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A complete set of tight-binding parameters for the description of the quasiparticle dispersion relations of black
phosphorous (BP) and N -layer phosphorene with N = 1 . . . ∞ is presented. The parameters, which describe
valence and conduction bands, are fit to angle-resolved photoemission spectroscopy (ARPES) data of pristine
and lithium doped BP. We show that zone-folding of the experimental three-dimensional electronic band structure
of BP is a simple and intuitive method to obtain the layer-dependent two-dimensional electronic structure of
few-layer phosphorene. Zone folding yields the band gap of N -layer phosphorene in excellent quantitative
agreement to experiments and ab initio calculations. A combined analysis of optical absorption and ARPES
spectra of pristine and doped BP is used to estimate a value for the exciton binding energy of BP.
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I. INTRODUCTION

Black phosphorous (BP) is a layered crystal which was
first discovered in 1914 by Bridgman [1]. The availability of
large high-quality BP single crystals laid the foundation for
the modern study of this material in the early 1980s [2–8].
Black phosphorous is a semiconductor with a moderate direct
band gap 0.31–0.35 eV (Ref. [3,9,10]), as found in electrical
transport measurements as a function of temperature. The
optical gap of BP is reduced with respect to the transport gap to
0.276 eV for the lowest excitonic state and the light polarized
along the armchair edge [7]. The quasiparticle (QP) band
structure of BP single crystals was also directly measured using
angle-resolved photoemission spectroscopy (ARPES) [5,11].
By using variable photon energies from a synchrotron radiation
source the electron dispersion perpendicular to the layers
was measured indicating a substantial interlayer bandwidth
of about 2 eV [6,12].

Recently, the interest in the fundamental physics of BP
and its potential application prospectives has been renewed
[13–15] after the successful exfoliation of few-layer phos-
phorene (Refs. [16,17]). Phosphorene is the two-dimensional
allotrope of BP which shows interesting properties sensibly
different with respect to the bulk BP. The tunability of
the fundamental direct electronic band gap of phosphorene
together with its luminescent properties enables its use in
devices. In fact, few-layer phosphorene was already suc-
cessfully integrated as the active element in a field effect
transistor [17], and its electron mobility reaches values up
to 1000 cm2 V−1 s−1 (Ref. [17]) with on-off ratios of 105

(Refs. [18,19]). The fundamental optical gap of few-layer
phosphorene is also direct and has been measured using photo-
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luminescence (PL) [16,20–22] and optical absorption [23]. For
monolayer phosphorene, a QP gap of 2.2 eV and an optical gap
of 1.3 eV have been found [24]: The difference can be ascribed
to the exciton binding energy, which can be as large as 0.9 eV
(Ref. [24]).

However, the values of the band gap of both BP and
phosphorene must be taken with care as there is a significant
temperature dependence in the band gap [22,25,26]: It is
increasing with increasing temperature and as such opposite
to the behavior typically observed in semiconductors [27]. In
addition, it was recently demonstrated that the exciton binding
energy depends on the type of substrate due to environmental
effects on the dielectric constant [22]. Phosphorene also shows
a strong optical anisotropy for light polarization in the two high
symmetry directions which is related to the large anisotropy
of the electron effective masses [21,23,24,28,29].

From a theoretical point of view, the interest in the
physics of phosphorene is enormous and challenging for
first-principles theories. Recent ab initio calculations, at the
DFT-GGA level, predict BP to be metallic [30] while DFT-PBE
finds a gap of 0.04 eV (Ref. [31]), in striking disagreement
with experiments. Only at the G0W0 level the agreement with
experiment is obtained and an appreciable band gap opens: The
band gap of BP reports values of 0.1 eV (Refs. [30,32]) and
0.3 eV (Ref. [31]) within the G0W0 approximation [33,34].
Interestingly, the QP band gap of few-layer phosphorene,
calculated by the G0W0 approximation, is found to decrease as
∼1/N (N is the number of layers) from 1.5 eV for monolayer
phosphorene to 0.3 eV for bulk BP [30,31]. Extending the
calculation to GW with the Bethe Salpeter equation (GW-
BSE) [31] and the Kubo formula [35], the optical band gap
and optical anisotropy were calculated in agreement with
photoluminescence (PL) [16,20–22] and optical absorption
[23]. Using a semiempirical interlayer coupling model fitted to
first principles calculations, the evolution of the band gap from
monolayer to bulk was explained by interlayer coupling [36].
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However, although the theoretical predictions are in agree-
ment with available experimental results, the application of
GW approximation to predict the electronic structure of
phosphorene, few layer phosphorene, and black phosphorous
is highly demanding from a computational point of view
and can often hinder the main physical mechanisms in the
description of the experimental results. For this reason, the
tight-binding approximation, and in particular its semiem-
pirical forms, represents an essential theoretical tool which
enables us to interpret the experiments [37], construct a
low energy description of the band structure to study the
model Hamiltonian [38], and represent a starting point for
more advanced calculations [39]. The published tight-binding
parameters for black phosphorous and phosphorene usually
refer to a four-band model of the system [2,30,40] which,
however, may not be suitable to understand many phenomena
because it is restricted to a limited energy range. Recently
the edge states and Landau levels of phosphorene have been
calculated using Wannier functions that define a tight-binding
Hamiltonian [41], however an easy parametrization for a full
Hamiltonian of the system has not yet been given.

The present paper addresses this issue and is organized as
follows: In Sec. II we describe the tight-binding model for
the description of the band structure of BP and phosphorene,
giving the formulas and meaning of parameters. Then, in
Sec. III, we report the results of the experimental measure-
ments of the band structure of BP by ARPES, including both
the valence and conduction band (see below). In this section,
we also provide the set of TB parameters which describe
the measured band structure. Section IV and Sec. V report
the analysis of the temperature and doping dependence of
the electronic properties. Section VI deals with few-layer
phosphorene and its description by zone folding. In particular
we unravel the origin of the 1/N dependence of the optical
band gap of few-layer phosphorene as a function of the number
of layers. Then, in Sec. VII we discuss the results and give our
conclusions and perspectives.

II. TIGHT-BINDING DESCRIPTION OF BLACK
PHOSPHOROUS

A. Crystal structure and Brillouin zones

BP is a layered material dominated by covalent bonds
for the intralayer bonding and van der Waals forces for the
interlayer bonding, similarly to other layered van-der-Waals
materials. At variance with graphene, in BP the sp3 hybridiza-
tion of the 3s, 3px, 3py, and 3pz orbitals leads to the buckled
layer structure seen in Fig. 1(a). Under ambient conditions,
the stable form of black phosphorus has an orthorhombic
crystal structure with lattice and internal parameters reported
in Table I.

In this paper we will give a TB description of the electronic
properties of BP considering the orthorhombic structure with
an AB stacking of the layers which is relevant for almost all of
the experiments on exfoliated crystals. We use the irreducible
body-centered orthorhombic (BCO) cell with four phosphorus
atoms for the TB description of BP. For the TB description of
N -layer phosphorene through zone folding we will switch to a
primitive orthorhombic supercell containing eight phosphorus
atoms [see Fig. 1(d)]. The Brillouin zones of the BCO and

FIG. 1. (a) The layered structure of black phosphorous. The
colors denote different layers. (b) Bond angles and bond lengths of
black phosphorous (see also Table I for the numerical values). (c) and
(d) show the elements in the unit cell of the BCO and the supercell
description of BP, respectively.

simple orthorhombic structures as well as their comparison
are reported in Figs. 2(a), 2(b), and 2(c).

B. Tight-binding Hamiltonian of black phosphorous

For the TB description we use an orthogonal tight-binding
model resulting in the Hamiltonian

Hmn(k) = Emδmn +
∑
R�=0

eik·Rγmn(R). (1)

Here Em are the on-site energies, and the γmn are hopping
parameters with m and n running over the orbitals and lattice
sites. The electron wave vector is denoted by k and the lattice
vectors by R. We employ the Slater Koster scheme for γmn

[43]. This leaves us with four fit parameters Vssσ , Vspσ , Vppσ ,
and Vppπ for each order of neighbors that we include in the
fit plus the on-site parameters Es and Ep. We use the 3s, 3px ,

TABLE I. Structural parameters of black phosphorus at room
temperature, taken from Ref. [42].

parameter value

d1 2.224 Å
bond length

d2 2.244 Å

α1 96.34◦
bond angle

α2 102.09◦

a 3.3136 Å lattice parameter
b 10.478 Å
c 4.3763 Å

245410-2



EVOLUTION OF ELECTRONIC STRUCTURE OF FEW- . . . PHYSICAL REVIEW B 94, 245410 (2016)

FIG. 2. (a) shows the Brillouin zone for the BCO description of
BP; (b) shows the Brillouin zone of the eight-atom supercell with
primitive orthorhombic crystal structure. (c) compares both Brillouin
zones in terms of size.

3py , and 3pz orbitals to describe the electron hopping, which
results in a 16 × 16 matrix for the Hamiltonian (four orbitals
on four atomic sites in the basis of the BCO description). We
end up with a Hamiltonian of the form

H =

⎛
⎜⎝

AA AB AC AD

BA BB BC BD

CA CB CC CD

DA DB DC DD

⎞
⎟⎠, (2)

with each entry αβ, α,β ∈ {A,B,C,D} itself being a 4 × 4
matrix to describe the hopping between the four orbitals
centered at sites α and β. Taking the symmetries of the lattice
into account, we can simplify Eq. (2) to

H =

⎛
⎜⎜⎝

AA AB AC AD

AB† AA BC AC

AC† BC† AA AB

AD† AC† AB† AA

⎞
⎟⎟⎠. (3)

In general, a 4 × 4 element αβ of the Hamiltonian can be
expressed as

αβj,o =

⎛
⎜⎜⎝

sβ px,β py,β pz,β

sα Vssσ,o ljVspσ,o mjVspσ,o njVspσ,o

px,α −ljVspσ,o alj ,o blj mj ,o blj nj ,o

py,α −mjVspσ,o bmj lj ,o amj ,o bmj nj ,o

pz,α −njVspσ,o bnj lj ,o bnj mj ,o anj ,o

⎞
⎟⎟⎠eik·dj,n

with

auj ,o = u2
jVppσ,o + (

1 − u2
j

)
Vppπ,o

bsj tj ,o = sj tjVppσ,o − sj tjVppπ,o (4)

uj ,sj ,tj ∈ {lj ,mj ,nj },
where o denotes the order of neighbors and j denotes the
corresponding sites on said order. The direction cosines of the
direction vector pointing from the site on sublattice α to site j

on sublattice β with neighbor-order o are lj , mj , and nj . For a

given direction vector dj = (dx,dy,dz)
T they can be computed

by

lj = dj,x/||dj||
mj = dj,y/||dj|| (5)

nj = dj,z/||dj||.
We can then compute αβ as

αβ =
∑

o

∑
j

αβj,o. (6)

We fit the TB parameters to describe the experimental (and
first-principles) band structure (see below) including any
order of neighbors. We find that, in order to describe the

experimental electronic band structure with an accuracy equal
to the experimental resolution we need to take into account at
least five intralayer and two interlayer matrix elements. Indeed,
this is in line with previously published theoretical results [2].
This is, in part, justified noticing that the 6th in-plane and
3rd out-of-plane distances are significantly larger with respect
to the previous order (0.5 Å and 1.2 Å, respectively). In this
work however, we chose to include the 6th in-plane order in
the model, to capture the effects of the higher in-plane orders
(see Sec. III). In order to fit this model to our experimental
data (see below), we have extracted the ARPES maxima
along the energy dispersion curves (EDCs) and employed a
steepest-descent algorithm to minimize the residuals between
the theoretical bands and the peaks extracted from the ARPES
data along the measured path in the reciprocal space.

III. ANGLE-RESOLVED PHOTOEMISSION
MEASUREMENTS OF THE THREE-DIMENSIONAL

ELECTRONIC STRUCTURE OF BLACK PHOSPHOROUS

ARPES was performed at the BaDElPh beamline [44] of
the Elettra synchrotron in Trieste (Italy) at temperatures of
20 K. This beamline is dedicated to low photon energies and
hence higher bulk sensitivity. We used bulk black-phosphorus
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crystals from two providers (one from HQ Graphene and one
from smart-elements) which gave identical results. The crystal
surfaces were prepared in situ in a vacuum better than 10−10

mbar by cleaving with a toppost or a scotch tape inside the
sample preparation chamber. Immediately after the cleave we
determined the high-symmetry directions through low-energy
electron diffraction. In order to access both the valence and
conduction band of BP, we have performed ARPES on pristine
and lithium doped BP. Lithium deposition was carried out in a
UHV chamber from SAES getters with the sample at 20 K; the
amount of lithium was calibrated by a quartz micro balance.

First, we focus on the measured band dispersion starting
by looking to the �Z dispersion of pristine BP. Since
translational symmetry of the crystal potential is broken at
the surface, the component of the electron wave vector k
which is perpendicular to the layers is not strictly conserved
in ARPES measurements. However, with the assumptions of
a free-electron final state, whose energy depends on an inner
potential V0 (Ref. [45]), we can extract the dispersion of k⊥
inside the material from the measured kinetic energy and angle
of the emitted electrons. Assuming that the emitted electrons
are excited into parabolalike bands by the incident photons,
we can calculate k⊥ inside the material by

�k⊥ =
√

2me(Ekincos2θ + V0). (7)

We can thus measure the dispersion k⊥ by varying the
energy of the incident photon beam. Fig. 3 depicts EDCs for
an in-plane k‖ = 0. It can be seen that they consist of a single
peak which disperses as a function of photon energy. This peak
is assigned to the upper valence band of BP. The inner potential
is determined by the fact that the top of the valence band is
at the Z point of the BCO Brillouin zone. Fixing the position
of the peak to the according position on the Brillouin zone
k = (0,0,2π/10.478 Å) we have thus assigned the spectrum
measured with 21 eV photons to the Z point. This yields a value
for the inner potential of V0 = 19.1 eV in very good agreement
to previous data [6] which yielded V0 = 20.0 ± 0.5 eV. As we
will show later, the proper description of the k⊥ dispersion
is critically important to understand the band-gap evolution
as a function of the number of layers. The ARPES geometry
employed for these measurements uses a horizontal slit to
collect the photoelectrons. This makes it possible for us to
measure the �X, �Y, ZT, and ZU high-symmetry directions
with high resolution in a single scan.

Notably, BP can also be described by a primitive orthorhom-
bic unit cell, which being larger than the BCO, would produce
backfolding of the valence band and thus a second ”mirrored”
band would be visible in the dispersion. Since this is not the
case we confirm that the observed band structure is compatible
with the periodicity of the smallest BCO unit cell. We want to
underline that we do not observe the additional surface state
reported in Refs. [46,47]. Notably, these experiments used
photon energies in the range of ∼100 eV. The fact that we
do not observe a surface state can be probably attributed to
the exceptionally low photon energies we used in our spectra,
which are much more bulk sensitive with reduced spectral
weight on a surface state.

We now turn to the effect of lithium doping on the electronic
structure [32]. Figure 4 shows an EDC through the Z point after

FIG. 3. Plot of the energy dispersion curves measured by ARPES
for k‖ = 0 along the �Z direction. The EDC at 21 eV corresponds to
k⊥ = Z.

lithium deposition. It can be seen that lithium doping raises
the Fermi level by about 0.4 eV making the conduction band
accessible by ARPES and turning BP into a metal. This effect is
not common to all semiconductors, e.g., lithium doping does
not induce the metallization of the wide band gap material
hexagonal boron nitride [48]. In the present case, the doping

FIG. 4. The EDC corresponding to k‖ = 0 and k⊥ = Z of the
Li-doped BP sample. The lower curve is the EDC with the Shirley
background subtracted. The band gap is indicated as the difference
between the valence- and conduction-band maxima.
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FIG. 5. The ARPES measurements together with the TB fit. • and � indicate peaks in the ARPES data of undoped and lithium doped BP,
respectively. The color code of the TB calculation represents the pz character of the bands. The inset in (a) depicts a sketch of the BCO BZ
with the high symmetry points. The ARPES data of lithium doped BP were up-shifted by a constant energy of 0.32 eV. For this energy shift
the valence bands of doped and undoped BP overlap.

induced semiconductor-metal transition is eased by the small
band gap of BP.

The doping level we used ensures a rigid shift of the
Fermi energy: We verified that the valence band dispersions
of pristine and lithium doped BP are identical apart from a
constant Fermi level shift (see below). These results are in line
with the ARPES spectra obtained with low potassium coverage
[49] which also leads to a rigid shift of the band structure [49].
On the contrary, further increasing of potassium doping closes
the band gap and can even lead to a band inversion [49].

The shift of the Fermi level across the band gap into the
conduction band allows us to extract a value of the “band gap”
from the ARPES data of Fig. 4 by taking the difference between
valence band maximum and conduction band minimum. We
obtain a value of 400 meV which is reasonably close to the
transport gap of 330 meV [9]. The remaining differences are
ascribed to a combination of several effects such as intrinsic
doping by impurities, weak interaction with lithium ions,
the total energy resolution of the experiment (20 meV), and
the fact that the transport gap was extracted by temperature
dependent measurements. However, as was shown recently
by Villegas and collaborators [50], the band gap has a strong
and anomalous temperature dependence which could affect
the transport results.

We now move to the in-plane ARPES data shown in Fig. 5.
We have taken ARPES scans of the electronic structure along
ZU and ZT directions as well as along �′X′ and �′Y′ (prime in
this case denoting the high-symmetry points shifted by a small
amount of 0.224 Å−1 along the z axis). In order to directly
show that doping causes a rigid band shift, we report both the
pristine and doped data relative to the Fermi level of doped
BP. Applying a rigid band shift of 320 meV to the ARPES
data of pristine BP yields a perfect agreement to the valence
bands of doped BP. It can be seen that their dispersion is
identical apart from the shift in energy due to doping. This
corroborates that the doping is in the rigid band shift regime
and that the dispersion of the bands are unaffected by the
presence of lithium.

Having the complete measured band dispersion of pristine
and doped BP we performed the fit of the TB parameters
reported in Sec. II. The ARPES spectrum is a renormalized
quasiparticle spectrum including many-body effects that are
not captured by a simple tight-binding model. For a Fermi-
liquid-like doped black phosphorus, the energy scale of these
effects should be small compared to our measured energy
scale. We find that the TB model describes both the in-
plane and out-of-plane dispersions with excellent accuracy.
Moreover, since we included ARPES data of lithium doped
BP, we are able to describe also the conduction band close to
its minimum. This last result allows us to understand important
physical properties of BP and phosphorene which strongly
depend on the dispersion of the conduction band: (i) the
evolution of the Fermi surface topology of alkali metal doped
BP which is predicted to be superconducting [32] and (ii) the
dependence of the QP gap of few-layer phosphorene with the
number of the layers. The experimental data for the conduction
band is limited, not only by the achievable doping levels but

TABLE II. The tight-binding parameters obtained from the fit to
the ARPES data. The in-plane and out-of-plane hopping parameters
are in units eV.

order Vssσ Vspσ Vppσ Vppπ

1st − 5.1008 1.0999 4.2100 − 0.6709
2nd − 4.5895 3.9570 4.8083 − 0.9741
3rd − 1.6268 0.6693 1.0361 0.2075

in-plane
4th − 1.1674 0.9023 0.76375 − 0.1442
5th 0.4734 − 0.057 0.7221 − 0.7869
6th 5.0773 1.2546 0.3212 − 1.0060

1st 0.0848 0.7327 0.6907 0.2313
out-of-plane

2nd − 0.6868 0.4964 0.0555 − 0.2217

εs − 14.6830
on-site

εp − 1.5992
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FIG. 6. Theoretical G0W0 calculations for the band structure of
BP shown in broken blue lines; our TB fit is shown in red. The path
through the BZ is the same as for Fig. 5(a).

also because high doping levels cause a nonrigid band shift
[49].

The set of TB parameters used in the calculation of the
band structure reported in Fig. 5 is summarized in Table II.
We find that we need to include at least six nearest in-plane
neighbors to get a satisfactory fit result. Using a larger number
of parameters leads to a smoother decrease of the absolute
number of each hopping parameter but does not improve the
fit result. Thus, Table II represents an efficient interpolation
scheme with a minimum number of parameters.

We also compared the TB band structure with the state-of-
the-art ab initio calculations. In Fig. 6 we report the G0W0

[51] calculation of the bands for bulk BP. In all the relevant
regions of the BZ, the agreement between the two sets of
bands is reasonably good. In particular the �-Z dispersion
of the ARPES fit and in the G0W0 calculation has the same
features. This indicates that the TB fit of the ARPES data is
well suited for the zone-folding approach that we will present
in Sec. VI.

IV. TEMPERATURE DEPENDENCE OF THE OPTICAL
GAP AND EXCITON BINDING ENERGY

Here we further examine the properties of the band gap
of BP by measuring the dependence of the optical band
gap as a function of the temperature. Optical absorption
measurements were carried out on the same crystal used for
ARPES. The measurements were performed using a Bruker
70v spectrometer equipped with a glow-bar source and a DTGS
pyroelectric detector. The measured optical density of BP is
shown in Fig. 7 and displays a low frequency absorption that
increases for lower wave numbers. It can be described with a
Drude term due to the presence of free charge carriers in the
range of ∼1017 cm−3. We speculate that these free carriers are
induced by oxygen impurities which would be consistent to
the P-O vibration observed at ∼880 cm−1 [52]. Indeed, DFT
calculations have shown that oxygen impurities can donate
charge to phosphorene layers [53]. If photons are absorbed
across the bandgap of a material, an increase of the optical
density is observed at energies which correspond to excitonic
and interband transitions [54]. The optical band gap of BP
is identified in Fig. 7 by a sharp steplike absorption found
at 0.261 eV (∼2100 cm−1) at 40 K, in good agreement with
previous optical data [7].

It is important to notice that the steplike gap edge highlights
the quasi-2D nature of black phosphorus [55]. The smoothing
of the step edge can be explained by temperature broadening
roughly on the order of kBT which gives a broadening of about
200 cm−1 at room temperature, in line with the observed effect.
With increasing temperature the gap edge feature also shifts
to higher energies, reaching a value of 0.285 eV at 300 K
(see inset of Fig. 7). This anomalous temperature dependence
has been recently explained considering the coupling of
the electrons with low-frequency transverse optical modes
[50]. We underline that this same temperature dependence
of the gap must also be taken into account when performing
temperature-dependent transport measurements to extract the

FIG. 7. Infrared optical density of BP at different temperatures. The optical band gap is extracted by fitting the gap edge with a heavy-side
function (dashed line). The inset shows the anomalous temperature dependence of the band gap.
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value of the gap [25]. On top of the temperature dependence,
the formation of excitons also affects the optical gap. If the
optical gap Egap,optical is purely excitonic, we can estimate the
excitonic binding energy by subtracting the optical band gap
at T = 40 K from the ARPES band gap:

Eexc = Egap,ARPES − Egap,optical ≈ 140 meV. (8)

We note, that alternatively to the current approach, there are
also purely optical methods for determining the exciton bind-
ing energy [54]. These quasiparticle spectroscopy techniques
are based on two photon photoabsorption and perform exciton
spectroscopy using terahertz light [54].

V. DOPING DEPENDENCE OF THE FERMI SURFACE

In this section, we examine, using our TB model, the
doping dependence of the Fermi surface of BP. The doping
dependence of the Fermi surface is relevant for electrostatically
gated BP and the description of alkali metal doped BP. The
latter has been predicted to become superconducting with
experimentally achievable doping levels [32]. The pairing
mechanism is thought to be electron-phonon coupling, and the
topology of the Fermi surface and the total density of states at
the Fermi level have palpable impact on the coupling strength.
In particular, the nesting properties of the Fermi surface can
lead to instabilities in the electronic system affecting the lattice
dynamics and hence TC . From an experimental point of view,
higher doping with respect to the one used in this work may be
achieved by liquid ion gating [10] or doping by Ca atoms [56].

Weakly doped BP has only one valley around the Z point.
However, a close look to the band structures of Fig. 5 and
Fig. 6 shows that with higher doping a second valley of
the conduction band becomes occupied. The appearance of
multiple Fermi surfaces is positive for superconductivity since
it would allow us to obtain coupling from a larger set of
phonons not only low q-vector optical phonons (intraband
scattering) but also high q-vector optical and acoustic phonons

FIG. 8. The Fermi surface of BP in the BCO BZ for doping levels
of 50 meV (a), 100 meV (b), 300 meV (c), and 500 meV (d). The
appearance of a second pocket is highlighted (see text for discussion).

(mostly via interband scattering). This second valley is located
along the Y ’�’ direction in Fig. 5. After further doping, shifting
the Fermi level of about 0.8 eV with respect to the pristine
case, a second conduction subband in the Z point will be
occupied. Notably, these predictions come from the TB fit to
doped BP but are in excellent agreement to the ab initio G0W0

calculations that we showed above in Fig. 6.
Figure 8 depicts the 3D Fermi surface as it evolves as a

function of the doping level (indicated in terms of shifts of the
Fermi energy 50 meV, 100 meV, 300 meV, and 500 meV) and
calculated by the TB approximation. Figure 8(d) shows that
at 500 meV electron doping a second electron pocket at the Z

point is occupied.

VI. FEW LAYER PHOSPHORENE

A. Zone-folding method

In this section, we apply the zone-folding method to the
three-dimensional electronic structure of BP in order to extract
the two-dimensional electronic dispersion relations of N -layer
phosphorene. This is of high relevance as the synthesis of
few-layer phosphorene in large areas that are needed for
ARPES is not feasible up to now. Thus for exploration of
the electronic structure of few layer phosphorene, a simple
theoretical model is needed. Zone folding is performed in
the eight-atom cell depicted in Fig. 2(b) with the electron
wave vector kz perpendicular to the phosphorene layers. In
this description the periodicity in the kz direction is halved
due to the doubling of the unit cell along the z direction. This
folds back the direct band gap from the Z point of the BCO
unit cell to the � point of the supercell. Modelling the N -layer
phosphorene (with the layers located at zi = id,i = 1 . . . N ,
with d being the interlayer distance) as infinite potential
barriers [located at z = 0 and z = (N + 1)d] we describe the
slab as an infinite potential well in the z direction, see Fig. 9.
Thus, for N -layer phosphorene the electron wave function
at the zeroth and the (N + 1)th layer must be equal to zero
which leads to the following quantization condition for its
wavelength λ:

nλ = (N + 1)d, (9)

FIG. 9. Schematic representation of the zone-folding method.
The orthogonal direction can be thought of as a particle-in-a-box
model. This leads to a quantization of the kz states.
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FIG. 10. The application of the zone-folding method to BP. Performing cuts at selected kz,n as given in Eq. (10) yields a set of 2D dispersion
relations for N layer phosphorene. Here we show the dispersion along �Z of bulk BP. Cuts perpendicular to �Z correspond to the dispersion
relation of N layer phosphorene in the �Y direction. Plots for N = 1 . . . 6 layered phosphorene are shown. The cuts through the BZ of BP are
done increasingly close to the � point resulting in the reduction of the band gap for higher N .

with n being an integer. Depending on whether N is even or
odd, we obtain quantization conditions for kz:

kz,n = nπ

(N + 1)d
(10)

n = 1,2,3, . . . ,N/2 for N even

n = 1,2,3, . . . ,(N + 1)/2 for N odd. (11)

Thus, knowing the experimental band structure of BP, we
can describe the electronic structure of N -layer phosphorene
by cuts through the Brillouin zone of bulk BP at the kz values
allowed by the quantization condition. Figure 10 shows a
series of plots highlighting the procedure for N = 1 . . . 6.
For N layer phosphorene we obtain (N + 1)/2 (for N odd)
or N/2 (for N even) kz planes in the 3D band dispersion
of BP. The value(s) of kz determine the dispersion relation
of N layer phosphorene in the kx-ky plane. It can be seen
that for monolayer phosphorene, the cut goes through the
Z high-symmetry point of the BZ which has the highest
separation between valence and conduction bands (in the
presently used eight-atom cell). As a consequence, the gap
for monolayer phosphorene will be highest when compared to
any other layer number N . For bilayer phosphorene, the kz is
located closer to the � point, and as a consequence the gap
is reduced. This trend holds as we increase N and the gap is
rapidly approaching the bulk value since the kz move closer
towards the � point according to Eq. (10).

B. Fermi surfaces of N layer phosphorene

In the remainder of this section we employ the zone-folding
method to calculate the electronic properties of few-layer
phosphorene. We start with the layer dependence of the
Fermi surfaces of doped few-layer phosphorene which can
be obtained by zone folding the Fermi surface of BP in the
eight-atom supercell. Figure 11(a) shows this Fermi surface at
a doping level of 500 meV. It can be seen that, in the plane
spanned by ZU and ZT , the Fermi surface does not cover
the volume around the �Z axis. However, as kz decreases, the
volume around the �Z axis becomes occupied. This can be
more clearly seen in Fig. 11(b) which displays the contours of
the Fermi surface from Fig. 11(a) at kz = 0. This kz dependence
is important for understanding the layer dependent Fermi
surface in N layer phosphorene. Figures 11(c)–11(f) depict
the Fermi surfaces of N = 1 . . . 4 layer phosphorene. A rigid
band shift of 500 meV was applied to the zone-folded band
structure. It can be seen that the Fermi surface for N = 1
consists of pockets in the �Y direction. For N � 2, another
pocket around the � point appears. Such a layer dependence
can affect nesting and might lead to layer number dependence
in the superconducting properties, similarly to what is expected
for few-layer graphene [57].

C. Energy band gaps of N layer phosphorene

We now look in more detail to the valence and conduction
band energies of N layer phosphorene and their dependence
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FIG. 11. (a) The Fermi surface of doped BP in the eight-atom
supercell for a doping level of 500 meV. (b) Cut through the � plane
of (a). (c)–(f) The Fermi surfaces for doped 1–4 layer phosphorene.
A doping level of 500 meV has been assumed here, too.

on N . To that end we plot the energies obtained from zone
folding as a function of N in Fig. 12.

It can be seen that a family pattern emerges which connects
the nth valence (conduction) band energies for different N .

FIG. 12. Energy eigenvalues at the � point obtained from zone
folding as a function of layer number N . The blue lines connect
the energy eigenvalues of the lowest lying conduction band and the
uppermost valence band. A 1/N law that governs the evolution of
eigenvalues and a family pattern can be seen.

FIG. 13. The QP and optical band gaps of few-layer phosphorene
obtained from zone folding the electronic structure of BP are denoted
by •. The gap increases when going from bulk BP to monolayer
phosphorene. The fit to these data according to Eq. (12) is shown by a
solid red line. For comparison we show this work’s results along with
previously published theoretical and experimental data of N -layer
phosphorene: �: PL (photoluminescence) data from Ref. [20], �: PL
data from Ref. [21], �: PL data from Ref. [16], : QP calculation from
Ref. [31], �: transport measurements from Ref. [59]. The turquoise
line shows the development for the four-band tight-binding model
and parameters given in Ref. [60].

Notably, similar family patterns have also been observed for
few-layer graphene [37,58] where the relevant part of the
zone-folded band structure is located along the KH line of
the hexagonal BZ. The maximum splitting between the two
valence (conduction) bands of graphite is at kz = 0 (K point)
whereas at the edge of the BZ (H point) the two valence
(conduction) bands are degenerate.

Calculating the difference between the lowest conduction
band and the highest valence band, which is equal to the QP
gap, we compare the QP gap value of N -layer phosphorene
(derived from a fit to ARPES data of doped BP) with the
experimental optical and transport band gap of N layer
phosphorene of previously published works and theoretical
calculations. This comparison is shown in Fig. 13. It can be
seen that the values of the gap that we obtained from zone
folding the band structure of doped BP are in excellent agree-
ment to G0W0 calculations of few-layer phosphorene [31]. The
optical band gaps of few-layer phosphorene as measured by
photoluminescence are smaller when compared to the QP band
gaps. Despite some scattering in the experimental data, we
can observe an increase of the difference between QP gap and
optical band gap with decreasing the number of layers. Again,
we infer that this trend can be understood as excitonic effects
becoming increasingly important for thinner systems. On the
other hand, the large variation among individual experiments
could perhaps be explained by (1) different environments
which have a large effect on the exciton binding energy and
(2) different degrees of oxygen exposure which causes doping
and hence a change in the optical response.

The dependence of the gap Eg(N ) on the layer number N

can be fitted by

Eg(N ) = 1.99
e−0.18x

N0.52
+ 0.41. (12)
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FIG. 14. Evolution of the band gap as a function of layer number
N is inversely proportional to the number of layers [see Eq. (12)].
The dots show the actual gaps for given values of 1/N ; the red line
shows an interpolated spline between these values.

This mix of shallow exponential decay and N−a dependence
is similar to previous results for a four-band tight-binding
Hamiltonian that was fit to GW0 calculations [60]. In order to
cover a wider range of N we also show the plot of the band
gap as a function of 1/N in Fig. 14.

Finally, since zone folding does not capture effects resulting
from crystal surfaces, it is interesting to assess the accuracy of
zone folding by a comparison of the zone-folded band structure
to an explicit TB calculation of N layer phosphorene. The cal-
culation of N layer phosphorene uses an extended Hamiltonian
which includes the coupling to adjacent phosphorene layers via
the out-of-plane matrix elements. The atoms inside the layers
on the two surfaces of the few-layer phosphorene stack will
have fewer neighbors to couple to in the extended calculation.
This effect is not included in the zone-folding picture which
derives the bands of few-layer phosphorene from the BP.
The comparison of the zone-folding result and the extended

FIG. 15. Comparison of the band structure for N = 7 layer
phosphorene obtained by (a) zonefolding and (b) an explicit tight-
binding calculation using an extended Hamiltonian.

calculation is shown in Fig. 15. Since black phosphorus is a
van der Waals material without dangling bonds, the effects of
surfaces are believed to be small, and indeed it can be seen that
the zone-folding result agrees well with the explicit calculation
of N layer phosphorene.

VII. DISCUSSION AND OUTLOOK

ARPES measurements of the three-dimensional electronic
structure of BP allowed us to perform a fit of tight-binding
parameters of black phosphorus using the Slater-Koster ap-
proximation. The experimental data could be described using
five in-plane and two out-of-plane neighbor orders. Using
this model with our parameters we extract the behavior for
the band gap of N -layer phosphorene from the bulk bands
using the zone-folding method and find good agreement with
calculations and experiments.

Measurements of the optical energy gap indicate that the
gap value is close to this separation energy. Moreover the
valence band effective mass is not affected by doping in our
case, and ab initio G0W0 calculations are in agreement with
the measured conduction band. From these facts we infer
that our doping levels by lithium cause little structural and
electronic changes apart from the rigid band shift. The ARPES
data of pristine and doped BP are therefore used to fit a
new set of tight-binding parameters to the experiment. This
accurate set of tight-binding parameters is used to predict a
transition into a multiple-valley ground state upon alkali metal
doping of BP. Already at experimentally accessible doping
levels it is possible to obtain a large Fermi surface area and
therefore to take advantage of the full phononic coupling,
without relevant momentum restrictions. Most importantly,
we employ the zone-folding method to predict the electron
energy gap of few-layer phosphorene. The predicted values
show the same trend as the experimentally observed energy
band gaps of few-layer phosphorene. Finally, the experimental
band structure data are compared to ab initio calculations using
the G0W0 approximation, and a good agreement is found in
most parts of the Brillouin zone. The present work is based
on lithium doped BP in the regime of a rigid band shift. It
would be interesting to extend it to other alkali or alkaline
earth dopants for which effects beyond a rigid band shift could
be observed. The proposed tight-binding model can also be
useful to describe the electronic structure of gated few-layer
phosphorene devices. This would require modifying the on-site
tight-binding parameters in a calculation using an extended
Hamiltonian of few-layer phosphorene in such a way to model
a different charge on each layer.
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