.2]. O

Remark. If V is smooth, the restriction that F/W is irreducible is not necessary. A
detailed explanation can be found in [LR79, Rem. 4.6]. If V is a vector space and G acts
linearly on V. Then one can easily check that F' is a vector space as well and W acts
linearly on F. Since the vector space F' is irreducible, F/W is irreducible as well (see

[Kral4, Ch. 11.4.3.A)).

Corollary 3.22. Consider the same notation as in the previous proposition. Let y € Xy,
and b € O(y) N XH . Consider the trivial linearisation on V and F. Then b € F*.

Proof. We start by proving that a € F°. First of all we have to show that W, is the trivial
group. This is true by the definition of WW. Secondly, we want to show that W(a) is closed
in F. Assume that W(a) is not closed in F and that v € W(a)\W(a). Since G(a) = O(z)
is closed in V, there exists a g € G such that g.v = a. If g € Ng(H), then there exists a
g" € W such that ¢’.v = a, which contradicts the assumption. Thus g ¢ Ng(H). However,

in this case we have
a=g.v=g.(hv)#h.(g.v) = h.a=a,for h € H.

This is a contradiction, which shows that v € F*.

By [LR79, Lem. 3.5] we can deduce that O(y) N X # () and that G} is conjugated to
H. Therefore, it is enough to show that W(b) is closed in F. Since G(b) is closed in V,
this follows from the same argumentation as above. g

Example 3.23. Let V = C? and consider the following action of G = C* on V:
t.(z1, 22) = (21, t - z9), for t € C* and z1, 2z € V.

Using the trivial linearisation on V', every point is semi-stable (i.e. V* = V). Unfortu-
nately, no point is stable, because the only closed orbits are G(v) for points contained in
the (1,0)-axis, v € C- (1,0). These points however are all fixed by the group G and thus
G, = G is not finite, for all v € C - (1,0).

The quotient X := V/G is isomorphic to the space of complex numbers C. For every two
points z, 2’ € X, the unique closed orbits O(x) = {v} and O(z") = {v'} each consist of a
single point contained in the (1, 0)-axis and the stabiliser G, = G = G,y. Thus, X, = X.
Let a € O(0). Then H = G, W is the trivial group, F = V& = C- (1,0) and F/\W = X.
While the variety X stays the same, the representation via W and F' is superior since
F*® = F and F/W is a geometric quotient.
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4. Some easy Extension Theorems and useful reductions

In this chapter we will present useful statements that will help us to simplify the proofs
of the Extension Theorems in this thesis. We then discuss special situations in which an
Extension Theorem is easy to prove. For the convenience of the reader, let us recall the
Extension Problem in the case of a normal variety:

Extension Problem. Let X be an n-dimensional normal variety and 7 : X 5 X any
resolution of X. For all 0 < p < n, we want to show that given a reflexive p-form

o€ H(X, ) on X the pull-back
* 0/v D
n*(oc) € H (X, Q)?)
is a regular p-form on X.

Recall that the assertion of the Extension Problem is local. This means that it is enough
to show that *(c) has no pole near a fiber n~!(z), for all z € X. The following result
shows that for this purpose it is enough to consider an analytic neighbourhood of z € X.

Lemma 4.1. In the same setting as above, let U C X be an analytic open subset of X
with x € U and n* the analytification of n. Assume that the form

(77*(0))\3(?7%)—1@) )

which 1is the restriction of the analytification of the pull-back of o to (p*)~1(U), is a
holomorphic form. Then n*(o) has no pole near a fiber n~1(x).

Proof. We want to show that a rational algebraic differential form on a smooth variety is
regular if its analytification is a holomorphic form on the corresponding complex manifold.
Using local coordinates, this follows from the fact that a rational algebraic function on a
smooth variety is regular if its analytification is a holomorphic function on the correspond-
ing complex manifold (see [Shal3l Book 3, p. 177]). O

To avoid complicated notation when switching between the analytic and algebraic cate-
gory we will not introduce the analytification of the relevant objects. However, we will use
Lemma to restrict differential forms to analytic neighbourhoods when analysing their
poles.

4.A. Independence of the choice of resolution

Lemma 4.2. Let Z be a normal variety and Y a smooth variety. Consider a surjective
morphism f : Z — Y. Let o be a rational differential form (i.e. a rational section of the
sheaf Q3 of Kdhler differential forms) on'Y . Then o is reqular if and only if the pull-back
f*(o) has no poles on Z.

Proof. The proof can be found in [Kem77, Lem. 2]. O

Corollary 4.3 (Independence of the choice of resolution). Let X be an n-dimensional
normal variety and n1 : X1 — X any resolution of X. Let 0 < p < n and assume that for

any reflevive p-form o € HY (X, Q[)’?]) the pull-back

ni(o) € HO(X1, % )
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s a reqular p-form on Xi. Let N9 Xy — X be another resolution of X. Then
* 0(v
n3(0) € H (X2, 9%2)

is a reqular p-form on )?2, too.

Proof. There exists a resolution 7 : X — X that dominates X 1 and XQ. In other words
we can consider the following commutative diagram:

Applying Lemma to the maps p; and py the result follows. O

4.B. Reductions for Extension Theorems for good quotients

In this chapter we want to analyse Extension Theorems for an arbitrary good quotient X :=
VG of a smooth variety V' by a reductive group G and present some useful reductions.

Lemma 4.4 (Reduction to affine GIT-quotients). To prove an Extension Theorem for
a good quotient X := V|G (of a smooth variety V by a reductive group G) it is enough
to prove the Extension Theorem in the case where V is an affine G-variety with affine

GIT-quotient X :=VG.

Proof. Since proving the Extension Theorem is a local problem the result follows from
the fact, that every good quotient can locally be described as an affine GIT-quotient (see

Lemma . O

Lemma 4.5. Let g : Y — X be a surjective flat morphism between normal varieties and
F a coherent sheaf on X. Then the following assertions are true:

(4.5.1) For the pull-back of the dual F" of the sheaf F we have the isomorphism g*(FV) &
(g"F)".
(4.5.2) The pull-back g*F is reflexive if and only if F is reflezive.

Proof. A proof of the first assertion can be found in [Har80, 1.8], where he explains that
the problem is local and thus proves the following result for modules on rings instead:

Let A be a noetherian ring, M, N be A-modules, with M finitely generated, and let
A — B be a flat surjective ring homomorphism (for the first assertion we do not need g to
be surjective). Then the natural map

HOIHA(M,N) ®4 B — Homp (M@A B,N ®4 B)

is an isomorphism (see [Har80, 1.8]).

To prove the second assertion we have to show that the natural map F — F'V is an
isomorphism if and only if the natural map ¢*F — (¢*F)VV is an isomorphism. Using
[.5]1 we have (g*F)"V = g*(F¥V). Since proving the equivalence is a local problem, too,
it can be deduced from the following claim:
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Claim 1. Consider the same notation as above. Then the natural map
M — Hom 4 (Homa (M, N), N)
is an isomorphism if and only if the map
M ®4 B — Homg(Homy(M,N),N)®4 B

is an isomorphism.

Proof (of Claim 1). Since g is flat and surjective, B is a faithfully flat A-module. Thus
tensoring a sequence of A-modules with B over A produces an exact sequence if and only
if the original sequence was exact. 0

Lemma 4.6. Let g : Y — X be a surjective étale morphism between normal varieties.
Then the Extension Theorem for X is true if and only if it is true for Y.

Proof. Let nx : X — X be a resolution of singularities of X. Consider the following
commutative diagram

Y

Y

where Y is the fiber product Y=Y X x X. Thus, the morphism g is étale (see [Dré04),
Prop. 4.3.(iii)]) and~§~/ is smooth (see [Dré04, Prop. 4.3.(vii)]). Since 7y is a resolution,
the morphism ny : Y — Y is a resolution of singularities of Y. Let 0 < p < n = dim(X) =
dim(Y"). Then we want to show that (nx)*Q’}( is reflexive if and only if the sheaf (ny)*Qi’;

g

9. X
o

g X’

is reflexive (this is enough since the Extension Theorem is independent of the choice of
resolution (see Corollary [£.3))).

Since for p = 0 both sheaves are reflexive (see Corollary , we may assume that
p > 0. Since g is étale the sheaf of relative differential forms QZ;; X = 0 (see [Dré04,

Prop. 4.2]) and thus Q‘% = (E)*Q% Since g is étale it is flat in particular. Using the
cohomology-and-base-change (see [Har77, III: Prop. 9.3|) we get

(1 )o 02 = g ((nx). %)

and the result follows from Lemma .5 O

Lemma 4.7. Let G be a reductive group and V' a smooth affine G-variety with affine GIT-
quotient X := VG and quotient map w : V — X. Let x € X be any point in X. Then
there exists a vector space W and a reductive subgroup H C G acting linearly on W, such
that the Extension Theorem for the quotient W |H implies the Extension Theorem for X
in a neighbourhood of x € X.

Proof. Let x € X and v € m !(x) be a point with closed G-orbit G(v) and therefore
reductive stabiliser G, (see Lemma . By Theorem there exists a locally closed
affine G -invariant sub-variety S C V with v € S and an open saturated subset U C V'
such that

f:8)G, = UG



4  Some easy Extension Theorems and useful reductions 16

is a surjective étale morphism. Since v € V is smooth we also get a linear action of G,
on the tangent space TS to the slice S at v € S and an open saturated subset U’ C T,,S,
such that

g:S)G, = UG,

is a surjective étale morphism. Set W := T,S and H := G,. Then the result follows by
applying Lemma [{.6] to f and g. O

Corollary 4.8 (Reduction to quotients of vector spaces). To prove an Extension Theorem
for an arbitrary good quotient X := V|G of a smooth variety by a reductive group it is
enough to prove the Extension Theorem in the case where V a wvector space with linear

G-action and affine GIT-quotient X :=VG.

Proof. Since proving the Extension Theorem is a local problem we can use Lemma to
reduce to the case where V' is an affine G-variety with affine GIT-quotient X := V/JG.
Using the fact that proving the Extension Theorem for the affine GIT-quotient is a local
problem as well, the result follows from Lemma 4.7} g

4.C. Finite quotient singularities

A special type of singularities, that can arise on good quotients of smooth varieties by
reductive groups, are finite quotient singularities. In this chapter we will discuss these
singularities and prove an Extension Theorem for good quotients with finite quotient sin-
gularities. We start by giving a definition of a finite quotient singularity.

Definition 4.9 (Finite quotient singularity). Let X be a normal n-dimensional variety.
Then a point x € X is called finite quotient singularity (f.q.s) if there exists an analytic
netghbourhood U of x and a finite group ' acting linearly on some C", such that U is
biholomorphic to an open neighbourhood U C C™/T" of the image of 0 € C™ in the quotient
Cc™/T.

Example 4.10. The following two examples will be revisited in Chapter [5.C]

1. If X has kit singularities, then there exists a closed subset Z C X with codimx (Z) >
3, such that X\ Z has only finite quotient singularities (see [GKKP11l Prop. 9.4]).

2. Let G be a reductive group acting linearly on C" such that the quotient X := C"JG
is a surface with an isolated singularity ¢ € X. Then t € X is a finite quotient
singularity (see [Gur91, Cor. 2]).

We will discuss the following example separately, because it plays an important role in
Chapter [§

Example 4.11. Let V be an affine or projective smooth G-variety admitting a GIT-
quotient X := V*G (with respect to some G-linearisation). Let m : V** — X be the
induced quotient map and assume that V® = V. Then 7 : V% — X is a geometric
quotient and X has finite quotient singularities due to the following argument:

Let x € X be an arbitrary point. By shrinking X to a neighbourhood of x € X, we may
assume that V' is affine and X is an affine GIT-quotient (see Lemma . Let v € 77 1(x)
be a point with closed orbit G(v) and therefore reductive stabiliser H := G, (see Lemma
3.12). Then (by Corollary H acts linearly on some C" such that the analytic local
ring of X in x is isomorphic to the analytic local ring of C"/H at the image of 0 € C" in
C™JH. Since v € V* we know that H is finite. Thus x € X is a finite quotient singularity.
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Proposition 4.12. Let G be a reductive group and V a smooth G-variety admitting a
good quotient X := V|G. Assume that X has f.q.s. Let n: X — X be a resolution and let

o€ H° (X, Q[)I?]) be a reflexive p-form on X, for 0 < p < dim(X). Then
* 0(% P
n*(o) € H (X, Q)?).

Proof. The result can be deduced from the fact that f.q.s. are kit (see [KM98], Prop. 5.20])
by using [GKKP11, Thm. 1.4]. O

4.D. Good quotients of special reductive groups

As we have seen in Chapter [2] the main examples of reductive groups are semi-simple
groups, tori, finite groups and their products. In fact every connected (linear) reductive
group is a product of a semi-simple group and a torus (see |[Kra84, Ch. 3.5, Satz 4|).
Let X := V)JG be an affine GIT-quotient, where G is a reductive group of one of those
three types with a linear action on a vector space V. Then one can prove an Extension
Theorem for X in arbitrary dimension. Although, we will not use the Extension Theorems
for quotients of finite groups, semi-simple groups and tori, we want to discuss these cases
to give a complete picture.

When G is a finite group, we will analyse the Extension Theorem for good quotients
of smooth varieties by G. In the other two cases we will restrict ourselves to quotients
X = V|G of vector spaces.

4.D.1. G is a finite group

Let X := VG be a good quotient of a smooth variety by a finite group. Using Corollary
it clear that X has finite quotient singularities. Then the Extension Theorem for
X follows from Proposition A more direct approach uses the fact that the induced
projection 7w : V' — X is a finite map.

Lemma 4.13. Let G be a reductive group and V' a smooth G-variety admitting a good
quotient X := V|G with induced quotient map w:V — X. Let n: X — X be a resolution
of singularities and o a reflexive differential form on X. Then, n*(c) has no poles on X
if and only if ©* (o) has no poles on V.

Proof. Without loss of generality, we may assume that V' is an affine G-variety and X is
an affine GIT-quotient. By [Kempf, Cor. 4] there exists a normal variety Z such that the
diagram

commutes and such that p is a birational map and ¢ is the quotient map Z — ZJG = X.
The variety Z is the normalisation of the component of the fiber product X x x V that is
mapped birationally to V. If we apply Lemmal[4.2]to the maps p and ¢ the result follows. [J

The following is an easy corollary of the previous result and implies the Extension The-
orem for X when G is a finite group.
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Corollary 4.14. Let G be a reductive group and V a smooth G-variety admitting a good
quotzent X = V)G. Assume that the quotient map ™ : V. — X is a finite map. Let n :
X — X be a resolution and o € HO( Q[p) a reflexive p-form on X, for 0 < p < dim(X).
Then,

n*(o) € HO()N(, Q%)

Proof. Since no divisor D C V is mapped into the singular locus of X under 7, we see that
the pull-back 7*(o) has no poles on V. The result now follows from Lemma O

4.D.2. G is a torus

Let G = T be a torus acting linearly on a vector space V and X := VT the induced affine
GIT-quotient. Then an Extension Theorem for X can be proven by first showing that X
is an affine toric variety and then using a result by Danilov ([Dan91]). Let us start by
recalling the definition of an affine toric variety.

Definition 4.15 (Affine toric variety [CLS11, Def. 1.1.3]). An affine toric variety is a
normal variety X containing a torus Tx as a Zariski-open subset such that the action of
Tx on itself extends to an action of Tx on X.

Remark. Tt will be useful to think of the Definition in a slightly different way. Let
T be a torus acting linearly on X such that there exists a point x € X with open T-orbit
T'(z) such that Ty is trivial for all y € T'(x). Then, the algebraic morphism (induced by
the T-action on X)

By T — X,

with f,(t) = t.z, embeds T into X and the image of f is a torus T’x that makes X into a
toric variety.

Example 4.16. Obviously every torus is a toric variety. Let V = C", for some n € N.
Then V is a toric variety with torus Ty = (C*)".

Before we can show that an affine GIT-quotient X := VT (of a vector space V by
a torus T') is a toric variety, we first need to recall the following results about tori and
diagonalisable groups.

Definition 4.17 (Diagonalisable group [Bor91, Prop. 8.4.(2)]). We denote by D,, C GL,,,
for n € N, the group of diagonal matrices. A diagonalisable group (d-group) is a linear
algebraic group that is isomorphic to a closed subgroup of the group D, for some n € N.

Since every torus is isomorphic to Dy, for some n € N (see [Bor91, Ch. 8.5]), it is a special
case of a d-group. The following lemmas show the relation between tori and d-groups and
address some useful properties.

Lemma 4.18. Let G be a d-group then the following statements hold.

(4.18.1) A subgroup H C G and the image of a morphism G — G’ to a group G’ are
d-groups.

(4.18.2) The group G is a torus if and only if it is connected.

Proof. The first assertion is proven in [Bor91l Ch. 8.4, Cor.] and the second assertion is
proven in [Bor91l Ch. 8.5, Prop.]. O
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Corollary 4.19. Let T be a torus and let H C T be a closed subgroup. Then the following
statements hold.

(4.19.1) H is a normal subgroup.
(4.19.2) If H is connected then H is a torus.
(4.19.8) The quotient group T/H is a torus.

Proof. The first assertion follows from the fact that the torus T is commutative. The sec-
ond assertion is a direct corollary of the previous lemma. For the quotient group we have
to consider the induced surjective morphism 7" — T'/H. Since T is connected, we get that
T/H is connected as well. Thus the result follows from the previous lemma. O

Lemma 4.20. Let T be a torus acting linearly on a vector space V and let X := VT be
the induced affine GIT-quotient. Then X is a toric variety.

Proof. Without loss of generality V = C”, for some n € N, and Ty C V is the torus
that makes V into a toric variety. Since T is acting linearly on V there exists a linear
representation 1T' — GL,, such that every ¢ € T corresponds to a diagonal matrix. Thus
we may assume that T C Ty is a closed connected subgroup of the torus Ty .

Since V is Ty-invariant and the actions of T" and Ty commute, we get an action of Ty
on X. Let m : V — X be the quotient map. Then a simple topological argument shows
that the image m(7y) of the dense Ty -orbit in V' is a dense Ty -orbit in X. Let x € w(Ty).
Consider the algebraic morphism

BTy — X,

with (,(g) = g.x, that is induced by the Ty action on X. Then by Chevalley the image
Bz(Tv) is constructable in X (see [Mum99, I. §8. Cor. 2|) and thus the Ty -orbit Ty (x) C
Ty (z) is open in its closure. Since Ty (z) is dense in X, we have Ty (x) = X and the image
7m(Ty) is an open Ty-orbit in X.

Assume that the stabiliser H := (Tv), is not trivial. Then, since Ty is commutative, the
stabiliser (T ), = H for all y € Ty (x). Since the orbit Ty (x) is dense in X, we see that H

fixes every point in X. Thus the torus Ty, /H acts on X and makes X into a toric variety. O

Corollary 4.21 (Extension Theorem for quotients of vector spaces by tori). Let T be a
torus acting linearly on a vector space V and let X := VT be the affine GIT-quotient.

Let n : X — X be a resolution and let o € HO(X, Q[)Z;]) be a reflexive p-form on X, for
0 <p<dim(X). Then _
n*(o) € H°(X, Q%)

Proof. Since the Extension Theorem is independent of the choice of resolution (see Corol-
lary [£.3), we may assume that n is a toric resolution. In [Dan91) 1.6] Danilov explains
that every toric variety X has a toric resolution 7 : X — X such that 17*9% = Q[)I;] for
all 0 < p < dim(X). Thus n*Q% is reflexive for all 0 < p < dim(X) and the Extension
Theorem is true for X. O
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4.D.3. Good quotients that are rational Gorenstein

Before we present the Extension Theorem in the case where G is a semi-simple group, we
first would like to discuss the following special case of a good quotient that is Gorenstein.
Note that we call a normal variety X Gorenstein if the canonical divisor Kx is Cartier
(see [CLSI1I, Def. 8.2.14]).

Proposition 4.22. Let G be a reductive group and V' a smooth G-variety admitting a good
quotient X := V|G. Assume that the canonical divisor Kx is Cartier. Letn: X — X be a
resolution of X and let o € H° (X, QE?]) be a reflexive p-form on X, for 0 < p < dim(X).
Then
* 0y P
n*(c) € H (X, Q)})

Proof. Since X has rational singularities, due to [KM98, Cor. 5.24] Kx Cartier implies
that X has canonical singularities (see [KM98, Def. 2.11]) and therefore klt singularities.
Thus the assertion follows from [GKKP11l Thm. 4.1]. O

It is important to note, that not every GIT-quotient X = VG (of a smooth variety V
by a reductive group G) is Gorenstein. An example can be constructed using the quotient
construction of a toric variety.

Example 4.23. Let X be an affine toric variety. Then Cox-Little-Schenck describe a
quotient construction of X in [CLS11l § 5.1]. As a consequence, we can think of X as a
quotient VG where G is a reductive group and V is a smooth affine G-variety. In order
to find a GIT-quotient that is not Gorenstein we thus only have to give an example of a
toric variety that is not Gorenstein.

In [CLS11l §1.2] one can find the definition of a cone ¢ and a discussion on how it defines
an affine toric variety U.. In the examples [CLS11, Ex. 1.2.22, Ex. 4.1.4, Ex. 8.2.13] Cox-
Little-Schenck discuss the affine toric variety U, that is induced by the cone ¢ := cone(de; —
e2,€2) C ]RZ, where e, ey are the standard basis of R? and d € N is a positive integer.
Using the divisors Dy, Dy corresponding to the rays of ¢ (see Orbit-Cone Correspondence
in [CLS11, Thm. 3.2.6]) one can show that Ky, = —D; — Dy (JCLSII, Thm. 8.2.3]). Using
[CLS11l Prop. 8.2.12] Cox-Litte-Schenk show that U, is Gorenstein if and only if d < 2.

4.D.4. G is a semi-simple group

Let G = G5 be a semi-simple group acting linearly on a vector space V and X := VG4
the affine GIT-quotient. Then we can prove an Extension Theorem for X by analysing the
algebraic structure of the ring C[X] := C[V]%ss.

Lemma 4.24 ([Kra84l, Ch. II. 3.3, Satz 2|). Let Gss be a semi-simple group acting linearly
on a vector space V and X := V|Gss the induced affine GIT-quotient. Then X (or C[X]

respectively) is factorial.

Proof. The proof can be found in [Kra84, Ch. II. 3.3, Satz 2|. There Kraft also explains
that, instead of assuming that V is a vector space, it is enough to consider a factorial
variety V. g

Corollary 4.25. Let Gss be a semi-simple group acting linearly on a vector space V' and
X := VG the induced affine GIT-quotient. Let n: X — X be a resolution of X and let
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o€ H (X, Q[;}]) be a reflexive p-form on X, for 0 < p < dim(X). Then
* 0y Y4
n*(c) € H (X, Q)?)

Proof. By Lemmad.24] X is factorial and affine. By [Har77, II. Prop. 6.2] this implies that
the divisor class group is trivial, €1(X) = 0. Thus, every Weil divisor is linear equivalent
to 0 and therefore Cartier. In particular, the canonical divisor Kx on X is Cartier. The
result now follows from Proposition O

5. Preparation for Theorem |0.2

5.A. Hodge-theoretic method

In this chapter we will present the Hodge-theoretic approach to the Extension Theorem.
Most of the ideas are based on [SS85| and [Nam01b]. Following the guidelines of these
papers we will work in the following setting:

Setting. Let X be a Stein open subset of an algebraic variety with rational singu-
larities and z € X a point in X. Let n : X — X be a resolution of X such that
E := (n7%(2))req is an snc divisor on X with support n7(x).

Remark (Working in the analytic category). For the first part of this chapter we do
not have to assume that X is an analytic space. In Remark to Lemma however it
is necessary to consider a small analytic neighbourhood of x € X and in the proof of
Corollary [5.3] we work in this setting.

The main goal of this chapter is to show that the injection
. g0( v 0y
v HY(X, Q%) — HY (X, 9% (log E))

is an isomorphism for all values 0 < p < dim(X). To do so we consider the exact sequence
(see [NamO01bl p. 8])

OHQ%/Q%(logE)(—E) — Q%(logE)/Q%(logE)(—E) Hﬂg(logE)/Q% — 0

of sheaves on E. We will refer to this sequence by (+).

Lemma 5.1. Let 6 : HO()Z', Q%(logE)/Q%) — Hl()?, Q%/Q%(logE)( — E)) be the
boundary map in the long exvact cohomology sequence induced by (+). If & is injective for
some value of p < dim(X), then ¢ is an isomorphism for the same value of p.

Proof. The following argument goes back to [SS85, Thm. 1.3]. Consider the long exact
sequence

0— H(X, Q%) & HO(X, Q% (log E)) — H°(E, Q% (log E) /Q%) & H' (X, Q%) — ...
Then by [SS85, p. 99] 6 can be understood as the composition
0 V(¥ 1
H(E, 9% (log E)/Q%) = H' (X, Q%) — H'(E, Q% /9% (log E) (- E)).

Thus, we get the following diagram:
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H(X, Qf;()

HO()N(, Q%(logE))

H(E, 9 (log E) /Q%)

H'(X, %) H'(E, Q% /0 (log E) ( - E))

Since ¢ is injective the map < is injective as well. Since the vertical sequence is exact, ¢
must be surjective. O

Remark. The horizontal map in the last diagram is induced by the exact sequence
0— Qi’?(logE)(—E) — Q% — Q8 — 0.

of sheaves on E. The sheaf O := Q% / Q’}( (log E)(— E) defined by this sequence is called

sheaf of torsion free p-forms on E. A prove of its properties can be found in [Kebl13],
Part IJ.

Lemma 5.2. The cohomology groups Hk()Z', C) and Hg(f(, C) carry mized Hodge struc-
tures (MHS) with filtrations F and W, such that the boundary morphism

. 770
§:HY(E, Q% (log E) Q%) — H' (B, 0% /O (log E) (- E))
can be interpreted as the map
Gro HY (X, C) — Grb HPYL(X, C)
Jor all 0 < p < dim(X).

Proof. The proof of this lemma can be found in [Nam01bl p. 7]. O

Remark. We would like to recall the fact that after shrinking X to a small analytic
neighbourhood of x € X, we get an isomorphism HA(X, C) = H¥(E, C) (see [Nam0Ib,
p. 7]). A good description of the MHS on H¥(X, C) and H%(X, C) can be found in [Ste83]

(1.5), (1.6)].

By combining the previous two lemimas the problem of ¢ being an isomorphism reduces
to the following corollary.
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Corollary 5.3. Let U := X\E be the complement of E in X. If the morphism of coho-
mology groups o HP(X C) — HP(U, C) is a surjection for some value of p < dim(X )
then v is an isomorphism for the same value of p.

Proof. Consider the exact local cohomology sequence (see [Nam01bl, p. 7])
.= HP(X,C) % HP(U, C) —» HEPY(X, ©) & B7H(X, C) -

Since « is surjective the exactness implies that 3 is injective. The map 8 however is a mor-
phism of mixed Hodge structures. Thus, Gl HZM(X, C) — Grb HPT'(X, C) is injecive.
The statement of the corollary now follows by using Lemma and Lemma O

5.B. Two Extension Theorems

In this chapter we will recall two important Extension Theorems that were proven using the
method presented in the previous chapter. In both cases the result follows from Corollary
b3l

The first result on spaces with isolated singularities was proven by van Straten-Steenbrink
in [SS85, Thm. 1.3]. In their paper they work on an arbitrary contractible Stein space with
an isolated singularity. Thus, their proof, although still using Corollary slightly differs
from our proof. The case p < n can be found in [SS85, Thm. 1.3], whereas the case p =n
follows from [SS85, Cor. 1.4].

Corollary 5.4 (Extension Theorem for isolated rational singularities). Let X be an affine
variety with rational singularities, dim(X) :=n > 2 and © € X the only singular point of
X. Letn: X > X bea log-resolution of X such that E := exc(n) is an snc divisor on X.
For0<p<n,letocc H° (X, Q[)Z;]) be a reflexive p-form on X. Then

n*(0) € H(X, Q%).

Proof. We have to consider two cases. If p = n the result follows from Corollary [L.8|
Assume that p < n. By Proposition the pull-back n*(c) € H° (X QL. (log E))is a

regular p-form on X with logarithmic poles along E. Let E’ be the d1v1sor that contains
all components of E that are mapped to z € X via 1. Since E is a reduced snc divisor,
E'’ is a reduced snc divisor as well. Note that X is smooth outside of x € X. Thus
n*(o) € H° ()Af, Q%(log E’)) We only have to show, that n*(o) has no logarithmic poles
along F’. Since proving the Extension Theorem is a local problem by Lemma we
can replace X by a small Stein open subset of an algebraic variety such that we get
an isomorphism H*(X, C) = H*(E', C) (see Remark to Lemma [5.2). We want to use
Corollary and thus have to show that the restriction map

a: HP(X, C) — HP(U, C)

is a surjection for p < n, where U := X\ F' is the complement of E/ in X. This statement
is a corollary of the decomposition theorem in intersection cohomology and goes back to
Goreski and MacPherson (see [Ste83, Thm. 1.11]). O

Remark. To get an idea how the surjectivity of o can be deduced from the decomposition
theorem in intersection cohomology we recommend the book [Dim04] of Dimca who works
on complex algebraic spaces. His version of the decomposition theorem can be found in
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[Dim04, Thm. 5.4.10]. By |[Dim04, Cor. 5.4.11] H?(X, C) contains THP(X) as a direct
summand. By Proposition 5.4.4 in the same book we know that THP(X) = HP(X\{z})
for p < n. Since x € X is the only singularity of X and E’ has support n~!(x) we also
get that HP(U) = HP(X\{z}). Since a is the restriction map H?(X, C) — HP(U, C) (see
[Ste83l, Rem. 1.10]), this implies that « is surjective.

The second result is due to Namikawa [NamO1b, Lem. 2|, who works in the setting of

Chapter

Corollary 5.5. Let X be a Stein open subset of an algebraic variety with rational singu-
larities of dimension n > 3 and x € X a point in X. Let n: X — X be a resolution of X
such that E := (n7(2))req 5 an snc divisor on X. Then

H(X, 9%) — H'(X, Q% (log E))
is an isomorphism for p € {1,2}.
Proof. We once again we want to use Corollary and thus have to show that
a: HP(X, C) — HP(U, C)

is a surjection for p € {1,2}, where U := )N(\E is the complement of E in X. Namikawa
proves this in [Nam01b, Lem. 2] by exploiting the geometric structure of HP~1(X, O%).
U

The following remark will be useful for the proof of Theorem [0.2in Chapter

Remark. Consider the exact sequence (+)
0— Q%/Q%(logE)( - E) — Q%(logE)/Q%(logE)( —E) — Q%(logE)/Q% —0

of sheaves on E we saw in Chapter Because « is surjective for p € {1,2} by Lemma
and Lemma [5.1] we can deduce that the boundary map

§: H(E, Q% (log B) Q%) — H'(E, Q% /0% (log E) (— E))
in the long exact sequence is injective for these values of p. Thus
H°(E, % /9% (log E) (— E)) = H°(B, Q% (log E) /% (log E) ( — E))

is surjective for p € {1,2}.

Corollary 5.6 (Extension Theorem for 1-, 2-forms on (X, z)). Let X be an affine variety
with rational singularities of dimensionn > 3 and x € X a pointin X. Letn: X — X bea
resolution of X such that E := (n71(x))req 15 an snc divisor on X. For 0 <p<n, let o €

HO (X, Q[)]?]) be a reflexive p-form on X such that the pull-back n* (o) € H° ()Z', Q%(log E))
15 a reqular p-form on X with logarithmic poles along E. Then n*(o) has no pole along E,
for all values 0 < p < n.

Proof. Since proving the Extension Theorem is a local problem we can restrict ourselves to
a Stein open subset of X such that the conditions of Chapter are fulfilled. By Lemma
the result now follows directly from the previous corollary. O
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5.C. Cutting down affine GIT-quotients

In this chapter we will show that affine GIT-quotients are stable under general hyperplane
sections. We later use the results of this chapter to show that affine GIT-quotient have
finite quotient singularities in codimension 2 and to prove Theorem [0.2]

Lemma 5.7. Let G be a reductive group and V o smooth affine G-variety. Assume that
the affine GIT-quotient X := VG has dimension dim(X) > 2 and let 7 : V — X be the
quotient map. Let H € |.ZL| be a general element of an ample basepoint-free linear system
corresponding to £ € Pic(X). Then the following statements hold.

(5.7.1) The diwvisor H is irreducible and normal.
(5.7.2) If H is smooth, then X is smooth along H.

(5.7.3) If n : 5( — X is a (strong) log-resolution and H := 7~ '(H), then the restriction
ng : H — H is a (strong) log-resolution with exceptional set exc(n ) = exc(n) N
H.

(5.7.4) The preimage 7~ (H) is a smooth affine G-invariant hyperplane in V and H is
the affine GIT-quotient H = 7—'(H)/G.

Proof. The first three statements can be found in [GKKP11], Lem. 2.22, Lem. 2.23|. Asser-
tion 5.7]4 can be deduced from the following observations. If 7(v) = x for some z € H and
v € V, then n(g.v) = x for all ¢ € G. Assume that for 1 <[ < n, f1,... f; € C[X]
are the defining polynomials of H = {x € X | fi(z) = --- = fi(x) = 0}. Then
YW H)={veV | fiorlv) = -+ = fiom(v) = 0}. Thus 7 !(H) is a G-invariant
hyperplane on V. This hyperplane is smooth by Bertini’s Theorem (c.f. [Har77, I11.8.18])
and affine since it is the fiber product in the pull-back diagram

Y H)—V

|

H X,

where H, X and V are affine. ]



Part IlI.
The 3-dimensional case

This part is dedicated to the proof of Theorem Recall that it is enough to prove
Theorem in the case where the good quotient X is an affine GIT-quotient (see Lemma
. We will first show that affine GIT-quotients have finite quotient singularities in
codimension 2. Then we prove Theorem by adjusting the proof of [Nam01bl Prop. 3|
to 1- and 2-forms on affine GIT-quotients.

6. Extension in codimension 2

6.A. Singularities of GIT-quotients in codimension 2

In this chapter we generalise a result by Gurjar. He showed that 2-dimensional affine
GIT-quotients have finite quotient singularities. Building on this, we use a standard cut-
ting down technique, presented by Greb-Kebekus-Kovacs-Peternell in the case of klt-pairs
(see [GKKP11l Ch. 9.CJ), to show that GIT-quotients have finite quotient singularities in
codimension two.

Proposition 6.1 (c.f. [Gur9ll Cor. 2|). Let G be a reductive group and V' a smooth affine
G-variety with affine GIT-quotient X := VJG. Assume that dim(X) = 2. Then X has
finite quotient singularities.

Proof. By Corollary we can assume that X = C"JH, where H is a reductive group
acting linearly on C”. Thus, Lemma [3.11] asserts that X has a good C*-action. Therefore,
[Pin77] has shown that X is locally isomorphic to C?/T" where T is a finite group acting
linearly on C2. g

Proposition 6.2 (Affine GIT-quotients have finite quotient singularities in codimension
2). Let G be a reductive group and V' a smooth affine G-variety with affine GIT quotient
X := V)G and quotient map © : V. — X. Then there exists a closed subset Z C X with
codimx (Z) > 3 such that X\Z has finite quotient singularities.

Remark. The proposition of course is true if dim(X) = 0 or dim(X) = 1, because in both
cases X is smooth. The case dim(X) = 2 is covered in Proposition and was proven by
Gurjar. Due to this, we will prove Proposition only for dim(X) > 3.

Proof. We basically follow the proof presented in [GKKP11, Ch. 9.C] and fill in additional
steps where they are needed. We start by reducing the problem to a more simple case:

Step 1: Recall that X is a normal variety and the singular locus 7' := Xgj,¢ has codimen-
sion at least 2. We can find a closed subset 7" C T such that every irreducible component
of T\T" has codimension 2 and codimy (7”) > 3. The assertion of Proposition [6.2] is local
on X. Thus, we may assume that 7" C X is irreducible with codimx (7) = 2.

26
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By [GKKP11], Prop. 2.25| there exists an open set X C X such that 79 := TN X° is
non-empty and a diagram
x0T . X0
finite, etale
g

SO
such that the restriction of @ to any connected component of v~1(TY) is an isomorphism.
The subspace X\(X°UT) C X is smooth and codimy (T\7°) > 3. Consequently, it is
sufficient to prove Proposition for points contained in X". Moreover, since the assertion
in the Proposition is local in the analytic topology, it suffices to prove it for the variety
XY instead, even after removing all but one component of v~ 1(T?). In conclusion we may
assume the following:

There exists a surjective morphism & : X — S with connected fibers,
such that the restriction @7 : T'— S is an isomorphism.

Step 2: We now want to reduce our problem to a case where the fibers of the morphism
& are surfaces. Let S® C S be a Zariski-open, dense subset. Then X is smooth at all
points of X\(®~1(S%) UT) and codimyx(T\@ (SY)) > 3. As above, it is sufficient to
prove Proposition for the open set #71(S%) C X only. Consider the following diagram

V"X

NP

S

For each s € S, we denote the fibers by X, := @~ !(s) and V; := 7~ }(X5) = A71(s). Then
the Generic Flatness Lemma [FGIT05, Lem. 5.12] and the Lemma allow us to assume
the following:

The morphism @ is flat. Given any point s € S the preimage X, :=
@~ !(s) is a normal surface, and moreover an affine GIT-quotient Xy =
VsJG, where Vy is a smooth variety. If t; € T is the unique point that
maps to s € S, then X is smooth away from t; € X,. Using Proposition
X, has only finite quotient singularities. In particular, X is klt
[KMO98; 5.20].

Step 3: We are now in the situation of [GKKPI1I) 9.8] and can adopt their proof from
here on. Proposition [6.2] follows from the argument in [GKKP11], 9.C.2 and 9.C.3]. O

Remark. Since the assertion of the previous proposition is local on X, by Lemma it
is true for good quotients as well.

6.B. Two Extension Theorems

Recall that in Chapter [£.C|] we have proven an Extension Theorem for good quotients with
finite quotient singularities (see Proposition 4.12)). Using Proposition we are now in a
position to prove the following two Extension Theorems.
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Corollary 6.3 (Extension Theorem for GIT-quotients in codimension 2). Let X and Z be
as in Proposition . For 0 < p < dim(X), let 0 € H® (X\Z, QE?]) be a reflexive p-form
on X\Z and n: X — X be a log-resolution. Then n*(c) € H°(n™*(X\Z), Q%)

Proof. This follows from the Extension Theorem for good quotients with finite quotient
singularities (see Proposition 4.12)). O

Remark. Similarly to the remark to Proposition [6.2], by Lemma [£.4] this Extension The-
orem is true for good quotients as well.

At this point we can already prove Theorem for dim(X) = 3 using the previous
corollary together with Corollary

Corollary 6.4 (Extension Theorem for good quotients in dimension 3). Let G be a reduc-
tive group and V' a smooth G-variety admitting a good quotient X := V|G of dimension
dim(X) = 3. Let 0 € HO(X7 Q[)Z;]) be a reflexive p-form, 0 < p < dim(X), and let
e X > X bea log-resolution. Then

n*(o) € HO(X, Q%)

Proof. Without loss of generality V' is affine and X is an affine GIT-quotient (see Lemma
. The proposition is clear for p = 0 and p = n by the Corollary . Thus we only have
to check the assertion for 1 < p < 2.

Let 0 € H° (X, QE?]) be a reflexive p-form, for 1 < p < 2. By Proposition n*(o) €
HO ()~(, Q%(log E)), where E := exc(n) is the exceptional divisor. Thus, we only have to
show that o extends on divisors contained in E. Let E' C E be any reduced component
of E. Then either n(E’") = {pt} is a point (*) or n(E’) has codimension 2 (**).

By Corollary[6.3] there exists a closed subset Z C X with codimx(Z) > 3 such that every
reflexive p-form o on X\ Z extends to a regular p-form on n~1(X\Z), for each 0 < p < 3.
Thus for each divisor E’ of type (**) the following holds: Let e € E’ be a generic point
of E’, then n*(o) is regular in e € E'. Let ¢ € E’ be an arbitrary point of E’. Since X
is smooth we can find an open neighbourhood U C X of ¢’ where Q% (log E) is free and
n*(o) is regular in a generic point of U. Then by [GW10, Thm. 6.45] n*(o) is regular in
¢/ € E'. Since ¢/ € E’ was an arbitrary point, n* (o) extends to all of E’ as a regular form.

It is only left to check that n*(o) extends as a regular form on a divisor E’ of type (*).
This case however is covered in Corollary 0

7. Proof of Theorem [0.2]

In this chapter we are going to prove Theorem First let us recall the statement.

Theorem (Extension of 1- and 2-forms on good quotients). Let G be a reductive group
and V' a smooth G-variety admitting a good quotient X := V|G of dimension dim(X) = n.
Let n : X = X bea log resolution and o € HO(X, Q[)Jz]) a reflexive p-form on X, for
p € {1,2}. Then N

(o) € HO(X, Q%).

To prove this Theorem we need the following lemma by Namikawa.
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Lemma 7.1. Let X be a normal, affine variety with rational singularities and z € X a
point in X. Let n: X — X be a resolution of X such that E := (1™ (x))red is an snc
divisor on X. Then HO(E, Q%) =0 for allp > 0.

Proof. We outline a proof that uses a Hodge-theoretic method. More details on this argu-
ment can be found in [Nam0Ola, Lemma 1.2]. Recall that the cohomology group H* (E, (C)

carries a mixed Hodge structure. Assume that H° (E, Q%) # 0 for some p > 0. Then
by Hodge symmetry we get that HP(E, Q%) = HP(E, (’)E) # 0. However, since X has
rational singularities HP ()Z', (9)}) = 0, from which one can prove that Hp(E7 OE) = 0.
This contradicts the assumption. O

Proof (of Theorem[0.4). The organisation of the following proof follows [Nam0O1bl pp. 10-
12]. Without loss of generality V is affine and X is a an affine GIT-quotient (see Lemma
[.4). By E := exc(n) we denote the exceptional divisor. Recall that F is an snc divisor.

Step 1 (Preparations): Let n := dim(X) be the dimension of X. We denote by Xging
the singular locus of X. By Corollary the extension of n*(o) is clear outside a certain
locus T' C Xing of codimx(T) > 3. Outside T' the GIT-quotient X has finite quotient
singularities only (see Proposition [6.2)). Thus it is left to check the extension of n*(o)
over T. Let E° C E be an irreducible component of E with 7° := n(E®) C T. We put
k := dim(T) — dim(7°) and prove the extension of n*(c) along E° by induction on k.

Step 2 (Case k = 0): In this case dim(7T") = dim(7T°). We set [ := codimy (7). Recall
that { > 3.

Step 2.1 (Cutting down): As in Lemma we consider n — [ general hyperplanes
Hy, ..., H,_; and denote by H := Hy N ---N H,_; a general [-dimensional complete in-
tersection in X. Let tg € T N H. Using Lemma we know the following facts. By
replacing X by a small open neighbourhood of ¢y we may assume that T°NH = {to}. The
preimage H :=n~'(H) is a resolution of singularities. Since X is an affine GIT-quotient,
H = 771(H)/G is an affine GIT-quotient as well. Thus H has a unique distinguished
singular point ¢y such that Hgng\{to} contains only finite quotient singularities. Similar
to the proof of Proposition we can replace X by a smaller neighbourhood of ¢y such
that there exists a variety S and a flat surjective morphism @ : X — S with connected
fibers, such that the restriction @|ro : T9 — S is an isomorphism and such that there exist
a point sg € S with ®~!(sg) = H. By choosing X small enough we can also ensure that
OF is trivial for all 0 < p < dim(S). Given any point s € S the preimage X, := &7 1(s) is
an I-dimension affine GIT-quotient X, = 77 1(X,)/G. If t, € T N X, is the unique point
that maps to s € S, then X, has finite quotient singularities away from t5; € X;. The map
n: XX gives a simultaneous resolution of the fibers X for s € S. Let E' C X be the
union of all irreducible components of E that map into 7°. Then E’ — S is a proper map
and by Lemma every fiber E! is a simple normal crossing divisor. Note that E! has
support =1 (ts), for all s € S.

Step 2.2 (Filtrations): We consider the composition ¥ := ®on : X — S. After shrinking
S we may assume, that ¥ is smooth. By [Kebl3, Prop. 3.11] there are filtrations

QL =F'>F' 5... o F1 5 Fitl = {0}

and
Q%(logE)=6">G' 5---5G > g = {0}
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for 0 < ¢ < dim()N() — 1, where Q%, is the sheaf of torsion free g-forms on E’. These
filtrations induce exact sequences
0— FH = Fr = (W) U 0 QF g = 0

on E' and

0" = ¢ - w50 (log ') — 0
on X for 0 < r < g, where QQET;S and Q}_/; are sheaves of relative torsion free (q —r)-forms
over S (see [Kebl3l Ch. 2.1]). In this proof we only have to consider ¢ € {1, 2}. For ¢ =1,
we have F! & (&P|E/)*Q}g and G' = lI/*Qg and get one exact sequence each:

0— (EP|E/)*Q}9 — Q%}/ — QE”/S —0

0= ¥ Qg — Q% (log E') — Q;Z,/S(log E') =0

(1)

For ¢ = 2, we have F? =2 (%E/)*Q% and G2 2 U*Q%. We set F := F! and G := G! and
get two exact sequences each:
0—F = Qh =03 6= 0

0—G—Q%(logE') — Q}/S(log E') =0

(2)

and

0— U*Q% — G — IO ®Q§~(/S(logE’) -0

(3)

Step 2.3 (The long exact cohomology sequences): Let us now consider the sequence
(+), that we have already seen in Chapter

0— Q%/Q%(logE’) (-E)— Q%(logE')/Q%(logE') (—E)— Q%(logE')/QpX — 0.
We want to prove the following claim.
Claim 1. The induced maps

v HO(E', Q5 Q% (log E') (— E')) — H'(E', Q% (log E') /% (log E) (— E'))

are surjective for p € {1, 2}.

Proof (of Claim 1). Recall from Chapter [5.A| that Q%/Q%(log E(-F) = Q’}'E, for all

0 < p < dim(X). By tensoring the exact sequence

0= Ox(—E)—= 0% - 0 —0

with Q%(logfi’), we see that Q%(logE’)/Q%(logE’)( —FE) = Q%(logE’) ® Op for all
0 < p < dim(X). This induces the natural map

O, = Q8 /O (log E') (— E) — Q% (log E') /Q% (log E') ( — E') = 0% (log E') @ Oy,
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for all 0 < p < dim(X). Similarly we get a natural map between the sheaves

AP P /
QE’/S — Q)—E/S(IOgE ) (] OE'/'
Thus, if we tensor the second sequence in (1) with Ogs we have a map from each element in
the first sequence in (1) to the second sequence, which induces the following commutative
diagram with exact columns:

0 0
HO(S, Qf) HO(S, Q)
HO(E', QL)) ——~ HO(F, 0L (log E') ® Opr) (1)
HO(E', O, g) — HO(E/, Q% s(log B') ® Op)

In this diagram we can identify H(E', ¥*Q§ ® Opr) = H°(S, Qf), because J/l”jg, :E'— S
is a proper map.

Analogous, tensoring the second sequence in each (2) and (3) with O we get the
following two commutative diagrams with exact columns:

0 0

H(E', F)

HY(E', G® Op)

HO(E', 0%) — 2~ HO(F, 0% (log E') ® Opr) (1)

HO(E, 85) 2= HO(E", 9%

X/S(log E')® Op)
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0 0
HO(S, Q%) HO(S, 02)
HO(E', F) HO(E', G ® Op) am
HO(E, @, )" 10 (B Q% (log ) ® Op)""

In diagram (III) we were allowed to exchange the map

HY(E', ()" Q5 ® Qi g) = HY (B, (#7Q5 @ Q}(«/S ® Op/)

by (u1)", because QF is trivial. Here, n — [ is the dimension of S.

We first want to show that HO(E’, Q’}},/S) = H(F, Q%/S(logE’) ® Opr) = 0 for
p € {1, 2}. Then the assertion of the Claim 1 for p = 1 follows from (I) and for p = 2 from
(IT) and (IIT).

Claim 2. H°(F/, QI;;//S) =0 for p € {1, 2}.

Proof (of Claim 2). By Lemmawe know that H?(E, Q%{) =0fors e Sandp € {1, 2}.

We assume that there exists a non-zero section 7 € H° (E’ , Q%, /S) and use the assertion
of Lemma to get a contradiction. If s € S is general then the restriction 7|z, does not
vanish,

By [Keb13l Cor. 3.10] we have the following isomorphism:

HO(EL, (O

E//S)|E§) =~ H' (E;, QI});Q)'

However, by Lemma the right-hand side is zero. This contradicts the assumption and
ends the proof of Claim 2. Q.E.D.

Claim 3. H(E', QF,

X/S(logE’) ® Opr) =0 for all p € {1, 2}.

Proof (of Claim 3). Recall from the remark to Lemmathat the maps y,(s) : H(EY, Q%/) —
H(E., Q’}(S(log E)®Op;) are surjective for all s € Sand p € {1, 2}. Thus H°(EL, Q%;) =
0 implies that H°(E, Q% (log E}) ® Op;) = 0, hence HY(E/, Q%/S(logE’) ® Opr) =0
for all p € {1, 2} by the same argument as in the proof of Claim 2. Q.E.D.

Now we can finish the proof of Claim 1 by analysing the cases p = 1 and p = 2 separately.

Case p = 1: Consider the diagram (I). The first horizontal map H° (S, Q}g) — HO (S, Q}g)
is surjective. Thus Claim 2 and 3 ensure that v, is surjective as well.
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Case p = 2: First consider diagram (III). Since the top map H° (S, Q%) — H° (S, Q%) is
surjective, Claim 2 and 3 ensure that H(E', ) — H°(E', G ® Op) is surjective as well.
This map is the first horizontal map in diagram (II). By the same argument as in the case

= 1 using Claim 2 and 3 we see that 72 is surjective. This finishes the proof of Claim 1.
Q.E.D.

Step 2.4 (Proof of case k = 0): By taking the cohomology of the exact sequence
0— Q%/Q%(logE') (-E)— Q%(logE’)/QpX(logE') (-E)— Q%(logE')/Q% —0
and by applying Claim 1 of Step 2.3 we see that the boundary map
§: H(E', Q% (log E') Q%) — H'(E', O /9% (log E') (- E'))

in the long exact sequence is an injection for p € {1, 2}. Similar to the proof of Lemma
we get that 7 : HO(X, Q%) — H(X, Q%(log E')) is surjective. This finishes the proof
of the case k = 0.

Step 3 (Case k > 0): We assume that the result holds for all cases where 0 < k < m for
some m € N and want to show it for £ = m + 1. We once again set [ := codimy (7).

Step 3.1 (Cutting down): As in Step 2.1 we consider n — [ — k general hyperplanes
Hy, ..., H,_;_ and denote by H := Hy N--- N H,_;_j a general (I + k)-dimensional
complete intersection in X. Let tog € T° N H. As before we know the following facts. By
replacing X by a small open neighbourhood of ¢y we may assume that T°NH = {to}. The
preimage H := n~(H) is a resolution of singularities. Since X is an affine GIT-quotient H
is an affine GIT-quotient as well. As in Step 2.1 we can define a flat surjective morphism
¢ : X — 5 with connected fibers, such that the restriction @jpo : T’ 0 — S is an isomor-
phism and such that there exist a point s € S with ®~!(sg) = H. Given any point s € S
the preimage X := @~ 1(s) is a (I + k)-dimension affine GIT-quotient X,. By t, € TN X,
we denote the unique point that maps to s € S. The map n: X — X gives a simultaneous
resolution of the fibers X, for s € S. Let E' C X be the union of all irreducible com-
ponents of E that map into 7°. Then E’ — S is a proper map and by Lemma every
fiber E’ is a simple normal crossing divisor. Note that E’ has support n71(¢,), for all s € S.

Step 3.2 (Proof of case k > 0): By the induction hypothesis H° ()~(, Q%(log E)) =
HO()Z', Q%(logE’)) for all p € {1, 2}. Thus we only have to prove that 7 : H° ()?, Q’}() —

HO ()N(, Q%(log E’)) is surjective for p € {1, 2}. Following the argumentation of Step 2.2
to Step 2.4 we get the result. O



Part IllI.
The 4-dimensional case

In this part we want to analyse Theorem when X is a 4-dimensional good quotient
of a smooth variety by a reductive group. Let 7 : X > X be a log resolution and
o€ H° (X7 Q[)}?) a reflexive p-form on X, 0 < p < 4. For p = 0 and p = 4, the extension
of 7*(0) to all of X without poles follows from the fact that X has rational singularities
(see Corollary [L.8). For p € {1, 2}, the result was proven in the last chapter. Thus, it is
only left to check the Extension Theorem for 3-forms.

Remark. Since dim(X) = n = 4, in this part we are interested in the special case of
an (n — 1)-form. When (X, D) is a klt-pair this case is handled separately (see [GKK10),
Prop. 6.1]). However, those kind of arguments won’t work in our situation, because of
two reasons. First of all we do not know anything about the discrepancy (see [GKKI0,
Prop. 5.1]). Secondly we do not have a duality between (n— 1)-forms and vector fields (see
[GKK10, Prop. 6.1]), because in general Kx is not Cartier and thus Ox(Kx) % Ox.

By Proposition we already know that n*(o) extends with log-poles along the ex-
ceptional divisor E := exc(n). In this case the residue sequence introduced in [EV92] is
a useful tool to show that n*(o) in fact extends without these poles. The details of this
idea will be explained in Chapter Examples how this sequence is used in the case of
a klt-pair (X, D) can be found in [GKKP1I, Rem. 11.8, 25.E|. Similar to the proof in the
klt case, we would like to split the log resolution  : X — X into a finite sequence of
surjective, birational morphisms

X o Xy =X = Xg:=X, (%)

such the following properties hold.
1. The morphism X - X is a log resolution and X} has finite quotient singularities.

2. Each morphism X;41 — X; contracts exactly one irreducible divisor that is a strict
transform of an irreducible component of E that is not contracted by X — X.

Then we can apply a modified version of the residue sequence to each step separately. The
desired sequence (*) is induced by the partial resolution algorithm of Kirwan and will be
introduced in the next chapter. A modified version of the residue sequence that can be
applied in this case will be introduced in Chapter [9.B]

8. The partial resolution of Kirwan

Let V be a smooth projective variety and suppose that a reductive group G acts linearly
on V with respect to a projective embedding V' € PV. Then V*%/G is a projective GIT-
quotient in the sense of Definition (i.e. the G-linearisation £ on V, corresponding to
the projective embedding, is ample). Throughout this chapter, whenever we consider a G-
action on a projective variety V', we think of an action of this type. By abuse of notation
we will write X = V)JG instead of X = V*G to simplify the diagrams in the following
chapters.

Theorem 8.1 (Kirwan’s partial Resolution, [Kir85 6.1, 6.3, 6.9]). Let G be a reductive
group and V a smooth projective G-variety with a G-linearisation L = Lo on V', such that

34
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we get a projective GIT-quotient X := VJG. If V5 £ (), then there exists a finite sequence
of blow-ups

F
//\ _
Vi T;Vk—l TR Vi o W=V, for k € N, (K1)

along smooth G-invariant subspaces Wy C Vi, for 0 < i < k — 1, such that we have a
G-action on each Vii1 (lifting the action on V;) and a G-linearisation L;y1 on Viy1 with
the following properties:

1. Every semi-stable point in Vj is stable (with respect to Ly).

2. For all0 <i < k—1, every lift in Vi11 of a stable (respectively not semi-stable) point
in Vi (with respect to L;) is stable (respectively not semi-stable) in Viy1 (with respect
to £i+1)-

Moreover, this sequence induces a sequence of blow-ups of the induced GIT-quotients

Xplx, P Py Ny —x (K2)

—— M A T
f

along the images WG of Wi in X; := V|G, for 0 <i <k — 1, such that the diagram

FSS
SS SS SS 88 . __ SS
ﬂ—kl Wk_li ﬂll TI'()J/— s
Jr—1 f f

commutes. Here, F*® and F'*° denote the restrictions of F; and F' to the semi-stable locus.
We will refer to this as the partial resolution of Kirwan.

Remark. The following remaks should help the reader to understand the diagram (K3)
better and should illustrate the fact that we can construct the sequence (x), presented in
the introduction to Part [I1I| from (K3).

1. In this thesis we want k € Z to be the minimal number such that the assertion of
the previous theorem are true. We call k the number of Kirwan steps.

2. Let 0 < ¢ < k—1 be an integer. The G-invariant and smooth subset W; C V; contains
all semi-stable points in V; (with respect to £;) that have a stabiliser isomorphic to
a reductive group R; C G of maximal dimension (see [Kir85, Ch. 5]). By [Kir85l
Lem. 6.1] we know that every semi-stable point in the Fjj-exceptional locus (with
respect to L;41) is no longer fixed by a conjugate of R;.

3. Since V;7* = V}? the quotient 7, : V;’* — X, is a geometric quotient and X, has only

finite quotient singularities (see Example 4.11)). Since f : X — X is surjective we
can call f a partial resolution.

4. Let By C X}, be the f-exceptional divisor in Xj. Then Ef consists of k irreducible
components F1, ..., E, where E; is the strict transform of the f;-exceptional divisor,
for 1 <i<k.
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Lemma 8.2 (The exceptional locus and fibers of the blow-ups on the level of quotients).
In the setting of Theorem[8.1], let 1 < i < k be a positive number. Consider the i-th Kirwan
step with the same notation as in the previous Theorem and the corresponding diagram:

Fss
ss t ss
sz' i—1
Wii iﬂiq
X; 7 Xi_1.
K3

(8.2.1) Let T;—q be the image W;_1JJG of Wi_1 in X;—1. Then the exceptional locus
N Ti-1) of fi is a quotient F; *(W;_1)JG (with respect to the restriction of the
linearisation L; to F;'(W;_1)) of a smooth projective variety F;, *(Wi_1) by G.

(8.2.2) Let x;—1 € T;—1 be a point in the quotient. Then there exists a m € Ny such that
fi_l(mi_l) is isomorphic to a projective GIT-quotient P J/H (with respect to some

H -linearisation on P™ ), where H C G is a reductive subgroup of G.

Proof. The first assertion follows from the definition of a blow-up of a smooth variety along
a smooth subspace and [Kir85, Lem. 3.11, Rem. 6.8]. Since W;_; is smooth and G-invariant
the preimage F; '(W;_1) is smooth with an induced G-action. By the construction of
diagram (K3) there exists a G-linearisation on F; '(W;_1), such that the GIT-quotient
F71(W;_1)/G coincides with the f;-exceptional divisor (see [Kir85, Rem. 6.8]).

The proof of the second assertion is based on [Kir85, Rem. 6.4]. Let z;—1 € T;_; be
a point in the quotient. Then there exists a v;_1 € 7TZ»__11 (x;—1) C W;—1 with closed G-
orbit. Thus, the preimage Fi_l(vi_l) is isomorphic to the projectification P(N,, ,) of
the normal space NN,, , to W;_; at the point v;_;. The stabiliser G, , acts linearly on
P(Ny,_,). This action is induced by its canonical action of on the normal space N,, ;.
Since v;i—1 € W;—1 N V;*%, the group G,, , is a reductive subgroup of G (see previous
remark, assertion 2). As before there exists a G,,_,-linearisation on P(N,, ,), such that
P(Ny, )G, , coincides with the preimage f; ' (2;—1) (see [Kir85, Rem. 6.8]). O

Remark. As we have seen in the previous lemma, the f;-exceptional locus fi_l(ﬂ—ﬂ and
the fiber of a point x;_; under the blow-up f; can be expressed as GIT-quotients of smooth
varieties. Thus, the exceptional locus and these fibers are normal varieties and the notion
of a reflexive differential form on them is well defined.

The partial resolution was formulated and proven only in the case where V is a smooth
projective G-variety with V* # (). By Corollary we can prove Theorem by reducing
to the case of an affine GIT-quotient X := V/JG of a vector space V by a group G with
linear action on V. In general this vector space might not fulfil the condition V* # (.
Thus, we need to find a partial resolution algorithm for this case as well. Since we are only
interested in the GIT-quotient X := VG, we can change G and V such that the partial
resolution algorithm of Kirwan induces a new algorithm in this case, too. As a preparation
we need the following two Lemmas.

Lemma 8.3. Let Z be a smooth variety with an action of a reductive group G. Let U C Z
be an open G-invariant subvariety admitting a good quotient m : U — UJG. If UJG is
quasi-projective, then there exists a G-linearisation on Z such that U is a G-saturated
subset of Z°°.
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Proof. The result follows from [Hau04, Thm. on p.1]. In his paper Hausen works on a
normal variety Z instead of a smooth variety and thus uses a Weil divisor D on Z for the
G-linearisation instead of a line bundle £. In Definition 1.1 he then explains that in the
smooth case, where D is Cartier (and thus corresponds to a line bundle £), his definition
of a G-linearisation induced by D coincides with the original definition of a G-linearisation
induced by £ in [MEFK94]. O

Corollary 8.4. Let V be a vector space and G a reductive group acting linearly on V. Let
X = VG be the induced GIT-quotient. Then there ezists a smooth projective G-variety
V, together with a G-linearisation on V., such that V is a G-saturated subset of V°° and
the G-action on V is linear with respect to some projective embedding.

Proof. We choose V := P(V @ C) with the induced G-action. Then the result follows from
Lemma The G-action is linear with respect to some projective embedding since any
chosen linearisation £ on P(V @ C) is ample. O

Proposition 8.5 (Kirwan’s partial resolution for GIT-quotients of vector spaces). Let G
be a reductive group acting linearly on a vector space V and consider the induced affine
GIT-quotient X := V|G. Let L = Lg be the trivial G-linearisation on V', such that V* # ().
Then there exists a finite sequence of blow-ups

F
/—\ _
Vi =% Vi—1 TR |4 ot W=7V, for k € N, (K1v)

along smooth G-invariant subspaces W; C Vi, for 0 < i < k — 1, such that we have a
G-action on each Viy1 (lifting the action on V;) and a G-linearisation L;+1 on Viy1 with
the following properties.

1. Every semi-stable point in Vj, is stable (with respect to Ly).

2. For all0 <i < k—1, every lift in Vi11 of a stable (respectively not semi-stable) point
in Vi (with respect to L;) is stable (respectively not semi-stable) in Viy1 (with respect
to £7;+1).

Moreover, this sequence induces a sequence of blow-ups of the induced GIT-quotients

Xplex, Il Py —x (K2v)
= X T X
7

along the images W;|G of W; in X; := VG, for 0 < i <k — 1, such that the diagram

FSS
SS SS SS SS — SS K
Vk‘ F]gs k—1 Flgil e F2.ss ‘/]. Flss ‘/0 * V ( 3V)
Wkl Wk_li Wll TI'()J/: ™
f Jro—1 f f1

e Xyt = X s X = X

commutes. Here, F*® and F'*° denote the restrictions of F; and F' to the semi-stable locus.
We will refer to this as the partial resolution of Kirwan for vector spaces.
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Proof. By Corollary there exists a smooth projective G-variety V togehter with some
G-linearisation such that V is a G-saturated subset in V°° and the G-action on V is linear
with respect to some embedding. Since V*® # () it follows that V° # (. Thus, Kirwan’s
partial resolution algorithm works for V and induces the diagrams (K1) — (K3). If we
consider (K3) only over V. C V™ (or X = VG respectively) the restriction defines the
diagrams (K1v) — (K3v) with the needed properties. O

Remark. By construction, the partial resolution of Kirwan for vector spaces has the

sanie properties as the original partial resolution of Kirwan. In particular, the remark to
Theorem [8.I] and Lemma [8.2] are fulfilled in this setting as well.

Lemma 8.6. Let G’ be a reductive group acting linearly on a vector space V'. Let X :=
V|G be the induced GIT-quotient. Then there exists a reductive group G acting linearly
on a vector space V' such that X = V|G and such that, using the trivial G-linearisation on
V, we have V* # ().

Proof. The existence of V' and G follows from Proposition together with the remark
to this proposition. By Corollary we know that Vs £ (). O

The previous lemma implies the following result:

Corollary 8.7. Let X be a good quotient of a smooth variety by a reductive group. Then
we can find an affine GIT-quotient V|G, where G is a reductive group acting linearly on a
vector space V' with the following properties:

1. The Eztension Theorem for V|G implies the Extension Theorem for X.
2. The partial resolution algorithm presented in Proposition works for VG.

Proof. The first assertion follows from Lemma[4.7] and Corollary 4.8 The second assertion
is a direct consequence of the previous lemma. ]

The following example illustrates the partial resolution algorithm of Kirwan.

Example 8.8. Let V, G and X be as in Example Since V is an affine G-variety
with trivial G-linearisation, we know that V*¥ = V. In Example [3.8| we have seen that the
axes of C? contain all the vectors v € V with v ¢ V* and that 0 € V*° is the semi-stable
vector that has the largest stabilizer (with respect to the dimension). Since the orbit G(0)
is closed the space along which we have to blow up according to the algorithm of Kirwan
is W :={0}. N

Consider the blow-up F : V — V of V in 0 € V. The fiber F~1({0}) is isomorphic
to PL. One can easily see that the points v1, vy corresponding to [1 : 0] and [0 : 1] € P!
are the only non-semi-stable points of \N/, because polynomials of the form Z; - Z3 vanish
only in these points. Except for v1 and vg every other point in v € V' has trivial stabiliser.
Since (V)** = V\{vi,v2} the orbit G(v) is closed in (V)**. Thus (V)** = (V)* and the
algorithm stops. The quotient VG is isomorphic to C and the induced blow-up of quotients
f: V)G — VJG is an isomorphism.

9. Preparation for Theorem [0.3

In this chapter we want to present some reduction steps and results that will help us
proving Theorem For the convenience of the reader lets recall the theorem.
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Theorem (Extension of (n — 1)-forms on good quotients). Let G be a reductive group
and V' a smooth G-variety admitting a good quotient X := V|G of dimension n > 1. Let
n: X > X bea log resolution and o € HO(X, Q[;*H) a reflexive (n — 1)-form on X.
Assume that the Extension Theorem is true for all reflexive p-forms on any good quotient

of dimension less than n. Then

n*(0) € H'(X, Q%).

9.A. Reduction steps

First we would like to recall that, since proving the Extension Theorem is a local problem,
it is enough to prove Theorem when V' is a vector space, G a reductive group acting
linearly on V and X is the induced affine GIT-quotient (see Corollary [£.8). In this chapter
we will reduce the theorem above to an extension problem concerning a single blow up step
in the partial resolution of Kirwan. Since for dim(X) < 1 the result is clear (in this cases
X is smooth), from now on we will assume that n > 2. To be able to use an induction
step we will work in the following setting:

Setting 1. Let G be a reductive group and V' a smooth G-variety admitting a GIT-
quotient X := V/JG (with respect to some G-linearisation). Assume that for V' the
partial resolution algorithm of Kirwan works and that we get the following commu-
tative diagram (we know from (K3) or (K3v) respectively):

FSS
ss m SS .__ 1/SS
Vk [ss Vk—l F'ss e ss Vl [ss ‘/O =V

k [ F3 1
Wki 7Tk1l Wll W()l
fr f Ja f

k—1

X —" Xp s X ! X := X.

Lemma 9.1. In Setting 1 there exists a log resolution n : X — X that factors through the
partial resolution of Kirwan.

Proof. Consider a strong log resolution of X} and a strong log resolution of X Then there

exists a resolution n : X — X that dominates both and fulfils the conditions of the lemma.
O

Setting 2. Let G, V and X := V//G be as in Setting 1 and 7 : X — X the resolution
introduced in the previous lemma. Then we get the following diagram:

FSS
v /—Vl\Fé Vgt =V (R

SS
Fiss Vk‘*l [ss

k—1 F2 1
Wkl Wk—li ml ﬂol
U fi fre—1 f2 fi

XMX:X
f

n
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Remark. The composition 7; ;== ng o fro---o f; : X > X, isa log resolution of Xj;, for
ie{l,...,k}.

Reduction 1. Because of the Corollary and the invariance of the choice of resolution
(see Corollary [4.3)), Theorem is a direct corollary of the following proposition:

Proposition 9.2. Let G, V, X and n : X — X be as in Setting 2 together with the
diagram (R1). Assume that dim(X) = n > 2 and that the Extension Theorem is true for

all reflexive p-forms on any GIT-quotient of dimension less thann. Let o € H° (X, Q[;_l])
be a reflexive (n — 1)-form on X. Then

n*(0) € H(X, Q"){l).

Reduction 2. Recall that X} has finite quotient singularities. By Proposition the
pull-back of any reflexive differential form on X} by 7, extends as a regular form to all of
X. Thus *(0) = ne(f* (o)) € HO()?, Q’)i(_l) exactly if f*(0) € HO(Xy, Q[;k_l]). In other
words, it is enough to show that the pull-back of o via f is a reflexive differential form
without poles on Xj.

Reduction 3. We want to show that in order to prove Proposition it is enough to
prove the following lemma:

Lemma 9.3. Let G be a reductive group and V a smooth G-variety admitting a GIT-
quotient X := V|G (with respect to some G-linearisation). Assume that for V the partial
resolution algorithm of Kirwan works and that we get the following diagram (that we know
from Setting 2)

FSS
//\
Vkss ss Vksil Fss e ss ‘/188 ss ‘/bss =V (R‘l)
k k—1 2 1
[
f

n

where n : X Xisa log resolution of X, such that the composition n; := ngo fro---o f;:
X — X; is a log resolution of X;, for i € {1,...,k}. Assume that dim(X) = n > 2
and that the Exztension Theorem is true for all reflevive p-forms on any GIT-quotient of
dimension less than n. Let o € HY(X, Q[;_H) be a reflexive (n — 1)-form on X. Then o
lifts without poles to all of X1 under the first Kirwan step fi1. In other words

o1 := fi(o) € H'(Xy, Q[;l_l]).

Assume that the assertion of Lemma[9.3]is true. Then G, V; and X; fulfil the conditions
of Setting 2 and we get a commutative diagram:
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FSS
s T
ss ss Ss
Vk Flfs Vk:—l Fljil F255 ‘/1 (R’Q)
”kl 7I'kll \Lwlzw
X Moy, fox, el Py
w
n

By renaming the elements of the diagram we can apply Lemma [9.3] and it follows that

F3(01) = f5(f1 (o)) € HO (X, Q1)

Continuing with this procedure after finitely many steps we deduce that

fiFioyf1(0) = f*(0) € HO(X, Q1)

In conclusion, using Reduction 2 we prove Proposition by repeatedly applying Lemma
to the GIT-quotients that appear in the partial resolution of Kirwan.

9.B. The residue sequence for pairs of good quotients

Let Y be a smooth variety and D C Y a reduced irreducible snc divisor. We call (Y, D)
an snc pair. For these pairs [EV92l Prop. 2.3] introduced the following exact sequence

res

0—QF — QP (log D) ™25 QP71 — 0,

for all 1 < p < dim(Y), which is called residue sequence. In the case where Y is not smooth
the residue sequence was constructed for a dlt pair (Y, D) by [GKKPI11, Thm. 11.7].
Assume that f:Y — X is a resolution of singularities of X where D is the f-exceptional
divisor and o is a reflexive p-form on X. Assume that f*(0) € H°(Y, Q. (log D)). Then
the residue sequence is a useful tool the examine whether f*(o) has logarithmic poles along
D or not. To this end, consider the induced long exact sequence of cohomology groups

0— H(Y, Q%) — H°(Y, Q% (log D)) ™ HO(D, @) — ... .

Then f*(0) € HO(Y, Q) if and only if res(f*(c)) = 0 (by abuse of notation we will
not differ between the residue map on the level of sheaves or cohomology groups). The
following lemma enables us to use a similar approach for GIT-quotients.

Lemma 9.4 (Residue sequence for good quotients). Let G be a reductive group and V a
smooth G-variety admitting a good quotient X := VJG. Let E C X be a reduced irreducible
smooth divisor on X. Then there exists a residue sequence (which is exact)

TES

0— Q¥ — QP10 B) 22 op !

for all 1 < p < dim(X), such that the restriction to the sheaves defined on the smooth locus
Xsm provides the exact residue sequence of the snc pair (Xgm, E N Xgm):

TeS‘XSIH

0— Q% — 0% (log(E N Xan)) —= Q4 — 0.
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Proof. Let i : Xgyy — X be the natural embedding of the smooth locus Xg into X.
Consider the exact sequence

TGS‘XSII]

0 Q= Q% (log(E N Xaw)) ——2my Qi L 0,

We now can use the fact that push-forward is a left-exact functor to obtain the following
exact sequence:

TCS‘X‘ . -1
sm Z*Qp

By definition of the sheaf of reflexive differential forms, this is the sequence
0 — 0 = 0P (log E) 125 qb~!

with the claimed property. ([l

9.C. Log-poles along the exceptional divisor in the first Kirwan step

Our aim is to prove Lemma[9.3] To this end we analyse the properties of the fi-exceptional
divisor F7 C X; that arises in the first Kirwan step.

Lemma 9.5. Let X be a normal variety and f : Y — X a resolution of singularities. Let
E C X be a reduced divisor on X and D C Y the strict transform of E in Y. Consider
a reflexive differential form o on X. Then o has no pole (a log-pole, a pole of degree 1 or
bigger) along E if and only if the pull-back f*(o) has no pole (a log-pole, a pole of degree
1 or bigger) along D.

Proof. Since X is normal there exists a point p € FN Xgy and a neighbourhood U C X
of p such that f is an isomorphism over U. The result of the lemma is true for oy on
E NU and thus follows for o on E. O

Corollary 9.6. In the setting of Lemma let £1 C X1 be the fi-exceptional divisor.
Then
" -1
o1:= f{(o) € HO(Xl, Q[;l ](logEl)).

Proof. Let E= exc(n) C X be the exceptional divisor on X. By Proposition m n*(o) €
HO(X, Qg‘z_l(log E)). Recall that E = E,, U (E; U---U E}) where E,, gets contracted

by mr and E; is the irreducible component of E, that is the strict transform of the f;-
exceptional divisor E; C X;, for i € {1,...,k}. Consider the log resolution 7; : X — X;
for i € {1,...,k}. Since n*(c) = nf(01) has at most a log-pole along E; it follows that

o1:= fi(0) € HO(Xl, Q[;:l] (log E1)).
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10. The proof

In this chapter we want to apply the residue sequence constructed in Lemma to the
single Kirwan step (that we consider in Lemma(9.3)) to prove Lemma(9.3|and thus conclude
Theorem [0.3] As a last preparation we need to introduce the notion of an unirational
variety.

Definition 10.1 ([Sha77, p. 208]). A wvariety X is called unirational if there exists a
dominant rational morphism @ : P™ --s» X, for some m € N.

Example 10.2. Let G be a reductive group acting on V = P". Consider a G-linearisation
on V such that we get a projective GIT-quotient X := V//G. Since the space of semi-stable
points V% is dense in V, the quotient X is a unirational variety.

Lemma 10.3. Let X be a normal unirational variely and let 0 < p < dim(X) be an

integer. Assume that for any reflezive p-form o € H° (X, Q[)I;]) on X and any resolution

f:Y — X the pull-back f*(o) extends to all of Y without poles. Then H° (X, QE?]) =0.

Proof. Let 0 € H° (X, Q[)Ié]) be any reflexive p-form on X, for 0 < p < dim(X), and let
f:Y — X be aresolution. Then f*(o) € H(Y, Qf). Since X is unirational, Y is unira-
tional as well. By [ShaT7, p. 208] we know that HO(Y, Q}.) = 0 for all 0 < p < dim(Y).
Thus f*(o) = 0 and hence o = 0. O

By Reduction 3 in Chapter [9.A] we know that Theorem [0.3|can be deduced from Lemma
Our goal is to prove this lemma. For the convenience of the reader we would like to
sum up the essentials of setting we use in the proof:

Setting 3. Let G, V and X := V//G, with dim(X) =: n > 2, be as in Lemma [0.3]
Then we get the following diagram

E'ss
Ss

Ve V=V (RD)

Ficss k—1 F'ss EE}

k—1 F3 1
ml nkll 7r1l wol
bi f f2 f

v Mk Jk—1

f

n

where 7 : X 5 Xisa log-resolution. Let Fy C X be the fi-exceptional divisor in
X; and let 0 € H(X, Q[;—*l]) be a reflexive (n — 1)-form on X. Then we want to
show that
o1 = ff(a) S HO(Xl, Q[)Z-Lfl])
n

By Corollary we know that oy € H° (Xl, QX;” (log El)) Thus we only have to
show that o; has no log-pole along Fj.

Reduction 4. Recall that there exists a closed subset Z C X with codimyx(Z) > 3,
such that X\Z has finite quotient singularities (see Proposition and remark). Set
T := Xgng N Z C X to be the closed subset of the singular locus that contains all other
points. We have to analyse two cases. If f;1(T)NFE; C X is not a divisor in X; then the
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image of a generic point of Ej lies in X\7. In this case we can show that o1 has no pole
along F1, using Corollary and Lemma

Hence let us assume for the remainder of the proof that ffl(T) N E; C X is a divisor
in Xj. Then it is enough to show that oy has no pole in a generic point of the divisor
ffl(T) N E; (see proof of Corollary . Thus, after shrinking T, we may assume that
T is irreducible of codimx (T) =: 1 > 3, By = f{'(T) and that fip, + B1 = T is a
surjective morphism. Since the extension of differential forms is a local problem we may
shrink T even further, such that T is smooth and such that the sheaf Qf. of g-forms on T
(0 < ¢ < dim(7)) is trivial for all 0 < ¢ < dim(T).

We now can prove Lemma by analysing different dimensions of 1" separately. Recall
that we work under the following assumption.

Assumption (A1). The Extension Theorem is true for all reflexive p-forms on any
GIT-quotient of dimension less than n.

Claim 1. There exists a closed subspace Z C X; with codimy,(Z) > 3 such that
XY := X7\ Z has finite quotient singularities and such that EY := FE; N X; is a smooth
irreducible divisor on Xj.

Proof (of Claim 1). Since X; and E; are GIT-quotients of smooth varieties with respect to
some G-linearisation (see Lemma [8.2)), they are normal varieties, that are smooth outside
codimension 2 and have only f.q.s. outside codimenion 3 by Proposition [6.2] Q.E.D.

Case 1 (dim(T) = 0): Let T = {z}. Then E; = f;'(z) is the fiber of z in X;. By
Lemma there exists a m € N>; and a reductive subgroup H C G, such that Ej is the
projective GIT-quotient P"/H with respect to some H-linearisation on P™. Thus Ej is
unirational by Example [10.2]

Since E7 is unirational and by Lemma a projective GIT-quotient, assumption (Al)
ensures that we can use Lemma to get the following result:

H°(By, Q) =0 for 0 < p < dim(Ey) =n — 1. (+)

Let Z, X), and EY be as in Claim 1. Recall that oy € H° (Xl, Q[)Z’;l] (log El)) Thus the

[;?] (log EY)) might have a log pole along Ef. We can
use the residue sequence constructed in Lemma [9.4] to define a (n — 1)-form « := res(o?)
on EY. Since EY = E;\Z’, for a closed subset 2/ = Z N E; C E; of codimg, (Z') > 2

and E is normal, we see that (+) implies that H°(EY, 9%32) = 0. Thus a = 0 and by
1

Lemmahence o} € HY(XY, Q[;?_l]). Since X{ = X1\ Z with codimy, (Z) > 3 and X;

is normal, it follows that oy € H° (Xl, Q[;;H). This ends the proof of Case 1.

restriction 0¥ := o11x0 € H(X?, Q

Case 2 (dim(T) > 0): Let t € T be a general point of T and the fiber f;*(t) =: F1; C Ej.
By Lemmathere exists a m; € N>1 and a reductive subgroup H; C G, such that E; is
the projective GIT-quotient P /H; (with respect to some H;-linearisation on P""*). Thus
E1 4 is unirational.

Since for all ¢ € T the fiber E;; is unirational and by Lemma a projective GIT-
quotient (and therefore normal), assumption (Al) ensures that we can use Lemma to



10 The proof 45

see that HO (ELt, Q[Ep]l t) =0 for 0 < p < dim(E ;) and for all ¢ € T. Thus, by the same
argument as in [GKKP11, Lem. 25.11|, we get the following result:

HO(E, Qg/T) =0 for 0 < p < dim(Ey). (++)

Let Z, X and EY be as in Claim 1. As before EY = E1\Z’, for a closed subset Z’ = Z N

Ey C By of codimp, (2') > 2. Then H°(Ey, Q) 1) = 0 implies that HO(EY, Q7 ) = 0.
1

Assume that o € HO(Xl, Q[;;H(logEl)) has a true log pole along F;. Then the
restriction o) = o1 x0 € H(XY, Q[;?} (log EY)) has a log pole along Ef. We can use
the residue sequence constructed in Lemma to define a non-vanishing (n — 2)-form
a:=res(0)) # 0 on EY. We will now show that such a form cannot exists.

Consider the induced morphism ¥ : EY — T of smooth varieties. After shrinking T

we may assume that ¥ is a smooth morphism. Thus, we get the following filtration (see
[Har77, II. Ex. 5.16])

M =F'oF o DF 2o F ={0}.
1
These filtrations induce exact sequences

0= F T o5 Fr v @ QE?;T -0, (S))
for all 0 < r < n — 2, where, by construction, Fn—? = W*Q%_Q. If we consider the long
exact sequence induced by the sequence above, the following is true for 0 < r < n — 2:
Assume that  is a non-vanishing section of F". Then either it induces a non-vanishing
section of ¥*Q, ® Q%E/jSr, or it comes from a non-vanishing section on 7"+, Chasing the
1

(n — 2)-form « through these sequences we get the following contradiction:

Recall that ¥*Q7. is a trivial bundle for all 0 < ¢ < dim(7T'). Thus, by (++) we see, that
HO(EY, W*Q%@Q%E?;r) =0forall0 < n—2—r <dim(E;). As a conclusion the last sheaf

1

in the sequence (S,) has no non-vanishing section for 0 < r < n — 2. Therefore, the non-
vanishing (n—2)-form a on EY induces a non-vanishing (n—2)-form o/ € H°(EY, !I/*ng2).
However, dim(7") < dim(X) — 3 = n — 3 and such a form cannot exist. As a consequence
o1 has no log pole along E; and o € H° (Xl, Q[;;l]). O



Part V.
Further results and open questions

11. Theorem [0.3| for forms of degree p <n —1

In this thesis we discussed an Extension Theorem for reflexive differential forms on an
arbitrary n-dimensional good quotient X of a smooth variety by a reductive group G. Let
us review what we learned from the thesis.

For O-forms and n-forms the Extension Theorem follows from the fact that X is normal
with rational singularities (see Corollary [1.8). Thus, Theorem not only ensures an
Extension Theorem for good quotients of dimension 0 to 3, but for reflexive 0-, 1-, 2- and
n-forms on a good quotient of arbitrary dimension n as well. Building on this, Theorem
[0.3] starts the following short induction process:

Let X be a 4-dimensional good quotient. Then assumption (A1) on page [44]is fulfilled
and Theorem yields the Extension Theorem in dimension 4. Next we consider a 5-
dimensional good quotient X. In this case, the assumption (A1) is fulfilled as well and
Theorems|0).2)and |[0.3] yield the Extension Theorem for reflexive differential forms of degree
0,1,2,4and 5 on X. If we now consider a 6-dimensional good quotient, we realise that
the assumption (A1) is not necessarily fulfilled and the induction stops.

Assume, that we could prove Theorem not only for reflexive (n — 1)-forms on X,
but for reflexive p-forms on X, for all values 2 < p < n, instead. Then the induction
described above would not stop and would yield an Extension Theorem for good quotients
of arbitrary dimension n.

In the following chapters we describe special situations in which the proof in Chapter
yields an improved version of Theorem Then we explain necessary steps that would
allow us to optimise the proof in Chapter[10|such that we would get an Extension Theorem
for good quotients of arbitrary dimension.

11.A. A Corollary of the proof in Chapter

Going through the proof in Chapter [10| we see that almost every step works for any value
2 < p < n. Only at the end of the proof of Case 2 (dim(7") > 0) one has to realise that the
extension of the reflexive p-form o to X; without poles depends on the dimension of T.
Recall from the proof, that if the reflexive p-forms ¢ has a log-pole along F4, then we can
produce a non-zero (p — 1)-form o’ on T (see contradiction on page [43]). If dim(T) < p—1
such a form cannot exist and ¢ has no logarithmic pole along E7j. This argument yields
the following corollary.

Corollary 11.1. Let G be a reductive group and V a smooth G-variety admitting an n-
dimensional GIT-quotient X := V|G (with respect to some G-linearisation). Assume that
the partial resolution algorithm of Kirwan works and let

X=X,y 2ox Iy x = x,

46
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be the sequence induced by (R1) on page such that the composition n : X3 Xisa log
resolution. Let o € H° (X, Q[)Zg]) be a reflexive p-form on X, for 2 < p < n. Assume that
the Extension Theorem is true for all reflexive q-forms on any GIT-quotient of dimension
less than n. For oll 0 < i < k —1, we want f; to be the blow-up along T; C X;. Assume
that in every step 0 < i < k — 1 we have dim(T;) < p — 2. Then

n*(o) € HO()Z, Q%)
for2 <p<n.

11.B. The case dim(7;) =0

In the setting of the previous corollary the case dim(7;) = 0 for all 0 < i < k — 1 needs
to be considered separately. If dim(7;) = 0, then in the proof presented in Chapter
we only have to consider Case 1. Since the contradiction that uses the dimension of T;
is not needed in this case, it works for a reflexive differential form o of arbitrary degree
2 < p < n. Together with Theorem we get the following result.

Corollary 11.2. Consider the setting of Corollary[11.1l Assume that in every step 0 <
i <k —1 we have dim(T;) = 0. Then

(o) € H(X, Q%)
for 0 <p<n.

11.C. How to optimise the proof in Chapter

As explained above we would like to optimise the proof in Chapter [10]such that it works for
all values 2 < p < n. In this chapter we want to present one way this could be accomplished.

The first step is to show that the left exact sequence in Lemma/[9.4]is right exact as well.
One idea is to improve a result by [Bri98| to compare the reflexive differential forms on
X with G-invariant horizontal forms on V. Then one might be able to deduce an exact
residue sequence for reflexive differential forms on X from an exact residue sequence for
G-invariant horizontal forms on V. Unfortunately we could not prove the existence of such
a residue sequence on V.

The second step is to construct filtrations (similar to the filtrations in the proof of The-
orem [0.2)) for GIT-quotients with finite quotient singularities.

Assume that the assertions of both steps can be proven. Then one could interchange the
arguments in Case 2 of the proof in Chapter [10| with [GKKP11], 25.F.2 - 25.F.4] to proof
Theorem [0.3] for all values 2 < p < n.
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