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Abstract

An automatic method for the reduction and optimization of chemical kinetic mechanisms

under specific physical or thermodynamic conditions has been developed and described

in this work. The mechanism reduction method relies on the genetic algorithm (GA)

search for a smallest possible subset of reactions from the detailed mechanism while still

preserving the ability of the reduced mechanism to describe the overall chemistry at an

acceptable error. Accuracy of the reduced mechanism is determined by comparing its

solution to the solution obtained with the full mechanism under the same initial and/or

physical conditions. For the reduction, not only the chemical accuracy and the size of

the mechanism are considered but also the time for its solution which helps to avoid stiff

and slow-converging mechanisms.

The (subsequent) optimization technique is based on a genetic algorithm that aims at

finding new reaction rate coefficients to restore the accuracy which is usually decreased

by the preceding reduction process. The accuracy is defined by an objective function that

covers regions of interest where the reduced mechanism may deviate from the original

mechanism. The objective function directs the search towards more accurate reduced

mechanisms that are valid for a given set of operating conditions. The mechanism’s

performance is assessed for homogeneous-reactor or laminar-flame simulations against

the results obtained from a given reference.

An additional term introduced to the objective function is a so-called penalty term

that influences the reaction rates during the optimization. With the penalty term,

the change to the reaction rates can be minimized, keeping them as close as possible

to their nominal values. It is demonstrated that the penalty function can be used

instead of defining the uncertainty bounds from the literature for each reaction in the

mechanism, which can be a tremendous effort when dealing with large or insufficiently

investigated mechanisms. The penalty term can also be used for further reduction of

the mechanism by driving the reaction rates towards zero during the optimization. This

approach is addressed in a greater detail in the final section of the thesis which shows the

convergence behaviour of the integer-coded reduction, the real-coded optimization and

reduction of the reduced mechanisms and the real-coded-optimization and reduction of

the full mechanism. The convergence study shows that the real-coded optimization with

the size-penalty function exhibits the fastest convergence towards one global optimum,

which makes a good case for investigating and improving the real-coded reduction as a

direct way to optimize and reduce the full mechanism at the same time. The GA-based

reduction and optimization method has shown to be robust, flexible, and applicable to

a range of operating conditions by using multiple criteria simultaneously.



Zusammenfassung

In dieser Arbeit wurde eine automatische Methode zur Reduktion und Optimierung von

chemischen kinetischen Mechanismen unter spezifischen physikalischen oder thermody-

namischen Bedingungen entwickelt und beschrieben. Die Reduktion des Mechanismus

beruht auf dem genetischen Algorithmus (GA), der nach einer kleinstmöglichen Un-

termenge von Reaktionen aus dem detaillierten Mechanismus sucht, während er die

Fähigkeit des reduzierten Mechanismus noch bewahrt, die Gesamtchemie bei einem

akzeptablen Fehler zu beschreiben. Die Genauigkeit des reduzierten Mechanismus wird

durch Vergleich seiner Lösung mit der Lösung, die mit dem vollständigen Mechanismus

unter den gleichen Anfängsbedingungen und/oder physikalischen Bedingungen erhalten

wird, bestimmt. Für die Reduktion werden nicht nur die chemische Genauigkeit und

die Größe des Mechanismus berücksichtigt, sondern auch die Simulationszeit, die hilft,

steife und langsam konvergierende Mechanismen zu vermeiden.

Die (nachfolgende) Optimierungstechnik basiert auf einem genetischen Algorithmus, der

darauf abzielt, neue Koeffizienten der Reaktionsgeschwindigkeiten zu finden, um die

Genauigkeit die üblicherweise durch den vorhergehenden Reduktionsvorgang verringert

wird, wiederherzustellen. Die Genauigkeit wird durch eine Zielfunktion definiert, die

Bereiche vom Interesse abdeckt, in denen der reduzierte Mechanismus von dem ur-

sprünglichen Mechanismus abweichen kann. Die Zielfunktion lenkt die Suche nach

genaueren reduzierten Mechanismen, die für einen bestimmten Satz von Betriebsbe-

dingungen gültig sind. Die Leistung des Mechanismus wird für Simulationen von homo-

genem Reaktor oder laminaren Flammen gegenüber den Ergebnissen aus einer gegebenen

Referenz bewertet.

Ein zusätzlicher Term, der in der Zielfunktion eingeführt wird, ist ein sogenannter

Strafterm, der die Reaktionsgeschwindigkeiten während der Optimierung beeinflusst.

Mit dem Strafterm kann die Änderung der Reaktionsgeschwindigkeiten minimiert wer-

den, sodass sie so nah wie möglich an ihren Startwerten gehalten werden. Es wird

gezeigt, dass der Strafterm verwendet werden kann, anstatt die Unsicherheitsgrenzen aus

der Literatur für jede Reaktion im Mechanismus zu definieren. Der Strafterm kann auch

zur weiteren Reduzierung des Mechanismus verwendet werden, indem die Reaktions-

geschwindigkeiten während der Optimierung auf Null gestellt werden. Dieser Ansatz

wird im letzten Abschnitt der Arbeit näher erläutert.



iv

Es wird das Konvergenzverhalten der ganzzahlig codierten Reduktion, der realcodierten

Optimierung und Reduktion der reduzierten Mechanismen, sowie der realcodierten Op-

timierung und Reduktion des vollständigen Mechanismus analysiert. Die Konvergenz-

studie zeigt, dass die realcodierte Optimierung mit dem Strafterm die schnellste Kon-

vergenz zu einem globalen Optimum hat. Das bietet einige neue Möglichkeiten für die

Erforschung und Verbesserung der realcodierten Reduktion, als direkten Weg zur gle-

ichzeitigen Optimierung und Reduzierung des vollen Mechanismus.

Die GA-basierte Reduktions- und Optimierungsmethoden haben sich als robust, flexibel

und anwendbar für eine Reihe von Betriebsbedingungen erwiesen, indem gleichzeitig

mehrere Kriterien betrachtet werden sollen.
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Chapter 1

Introduction

Combustion plays a significant role in almost every aspect of human lives and will con-

tinue as the technological demands and development evolve. Energy obtained from

combustion is primarily needed for heat and power. For instance, the challenges we face

today include conservation of energy, addressing the problem of global climate change,

environmental concerns, and together these require more efficient and cleaner combus-

tion. Beyond energy, combustion plays an important role in process technology and

materials science.

Combustion encompasses a great variety of phenomena with wide application in indus-

try, the science and its application is based on knowledge of physics, chemistry, and fluid

mechanics; their interrelationship becomes particularly evident in treating flame propa-

gation. The rapid development of computational capabilities enabled further fundamen-

tal studies and increased the confidence in predicting important combustion phenomena

by integrating comprehensive chemical descriptions into reacting flow simulations [90].

Research on combustion phenomena has been growing rapidly since the early 1970s,

being motivated by concerns for energy efficiency, safety and air pollution followed by

fast advances in computational and experimental capabilities. Combustion research has

grown in many aspects, for example, in chemical kinetics, both laminar and turbulent

flames, explosions and heterogeneous combustion. It has been found that the research

on laminar flames is of a particular importance because a wide range of combustion

phenomena can be described by treating the laminar flames as their elemental unit

[89]. Furthermore, technological advances demand further studies of complex fuels and

fuel blends as they seem to be promising alternatives to oil-derived fuels. Combustion

characteristics of these multi-component fuels are difficult to predict because of their

composition complexity and lack of experimental data for large molecules these fuels are

made of. Most of these complex molecules have a large number of isomers for which

the transport and thermodynamic properties are still unknown. Chemical kinetics of

1
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complex hydrocarbons and their blends is uncertain to a great extent, which makes

the prediction and research on the combustion characteristics more difficult. For all

these reasons, development of comprehensive reaction mechanisms for computational

fluid dynamics (CFD) calculations is fundamental.

1.1 Motivation

Comprehensiveness of a detailed reaction mechanism is crucial for a reliable description

of different combustion phenomena over a range of thermodynamic conditions. There is

no theory which can indicate whether the given mechanism is complete in terms of its

elementary reactions; the measure of its comprehensiveness is the ability of the mecha-

nism to cover all possible combustion phenomena over all observed ranges of conditions

[90]. Typical phenomena a comprehensive mechanism should cover include ignition (with

and without the diffusion effects), laminar steady flames, flame quenching, premixed and

non-premixed combustion, explosions, unsteady effects, pollutant chemistry, and all that

under varying pressure, equivalence ratio and composition of the reacting mixture. The

purpose of a detailed mechanism is not only to reproduce the available experimental

results it was validated against, but also to predict chemical behavior of the system for

which the experimental investigation is difficult, too expensive or impossible. Further-

more, detailed mechanisms also provide insight into chemical processes. The detailed

chemical mechanisms are not only used for combustion modelling but also for other pur-

poses, for example for atmospheric chemistry [10]. Increasing the comprehensiveness of

the mechanism correspondingly increases the demand on the computational resources.

However, because the comprehensiveness and size of a detailed mechanism are propor-

tional to the number of phenomena and parameters the mechanism was developed for,

the mechanism can be reduced if the range of conditions for which it will be used is

limited. For example, if one is not interested in predicting emissions of NOx, then the

nitrogen kinetics may not be considered. However, a complete elimination of nitrogen

chemistry might influence the catalysing effect of nitrogen in hydrocarbon species forma-

tion/consumption. Therefore, elimination of species and/or reactions from a mechanism

is not a trivial task [90].

1.2 Objectives and Outline

The present work is dedicated to developing a software tool for the analysis, reduction

and optimization of the reaction mechanisms on simple models (transient reactors and

one-dimensional laminar flames) to make them less expensive for further application in
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large-scale CFD simulations. The aim is to design a reduction and optimization method

which is easy to use, does not require in-depth chemical knowledge from the user, robust,

applicable to a wide range of reaction mechanisms and flexible in terms of a desired

trade-off between the accuracy of the resulting mechanism and its computational cost.

The present thesis is structured as follows: Chapter 1 introduces the significance of

investigating chemically reacting flows and popular trends in combustion science. Then,

the mathematical modelling of the reacting flows with specific attention to laminar

flames and homogeneous reactors (which are used for mechanism evaluation in this

work) followed with detailed description of finite-rate chemistry modelling and the need

for mechanism simplification is described in Chapter 2. Chapter 3 gives an overview

of the most popular existing methods for mechanism reduction and optimization. The

reduction/optimization method developed in this work is described in Chapter 4 and its

important aspects are then demonstrated for several different mechanisms in Chapter 5.

A summary of the presented work and recommendations for the future work are outlined

in Chapter 6.





Chapter 2

Modelling of Reacting Flows

The aim of this chapter is to provide an overview of mathematical representations of

reacting flows, with specific attention to zero- and one-dimensional models as these are

used in the present work. These models are often used as a base for approximating more

complex systems as well.

Reacting flows are modelled using equations which govern fluid flows extended by ad-

ditional terms to account for the chemistry. Unlike non-reacting flows, reacting flows

must be described as a mixture of multiple components that react, thus contributing

to variations in the composition and temperature of the mixture. Interactions between

chemically reacting components (species) are usually described by a system of ordinary

differential equations (ODEs). In the following sections, the mathematical modelling of

reacting cases is explained in greater detail.

2.1 Thermodynamic Quantities of a Multicomponent Gas

For a complete understanding of the chemistry in a multicomponent gas consisting of

Ns components, it is important to clarify basic relations between different measures of

concentration for each component.

Mass-based Quantities

Mixture density ρ is the total mass m of the mixture per occupied volume V :

ρ =
m

V
(2.1)

5
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The total mass m of the mixture is the sum of masses mk of its individual components:

m =

Ns∑
k=1

mk, (2.2)

therefore the mixture density in terms of partial densities ρk of the components is:

ρ =
m

V
=

1

V

Ns∑
k=1

mk =

Ns∑
k=1

ρk (2.3)

The mass fraction of the individual component Yk is the component mass mk divided

by the total mass of the mixture m:

Yk =
mk

m
=
ρk
ρ

(2.4)

Therefore,
∑Ns

k=1 Yk = 1.

Amount-of-Substance-based Quantities

Amount of substance is a quantity proportional to the number of entities (e.g. atoms,

molecules, ions) in a given sample of substance. The standard unit of the amount of

substance in the International System of Units is the mole, which is defined as the

amount of substance that contains an equal number of elementary entities as there are

atoms in 12 g of the isotope carbon-12 (12C). This number is the numerical value of the

Avogadro constant NA = 6.022140857 · 1023 mol−1.

Total molar mass M of the mixture is equal to its total mass m divided by the total

amount of substance n of the mixture:

M =
m

n
(2.5)

Analogously, the molar mass Mk of the component k is the mass mk divided by the

amount of substance nk of the component:

Mk =
mk

nk
(2.6)

Molar concentration [Xk] of the component k, is the amount of substance of the com-

ponent k contained in a unit volume of the mixture. Knowing the relation between

the amount of substance of any species, nk, its mass mk and its molar mass Mk, mass
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concentration of the species k is related to its molar concentration [Xk] by:

[Xk] =
ρk
Mk

(2.7)

Mole fraction Xk of the species k is the ratio of the amount of substance of the component

k in a volume V to the total amount of substance n in the same volume:

Xk = nk/n (2.8)

Therefore,
∑Ns

k=1Xk =
∑Ns

k=1 nk/n = 1. The mean molar mass M of the mixture can be

now defined as:

M =

Ns∑
k=1

MkXk (2.9)

Thermal Equation of State for an Ideal Gas

If the observed multicomponent mixture is an ideal gas, relations between the mass

terms and the molar terms are obtained using the ideal gas law:

ρ =
pM

RT
, (2.10)

or in terms of the molar concentration of the components in the mixture

p =

Ns∑
k=1

[Xk]RT, (2.11)

where p is the thermodynamic pressure, R = 8.314 J/(mol · K) is the universal gas

constant, and T is the temperature of the gas. The mass and the mole fraction of the

component k are related by:

Yk =
XkMk

M
(2.12)

Mean molecular mass of the mixture now can be expressed as:

M =

(
Ns∑
k=1

Yk
Mk

)−1

(2.13)

Molar concentration in terms of mass and mole fractions is

[Xk] =
ρYk
Mk

and [Xk] =
ρXk

M
(2.14)
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For an ideal mixture of Ns gases, the total pressure p is the sum of the partial pressures

pk of the components k:

p =

Ns∑
k=1

pk where pk =
ρRT

Mk
(2.15)

Expressing the mixture composition as mass fraction Yk yields:

p =
1

V

Ns∑
k=1

nkRT = ρ
YkRT

Mk
(2.16)

The thermodynamic properties of the reacting gas change significantly with the temper-

ature and the gas composition. Therefore, the energy expressions for reacting gases are

more complex than those used in classical fluid dynamics. For ideal gases, the pressure

dependence of thermodynamic properties is negligible [74]. The specific heat capacities

of the component k at a constant volume cvk and at a constant pressure cpk are related

by

cpk − cvk = Rmk, (2.17)

where Rmk is the gas constant of the individual component k, Rmk = R/Mk.

The specific heat capacity cpk is the quantity expressed per unit mass of the component k

and is related to its molar heat capacity cMpk by cpk = cMpk/Mk. Analogously, cvk = cMvk/Mk

The specific heat capacity of the multicomponent mixture at a constant pressure can be

expressed as:

cp =

Ns∑
k=1

cpkYk =

Ns∑
k=1

cMpkYk/Mk (2.18)

and at a constant volume as:

cv =

Ns∑
k=1

cvkYk =

Ns∑
k=1

cMvkYk/Mk (2.19)

Since the heat capacities are functions of the temperature and the mass fractions of the

species in the reacting mixture, they may change significantly from one point to another.

For practical purposes, specific heat capacities for single species are often represented

in the form of temperature-dependent polynomials [27]. The ratio of the heat capacity

at constant pressure to the heat capacity at constant volume is an adiabatic index

γ = cp/cv.
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Specific enthalpy of the mixture is

h = hs +

Ns∑
k=1

∆h0
f,kYk, (2.20)

where hs is the sensible specific enthalpy of the mixture expressed as:

hs =

∫ T

T0

cpdT (2.21)

and h0
f,k is the specific enthalpy of formation for species k at the reference temperature

T0 = 298, 15 K, which is the standard-state temperature at which the experimental data

for h0
f,k are obtained. The standard-state enthalpy of formation is sometimes available

from theory. Alternatively, for many classes of species the enthalpies of formation can be

estimated using ”group additivity” rules [14–16]. Analogously to Eq. 2.20, the specific

internal energy of the mixture is:

e = es +

Ns∑
k=1

∆h0
f,kYk, (2.22)

where the sensible energy is:

es = hs − p/ρ =

∫ T

T0

cpdT −RT/M =

∫ T

T0

(cv +R/M) dT −RT/M

=

∫ T

T0

cvdT +

∫ T

T0

(R/M) dT −RT/M

Thus

es =

∫ T

T0

cvdT −RT0/M (2.23)

hk =

∫ T

T0

cpkdT + ∆h0
f,k (2.24)

The relation between the mass and the molar enthalpy of formation for species k is:

∆h0
f,k = ∆h0,M

f,k /Mk

The total specific enthalpy of the system is:

h =

Ns∑
k=1

hkYk =

Ns∑
k=1

(∫ T

T0

cpkdT + ∆h0
f,k

)
Yk =

∫ T

T0

cpkdT +

Ns∑
k=1

∆h0
f,kYk (2.25)
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Enthalpy and energy are related by the specific work done by an applied pressure p by

e = h− p/ρ. Therefore, it can be written:

e =

Ns∑
k=1

(∫ T

T0

cpkdT −RT/Mk + ∆h0
f,k

)
Yk

=

Ns∑
k=1

(∫ T

T0

cvkdT −RT0/Mk + ∆h0
f,k

)
Yk

=

∫ T

T0

cvkdT −RT0/M +

Ns∑
k=1

∆h0
f,kYk

Thus

e =

Ns∑
k=1

ekYk (2.26)

Specific entropy of the species k is defined as:

sk = s0
k −

R

Mk
lnXk −

R

Mk
ln

p

p0
(2.27)

where s0
k is a standard-state specific entropy at standard pressure p0 = 101325 Pa defined

as:

s0
k =

∫ T

T0

c0
pk

T
dT + sk(0) (2.28)

The specific entropy of the mixture is therefore:

s =

Ns∑
k=1

(
s0
k −

R

Mk
lnXk −

R

Mk
ln

p

p0

)
Xk (2.29)

In practice, the specific entropy and the specific enthalpy for single species are, anal-

ogously to the specific heat capacities, usually represented as temperature-dependent

polynomials [27]. The polynomial NASA parametrization is shown in section 2.5.1.

2.2 Conservation Laws - Low Mach Number Assumption

Conservation equations describe the fluid motion, heat and mass transport processes and

consider the chemical reactions between the fluid components (if the fluid is a mixture

of many different components). Derivation of these equations can be found in some

standard books such as from Kee et al. [74], Kuo [82], Poinsot and Veynante [139],

Williams [198] and Yeoh and Yuen [202]. The conservation equations considered in

the present work are given as partial differential equations in the Eulerian framework
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(i.e. the control volumes are ”fixed” in space through which the fluid flows). Spatial

coordinates and time are independent variables.

The conservation laws are quantitatively related to the fixed control volume (CV) by

the substantial derivative as (here, density is constant):(
dN

dt

)
system

=

[
ρ
Dη

Dt

]
CV

δV, (2.30)

where N is the extensive variable (e. g. total mass, momentum or energy), ρ is the fluid

mass density and η is the intensive variable (η = N/m).

For the Eulerian control volume, the Reynolds transport theorem gives the momentum

conservation as: [
ρ
DV

Dt

]
control volume

δV =
∑

F (2.31)

where V is the fluid velocity vector. In general, the conservation law states that the

rate of accumulation of an extensive property is equal to the net transport rate of the

property across the surface bounding the system plus the net rate of internal generation

of the property (creation minus destruction):(
dN

dt

)
system

=
(
Ṅin − Ṅout

)
+ Ṅgen (2.32)

Mass Conservation (Continuity Equation)

The continuity law states that no mass can be created or destroyed within the observed

control volume. Chemical reactions produce and destroy individual species, but the

overall mass does not change, and is only transported by convection. Here, the extensive

variable from Eq. 2.30 is mass (N = m) and the intensive variable is η = 1. The

continuity equation in differential form can be written as:

Dρ

Dt
+ ρ∇ ·V = 0 (2.33)

Momentum Conservation (Navier-Stokes Equations)

The conservation of momentum is generally stated as:(
dP

dt

)
system

=
∑

F, (2.34)
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where the momentum vector is P, time is t and F are the forces acting on the system.

The extensive variable (Eq. 2.30) is the momentum vector (N = P) and intensive

variable is the velocity vector η = V, as the momentum is P = mV.

A general differential form of the Navier-Stokes equations for a constant density is:

ρ
dV

dt
+ ρ (V ·∇) V = ρg + ∇ · T + µ∇2V = ρg−∇p+ ∇ · T′ + µ∇2V, (2.35)

where T is the stress tensor generally represented in terms of nine components of the

stress vector τ as:

T =


τii τij τik

τji τjj τjk

τki τkj τkk

 (2.36)

The viscous tensor is formulated as:

τij = −2

3
µ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.37)

where µ is the dynamic viscosity of the fluid and δij is the Kronecker symbol

δij =

1 if i = j

0 otherwise.

Although the Navier-Stokes equations are non-linear differential equations that cannot

be solved analytically, there are situations that allow significant simplifications of the

equations. In case of incompressible flows, the velocity divergence term can be neglected,

i.e. ∇ · V ≈ 0 owing to the fact that the fluid density remains constant independent

from changes in its velocity and pressure. Another criterion for compressibility is asso-

ciated to the speed of sound throughout the fluid, which in case of liquids is very high.

When the speed of sound is much higher than the fluid velocities, the fluid is considered

incompressible. Although the gases are compressible, from the Navier-Stokes equations

point of view, they behave as incompressible when their velocities are low as the pressure

variations are small and the density remains constant. For the continuity equation 2.33,

that means:

∇ · (ρV) = V · (∇ρ) + ρ∇ ·V = 0 (2.38)

The flow acts as incompressible when

|V · (∇ρ)| � |ρ∇ ·V| (2.39)
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Species Conservation

The continuity equation does not consider the composition of the flow, which may consist

of multiple species. Furthermore, the mass continuity equation does not include the

diffusion of molecules across the control surfaces and there is no creation nor destruction

of the overall mass, which clearly does not apply to individual species taking part in

chemical reaction. In the conservation equation for the individual species, the extensive

variable is the mass mk of the individual species k (N = mk) and the intensive variable

is its mass fraction Yk = mk/m (η = Yk). In a Eulerian framework, the differential form

of the species conservation equation is given by:

ρ
DYk
Dt

= −∇ · jk + ω̇kMk, (2.40)

where jk is the diffusive mass flux and ω̇k is the rate of production of species k.

The diffusive mass flux is defined as:

jk = ρk

(
Ṽk −V

)
= ρkVk = ρYkVk, (2.41)

where Ṽk is the average velocity vector of species k relative to fixed coordinates, V is

the mass average velocity vector, and Vk is the diffusion velocity vector for the species

k. (The mass-flux vector is positive for the mass flux in the direction of increasing

coordinate.) The diffusion velocity vector is defined as (Fick’s formulation):

Vk = − 1

Xk
D′km∇Xk, (2.42)

where D′km is a mixture-averaged diffusion coefficient for species k relative to the rest

of the mixture. Employing Eq. 2.42 into Eq. 2.41 yields:

jk = −ρ Yk
Xk

D′km∇Xk = −ρMk

M
D′km∇Xk (2.43)

It is convenient to use the ratio of the molecular weights rather than Xk for the flow

regions that do not contain species k, thus avoiding division with zero.

A more general formulation of the diffusion velocity is offered by the multicomponent

approach [34]:

Vk =
1

XkM

Ns∑
j 6=k

MjDkjdk −
DT
k

ρYk

1

T
∇T, (2.44)

where Dkj is the matrix of ordinary multicomponent diffusion coefficients, ∇Xk are the

thermal diffusion coefficients and dk is the vector of concentration gradients and pressure
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fields:

dk = ∇Xk + (Xk − Yk)
∇p

p
(2.45)

Energy Conservation

The energy equation is primarily used to determine the temperature fields of the fluid

and is strongly coupled to the momentum equation through the convective terms and

to the species equation as the chemical reactions and molecular transport significantly

influence the thermal energy of the fluid. The energy equation is derived from the first

law of thermodynamics which states that the rate of change of total stored energy Et is

equal to the rate of heat Q transferred to the system plus the rate of work W done on

the system:
dEt
dt

=
dQ

dt
+
dW

dt
(2.46)

The extensive variable in the energy equation is Et and the intensive variable is the total

specific energy et = Et/m. The total energy equation in vector form is written as:

ρ

(
De

Dt
+ V · DV

Dt
− g ·V

)
= ∇ · (λ∇T )−

Ns∑
k=1

∇ · hkjk + ∇ · (V · T) (2.47)

Summary of the Conservation Equations

In Cartesian coordinates, the conservation equations (for the constant density cases) can

be summarized as follows [74]:

Overall mass conservation:
∂ρ

∂t
+ ∇ · (ρV) = 0 (2.48)

Momentum (Navier-Stokes) conservation (constant density):

ρ
DV

Dt
= ρ

[
∂V

∂t
+ (V ·∇)V

]
= ρ

[
∂V

∂t
+ ∇

(
V ·V

2

)
+ V× (∇×V)

]
= f + ∇ · T = f−∇p+ ∇ · T′

(2.49)

Species conservation:

ρ
DYk
Dt

= −∇ · jk + ω̇kMk (2.50)

Thermal energy conservation:

ρ
Dh

Dt
=
Dp

Dt
+ ∇ · (λ∇T )−

Ns∑
k=1

∇ · hkjk + Φ (2.51)
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2.3 Molecular Transport

The molecular transport of species, momentum and energy in a multicomponent gas

requires calculation of mass diffusion coefficients, viscosities, thermal conductivities

and thermal diffusion coefficients. There are mainly two approaches to describing the

transport properties of the mixture, depending on the application, namely the mixture-

averaged and the multicomponent approach. A more detailed description of the trans-

port phenomena and theories used for calculating the transport coefficients can be found

in the books from Bird [19] or Curtiss and Hirschfelder [34]. In the following, a brief

summary of the expressions used to evaluate the transport coefficients is presented.

2.3.1 Mass Diffusion

The mass diffusion coefficient is the proportionality constant relating the species con-

centration gradient to the mass flux and is derived from the kinetic theory of gases.

Self-diffusion is a random displacement of the species molecules in the absence of a

chemical potential gradient (i.e. no changes in chemical composition of the component).

The self-diffusion coefficient expression is based on the kinetic gas theory [69]:

Dkk =
3

8

√
πk3

BT
3/mk

pπσ2
kΩ

(1,1)∗

kk

(2.52)

The binary mass diffusion coefficient is described by the Chapman-Enskog theory [74]

in terms of pressure and temperature as:

Dij =
3

16

√
2πk3

BT
3/mij

pπσ2
ijΩ

(1,1)∗

ij

, (2.53)

where kB is the Boltzmann constant, T is the absolute temperature, σij is the length-

scale in the interaction between the two molecules, mij is the reduced mass of molecules

i and j

mij =
mimj

mi +mj

and Ω
(1,1)∗

ij is a collision integral which is a function of the temperature and the potential

between the molecules.

In case of the mixture-averaged approach, three different expressions for the diffusion

coefficient of species k into the mixture are used [74]:
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1) a mixture-averaged diffusion coefficient D∗km for calculating the molar flux J∗k with

respect to the molar average velocity as a function of the mole fraction gradient of

the species k,

2) a mixture-averaged Dkm for calculating the mass flux jk with respect to the mass

average velocity as a function of the mass fraction gradient of species k,

3) D′km for calculating the mass flux jk with respect to the mass average velocity as is

a function of the mole fraction gradient.

The molar diffusive flux is related to the species mole fraction gradient by a Fickian

expression [74]:

J∗k = [Xk]
(
Ṽk −V∗

)
= −cD∗km∇Xk (2.54)

where V∗ is the molar average velocity:

V∗ =
1

c

Ns∑
k=1

[Xk] Ṽk =

Ns∑
k=1

XkṼk (2.55)

and Ṽk is the average velocity of all molecules of species k at a fixed point in the fluid.

The total molar concentration c of all species is c =
∑Ns

k=1 [Xk]. Therefore:

[Xk] Ṽk −Xk

Ns∑
j=1

[Xj ] Ṽj = −cD∗km∇Xk (2.56)

Using the Stefan-Maxwell equation which relates the diffusion velocities to the field

gradients:

∇Xk =

Ns∑
j=1

XkXj

Dkj
(Vj −Vk) + (Yk −Xk)

(∇p
p

)
+

Ns∑
j=1

XkXj

ρDkj

(
DT
j

Yj
− DT

k

Yk

)(∇T
T

)
,

(2.57)

where DT
j and DT

k are thermal diffusion coefficients, one can write (for isothermal and

isobaric conditions):

∇Xk = −
Ns∑
j=1

XkXj

Dkj

(
Ṽk − Ṽj

)
(2.58)

By equating Eqs. 2.57 and 2.58 and assuming that the velocities of all species j 6= k are

equal, we obtain:

D∗km =
1−Xk∑Ns
j 6=kXj/Dkj

(2.59)

The mixture-averaged diffusion coefficient Dkm, relating the mass flux jk with respect

to the mass average velocity as a function of the mass fraction gradient of species k:

jk = ρ
(
Ṽk −V

)
= ρYkVk = −ρDkm∇Yk, (2.60)
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is calculated from:

Dkm =

 Ns∑
j 6=k

Xj

Dkj
+

Xk

1− Yk

Ns∑
j 6=k

Yj
Dkj

−1

(2.61)

The mass flux jk with respect to the mass average velocity a function of the mole fraction

gradient is expressed as:

Vk = − 1

Xk
D′km∇Xk (2.62)

Finally, the mixture-averaged diffusion coefficient D′km is calculated from:

D′km =
1− Yk∑Ns

j 6=kXj/Dkj
(2.63)

The multicomponent diffusion coefficients are computed from the solution of an equation

system defined by the L matrix (see Appendix A). Since there is no reliable mixture-

averaged theory for calculating the thermal diffusion coefficients DT
k , the multicompo-

nent approach is used to obtain DT
k for cases where the thermal diffusion is considered.

2.3.2 Conductivity

The pure species thermal conductivities are required only for calculation of the mixture-

averaged thermal conductivities as the mixture conductivity in the multicomponent

approach does not depend on the conductivities of pure species. The pure species thermal

conductivities λk are assumed to consist of translational, rotational, and vibrational

contributions as given by [192]:

λk =
ηk
Mk

(ftrans.Cv,trans. + frot.Cv,rot. + fvib.Cv,vib.) , (2.64)

where

ftrans. =
5

2

(
1− 2

π

Cv,rot.

Cv,trans.

A

B

)
, (2.65)

frot. =
ρDkk
ηk

(
1 +

2

π

A

B

)
, (2.66)

fvib. =
ρDkk
ηk

, (2.67)

A =
5

2
− ρDkk

ηk
, (2.68)

B = Zrot. +
2

π

(
5

3

Cv,rot.

R
+
ρDkk
ηk

)
(2.69)
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The expressions for the individual molar heat capacities differ depending on the linearity

of the molecule. If the molecule is linear, then:

Cv,trans. =
3

2
R, Cv,rot. = R, Cv,vib. = Cv −

5

2
R (2.70)

If the molecule is not linear:

Cv,trans. =
3

2
R, Cv,rot. =

3

2
, Cv,vib. = Cv − 3R (2.71)

If the species k is a single atom, there are no rotational and vibrational contributions to

the molar heat capacity, hence:

λk =
5

2
µk
Cv,trans.

Mk
(2.72)

The thermal conductivity is calculated from the thermal conductivities of pure species

and their mole fraction as [109]:

λ =
1

2

(
Ns∑
k=1

Xkλk +
1∑Ns

k=1Xk/λk

)
(2.73)

The multicomponent thermal conductivities are calculated from the solution of the sys-

tem of equations defined by the L matrix (Appendix A).

2.3.3 Viscosity

The single component (pure species) viscosities are given by the standard kinetic theory

expression [69]:

µk =
5

16

√
πmkkBT

πσ2
kΩ

(2,2)∗
, (2.74)

where σk is the Lennard-Jones collision diameter, mk is the molecular mass, kB is the

Boltzmann constant, T is the temperature and Ω(2,2)∗ is the collision integral which

depends on the reduced temperature T ∗k :

T ∗k =
kBT

εk
, (2.75)

and the reduced dipole moment:

δ∗k =
1

2

µ2
k

εkσ
3
k

(2.76)

In the above expression, εk is the Lennard-Jones potential well depth and µk is the

dipole moment.
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The mixture viscosity is evaluated using the pure species viscosity and binary diffusion

coefficients. Wilke [197] proposed a semi-empirical formulation of the viscosity:

µ =

Ns∑
k=1

Xkµk∑Ns
j=1XjΦkj

, (2.77)

where

Φkj =
1√
8

(
1 +

Mk

Mj

)− 1
2

[
1 +

(
µk
µj

) 1
2
(
Mj

Mk

) 1
4

]2

(2.78)

2.4 Canonical Cases

Investigation and interpretation of chemical kinetics in a combustion regime is per-

formed by employing several common experimental configurations: batch or static reac-

tors, continuosly stirred reactors, shock tubes and laminar flames. These configurations

are made in such way that facilitates both the measurements (temporal and/or spatial

species concentrations, temperature, pressure, etc.) and the modelling, under a cer-

tain range of operating conditions. Such experiments and their corresponding models

enable development and validation of reaction mechanisms [74, 193, 194]. In the follow-

ing, the mathematical modelling of several typical canonical configurations (one- and

zero-dimensional) are presented.

2.4.1 One-dimensional Laminar Flames

Propagation of premixed laminar flames is a phenomenon occuring in many practical

combustion setups [67, 68], e.g. internal combustion engines, gas turbine combustors,

and in laboratory enviroments to study chemical kinetics of combustion [113, 114]. Such

flame configurations can be made very steady and effectively one-dimensional, which

enables experimental measurements of the temperature and the species profiles [74, 77]

and investigating the combustion of various fuel-oxidizer mixtures, thus understanding

the combustion process itself [97, 166]. Modeling of laminar flames facilitates the inter-

pretation of experimental findings, enables development and validation of kinetics for

combustion and pollutant formation [75, 112, 115, 116].

A full mathematical description of the chemically reacting flow requires specification

of temporal and spatial variations of pressure, temperature, density, velocity and the

concentrations of the individual species at each point of the reacting system. Modelling

of flames therefore has to consider all these properties as their variations are the result of

different phenomena typically occuring in a flame (convection due to fluid flow, molecular
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diffusion, heat conduction, chemical reactions and radiation). All the reacting systems

are generally described by the conservation equations disscussed in Section 2.2 so that the

main difference between the specific systems is the choice of their individual boundary

and physiochemical conditions. Assumptions made for simplifying the complex nature

of the general conservation laws when these are applied to the premixed flat flames are

the following [192]:

• the reacting gas is considered ideal,

• effects of the external forces (e.g. gravity) are negligible,

• the flow is subsonic (low Mach number) which makes the pressure variations neg-

ligible,

• the kinetic energy of the flow is neglected,

• the reciprocal thermal diffusion effect is negligible,

• effects of radiation are negligible (which is valid for non-sooting flame),

• the system is continuous (the mean free path of molecules is small compared to

the flame thickness),

• the flame is steady-state (no temporal variation of the properties),

• the system is in local thermal equilibrium,

• the chemical reactions, the convective and diffusive transport occur only in one

spatial dimension.

All these assumptions yield the following simplified formulations of the conservation

equations in z-direction:

Mass continuity:
∂ρ

∂t
+
∂ρu

∂z
= 0 (2.79)

Axial momentum:

ρ
∂u

∂t
+ ρu

∂u

∂z
= −∂p

∂z
+

∂

∂z

(
µ
∂u

∂z

)
(2.80)

Species conservation:

ρ
∂Yk
∂t

+ ρu
∂Yk
∂z

= −∂jk,z
∂z

+ ω̇kMk (2.81)

Thermal energy:

ρcp
∂T

∂t
+ ρucp

∂T

∂z
=

∂

∂z

(
λ
∂T

∂z

)
−

Ns∑
k=1

cpkjk,z
∂T

∂z
−

Ns∑
k=1

hkω̇kMk (2.82)

Although the flame is considered steady-state, the transient terms are kept only for the

purpose of the ”hybrid” numerical solution [74]. Furthermore, the continuity equation
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can be rewritten in terms of the net mass flux ṁ′′ as:

ṁ′′ = ρu (2.83)

Since the pressure is usually known (e.g. from the laboratory conditions) and the pres-

sure variations are negligible compared to the pressure value, and the local density can

be evaluated from the equation of state (with known temperature and mass fractions),

the axial momentum equation is no longer necessary. Now the species equation becomes:

ρ
∂Yk
∂t

+ ṁ′′
∂Yk
∂z

= −∂jk,z
∂z

+ ω̇kMk (2.84)

and the energy equation:

ρcp
∂T

∂t
+ ṁ′′cp

∂T

∂z
=

∂

∂z

(
λ
∂T

∂z

)
−

Ns∑
k=1

cpkjk,z
∂T

∂z
−

Ns∑
k=1

hkω̇kMk (2.85)

Boundary Conditions

The mass flux ṁ′′ can either be specified at the burner inlet (burner-stabilized flame) or

determined as part of the solution (adiabatic freely-propagating flame). The governing

equations for both flames are the same, they differ only in their boundary conditions.

For the burner-stabilized flame, values of the mass flux, the temperature at the burner

inlet (z = 0) are explicitly given. The unburned gas composition (Yk) is usually known

as well, but due to the diffusive fluxes from the flame into the burner, it is not convenient

to give the composition in terms of mass fractions. Instead, the following condition is

given in order to preserve the balance of the species fluxes at the burner inlet:

ṁ′′εk = ṁ′′Yk + ρYkVk, (2.86)

where

εk = Yk +
jk,z
ṁ′′

(2.87)

and the values of εk are specified. The mass fractions Yk, diffusion velocities Vk and

mass density ρ are computed as part of the solution [164]. The boundary condition after

the flame is that all gradients are zero.

The burner-stabilized flame configuration is the most often used for analyzing species

profiles in experiments. Such flames are stabilized on top of a porous metal cylindrical

burner through which the reactants are fed with a known mass flow rate. In experimental

setups, the operating pressure is usually low to distribute the reaction zone so that the

spatial distributions of the temperature and the species can be measured [74].
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For the adiabatic freely-propagating flame, the inlet mass flux is not known. The condi-

tion imposed to compensate the lack of the mass flux value is the temperature specified

at some point of the grid so that Eq. 2.85 is satisfied, and the specified temperature

must be equal to the resulting temperature at this point. All gradients must be zero at

both boundaries to prevent diffusive losses of species or energy from the system. The

laminar burning velocity for this type of flame is easily calculated from sL = ṁ′′/ρ once

the ṁ′′ is found [165].

A freely-propagating flame model is normally used to determine the characteristic flame

speed of the gas mixture at specified pressure and inlet temperature. This model does not

consider heat losses, therefore the temperature is computed from the energy equation.

Alternatively, if the heat losses are significant, the temperature profile can be obtained

from the experiment and used as an input for the flame simulation. In this case, only

the species transport equations are solved. Since the chemical kinetics strongly depends

on the temperature, the accurate temperature profiles are important for specifying the

chemical kinetics behavior. As the laminar flame speed partly depends on the heat

transport, the temperature profile is essential for the flame speed calculation [77].

2.4.1.1 Parallel Flow

Parallel flows are the flows for which only one velocity component is different from zero,

i.e. the flow is unidirectional. In these cases the governing equations can be reduced

to linear ordinary or partial differential equations by exploiting physical situations that

permit a significant simplification of the Navier-Stokes equations [74]. These simplifi-

cations and the flame models that are reduced to one-dimensional flames by employing

the simplifications are described in the following.

2.4.1.2 Stagnation-Point Flow

Similarity assumptions are not the same as the approximations or assumptions made to

simplify or neglect certain physical properties of the system, but they enable complete

representation of two-dimensional behavior as one-dimensional for specific boundary

conditions [74]. A basic principle of the similarity assumption is that there exists a

viscous boundary layer in which the temperature and species composition depend on

one independent variable only. This implies an infinite domain in directions orthogonal

to the remaining independent variable. (Of course, no real problems have an infinite

domain. Therefore it is important to identify the real problems for which the similarity

assumptions are sufficiently valid.) The similarity assumptions that permit the problem

to be treated as spatially one-dimensional are the following [74, 192]:
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• there may be a circumferential velocity component w, but there are no variations

of any variable in the circumferential direction,

• radial velocity varies linearly in the radial direction (the fluid properties are func-

tions of the axial distance only),

• the solution is considered only along the stagnation stream line.

The one-dimensional system of conservation equations for axisymmetric steady-state

stagnation flame is given in following [74]:

Continuity equation:
d(ρu)

dz
+ 2ρV = 0 (2.88)

Radial momentum:

− 2U
d

dz

(
1

ρ

dU

dz

)
+

1

ρ

(
dU

dz

)2

− ρ
(w
r

)2
= −1

r

∂p

∂r
− d

dz

[
µ
d

dz

(
1

ρ

dU

dz

)]
, (2.89)

where it is convenient to write

1

r
· ∂p
∂z

= Λr = constant (2.90)

and

ρu = 2U, ρ
v

r
= ρV = −dU

dz
and

w

r
= W (2.91)

Therefore, the radial momentum can be written in a simpler form as:

ρu
dV

dz
+ ρ

(
V 2 −W 2

)
= −Λr +

d

dz

(
µ
dV

dz

)
(2.92)

Axial momentum:

4U
d

dz

(
U

ρ

)
= −dp

dz
+

4

3

d

dz

[
2µ

d

dz

(
U

ρ

)
+
µ

ρ

dU

dz

]
− 2µ

d

dz

(
1

ρ

dU

dz

)
, (2.93)

or in a simpler form:

ρu
du

dz
= −dp

dz
+

4

3

d

dz

[
µ
du

dz
− µV

]
+ 2µ

dV

dz
(2.94)

If there is a circumferential velocity component W , the circumferential momentum is:

2Ur
dW

dz
− rdU

dz

∂rW

∂r
− rdU

dz
W =

= r
∂

∂z

(
µ
∂W

∂z

)
+
∂

∂

[
µ

(
∂rW

∂r
−W

)]
+

2µ

r

(
∂rW

∂r

)
(2.95)
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Dividing by r and eliminating any radial derivatives of W or ρ yields the desired

stagnation-flow circumferential momentum equation:

ρu
dW

dz
+ 2ρVW =

d

dz

(
µ
dW

dz

)
(2.96)

Assuming that the temperature and composition of the gas are functions of z alone, the

thermal energy equation is:

ρucp
dT

dz
=

d

dz

(
λ
dT

dz

)
−

Ns∑
k=1

ρYkVkcpk
dT

dz
−

Ns∑
k=1

hkMkω̇k (2.97)

and the species conservation:

ρu
dYk
dz

= − d

dz
(ρYkVk) +Mkω̇k (2.98)

The equation of state for a perfect gas gives the mass density when the mean pressure,

the local temperature and the local composition is known:

p = ρRT

Ns∑
k=1

Yk
Mk

(2.99)

The axial momentum equation is no longer needed to calculate the velocity, temperature

and composition, but it can be used to calculate the axial pressure gradient. The

second-order equations (momentum, energy and species) require specifying boundary

conditions at both ends of the z domain, particularly information about V , W , T and

Yk. The continuity equation requires specifying u on one boundary. In the following,

two commonly used flame configurations are briefly presented, namely the impinging jet

and the counterflow flame.

Impinging Jet

In the diffusion opposed-flames case, the fuel and the oxidizer flows are separated, im-

pinging on each other and only mixing at the flame zone (shaded region in Fig. 2.1).

Location of the flame depends on the stoichiometry of the fuel and the oxidizer and it

does not neccessarily occur at the stagnation plane of the flow field. An opposed-flow

diffusion flame configuration is illustrated in Fig. 2.1, right. Opposed flow configura-

tions are used for both the premixed and nonpremixed (diffusion) flames in combustion

experiments. The counterflow configuration, although physically two-dimensional (there

are two velocity components), allows the flame to be treated as spatially one-dimensional

by using the similarity assumptions thus enabling the researchers to model and study
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the opposed flames with detailed chemical kinetics. Opposed-flow diffusion flames have

been extensively used to test flammability of various fuel/oxidizer systems [33] and to

evaluate fire suppressants where the fire suppression is approximated with an experi-

mental configuration of fuel impinging upon air to which a suppression agent has been

added [40, 133].

Flat flames can also be made to impinge onto surfaces. Such configurations can be used

to study the effects of strain on the flame structure (important for investigating the

fluid-mechanical effects encountered in turbulent flows) or to study the effect of a cold

surface (an engine or furnace wall) onto the flame structure [47].

The following conservation equations mathematically describe one-dimensional imping-

ing jets [74].

Continuity equation:
d(ρu)

dz
+ 2ρV = 0 (2.100)

Radial momentum:

ρ
dV

dt
=

d

dz

(
µ
dV

dz

)
− Λr − ρu

dV

dz
− ρV 2 (2.101)

Energy equation:

ρcp
dT

dt
= −ρcpu

dT

dz
+

d

dz

(
λ
dT

dz

)
−

Ns∑
k=1

ρYkVkcpk
dT

dz
−

Ns∑
k=1

hkMkω̇k (2.102)

Species equation:

ρ
dYk
dt

= −ρudYk
dz
− d

dz
(ρYkVk) +Mkω̇k (2.103)

Counterflow Flame

In the following, the steady-state description of an axisymmetric non-premixed flame

occuring between two concentric, circular nozzles opposing to each other (Fig. 2.1,

right) is given.

The stagnation plane is located between the nozzles, as a result of momentum balance

of the two streams [76]. The flame is typically established on the oxidizer side of the

stagnation plane, where the stoichiometry is reached (more oxidizer than fuel is needed

by mass, for most of the fuels). The resulting flames are flat and are easily reduced from

two-dimensional to one-dimensional problems by assuming that the flame properties are

functions of the axial distance only (similarity assumptions), thus allowing for detailed

study of the chemistry and flame structure in laboratories. The conservation equations
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for the opposed-flow are the same as for the stagnation flow (Section 2.4.1.2) with the

following boundary conditions:

z = 0 : U =
ρFuF

2
,

dU

dz
= 0, T = TF, ρuYk + ρYkVk = (ρuYk)F (2.104)

z = L : U =
ρOuO

2
,

dU

dz
= 0, T = TO, ρuYk + ρYkVk = (ρuYk)O (2.105)

At the stagnation plane:

z = L/2 : U = 0,
dU

dz
= 0,

dT

dz
= 0,

dYk
dz

= 0, (2.106)

where L is the distance between the inlets and indices F and O stand for fuel and oxidizer

at the inlets, respectively.

Fuel +
Oxidizer

r

z

Oxidizer

Fuel

r
z

u
v

Figure 2.1: Axisymmetric stagnation premixed flame (left) and counterflow diffusion
flame (right) configuration. The dashed line represents the stagnation plane and the

shaded region depicts the flame.

The opposed-flow laminar diffusion flames are normally more complicated than the cor-

responding premixed flames due to difficulties associated with an adequate description of

two- or three-dimensional flows with the detailed chemistry. However, one-dimensional

treatment of the opposed-flow diffusion flames enable these systems to be regularly used

for studying combustion chemistry [74].

2.4.2 Zero-Dimensional Reactors

The mixture composition of a well-stirred or homogeneous reactor is assumed to be

spatially uniform, which means that the rate of conversion of reactants to products is

controlled only by chemical kinetics and not by mixing processes. This assumption sig-

nificantly simplifies the mathematical model thus enabling investigations of the kinetics
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and computation of large detailed chemical reaction mechanisms with minimal computa-

tional demand. Conservation of mass, energy, and species for the homogeneous reactor

include net generation of chemical species within the reactor volume, and net loss of

species and mass to surfaces in the reactor. Examples of homogeneous systems widely

used for the investigation of chemical kinetics are closed batch reactors, single-zone

engine-cylinder models, perfectly-stirred reactors, and well mixed (low-pressure) plasma

reactors. In the following, the conservation equations for zero-dimensional reactors are

listed below.

Conservation of mass:
dmk

dt
= ω̇kMkV (2.107)

Conservation of species:
dYk
dt

=
ω̇kMkV

ρ
, (2.108)

where the mass density follows from equation of state for an ideal gas (for fixed pressure

and temperature) as:

ρ =
p

RT
∑
Yk/Mk

The rate of change of internal energy is balanced by the rate of heat transferred to the

system and the rate of work done on the system:

dE

dt
=
dQ

dt
+
dW

dt
(2.109)

Energy Conservation for a Constant-volume Homogeneous System

A simple constant-volume reactor with no external work done on the system is consid-

ered. The heat can be transferred to the system at a rate given by Newton’s law:

dQ

dt
= αA (T∞ − T ) , (2.110)

where α is the heat-transfer coefficient, A is the area of the surface through which the

heat is transferred and T∞ is the temperature of the environment. The net internal

energy of the system in terms of a mass-weighted sum of the individual internal energies

of the components is:

E = m

Ns∑
k=1

ekYk (2.111)

Substituting Eqs. 2.110 and 2.111 into Eq. 2.109, and representing the specific internal

energy in terms of the temperature and the constant-volume specific heat yield the
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energy equation:

ρcv
dT

dt
= −

Ns∑
k=1

ekω̇kMk +
αA

V
(T∞ − T ) (2.112)

Energy Conservation for a Constant-pressure Homogeneous System

The heat transfer to the system where the pressure is held fixed is represented with Eq.

2.110 and the work is done by the system as its volume expands (i.e., dV/dt > 0). Thus

the work term in this case takes a negative sign (in Eq. 2.109, positive work means work

done on the system):

dW

dt
= −pdV

dt
= −p

Ns∑
k=1

d (mkvk)

dt
= −pm

Ns∑
k=1

Yk
dvk
dt
− pm

Ns∑
k=1

dYk
dt

(2.113)

where vk = 1/ρk is the specific volume of the species k. Substituting Eq. 2.113 into

Eq. 2.109, and representing the specific enthalpy in terms of the temperature and the

constant-pressure specific heat, the energy equation becomes:

ρcp
dT

dt
= −

Ns∑
k=1

hkω̇kMk +
αA

V
(T∞ − T ) , (2.114)

where the volume V = m/ρ varies with time.

2.5 Modeling of Chemical Kinetics

A chemical reaction is essentially the exchange and/or rearrangement of atoms between

colliding molecules [74, 192]. Chemical kinetics is the study of the rate at which the

chemical reactions proceed. The rate at which a chemical species is formed (product) or

consumed (reactant) is described by a rate expression that is usually empirically deter-

mined. For example, the observed rate r of the phenomenological (observed) reaction:

aA + bB→ P

is represented in terms of concentrations of the reactants as:

r = k[A]a[B]b

where k is the rate constant, a is the reaction order with respect to reactant A and b is

the reaction order with respect to reactant B. The overall order of the reaction is a+ b.

The order of reaction is a quantity that describes the dependence of the reaction rate



Chapter 2. Modelling of Reacting Flows 29

on the concentration of the reactants. The order of reaction is determined empirically.

Often it is not an integer, and may or may not be related to the stoichiometric coefficients

of the reactants. Introductory textbooks in chemical kinetics describe how to determine

the reaction order of a reaction from experimental data [52, 74, 89].

Often the observed rate of destruction of the reactant species may be due to the net

contribution of several (elementary) reactions taking place simultaneously. Therefore

one must distinguish between the observed (also called macroscopic, empirical or phe-

nomenological) chemical rate expressions and the rates of elementary reactions. For

example, a global stoichiometric reaction for methane oxidation is:

CH4 + 2O2 
 CO2 + 2H2O

The chemical conversion of reactants to products mainly depends on the temperature,

the concentration of the reactants and the presence of a catalyst or inhibitor [52]. In a

chemical reaction, the atoms are conserved (C, H and O), while the molecules are not

(CH4, O2, CO2 and H2O). However, since the global reactions are valid only in a narrow

range of conditions that cannot be extrapolated outside these conditions, the chemistry

is rather described in a step-by-step manner. A few elementary reactions which take part

in methane oxidation (GRI-Mech 3.0) are shown below as an example of step-by-step

chemistry description along with the Arrhenius rate coefficients [163]:

OH + CH3 
 CH2 + H2O
(
5.6 · 107, 1.6, 5420

)
OH + CH4 
 CH3 + H2O

(
1.0 · 108, 1.6, 3120

)
OH + CO 
 H + CO2

(
4.76 · 107, 1.2, 70

)
OH + HCO 
 H2O + CO

(
5.0 · 1013, 0, 0

)
In a reacting multicomponent mixture, interaction between the species can generally be

represented as:
N∑
k=1

ν ′k,iχk ⇔
N∑
k=1

ν ′′k,iχk i = 1, . . . NR (2.115)

where ν ′k,i is the molar stoichiometric coefficient of reactant k of reaction i in forward

direction, χk is symbol for reactant k, ν ′′k,i is the molar stoichiometric coefficient of

reactant k of reaction i in reverse direction and NR is the total number of reactions.

The conservation of mass gives:

N∑
k=1

ν ′k,iMk =
N∑
k=1

ν ′′k,iMk i = 1, . . . NR (2.116)
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The rate of progress qi for the reaction i is defined as the difference between the forward

and the reverse reaction rates:

qi = kfwd,i

Ns∏
k=1

[Xk]
ν′k,i − krev,i

Ns∏
k=1

[Xk]
ν′′k,i (2.117)

where kfwd,i and krev,i are the forward and the reverse rate constants of the reaction i,

respectively. The rate of progress can be positive or negative, depending on the direction

(forward or reverse) in which the reaction is proceeding faster. The rate of production

of species k is defined in terms of the rate of progress as:

ω̇k =

NR∑
k=1

νk,iqi (2.118)

where

νk,i = ν ′′k,i − ν ′k,i (2.119)

The forward rate constant is usually modelled by the modified Arrhenius temperature

dependence:

kfwd,i = AiT
βi exp

−Ea,i
RT

(2.120)

where Ai is the pre-exponential constant, βi is the temperature exponent and Ea,i is the

activation energy for the reaction i. When the reaction is in equilibrium, the forward

reaction rate is equal to the reverse rate and qi = 0, which gives:

kfwd,i

Ns∏
k=1

[Xk]
ν′k,i = krev,i

Ns∏
k=1

[Xk]
ν′′k,i (2.121)

and the reverse rate constant can be expressed by:

kfwd,i = krev,i ·
∏Ns
k=1 [Xk]

ν′′k,i
equil∏Ns

k=1 [Xk]
ν′k,i
equil

(2.122)

where [Xk]
ν′′k,i
equil and [Xk]

ν′k,i
equil are the equilibrium values of the molar concentrations of

species k in reaction i.

Using Eq. 2.119, Equation 2.122 can be written as:

kfwd,i = krev,i

Ns∏
k=1

[Xk]
νk,i
equil (2.123)
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Furthermore, it is convenient to write:

Kc,i =

Ns∏
k=1

[Xk]
νk,i
equil (2.124)

which is the equilibrium constant in the concentration units. In pressure units, the

equilibrium constant is defined as:

Kp,i =

Ns∏
k=1

(
pk
p0

)νk,i
equil

(2.125)

where pk is the partial pressure of species k and p0 is the standard-state pressure. For

an ideal gas it holds that

pk = [Xk]RT (2.126)

Substituting the molar concentration [Xk] from Eq. 2.126 into Eq. 2.124 yields:

Kc,i =

Ns∏
k=1

( pk
RT

)νk,i
equil

(2.127)

Relation between Eq. 2.127 and Eq. 2.125 is then

Kc,i = Kp,i

Ns∏
k=1

(
p0

RT

)νk,i
equil

(2.128)

or

Kc,i = Kp,i

(
p0

RT

)∑Ns
k=1 νk,i

(2.129)

On the other hand, the equilibrium constants can be expressed from reaction thermo-

chemistry:

Kp,i = exp

(
∆S0

i

R
− ∆H0

i

RT

)
(2.130)

where the net change in entropy ∆S0
i and enthalpy ∆H0

i in the reaction i is given by:

∆S0
i =

Ns∑
k=1

νk,iS
0
k (2.131)

and

∆H0
i =

Ns∑
k=1

νk,iH
0
k (2.132)
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Because the reverse rate constant krev,i can be obtained from Eq. 2.123 as:

krev,i =
kfwd,i

Kc,i
(2.133)

it is more convenient to specify only the forward rate coefficients Ai, βi and Ea,i for each

reaction in a reaction mechanism rather than specifying the rate coefficients in both

directions. The reverse rate constants are then calculated from the Eq. 2.133 using

the thermodynamic properties defined for each species in the mechanism (see 2.5.1).

Although the rate coefficients in the mechanism can be given for both directions, one

must ensure that the given thermodynamic properties of the species are fully consistent

with the explicitly specified reverse rate coefficients, which can be rather complicated

for complex reaction mechanisms [74].

2.5.1 Reaction Mechanisms

Chemical kinetics can be described by few different approaches depending on the com-

plexity of the reacting system [74]. The fast chemistry approach (infinitely fast reactions

and chemical equilibrium) assumes that the rate of chemical conversion is not controlled

kinetically, i.e. the chemical reaction is instantaneous.

The finite rate chemistry approach (global reactions, analytically reduced reaction mech-

anisms and detailed reaction mechanisms) assumes that the conversion is kinetically

controlled. The finite rate chemistry is described with a set of elementary reactions

which represent the chemical process on a molecular level. An elementary reaction in

most cases involves breaking or forming of only one chemical bond between the reacting

atoms and it proceeds as it is written. The reaction order of an elementary reaction is

integer. A collection of the elementary reactions with all the data necessary to solve dif-

ferential equations related to chemical kinetics and thermodynamics represent a reaction

mechanism.

Each species in the mechanism must be described by their transport (molecular weights,

Lennard-Jones parameters, thermal conductivity, viscosity) and thermodynamic prop-

erties (heat of formation, enthalpy and heat capacity). For each elementary reaction,

reactants, products and forward rate coefficients must be specified. In many reaction

mechanisms, where only forward rate coefficients are given for reversible reactions, re-

verse rates are determined from the mass-action law (see Eq. 2.133). Alternatively,

reversible reaction may be written in form of two irreversible reactions that proceed

in forward directions each of them having explicitly specified rate coefficients. A care-

fully developed and well validated reaction mechanism provides the most accurate and

reliable model for the finite rate chemistry [74].
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Thermodynamic data for each species in a reaction mechanism are typically given as

arrays of 14 coefficients for a polynomial fit [27, 28]. The first seven coefficients corre-

spond to the low temperature range specified in the mechanism as [Tmin, Tmid] and the

other seven correspond to the high temperature range [Tmid, Tmax]. The first polynomial

is fit for the low temperature region (typically 300−1000 K) and the second polynomial

is fit for the temperature region important for combustion (typically 1000 − 6000 K).

The two polynomial branches are ”pinned” at Tmid and constrained to reproduce exactly

the Tmid value (1000 K) to assure that the both branches will match at Tmid without

discontinuity [27, 28]. The standard molar heat capacity for species k is then calculated

as:
C0
p(T )

R
= a1T

−2 + a−1
2 + a3 + a4T

1 + a5T
2 + a6T

3 + a7T
4

The standard molar enthalpy and entropy are determined by integration of the specific

heat in respect to the temperature:

H0
p (T )

RT
= a1 +

a2

2
T +

a3

3
T 2 +

a4

4
T 3 +

a5

5
T 4 +

a6

6

and the entropy is calculated from

S0(T )

R
= a1 lnT + a2T +

a3

2
T 2 +

a4

3
T 3 +

a5

4
T 4 + a7

A typical definition of elementary chain reactions in a hydrogen oxidation mechanism

[130] with defined forward rate coefficients Ai, βi and Ea,i, respectively is given below.

Units are cm3, mol, s, kcal and K.

H + O2 
 O + OH
(
1.91 · 108, 0.0, 16.44

)
O + H2 
 H + OH

(
5.08 · 104, 2.67, 6.292

)
OH + H2 
 H + H2O

(
2.16 · 108, 1.51, 3.43

)
O + H2O 
 OH + OH

(
2.97 · 106, 2.02, 13.4

)
To make a simulation of combustion processes as realistic as possible, equally realis-

tic description of the reacting fluid flow, transport phenomena, chemical properties of

the fuel and chemical reactions are mandatory. Development of comprehensive reaction

mechanisms is motivated by capturing all the important chemical properties of the fuel

over as many as possible operating conditions (temperature, pressure and the mixture

composition). Furthermore, fuels that have been used in practical combustion engines

in recent years consist of complex hydrocarbons or their blends (e.g. surrogates) and

combustion of such fuels can only be described with complex reaction mechanisms. The

comprehensiveness of the reaction mechanisms has the advantage to capture non-linear
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and non-monotonic nature of combustion kinetics [89, 105] under different operating

conditions. To demonstrate this complex behavior of chemical kinetics, an example of

hydrogen combustion taken from Lu and Law (2009) [105] is cited below.

Figure 2.2: Schematic of the three explosion limits of homogeneous hydrogen-air
mixtures, showing the non-monotonic system response. The controlling reactions in
different regimes are also shown. Taken from Lu and Law, 2009 [105] and reprinted

with permission.

Triple pressure-temperature explosion limits of a homogeneous hydrogen-oxygen mixture

is illustrated in Fig. 2.2. Depending on the pressure-temperature values, the mixture ex-

hibits explosive, non-explosive and again explosive behavior (at a moderate temperature,

as the pressure increases). It has been found that such behavior is caused by different

elementary reactions which occur in different temperature-pressure regions. Capturing

such complex phenomena requires detailed kinetics modeling.

More detailed explanation and examples of the importance of comprehensiveness of

reaction mechanisms are given by Law (2006) [89] and Lu and Law (2009) [105].

2.5.2 Types of Gas-Phase Reactions in a Mechanism

In a reaction mechanism, there are different types of the elementary reactions recognized.

The individual reaction types typically occuring during combustion are presented in the

following.
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2.5.2.1 Temperature-dependent Reactions

In atmospheric kinetics, the temperature dependence of rate constant k is usually de-

scribed by the so called original Arrhenius equation :

k = A exp

(−Ea
RT

)
However, in the high-temperature gas-phase chemistry (combustion and pyrolysis), the

modified Arrhenius equation is commonly used (Eq. 2.120).

k = AT β exp

(−Ea
RT

)
For reaction rate constants described by the modified Arrhenius equation, the activation

energy changes with the temperature. Most of the gas-phase reactions in a combustion

mechanims are of this type.

2.5.2.2 Third-body Reactions

For some reactions, specifically recombination or dissociation reactions, a so called ”third

body” is required to enhance the collision efficiency [74]. For example, in a reaction

H + O2 + M 
 HO2 + M,

the third body M is a collision partner which takes away the excess energy to stabilize the

HO2 molecule (forward direction) or supplies energy to break the HO2 bond (reverse

direction). Different species may be more or less effective in acting as the collision

partner. A species that is much lighter than H and O2 may not be able to transfer

much of its kinetic energy, and so would be inefficient as a collision partner. When a

third body is needed, the concentration of the effective third body must appear in the

expression for the rate-of-progress variable:

qi =

(
Ns∑
k=1

εk,i [Xk]

)(
kfwd,i

Ns∏
k=1

[Xk]
ν′k,i − krev,i

Ns∏
k=1

[Xk]
ν′′k,i

)
, (2.134)

where εk,i is collision efficiency of third body k in reaction i. If all the species in the

reacting gas contribute equally to the reaction i as third bodies, then εk,i = 1 for all the

species and the total molar concentration of the mixture is then:

Ns∑
k=1

[Xk] = [M ] (2.135)
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Some species are more efficient as the collision partners then are others. For example,

in the reaction example given above, water is much more efficient as a third body than

nitrogen is, therefore the rate of this reaction is much higher when the third-body partner

is H2O [74].

2.5.2.3 Pressure-dependent reactions

Under certain conditions, the rate of some reaction types depend not only on temper-

ature but on the pressure as well. Such behavior is characteristic for so-called uni-

molecular/recombination fall-off reactions (their rates increase with increasing pressure)

and chemically activated bimolecular reactions (their rate decrease with increasing pres-

sure), which are two types that are most frequently found in combustion mechanisms

[138]. This section gives an overview of rate expressions for pressure-dependent reactions

typically occuring in combustion mechanisms.

Unimolecular/Recombination Fall-off Reactions

As an example of a unimolecular/recombination fall-off reaction, methyl recombination

is considered. In the high-pressure limit, the appropriate description of the reaction is:

CH3 + CH3 
 C2H6

In the low-pressure limit, a third-body collision is required to provide the energy neces-

sary for the reaction to proceed, therefore the appropriate description of this reaction

is:

CH3 + CH3 (+M) 
 C2H6 (+M)

When such a reaction is at either limit, the (solely temperature-dependent) rate expres-

sions discussed previously are applicable. However, when the pressure and temperature

are such that the reaction is between the limits, the rate expressions are more compli-

cated. To denote a reaction that is in this ”fall-off” region, the reaction is written with

the positive + M enclosed in parentheses.

The Arrhenius rate parameters are required for both the high- and low-pressure limiting

cases, and the Lindemann form [96, 138] for the rate coefficient relates them in a pressure-

dependent rate expression. In Arrhenius form, the parameters are given for the low-

pressure limit (k0) and the high-pressure limit (k∞) as follows:

k0 = A0T
β0 exp (−E0/RT )
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and

k∞ = A∞T
β∞ exp (−E∞/RT )

The rate constant at any pressure is then calculated as:

k = k∞

(
Pr

1 + Pr

)
F (T, Pr) ,

where Pr is a so-called reduced pressure defined as:

Pr =
k0 [M ]

k∞

and [M ] is the concentration of the mixture, which can also include the third-body

efficiencies. The fall-off function F (T, Pr) proposed by Gilbert et al. [51] is:

logF =

[
1 +

(
logPr + c

n− d (logPr + c)

)2
]−1

logFcent,

where the constants are [177, 178]:

c = −0.4− 0.67 logFcent,

n = 0.75− 1.27 logFcent,

d = 0.14

and

Fcent = (1−A) exp (−T/T3) +A exp (−T/T1) + exp (−T2/T )

The parameters A, T3, T1 and T2 are specified for each reaction of this type.

The approach taken at Stanford Research Institute (SRI International) [170] is somewhat

similar to that explained above, but the blending function is approximated as:

F = d [a · exp (−b/T ) + exp (−T/c)]X T e,

where X =
[
1 + (logPr)

2
]−1

and the parameters a, b, c, d and e must be specified. Pa-

rameters d and e were not considered by Stewart et al. [170] but were added by Kee et

al. [74, 77] to increase flexibility. Figure 2.3 illustrates the pressure dependent behavior

of a fall-off unimolecular rate constant [32].
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Figure 2.3: An illustration of a fall-off unimolecular rate constant as function of
pressure

Chemically Activated Bimolecular Reactions

Total pressure also affects the rate constant for a class of bimolecular reactions called

chemically activated reactions. A generic example is the reaction of molecules A and B

to form products D and E, but where an alternate reaction is a recombination of the

reactants to form the stable molecule C. An example of this type of chemical activation

reaction is [74, 77]:

CH3 + CH3 
 H + C2H5,

which competes with its alternative:

CH3 + CH3 
 C2H6

Like fall-off reactions, chemically-activated reactions are described by blending between

a low pressure and a high pressure rate expression. The difference is that the forward

rate constant is written as being proportional to the low pressure rate constant:

k = k0

(
Pr

1 + Pr

)
F (T, Pr)

and the optional blending function F (T, Pr) may be described by any of the parameter-

izations allowed for the fall-off reactions described above.

Pressure dependence using logarithmic interpolation (p-log reactions)

Apart from the unimolecular and chemically activated reactions, there are other reac-

tion types that also display pressure dependence, such as radical-radical recombination,
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addition of radicals to multiple bonds, dissociation and isomerization reactions, etc.

[32]. The rate expression for some pressure-dependent reactions is often given by a so-

called p-log formulation by interpolating logarithmically between Arrhenius expressions

at different pressures for which the separate rate coefficients are given [182, 204]:

ln k = ln ki + (ln ki+1 − ln ki)
ln p− ln pi

ln pi+1 − ln pi

Individual reaction rates are calculated using a modified Arrhenius rate expression using

the rate coefficients individually listed with discrete pressures. At least two different

pressures must be specified along with the corresponding rate coefficients. In some

cases, more than one set of rate coefficients is given for one pressure point. The reaction

rate for the given pressure is then calculated as the sum of the sets of rates. If the

current pressure during the simulation is within 1% of one of the pressures for which

the rate coefficients are given, then that set of rate parameters will be used directly

[77]. However, if the current pressure falls in between the listed pressure values, then

the rate will be evaluated using a linear interpolation of ln k as a function of ln p. In

case a pressure of interest is lower than any of the listed pressures, the rate coefficients

for the lowest pressure are used. Likewise, if the current pressure is higher than any of

the pressures provided, the rate coefficients for the highest pressure are used [55, 77].

Multiple-channel (Chebyshev Reactions)

A method for approximating the pressure- and temperature-dependent behavior of

multiple-well reactions proposed by Venkatesh et al. [187, 188] uses Chebyshev ex-

pansions (instead of the modified Arrhenius) for approximating the rate coefficients.

The Chebyshev expansions approximate the logarithm of the rate coefficient directly as

a truncated bivariate Chebyshev series in the reverse temperature and logarithm of the

pressure. Since the Chebyshev polynomials are only defined in the interval [−1,+1], the

temperature and pressure intervals Tmin ≤ T ≤ Tmax and Pmin ≤ P ≤ Pmax are mapped

to an interval [−1,+1]:

T̃ =
2T−1 − T−1

min − T−1
max

T−1
max − T−1

min

and

P̃ =
2 logP − logPmin − logPmax

logPmax − logPmin

The logarithm of the rate coefficient is approximated by the Chebyshev expansions as:

log k
(
T̃ , P̃

)
≈

NT∑
t=1

MP∑
p=1

atpφt

(
T̃
)
φp

(
P̃
)
,
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where the Chebyshev polynomials of the first kind, of degree n− 1 are given by φ (x) =

cos
(
(n− 1) cos−1 (x)

)
with n = 1, 2, . . . and −1 ≤ x ≤ 1. The integers NT and MP are

the number of basis functions along the temperature and the pressure axis, respectively,

and atp are the coefficients of the matrix NT × MP determined from a least-squares

fit to a set of rate coefficient data points k
(
T̃ , P̃

)
[77]. The Chebyshev expansions

provide accurate approximations over any given temperature and pressure domain for

single- and multiple-well reactions. However, these approximates should not be used for

extrapolative studies outside their defined domain.

2.6 Sensitivity of Reaction Model to the Uncertainties of

Thermodynamic and Transport Data

Due to the exponential dependence of the reverse rate constants on the thermodynamic

properties of the species (see Section 2.5), any uncertainties in the thermodynamic data

may cause significant uncertainties in reverse rate constants. Because the reaction rates

are highly sensitive to thermodynamic data [183], many modelers prefer giving explicitly

the rate coefficients for the reaction in both forward and reverse directions separately

[11]. When the thermodynamic data are well known, the reaction can be given in its

reversible form (with only forward rate coefficients), however, every attempt has to be

made to ensure that the final model is internally consistent (the rate coefficents must

be consistent with the thermodynamic properties of the species). The available thermo-

dynamic data is collected in databases [11, 26–28, 149]. However, the thermodynamic

data are not established for all important chemical species due to lack of available ex-

perimental methods and due to the enormous number of the species involved in real

combustion systems (especially for complex hydrocarbons). In such cases, theoretical

estimations may help completing the thermodynamic tables and correct inconsistencies

in existing experimental values. There are two major theoretical methods to determine

thermodynamic properties of chemical species [10]:

• ab initio calculations using quantum chemistry, where the chemical system is con-

sidered as an ensemble of atomic nuclei and electrons and the electronic Schrödinger

equation is solved numerically using sophisticated techniques and approximations.

Every molecule has to be calculated ”from scratch” without any reference to the

results obtained for related compounds.

• the group-additivity method which is based on summing the contributions of the

functional groups constituting the molecule [15]. This method is empirical, thus

restricting the applicability of each resulting additivity scheme to the range of

compounds it has been made for.
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A detailed overview of the methods used for determination of thermodynamic properties

is given by Battin-Leclerc et al. [10].

For the combustion phenomena that take place in nonhomogeneous enviroments such as

flames, accuracy of the transport properties of the species is equally important as the

kinetics and the thermodynamic data. The transport properties of stable species are

mostly well established, but there is a significant uncertainty in evaluating the transport

properties of free radicals due to experimental limitations. The most significant radical in

hydrocarbon combustion is the H atom [91]. For hydrocarbon flames the influence of the

diffusion rate of the H atom was found to be comparable to the rate constant of the same

chain branching process. Given the large sensitivity of laminar flame speeds with respect

to the diffusion coefficients of the H atom [201], and recognizing that the discrepancy

between experimental and computed laminar flame speeds of hydrogen-oxygen flames

could be a result of uncertainties in H atom diffusion coefficients, a significant attention

must be paid to the transport properties when developing detailed and reduced reaction

mechanisms and both the experimental and theoretical efforts are required to improve

their accuracy [2, 40].

2.7 Limitations of Detailed Kinetics Description

Realistic description of combustion phenomena required for combustion simulation re-

quires a detailed description of the physics involved. All the given information, however,

must be processed with an adequate accuracy and within the available computer mem-

ory and time. Detailed kinetics descriptions of realistic engine fuels frequently used in

practice are too large for incorporating them into simulation codes for models that are

more complex than zero- or one-dimensional cases. Figure 2.4 gives an overview of sizes

of reaction mechanisms developed in the past decade. It can be seen that the number

of species in mechanisms developed for complex hydrocarbons grows exponentially as

the molecule size grows [105] and the mechanisms become more comprehensive as the

research of reaction kinetics advances in time.

A graphic illustration of a detailed reaction mechanism for combustion of the simplest

fuel (hydrogen) is given in Figure 2.5, showing a relatively large number of elementary

reactions with respect to the molecule size.

In addition to a large number of species conservation equations to be solved, incorporat-

ing the mechanisms into computer simulations is impeded by chemical stiffness which

frequently occurs due to large differences in time scales of species and reactions.
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Figure 2.4: Overview of sizes of combustion mechanisms for some hydrocarbons and
biofuels developed in last decade. This figure is made based on that from Lu and Law

(2009) [105].

2.7.1 Stiffness in Combustion Problems

Numerical simulations of combustion problems are generally faced with issues of ac-

curacy and stability during solution of differential equations. As previously stated, a

general differential equation that governs the net rate of change of a species X due to

an elementary reaction i can be written as:

d [X]

dt
= −ki [X]x [Y]y . . . (2.136)

The overall net rate of change of molar concentration of reactant [X] results from the

rates of all the reactions involving species X. These elementary reactions have different

rate constants ki, some of them being several orders of magnitude larger than the rate

constants of other reactions involving X or other species. That leads to very large

disparities in the time scales of the species concentration change, for example, time scales
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Figure 2.5: Bipartite representation of species and reactions in a detailed hydrogen
oxidation mechanism [130].

for radicals are extremely small while the time scales for stable species are comparably

large (Fig. 2.6).

In this chapter, the stiffness is only covered briefly. More detailed approaches to solving

stiff equations can be found in books from Kee, Coltrin and Glarborg (2005) [74], War-

natz, Maas and Dibble (2006) [192] and work from Curtiss and Hirschfelder (1952) [35],

Grcar et al. (1988) [57] and Hairer et al. (1996) [59].

Generally speaking, properties’ changes in chemical kinetics may be represented with a

simple linear so-called ”test equation” [74]:

dy

dt
= −λy, (2.137)
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Figure 2.6: An illustration of the time scales governing a chemically reacting flow.
This figure is based on that from Maas and Pope (1992) [106] and is reproduced with

permission from Elsevier.

with y(0) = 1. As λ (e.g. in Eq 2.136, the rate constant) increases, the characteristic

reaction time gets shorter. The general solution to this problem is obviously:

y(t) = e−λt. (2.138)

The solution always reaches a steady state of y = 0, with λ determining how fast it gets

there. Regardless of the value of y, the characteristic time scale of this model equation

is t = 1/λ . Even at long time, when the solution is not changing at all (y = 0), the

equation itself still has a characteristic time scale that can be quite short if λ is large.

Stiffness occurs in regions where the solution is changing slowly (or not at all), yet the

characteristic time scales are very small. In chemical kinetics, such behavior is exhibited

by certain species, like the free radicals. After initial very rapid transients such as a com-

bustion ignition, the free-radical concentrations often vary slowly, with their behavior

controlled by steady-state or partial-equilibrium conditions. The faster the character-

istic scales, the more rapidly the fast-time-constant species come into equilibrium with

the major species (i.e., approach a slowly varying solution). Curtiss and Hirschfelder

[35] first recognized the stiffness difficulty and showed that it could be resolved with

implicit algorithms.
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2.8 Need for Mechanism Reduction

A practical need for biofuels and complex fuel blends nowadays is a driving force for

an extensive research of the combustion chemistry and development of comprehensive

kinetics mechanisms to describe different combustion scenarios over a wide range of

operating conditions. The comprehensiveness of the reaction mechanism grows with the

number of different combustion phenomena and the range of operating conditions the

mechanism can cover [91, 105].

Modelling of complex physical experiments (e.g. burners, turbines and engines), where

not only the kinetics is being modeled, requires tremendous computational effort as each

spatial dimension added to the model increases complexity and thus the computational

demand. In such cases, the chemical source terms are only a sub-model within a larger

more complex model. For example, for multidimensional CFD simulations that have a

large number of computational cells rarely allow the calculation of detailed chemistry.

Instead, global reactions or tabulated chemical source terms must be used. Figure 2.7

shows an example of a complex three-dimensional flame simulation where the combustion

process is modelled with a flamelet-based tabulated chemistry approach, which assumes

that the local turbulent flame structure can be described by an ensemble of wrinkled

laminar flames. Instead of calculating the source terms from the reaction mechanism,

tabulated values were used instead.

Therefore, on one side there are mathematically simple zero-dimensional reactors and

one-dimensional laminar flame calculations where large detailed mechanisms can be

studied with reasonable computational effort and, on the other side, there are complex

multidimensional CFD simulations where only global reactions or tabulated values can

be used. Inbetween, there are reduced mechanisms which are often derived from detailed

calculations [10].

When using a mechanism in simulations, a modeler has to decide how much compu-

tational effort can be put into investigating the chemical kinetics. On the other hand,

a constructed mechanism should be able to reproduce available experimental findings

(validation) and, where these are not available, to predict the model behavior in not-yet

observed scenarios. It should be noted that the validation alone does not mean that

the model is realistic. The same combustion behavior can be achieved with different

chemical models for the same fuel [147]. If a specific CFD simulation is done under a

range of conditions narrower than those the detailed mechanism is validated for, the

detailed mechanism is not needed for the simulation. Limiting the range of conditions

the mechanism is used for is the key to applying reduction methods. Of course, there is
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Figure 2.7: Results from a quasi-DNS simulation of the Cambridge/Sandia turbulent
stratified burner on 1.6 billion cells with a resolution of 0.1 mm. The computation
was run for for one week on 64000 processor cores at the JUQUEEN supercomputer
in Jülich, Germany. Left: Turbulent structures visualized by the Iso-q-criterion. The
coloring corresponds to the axial velocity component (U / (m/s)). Right: Contours of
equivalence ratio in the mid-section of the burner. The isosurface for 50% of reaction

progress gives the flame location [141]. Reprinted with permission.

always a trade-off between the desired comprehensiveness of the mechanism and physical

accuracy of the model.
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State-of-the-art for Mechanism

Reduction and Optimization

As previously stated, for a proper application of a chemical mechanism in CFD-based

design of combustion devices, two important criteria should be met [10]: 1) a numerical

solution that describes a complex combustion process should be found with affordable

computational resources and 2) a mechanism should be accurate enough to provide

reliable results for different operating conditions. Meeting these criteria requires de-

velopment of different methods for making the mechanisms suitable for numerical sim-

ulations of combustion scenarios. This chapter presents the standard approaches for

analysis, simplification and optimization of chemical reaction mechanisms.

3.1 Existing Approaches for Mechanism Reduction

There are several attractive strategies for simplifying the chemical reaction mechanisms;

a comprehensive review of these approaches can be found in book chapters by Tomlin

et al. [176], Law (2006) [89], Turanyi and Tomlin [182], and in several journal articles

by Griffiths (1995) [58], Law et al. [90, 91] and Lu and Law (2009) [105]. In general, the

mechanism reduction methods can be categorised into several groups: Elimination of

unimportant reactions and/or species, time-scale analysis-based reduction, storage and

tabulation methods and lumping of similar species of reactions [105].

Methods that involve selection and elimination of unimportant reactions and species

are sensitivity analysis (SA), computational singular perturbation (CSP), element flux

analysis (EFA), directed relation graph (DRG) and various optimization methods [4, 9,

18, 118, 122, 154, 210], for finding optimally reduced mechanisms from the corresponding

47
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detailed mechanism. Time scale analysis and stiffness removal methods are dedicated

to determining and thus decoupling fast reactions from slow reactions, which results in

significant simplifications of the differential equations. Known among these methods

are the so-called quasi-steady-state assumption (QSSA), partial equilibrium assumption

(PEA) and intristic low-dimensional manifolds (ILDM). Lumping reduces the number

of variables by combining similar reactions and species, for example, isomers that have

similar thermal and transport properties. In the following, several standard reduction

methods are summarized.

3.1.1 Sensitivity Analysis

As a method for elimination of unimportant reactions, sensitivity analysis is quite

straightforward and simple although it may become time consuming. The concept of

sensitivity analysis is to calculate the change in some global parameter, for example, in

ignition delay time, the species concentrations or a laminar flame speed, due to a small

change in the reaction rate [89, 151, 174, 176, 182].

Sensitivity is the dependency of the solution on the parameters of the system. If the

system of reaction rate equations is formulated as:

dy

dt
= f (y,k) , (3.1)

where y is the dependent variable vector that in this case consists of the reaction scalars

such as the temperature and the concentrations of species, f (y,k) is the production rate

term, and k is the vector for the rate coefficient (preexponential factor).

The sensitivity matrix is then defined as:

S =
∂y

∂k
(3.2)

Time derivative of the sensitivity matrix is then

∂S

∂t
=

∂

∂t

(
∂y

∂k

)
=

∂

∂k

(
∂y

∂t

)
=
∂f(y,k)

∂k
=
∂f

∂k
+
∂f

∂y
· ∂y

∂k
=
∂f

∂k
+ J · ∂y

∂k
(3.3)

The term J = ∂f/∂y is the Jacobian matrix of the Equation 3.2.

The sensitivity of a system response parameter y with respect to the perturbation of

the reaction rate constant k of a reaction is defined as ∂y/∂k. Thus its lognormal

form, ∂ ln y/∂ ln k, measures the relative error induced by the removal of this reaction.

Reactions with sensitivity smaller than certain specified values can be considered to be
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Figure 3.1: Ilustration of the sensitivity coefficients for the flame speed of an atmo-
spheric stoichiometric methane flame in respect to arbitrarily chosen reactions from the

mechanism.

unimportant and hence neglected. A graphical representation of sensitivity coefficients

for the flame speed in respect to the reaction rates is illustrated in Fig. 3.1. The aim of

the sensitivity calculation is to determine how the solution changes with the change of

the reaction rates. Small changes in some elementary reactions may lead to significant

changes of the solution, while changes in other reactions may not have any effect on the

solution at all. This way, the sensitivity analysis shows which reactions are in quasi-

steady state or in partial equilibria and which reactions are the rate-controlling steps.

The sensitivity analysis is widely used for the investigation and analysis of chemical

kinetics [80, 142, 173, 179, 180].

3.1.2 Quasi-Steady State and Partial Equilibrium Assumptions

The quasi-steady-state assumption (QSSA) and the partial equilibrium assumption (PEA)

allow generating reaction-rate expressions that still can capture the details of the reac-

tion chemistry with a minimum number of rate constants. One of the characteristic

features of many chemically reacting systems is the widely disparate time scales at

which elementary reactions occur. Complex reaction mechanisms usually contain rate

constants that differ from each other by several orders of magnitude. For example, the

concentrations of highly reactive intermediates (like radicals, atoms, ions and molecules
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in excited states) may differ by orders of magnitude from the concentrations of relatively

stable species.

These significantly different time and concentration scales introduce difficulties for accu-

rate estimation of the rate constants, measurement of low concentration species and nu-

merical solving of complex models. Usually these highly reactive and low-concentration

intermediates, are identified as QSS-species [22, 182, 192]. This means that the produc-

tion and destruction rates of these species can be considered zero in the kinetic system

of ODEs. This allows algebraic solutions for the concentrations of the QSS-species from

the concentrations of the other (non-QSS) species. The system of ODEs for the non-

QSS-species and the system of algebraic equations for the QSS-species together form a

coupled system of algebraic differential equations and their solution is close to that of

the starting system of ODEs.

In some cases, the concentrations of all QSS-species can be calculated from (explicit)

algebraic equations separately and then their concentrations can be used for solving the

system of kinetic ODEs for the remaining species. In this way, the system of ODEs

is transformed to a smaller system of ODEs having fewer variables. Very often, the

concentrations of QSS-species are not relevant for the overall prediction ability of the

kinetics scheme so that they can be eliminated, thus reducing the overall number of

variables in the mechanism and consequently its stiffness (because the range of the re-

maining timescales has been reduced). Using the QSSA, the full mechanism is simplified

based on rapidly equilibrating species rather than reactions as in the reaction equilibrium

assumption.

Using the partial equilibrium assumption [182, 192], the mechanism simplification is

made on the basis of fast and slow reactions. In a given complex mechanism, some

reactions may be significantly faster than others, so that they equilibrate after any

displacement from their equilibrium condition. The remaining, slower reactions then

govern the rate at which the amounts of reactants and products change. If we consider

the extreme case in which all reactions except one are assumed at equilibrium, this re-

maining slow reaction is called the rate-limiting step. Using PEA, a detailed mechanism

can be divided in two subsets consisting of any number of slow and fast reactions, and

make the equilibrium assumption for the subset of fast reactions. On the other hand,

QSSA and PEA methods require considerable human effort and chemical knowledge for

each fuel/oxidizer system. Another disadvantage of these classical methods is that they

can only be applied to the conditions (ranges of compositions and temperatures) where

it is aceptable to obtain the poor approximations of intermediate species concentra-

tions [182, 192], which is typically not sufficient if a more detailed insight into kinetics
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is desired, or if the prediction of the considered phenomena strongly depends on the

intermediate species concentrations.

3.1.3 Jacobian Matrix Analysis

Computational Singular Perturbation

The concept of computational singular perturbation (CSP) was first proposed by Lam

in 1985 [83], and further improved and used to simplify the kinetic model by decoupling

the fast and slow reaction modes [56, 84–86, 88, 99, 107, 108, 132, 184, 185]. The CSP

aims to computationally derive time-resolved simplified chemical models for complex

chemical systems. The CSP method relies on the eigenvalues of the Jacobian matrix

to determine the trial modes [106], and the subsequent refinement step improves the

decoupling of the fast and slow trial modes. Unlike the QSSA and PEA, CSP and

ILDM do not require any chemical knowledge and intuition, as the eigenvectors of the

Jacobian matrix can always be used as the trial set. The CSP exploits the disparity

of the time scales between the fast modes (exhausted) and the (currently active) slow

modes. The output of the CSP is so-called CSP data and it contains the information on:

the number of approximate equations of state (approximate algebraic relations between

the species), which species are identified as radicals so that they can be computed from

the approximate equations of state, which reactions are rate-controlling and what is the

minimal reaction system that can yield the solution with a user-defined accuracy [84].

The CSP data can also be used to assess the sensitivity of solutions with respect to the

input rate coefficients [87] as an alternative to the classical sensitivity analysis [203].

Intrinsic Low-Dimensional Manifold

This method is similar to the CSP method in identifying and decoupling fast and

slow species by the Jacobian matrix analysis. The Intristic Low-Dimensional Manifold

(ILDM) method searches for the low-dimensional manifold that represent a simplified

description of the chemical model within the states space by identifying the fast time

scales as those that reached the equilibrium [106]. Given that the chemical system com-

position is seen as a point in a multidimensional space, where each dimension represents

a species concentration, the rate equations describes how that point moves in the scalar

space [29, 78, 106, 145]. The ILDM analyses and simplifies these equations of the scalar-

point motion by identifying attracting manifolds in the scalar space. Because of the

wide range of time scales in a chemical system, the composition changes very rapidly in

some directions and moves very slowly in other directions. Therefore the composition

moves rapidly towards the attracting manifold, and then moves along that surface to

the equilibrium point. The mechanism simplification is based on the assumption that

the composition always lies on these manifolds.
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The dimension of the manifold must be specified apriori. For example, a zero-dimensional

manifold is the equilibrium point and a one-dimensional manifold is a line, on which

the equilibrium point lies. One-dimensional manifold (a line in the scalar space) can

therefore be parameterized by just one variable (a scalar, a combination of scalars or

a thermodynamic property, known as the reference variable). The values of all the

species in the detailed mechanism, including the intermediates as well, on the manifold

are available as a function of the reference variable without increasing the mechanism

complexity. The state properties can also be stored on the manifold and calculated tak-

ing into account all the minor species. The disadvantage of the ILDM method is that

the tabulation of the manifolds in a database requires significant effort for each new

detailed mechanism and requires a specialised computer program. The look-up tables

for multivariate manifolds can become extremely large, and retrieval in the database can

therefore be slow [182].

3.1.4 Flux Analysis

Element flux analysis is a species-oriented reduction technique based on quantification of

atom fluxes of elements through all reactions in the mechanism. This way, the element

contributions over the integrated time interval is determined and used as a basis for

species selection. The method is proposed by Revel et al. (1994) [146] and later improved

by Androulakis et al. (2004) [5], He et al. (2008 and 2010) [61, 62], Sun et al. (2010)

[171] and Perini et al. (2012) [137]. The atom flux Ȧijk during the reaction i from the

species j to the species k is formulated as:

Ȧijk(t) = (|qfwd,i(t)|+ |qrev,i(t)|)
nA,jnA,k
NA,i

, (3.4)

where qfwd,i and qrev,i are the atom fluxes during the reaction i in forward and reverse

directions, respectively nA,j is the number of atoms of element A in species j, nA,k is

the number of atoms of the same element in species k and NA,i is the overall number

of atoms of the element A within the reaction i. The importance of the species is

determined based on the contribution of the element fluxes Ajk to the overall flux Atot

which are defined as:

Atot =
∑
j,k

Ȧjk (3.5)

and

Ajk =

Nc∑
c=1

[∫ τ=tc

τ=0

(
N∑
i=1

Ȧijk,c(τ)

)
dτ

]
, (3.6)

where Nc is the number of conditions the mechanism is intended for and τ is the sim-

ulated time. Species that should remain in the mechanism are chosen according to a
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Figure 3.2: Ilustration of the elemental flux pathways between the reacting species

user-defined cut-off value (fraction of the overall atom flux to be kept in the reduced

mechanism). Species (source-sink pairs) with element flux values above the cut-off value

are kept in the mechanism, and those with fluxes below the cut-off value are eliminated.

Consequently, a reaction is kept in the mechanism only if all its reacting species are kept.

All the reactions with at least one of its species being eliminated from the mechanism

are eliminated as well. Figure 3.2 illustrates the net elemental flux between the reacting

species in the mechanism. The line thickness is proportional to the net elemental flux.

Wang et al. (2013) [191] combined the element flux analysis with CSP and QSSA to

obtain a global reduced combustion mechanism for multicomponent kerosene surrogate.

Zhang et al. (2013) [207] combined the dynamic flux-based ”on-the-fly” reduction and

the QSSA into a hybrid approach for the mechanism reduction.

3.1.5 Directed-Relation Graph

The directed relation graph (DRG) method is a species elimination-oriented reduction

technique originally proposed by Lu and Law [100, 102]. Interaction and coupling be-

tween the species is represented as the edges of a directed graph whose nodes represent

the species in the mechanism. The edges between the two nodes A and B exists if and

only if the elimination of B directly causes significant error to the production rate of A,
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and in that case B must be kept in the mechanism if the correct prediction of the pro-

duction rate of A is important. This dependence between the two species is quantified

in terms of a normalized contribution of, say, species B to the production rate of species

A, rAB:

rAB =

∑NR
i=1 |νA,iωiδB,i|∑NR
i=1 |νA,iωi|

, (3.7)

where

δB,i =

1 if reaction i involves species B

0, otherwise.
(3.8)

Considered species are denoted with A and B, νA,i is the stoichiometric coefficient of

species A in the reaction i and ωi is the rate of reaction i. If the normalized contribution

rAB is smaller than a pre-defined threshold value ε, the edge from A to B is negligible

and B can be removed. Otherwise, B must be kept. In general, for each species A in the

detailed mechanism, there exists a set of species that significantly contribute to A and

if A is important to be kept in the mechanism, its dependant species set must be kept

as well. Figure 3.3, based on that from Lu and Law [100], illustrates relations between

the species in DRG. Strongly coupled species should remain in the reduced mechanism.

A

B

C D

F

E

Figure 3.3: An example of DRG: If A must be kept, B and D must be kept as well.
For the production rate of A, species C, E and F are not important and can be removed.

Taken from [100] and reprinted with permission.

Prior to the reduction, a user-defined set of important species to be kept must be selected

and a depth-first search of a relation graph is then performed to find the dependent set

of the important species. The skeletal mechanism is constructed as a union of these

dependant sets and the reactions not involving any of these sets are finally removed

from the detailed mechanism. There are many variations and further enhancements of

the DRG-based reduction method proposed in the literature [101, 104, 127–129, 135,

152, 208].



Chapter 3. State-of-the-art for Mechanism Reduction and Optimization 55

3.1.6 Lumping Methods

Despite significant reduction, some mechanisms may still be too expensive for complex

CFD applications. This is especially true for pyrolysis and combustion mechanisms of

complex hydrocarbons or atmospheric chemical models which contain a large number of

isomers and intermediates and multiple-channel reactions between them. In such cases,

when the reduction in terms of further elimination of species and reactions is no longer

possible, the restructuring of the mechanism may be required [182]. This can be done

either by species lumping or by reaction lumping methods briefly described in the fol-

lowing.

Species Lumping

Species lumping is done by representing a number of isomers of a specific species as

one (lumped) component [24]. For applying the species lumping, the following steps

are required: 1) identification of the species to be lumped, 2) definition of the lump-

ing transformation (how the chosen species contribute to the lumped species) and 3)

determination of the kinetic parameters for the reactions involving the lumped species.

The reactions occuring between the lumped species are no longer elementary. Because

of the same molecular weight and similar transport and thermodynamic properties, the

isomers can be lumped and their transport equations combined into one if their chemical

source term can be computed [103, 104].

Chemical lumping methods determine the lumping groups based on chemical structure

of the species and rules for combining species and reactions. Such methods rely on a

hierarchical manner in which the mechanisms are often developed [49, 134, 143, 144, 169,

182]. For complex hydrocarbons with many isomers, chemical lumping splits the main

propagation reactions into few reaction classes [49, 144, 150] and the rate coefficients

for each reaction class are defined based on the literature, similarity rules or fitting with

respect to experimental data. Lumping isomers and intermediates results in a simplified

reaction scheme with one pathway representing degradation to the average products of

all the isomers. The chemical lumping requires extensive chemical expertise to organize

the lumping structures. As an alternative, there are mathematically-based approaches

for transforming the original species into lumped groups [71, 81, 92, 94, 175]. Since the

chemical lumping yields lumped species whose concentrations are linear combinations of

the original species, this approach can be mathematically defined as a transformation of

the original vector of variables to a transformed variable vector using the transformation

function [175, 182] which is not unique.
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If the transformation function is linear, this lumping approach is termed linear species

lumping. However, for highly nonlinear problems (e.g. ignition or oscillatory systems)

where the lumping transformations may vary rapidly, approximate nonlinear lumping

methods have been developed [93, 94, 182]. Although the nonlinear lumping methods

may be more general and applicable over wider ranges of operating conditions than the

linear methods are, the algebraic complexity is high due to nonlinear functions.

Reactions Lumping

Detailed reaction mechanism can also be simplified by lumping some of its elementary

reactions based on their common reactants, for example [182]:

A + B→ C + D (0.4k)

A + B→ E + F (0.6k)

This reaction is a multichannel reaction with two reaction channels, one resulting in

products C + D and the other in E + F with the branching ratio 0.4 : 0.6 and the overall

rate constant of the reaction is k. The branching ratio is the ratio of the rate constant

for one product of the multichannel reaction to the rate constant for the overall set of

possible products [155]. The chemical equations above can therefore be written as [182]:

A + B→ 0.4C + 0.4D + 0.6E + 0.6F (k)

Despite the reduction in the number of reactions, the number of species is not changed.

An alternative way to lump the reactions relies on a rate determining step [182]:

A + B→ C + D (k1[A][B]) slow

D + E→ F (k2[D][E]) fast

The rate-determining step is the first (slow) reaction, thus the rate of the resulting

lumped reaction is (k1[A][B]). The lumped reaction is now:

A + B→ C + F− E (k1[A][B])

Reactants A,B and E are consumed while C and F are produced. Since equal amounts of

D are consumed and produced, D does not take part in the lumped reaction. Species E

is consumed, but since it is not part of the rate-determining step, it appears on the right-

hand side, with a negative stoichiometric coefficient. The reaction lumping decreased the

number of reactions and removed species D, which may decrease the computational cost.

The reactions lumping approach may also be combined with the local sensitivity analysis

and the QSSA leading to significant reductions of complex hydrocarbon mechanisms [72].
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3.2 Existing Approaches for Mechanism Optimization

Although the reduced mechanisms are computationally efficient, their accuracy may be

lowered due to elimination of many reactions. In order to keep the reduced mechanism

computationally inexpensive and to enhance its prediction quality at the same time,

optimization approaches have been developed. In general, the optimization of a reaction

mechanism is done by tuning its reaction rate coefficients to match the correct overall

behavior of the detailed mechanism or the available experimental data. Rates of single

reactions within a reaction mechanism are calculated from a rate expression which is at

least a function of temperature (see Section 2.5). Coefficients for the rate expressions

are available from chemical databases and are often consistent with measurements and

theoretical calculations. In the following, a brief summary of the existing optimization

approaches is presented.

3.2.1 Solution Mapping Method

Frenklach et al. (1992) [50] proposed a method of solution mapping to systematically

optimize a dynamic model which is non-linear and its parameters are associated with

their own uncertainties. Given a system of ODEs describing a dynamic system:

dy

dt
= g (t,y,ϑ) , (3.9)

where y is the vector of the state variables (concentration, temperature), t is the reaction

time, ϑ is the vector of rate coefficients and g functions express, for example, the mass-

action law, energy balance, etc. The aim is to determine the values of ϑ for given initial

conditions ζ = yt=0 such that

y = f (ϑ, ζ, t) , (3.10)

which is the solution of Eq. 3.9, reproduces the experimental observations yobs. The

extent of matching of Eq. 3.10 and yobs is achieved by minimization of the objective

function Φ with respect to the rate coefficients ϑ:

Φ (ϑ) =

n∑
r=1

ωr

[
yobsr − yr (ϑ)

]
, (3.11)

where n is the number of experiments (responses) and ωr is the statistical weight of

the response r. The minimum of the Eq. 3.11 can be found by a search algorithm in

a straightforward manner, but that would require solving of differential equations to

obtain y (ϑ) every time Φ (ϑ) needs to be evaluated. To avoid the computational effort

of numerical integrations, Eq. 3.10 is approximated with simple algebraic expressions
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within a subspace of parameter space ϑ.

ft, (ζϑ) ≈ Ψ (ϑ) . (3.12)

The approximating functions Ψ (ϑ) are obtained from a small number of numerical

simulations (computer experiments) performed using a detailed chemical kinetics model

with predefined parameters ϑ. These functions Ψ (ϑ) are called response surfaces. The

objective function (Eq. 3.11) now becomes

Φ (ϑ) =

n∑
r=1

ωr

[
ηobsr −Ψr (ϑ)

]
, (3.13)

and does not require expensive numerical integration, thus decoupling the optimization

process from numerical integration of differential equations. In general, there is no re-

striction in which mathematical expression to use for Ψ (ϑ). In the work from Frenklach

et al. [50], a polynomial form for ϑ was used and its coefficients were obtained from com-

puter experiments. It is not necessary to optimize all the reaction rate coefficients under

a specific set of operation conditions, but only the so-called active parameters which

are identified by screening sensitivity analysis. The method yields a number of indis-

tinguishable solutions, giving evidence for the lack of solution-uniqueness. The method

helps identifying parameter correlations and quantifying the model uncertainties as well.

3.2.2 Polynomial Chaos Expansion

A method that combines development of the chemical model and propagation and min-

imization of the chemical uncertainties is proposed by Sheen et al. [158–160] and is

termed the Method of Uncertainty Minimization using Polynomial Chaos Expansions

(MUM-PCE). The uncertainty is quantified using the stochastic spectral expansion

(SSE) method [126] which is then combined with the solution mapping to calculate

the prediction uncertainties of a simulation. The model is constrained by the data from

the experimental databases and MUM-PCE quantifies the model uncertainties before

and after optimization. First, an uncertainty factor UFi is assigned to each input vari-

able. This uncertainty factor UFi is related to uncertainty parameter f , which is later

discussed in Section 4.2, by UFi = 10f . The rate coefficients are then normalised into

factorial variables xi as follows:

xi =
ln
(
ki/k

0
i

)
ln UFi

,
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where ki is the rate coefficient of reaction i and k0
i its nominal value. Therefore, xi = 0

is the nominal value of the rate coefficient with an uncertainty bound [−1,+1] based on

evaluated data from chemical databases [11–13]. A response surface ηr(x) of the model

r is generated with respect to x as:

ηr(x) = ηr,0 +
m∑
i=1

ar,ixi +
m∑
i=1

m∑
j≥i

br,i,jxixj + . . .

The uncertainty in x may be expressed as a polynomial expansion of basis random

variables ξ:

x = x(0) +
m∑
i=1

αiξi +
m∑
i=1

m∑
j≥i
βi,jξiξj + . . . ,

where α and β are column vectors of the expansion coefficients, m is the number of the

considered rate coefficients and x(0) is a column vector of the normalised rate coefficients

which is a zero vector for the nominal reaction model. If the x’s are independent of each

other and normally distributed, then the usual choice for the form of ξ would be a set

of unit normal random variables. If ln UFi represents two times the standard deviation

of ln ki, then α = 1/2Im, where Im is the m-dimensional identity matrix and β and all

higher-order terms are zero. In the general case, combining the above two equations and

truncating the higher-order terms give [159, 182]:

ηr(ξ) = ηr

(
x(0)

)
+

m∑
i=1

α̂r,iξi +
m∑
i=1

m∑
j≥i
β̂r,i,jξiξj + . . . ,

with coefficients of α̂r = 1/2Imar and β̂r = 1/4IT
mbrIm. This equation shows that the

overall model prediction is given by its nominal value plus the uncertainty contributions

from each rate coefficient. The overall output variance is then expressed as the sum over

terms involving the coefficients of the equivalent expansion:

σr(ξ)2 =

m∑
i=1

α̂2
r,i + 2β̂

2

r,i,j +

m∑
i=1

m∑
j≥i
β̂

2

r,i,j

This method is then combined with the solution mapping approach for the optimisation

of the rate coefficients which are constrained depending on whether x’s are uniformly or

normally distributed. If x’s are uniformly distributed, the optimization features a term

in the objective function which constrains the rate coefficient change. If x’s are normally

distributed, this term is omitted and x is bounded by [−1,+1] (normal distribution of

the rate coefficient indicates that the parameter is carefully measured).

Later, relying on MUM-PCE, Cai and Pitsch [30, 31] used the rate rules to optimize

the Arrhenius pre-exponential factors of the reaction classes instead of tuning individual
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reactions. One set of rate coefficients is treated as one optimization object, which reduced

the dimensionality of the optimization problem. Uncertainties of the rate rules in this

work are considered to be large and the MUM-PCE method [159] was used for the model

calibration and the uncertainty estimation.

Xin et al. 2015 [200] used MUM-PCE method to optimize skeletal reaction mechanisms

for n-butane and iso-butane combustion obtained with DRG and DRGASA from USC

Mech II [190]. They also investigated dependence of the model uncertainty on the

model size indicating that the uncertainty increases with the model size. This approach

underlines the necessity for a better quantification of the rate coefficients (experiments

or theoretical calculations) to reduce the uncertainties. Furthermore, the uncertainty

parameter f is only available for well-established models which is not the case for large

and highly complex mechanisms (e.g. surrogates or biofuels).

Sheen and Wang 2011 [159] show that, when experimental results are the reference for

the optimization, it is necessary that the experimental uncertainty be less than the model

prediction uncertainty, which requires a rigorous uncertainty analysis. They stress that

it is difficult (or impossible) to obtain a unique chemical model that can best reproduce

the experimental measurements and suggest estimated or evaluated reaction rates as a

reference for the optimization. As a mathematical tool, MUM-PCE can provide insight

into couplings of the rate coefficients in a model and reduce prediction uncertainties

inside and outside of the experimental conditions under which the fuel properties were

studied.

3.2.3 Optimization Algorithms

Optimization methods for the reduction and/or the optimization of the mechanisms are

based on minimising an objective function subject to a given set of constraints. Gener-

ally speaking, the objective function is based on the difference between the simulation

results obtained using detailed and reduced mechanisms and the optimization method

is aiming at minimising this difference (error). Many optimization techniques have been

developed; some of them being gradient-based while others rely on heuristics and evolu-

tionary algorithms. Gradient-based optimization methods direct the search in direction

of the steepest gradient of the objective function to find its minimum [105, 176]. These

methods are often extended by applying sensitivity analysis in order to identify the prin-

cipal components of the system [174, 189]. However, the gradient-based methods capture

only the local optimum of the objective function which is inconvenient for systems with

multiple optima that are typical for chemical kinetics problems [17].
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For handling complex objective functions over a multidimensional search space, genetic

algorithms have shown to be particularly suitable and were used as an efficient tool for

numerous optimization problems.

Polifke et al. [140] implemented genetic algorithms for optimizing a simplified two- and

three-step methane-oxidation mechanism to match the heat release and net species pro-

duction rates for premixed laminar flames. Harris et al. [60] used genetic algorithms

to solve the inverse problem of determining the rate parameters that would match the

measured species concentrations for hydrogen combustion. This approach was successful

in retrieving rate coefficients that give accurate predictions for the investigated data set.

Aiming to cover measurements different to those used in the optimization proposed in

[60], Elliott et al. [42] extended the objective function of Harris’ method to predict mea-

surements of species concentration profiles for both laminar flames and perfectly-stirred

reactors (PSR). Further on, to expand the validity range of the optimized mechanisms

beyond the conditions used in the optimization, Elliott et al. [43, 44, 46] incorporated the

predefined boundaries of the rate coefficients taken from the NIST (National Institute

of Standards and Technology) chemical kinetics database.

Later, Elliott et al. [45] improved the multi-objective genetic algorithm to determine

the Arrhenius coefficients and to recover observed species concentrations under different

sets of operating conditions. Montgomery et al. 2006 [121] used a genetic algorithm to

reduce a mechanism for methane-air combustion over a range of temperatures and stoi-

chiometries by selecting the optimal set of QSS species based on the difference between

the simulation results without and with the QSSA. The species set was found when the

simulation error decreased below a certain threshold.

Aldawood et al. [1] used also a multi-objective genetic algorithm to optimize a model for

homogeneous-charge compression ignition (HCCI) against twelve sets of experimental

data. The mechanism was treated together with the model, i.e. three Arrhenius equation

coefficients and four variables relevant for the simulated stochastic reactor model, were

optimized at the same time. Constraints for the optimization variables were predefined

to account for model uncertainties (±50% for the Arrhenius coefficients and user-defined

reasonable ranges for the model itself).

The genetic algorithm-based optimization method from Perini et al. [136, 137] employs

the objective function adapted from [44] and optimizes both the pre-exponential factors

and the activation energies allowing deviations of ±15% for the activation energy and

±80% for the pre-exponential factor. Temperature exponents were not optimized as

most of them are equal to zero in many combustion mechanisms.
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Optimization by Shaw et al. [157] considered chemical lifetime of each species in the

large reaction mechanism, thus identifying the reactions to be optimized. The most

relevant species are chosen based on the Level of Importance (LOI) technique [98] and

the sensitivity analysis of the reactions in respect to important species helps identifying

reactions to be optimized. Uncertainty of the reaction rates are not taken into account

as the goal of the study was the optimization itself. However, certain constraints to

altering the model were allowed and user-defined, with the maximum error being one

order of magnitude for the reactions that were not well investigated. The resulting

optimized mechanism had better predictability than the original one over a wide range

of data from shock tube experiments.

The uncertainty of the rate parameters has been subject to numerous studies [63, 123–

125, 156, 181, 186]. Although the consideration of the reaction rate uncertainties was not

advocated by this work, it was made possible to constrain the individual reaction rates

by their prescribed uncertainty factors. A preferred approach in this work is constraining

the reaction rate alterations with the penalty function during the optimization. This

approach is discussed in Section 4.2.3.



Chapter 4

Genetic Algorithm-based

Mechanism Manipulation

This chapter explains the methodology of simplifying and optimizing the chemical ki-

netics mechanisms using the genetic algorithm adopted for this study. This section first

explains the use of genetic algorithms for the elimination of reactions from the detailed

reaction mechanism aiming to reduce the size of a reaction mechanism, ensuring a good

accuracy for a certain application and preventing the excessive stiffness in the result-

ing reduced mechanisms. Following the reduction methodology, the use of the genetic

algorithm to optimize the reduced mechanism by altering the rate coefficients of the

remaining reactions is presented in the latter part of this section.

4.1 Mechanism reduction

The genetic algorithm-based methodology used in the present study for the mechanism

reduction aims at finding the smallest possible mechanism (or one that is only slightly

bigger, but easier to solve) from its detailed version which is still able to reproduce the

simulation results of interest from the detailed mechanism with accuracy sufficient for

the application and less computational effort. The accuracy and the size criteria for the

reduced mechanism are user-defined within the objective function of the algorithm. The

genetic algorithm is then searching for a solution (submechanism) for which the given

objective function will be minimal. The reactions are gradually eliminated from the

mechanism during the search by both the objective function containing the size criteria

and the mutation operation adjusted to the reduction problem. The genetic algorithm

can be summarized in the following steps [53, 117]:

63
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1. Initialization of the first population of solutions by generating the initial chromo-

some population,

2. Evaluation of the performance of each chromosome (by using the chemical mech-

anism in a reacting case simulation),

3. Selection of the fittest chromosomes (parents) from the current population to yield

the next generation of chromosomes,

4. Crossover of the selected chromosomes in order to exchange genes to produce new

chromosomes (children) for the next generation,

5. Mutation by a small change to the children chromosomes which increases the

diversity of the population and avoids falling into local minima.

Steps 2 to 5 are repeated until the pre-defined termination criteria are satisfied (Figure

4.1). The problem-specific genetic algorithm operations used in the present work are

described in the following sections. For the GA-based reduction to be performed, a

Figure 4.1: Activity chart of the genetic algorithm-based reduction [161]. Reprinted
with permission.

reaction mechanism must first be translated into a form (chromosome) which can be

easily operated by the GA. This step is called encoding and in this work, a reaction

mechanism is encoded as a chromosome by representing its elementary reactions as
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genes. Since this method aims at eliminating reactions, the encoding was done by

representing the presence of a reaction by the gene value 1, while the gene value 0 stands

for the eliminated reaction. For example, an eight-step mechanism with four reactions

eliminated is presented as a chromosome (with eight genes) based on the presence of the

reactions:

OH + CH3 
 CH2 + H2O 1

OH + CH4 
 CH3 + H2O 0

OH + CO 
 H + CO2 0

OH + HCO 
 H2O + CO 1

OH + CH2O 
 HCO + H2O 1

OH + CH2OH 
 H2O + CH2O 1

OH + CH3O 
 H2O + CH2O 0

OH + CH3OH 
 CH2OH + H2O 0

The length of each chromosome is constant and corresponds to the number of reactions

in the detailed mechanism, NR, therefore the chromosome is formulated as:

α = [α1, α2, ..., αNR ] ∈ {0, 1}NR ,

where the value of αi indicates whether the reaction i is present in the reduced mechanism

or not. This way of encoding is intuitive and easy to implement and allows a simple

conversion of the optimal solution (resulting chromosome) to the reduced mechanism

which can be later used for the simulation of the reacting case. Furthermore, for such a

chromosome, the GA operators can easily be modified to enhance the reduction process,

which is discussed in the following.

4.1.1 Initialization

In this work, the initial population of the chromosomes (the first generation of solutions)

is created in a way that all the genes in all the chromosomes are set to αi = 1, i.e. the

initial solutions are set to represent the detailed mechanism. Despite the absence of

diversity among the initial chromosomes, the full-mechanism initialization is proven to

be the safest starting point of the search and is preferred over the randomly generated

initial population for the following reasons:

• The key reactions may be lost already in the first step if the initial population

would be created randomly,
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• The randomly generated mechanisms (chromosomes), although smaller than the

detailed, can actually be more stiff or impossible to solve due to elimination of

the key reactions (therefore it is preferred to start the search with the numerically

stable first solutions).

Alternatively, the population can be initialized in a way that every initial chromosome

just deactivates a single, randomly chosen reaction, such that

NR∑
i=1

αi = NR − 1,

where the index i, for which αi = 0, is chosen randomly with a uniformly distributed

probability:

P [αi = 0] =
1

NR
.

This alternative initialization introduces a small diversity among the initial individual

chromosomes (which avoids solving a complete population of identical chromosomes)

while still maintaining (almost) nominal chromosomes thus avoiding losing the key-

reactions. The subsequent crossover and the mutation increase the diversity among the

chromosomes. The population size (number of chromosomes in the population) is user-

defined; in this work it is adjusted according to the number of available computational

cores that run in parallel. Figure 4.2 illustrates the initial population of four chro-

mosomes representing eight-reaction mechanisms, as according to the two initialization

types described above.

1 1 1 1 1 1 1 1
a)

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1
b)

1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 0 1 1 1 1 1

Figure 4.2: Initial populations of four mechanism representations (chromosomes) for
a) a full-mechanism initialization and b) mechanisms with only one reaction missing

[161]. Reprinted with permission.

After the initial population is generated, the chromosomes are evaluated, i.e. the cor-

responding submechanism is incorporated into the calculation of the reactive case (e.g.,

a perfectly stirred reactor or a laminar flame) and solved to provide information about

how well the reduced mechanism performs compared to the full mechanism in respect to

the desired criteria. The solution evaluation within the objective function is described

in subsection 4.1.2.
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Selection

Selection is the GA operation which chooses the fittest chromosomes to become parents

to the new ones thus improving the quality of the population for the next generation.

Selection is an important part of the evolution since it directs the algorithm towards

better solutions. The probability of selecting a chromosome for the next generation

depends on its fitness value so that the fittest chromosomes are usually preferred, whereas

some less fit chromosomes can still contribute valuable diversity. Fit chromosomes are

those with the lowest value of the fitness function, i.e. the lowest fitness, as the aim is

to minimize the given fitness (objective) function.

There is a number of standard selection schemes [110, 117, 196]. For this work a tourna-

ment selection is applied [20, 54, 111]. The general concept of the tournament selection

relies on a random selection of two or more chromosomes from the population, and

choosing the fittest one among them. This is repeated n times, where n is the number

of chromosomes in the population (population size). This way, the tournament selection

gives a chance to all the individuals to be selected thus preserving the diversity. Tour-

nament selection is among the most preferred selection schemes. In comparison to other

standard selection schemes, the tournament selection is computationally more efficient

and suitable for parallel implementation [117]. Its advantages are analysed and discussed

by Goldberg and Deb [54], Blickle and Thiele [20, 21], and Zhong et al. [209] and they

include simple implementation, efficiency (achieving best solution quality within short

computation time) especially if implemented in parallel, no need for sorting of the in-

dividuals or fitness scaling, smallest loss of diversity and the highest selection variance,

compared to other available selection schemes.

Due to the chromosomes alteration during the evolution (crossover and mutation), there

is sometimes a risk of losing the good solution candidates when the children chromosomes

are less fit than their parents. Although the GA is usually able to regenerate these lost

improvements in a subsequent generation, there is no guarantee that this will happen.

To make sure that the previously found good solutions do not get lost, a so-called elitism

is used. Elitism was first introduced by Kenneth De Jong in 1975 [36]. Elitism preserves

the fittest candidate found so far by copying it unchanged into the next generation. This

way, the performance of GA is improved as the algorithm does not have to waste time

rediscovering the previously lost good solutions. The unchanged candidates preserved

by the elitism are available for selection as parents for the rest of the next generation.
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Crossover

At the crossover stage, all of the chromosomes are paired up and their genes are ex-

changed with a previously defined probability (crossover probability or crossover rate).

If the crossover rate is zero, then the children are exact copies of their respective parents.

There are several ways to perform a crossover. For the present reduction method, the

crossover of two chromosomes α, β ∈ {0, 1}NR is accomplished by randomly choosing a

single point at index i ∈ {1, ..., NR} from which the genes of the two chromosomes are

swapped, yielding children

γ1 = [α1, α2, ..., αi, βi+1, βi+2, ..., βNR ]

and

γ2 = [β1, β2, ..., βi, αi+1, αi+2, ..., αNR ] .

This operation is known as a single-point crossover and is illustrated in Fig. 4.3. The

crossover (recombination) is the crucial part of the evolution [70] as it leads the popula-

tion to converge towards the best solution found so far (exploitation). However, with the

crossover alone, the population may fall into the local optimum due to lack of diversity,

which is why the crossover alone is not enough for the GA to find the global optimum.

To avoid this premature convergence and to introduce some diversity, the mutation is

employed after the crossover.

There are many types of crossover operators generally available in GAs, for example:

the multiple-point crossover (analogous to the single-point crossover with multiple ran-

domly chosen crossover points), uniform crossover (described in Section 4.2.2), arith-

metic crossover (suitable only for real-valued chromosomes as the offspring chromosomes

are the weighted arithmetic mean of the two parents), and the special crossovers that

include permutation of the parental genes (e.g. partially mapped crossover, order-based

crossovers, cyclic crossover). These types of crossovers are discussed to a greater detail

in the book from Michalewitz (1996) [110].

The single-point crossover is a preferred crossover type for the mechanism reduction

process in this work because it allows an easy parametrization of the algorithm by

tuning the crossover and the mutation rates. For the results presented in this work,

all the reduction runs use a single-point crossover for easier comparison and parameter

study. The uniform crossover (described in Section 4.2.2) can also be used, but the user

is then adviced to adjust the crossover and the mutation rate accordingly.
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Mutation

After the formation of the children, a mutation operation takes place altering only a small

number of randomly chosen genes in the chromosomes with a user-defined probability

pm:

(∀i ∈ {1, 2, ..., NR})P [αi = 0] = pm.

The mutation probability (mutation rate) represents the likeness that randomly chosen

genes of the chromosome will be altered. For example, if the integer-encoded chromo-

some consists of 100 genes, the mutation rate of 5% means that 5 randomly-chosen genes

out of 100 will be altered (here, flipped to 0 or 1, depending on their initial values).

This operation is important as it introduces diversity and helps to avoid stagnation at

local optima. However, the mutation probability should be fairly low, otherwise it might

randomize the entire search and destroy a good solution. In this work, two mutation

types are used: two-directional (the gene can be flipped to 0 or 1) and one-directional

(regardless of the initial value, the gene is always flipped to 0). When the aim is to

drive the solution towards smaller mechanisms quickly, the mutation can be done in

one direction only, i.e. genes with a value 1 are converted to 0 while a value of 0

remains unchanged. This means that reactions are being gradually eliminated during

the evolution beyond the elimination resulting from the evolution pressure applied by

the fitness function. It must be stressed that for this particular goal, the mutation

rate must be adjusted to the mechanism size (chromosome length) as the aggressive

elimination of reactions might irreversibly eliminate important reaction paths and push

the solution beyond an optimum. As the size of the mechanism is already a part of

the evaluation function, the mutation should only provide a little help with the faster

convergence towards the smaller mechanisms.

The effect of using a one-directional instead of a two-directional mutation operation is

presented in Figs. 5.28, 5.29, 5.32, and 5.33 and discussed in Section 5.4. A general

one-directional mutation scheme is illustrated on Fig. 4.3.

1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0

0 1 0 0 1 0 0 10 1 0 1 1 1 0 0

1 1 1 1 1 1 0 0

1 0 1 1 0 1 0 0

Figure 4.3: Single point crossover (left) and one-directional mutation (right)

Having completed the operations of crossover and mutation, a new population is created

and evaluated once again for the next cycle of selection and reproduction (Fig. 4.1).

Exploration means searching the search space as much as possible, while exploitation
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means concentrating on one point (hopefully the global optimum). In GA, the mutation

operators tend to provide exploration, and the crossover operators tend to lead the

population to converge on the good solutions found so far (exploitation). Consequently,

while the crossover tries to converge to a specific point in landscape, mutation does its

best to avoid convergence and explore more areas.

The mutation alone, or too high mutation rate prevents the population convergence to

any optimum solution. If the mutation rate is too small, the search relies on the crossover

and fails to find a global optimum. Therefore, a proper balance between the exploitation

and the exploration ability of the search/optimization algorithm should be accomplished.

The optimal mutation rate is problem specific. Some recommendations for choosing

the crossover and the mutation rates are reported in the literature. Numerous studies

have shown that the crossover and the mutation rates are crucial to the success of GA

evolution [7, 36–38, 65, 131]. The choice of the mutation and the crossover parameters

is problem specific and will be discussed in Section 5.

4.1.2 Objective Function

The evaluation function (or objective or fitness function) is the essential part of any op-

timization technique and its proper definition is usually the trickiest part of setting up

the optimization run. The goal of the search is defined through the objective function,

i.e. the objective function contains the criteria a reduced mechanism must fulfil. It is

therefore important to define the criteria in a way that a plausible trade-off between the

size, stiffness and the accuracy of the resulting reduced mechanism can be achieved. For

the mechanism reduction (and optimization), the objective function definition is typi-

cally based on the difference between the simulation results obtained from the detailed

mechanism (taken as a reference) and its reduced version (candidate solution).

The evaluation of the mechanisms’ performance can be based on any aspect of the

simulation, in the present work for a homogeneous reactor or a laminar flame [55]. A

homogeneous reactor and laminar flame models are used for the evaluation of the mech-

anism because of their moderate computational costs that enable detailed parameter

studies even for large mechanisms. In general, the overall objective function for Nc

different operating conditions, for a specific reacting case of interest, is formulated as:

fobj =
1

Nc

Nc∑
c=1

fobj,c (4.1)

where fobj,c is an objective function for a single set of operating conditions:
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fobj,c =

∑Nξ
i=1wifξ∑Nξ
i=1wi

(4.2)

where Nξ is the number of the optimization targets (criteria) and fξ is the optimization

target with the corresponding weighting factor wi. Generally, there are no restrictions in

choice of mathematical expression for evaluating the difference between the target under

consideration and its reference value. However, a proper evaluation of the performance of

a reaction mechanism requires taking into account the relative importance and different

orders of magnitudes for different chemical properties predicted by the mechanism. For

example, the ignition delay time and the temperature which are usually defined as

criteria in the same objective function must be normalized in a way to make them

equally ”visible” to the algorithm despite the difference in their orders of magnitudes.

In case of multiple different criteria, an appropriate expressions for their evaluation must

be chosen to avoid that some criteria significantly overweight the other criteria in the

objective function. The simplest formulation of the difference between the reference

value of property ξref and the value predicted by the reduced mechanism ξred may be a

linear expression (Eq. 4.3):

fξ =

∣∣∣∣ξred − ξref

ξref

∣∣∣∣ (4.3)

Although this type of difference evaluation is classical (Fig. 4.4, upper left), it is not

particularly suitable for optimization in respect to multiple targets of different nature,

relevance and orders of magnitude. However, it is incorporated into more complex

functions listed below. Another rather intuitive formulation is a quadratic function

(Fig. 4.4, upper right):

fξ =

∣∣∣∣ξred − ξref

ξref

∣∣∣∣2 (4.4)

This quadratic expression has been tested and discussed in Section 5, where it has been

shown that Eq. 4.4 is not sufficient to provide the best fit to the criteria, especially when

the overall objective function contains conflicting targets (accuracy and cost). Since

the different targets may vary by several orders of magnitude, the evaluation approach

preferred in this work is the logarithmic formulation (Fig. 4.4, bottom left):

fξ = ln

(
1 + σ ·

∣∣∣∣ξred − ξref

ξref

∣∣∣∣) (4.5)

A logarithmic formulation of the objective function is also advocated by the work of

Perini [136, 137]. In the present thesis, the logarithmic scaling is usually chosen for the

accuracy criteria, although several other expressions have also been adopted and tested,
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depending on the nature and relevance of the desired targets. Another expression often

used in this work is a sigmoid function (Fig. 4.4, bottom right). This function bounds

the target values between 0 and 1. Furthermore, the sigmoid function increases the

flexibility of the objective function because of its tunable slope and shift parameters. It

is typically used for normalizing the cost parameters, as discussed in 5.4.

fξ =

[
1 + exp

(
σ ·
(

1− ξred

λ · ξref

))]−1

(4.6)

Based on the sigmoid formulation, the expression typically used to normalize integral

values of the profiles, or as a penalty function in the optimization (section 4.2) is for-

mulated as:

fξ = 2 · [1 + exp (−σ · |ξred − ξref|)]−1 − 1 (4.7)

The integral of the profile is calculated according to:

ξprofile =

∫
|ξred (x)− ξref (x)| dx

Aref
(4.8)

where

Aref = (ξref,max − ξref,min) ∆x

is the bounding-box area spanned orthogonally by the reference mechanism’s values ξref

along the simulation range ∆x (time axis or flame coordinate). The area Aref does

not depend on the profile’s shape but only on the minimal and maximal values of the

reference target. The resulting values ξprofile (Eq. 4.8) are relatively small so that they

can be easily normalized (Eq. 4.9) and incorporated into the overall objective function

(Eq. 4.2).

fξ = 2 · [1 + exp (−σ · |ξprofile|)]−1 − 1 (4.9)

The illustration of the normalization functions is shown in Fig. 4.4 for linear scaling

(Eq. 4.3), square scaling (Eq. 4.4), logarithmic scaling (Eq. 4.5) and the sigmoidal

normalization (Eq. 4.6).

The normalization from Eq. 4.7 restricts the error ξprofile to the interval [0, 1], the

steepness of the normalization function can be adjusted by the sharpening factor σ (Fig.

4.4). The sharpening factor dictates how strong the target ξopt is directed towards its

optimal value ξref. The value of σ is chosen based on the nature and the relevance of

the optimization target ξ, therefore the choice of σ is always problem-dependent. Small

values of σ for some targets are sufficient to continuously direct the targets to their

reference value, while for other targets, a very strong directing towards their desired

value may be necessary. The appropriate choice of σ is always made empirically, based
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Figure 4.4: Scaling and normalization of optimization targets (objective function
terms)

on the resulting values of ξ for a sample set of chromosomes, to make the optimization

target weighting suitable for the overall objective function.

The overall evaluation function composed of the terms described above is found to

provide a fast convergence towards the solution. These expressions are shown to preserve

the important features observed during the evolution ensuring a good trade-off between

the individual criteria and if necessary, weights for each part of the overall objective

function can be introduced and controlled easily. The normalization enables flexible

adjustment of the evolution pressure for any part of the objective function thus enabling

an optimal combination of accuracy targets to be found in a transparent way.

4.2 Mechanism Optimization

As the reduction of the reaction mechanism may decrease its accuracy, the optimization

of the mechanism is performed by altering its reaction rate coefficients to restore the

mechanisms’ accuracy with respect to its detailed version or some other mechanism

whose overall behavior the optimized mechanism should match. In the present work,
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the optimization targets only the forward pre-exponential factors of the elementary

reactions. The reverse reaction rates are then calculated from the thermodynamic data

(see section 2.5). In some cases, the reversible reactions are written explicitly in the form

of two irreversible (forward and reverse) elementary reactions. When the thermodynamic

data of the species involved in such reactions are known, altering the rate constants of

both the reactions would violate the thermodynamics. To avoid this risk, the reactions

listed in such manner are first converted into corresponding reversible reactions whose

pre-exponential factors are then optimized. The process of the optimization is described

in the following sections.

4.2.1 Encoding

In contrast to the mechanism encoding used for the reduction, where the mechanism-

to-chromosome conversion was carried out based on the presence of the elementary

reaction in the mechanism, the optimization of the real valued rate coefficients requires

the operators appropriate for the real coded algorithm [64].

The starting point of the optimization process is the reduced mechanism with Nr re-

actions. The aim of the optimization is to alter its reaction-rate coefficients until the

prediction quality of the mechanism, relative to its reference, has been improved. The

chromosome that corresponds to this mechanism is a real-value ordered set of corre-

sponding reaction-rate coefficients which are scaled against their original values such

that ki,opt = αiki,ref , where ki,opt and ki,ref are the optimized and the original for-

ward rate-constants of the reaction i, respectively. For reversible reactions, the reverse

rate constants are calculated by the law of mass action. Each scaled rate constant αi

(i = 1, . . . , Nr) is chosen from a continuous search space of dimension Nr. The scaling

of the rate constant corresponds to the scaling of the pre-exponential factor of an Ar-

rhenius rate expression. Normalizing the rate constants leads to an initial population

with all scaling factors set to a real value of 1.0. Figure 4.5 illustrates how the reduced

mechanism (integer-coded) is translated into a real-encoded mechanism suitable for re-

action rate constants manipulation by GA. Using an unchanged mechanism in contrast

to a random seed as a starting point of the optimization helps to avoid a purely random

optimization search and ensures numerical stability of the first solutions. The rate con-

stants are altered for the first time in the mutation step.

The selection scheme is the same as for the reduction process: the tournament selection.
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1 0 0 1 0 1 1 0 1 0 0 1 1 1

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Figure 4.5: Encoding the integer-coded chromosome (reduced mechanism) as a real-
coded chromosome. Genes of the real-coded chromosome correspond to the nominal

values of its normalized forward reaction rate constants

The objective-function value for a single chromosome determines whether this chromo-

some will be selected for the next generation. The present approach employs a tour-

nament selection [20, 54, 209] which randomly takes two or more chromosomes from

the population of Npop chromosomes and chooses the one with the smallest objective-

function value amongst them. This is repeated Npop times. The fittest chromosomes

are generally preferred but some less fit chromosomes can contribute diversity. The

tournament selection is described in Section 4.1.1.

It is the iterative combination of the crossover and the mutation which enables the

genetic algorithm to find a global optimum. The mutation introduces a small variation

to a randomly chosen subset of genes from one chromosome to maintain additional

diversity. In the present mutation approach, these gene alterations are random normally-

distributed variables G (µ, σ) with a mean µ and a standard deviation σ. This additive

Gaussian mutation alters a gene x to a new value x + G (µ, σ) (Figure 4.6). For non-

negative genes x (scaling factors α) that can vary over several orders of magnitude,

a multiplication with positive normally distributed random variables is more suitable,

leading to a new gene xG (µ, σ) after mutation, as the multiplication gives a log-normal

distribution of the random-walk final values.

... xN

x2G(µ, σ)

x1 x2 x3 x4

x1 x3 x4G(µ, σ) ... xN

Figure 4.6: A multiplicative Gaussian mutation of real-coded genes.

The multiplicative mutation was chosen for the present study. Both additive and mul-

tiplicative Gaussian mutations are suitable for gene values within a highly dimensional

search space [8, 48, 66]. Other types of crossover and mutation operators are available
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as well, but the adopted ones have been shown to provide good robustness and conver-

gence speed within the presented application. It should be noted that the choice of the

operators does not affect the results, but only the convergence speed of the algorithm.

4.2.2 Crossover

The selected chromosomes pair up to exchange the information between each other by a

uniform crossover chosen in this study where each gene has a 50% chance to be swapped

between the mother and the father chromosome (Fig. 4.7). The uniform crossover is

radically different to the single-point crossover described above. Each gene in the child

chromosome results from copying the corresponding parent gene which is selected ac-

cording to a randomly generated ”crossover mask”. A randomly created crossover mask

has the same length as the individual chromosome and the parity of the bits in the mask

determine which parent will supply the offspring with which bits. This means that,

where there is 1 in the crossover mask, the gene is copied from the first parent, and

where there is 0 in the mask, the gene is copied from the second parent, as shown in

Figure 4.7. This process is repeated with the selected parents to produce the offspring.

Then a new crossover mask is randomly generated for each pair of parents resulting

in offspring that consists of a mixture of genes from each parent. The number of the

crossover points is not fixed, but will average half of the chromosome length.

x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

Crossover Mask

Parent 1

Child 1

Child 2

0 1 0 0 1 1 1 0

x2 y3 y4 x5 x6 x7 y8

x1 y2 x3 x4 y5 y6 y7 x8

Parent 2

y1

Figure 4.7: A uniform crossover between two parent chromosomes

There is a number of studies reporting the benefits of the uniform crossover [168, 172],

one of them being that the uniform crossover is extremely useful when the search space

is very large, which is the case for the reaction-rates optimization problem.
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4.2.3 Objective Function

As disscussed in section 4.1.2, the role of the objective function is to evaluate the per-

formance of the mechanisms from the population with respect to the reference. The

search is directed towards the solution with the smallest possible value of the objective

function. The general form of the overall objective function which covers Nc different

physical conditions is given by Equation 4.1 in terms of the single objective functions

fobj corresponding to each condition (setup) c.

As explained in section 4.1.2, these evaluation terms are scaled and weighted to ac-

count for different orders of magnitude for different optimization targets (properties)

and make the optimization flexible and easily adjustable to the desired output. The

scaled terms are combined into one overall objective function (Eq. 4.2) for multiple

conditions (Eq. 4.1). Different ways to scale or normalize the evaluation terms are

disscussed in section 4.1.2 and are used for the optimization as well. Chosen expres-

sions restrict the single error contributions to a comparable range and enable variable

weighting of the optimization targets. These normalization expressions and their coeffi-

cients are problem-dependent. Thus, an appropriate choice of the function parameters

can be made empirically, based on preliminary optimization runs consisting of only few

generations.

The objective function for the purpose of the optimization has two aspects: accuracy of

the optimized mechanism and the extent of altering of the reaction rates. This means

that, besides the accuracy terms, the objective function can be used to constrain the

modification of the reactions, which is not typical for classical use of the genetic algo-

rithms. This aspect has been added to the optimization due to concern that established

and well-defined reaction rates do not fall beyond their uncertainties for cases where the

physical meaning of the reaction rates is important.

Accuracy Criteria

Optimization targets involving accuracy are normalized individually according to their

order of magnitude and relevance. The deviation between the reference ξref and the

optimized mechanism ξopt is normalized using the expression introduced in section 4.1.2.

Penalty Function

The modifications to the model during the optimization can be constrained by introduc-

ing penalty terms into the objective function. In this work, the constraint is imposed
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onto each gene (reaction rate constant) of the chromosome, to account for different

goals of the optimization. The constraints are user-defined, depending of the optimiza-

tion preferences, which may be minimal possible rate modifications, drawing certain

rates towards zero or any other limiting value for certain reaction rates. In this work,

the penalty function is mainly used to keep the reduced reaction coefficients close to

their original values, but the penalty function is also applied for further reductions of

the mechanisms. Both applications are discussed and tested below.

The term penalty function used here refers to a function that is an integral part of the

objective function, alongside the accuracy criteria. The only difference is, that unlike

the accuracy which is the output of the mechanism calculation, the penalty function

affects the input parameters, i.e. the reaction rates in the mechanism. Athough it is not

a standard definition of the penalty function, the term is used in this work to intuitively

distinguish between the optimization targets associated with the performance of the

solution (accuracy) and its properties (desired rate values).

Faithfulness to the original reaction mechanism

Some of the previous works on the mechanism optimization consider estimating and min-

imizing the uncertainty of the reaction rate coefficients that are experimentally and/or

theoretically established and can be found in literature and kinetic databases. Although

the uncertainty is an important issue in chemical kinetics modelling, it was not treated

as the main goal of the present optimization technique, but rather as one possible aspect

that can be taken into account upon the user’s request.

The basic optimization of the (reduced) mechanism considers the rate coefficients of the

original mechanism as an initial value, from which the optimization is started so that

the values can be changed by a very large degree. This approach would hence neglect the

chemical and physical knowledge that is already involved in these reaction coefficients,

albeit with some (often large) uncertainty. To keep the reduced mechanism as faithful as

possible to the nominal reaction rates, an additional component to the objective function

is introduced. The penalty term penalizes large deviations of the reaction rates from

their nominal values. A similar approach for constraining the change of the reaction

rates was used in previous work by Sheen and Wang [159] and Cai and Pitsch [30].

Although the accuracy can be restored by tuning the rate coefficients of the reactions,

there is a risk of exceeding the uncertainty ranges of the rate coefficients and of losing

the chemical knowledge from the original mechanism. Instead of searching for the rate

constraints from NIST database [195] and implementing each one of them into the

optimization process, the changes imposed to the rates are constrained by the penalty
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function (which is a part of the objective function). This approach is convenient as it

does not require comprehensive search of the databases for each reaction, but constraints

the changes automatically during the evolution.

Considering an uncertainty range for each reaction can also be done with the presented

algorithm, but obtaining these ranges with a good accuracy for a large mechanism

appears impractical. Work of Sheen and Wang [159] and later, Cai and Pitsch [30] use a

penalty term as part of the objective function in order to account for the uncertainties

of the reaction rate coefficients. The objective function minimized in the work from Cai

and Pitsch [30] features a penalty term which is expressed as sum of weighted squared

values of the optimized pre-exponential factors, aiming to constrain the modifications

of these factors, if they are normally distributed. If the pre-exponential factors are

uniformly distributed the penalty term is omitted and the modification is constrained

by a pre-defined interval. They introduced this special term to ensure that the optimized

factors differ as little as possible from their nominal values. This aspect is considered in

the present study as one way of using the penalty term in the objective function.

In the present work, the following overall penalty function is applied on the reactions in

the mechanism:

fpen =
1

Nr

Nr∑
i=1

fpen,i (4.10)

where the penalty term fpen,i is defined as:

fpen,i =
2

1 + exp (−σ |αi,opt − αi,ref|)
− 1 (4.11)

which is the expression already given by Eq. 4.7. In contrast to the square formulation

of the penalty term used by Cai and Pitsch [30], the term from Eq. 4.11 provides a

more general and more flexible way to constrain the model modification by adjusting

the sharpness factor σ (Figure 4.9).

It should be noted that an ideal penalty function could be set for each reaction, with

a weight scaled by the uncertainty of each specific reaction. The effort in obtaining a

complete uncertainty vector can however be prohibitive, in particular, for more advanced

and sizeable mechanisms. As a possible alternative to the penalty function advocated

by this work, which is in an additive sense symmetric with respect to the nominal rate

value, one can impose the multiplicative treatment of the rate constants. The additive

symmetric treatment means that, by using the penalty from Eq. 4.11 with αref = 1.0,

a rate scaling factor of 0.5 is equally treated as the scaling factor of 1.5 (i.e. they have

the same penalty). If preferred, the multiplicative treatment of the scaling factors can

be achieved by logarithmic scaling of the normalized rate constants within the penalty
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function as follows:

fpen,i =
2

1 + exp
(
−σ
∣∣∣ln(αi,optαi,ref

)∣∣∣) − 1 (4.12)

The shape of the logarithmic normalization (Eq. 4.12) compared to the one that is used

in the present study (Eq. 4.11) for various sharpness values is illustrated in Fig. 4.9. The

logarithmic normalization of the scaling factor α cannot be applied for the elimination

of the reactions (αref = 0.0), which limits the use of Eq. 4.12 to αref > 0. For αref = 1.0

with small sharpness factors σ, Eq. 4.12 can be preferred over Eq. 4.11 if, for example,

scaling factors of 0.5 and 2.0 are to be treated equally. However, for higher values of σ

(as used in this work), the difference between the two functions becomes negligible (Fig.

4.9, σ > 4), implying that, for the algorithm, there is no effective difference between the

two functions. The logarithmic penalty function is used for several runs for optimization

of the hydrogen mechanism in Section 5.1.
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Figure 4.8: Penalty function for maintaining nominal values of the reaction rates
(αref = 1.0) and further reducing the mechanism (αref = 0.0)

Elimination of reactions

The penalty function can also be used to help the further reduction of the mechanism

during the optimization by driving very small reactions coefficients k towards zero, so

that these reactions can be removed. The reduction of the reaction rates is forced by

setting the value of αi,ref in Eq. 4.11 to zero. The idea was to simplify and optimize

the mechanism at the same time using the real-coded algorithm. With this approach,

the only constraint imposed to the rate modifications was set on the GA side of the

method, where the minimal and the maximal gene value (search space) were defined.
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Figure 4.9: Comparison of the penalty functions with linearly and logarithmically
scaled α

This allowed the algorithm to search freely for the new rate constants while directing

the small rate values steeply towards zero.

The normalization expression (Eq. 4.11) is found to be convenient for the purpose of

manipulating the alteration of the genes without imposing strict constraints to it. Figure

4.9 illustrates the function given by Eq. 4.11. One can notice that the gene values which

fall near the desired gene value are steeply directed towards it, while those after the

inflection point where the function reaches its plateau, have the same fitness values.

This means that there are no maximal boundaries to the gene alterations (except those

defined at the GA initialization step) once the gene value is in the plateau region, but

when the values are decreased or negligible, then the algorithm is trying to draw them to

zero (eliminate them). At this region, the differences in the fitness values are large. The

accuracy is constantly observed, which avoids the risk of eliminating reactions essential

for an accurate description of the target phenomena. The penalty function for helping

the mechanism reduction during the real-coded optimization is demonstrated in Section

5.3 and its potential to reduce the mechanism during the real-coded optimization is

further addressed in Section 5.4.4 in greater detail.

Rate uncertainty consideration

Although considering the rate uncertainties taken form the literature during the opti-

mization is not primarily advocated by the present study, defining the uncertainty factor

UF for each chosen reaction was tested for the Konnov [79] mechanism in Section 5.1.

This approach may be used when optimizing small mechanisms for which the rate pa-

rameters are known with small uncertainty and/or if the physical meaning of the rate
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coefficients is important for the resulting optimized mechanism. In the following, the

definition of the rate uncertainty is explained. From the report by Westley (1980) [195]

and the compilations of kinetic data from Baulch et al. [11–13], the uncertainty of the

rate constant is defined by value f in the following way:

f = log

(
k0
i

kmin
j

)
= log

(
kmax
i

k0
i

)
=

1

ln 10
ln

(
kmax
i

k0
i

)
(4.13)

where k0
i , k

min
i and kmax

i are the recommended value, the possible minimal and the

maximal value of the rate constant of the reaction i, respectively. Equation 4.13 is

equivalent to
k0
i

kmin
j

= 10f =
kmax
i

k0
i

(4.14)

Thus:

kmin
i · 10f =

kmax
i

10f
(4.15)

The reaction rate coefficient that falls outside the interval
[
kmin
i , kmax

i

]
is considered very

improbable by the evaluators [11–13]. The parameters f , k0
i , k

min
i and kmax

i are evaluated

at a given temperature, thus the uncertainty f is generally temperature-dependent. No

attempt has been made to assign explicit error limits to the temperature coefficient of k

[11–13]. The error limits in log k are assigned at the extreme values of the temperature

range and indicate the variation of the data quality with the temperature but the form

of this variation is not defined. The assignment of the error limits of the rate constant is

a subjective assessment by the evaluators [11]. State-of-the-art measurement techniques

under favorable conditions are able to determine the rate coefficients of some reactions

with a standard deviation as small as 10%. On the other hand, the reaction rates of the

same reaction obtained in different laboratories (and often by the same measurement

methods) are often inconsistent with each other. Therefore, the minimum and the

maximum values of the rate coefficients may differ by many standard deviations σ from

the recommended value on a logarithmic scale, typically 3σ [25, 125, 183, 205, 206, 211,

212] or 2σ [125, 158, 160]. These deviations indicate systematic errors in experimental

measurements, which are difficult to detect and estimate, and thus cannot be simply

incorporated into the error limits of the reaction rate.

From Eq. 4.15, the range of values of k is determined by multiplication and division of

k by a factor UF, where

UF = 10f .

The uncertainty factor UF therefore limits the change of the reaction rate constant k to

a range

k/UF < k < kUF.



Chapter 4. Genetic Algorithm-based Mechanism Manipulation 83

The optimization with predefined uncertainty factors is demonstrated in Section 5.1 for

a hydrogen mechanism including a comparison between the penalty function approach

and predefining the rate uncertainties.





Chapter 5

Application and Testing

This chapter demonstrates the application and properties of the reduction and opti-

mization method described in Chapter 4 of this thesis. The presented results resemble

different aspects of the mechanism manipulation and are organized as follows: Sec-

tion 5.1 demonstrates the optimization of a reduced hydrogen mechanism for which the

uncertainty bounds are known, so this mechanism is suitable for testing the penalty

function for preventing that the reaction rates deviate too much from their nominal val-

ues or form their uncertainty bounds. The reduction method is then demonstrated for

an ethylene combustion mechanism (Section 5.2) for a homogeneous constant-pressure

reactor, and such a reduced mechanism was then optimized for the flame speed over a

range of equivalence ratios.

In Section 5.3, the reduction was performed on a relatively large tert-butanol oxidation

mechanism by Sarathy et al. (2012) [153] and then the subsequent optimization further

reduced the mechanism with the help of the penalty function. A special attention was

directed towards the penalty function and its parameters in Section 5.4.2. The choice of

the operators for the integer-coded genetic algorithm used for elimination of the reactions

from the detailed mechanism is justified in Section 5.4.1. An example of extrapolating

the reaction mechanism outside of the conditions it was reduced for is demonstrated in

Section 5.4.3.

Some of the material presented in this section was previously published in International

Journal of Chemical Kinetics, c©Wiley Periodicals, Inc. and reused with permission

from Wiley:

N. Sikalo, O. Hasemann, C. Schulz, A. Kempf, and I. Wlokas. A genetic algorithm-

based method for the automatic reduction of reaction mechanisms. International Journal

of Chemical Kinetics, 46(1):41-59, 2014.
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N. Sikalo, O. Hasemann, C. Schulz, A. Kempf, and I. Wlokas. A genetic algorithm-

based method for the optimization of reduced kinetics mechanisms. International Journal

of Chemical Kinetics, 47(11):695-723, 2015.

Nejra Sikalo wrote most of the software, conducted all the simulations and wrote the pa-

pers. Olaf Hasemann contributed to software development, debugging and restructuring

the code to run in parallel, contributed plots and adviced on the theory of optimisation.

Irenäus Wlokas provided guidance, know-how on reaction mechanisms and supported

the paper writing process. Christof Schulz supported the paper through advice on chem-

istry, detailed proof reading and background knowledge on the chemical kinetics. Andreas

Kempf provided several key ideas to the papers, is the responsible supervisor of Nejra

Sikalo, and contributed to writing, proof reading, revisions and rebuttals of the papers.

The reused material is cited where appropriate.

5.1 Optimization with Predefined Uncertainties - Hydro-

gen Oxidation Mechanism

Hydrogen combustion is of a great significance for fundamental research of chemical

kinetics due to its simplicity and practical importance for many applications (rocket

propulsion, internal engines, fuel cells) [3, 41, 73, 74, 119, 167] and the adequate de-

scription of its elementary kinetics involving important radicals (H, O, OH, H2O2 and

HO2) that determine the radical kinetics for other complex hydrocarbon reaction systems

[95]. The hydrogen reaction system is an integral part of any hydrocarbon combustion

mechanism and it is extensively investigated by many research groups to help deriving

elementary reaction rates. The chosen hydrogen mechanism from Konnov [79] is conve-

nient for this particular study for several reasons: this mechanism is validated against

a wide range of operating conditions, it was published with well-defined uncertainty

factors UF for each elementary reaction, the hydrogen mechanism is small so that the

resulting behavior can easily be analyzed and described in detail. The material from this

particular section 5.1 has been published in International Journal of Chemical Kinetics

[162] and reused with permission from Wiley.

5.1.1 Objectives

This section aims at comparing the optimization using the penalty function approach to

predefining the rate uncertainties as fixed optimization constraints. The homogeneous

reactor simulation was used to demonstrate the effect of differently constrained optimiza-

tions onto the resulting reaction rates. The optimization with predefined uncertainty
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bounds for the reaction rates was tested for the hydrogen combustion mechanism by

Konnov from 2008 [79] with 33 reactions. The uncertainty bounds for the reaction rate

constants were defined by an uncertainty factor UF, so that the reaction rate constant

is expected to lie between k/UF < k < kUF [11, 79, 195].

5.1.2 Results

The reduction of the hydrogen combustion mechanism was conducted to introduce some

perturbation to its accuracy so that the optimization runs involving different ways to

constrain the rate alterations can be tested. Performed are several optimization runs to

compare the effects of:

a) limiting the rate constants to their uncertainty range,

b) the penalty function approach, and

c) a combination of a) and b)

on the resulting reaction rates and the mechanism’s accuracy. The optimization runs

for the two reduced mechanisms aimed at restoring their accuracy with the following

constraints to the rate modifications:

a) none,

b) with predefined UF,

c) with the penalty function fpen (Eq. 4.11) only,

d) with a logarithmic penalty function fpen,log (Eq. 4.9) only, and

e) with the combined constraints (uncertainty range defined with 2UF and fpen and

2UF and fpen,log).

The reacting case used for the reduction was a homogeneous reactor model with an initial

temperature of 1200 K and a constant pressure of 0.2 MPa. The initial fuel composition

was a stoichiometric H2/O2 mixture diluted in Ar. Two reduced mechanisms were

generated, one ”strongly perturbed (S)” (reduced mechanism with lower accuracy) with

11 reactions and one ”weakly perturbed (W)” (reduced mechanism with higher accuracy)

with 12 reactions. The accuracy criteria for all optimization runs were the same and

involved the ignition delay time, temperature history and mole fraction history of H2O2

as an additional target for an intermediate species (Table 5.1).

The genetic-algorithm operators for all the optimization runs are listed in Table 5.2.

The resulting reaction rate modifications from all the optimization runs for both mech-

anisms are presented in Fig. 5.1, together with the uncertainty ranges for each reaction

taken from the original publication [79]. Uncertainty limits were considered in four
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Property wi Normalization σ

τign 1.0 Eq. 4.5 6

Tprofile 1.0 Eq. 4.9 10

XH2O2,profile 1.0 Eq. 4.9 10

fpen (αref = 1.0) 0.05 Eq. 4.7 4

fpen,log (αref = 1.0) 0.05 Eq. 4.7 4

Table 5.1: Objective function parameters for optimization of reduced hydrogen mech-
anisms, including the penalty functions parameters for the runs where these were ap-
plied. The small values of the weighting factors wi for the penalty terms are adjusted

to the comparably small number of the remaining reactions.

GA parameter Type Value

Population size - 48

Initialization nominal gene values -

Selection tournament -

Crossover uniform pcross = 0.5

Mutation Gaussian multiplicative pmut = 0.02

Table 5.2: Parameters of the genetic algorithm used for optimization of the perturbed
hydrogen mechanisms.

optimization runs, all of them with the same numerical setup and the same accuracy

criteria. The resulting reaction rate modifications for the UF-constrained cases and for

one unconstrained run are presented in Fig. 5.1 (top).

The resulting reaction rates from UF-constrained runs are quite scattered within their

given uncertainty bounds, although they follow the same trend of modifications. The

unconstrained run has a similar behavior as UF-constrained runs in terms of rate modi-

fications for both mechanisms, except for one reaction rate that exceeds the uncertainty

bounds (S2 for the strongly perturbed and W4 for the weakly perturbed mechanism,

see Fig. 5.1). The optimization results in terms of accuracy from these runs are shown

in Figs. 5.2 and 5.3 for both mechanisms. Despite the different reaction rates for UF-

constrained runs, the extent of accuracy restoration is identical for their corresponding

mechanisms (Fig. 5.2 center, Fig. 5.7 and Fig. 5.3 center, Fig. 5.8). However, the

extent of accuracy restoration was not the same for both reduced mechanisms using the

constrained optimization. The constrained optimization did not fully restore the accu-

racy of the strongly perturbed mechanism (Fig. 5.2 center, Fig. 5.7), indicating that

this mechanism was already distorted to an extent where some of the reactions (e.g., S2)

must be modified beyond their uncertainty limits to fully restore the accuracy against

the detailed mechanism. On the other hand, the unconstrained run (Fig. 5.2 left) fully

restored the accuracy for this mechanism at the cost of exceeding the uncertainty of

the reaction S2. The accuracy of the weakly perturbed mechanism was fully restored
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Figure 5.1: Extent of reaction rate modifications in comparison to their uncertainty
bounds for optimization runs performed on two reduced mechanisms with different
degrees of perturbation. Top: one unconstrained and four UF-constrained runs. Bot-
tom: with a penalty function fpen only, with a logarithmic penalty function fpen,log
only, with 2UF and fpen, with 2UF and fpen,log. Left: a strongly perturbed (11 step)

reduced mechanism. Right: a weakly perturbed (12 step) reduced mechanism.

for the UF-constrained and the unconstrained runs without exceeding the predefined

uncertainty bounds (Fig. 5.3 left, Fig. 5.8).

The resulting reaction rate modifications for the optimization runs including penalty

functions is presented in Fig. 5.1 (bottom) for both mechanisms. In comparison to the

previous runs (Fig. 5.1, top), the reaction rates mostly remained close to their nominal

values with exception of few reactions recognized as those that tend to exceed their

uncertainties as seen in Fig 5.1 (top) to improve the accuracy. Specifically, one reaction
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(S2) deviates from its nominal value and uncertainty bounds for the strongly perturbed

mechanism, while all the other reactions remained close to their original coefficients

or within their uncertainties (although these were not considered in runs with penalty

functions). For the weakly perturbed mechanism, the behavior of the rate modifications

for runs including penalty functions is similar to the previous case, with somewhat

bigger deviation of the rate constants for reactions W1 and W12 which, however, do not

exceed their uncertainty bounds. The penalty function managed to restore the accuracy

for both mechanisms as seen in Figs. 5.2-5.5.

Combined constraints were imposed to test the effect of the penalty functions on the

reaction rates in case when the uncertainty range is predefined but doubled (2UF). The

idea behind this strategy was to evaluate if the penalty function would still bring the

coefficients back into their original uncertainty bounds (UF) and restore the accuracy.

The results of these tests in terms of accuracy are shown in Figs. 5.4 and 5.5 for two

considered mechanisms.

The accuracy of the mechanism that was strongly perturbed during the reduction was

not fully restored for runs with combined constraints (Fig. 5.4 center and right), as the

penalty functions strongly pushed all the reaction rates towards their nominal values

and the reaction S2 towards its uncertainty bounds. However, the combined constraints

gave better accuracy than simple UF-constraints for this mechanism (Fig. 5.4). For the

weakly disturbed mechanism, all the runs successfully restored the accuracy and the re-

action rates remained within their prescribed uncertainty bounds. This implies that, for

strongly or inappropriately reduced mechanisms, the accuracy can be largely restored

for a chosen parameter range at the cost of violating the physical reaction rate uncer-

tainties. For well-posed or appropriately reduced mechanisms, the penalty function is

able to keep the reactions close to their original values or within their uncertainty ranges,

while still obtaining a plausible accuracy for a given range of optimization parameters.

To get a better insight into the behavior of the reactions that exceed their uncertainty

limits, a sensitivity analysis for temperature and H2O2 in respect to the remaining

reactions of two reduced mechanisms was performed; the results are shown in Fig. 5.6.

Sensitivity coefficients were calculated as Ai
T

∂T
∂Ai

for the temperature, and Ai
YH2O2

∂YH2O2
∂Ai

for H2O2, respectively [74].

Figure 5.1 shows that the most sensitive reactions (Fig. 5.6) remain unchanged (e.g.,

S7 (W7): H + O2 
 OH + O) for both reduced mechanisms through all the optimiza-

tion runs. The reactions that tend to fall outside their uncertainty bounds (S2 for the

strongly perturbed, W1 and W12 for the weakly perturbed mechanism) show small sen-

sitivity relative to other reactions. In addition to Figs. 5.2-5.5, the accuracy of the

remaining optimization runs with predefined uncertainty factors UF repeated for the
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same conditions and criteria are shown in Figs. 5.7 and 5.8. The extent of modifications

of the reaction rates for these runs is reported in Fig. 5.1 top (strongly perturbed and

weakly perturbed reduced mechanism, respectively).

Different reaction rate modifications resulted from each successive UF-constrained run

for the corresponding mechanism (Fig. 5.1 top) but their prediction abilities were the

same for the chosen optimization targets.
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Figure 5.2: Auto ignition for full, reduced and optimized hydrogen mechanism re-
sulting from three optimization runs with the same numerical setup and the accu-
racy criteria but different constraints imposed to reaction rate modifications: no con-
straints (left), with predefined uncertainty factor UF (center) and with penalty function
fpen (αref = 1.0) to minimize the modification (right). The input mechanism was re-

duced with strong perturbation. .
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Figure 5.3: Auto ignition for full, reduced and optimized hydrogen mechanism re-
sulting from three optimization runs with the same numerical setup and the accu-
racy criteria but different constraints imposed to reaction rate modifications: no con-
straints (left), with predefined uncertainty factor UF (center) and with penalty function
fpen (αref = 1.0) to minimize the modification (right). The input mechanism was re-

duced with weak perturbation.
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Figure 5.4: Auto ignition for full, reduced and optimized hydrogen mechanism result-
ing from three optimization runs with the same numerical setup and the accuracy cri-
teria but different constraints imposed to reaction rate modifications: penalty function
fpen,log (αref = 1.0), with doubled UF and fpen (αref = 1.0) (center) and with doubled
UF and fpen,log (αref = 1.0) (right). The input mechanism was reduced with strong

perturbation.
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Figure 5.5: Auto ignition for full, reduced and optimized hydrogen mechanism re-
sulting from three optimization runs with the same numerical setup and the accuracy
criteria but different constraints imposed to reaction rate modifications: penalty func-
tion fpen,log (αref = 1.0), with doubled UF and fpen (αref = 1.0) (center) and with dou-
bled UF and fpen,log (αref = 1.0) (right). The input mechanism was reduced with weak

perturbation.
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Figure 5.6: Normalized sensitivities of the temperature (top) and H2O2 (bottom) in
respect to the remaining reactions in two reduced mechanisms.
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Figure 5.7: Auto ignition for full, reduced and optimized hydrogen mechanism result-
ing from three optimization runs with the same numerical setup, the accuracy criteria
and predefined uncertainty factors UF. The input mechanism was reduced with strong

perturbation.
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Figure 5.8: Auto ignition for full, reduced and optimized hydrogen mechanism result-
ing from three optimization runs with the same numerical setup, the accuracy criteria
and predefined uncertainty factors UF. The input mechanism was reduced with weak

perturbation.
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5.2 Reduction and Subsequent Optimization - Ethylene

Oxidation Mechanism

Aim of this section is to demonstrate the optimization of a mechanism that was pre-

viously reduced for a reactor, for laminar flame under multiple operating conditions.

A moderately-sized mechanism was reduced for a simple model (homogeneous rector)

over a range of different equivalence ratios and subsequently optimized for predicting

the flame speed over the same range of conditions. The original mechanism consid-

ered here is USC Mech Version II [190], a high-temperature combustion mechanism of

H2/CO/C1-C4 compounds which consists of 111 species and 784 reactions. In the follow-

ing, the reduction and the optimization results of the ethylene combustion mechanism

are presented.

Reduction

The reduction was performed for the constant-pressure homogeneous reactor at atmo-

spheric pressure, initial temperature Tin = 1300 K and six different equivalence ratios

for ethylene/air mixture, φ = [0.6, 0.8, 1.0, 1.2, 1.4 and 2.0]. The criteria defined within

the objective function for the elimination of reactions are listed in Table 5.3, the genetic

algorithm parameters used for the mechanism reduction are given in Table 5.4.

Property wi Normalization σ λ

Nr 4.0 Eq. 4.6 6.0 0.75

tCPU 1.0 Eq. 4.6 6.0 4.0

τign 1.0 Eq. 4.5 6.0 -

Tprofile 2.0 Eq. 4.9 25.0 -

XH,profile 2.0 Eq. 4.9 25.0 -

Table 5.3: Objective function parameters for reduction of the ethylene mechanism for
a homogeneous constant-pressure reactor.

GA parameter Type Value

Population size - 96

Selection tournament -

Crossover single-point pcross = 0.4

Mutation one-directional pmut = 0.01

Table 5.4: Parameters of the genetic algorithm used for reduction of the ethylene
mechanism.
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The convergence of the GA-based search for the smallest possible submechanism that

satisfies the given criteria within the objective function is shown in Fig. 5.9 and the

evolution of the remaining number of reactions is shown in Fig. 5.10.

The convergence plots show the best fitness within a generation (the minimum) and the

statistical distribution of the fitnesses for all the individuals, represented by quantiles

(Q25, Q50 and Q75).

For a given set of fitnesses within a generation, ascendingly sorted according to the fitness

value, the median is the value separating the higher half of fitnesses from the lower half.

It is often described as the ”middle” value. For a given generation, the quantile Q50 is

the median of the fitnesses within the generation (i.e. 50% of the individual fitnesses do

not exceed the value denoted by Q50). The quantile Q25 is the median of the subset of

fitnesses that are between the minimum fitness and Q50. Analogously, the quantile Q75

is the median of the subset of fitnesses that are between Q50 and the maximum fitness.

The best performing reduced mechanism is found in generation 690 and has 114 reactions

(Fig. 5.10). This way the ethylene mechanism was reduced from 111 species and 784

reactions to 63 species and 114 reactions.
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Figure 5.9: Overall fitness evolution for the USC-Mech mechanism reduction for
ethylene/air combustion

The aim of reducing this mechanism for a simple reacting case (reactor) is to evaluate its

performance for a more complex model (laminar flame) and to optimize such a reduced

mechanism to predict the laminar flame speed. For the optimization, the adiabatic lam-

inar freely propagating flame model with the following operating conditions was chosen:

pressure p = 105 Pa, temperature at the burner Tb = 300 K and the flame lenght of
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Figure 5.10: Evolution of the number of remaining reactions for the USC-Mech mech-
anism reduction for ethylene/air combustion

0.01 m. The equivalence ratios of the ethylene/air mixture were the same as for the

reactor case, φ = [0.6, 0.8, 1.0, 1.2, 1.4 and 2.0]. The criteria (objective function terms)

for the optimization are listed in Table 5.5. The penalty function was used to avoid that

the resulting rate coefficients deviate too much from their nominal values.

Property wi Normalization σ

Tprofile 1.0 Eq. 4.9 25

sL 2.0 Eq. 4.5 6

fpen (αref = 1.0) 1.0 Eq. 4.7 6

Table 5.5: Objective function parameters for optimization of reduced ethylene mech-
anism for a freely-propagating flame.

The parameters of the genetic algorithm for the optimization of the reduced ethylene

mechanism for the flame speed are given in Table 5.6.

The optimal solution was found in generation 946 with the overall fitness of 0.078, as

shown in Fig. 5.11.

The performance of the optimized reduced ethylene mechanism is presented in terms of

the temperature profiles for a freely propagating flame for φ = [0.6, 0.8, 1.0, 1.2, 1.4, 1.6,

1.8 and 2.0] in Fig. 5.12 and the flame speeds in Fig. 5.13 showing that the reduced
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GA parameter Type Value

Population size - 48

Initialization nominal gene values -

Selection tournament -

Crossover uniform pcross = 0.5

Mutation Gaussian multiplicative pmut = 0.02

Table 5.6: Parameters of the genetic algorithm used for optimization of the reduced
ethylene mechanism for a freely propagating flame.
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Figure 5.11: Overall fitness evolution for the reduced USC-Mech mechanism opti-
mization for ethylene/air combustion in a freely propagating flame

optimized mechanism performs as well as its detailed version for the given operating

conditions and the criteria.

The influence of the penalty function on the resulting reaction rates of the optimized

mechanism is illustrated in terms of the discrete probability density of the normalized

rate constants Fig. 5.14, with the mean value µ = 1.102 and the standard deviation

σ = 0.478, indicating that the accuracy of the chosen targets was fully restored without

significant alteration of the reaction rates. The figure shows how most values were

retained or mildly changed, and only two were increased/decreased significantly.
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Figure 5.12: Temperature profiles for the full, reduced and optimized USC-Mech for
a freely propagating flame for φ = [0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0]. Two points

(φ = 1.6 and φ = 1.8) were not considered for the optimization.
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reduced ethylene mechanism was optimized. Two points (φ = 1.6 and φ = 1.8) were

not considered for the optimization.
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individual from the ethylene mechanism optimization.
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5.3 Further Reduction with the Penalty Function - tert-

Butanol Oxidation Mechanism

The tert-butanol mechanism from Sarathy et al. 2012 [153] was chosen as an example of

a large mechanism (2336 reversible reactions and 431 species) to demonstrate the usage

of the penalty function for the further elimination of reactions during the optimization.

Prior to the optimization, this mechanism was first reduced with the GA-based elim-

ination procedure to 204 reactions and 144 species. The reduction was performed for

a constant-pressure homogeneous reactor at pressure p = 1.5 atm, initial temperature

Tin = 1250 K and stoichiometric tert-butanol/air mixture. The objective function terms

are listed in Table 5.7.

Property wi Normalization σ λ

Nr 4.0 Eq. 4.6 6.0 0.75

tCPU 1.0 Eq. 4.6 6.0 4.0

τign 1.5 Eq. 4.5 6.0 -

Tprofile 1.5 Eq. 4.9 10.0 -

Table 5.7: Objective function parameters for reduction of tert-butanol mechanism for
a homogeneous constant-pressure reactor simulation.

The parameters of the genetic algorithm used for reaction elimination are listed in Table

5.8.

GA parameter Type Value

Population size - 96

Initialization one-reaction-missing -

Selection tournament -

Crossover single-point pcross = 0.5

Mutation one-directional pmut = 0.004

Table 5.8: Parameters of the genetic algorithm used for reduction of tert-butanol
mechanism.

5.3.1 Objectives

The reduced tert-butanol mechanism was further optimized for the same operating con-

ditions against its detailed version taking into account the criteria listed in Table 5.9.

The aim of this optimization run is to restore the accuracy and reduce the mechanism

further with the penalty function.

The parameters of the genetic algorithm used for reaction-rate optimization are listed

in Table 5.10.
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Property wi Normalization σ

τi 1.0 Eq. 4.5 6.0

Tprofile 1.0 Eq. 4.9 10.0

XH,max 1.5 Eq. 4.5 4.0

XH2,profile 1.0 Eq. 4.9 15.0

XO,max 1.0 Eq. 4.5 4.0

XCH3,max 1.0 Eq. 4.5 4.0

XCH3,profile 1.5 Eq. 4.9 15.0

XtC4H9OH,profile 1.0 Eq. 4.9 15.0

fpen(αref = 0.0) 6.0 Eq. 4.7 25.0

Table 5.9: Terms of the objective function for the optimization of tert-butanol mech-
anism.

GA parameter Type Value

Population size - 96

Initialization nominal gene values -

Selection tournament -

Crossover uniform pcross = 0.5

Mutation Gaussian multiplicative pmut = 0.02

Table 5.10: Parameters of the genetic algorithm used for optimization of the reduced
tert-butanol mechanism.

5.3.2 Results

The butanol combustion mechanism of Sarathy et al. from 2012 [153] was first reduced

with the reduction procedure from 2336 reversible reactions and 431 species to 204 reac-

tions and 144 species. The overall fitness evolution during the integer-coded reduction

of the mechanism is shown in Fig. 5.15, finding the optimal solution in generation 1291.

The number of reactions decrease during the evolution is shown in Fig. 5.16. Evolution

of the computational time criterion (Fig. 5.17) shows that the algorithm discarded the

computationally expensive solutions. Further reduction to 136 reactions and 104 species

was achieved with the optimization using the penalty function fpen (αref = 0.0). Figure

5.18 shows the overall fitness behavior during the optimization run. Late convergence

was reached because of the penalty function. The penalty function was aiming to de-

crease the rate constants as much as possible (goal oposed to the accuracy citeria) so

it never reached its minimal value (Fig. 5.19). The accuracy of the reduced and the

optimized tert-butanol mechanism is presented in Fig. 5.20 showing a good agreement

between the detailed mechanism and the significantly reduced optimized mechanism for

all the optimization targets.
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Figure 5.15: Overall fitness evolution for the tert-butanol mechanism reduction
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Figure 5.16: Evolution of the number of remaining reactions during the tert-butanol
mechanism reduction

To illustrate the evolution of the reaction rates modifications and their correlation to

the overall fitness and the penalty function, three different values of the resulting rates

are shown in a scatter plot (Fig. 5.25).

Scatter plots 5.22, 5.23 and 5.24 show the visibility of the objective function terms to

the overall objective function, indicating that the choice of the normalization functions
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Figure 5.17: Evolution of the reactor simulation runtime during the tert-butanol
mechanism reduction
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Figure 5.18: Overall fitness evolution for the reduced tert-butanol mechanism opti-
mization with penalty function for αref = 0.0

and their coefficients was appropriate for the desired optimization outcome (Fig. 5.20).

This means that the optimization targets do not outweigh each other after scaling and

are equally treated within the objective function. The scatter plots are colored by the

overall fitness. The data on the scatter plots are logaritmically normalized (to the

base 10) so that the changes across disparate scales can clearly be seen. Blue indicates

minimal (desired) value, red indicates the maximal value (bad solutions) of the observed
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target. Dark red points represent the candidate mechanisms with the highest fitness

function value (caused either by a poor numerical behavior of these mechanisms or

their inaccuracy) indicating that the optimization method is robust with respect to

numerically unstable or inaccurate mechanisms that may occur during the search. Such

solutions are successfully discarded. To obtain an insight into reaction rates behavior

due to the penalty function, three illustrative reaction rate values are plotted against

the penalty function and the overall fitness on Fig. 5.25.

0 2000 4000 6000 8000 10000
Generation

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

P
e
n
a
lt

y
 t

e
rm

 f
o
r 
α
re
f
=
0
.0

(9973 , 2.353)

mean

Q50

min

Best Individual

Min-Max

Q25-Q75

Figure 5.19: Penalty function evolution for thre reduced tert-butanol mechanism
optimization for αref = 0.0

Reactions rate values (genes) from Fig. 5.25 have different resulting values. Reaction

16 (gn00016) did not change its nominal value, i.e. αopt(gn00016) = 1.0. Reaction 21

(gn00021) was significantly modified αopt(gn00021) = 7.6 indicating that its value has

fallen into the plateau region of the penalty function (see Fig. 4.8 in Section 4) so no

constraints to this reaction rate were imposed (maximal allowed gene value was 8.0).

Reaction 140 (gn00140) was eliminated from the mechanism by sharply directing its rate

towards zero with the penalty function.

This way, the penalty function helped eliminating 68 reactions from the mechanism with

the improvement of its accuracy (Fig. 5.20). As the consequence of eliminating these

reactions, 40 species were further removed from the mechanism.



Chapter 5. Application and Testing 110

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

 0  1  2  3  4

T
e

m
p

e
ra

tu
re

 /
 (

1
0

0
0

 K
)

full
reduced

optimized
0

5

10

15

20

25

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
H

 /
 1

0
-3

0

2

4

6

8

10

12

14

16

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
O

 /
 1

0
-3

0

5

10

15

20

25

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
O

H
 /

 1
0

-3

0

5

10

15

20

25

30

35

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
H

2
 /

 1
0

-3

0

5

10

15

20

25

 0  1  2  3  4
M

o
le

 f
ra

c
ti
o

n
 o

f 
O

2
 /

 1
0

-2

0

2

4

6

8

10

12

14

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
H

2
O

 /
 1

0
-2

0

5

10

15

20

25

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
C

H
3
 /

 1
0

-4

0

1

2

3

4

5

6

7

8

9

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
C

O
2
 /

 1
0

-2

0

2

4

6

8

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
C

O
 /

 1
0

-2

Time / ms

0

5

10

15

20

25

30

35

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
C

4
H

9
O

H
 /

 1
0

-3

Time / ms

60

64

68

72

76

80

 0  1  2  3  4

M
o

le
 f

ra
c
ti
o

n
 o

f 
N

2
 /

 1
0

-2

Time / ms

Figure 5.20: Auto-ignition with the full, reduced and optimized tert-butanol mech-
anism for a homogeneous constant-pressure reactor. The optimization reduced the

mechanism further.
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Figure 5.21: Discrete probability density of the normalized rate constants for the best
individual from the tert-butanol mechanism optimization. The left-most bar relates to

removed reactions.

Figure 5.22: Scatter plots show the values of the objective function terms for each
individual during the optimization colored by the overall fitness value, indicating the

correlation between the normalized optimization targets and the overall fitness.
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Figure 5.23: Scatter plots show the values of the objective function terms for each
individual during the optimization colored by the overall fitness value, indicating the

correlation between the normalized optimization targets and the overall fitness.
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Figure 5.24: Scatter plots show the values of the objective function terms for each
individual during the optimization colored by the overall fitness value, indicating the

correlation between the normalized optimization targets and the overall fitness.
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Figure 5.25: Scatter plots for each of the tested mechanisms during the optimization,
indicating the correlation between the normalized rate constants of reactions 16, 21 and
123 in the mechanism and the penalty function and the overall fitness. Colored by the

overall fitness.
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5.4 Parameters Study

This section addresses the choice of the genetic algorithm operations and their param-

eters depending on the problem. Most important aspects of parameters for both the

integer-coded (reduction) and the real-coded (optimization) genetic algorithm used in

this work are discussed to provide help with chosing the appropriate functions and pa-

rameters for a given problem. The material from Sections 5.4.1, 5.4.2 and 5.4.3 has been

published in International Journal of Chemical Kinetics [161, 162] and reused in this

work with permission from Wiley.

5.4.1 Genetic Algorithm Parameters Study - Reduction

This section covers the crucial aspects of the specific method used for the reduction (see

Section 4.1): initialization, mutation, evaluation function, the crossover rate and the

population size. Specific operators and recommendations for their values are applicable

only within the scope of the reduction method presented in this work.

Effect of initialization

The effect of different initializations was studied, comparing an initialization with the

full mechanism to an initialization where one reaction was deactivated in every chromo-

some. Figures 5.26 and 5.27 show the evolution of the overall fitness over the generations,

indicating that the type of initialization only affects the very first generations. For this

case, the setup starting from the full mechanism has surpassed the incomplete initializa-

tion after approximately fifty generations, but the latter has converged faster initially.

For relatively small or moderate mechanisms, the full-initialization does not slow the

search process down significantly, but for large mechanisms, the ”one-reaction-missing

initialization” is preferred as it saves time for calculating the whole initial population of

the same chromosomes with the full length.

Effect of one-way vs. two-way mutation

A mutator was chosen to create additional evolution pressure towards smaller mecha-

nisms by only permitting mutations to remove reactions, but not to add them again.

Where this approach involves the risk that a key reaction might be lost forever, we have

found this approach to be generally beneficial, as can be seen by the faster convergence

in Figures 5.28 and 5.29 as compared to Figures 5.32 and 5.33. The overall fitness

and the remaining reactions over 500 generations for the sigmoid normalization of the
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Figure 5.26: Evolution of the objective function within the first 100 generations using
full mechanism initialization
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Figure 5.27: Evolution of the objective function within the first 100 generations using
”one reaction missing” initialization

runtime and the number of reactions are shown for the two-directional mutation with

the mutation rate 0.002 (Figures 5.28 and 5.29), the two-directional mutation with the

mutation rate 0.003 (Figures 5.30 and 5.31) and the one-directional mutation with the

mutation rate 0.002 (Figures 5.32 and 5.33).

The two-directional mutation results in somewhat slower convergence and many previous

tests have shown that it may lead to a slightly bigger mechanism, as would be expected,

since this mutator shifts the evolutionary pressure towards small mechanisms, but the

overall effect is small. However, this must be tested statistically for a large number of
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repeated runs (see Section 5.4.4). Nevertheless, the mutation rate for both mutators

must be carefully chosen to prevent the solution to fall beyond the optimum.
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Figure 5.28: Overall convergence with the two-directional mutation (pm = 0.002,
sigmoid normalization of the runtime and the number of reactions): Objective function

evolution
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Figure 5.29: Overall convergence with the two-directional mutation (pm = 0.002,
sigmoid normalization of the runtime and the number of reactions): Evolution of the

number of remaining reactions

Effect of the choice of evaluation functions

In order to examine the effect of the functions used for targets scaling on the overall

convergence of the algorithm (here, the integer-coded), a mechanism containing 104

reactions ([148] combined with the mechanism from [130]) was taken as a test case.
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Figure 5.30: Overall convergence with the two-directional mutation (pm = 0.003,
sigmoid normalization of the runtime and the number of reactions): Objective function

evolution
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Figure 5.31: Overall convergence with the two-directional mutation (pm = 0.003,
sigmoid normalization of the runtime and the number of reactions): Evolution of the

number of remaining reactions

This section considers few different forms of evaluation functions commonly used for the

cost parameters (runtime and number of reactions). While the accuracy terms aim to

direct the potential solution towards the correct solution calculated from the detailed

mechanism, the cost evaluation terms work in ”opposite direction” aiming to direct the

potential solution towards the smallest possible cost value. In order to achieve a sat-

isfactory trade-off between these two usually conflicting parts of the overall evaluation

function, the cost criteria must be designed carefully to avoid outweighing the accu-

racy criteria. Numerous experiments were done with different shapes and weighting
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Figure 5.32: Overall evolution with one-way mutation (pm = 0.002, sigmoid normal-
ization of the runtime and the number of reactions): objective function evolution
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Figure 5.33: Overall evolution with one-way mutation (pm = 0.002, sigmoid normal-
ization of the runtime and the number of reactions): evolution of number of reactions

factors for the functions. In the following, behavior of three types of functions were

presented, namely linear, square and sigmoid normalization functions shown in Fig.

5.34 is presented. To make them comparable, these functions were weighted to corre-

spond to the best-performing sigmoid function (Eq. 4.6) adopted for the cost criteria

(CPU time and number of remaining reactions). The linear function for the computa-

tional time is f(CPU) = 0.125(tCPU, red/tCPU, ref) whereas the number of reactions are

normalized linearly as f(Nr) = 0.667(Nr/NR). Square normalizations are, for the com-

putational time f(CPU) = 0.03125(tCPU, red/tCPU, ref)
2 and for the number of reactions

f(Nr) = 0.889(Nr/NR)2.
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Figure 5.34: Linear, sigmoid and square normalization function f(ξ) where ξ stands
for the cost parameter

All the runs have the same accuracy terms, namely the ignition delay time, the steady-

state temperature and the iron oxide mole fractions all logarithmically normalized (Eq.

4.5). A homogeneous constant-pressure reactor model is used for the evaluation. The

full-mechanism initialization, one-directional mutation with the mutation rate 0.002,

the single-point crossover with a probability of 0.4, the tournament selection and a

population size of 48 were applied for the genetic algorithm-based reduction within 500

generations. The effects of linear, square, and sigmoid normalization on the overall

fitness and the size of the resulting reduced mechanism are shown in Figs. 5.35, 5.36,

5.37, 5.38, 5.32 and 5.33.

In comparison to the linear normalization (Figs. 5.35 and 5.36), the square normalization

functions give better algorithm convergence behavior as shown in Figs. 5.37, and 5.38.

The algorithm did not manage to reach the stagnation within 500 generations using linear

functions, whereas the square and the sigmoid functions (Figs. 5.32 and 5.33) did. Not

only was the convergence influenced by the choice of the normalization functions, but

the accuracy as well, as the algorithm managed to find the best perfoming individual

within the given number of generations. In these cases, and in the most other numerical

tests made with different functions, the sigmoid form of the cost functions gave the best

accuracy-cost balance.



Chapter 5. Application and Testing 121

100 200 300 400 500
Generation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
v
e
ra

ll 
fi
tn

e
ss

(369 , 0.402)

mean

Q50

min

Best Individual

Min-Max

Q25-Q75

Figure 5.35: Overall convergence with linear scaling of the cost parameters: objective
function evolution
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Figure 5.36: Overall convergence with linear scaling of the cost parameters: evolution
of the number of remaining reactions

Effect of the crossover rate

For a constant population size of 48 individuals used in the analysis above, the crossover

rate was varied to examine its influence on the overall convergence of the algorithm

within 500 generations. Figure 5.39 shows the behavior of the minimal value of the

overall error for runs with different crossover rates. The crossover rate has a small impact

on the convergence of the algorithm within 500 generations, but a good compromise

between the convergence speed and the minimal error value is achieved for a crossover
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Figure 5.37: Overall convergence with square scaling of the cost terms: objective
function evolution
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Figure 5.38: Overall convergence with square scaling of the cost terms: evolution of
number of reactions

rate of 0.4 which is consistent with the ”rule of thumb” for different genetic algorithm

applications. The mutation rate for all the runs was constant, pm = 0.001.

Effect of the population size

The effect of population size on the rate of convergence was investigated at a constant

crossover rate of 0.4 and the mutation rate pm = 0.001. Figure 5.40 shows the expected

behavior of faster convergence with a bigger population size, but it must be noted that

the effort for the solution of a single generation increases with the size of the population,
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Figure 5.39: Minimal value of the objective function over 500 generations for runs
with the constant population size of 48 individuals and variable crossover rate pcross

as well as the variance of the population. This is illustrated on Figure 5.41, where the

overall error distribution in terms of its minimum and the median (Q50) is shown along

the entire sampling space. The number of samples is the number of the genomes in the

population multiplied with the number of generations.
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Figure 5.40: Distribution of the minimum and the median of the objective function
value over 500 generations for runs with the constant crossover rate of 0.4 and variable

population size
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Figure 5.41: Distribution of the minimum and the median of the objective function
value over the overall number of samples (Npop · Ngenerations) within 500 generations,

constant crossover rate of 0.4 and variable population size

5.4.2 Parameter Study of the Penalty Terms - Optimization

The effect of the penalty terms onto the optimization outcome is demonstrated for the

tert-butanol mechanism [153], which serves as an example of a chromosome with a large

number of genes due to a relatively large number of reactions even after the reduction.

The detailed mechanism was first reduced to 248 reactions and 198 species and then op-

timized with differently defined penalty terms. The objective function for the reduction

included the ignition delay time, final temperature, the number of reactions and the com-

putational cost (CPU time). For the objective function, stoichiometric tert-butanol/air

combustion was simulated for a constant pressure (atmospheric) homogeneous reactor

with an initial temperature of 1200 K. Operating conditions of the reactor simulation

were the same for both the reduction and the optimization. The optimization criteria

were the ignition delay time, the temperature (maximal value and the temporal varia-

tion), and the mole fractions of the important radicals (H, OH, and CH3). The reference

was the original mechanism [153]. Table 5.11 lists the considered properties and their

normalization functions used as the accuracy terms within the objective function used

for the optimization.

To provide an insight into the influence of differently defined penalty terms onto the

overall results, ten optimization runs all with the same operating conditions and the

accuracy criteria but different penalty terms are performed. Values of the single penalty

function terms for the optimization runs 1-10 are listed in Table 5.12.
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Property wi Normalization σ

τi 1.0 4.5 4

t(Tmax) 1.0 4.5 4

Tmax 1.0 4.5 4

Tprofile 1.0 4.9 25

XH,max 1.0 4.5 4

XOH,profile 1.0 4.9 25

XCH3,profile 1.0 4.9 25

Table 5.11: Accuracy terms of the objective function for the optimization of the
reduced tert-butanol mechanism

Run αi,ref wi σ

1 − − −
2 1.0 1.0 4

3 1.0 1.0 20

4 0.0 1.0 20

5 0.0 1.0 50

6 0.0 4.0 25

7 0.0 6.0 25

8 0.0; 1.0 0.5; 0.5 20; 4

9 0.0; 1.0 0.5; 0.5 20; 20

10 0.0; 1.0 6.0; 1.0 20; 4

Table 5.12: Parameters of the Penalty Function for tert-Butanol Mechanism Opti-
mization Runs. Preferred values of the rate constant are αi,ref, weighting of penalty

terms is wi and σ is the sharpness of the penalty term normalization (Eq. 4.7)

The runs in Table 5.12 are listed in the first place according to the choice of preferred

reaction rate values (αref) within their penalty terms:

• the run without the penalty function (run 1),

• the runs with penalties aiming to preserve the nominal α values (runs 2 and 3),

• the runs aiming to eliminate reactions (runs 4-7),

• and the runs combining the conflicting penalty terms (runs 8-10).

Weighting factors and the corresponding sharpness of the penalty function terms vary

from small to large values and only one run per optimization setup is performed to

indicate the influence that the weights and the sharpness values have on the penalty

terms.

The conflicting penalty terms (runs 8, 9, and 10) were set to test their influence on

the accuracy, and to gain a better understanding about how the penalty function af-

fects the modification of the reaction constants. As the mechanism was reduced and

optimized under the same conditions, all runs show significant improvement in terms of
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accuracy (Fig. 5.43 and partially Fig. 5.42), indicating that the optimization can still

enhance the mechanisms performance even if the constraints imposed on the reaction

rate modifications are differently defined.
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Figure 5.42: Auto ignition for full, reduced, and optimized tert-butanol mechanisms
for a homogeneous constant-pressure reactor for runs 1, 2 and 7.

The standard deviation and the mean of the normalized rate coefficients for all runs

are shown in Table 5.13. It can be seen from Tables 5.12 and 5.13 that the standard
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Figure 5.43: Values of single objective-function terms, before (reduced) and after the
optimization (cf. Table 5.11)

deviation can be adjusted straight forward via the weights of the penalty terms.

To illustrate the influence of the penalty term parameters on the objective function

evolution, the overall objective function, the objective-function term f(XH,max) and the

penalty terms for runs 2 and 8 are shown in Figs. 5.44 and 5.46. The aim of the penalty

term for run 2 was to maintain the faithfulness to the original reaction rates with a

small sharpness value in Eq. 7 (σ = 4). The penalty term of run 2 starts from 0.0 and
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converges relatively fast, which helps the overall objective function to converge along

with the accuracy.

Run Standard deviation mean Nr

1 1.092 1.063 248

2 0.817 1.022 248

3 0.897 1.095 248

4 1.278 1.049 248

5 1.323 1.065 247

6 1.548 0.813 226

7 1.836 0.977 221

8 0.757 1.010 248

9 0.728 1.018 248

10 1.324 0.693 227

Table 5.13: Overview of standard deviation, mean and the number of remaining
reactions for ten optimization runs for the reactions of tert-butanol.

The evolution of the objective function terms for the case where the penalty term features

two conflicting goals, aiming to either remove unnecessary reactions by driving the rate

coefficients to zero and to maintain the original value of rate coefficients at the same

time (cf. Table 5.12), is illustrated for run 8 in Figs. 5.45 and 5.46. The behavior of the

penalty term which prefers values of 1.0 (Fig. 5.46, bottom) is similar to that from run

2 (Fig. 5.44, bottom).

The penalty term that prefers values of 0.0 is comparable to that from run 7, albeit with

significantly lower weight. Therefore, the penalty term from run 2 does not significantly

contribute to the overall convergence of the objective function (Fig. 5.45).

The standard deviation of the resulting normalized rate constants for all runs with

αref = 0.0 increases when the weight for the corresponding penalty term increases and

their probability density (Fig. 5.47) is flattened. For the runs 2, 8, and 9, the standard

deviation decreases as the weights of the penalty terms decrease and their probability

density is narrower. The value of α is not biased in run 1; however its standard deviation

and the mean are close to 1. The plateau region of the penalty function (Fig. 4.9 left)

in runs 6, 7, and 10 is responsible for a not-constrained change of larger α values, while

very small α values are steeply directed towards αref.
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Figure 5.44: Evolution of the overall objective function value (top), the objective-
function term f(XH,max) (center), and the penalty function term which constraints the

change in rate coefficients (bottom) for run 2 (cf. Table 5.12).
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Figure 5.45: Evolution of the objective function value (top) and the objective-function
term f(XH,max) (bottom) for run 8 (cf. Table 5.12).



Chapter 5. Application and Testing 131

500 1000 1500 2000
Generation

0.0

0.1

0.2

0.3

0.4

0.5

P
e
n
a
lt

y
 t

e
rm

 f
o
r 
α

re
f
=

0
.0

(1955 , 0.483)

mean

Q50

min

Best Individual

Min-Max

Q25-Q75

500 1000 1500 2000
Generation

0.0

0.1

0.2

0.3

0.4

0.5

P
e
n
a
lt

y
 t

e
rm

 f
o
r 
α

re
f
=

1.
0

(1955 , 0.261)

mean

Q50

min

Best Individual

Min-Max

Q25-Q75

Figure 5.46: Evolution of the penalty-function term which drives the rate coefficients
towards zero (top) to achieve a further reduction and the penalty-function term which
constraints the change in rate coefficients (bottom) for run 8 to maintain near original

rate constants (cf. Table 5.12).
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left-most bar relates to removed reactions.



Chapter 5. Application and Testing 132

The tendency towards further reduction cannot be recognized from the means of runs

6 and 7 (both means are close to 1) but the reduction trend is more visible from their

corresponding discrete probability densities (Fig. 5.47). It can be also seen in Fig 5.47.

that high weights in runs 6 and 7 force the values of α towards zero. Although the

penalty weight for run 6 is smaller than the weight for run 7, the mean for run 7 is

greater than the mean of run 6, indicating that the bias towards α = 0.0 is not crucial

for the distribution of α. For runs with higher weights towards 0.0 (runs 6, 7, 10, and,

less obviously, 5) in Fig 5.47 we see that the bias towards 0.0 is somewhat compensated

by an increased standard deviation.

From that, we conclude that the reduction requires significant modification of the original

system if the accuracy is to be retained. The mean and the standard deviation for the

runs with opposed penalty terms (8, 9, and 10) are consistent with those for runs with

single penalty terms, and while their accuracy is retained, the reduction effect is not

significant. Runs with small weights of the penalty terms which direct α values towards

0.0 (runs 4 and 5) were not able to reduce the mechanism further.

The highest degree of further reduction was achieved in run 7 where the penalty for

the size of the mechanism had the highest weight (wi = 6.0). In this case, the penalty

function increased the evolution pressure towards further elimination of 27 reactions

during the optimization. The optimization run took about 60 hours for 2000 generations

on 48 AMD Opteron 2.6 GHz cores. The evolution of the overall objective function

value for a population size of 96 is displayed in Fig. 5.48 (top) for the simulation run 7

(Table 5.12), showing a significant kink in convergence at generation 375 and overall slow

convergence. The behavior of the accuracy criteria is illustrated in Fig. 5.48 (center) as

evolution of the peak value of atomic hydrogen, which converged already in generation

375. At this generation, the mechanism consisted of 246 reactions. From this generation

on, only the highly-weighted penalty criterion was subject to the optimization, reducing

the mechanism to 221 reactions in generation 1998 (Fig. 5.48, bottom) without further

improvement to accuracy. The optimization was terminated after 2000 generations.
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Figure 5.48: Evolution of: Overall objective function (top), the objective-function
term fH,max (center) and the penalty-function term (bottom) for the tert-butanol mech-

anism run 7 which lead to further elimination of 27 reactions. (cf. Table 5.12).
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Figure 5.42 illustrates the performance of the full, the reduced, and the optimized tert-

butanol mechanism for runs 1, 2, and 7 showing a significant improvement of the opti-

mized mechanism over the un-modified reduced mechanism for any case. This demon-

strates that both objectives, accuracy and further reduction, can be achieved at the

same time.

5.4.3 Optimization Outside of the Reduction Conditions

The optimization of the reduced methane mechanism under six operating conditions

different than that for which the mechanism was reduced for, with a minimum deviation

from the original reaction rates, is demonstrated in this section. The following material

has been published in International Journal of Chemical Kinetics [162] and reused with

permission.

The mechanism used in this study is the GRI-Mech 3.0, which is an optimized detailed

reaction mechanism developed for a description of methane and natural gas combustion,

including NO formation [163]. Prior to the optimization, the GRI-Mech 3.0 had been

reduced to 52 reactions and 26 species by removing 273 reactions and 27 species for a

homogeneous combustion at atmospheric pressure, stoichiometric methane/air mixture

and an initial temperature of 1400 K. The reduction criteria were the ignition delay

time, final temperature, number of reactions, and the computational time required for

the solution of a homogeneous reactor problem [161]. The computational time and the

number of reactions were taken as the reduction criteria to avoid possible stiffness and

numerical instabilities that may occur due to eliminating reactions.

The result is a reduced mechanism that is small in size and fast in computation for

an intended application. The reduction had successfully preserved the ignition delay

times and the final temperature predictions, but the predictions of intermediate species

concentrations were disturbed. Following results show significant improvements of the

intermediate species predictions by optimizing the rate coefficients of the remaining

reactions in the reduced mechanism under various operating conditions (cf. Table 5.14).

The objective function incorporates the ignition delay time, the temperature profile, the

maximum value of OH mole fraction, the hydrogen-atom mole fraction profile and its

maximum value (Table 5.15). Atomic hydrogen was chosen for its strong impact on

laminar flame speed [23]. A penalty function was set up to constrain the change in rate

coefficients. The optimization was performed using the same accuracy criteria for each

condition.
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c φ Ti/K p/MPa

1 1 1400 0.1

2 0.67 1400 0.1

3 2 1400 0.1

4 1 1400 1

5 0.67 1400 1

6 2 1400 1

Table 5.14: Operating conditions for which the reduced GRI-Mech 3.0 mechanism
was optimized.

Property wi Normalization σ

τi 1.0 4.5 4

Tprofile 1.0 4.9 25

XH,max 1.0 4.5 4

XOH,max 1.0 4.5 4

XH,profile 1.0 4.9 25

t(Tmax) 1.0 4.5 4

αiref = 1.0 1.0 4.7 5

Table 5.15: Objective function parameters for optimization of reduced GRI-Mech 3.0.

The overall objective-function value evolution for a population of 48 chromosomes is

illustrated in Fig. 5.49, showing the convergence of the optimization where satisfactory

results were achieved after approximately 100 generations (The best individual within

1000 generations appeared in generation 984). The mechanisms performance is shown

in Figs. 4 and 5 for the reactor calculations under various operating conditions. For

equivalence ratios φ of 1 and 0.67 under atmospheric (Fig. 5.50) and elevated pressure

(Fig. 5.51), the profiles of temperature and OH, CO2, and H2O mole fractions were

almost completely restored to the results from the full mechanism. For φ = 2 these

profiles were also improved, but not completely restored, implying that the reduction

removed reactions that are important at high equivalence ratios.
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Figure 5.49: Evolution of the overall fitness for the reduced methane/air mechanism
optimization. Red line denotes the objective function value of the best individual which

was found over 1000 generations.

The performance of the reduced and the optimized GRI-Mech 3.0 is shown in Fig. 5.50

and Fig. 5.51.
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Figure 5.50: Auto ignition with the full, reduced, and optimized GRI-Mech 3.0 for
p = 1MPa, φ = 1(left), φ = 0.67 (center), and φ = 2 (right).
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Figure 5.51: Auto ignition with the full, reduced, and optimized GRI-Mech 3.0 for
p = 1MPa, φ = 1(left), φ = 0.67 (center), and φ = 2 (right).

Figure 5.52 shows the behavior of the objective function terms for the optimized mech-

anism for six operating conditions. Although the objective function is minimized for

all the conditions, no significant improvement is obtained for the high equivalence ratio

cases 3 and 6. A mismatch between the optimized and the reference mechanism can be

seen for OH profile for φ = 2 (Fig. 5.50). However, the OH profile was not considered
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by the objective function but only its maximum value, which is significantly improved

(Fig. 5.52). Due to the fact that the objective function is a linear combination of sin-

gle objective function terms, the global minimum of the overall objective function will

normally deviate from the global minima of its elements.
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Figure 5.52: Values of single objective-function terms (cf. Table 5.15) for conditions
given in Table 5.14.

The reduction and optimization of the reaction mechanisms have been carried out for ho-

mogeneous reactor simulations only. This may raise the question of how well such mech-

anisms can work for phenomena that are affected by diffusive transport. To demonstrate

the optimization effects on combustion phenomena not considered by the optimization,

laminar flame speeds that result from these reduced and optimized mechanisms are

shown. The reduced and then optimized methane combustion mechanisms (based on

GRI 3.0) were tested for a freely propagating laminar flame at two pressures (1 MPa,

0.1 MPa) and five equivalence ratios (0.5, 0.67, 1, 1.5, 2). The resulting laminar flame

speeds are shown in Figure 5.53.
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Figure 5.53: Laminar flame speed predictions for the full GRI 3.0 mechanism (ref-
erence) and the reduced and then optimized mechanisms as a function of equivalence

ratio.

The results show that for the present cases, the mechanism reduction introduces an error

of approximately 10% which is reduced to 5% for the optimized mechanisms. A further

error reduction is expected when including the laminar flame speed in the objective

function for reduction and optimization (demonstrated for ethylene flame).

5.4.4 Statistical Interpretation of Multiple Optimization Runs

This section compares repeated optimization runs to analyse how far different optimi-

sation runs for the same target function can vary from each other. In particular, the

following questions are addressed: a) are the results of the present GA-based search

for the reduced and/or optimized mechanism reproducible, and b) can the real-coded

optimization with the help of the penalty function reduce the mechanism to the same

extent as the integer-coded mechanism reduction can?

To demonstrate the reproducibility of the algorithm’s convergence, each mechanism ma-

nipulation run is repeated 50 times. To address the reduction efficiencies, the reduction

with the size-penalty function (in further text called penalty function) within the real-

coded optimization frame is compared to the integer-coded reduction. The workflow of

this study is illustrated in Figure 5.54.



Chapter 5. Application and Testing 141

Full mechanism

Integer-coded reduction

1000 generations

Real-coded reduction
and optimization
fpen(αref = 0.0)

3000 generations

Real-coded further reduction
and optimization
fpen(αref = 0.0)

2000 generations

784 reactions

Real-coded optim.
1000 generations

GA-based manipulation runs

≈ 500 reactions

≈ 60 reactions

≈ 40 reactions ≈ 200 reactions

pm = 0.02 pm = 0.05

Runs aiming the reduction

pm = 0.01

pm = 0.02pm = 0.02

optimized for
φ = 1.4

real time = 3.5 h

real time = 7.5 h

real time = 2 h

real time = 1 h

Figure 5.54: Schematic representation of the workflow for testing the reproducibility
of the optimization results and the extent of reduction achieved with the real-coded
GA in comparison to the integer-coded reduction. Each run is performed 50 times.
Numbers of reactions are the average numbers of the remaining reactions in the re-

duced/optimized mechanisms obtained from 50 runs.

As the reference mechanism, the USC Mech Version II [190] with 784 reactions is used.

The mechanism is reduced and optimized for a homogeneous constant-pressure reactor

with a stoichiometric ethylene/air mixture, atmospheric pressure and initial temperature

Tin = 1300 K. (The conditions were only different where the mechanism was reduced for

φ = 1.0 and then optimized for φ = 1.4, see Fig. 5.54.)

The following GA-based manipulations are applied to this mechanism (see Fig. 5.54):

I Two-step method:

1) Integer-coded reduction (1000 generations)

2) Real-coded optimization of the reduced mechanisms from 1):

a) with the penalty function to reduce this mechanism further (2000 gener-

ations),

b) for a different equivalence ratio, without the penalty function (1000 gen-

erations),

II Single-step method:

Real-coded optimization of the full mechanism with the penalty function aim-

ing to reduce the full mechanism to the same extent as the integer-coded
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procedure did. These optimization runs are done with two different mutation

rates (pm = 0.02 and pm = 0.05, see Fig. 5.54). The number of generations

for these runs was 3000, which is equal to the overall number of generations

needed to achieve the results of the integer-code reduction (1) and the opti-

mization run (2a) together. (It should be pointed out, though, that the cost

of a single generation varies for the different mechanisms.)

Addressing the question whether the real-coded optimization (with the penalty func-

tion) can reduce the mechanism as the integer-coded reduction can, is to highlight the

efficiencies and the differences between the integer- and the real-coded approaches for

elimination of the reactions. Although the integer-coded algorithm is highly efficient in

eliminating redundant reactions (as it simply sets the rates to 1 and 0), the potential of

the real-coded approach with the penalty function to reduce the mechanism should be

investigated as an alternative reduction technique as well because using only one search

algorithm may simplify the reduction/optimization workflow.

Each of these manipulations was performed 50 times to obtain a statistically relevant

number of points. Each run was performed on one computer node with 48 AMD Opteron

2.6 GHz cores. The parameters of the reduction and optimization setups are given in

Tables 5.16–5.18. The objective function terms and their weights for the real-coded runs

with the penalty function (Table 5.17) are chosen according to the following criteria:

a) The size of the resulting reduced and optimized mechanism should be similar

for both approaches. For the real-coded further reduction, the penalty function

with the weight wi = 3.0 was applied to a reduced mechanism containing roughly

60 reactions (Fig. 5.60). The new weighting factor wi of the penalty function

applied on the full mechanism was then estimated based on the extent of the

reduction obtained by the integer-coded reduction and the penalty-function weight

of the subsequent real-coded further reduction. The relation between the penalty

function and the number of reactions in the mechanism is defined by Eq. 4.10:(∑Nr
i=1 fpen,i

Nr

)
· wi = fpen · wi.

A new weighting factor for the penalty term should provide roughly the same

reduction pressure on the full mechanism, as the factor wi = 3.0 did on the reduced

mechanism. Therefore, the following proportion was used:

3

60
=

wi
784

,
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which yields the weighting factor wi = 39.2 for the full mechanism (rounded to 39

in the setup). This ensures that the objective functions of the real-coded reduction

setups aim at the same optimum.

b) The contributions of single terms to the overall objective function, which should

be the same for all three setups (50% for the accuracy and 50% for the size, see

Table 5.17.

That way, the reduction setups are made comparable. The objective function for the

integer-coded reduction of the full mechanism is given in Table 5.16.

Property wi Normalization σ λ

Nr 4.0 4.5 6.0 0.75

τi 2.0 4.5 6.0 -

Tprofile 2.0 4.9 25.0 -

XH,profile 2.0 4.9 25.0 -

Table 5.16: Terms of the objective function for the integer-coded reduction of the full
USC Mech Version II.

Tables 5.17, and 5.18 list the objective function terms of the real-coded optimization

runs.

Property wi(reduced) wi(detailed) Normalization σ

τi 1.0 13.0 4.5 6.0

Tprofile 1.0 13.0 4.9 25.0

XH,profile 1.0 13.0 4.9 25.0

αiref = 0.0 3.0 39.0 4.7 25.0

Table 5.17: Terms of the objective function for the real-coded further reduction and
optimization of the reduced and the detailed USC Mech Version II.

Property wi Normalization σ

τi 1.0 4.5 6.0

Tprofile 1.0 4.9 25.0

XH2,profile 1.0 4.9 25.0

XCO2,profile 1.0 4.7 25.0

Table 5.18: Terms of the objective function for the real-coded optimization of the
reduced Mech Version II for a different equivalence ratio and accuracy terms.
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Integer-coded Reduction

The integer-coded reduction method (Fig. 5.55) shows a small amount of statistical

noise (the standard deviation of the overall fitness minima from 50 runs σ = 0.002 is

small and constant compared to the mean value of 0.009), implying that the results

of the integer-coded reduction algorithm are reproducible in the sense that a similar

fitness is achieved - which does not necessarily mean that the reduction leads to the

same remaining reactions.

Real-coded Further Reduction

The real-coded further reduction starts with the reduced mechanisms resulting from the

preceeding integer-coded reduction, where the reactions were physically removed and

cannot be inserted back to the mechanisms during the optimization.

The real-coded further reduction of the already reduced mechanisms exhibit the highest

statistical noise with respect to the other optimization runs, namely: the integer-coded

reduction (Fig. 5.56), the real-coded optimization without the penalty term (Fig.5.59)

and the real-coded reduction of the full mechanism (Figs. 5.58 and 5.59), which will be

discussed later. This is an interesting observation, as it shows the influence the size-

penalty function has on the overall convergence behavior of the algorithm. Figure 5.56

show the scattering and the mean of the overall fitness minima from 50 randomly seeded

real-coded runs with the size-penalty function. The input mechanisms result from the

integer-coded reduction.
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Figure 5.55: Top: The mean of the overall fitness minima from 50 randomly-seeded
integer-coded reduction runs. Bottom: The standard deviation of the overall fitness
minima from 50 runs, the optimal solutions from each run at the time when they were

first found, and the mean µ and the standard deviation σ of their fitness.
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Figure 5.56: Top: The mean of the overall fitness minima from 50 randomly-seeded
real-coded runs with the penalty function. The input mechanisms result from the
integer-coded reduction. Bottom: The standard deviation of the overall fitness minima
from 50 runs, the optimal solutions from each run at the time when they were first

found, and the mean µ and the standard deviation σ of their fitness.
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The algorithm was only able to lower the objective function to about a half of its initial

value (from 0.5 to ≈ 0.26) within 2000 generations. However, despite this scattering,

the standard deviation is an order of magnitude lower than the mean (σ = 0.03 with

respect to the mean µ = 0.26) and remains constant for the last 500 generations.

For this case, high statistical noise is expected for the following reasons: The penalty

function adds complexity to the objective function by enabling each reaction to directly

contribute to the overall fitness. This additional dimension of the objective function

contributes to the statistical noise of the algorithm. It should be noted however, that

the asymptotic solution has not been achieved within the given number of generations for

all the cases featuring the penalty function. Furthermore, for the real-coded reduction of

the already reduced mechanisms, the input mechanisms are different at the start (since

they result from 50 corresponding integer-coded reduction runs) and the eliminated

reactions cannot be retreived by the optimizer, which reduces the degree of freedom for

optimizing such mechanisms. Therefore, we assume that some runs may never achieve

the same good fitness as others - so that real convergence to the best possible fitness

could not be achieved. In other words, where the reduction seems very effective in terms

of the size of the resulting mechanism (from 784 to around 60 reactions), each run is

likely to be stuck in a local optimum and cannot reach a global optimum even after an

infinite number of iterations. Therefore, the input mechanisms may not have the same

degree of freedom when altering/eliminating their remaining reaction rates. This is a

real disadvantage of the two-step approach (first integer reduction, then real reduction)

that needs to be considered when the two-step approach is taken. On the other hand, the

standard deviation remains constant for the last 500 generations for the runs reducing

already reduced mechanisms (Fig. 5.56). Because this particular case has the highest

statistical noise, it will be further addressed later in this section.

Real-coded Optimization Without the Size-Penalty Term

The subsequent real-coded optimization of the reduced mechanism (without the penalty

function) for different operating conditions (equivalence ratio) exhibits a similar behav-

ior (Fig. 5.57) as the integer-coded reduction, even though the starting values of the

objective functions for 50 runs were significantly different. The statistical noise for this

real-coded case is quite high (the standard deviation of the overall fitness minima from

50 runs is 0.004 and the mean is 0.006). Nevertheless, the real-coded optimization of

the mechanism quickly achieved a small value of the objective function for the different

equivalence ratio. However, it must be provided that the reactions crucial for describing

the target phenomena are not eliminated during the previous reduction.
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Figure 5.57: Top: The mean of the overall fitness minima from 50 randomly-seeded
real-coded runs aiming to optimize the mechanism’s accuracy for a different equivalence
ratio. Bottom: The standard deviation of the overall fitness minima from 50 runs, the
optimal solutions from each run at the time when they were first found, and the mean

µ and the standard deviation σ of their fitness.
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Real-coded Reduction of the Full Mechanism

The real-coded reduction of the full mechanism was performed twice (by using two

different mutation rates). The input mechanism for the following real-coded optimization

and reduction runs is the detailed mechanism and is the same for all the 50 runs. Figure

5.58 shows the overall fitness of 50 runs, its mean and the standard deviation within

3000 generations for the mutation rate pm = 0.02. The statistical noise for this case is

relatively small (standard deviation σ = 0.013 with respect to the mean of µ = 0.159 is

small and constant for the last 1000 generations). Furthermore, the overall fitness has

significantly decreased from 0.5 to ≈ 0.16 even though the asymptotic solution was not

reached.

The higher mutation rate, pm = 0.05 instead of the previously used pm = 0.02, signif-

icantly enhanced the convergence speed and decreased the statistical noise at the end

of the evolution even though the complete convergence was not achieved (Fig. 5.59).

This is expected because not only the mutation enables the algorithm to find a new

better local minima faster but it influences the penalty function directly by finding new

(smaller) gene values. However, one should be careful with the mutation rate, as a too-

high mutation rate may reduce the GA to a random search and hence reduce the rate

of convergence again. The overall fitness for this case was reduced from initial value of

0.5 to ≈ 0.045 within 3000 generations. The statistical noise is noticeably smaller than

in the previously discussed cases (σ = 0.006 with respect to the mean µ = 0.045).

Real-coded reduction runs of the full mechanisms exhibit a relatively small statistical

noise, although the algorithm did not aproach an asymptotic solution within a given

number of generations (Figs. 5.58 and 5.59). A relatively small statistical noise for

these two cases and a better convergence of these runs towards one global minimum

is due to the following reasons: The input mechanisms were the same for all the runs,

and their degree of freedom in altering (removing) the reaction rates was not previously

reduced.
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Figure 5.58: Top: The mean of the overall fitness minima from 50 randomly-seeded
real-coded reductions of the full mechanism with the penalty function and the mutation
rate pm = 0.02. Bottom: The standard deviation of the overall fitness minima from 50
runs, the optimal solutions from each run at the time when they were first found, and

the mean µ and the standard deviation σ of their fitness.
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Figure 5.59: Top: The mean of the overall fitness minima from 50 randomly-seeded
real-coded reductions of the full mechanism with the penalty function and the mutation
rate pm = 0.05. Bottom: The standard deviation of the overall fitness minima from 50
runs, the optimal solutions from each run at the time when they were first found, and

the mean µ and the standard deviation σ of their fitness.

Overall, the real-coded reduction of the full mechanism has generally converged much

faster towards a good fitness, reached a much better fitness value (≈ 0.044 for pm = 0.05)

after 3000 generations, and still converges further. Therefore, this algorithm can be

expected to find the global optimum (best fitness) after an infinite number of generations.
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Such behavior is (near) impossible for the combined integer- and real-coded approach,

that is likely to get stuck in local optima. (It should however be pointed out that the

two step approach may be easier to use where reduced mechanisms of a specific size

are sought.) The efficiency of the real-coded algorithms in reducing the mechanisms is

further addressed in the following.

Extent of the Reduction

The integer-coded reduction results in a high extent of the reduction of the mechanisms

within a relatively short time (Fig. 5.60), which makes the integer-coded reduction

efficient in obtaining very small mechanisms quickly.

Since the objective function is a linear combination of the conflicting criteria (number of

reactions and the accuracy), a few Pareto-efficient solutions can be identified (Fig. 5.61)

as those solutions that cannot get smaller in size without decreasing their accuracy (for

the same value of the overall fitness). Identifying the Pareto-efficient front may provide

an information whether the mechanism has multiple equally good reduced versions (lying

on the front under which no further reduction is possible without destroying the chemical

meaning of the mechanism) or the mechanism has one unique reduced version (a global

optimum).

Figure 5.62 shows, for each of the reactions from the full mechanism, in how many re-

duced mechanisms the reaction occurs. This gives an idea about the most dominant

reactions that cannot be removed (as they occur in all the mechanisms, regardless the

differences between the reduced mechanisms). Analogously, there is a large number of

reactions that can be safely removed as they do not occur in any of the reduced mecha-

nisms (for the conditions and the criteria the mechanisms were reduced for).
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Figure 5.60: Top: Number of remaining reactions with respect to the overall fitness of
the integer-coded reduction runs. Bottom: Number of remaining reactions with respect

to the accuracy of the resulting reduced mechanisms.
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The influence of the penalty function on the size of the resulting mechanisms is shown

in Figs. 5.63 and 5.64. The number of the remaining reactions for the cases reduced

with the penalty function was determined after removing the reactions that have the

rates smaller than a given value ε. This value is introduced because the convergence of

the penalty function is very slow (in these cases, the convergence was not achieved, but

a higher fitness level was achieved already) and many reaction rates are driven to values

that are very small but they have not reached zero yet.

Although this approach has shown to be useful for cutting-off the very small rates that

did not fully converge to zero, one must be aware that there may be reactions that can

destroy the mechanism’s performance if removed. These reactions may be as small as

their unimportant counterparts, but their removal may decrease the accuracy or even the

numerical stability of the mechanism. To demonstrate such a behavior, the mechanisms’

accuracy is evaluated for several different values of ε (Figs. 5.63 and 5.64) and compared

to the accuracies of the corresponding resulting optimized mechanisms (shaded regions

in Figs. 5.63 and 5.64) without cutting-off the reactions against ε. In Fig. 5.63, removing

the reaction rates up to ε = 10−3 did not affect the accuracy at all, a slightly bigger

difference is observed for ε = 2 · 10−3, while removing the reactions with rates below

ε = 5 · 10−3 destroyed a significant amount of the mechanisms.

A similar observations can be made for the real-coded reduction of the full mecha-

nism (Fig. 5.64). The full mechanisms, however, exhibit a higher degree of freedom in

eliminating reactions, therefore only a small number of mechanisms were destroyed by

eliminating the reactions with ε = 5 · 10−3. Such a behavior can be explained by the

following: In a mechanism, there are reactions with the rates that can be drawn to a

very small value by the penalty function, but cannot be reduced further or eliminated

(because of the accuracy criteria). Unimportant reactions will be drawn to very small

values just as well, but their removal will not influence the accuracy. Both types of re-

actions may have comparably the same rates at a certain point of the evolution (before

the complete convergence). If the algorithm does not fully converge (like in the present

cases), it is impossible to distinguish between these reactions (i.e. to determine apriori

which reactions can be safely removed). However, a significant reduction can be achieved

against an appropriate ε value provided that the accuracy will not be decreased.

Since the present number of generations was not sufficient for the penalty function to

converge, the runs with the already reduced mechanisms (Fig. 5.56) are allowed to run

for 10000 generations later in this section.
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Figure 5.63: Top: Number of remaining reactions (after clipping the rate values
below ε) with respect to the overall fitness of the real-coded runs. Bottom: Number of
remaining reactions with respect to the accuracy of the resulting optimized mechanisms.
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Figure 5.64: Top: Number of remaining reactions (after clipping the rate values
below ε) with respect to the overall fitness of the real-coded reductions of the detailed
mechanism with two mutation rates. Bottom: Number of remaining reactions with

respect to the accuracy of the resulting mechanisms.
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In general, the real-coded optimization with the penalty function can be used instead

of the integer-coded reduction or the combined approach (see Fig. 5.54) to reduce the

detailed mechanism. However, the real-coded reduction is time-consuming if applied to

the detailed mechanism directly as it requires a large number of generations to reach the

asymptotic solution. One obvious reason is that the full mechanism (only with different

reaction rates) is calculated each time the fitness function is called during the whole

evolution. For the integer-coded reduction, the full mechanism is calculated only once

as a reference and in the initial population (see Section 4.1.1).

Furthermore, the reactions rates during the real-coded reduction are gradually driven

to zero, which means that many generations may be needed before the rates actually

reach zero. The real-coded reduction needs significantly larger number of generations

before it reaches the same extent of reduction as the integer-coded reduction does,

while the integer-coded reduction finds the solution within a reasonably small number

of generations and its extent of the reduction is significant. For example, the real-coded

reduction with the penalty function could not fully reach an asymptotic solution and

a large extent of reduction within the given number of generations for the test-cases

discussed in this section (see Figs. 5.56 and 5.58) – while having a better fitness already.

A steady approaching to an asymptotic solution of the real-coded reduction can be

observed, for example, in Fig. 5.18 (Section 5.3), where the algorithm was allowed to run

for 10000 generations. This is normally prohibitive in terms of the available runtime and

memory for large (detailed) mechanisms. Therefore, the present integer-coded reduction

method is far more efficient for the reduction of the large (detailed) mechanisms than

the real-coded method is, when a significant reduction should be achieved quickly and

the mechanism is large. The real-coded optimization with the penalty function, aiming

to reduce the already reduced mechanism, can however be a useful approach when the

accuracy is to be restored and the computational cost of the mechanism can be reduced

further at the same time.

Convergence Behavior of the Penalty Function – Further Reduction

The number of generations defined by the previously discussed workflow was not suffi-

cient for the algorithm to aproach an asymptotic solution. To address the convergence

behavior and the statistical noise observed in Fig. 5.56, the same runs are repeated and

allowed to run for 10000 generations (the input mechanisms are those resulting from the

preceeding integer-coded reduction). The aim of choosing this large number of gener-

ations is to test if the significant statistical noise observed for 2000 generations occurs

because the algorithm did not converge at that point. Figure 5.65 shows the mean
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and the standard deviation of the overall fitness minima within 10000 generations. The

standard deviation has only slightly decreased from 2000 generations, remaining almost

constant for the rest of the evolution (σ = 0.029 and µ = 0.227). However, the overall

fitness (Fig. 5.65, top) shows evident ”jumps” towards the smaller values indicating that

the algorithm is still jumping from one local minima into another, in its search for the

global minimum.

Another reason for the high statistical noise is that the input mechanisms are different

for each of the 50 runs, as they result from the corresponding integer-coded reduction

runs. To evaluate the contribution of the different input mechanisms to the statistical

noise, additional 50 optimization runs were performed for the same input mechanism.

The numerical and the GA setup was the same as for the previously discussed case

(Table 5.17). Figure 5.66 shows that a smaller statistical noise is achieved if the input

mechanism was kept the same for all the runs (σ = 0.013 and µ = 0.16). The standard

deviation is reduced by a factor of two when the same mechanism was used. However, the

penalty function still exhibits a significant amount of the statistical noise and the runs

did not converge to one global minimum. The overall fitness that is achieved remains

about 3 times poorer than the fitness achieved with the real-coded optimization and

reduction after 3000 generations already.
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Figure 5.65: Top: The mean of the overall fitness minima from 50 randomly-seeded
real-coded reductions of the already reduced mechanisms. Bottom: The standard de-
viation of the overall fitness minima from 50 runs, the optimal solutions from each run
at the time when they were first found, and the mean µ and the standard deviation σ

of their fitness.
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Figure 5.66: Top: The mean of the overall fitness minima from 50 randomly-seeded
real-coded reductions of one already reduced mechanism. Bottom: The standard devi-
ation of the overall fitness minima from 50 runs, the optimal solutions from each run
at the time when they were first found, and the mean µ and the standard deviation σ

of their fitness.
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The long evolution and a closer aproaching to an asymptotic solution helped distin-

guishing between the reactions that can be eliminated (even though they were not zero

yet) and those that became very small but their removal would damage the mechanism’s

chemical performance. Figures 5.67 and 5.68 show the accuracy of the mechanisms with

respect to the number of the remaining reactions, which results from removing reactions

that fall below the cut-off value ε. The number of the remaining reactions is almost

constant for all the given values of ε, but a strong perturbation of accuracy is caused

already with ε = 2 · 10−3 and most of the mechanisms were destroyed with ε = 5 · 10−3

even though the reduction extent was not significant. An almost-constant number of the

remaining reactions and a clear separation of the destroyed mechanisms for given values

of ε imply that, the reactions that can be removed already achieved the rates well below

ε = 10−4, and those that are small but cannot be removed are around the ε = 10−4 of

the rate limit.

The real-coded runs with the penalty function aiming at elimination of the reactions

highlight the following properties of the penalty approach: The penalty function adds

an additional dimension to the objective function (that normally contains only the per-

formance of the mechanisms) as it influences each individual rate, thus increasing the

complexity of the overall objective. The mutation (which is responsible for altering the

single genes) contributes to the convergence not only by jumping faster from one local

minimum into another, but it influences the objective function directly (through the

penalty term). Therefore, the penalty function analysis should be done in combination

with the mutation analysis to estimate the optimal combination of the parameters that

would speed up the convergence of the real-coded reduction. Although the penalty func-

tion has proven to be a useful tool for dealing with the mechanisms that still remain

relatively large even after the integer-coded reduction (see Section 5.3), one should note

that achieving a great extent of the further reduction is time-consuming and depends

on the mechanism’s degree of freedom in altering (removing) its reaction rates. Sec-

tion 6.2 offers some recommendations for further investigation and improvement of the

penalty-function efficiency.
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Figure 5.67: Top: Number of remaining reactions (after clipping the rate values
below ε) with respect to the overall fitness of the real-coded runs. Bottom: Number of
remaining reactions with respect to the accuracy of the resulting optimized mechanisms.
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Figure 5.68: Top: Number of remaining reactions (after clipping the rate values
below ε) with respect to the overall fitness of the real-coded runs. Bottom: Number of
remaining reactions with respect to the accuracy of the resulting optimized mechanisms.
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Summary

This subsection addressed the convergence behavior of the integer-coded reduction, the

real-coded optimization and reduction of the reduced mechanisms and the real-coded-

optimization and reduction of the full mechanism. The mechanism used for this study

is USC Mech Version II [190] with 784 reactions. The results are summarized in the

following.

Integer-coded reduction has a very small statistical noise (σ = 0.002 and µ = 0.009, Fig.

5.55) and achieves a small value of objective function quickly, thus leading to very small

mechanisms within reasonably small number of generations. Successive optimization of

the integer-coded reduced mechanisms exhibits a higher amount of the statistical noise

(σ = 0.03 and µ = 0.26, Fig. 5.56) and the runs do not converge to the same optimum

even within 10000 generations (σ = 0.029 and µ = 0.227, Fig. 5.65). In case where

the input reduced mechanism for the real-coded further reduction was the same in 50

runs, the statistical noise was reduced by a factor of two (σ = 0.013 and µ = 0.16,

Fig. 5.66) in comparison to the case where the input mechanisms were different (Fig.

5.65). However, the runs did not converge to the same optimum. This is because the

integer-coded reduction removes reactions that may be important for the optimization

step, but can no longer be retreived, i.e. certain degree of freedom is removed from the

mechanisms to be optimized.

The real-coded optimization with the size-penalty term was applied to the full mecha-

nism with two different mutation rates (pm = 0.02 and pm = 0.05) within 3000 genera-

tions. Even though the asymptotic solution was not reached, the objective function was

significantly decreased and the statistical noise is quite small for both mutation rates.

More specifically, for pm = 0.02, the overall fitness has decreased from 0.5 to ≈ 0.16

with the standard deviation σ = 0.013 and the mean µ = 0.159 (Fig. 5.58).

Higher mutation rate, pm = 0.05, increased the convergence speed and significantly

decreased the overall fitness from initial value of 0.5 to ≈ 0.045 (Fig. 5.59). As a result

of a better convergence, the statistical noise is noticeably small (σ = 0.006 with respect

to µ = 0.045).

The real-coded reduction of the full mechanisms generally exibits a better statistical and

convergence behavior (optimal solutions from the observed 50 runs are very close to each

other) than the previously discussed two-step approach, which makes a strong case for

further investigating and improving a real-coded reduction and optimization method.
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For easier comparison, Figure 5.69 shows the mean values of fitness from 50 runs of three

cases: real-coded reduction of the full mechanism from Fig. 5.59, real-coded further re-

duction of already reduced (different) mechanisms from Fig. 5.65 and the real-coded

further reduction of one already reduced mechanism from Fig. 5.66, within 3000 gener-

ations (which is how long the full-mechanism real-coded reduction took).
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Figure 5.69: Mean values of the overall fitness of different real-coded optimization
runs with the penalty function.

Although this comparison is not absolutely fair (different optimization processes and

the mechanisms are used), it must be noticed that the real-coded reduction of the full

mechanism reached the best fitness value quicker than the two-step approaches.

Integer-coded reduction leads to small mechanisms quickly, with a small amount of

statistical noise. However, due to eliminating reactions, the subsequent optimization

(aiming to further reduce the mechanisms) cannot recover the lost reactions, thus re-

sulting in a relatively poor fitness value. Therefore, the two-step approach is a method

of choice when small mechanisms should be obtained quickly.

However, the algorithmic behavior of the real-coded algorithm applied to a full mecha-

nism is generally more consistent, has a small statistical noise, leads to a better fitness

value than the real-coded reduction of the already reduced mechanisms does and the

runs are able to closely approach one minimal value (Fig. 5.59). For these reasons, the

real-coded reduction should be further investigated and enhanced to be able to reduce
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and optimize the large mechanisms quicker than the current two-step approach can,

which was in the focus of the thesis.





Chapter 6

Summary and Outlook

6.1 Summary

The focus of the research conducted within the scope of this thesis is the development

of an automatic method for the reduction of detailed reaction mechanisms and their

optimization. As the reaction mechanism is a set of elementary reactions and their rele-

vance for a particular simulation depends on specific operating conditions, the reduction

problem can be considered as a search problem where the aim is to find a subset of

reactions that satisfy specified user-defined criteria just as well as the detailed set would

do.

In this context, the genetic algorithm is the method of choice and the first part of the

research is dedicated to developing a genetic algorithm-based reduction technique. The

algorithm finds a smallest possible subset of relevant reactions by minimizing the ob-

jective function which contains the criteria the reduced mechanism must satisfy with

respect to its detailed version. The objective function evaluates the performance of the

candidate solution (submechanism) with respect to the its detailed version in predicting

the combustion phenomena of interest. The mechanism evaluation is conducted by simu-

lating the reacting case of interest, for example a homogeneous reactor (zero-dimensional

model) or a laminar flame (one-dimensional model). These models are calculated us-

ing the chemical kinetics library Cantera [55]. The overall objective function used for

the reduction purpose involves both the accuracy and the cost criteria. The accuracy

criterion is based on the difference between the calculated properties resulting from the

detailed (reference) mechanism and the reduced mechanism.

Depending on the nature of the optimization target, a set of different normalization

functions is offered to faciliate incorporation of different properties (e.g. ignition delay

169
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time, temperature, relevant species concentrations, laminar flame speed) into one single

objective function. The cost criteria include the computational time for the candidate

solution and the number of remaining reactions (which we aim to minimize). Different

expressions used for normalization of single criteria enable a simultaneous minimization

of both the accuracy and the cost (which are conflicting criteria) within one single objec-

tive function and allow the user to achieve a desired trade-off between the accuracy and

the computational cost of the reduced mechanism. Important aspects of the reduction

method are demonstrated in Chapter 5 for several different mechanisms.

Where the accuracy of the reduced mechanism is sacrificed for its computational cost,

tuning of the rate coefficients of the remaining reactions can largely restore the accuracy

of the reduced mechanism without increasing its computational cost. Optimization of

the rate coefficients is achieved in the second part of this research by finding the optimal

values of the rate coefficients (in this work, the pre-exponential factors) which give the

minimal value of the objective function. The genetic algorithm-based optimization uses

a similar searching technique, albeit with differently defined operators and additional

aspects of the objective function. Although the accuracy of the mechanism is a primary

goal of the optimization, and the physical uncertainties of the reaction rates (from the

literature or chemical databases) are not primarily considered in this work, it was made

possible to constrain the individual reaction rates by their prescribed uncertainty factors.

As the consideration of the uncertainties would require tremendous effort in finding the

data (many of them being highly uncertain anyway), this work advocates constraining

the reaction rate alterations during the optimization with the penalty function defined

within the overall objective function. The penalty function used in this context keeps

the reaction rates as close as possible to their nominal values, in case where the physical

meaning of the reaction rates is important. This approach is not typical for standard

use of genetic algorithms as it not only considers the performance of the model, but

controls the properties of the model as well. The penalty function approach has been

demonstrated in Section 5.1 for the hydrogen mechanism (where the kinetic data are

known) and compared to the optimization using fixed uncertainty ranges for single re-

actions. The same formulation of the penalty function can alternatively be used for

a further reduction of the mechanism and its optimization at the same time, which is

demonstrated in Section 5.3 on a reduced mechanism for tert-butanol combustion.

The efficiency of the penalty-function approach for reducing the detailed mechanism is

further investigated in Section 5.4.4. It is shown that, although the penalty function

is a useful tool for simultaneous further reduction and optimization, it requires a large

number of generations to reach the complete convergence. Therefore, if a quick finding
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a small mechanism from a large detailed mechanism is desired, the integer-coded reduc-

tion (and if needed, the subsequent optimization) is a good method of choice. On the

other hand, the real-coded reduction of the full mechanism shows a better algorithmic

behavior (small statistical noise, smaller resulting fitness value than that obtained by

the real-coded reduction of the already reduced mechanisms). The extent of the re-

duction achieved by the real-coded reduction of large mechanisms is still a drawback of

this approach if a small resulting mechanism is desired, but due to its overall algorith-

mic behavior, the real-coded reduction makes a good case for further investigation and

improvement so that it can be used as the only reduction and optimization step.

The genetic algorithm-based reduction/optimization method is made to run in parallel

on a desired number of computational cores. The method is reproducible and robust

with respect to stiff or non-converging mechanisms that may occur during the search.

6.2 Recommendations for the Future Work

Since there is no research that can be considered finished, this work can also be further

improved or continued in several ways. In this section, several recommendations for

extending the genetic algorithm-based method for manipulation of reactions mechanisms

will be highlighted.

Choice of the Optimization Targets

As the performance of the resulting reduced and/or optimized mechanism greatly de-

pends on the appropriate definition of the optimization targets, it is important to make

the right choice of the optimization targets. The right choice of the reduction and

optimization targets is essential to obtaining a useful simplified/optimized mechanism

for its further application in complex CFD simulations. The main motivation is the

difference between the models (zero-dimensional reactors and one-dimensional laminar

flames) used for the reduction and/or optimization and the more complex CFD models.

Defining an appropriate optimization target is therefore a non-trivial task. However, it

is important to find out from which characteristics of the reduced/optimized mechanism

a given CFD problem-specific requirements would benefit. Different CFD simulations

may have different demands and aims, for example, some require very small number

of reactions, a less stiff mechanism or even a mechanism that is not very accurate in

terms of predicting specific chemical behaviors, but is robust enough to avoid numerical

instability. The correlation between the targets used for reducing/optimizing a large

mechanism for a zero-dimensional homogeneous reactor model and prediction ability of
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the same mechanism for a laminar flame (even one-dimensional) should be attempted

next as an improvement of the present algorithm.

Overall Objective Function Formulation

The present overall objective function described by Eq. 4.1 in Section 4 is a linear

combination of single objective functions defined for each of the operating conditions,

each of which is a linear combination of chosen optimization targets. Although this

formulation is shown to be relatively easy to implement and tune to provide the best

possible trade-off even if the targets are conflicting, there is still room for improvement.

For example, if the mechanism is missing some reactions relevant for a specific condition

among the set of conditions (see Section 5.4.3), yet the optimizer is trying to meet

the criteria set for it (and it will find the global minimum of the function), the global

minimum of the overall objective function will not necessarily be the minimum of all its

terms.

Although the application of the reduced mechanism to the conditions it has not been

reduced for is generally not recommended, it still may provide some insight into the

ability of the reduction/optimization method. While the present formulation of the

objective function is shown to perform well due to the specific expressions used for

normalizing its single terms (Section 4.1.2), it may be worth to attempt to improve its

definition further and test other non-linear combinations of single function terms.

Optimization of all the Arrhenius Parameters

Extending the mechanism representation as a chromosome to account for the temper-

ature exponent and the activation energy for the optimization is probably the most

logical next step in improving the overall optimization. Many reported studies take the

latter two into account. This would require different type of mapping of the reactions

into a chromosome (including all types of the reactions, see Section 2.5.2) and some in-

teresting aspects regarding the treatment of different rate parameters (pre-exponential

factor, temperature exponent and activation energy) during the evolution are worth in-

vestigating. Altering of the latter two parameters may increase a degree of freedom for

optimizing large mechanisms as they contain a large number of reactions with only the

pre-exponential factor defined (temperature exponent and activation energy are set to

zero). These reaction rates are very uncertain (their coefficients result from mere fit-

ting), which may allow the modeler to freely adjust their rates and improve the overall

behavior of such a mechanism, without destroying any chemical knowledge (where this

appears important).
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Uncertainty Consideration from the Database

In the present work, the uncertainty was not the main issue considered during the opti-

mization, but in cases where it was important (Section 5.1), the uncertainty factors were

pre-defined for each reaction within the setup file. That approach does not require much

effort for relatively small mechanisms, but it may require significant (and unnecessary)

effort for large mechanisms. If specifying the rate uncertainty reported in the literature

is of interest when optimizing the mechanism, and the penalty function approach is not

desired as an alternative, then enabling the optimizer to read the uncertainty data di-

rectly from the database may be an option. As this approach may require tremendous

effort in implementing these databases (possibly converting them into appropriate for-

mat) as well, an alternative formulation for the penalty function is worth considering.

For example, it would be interesting to test a penalty function, which constraints the

reaction rates according to their reported standard deviations, when these are available.

Mechanism Generation

Clearly, for the mechanisms that are not (fully) developed and where is little known

about their actual chemistry, the mechanisms’ optimization may get us closer to con-

structing the mechanism. For example, if there are some available experimental data

that can be used as a reference and possible reaction steps are listed, the reduction/op-

timization approach may be used to find the relevant reaction rates that reproduce the

observed behavior of the system. Of course, this has to be done in combination with

thermodynamic and transport data (if available) of the species involved and the ex-

perimental findings. One example of such a mechanism is the formation of iron-oxide

nanoparticles from an iron-pentacarbonyl doped hydrogen flame [199], where only the

iron-pentacarbonyl decomposition chemistry and some species are known from the lit-

erature, but the iron-oxide formation submechanism is not fully established and there

are not many experimental data either.

Real-coded Reduction

Section 5.4.4 tackles the potential of the real-coded algorithm to reduce the (detailed)

reaction mechanism and the possibility of simplifying the reduction/optimization work-

flow by using the real-coded algorithm only. The present formulation of the penalty

function, although quite useful, still exhibits a slow convergence behavior and it takes

a large number of generations (long runtime of the algorithm) to make a significant
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reduction, thus making the current integer-coded reduction way more efficient approach

to a quick elimination of the reactions.

On the other hand, as shown in Section 5.4.4, the real-coded algorithm should be further

investigated and improved to be able to replace the combined approach, i.e. to reduce

and optimize the mechanisms directly (without the integer-coded elimination). The

efficiency of the real-coded algorithm should be further addressed by performing the

convergence analysis of the penalty function with varying the mutation rate and/or

the population size to find the optimal combination of the parameters that provide the

best efficiency of the real-coded reduction and optimization. This analysis should be

performed for a statistically relevant number of the optimization runs (samples). It

would be also interesting to find a new formulation of the objective function that would

be able to draw the reactions towards zero in a much faster manner.

Another important question regarding the current penalty function approach for elim-

inating reactions is how to automatically distinguish between the very small reaction

rates that can be removed (even before they converge to zero) and the rates that are

driven to a very small value but cannot be removed. For the long runs made in Section

5.4.4, it was possible to make a clear separation of such reactions by finding a threshold

value under which the reactions (although with very small rates) cannot be removed

from the mechanism. However, developing a method for an automatic recognition of

such reactions and an automatic determination of the cut-off value under which the re-

actions cannot be removed is still an open question that should be addressed by future

work.



Appendix A

Mixture-averaged and

multicomponent transport model

In chemically reacting-flow phenomena, species production and consumption is fre-

quently balanced by convective, diffusive and conductive transport. Althoug these ef-

fects of transport are neglected for homogeneous kinetically controlled systems (perfectly

stirred and plug-flow reactors, see Chapter 2), in other important systems (flames and

chemical vapor deposition systems), transport of energy and species control the reac-

tion rate. Evaluation of the transport effects of species, momentum and energy in a

multicomponent gas-phase reacting flow includes calculating coefficients of molecular

diffusion, thermal conductivity and termal diffusion.

For most simulations, these properties can be obtained from pure-species properties by

employing the mixture averaging rules (Chapter 2). However, for some applications,

the mixture averaging rules may not adequately address the solution of transport prop-

erties. Therefore, many software-packages (e.g. CHEMKIN [77] or Cantera [55]) offer

a possibility to chose between both the mixture-averaged and the full multicomponent

approach to solving transport properties. The multicomponent evaluation is generally

more accurate than the relatively simpler mixture-averaged approach. The mixture-

averaged formulation is only correct asymptotically in some special cases, e.g. for a

binary mixture, or for diffusion of trace amounts of species into a nearly pure species, or

for systems in which all species except one move with nearly the same diffusion velocity

[19]. Expressions for calculating transport coefficients for reacting-cases simulations are

usually based on Chapman-Enskog theory extended to account for transport properties

in multicomponent systems [19, 34].
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A.1 Mixture-averaged transport formulation

In this approach, mixture properties are determined using the pure species properties.

The viscosity is calculated according to the semi-empirical formula from Wilke modified

by Bird et al. [19]:

η =

Ns∑
k=1

Xkηk∑Ns
j=kXjΦkj

, (A.1)

where

Φkj =
1√
8

(
1 +

Mk

Mj

)− 1
2

(
1 +

(
ηk
ηj

) 1
2
(
Mj

Mk

) 1
4

)2

, (A.2)

and ηk is a pure-species viscosity given by the standard kinetic theory expression [67]:

ηk =
5

16

√
πmkkBT

πσ2
kΩ

(2,2)∗
, (A.3)

where σk is a Lennard-Jones collision diameter, mk is the molecular mass of species k,

kB is the Boltzmann’s constant, T is the temperature and Ω(2,2)∗ is the collision integral

determined by a quadratic interpolation of the tables based on Stockmayer potentials

given by Monchick and Mason [120].

The mixture-averaged thermal conductivity is calculated from the pure species thermal

conductivities λk as:

λ =
1

2

(
Ns∑
k=1

Xkλk +
1∑Ns

k=1Xk/λk

)
. (A.4)

The pure-species thermal conductivity consists of translational, rotational, and vibra-

tional contributions [192]:

λk =
ηk
Mk

(ftransCv,trans + frotCv,rot + fvibCv,vib) , (A.5)

where ftrans = 5
2 .

The mixture-averaged formulation calculates the diffusion coefficient Dkm for species k

that diffuses into a mixture of other gas components as:

Dkm =
1− Yk∑Ns

j 6=kXj/Djk

, (A.6)
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where Djk is the binary diffusion coefficient of species k into species j given in terms of

pressure P and temperature T :

Djk =
3

16

√
2πk3

BT
3/mjk

Pπσ2
jkΩ

(1,1)∗
, (A.7)

where mjk is the reduced molecular mass for the species pair (j, k):

mjk =
mjmk

mj +mk
(A.8)

and σjk is the reduced collision diameter:

σjk =
1

2
(σj + σk) . (A.9)

The collision integral Ω(1,1)∗ is based on Stockmayer potentials and is obtained from

the look-up tables based on the reduced temperature T ∗jk = kBT/εjk where εjk =√
(εj/kB) (εk/kB) is the reduced Lennard-Jones potential well depth.

The diffusion velocity of species k in the mixture-average formulations is related to the

species gradients by a Fickian formula as:

Vk =
1

Xk
Dkmdk −

DT
k

ρYkT
∇T. (A.10)

A.2 Multicomponent transport properties

The multicomponent approach to determining the diffusion coefficients, thermal con-

ductivities and thermal diffusion coefficients is based on solving a system of equations

defined by a so-called L matrix. The L matrix consists of nine sub-matrices and it is

formulated as: 
L00,00 L00,10 0

L10,00 L10,10 L10,01

0 L01,10 L01,01



a1

00

a1
10

a1
01

 =


0

X

X

 . (A.11)

The vector on the right-hand side consists of the mole fraction vectors Xk of the com-

ponent k. The diffusion coefficients are calculated in terms of the inverse of the L00,00

block as:

Djk = Xj
16TM̄

25pmk
(Pjk − Pjj) , (A.12)

where (P ) =
(
L00,00

)−1
.
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Thermal conductivities are calculated in terms of the solution to the system of equations:

λ0,trans. = −4

Ns∑
k=1

Xka
1
k10 (A.13)

λ0,int. = −4

Ns∑
k=1

Xka
1
k01 (A.14)

λ0 = λ0,trans. + λ0,int. (A.15)

Thermal diffusion coefficients are calculated from:

DT
k =

8mkXk

5R
a1
k00. (A.16)
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The L matrix components are given by Dixon-Lewis [39]:

L00,00
ij =

16T

25p

Ns∑
l=1

Xl

mjDjl
{mkXk(1− δjl)−mjXj(δjk − δkl)}
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32T
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j,int.

mjX
2
j

Rµj

Cj,rot.

Rξjj

− 4RT

Cj,int.p

 Ns∑
l=1

XjXl

Djl
+

Ns∑
l 6=j

12XjXlmjA
∗
jlCj,rot.

5πCj,int.mlDjlξjj


L01,01
jk = 0 (j 6= k)

where T is the temperature, p is the pressure, Xk is the mole fraction of component k,

Dik are the binary diffusion coefficients and mi is the molecular mass of component i,

R is the universal gas constant, ηk are the pure species viscosities, A∗jk,B
∗
jk and C∗jk are

the ratios of collision integrals defined as:
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A∗jk =
1

2

Ω
(2,2)
jk

Ω
(1,1)
jk

(A.17)

B∗jk =
1

3

5Ω
(1,2)
jk − Ω

(1,3)
jk

Ω
(1,1)
jk

(A.18)

C∗jk =
1

3

Ω
(1,2)
jk

Ω
(1,1)
jk

(A.19)

The rotational and internal contributions to the species molecular heat capacities are

ck,rot and ck,int. For a linear molecule,

ck,rot

kB
= 1,

and for a non-linear molecule
ck,rot

kB
=

3

2
,

where kB is the Boltzmann constant. The internal contribution to the heat capacity is

calculated from:
ck,int

kB
=

cp
kB
− 3

2
.
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Solution Schemes

There are two main issues associated with with error control through time step selection

for numerical solution of differential equations: accuracy and the stability. Accuracy

requires a time step that is sufficiently small so that the numerical solution is close to

the true solution. Numerical methods usually measure the accuracy in terms of the local

truncation error, which depends on the details of the method and the time step. Stability

requires a time step that is sufficiently small that numerical errors are damped, and not

amplified. A problem is called stiff when the time step required to maintain stability is

much smaller than the time step required to deliver accuracy (if stability were not an

issue). Generally speaking, implicit methods have very much better stability properties

than explicit methods, and thus are much better suited to solving stiff problems. Since

most chemical kinetic problems are stiff, implicit methods are usually the method of

choice [74].

Explicit (Forward Euler) Schemes

Consider the general first-order differential equation:

dy

dt
= f(y, t), (B.1)

where the initial condition is y(0) = y0 and the function f(y, t) is nonlinear.

The explicit method approximates the time derivative with a first-order finite difference

[6, 74]:
yn+1 − yn

hn
= f (tn, yn) . (B.2)

181
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Given a solution at time level tn, the solution at time tn+1 is determined explicitly as:

yn+l = yn + hnf (tn, yn) , (B.3)

where the time step is hn = tn+1−tn and the right-hand-side function f is evaluated at tn

and yn. The explicit method is easy to implement, but suffers from stability restrictions.

Implicit (Backward Euler) Scheme

The simplest implicit method is the backward Euler method formulated as [6, 74]:

yn+1 − yn
hn

= f (tn+1, yn+1) . (B.4)

If f (tn+1, yn+1) is nonlinear then the equation must be solved iteratively to determine

yn+1. Due to the strong stability, the time step for the implicit method is chosen pri-

marily to maintain the accuracy. Although the implicit methods resolve the stability

problems associated with stiffness, they are more complicated to implement because

more work at each time step is required to solve a system of equations, which is typi-

cally nonlinear. For stiff problems, the iterative solution is usually accomplished with a

modified Newton method [74, 77].
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[174] A. S. Tomlin, M. J. Pilling, T. Turányi, J. H. Merkin, and J. Brindley. Mechanism

reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-

state analyses. Combustion and Flame, 91(2):107–130, 1992.
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[179] T. Turányi. Sensitivity analysis of complex kinetic systems. Tools and applications.

Journal of Mathematical Chemistry, 5(3):203–248, 1990.
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