
On Equidomination

in Graphs

I n a u g u r a l - D i s s e r t a t i o n

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Fabian Johannes Senger

aus Damme

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kölner UniversitätsPublikationsServer

https://core.ac.uk/display/154356755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Berichterstatter: Prof. Dr. Rainer Schrader
Prof. Dr. Oliver Schaudt

Tag der mündlichen Prüfung: 19.12.2017

ii

Abstract

A graph G = (V,E) is called equidominating if there exists a value t ∈ N and a weight
function ω : V → N such that the total weight of a subset D ⊆ V is equal to t if and
only if D is a minimal dominating set. Further, ω is called an equidominating function,
t a target value and the pair (ω, t) an equidominating structure. To decide whether a
given graph is equidominating is referred to as the Equidomination problem.

First, we examine several results on standard graph classes and operations with respect
to equidomination. Furthermore, we characterize hereditarily equidominating graphs.
These are the graphs whose every induced subgraph is equidominating. For those graphs,
we give a finite forbidden induced subgraph characterization and a structural decompo-
sition. Using this decomposition, we state a polynomial time algorithm that recognizes
hereditarily equidominating graphs.

We introduce two parameterized versions of the Equidomination problem: the k-Equi-
domination problem and the Target-t Equidomination problem. For k ∈ N, a graph
is called k-equidominating if we can identify the minimal dominating sets using only
weights from 1 to k. In other words, if an equidominating function with co-domain
{1, . . . , k} exists. For t ∈ N, a graph is said to be target-t equidominating if there is an
equidominating structure with target value t.

For both parameterized problems we prove fixed-parameter tractability. The first step
for this is to achieve the so-called pseudo class partition, which coarsens the twin parti-
tion. It is founded on the requirement that vertices from different blocks of the partition
cannot have equal weights in any equidominating structure. Based on the pseudo class
partition, we state an XP algorithm for the parameterized versions of the Equidomi-

nation problem.

The second step is the examination of three reduction rules – each of them concerning a
specific type of block of the pseudo class partition – which we use to construct problem
kernels. The sizes of the kernels are bounded by a function depending only on the
respective parameter. By applying the XP algorithm to the kernels, we achieve FPT
algorithms.

Finally, we generalize the property k-equidominating by allowing k different weights
not larger than a positive integer W ∈ N and show analogous results for the so-called
k-W -Equidomination problem based on this generalization.

iii

The concept of equidomination was introduced nearly 40 years ago, but hardly any
investigations exist. With this thesis, we want to fill that gap. We may lay the foundation
for further research on equidomination.

iv

Kurzzusammenfassung

Ein Graph G = (V,E) heißt äquidominierend, wenn es eine Zahl t ∈ N und eine
Gewichtsfunktion ω : V → N gibt, so dass das Gesamtgewicht einer Teilmenge D ⊆ V
genau dann gleich t ist, wenn D eine minimal dominierende Menge ist. In diesem Fall
wird ω als eine äquidominierende Funktion bezeichnet, t als ein Zielwert und das Paar
(ω, t) als eine äquidominierende Struktur. Das Äquidominanz Problem bezeichnet das
Problem zu entscheiden, ob ein gegebener Graph äquidominierend ist oder nicht.

Zunächst arbeiten wir einige Ergebnisse bezüglich Standardgraphen und verschiede-
ner Operationen im Kontext von Äquidominierung aus. Weiterhin charakterisieren
wir vererbende äquidominierende Graphen. Das sind die Graphen, deren induzierte
Teilgraphen auch äquidominierend sind. Für diese Graphen geben wir eine Charak-
terisierung anhand von endlich vielen verbotenen induzierten Subgraphen an und eine
strukturelle Zerlegung. Auf dieser Zerlegung basiert ein schneller Algorithmus für die
Identifizierung von vererbenden äquidominierenden Graphen.

Wir führen zwei parametrisierte Versionen des Äquidominanz Problems ein: das k-
Äquidominanz Problem und das Zielwert-t Äquidominanz Problem. Für k ∈ N
wird ein Graph k-äquidominierend genannt, wenn wir die minimal dominierenden Men-
gen mit Gewichten von 1 bis k identifizieren können. Mit anderen Worten, wenn eine
äquidominierende Funktion mit Zielmenge {1, . . . , k} existiert. Für t ∈ N heißt ein
Graph Zielwert-t äquidominierend, wenn es eine äquidominierende Struktur mit Zielw-
ert t gibt.

Wir zeigen, dass beide parametrisierte Probleme in der Komplexitätsklasse FPT liegen.
Der erste Schritt hierfür ist die Erforschung der sogenannten Pseudo-Klassen-Partition.
Diese Partition ist eine Vergröberung der Partition in Zwillinge. Die Pseudo-Klassen-
Partition begründet sich auf der Forderung, dass Knoten aus verschiedenen Blöcken der
Partition in keiner äquidominierenden Struktur die gleichen Gewichte haben können.
Basierend auf der Pseudo-Klassen-Partition leiten wir einen XP -Algorithmus für die
parametrisierten Versionen des Äquidominanz Problems her.

Der zweite Schritt besteht in der Ausarbeitung dreier Reduktionsregeln, mit denen wir
Problemkerne konstruieren. Die Reduktionsregeln behandeln jeweils einen bestimmten
Blocktyp der Pseudo-Klassen-Partition. Die Größen der Kerne sind durch eine Funk-
tion begrenzt, die nur vom jeweiligen Parameter abhängt. Durch Anwendung des XP -
Algorithmus auf die Problemkerne erhalten wir FPT -Algorithmen.

v

Des Weiteren verallgemeinern wir k-Äquidominierung, indem wir k verschiedene Gewich-
te zulassen, die nicht größer als eine natürliche Zahl W ∈ N sein dürfen. Wir erzielen
analoge Ergebnisse für das daraus resultierende k-W -Äquidominanz Problem.

Obwohl Äquidominierung vor fast 40 Jahren eingeführt wurde, gibt es bisher kaum
Ergebnisse dazu. Mit dieser Arbeit wollen wir diese Lücke füllen. Möglicherweise legen
wir damit den Grundstein für weitere Untersuchungen zu Äquidominierung.

vi

Contents

1 Introduction 1

1.1 Relation to Equistability . 3
1.2 Outline . 4

2 Preliminaries 6

2.1 Basic Definitions and Notations . 6
2.2 Complexity Theory . 9

2.2.1 Fundamentals . 9
2.2.2 Parameterized Complexity . 12

3 Equidomination 16

3.1 An Introduction . 16
3.2 General Results . 19
3.3 Hereditarily Equidominating Graphs . 25

3.3.1 Forbidden Induced Subgraphs and Structural Decomposition . . . 25
3.3.2 Recognition of Hereditarily Equidominating Graphs 30

4 Complexity Issues and the Pseudo Class Partition 35

4.1 The Equidomination Problem . 35
4.2 Parameterization . 37
4.3 Decomposition . 39

4.3.1 Twin Partition . 39
4.3.2 Pseudo Class Partition . 41

4.4 XP Algorithm . 52

5 Fixed-parameter Tractability Results 57

5.1 Reduction Rules . 57
5.2 Target-t Equidomination . 67
5.3 k-Equidomination . 68
5.4 k-W-Equidomination . 73

6 Conclusion and Outlook 76

6.1 Our Contribution . 76
6.2 Discussion . 78
6.3 Future Directions . 80

A Further Reduction Rules 82

vii

List of Figures 84

Bibliography 85

Index 90

viii

Chapter 1

Introduction

The first appearance of domination in graphs goes back to the 1850’s, even though it
was not considered as domination in these days. Chess players posed the question of
how many queens are needed such that every square of the 8×8 chess field is occupied
by a queen or reachable by a queen within one move. On a chessboard, a queen can
move to every square in horizontal, vertical or diagonal direction.

The embedding of this question into the framework of graph theory leads to the concept
of domination. Firstly, this embedding and the mathematical formalization of domina-
tion was done by Berge [4] and Ore [54] in 1962. While Ore used the term domination
right from the beginning, Berge spoke of external stability at that time (following inter-
nal stability, which he used for so-called stable sets). However, it was domination that
prevailed.

Let us follow the ideas of Berge and Ore and formulate the question in graph-theoretic
language. For that, let every square of the chessboard be a vertex. We connect two
vertices by an edge if it is possible to get from one square to the other within a queen
move. The obtained graph is called the queen-graph (and can be defined analogously
for every chess piece).

With this graph-theoretical framework, the question of the chess players can be refor-
mulated as follows:

What is the minimum size of a subset of vertices such that every vertex of
the queen-graph is an element of the subset or is connected to a vertex of
the subset?

By this question, we have just stated the definition of a dominating set. A subset D is
a dominating set if every vertex not in D is connected – or adjacent, as graph-theorists
call it – to a vertex of D.

A dominating set of minimum size is called a minimum dominating set, while a domi-
nating set that does not contain another dominating set is called a minimal dominating
set. This means that we cannot delete a vertex of a minimal dominating set without
losing the property of being dominating. However, a minimal dominating set can be of
significantly larger size than a minimum dominating set.

1

1 Introduction

Besides chess, lots of other applications for domination exist (see [35]). For example, let
the vertices of a graph represent persons such that an edge between two persons exists
if they know each other. Such a graph is often called social graph [7]. We want to
determine a committee such that every person not in the committee knows a person in
it. Again, such a committee corresponds to a dominating set. Further, we could also
want the committee to have as little members as possible. Then we are looking for a
minimum dominating set in the graph.

Another example is the distribution of facilities (such as police or fire departments,
schools, supermarkets, radio stations and so on) to demand locations (such as dis-
tricts, villages, . . .). For every location, there must be a facility nearby. In this context,
”nearby” means at the location itself or at a neighboring location. In general, computing
the minimum number of needed facilities can get quite hard. Given that circumstance,
it is a reasonable goal to at least avoid unnecessary facilities, which means we are indeed
looking for an (inclusion-wise) minimal dominating set.

While the main stream of the research on dominating sets in graphs focuses on the
optimization aspects of the problem, there are several interesting graph classes defined
around this concept. For example, the classes of efficient dominating graphs [11], of well-
dominated graphs [27], of domination perfect graphs [61], of upper domination perfect
graphs [32] and of strong domination perfect graphs [58].

Another example is the class of domishold graphs, introduced 1978 by Benzaken and
Hammer in [3]. These are the graphs for which there are positive weights associated to
the vertices of the graph such that a subset D of vertices is dominating if and only if the
sum of the weights of the vertices ofD (also called the total weight ofD) exceeds a certain
threshold t. In other words, the characteristic vectors of the dominating sets are exactly
the zero-one solutions of a linear inequality, where the coefficients of the inequality
correspond to the weights of the vertices and the right-hand side to the threshold (see [13],
[15], [44] and [46] for more details).

Motivated by this concept, Payan asked in 1980 whether there are graphs for which
the characteristic vectors of the minimal dominating sets are the zero-one solutions of
a linear equality [56]. Equivalently, we are looking for a weight function such that not
only every minimal dominating set has a specific total weight. We further require that
every subset of vertices with that specific total weight is a minimal dominating set. Such
graphs Payan named equidominating.

Equidominating graphs are the principal topic of this thesis. As mentioned before, the
concept was introduced nearly forty years ago. However, to our knowledge, there are
only a few results on equidomination. Payan stated in the introducing paper [56] a
characterization of the class of graphs that are domishold and equidominating. Further,
he showed that threshold graphs are equidominating. There is no direct relation between
domishold and equidominating. There are equidominating graphs that are not domishold
and vice versa [44]. Moreover, the complexity of deciding whether a given graph is
equidominating is (so far) unknown.

2

1.1 Relation to Equistability

One advantage of having an equidominating structure – that is a weight function and a
specific total weight of exactly the minimal dominating sets – of a graph at hand is that
one can check whether a given vertex subset is a minimal dominating set in linear time.
One simply has to consider the sum of the weights of the vertices of the subset. It can
be worthwhile to examine an equidominating structure of a graph if one has to check
subsets for being minimal dominating over and over again, for example as a subroutine
in some algorithm.

In the course of this thesis, we explore several issues regarding equidominating. On the
one hand, these issues concern general results with respect to standard graph classes and
operations, and the characterization of hereditarily equidominating graphs. On the other
hand, as the main topic of this thesis, we embed equidomination into (parameterized)
complexity theory.

1.1 Relation to Equistability

A stable set is a set of pairwise non-adjacent vertices and a maximal stable set is not
contained in another stable set. In [56], Payan also brought up the term equistable. This
graph property is defined analogously to equidominating with respect to maximal stable
sets. That is, a graph is equistable if there is a weight function such that maximal stable
sets are identified by their total weights. Since every maximal stable set is dominating,
maximal stable sets are also called independent dominating sets (in the field of graph
theory independent is used synonym to stable). This already indicates the correlation
between domination and stability in general and hence also between equidomination and
equistability.

In contrast to equidomination, there are quite a few investigations on equistability. The
first paper on equistability, that followed the introducing paper, appeared in 1994 by
Mahadev, Peled and Sun [45]. There, the authors gave necessary and sufficient conditions
for equistability, characterized the equistability of various graph classes and introduced
the stronger property strongly equistable. They conjectured that the class of equistable
graphs not only contains the class of strongly equistable graphs but that both classes
are identical.

In 2009, Orlin extended this conjecture (see [48]). He proved that every so-called general
partition graph is equistable and conjectured that the converse is also true. However,
both conjectures were recently disproved by Milanič and Trotignon [51]. Various other
papers were published in this context, see for example [8] and [42].

Another scope of the research on equistability treats complexity issues (see [36], [43] and
[49]). We only want to mention here that (so far) the complexity of the recognition of
equistable is unknown. The interested reader is referred to Chapter 4, where we also
consider this topic.

3

1.2 Outline

Several other papers deal with the characterization of equistability of different graph
classes, such as chordal graphs [57], distance-hereditary graphs [38], EPT graphs [1] or
series-parallel graphs [37].

Even though there are many analogies between equistability and equidomination, on the
other hand there are significant differences in the case of equidomination. It turns out
that the concept of equidomination case bears its own substantial difficulties which we
overcome with new methods.

1.2 Outline

This thesis is organized as follows. After this introducing chapter, we state basic graph-
theoretic definitions and notations as well as the needed essentials of complexity theory
in Chapter 2.

Chapter 3 begins with an introduction to the concept equidomination, starting by its
first appearance in 1980 and stating the few, yet existing results. Furthermore, we show
that no induced subgraph is forbidden for equidominating graphs. Then, we achieve
several results with respect to equidomination: on the one hand, these results regard
standard graph classes and the question whether they are equidominating or not. On
the other hand, we examine numerous operations on graphs – like adding vertices and
joining graphs – and to what extent they are compatible with equidomination.

Next, we turn our attention to the class of hereditarily equidominating graphs. In these
graphs every induced subgraph is equidominating. We obtain a characterization of this
class in terms of forbidden induced subgraphs as well as a structural decomposition. Us-
ing this decomposition, we state a polynomial time recognition algorithm for hereditarily
equidominating graphs. Chapter 3 ends with a proof of the existence of a linear time
recognition algorithm.

In Chapter 4, we embed equidomination into the framework of complexity theory. We
define the Equidomination problem – decide whether a given graph is equidominating
or not – and discuss some related topics. Unfortunately, the computational complexity
of this problem is unknown. This is why we specify the property equidominating in two
ways: on the one hand, we allow only weights that are not larger than a specific value.
And on the other hand, we prescribe the specific total weight every minimal dominating
set must have. These two specifications naturally lead to two parameterized versions
of the Equidomination problem: the k-Equidomination problem and the Target-t
Equidomination problem.

In order to achieve complexity results for the parameterized problems, we want to find a
partition of the vertices of a graph such that vertices of different blocks of the partition
cannot have the same weight with respect to any equidominating function. We obtain
the so-called pseudo class partition. The pseudo class partition is a coarsening of the
twin partition. Its examination is one of the primary outcomes of our research and one

4

1.2 Outline

of the centerpieces to prove fixed-parameter tractability of the parameterized problems.
At the end of Chapter 4, we use the pseudo class partition to state an XP algorithm
which solves the k-Equidomination problem. The XP algorithm can also be applied
to the Target-t Equidomination problem.

In Chapter 5, we examine three reduction rules, the second centerpiece to show fixed-
parameter tractability. With these rules, we can reduce the size of a given graph without
changing its property of being k-equidominating and target-t equidominating. Each rule
deals with a specific type of block of the pseudo class partition.

As the main results of this thesis, we deduce complexity results for the two parame-
terized problems k-Equidomination and Target-t Equidomination. We show that
both problems are fixed-parameter tractable. By applying the three reduction rules,
we construct problem kernels for both parameterized versions of the Equidomination

problem. Moreover, using the XP algorithm presented in Chapter 4, we obtain FPT
algorithms.

Chapter 5 ends with a generalization of k-equidomination. We allow k different weights
that do not necessarily need to be the numbers 1, . . . , k but are bounded by some in-
teger W > k. We show fixed-parameter tractability for the resulting problem k-W -
Equidomination, too.

The thesis closes with a summary of our results and a detailed as well as a wider outlook
to possible future research in Chapter 6.

5

Chapter 2

Preliminaries

In Section 2.1, we give the basic graph-theoretic definitions and notations that we use
in this thesis. Section 2.2 is devoted to complexity theory, where we first give a brief
introduction to the fundamentals and afterward to fixed-parameter tractability. An
index is provided at the end of the thesis such that the reader is able to find every
definition again.

2.1 Basic Definitions and Notations

Even though most of the following notations are standard, we want to state in this section
everything which is needed to understand this thesis. If a (rather specific) definition is
just needed once in this thesis, we only mention it at the passage where we use it.

We begin by stating general mathematical notations that do not necessarily depend on
graphs. The cardinality of a set M is denoted by |M |. If we want to emphasize that a
subset M ′ of M is a proper subset, we write M ′ ⊂ M and that we unite two disjoint
sets M1 and M2, we write M1 ∪̇ M2 (instead of M ′ ⊆ M and M1 ∪M2). We use the
abbreviation [k] := {1, . . . , k} for a natural number k ∈ N.

A partition of a set M is a family P = {P1, . . . , Ps} of subsets of M such that
⋃s

i=1 Pi =
M and Pi ∩ Pj = ∅ for i, j ∈ [s] with i 6= j. The elements of P are called blocks. The
equivalence classes of an equivalence relation on M form a partition. In this case, we call
the blocks also classes of the partition. Let P and P ′ be two partitions of a set M such
that two elements x, y ∈ M lie in the same block of P if x and y lie in the same block of
P ′. Then, we call P a coarsening of P ′ and P ′ a refinement of P. Furthermore, let
(m1, . . . ,mn) be an ordering of the set M . We call a vector χ ∈ {0, 1}n a characteristic
vector of M . Each characteristic vector determines a subset M ′ of M and vice versa:
mi ∈ M ′ if and only if the i-th component χi of χ equals 1.

A weight function on a set M is a function ω : M → N. For m ∈ M we call ω(m) the
weight of m. For a subset M ′ ⊆ M we define ω(M ′) :=

∑
m∈M ′ ω(m). For a better

distinction, we call ω(M ′) the total weight of M ′ if M ′ is a subset.

6

2.1 Basic Definitions and Notations

Now, we come to graph-theoretic definitions and notations. For a complete and more
detailed introduction to graph theory, the interested reader is referred to the books of
Brandstädt et al. [10], Diestel [23] and Korty and Vygen [39].

A graph is a tupel G = (V,E) with V being a non-empty set and E ⊆ V × V (with
× denoting the Cartesian product). The elements of V are called vertices and the
elements of E edges. Further, we call V the vertex set and E the edge set. As we
only work with undirected graphs, we consider an edge as an unordered pair and write
e = vw for an edge e ∈ E and two vertices v, w ∈ V . We also refer to the set of vertices
of G as V (G) and to the set of edges of G as E(G). All graphs considered in this thesis
are finite, and without any loops or parallel edges. This means that V is finite, vv /∈ E
for all v ∈ V and e 6= f for all e, f ∈ E, respectively. For two vertices v, w ∈ V we say
that v and w are adjacent if vw ∈ E and that v and w are incident to the edge vw.

In the remainder of this section, let G = (V,E) be a graph. The complement of G is
the graph with vertex set V and edge set (V × V) \ E and is denoted by G = (V,E).
A graph H is said to be isomorphic to G if there is a bijection φ : V (G) → V (H)
with vw ∈ E(G) if and only if φ(v)φ(w) ∈ E(H). If G and H are isomorphic we write
G ∼= H. In general, we do not distinguish between isomorphic graphs.

For a subset V ′ ⊆ V , the (vertex) induced subgraph of G is denoted by G[V ′] and
defined as the graph with vertex set V and edge set {vw ∈ E | v, w ∈ V ′}. A graph
G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊂ E(G[V ′]) is simply called subgraph of G. A
graph induced by a subset of edges is the graph induced by the set of vertices that are
incident to an edge of the subset.

Next, we will define several abbreviations. For that, let v ∈ V , e ∈ E, V ′ ⊆ V and
E′ ⊆ E. By G − v and G − V ′ we denote the induced subgraphs G[V \ {v}] and
G[V \ V ′], respectively. By G − e and G − E we denote the subgraphs (V,E \ {e})
and (V,E \E), respectively. Furthermore, for E′′ ⊆ V × V , G + E′′ denotes the graph
(V,E ∪ E′′). If x ∈ V ′ and y /∈ V ′, then we write V ′ − x + y for (V ′ \ {x}) ∪ {y}.

A complete graph is a graph where every possible edge exists (that is E = V ×V). We
denote the complete graph on n ∈ N vertices by Kn. The complement Kn of a complete
graph is called edgeless graph. A graph is called bipartite if there is a partition of
the vertices into two blocks such that each block induces an edgeless graph. We call the
two blocks color classes. If every edge between the vertices of the color classes exists,
then the graph is said to be complete bipartite. A complete bipartite graph with
color classes of size m and n (m,n ∈ N) is denoted by Km,n. The graphs K1,n are also
called star graphs. Let Vn = (v1, . . . , vn). The graph with vertex set Vn and edge set
{vivi+1 | i = 1, . . . , n − 1} is the path Pn. The cycle Cn is the graph Pn + v1vn. Let
V2n = (v1, v

′
1, . . . , vn, v

′
n). By T (2n, n) we denote the graph with vertex set V2n and

edge set (V2n × V2n) \ {viv
′
i | i = 1, . . . , n}. This is a particular Turàn graph (see [23]

for a complete definition of Turàn graphs). The graph T (2n, n) is also called the cocktail
party graph: every vertex is a guest of a party with n couples and the edges symbolize
the handshakes between all guests, where partners do not shake hands.

7

2.1 Basic Definitions and Notations

For a vertex v ∈ V , we call N(v) := {w ∈ V | vw ∈ E} the open neighborhood of
v. Every vertex of N(v) is said to be a neighbor of v. The closed neighborhood
of v is defined as N [v] := N(v) ∪ {v}. We also use these terms for subsets S ⊆ V
of vertices, then N(S) :=

⋃
v∈S N(v) and N [S] := N(S) ∪ S. Further, we define the

private neighbor set of v ∈ S as pn[v, S] := N [v] \N [S \ {v}] and every element of
pn[v, S] is called a private neighbor of v.

A subset S of the vertices of a graph is called a dominating set or simply dominating,
if every vertex of the graph is an element of S or adjacent to a vertex of S. Since
dominating sets are essential, we give some equivalent definitions. A subset S ⊆ V is a
dominating set if and only if:

(i) N [S] = V ,

(ii) |N(v) ∩ S| ≥ 1 for every vertex v ∈ V \ S,

(iii) |N [v] ∩ S| ≥ 1 for every vertex v ∈ V .

If a dominating set D does not properly contain another dominating set, it is called a
minimal dominating set. That is, each D′ ⊂ D is not a dominating set. Further, D is
a minimal dominating set if and only if N [S] = V and pn[v,D] 6= ∅ holds for all v ∈ D.
We want to emphasize that is the rest of the thesis we work with minimal dominating
sets and not with minimum dominating sets (which is a dominating set of minimal
cardinality). We say that a vertex v ∈ V dominates itselft and all its neighbors. Also,
every subset of vertices S ⊆ V dominates each vertex of N [S].

A stable set is a subset of pairwise non-adjacent vertices and a clique is a subset of
pairwise adjacent vertices. In other words, a stable set induces an edgeless graph and a
clique induces a complete graph. Analogously to a minimal dominating set, a stable set
is said to be a maximal stable set if it is not properly contained in another stable set.
It is easy to see that every maximal stable set is a minimal dominating set.

Let v, w ∈ V be two vertices. The degree of v is defined as deg(v) := |N(v)|. The
length of a shortest path between v and w is denoted by dist(v, w) and called the
distance of v and w. We set dist(v, w) := ∞ if no such path exists. The diameter of
a graph is the longest shortest path, that is maxv,w∈V (dist(v, w)). If deg(v) = |V | − 1
or deg(v) = 0, then v is said to be a universal or isolated vertex, respectively. We
call v a pendant vertex (of w), if deg(v) = 1 (and vw ∈ E). If dist(x, y) < ∞ for all
x, y ∈ V , then G is called connected. We also call a subset S ⊆ V of vertices connected
if dist(x, y) < ∞ for all x, y ∈ S. Further, a maximal induced subgraph of G that is
connected is called a component of G.

Now, let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The disjoint union G1 ∪ G2

of G1 and G2 is the graph (V1 ∪ V2, E1 ∪ E2). The complete union G1 + G2 of G1

and G2 is the graph (V1 ∪ V2, E1 ∪ E2 ∪ E1,2) with E1,2 = {v1v2 | v1 ∈ V1, v2 ∈ V2}.
A chain graph is a bipartite graph where the neighborhoods of the vertices of either
color class are comparable with respect to inclusion. This means that orderings of the
vertices of the color classes {v1, . . . , vn} and {w1, . . . , wm} of a chain graph exist such

8

2.2 Complexity Theory

that N(v1) ⊆ . . . ⊆ N(vn) and N(w1) ⊆ . . . ⊆ N(vm). Let Ui be the (possibly empty)
set of universal vertices of Gi, for i ∈ {1, 2}. Let B be any chain graph with color classes
U1 and U2. We call the graph (G1 ∪G2) +E(B) a chain-join of G1 and G2. Note that
the disjoint union of any two graphs is a particular chain-join of these two graphs. Let
G be a chain-join of G1 and G2. We remark that even though we use a chain graph to
join G1 and G2 to obtain G, the induced subgraph G[U1 ∪U2] is not a chain graph since
the former color classes of B are cliques in G. A co-chain graph is the complement of
a chain graph.

A subset of vertices V ′ ⊆ V is said to be a module if N(v) \ V ′ = N(w) \ V ′ for all
v, w ∈ V ′. Clearly ∅, V and the sets {v} for all v ∈ V are modules. Those are the
trivial modules. A graph is called prime if each of its modules is trivial. The modular
decomposition of a graph is a decomposition of the vertex set into modules. This de-
composition can be done recursively, leading to the so-called decomposition tree, which
represents all modules of a graph. We only need a special kind of modules and a deeper
examination of this topic goes beyond the scope of this thesis. Actually, modular decom-
position is not restricted to graphs but applicable to numerous discrete structures. The
interested reader is referred to the book of Brandtstädt et al. [10] for a brief introduction
and to the survey papers of Habib and Paul [33] and Möhring and Radermacher [52] for
a deeper insight.

If necessary, we add a subscript to any term to clarify in which graph we consider term
(for example, we write NG(v) to point out that we consider the neighborhood of v
in G).

2.2 Complexity Theory

In this section, we give a brief introduction to the wide field of complexity theory. We
state formal definitions as well as rather informal interpretations, and how we make use
of the described objects for our purposes. Furthermore, we introduce the concept of
fixed-parameter tractability by citing the elemental definitions and a basic result that
we use to prove our main results.

2.2.1 Fundamentals

Let Σ be a finite set. We call Σ an alphabet. By Σ∗ we denote the set of strings of
every possible length whose symbols are elements of Σ, that is Σ∗ =

⋃
n≥0Σ

n. Now, a
language X over Σ is a subset of Σ∗. Here, we are not interested in technical issues
how Σ exactly looks like or which language underlies the considered decision problems.
For our purposes it is enough to think of Σ as {0, 1}. Then, Σ∗ is the set of all binary
strings. With the set of all binary strings we can represent and encode everything we
work with.

9

2.2 Complexity Theory

Definition 2.2.1 ([39], Definition 15.7). A decision problem is a pair P = (X,Y),
where X is a language decidable in polynomial time and Y ⊆ X. The elements of X
are called instances of P; the elements of Y are yes-instances, those of X \ Y are
no-instances.

An algorithm for a decision problem (X,Y) is an algorithm computing the function
f : X → {0, 1}, defined by f(x) = 1 for x ∈ Y and f(x) = 0 for x ∈ X \ Y .

Here, decidable in polynomial time means that for all x ∈ Σ∗ it can be decided in
polynomial time (see below) if x ∈ X.

For a better understanding, we define the following decision problem and relate it to
Definition 2.2.1.

Dominating Set:

Instance: A graph G and k ∈ N.
Problem: Decide whether G has a dominating set of cardinality k.

As mentioned above we are not interested in how the underlying language X of Dom-

inating Set exactly looks like. For us it is only important that X contains all pairs
(G, k), where G is a graph and k ∈ N, and that Y is the set of all graphs with a dominat-
ing set of cardinality k. One algorithm for Dominating Set is the brute force approach:
compute all subsets of vertices of cardinality k of a graph and check if one of them is a
dominating set. If so, return 1 (or YES), otherwise, return 0 (or NO).

The central aspect of complexity theory is to determine how well a decision problem can
be solved and which decision problems can be solved efficiently. But what does efficiently
mean? For that we need the size of an instance of a decision problem. Formally, the size
of an element x ∈ X is the length of the string x. For us, if the instance is a graph, then
its size is the number of vertices and edges. We remark again that we are not concerned
how to encode a graph (for an interesting comment on this topic see Example 8.5 of
[55]).

Now, a decision problem is said to be polynomial time solvable if there is an algorithm
whose running time is bounded by a polynomial in the instance/input size. Efficiently
is used synonymously with polynomial time solvable. The class of decision problems
that are polynomial time solvable is denoted by P .

To measure the running time of an algorithm precisely we use the so-called Big-Oh
notation. For that we define for a function f : N0 → N0 the set

O(f) := {g : N0 → N0 | ∃c, n0 ∈ N ∀n ≥ n0 : g(n) ≤ cf(n)} .

This means that O(f) contains all functions that are asymptotically bounded by (a
multiple of) f . Note that we do not measure the actual time an algorithm is running since

10

2.2 Complexity Theory

this is highly depending on the used hardware. Instead we are counting the number of so-
called elementary steps (arithmetic operations like addition/multiplication, comparison,
branching instructions, . . .). Slightly abusing notation, it is common to write f = O(g)
and f ≤ O(g) instead of f ∈ O(g). We also say that f is of order g.

For the sake of completeness we at least want to mention that the extensive field of
machine models underlies the analysis of running times of algorithms and thus the clas-
sification of decision problems. However, as we do not need the technical details, it is
omitted here. The reader interested in this topic is referred to the survey by Boas [5].

Is it possible to find a polynomial time algorithm for every decision problem? To quote
Papadimitriou and Steiglitz [55]:

”The time has now come to meet the most prominent failures of this ap-
proach; problems, that is, for which no efficient algorithm is known. In doing
so, we shall develop a beautiful theory that unifies these failures into deep
mathematical conjecture.”

If we take a look at the above-given algorithm for Dominating Set, it is easy to see that
this algorithm does not have a polynomial running time. For a graph on n vertices, we
have to analyze every subset of vertices of size k, of which

(
n
k

)
= O(nk) many exists (note

that k is part of the instance). Dominating Set is contained in another complexity
class, which is defined as follows. The class of decision problems for which we can verify
in polynomial time that a yes-instance is indeed a yes-instance is denoted by NP . The
verification is done with a so-called certificate.

For Dominating Set such a certificate is simply a dominating set of size k of the
considered graph. Given such a set, we have to check if it is of size k and if it is a
dominating set. If so, the graph is a yes-instance. Since checking both conditions can
be done in polynomial time, Dominating Set is in NP.

If we can transform a decision problem P1 to a decision problem P2 in polynomial time
such that yes-instances of P1 are transformed to yes-instances of P2, and no-instances of
P1 are transformed to no-instances of P2, then we said that P1 reduces/is reducible
to P2. In this case, if there is a polynomial time algorithm for P2, then there is also one
for P1: we transform a given instance of P1 to an instance of P2 and solve it with the
algorithm for P2, both in polynomial time.

A decision problem P is called NP-hard, if every problem of NP is reducible to P. If
in addition P ∈ NP, then P is said to be NP-complete.

Following the definitions, we get P ⊆ NP. The question whether there are problems in
NP that are not in P or whether P = NP is the most important issue in complexity
theory. The question is open for decades and most people believe that P 6= NP. This
belief is the ”deep mathematical conjecture” Papadimitriou and Steiglitz speak about.
The Domination Set problem is NP -complete (see Theorem 1.7 in [35]), so it is most
likely that there exists no polynomial time algorithm.

11

2.2 Complexity Theory

P

NP coNP
NP ∩ coNP

coNP-hardNP-hard

NP
-co

mp
let
e coNP-complete

Figure 2.1: Relation (most likely) between the complexity classes P, NP, NP -complete,
NP -hard, coNP, coNP -complete and coNP -hard

We close this subsection with the introduction of another complexity class. The class
of decision problem for which we can verify no-instances in polynomial time is denoted
by coNP . Analogously, a decision problem is called coNP-hard, if every problem of
coNP is reducible to it and coNP-complete if it is additionally in coNP.

For an overview over the introduced complexity classes see Figure 2.1 [39]. The reader
interested in the topic of complexity theory is referred to the book [31] for a deeper
insight.

2.2.2 Parameterized Complexity

The concept of parameterized complexity is used to refine the analysis of problems that
are coNP -hard. It was formally introduced by Downey and Fellows in the 1990s [24].
Parameterized complexity is motivated by the fact that often a large part of the running
time of an algorithm depends on a problem-specific parameter and that those parameters
often appear small in practical applications.

We follow the notation of Flum and Grohe [28]. First, we need the definition of a
parameterized problem. Note that Flum and Grohe use a slightly different notation of
decision problems as Vygen and Korte, who we cited in the previous subsection (in the
following, (X,Y) of Definintion 2.2.1 corresponds to (Σ∗, Q)).

Definition 2.2.2 ([28], Definition 1.1). Let Σ be a finite alphabet.

12

2.2 Complexity Theory

(i) A parameterization of Σ∗ is a mapping κ : Σ∗ → N that is polynomial time
computable.

(ii) A parameterized problem (over Σ) is a pair (Q, κ) consisting of a set Q ⊆ Σ∗

of strings over Σ and a parameterization κ of Σ∗.

Several parameterizations are possible for a decision problem. For example, let (G, k) be
an instance of Dominating Set. Then one possible parameterization is κ((G, k)) = k,
which leads to the following parameterized problem (compare [28]):

p-Dominating Set:

Instance: A graph G and k ∈ N.
Parameter: k.

Problem: Decide whether G has a dominating set of cardinality k.

The next two definitions introduce two complexity classes for parameterized problems.
The crucial thing here is to separate the size of the parameter in the running time from
the size of the rest of the problem instance.

Definition 2.2.3 ([28], Definition 2.22). Let (Q, κ) be a parameterized problem over
the alphabet Σ. Then (Q, κ) belongs to the class XP if there is a computable function
f : N0 → N0 and an algorithm that, given x ∈ X∗, decides if x ∈ Q in at most

|x|f(κ(x)) + f(κ(x))

steps.

We call an such an algorithm an XP algorithm.

Definition 2.2.4 ([28], Definition 1.4). Let Σ be a finite alphabet and κ : Σ∗ → N a
parameterization.

(i) An algorithm A with input alphabet Σ is an FPT algorithm with respect to κ

if there is a computable function f : N → N and a polynomial p ∈ N0[X] such that
for every x ∈ Σ∗, the running time of A on input x is at most

f (κ(x)) · p (|x|) .

(ii) A parameterized problem (Q, κ) is fixed-parameter tractable if there is an FPT
algorithm with respect to κ that decides Q.

FPT denotes the class of all fixed-parameter tractable problems.

13

2.2 Complexity Theory

The function f is typically super-polynomial and even functions like f(k) = 22
22k

are
legitimate.

The difference between Definition 2.2.3 and Definition 2.2.4 is that for an FPT algorithm
we can separate the size of the input completely from the parameter into two factors.
In contrast, for an XP algorithm it is only demanded that the size of the input does
not appear as an exponent in the running time. For example, if n is the input size and
k the parameter, then an algorithm with running time nk is an XP algorithm and one
of runnig time 2k · n an FPT algorithm. It holds that FPT ⊆ XP (see Proposition 3.2
in [28]).

It follows that p-Dominating Set is in XP. But it is most likely, that p-Dominating

Set is not in FPT (unless P = NP). However, if we choose another parameterization
(one that includes the maximum degree of a graph) then we obtain a parameterized
problem lying in FPT (see Corollary 1.20 in [28]):

p-deg-Dominating Set:

Instance: A graph G and k ∈ N.
Parameter: k + deg(G).

Problem: Decide whether G has a dominating set of cardinality k.

We end this brief introduction to fixed-parameter tractability with a standard tech-
nique to prove that a parameterized problem is fixed-parameter tractable. We use this
technique to prove our FPT results.

Definition 2.2.5 ([28], Definition 1.38). Let (Q, κ) be a parameterized problem over Σ.

A polynomial time computable function K : Σ∗ → Σ∗ is a kernelization of (Q, κ) if
there is a computable function h : N → N such that for all x ∈ Σ∗ we have

(x ∈ Q ⇐⇒ K(x) ∈ Q) and |K(x)| ≤ h(κ(x)) .

If K is a kernelization of (Q, κ), then for every instance x of Q the image K(x) is called
the kernel of x (under K).

This means that a kernel is an equivalent instance of a parameterized problem the size
of which is bounded by a function that only depends on the parameter. One can weaken
Definition 2.2.5 by not requiring to obtain an instance of the same problem, but a, loosely
speaking, related problem.

Definition 2.2.6 ([6], Definition 2). A generalized kernelization algorithm from a
parameterized problem L ⊆ Σ∗ ×N to another parameterized problem L′ ⊆ Σ∗ ×N is an
algorithm that given (x, k) ∈ Σ∗ × N, outputs in p(|x|+ k) time a pair (x′, k′) ∈ Σ∗ × N
such that

(i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′ ,

14

2.2 Complexity Theory

(ii) |x′|, k′ ≤ f(k) ,

where f is an arbitrary computable function, and p a polynomial.

Analogously to Definition 2.2.5, we call the image of a generalized kernelization algo-
rithm a generalized kernel. The concept of generalized kernelization is also known as
bikernelization [2].

If we apply a brute force algorithm to a (generalized) kernel, then its running time
depends only on the parameter. This fact is the idea to prove the sufficiency-part of
the following theorem. Furthermore, this is also the reason why it is demanded that
the construction of the kernel must be computable in polynomial time since this part is
usually depending on the original instance size.

Theorem 2.2.7 ([28], Theorem 1.39). For every parameterized problem (Q, κ), the fol-
lowing are equivalent:

(i) (Q, κ) ∈ FPT.

(ii) Q is decidable, and (Q, κ) has a kernelization.

Theorem 2.2.7 also holds for generalized kernelization, which can be proved in the same
way. We apply this result in Chapter 5. First, we reduce the size of a given graph in two
ways. Then, we transform the relevant properties to another mathematical object the
size of which is – after another reduction – depending only on the considered parameters.
The exact procedure is given by so-called reduction rules.

For an extensive study of parameterized complexity we recommend the books of Downey
and Fellows [25] and Flum and Grohe [28].

15

Chapter 3

Equidomination

In Section 3.1, we introduce the topic of equidomination. We obtain several general
results regarding standard graph classes and operations in Section 3.2. In Section 3.3,
we characterize the class of hereditarily equidominating graphs and give a recognition
algorithm that uses a decomposition result.

3.1 An Introduction

The concept of equidomination was introduced by Payan in 1980 [56]. Three years before,
Benzaken and Hammer [3] defined a graph to be domishold if there are positive weights
associated to the vertices of the graph such that a subset D of vertices is dominating
if and only if the sum of the weights of the vertices of D exceeds a certain threshold.
In other words, the characteristic vectors of dominating sets are exactly the zero-one
solutions of a linear inequality, where the coefficients of the inequality correspond to
the weights of the vertices and the right-hand side to the threshold. The definition of
domishold graphs led Payan to pose the following questions [56]:

”Which are among domishold graphs those for which minimal dominating
sets are characterized by the 0,1-solutions of a linear equation.”

This question motivated Payan to define equidominating graphs:

Definition 3.1.1. A graph G = (V,E) is called equidominating if there exists t ∈ N
and a weight function ω : V → N such that for all D ⊆ V the following equivalence holds:

D is a minimal dominating set ⇐⇒ ω(D) = t .

Further, we call the pair (ω, t) an equidominating structure, ω an equidominating

function and t a target value.

We point out again that a minimal dominating set is meant to be inclusion-wise minimal
dominating. That is the removal of any vertex of a minimal dominating set results in a
non-dominating set. Equivalently, every vertex of a minimal dominating set has at least
one private neighbor.

16

3.1 An Introduction

a

b

c1

c2

d

e

s1

s2

19

7

3

3

3

4

11

8

Figure 3.1: An equidominating graph on 8 vertices; the weights are drawn next to the
vertices and the target value is t = 26.

Even though the term equidominatable might be more suitable, we will use equidomi-
nating for historical reasons. Note that 0 /∈ N. Thus, every vertex has weight at least
one. As we will see, the sufficiency-part in the definition of equidominating – ensuring
that no other subset except minimal dominating sets has a total weight t – is what often
makes things complicated.

Equivalently, we can define a graph to be equidominating if there is a weight function
with real-valued weights ω : V → R such that D ⊆ V is a minimal dominating set if and
only if ω(D) = 1. However, for convenience we will work with integer weights. Figure 3.1
shows an equidominating graph. Every minimal dominating set has total weight 26 and
further, every subset of total weight 26 is a minimal dominating set: take for example a
look at the minimal dominating sets {a, d, e} and {b, s1, s2}, the non-minimal dominating
set {a, b, d} or the non-dominating set {c1, e}.

We can also interpret the concepts geometrically. As initially motivated by Payan, the
weights of an equidominating function can be understoodd as coefficients of a linear
equality with the target value as the right-hand side. This means that the characteristic
vectors of minimal dominating sets of an equidominating graph lie in one hyperplane.
Furthermore, for domishold graphs there is a hyperplane that separates the characteristic
vectors of dominating sets from those of non-dominating sets.

In his paper, Payan could answer the above stated question by the following characteri-
zation.

Theorem 3.1.2 ([56], Theorem 2). The following statements are equivalent:

(i) G is a domishold and an equidominating graph.

(ii) G is a domishold and an equidominating graph and moreover the same threshold tG
and the same mapping ωG can be used to characterize dominating sets by inequality
and minimal dominating sets by equality.

(iii) G can be built from the graph with one vertex or from the complement of a match-
ing, by repeated addition of isolated and dominating vertices.

17

3.1 An Introduction

(iv) G has no induced subgraph isomorphic to 2K2, P3, K3,2 or P2 ∪ P3.

We will see that the complement of a (perfect) matching, as mentioned by Payan in (iii),
appears several times in the course of this thesis. For convenience, we will refer to it as
T (2n, n) and to a perfect matching on 2n vertices as T (2n, n) (n ∈ N). As an induced
subgraph, T (2n, n) will play a crucial role in Chapter 4 and Chapter 5.

The analogue of domishold graphs for stable sets are called threshold graphs: a subset of
vertices is a stable set if and only if the total weight is less than or equal to a threshold
(see for example [44]). As threshold graphs satisfy (iii) and (iv) of Therorem 3.1.2
(see [17]), Payan concluded that threshold graphs are equidominating. However, besides
Theorem 3.1.2 there exist no other results regarding characterizations of the class of
equidominating graphs. In particular, there is no direct relation between domishold
and equidominating graphs. There are equidominating graphs that are not domishold
(for example 2K2) and vice versa (for example K2,3, [44]). The next theorem shows
that there is no characterization of equidominating graphs in terms of forbidden induced
subgraphs.

Theorem 3.1.3. Every graph can appear as an induced subgraph of an equidominating
graph.

Proof. Let G = (V,E) be an arbitrary graph with vertex set V = {v1, . . . , vn}. We
create a graph G′ by adding an pendant vertex to every vertex of G, that is

G′ =
(
V ′, E′) :=

(
V ∪ {v′1, . . . , v

′
n}, E ∪ {(vi, v

′
i) | i = 1, . . . , n}

)
.

The graph G′ is the so-called corona of G and K1. Since we did not add edges between
the vertices {v1, . . . , vn}, G clearly is an induced subgraph of G′.

To see that G′ is equidominating we define the function ω : V ′ → N by ω(vi) = ω(v′i) =
2i−1 for i = 1, . . . , n. Now, since every minimal dominating set contains, for each i ∈ [n],
either vi or v′i, every minimal dominating set has a total weight 2n − 1. Moreover, by
considering the binary numeral system one can see that the weights of a subset X only
sum up to 2n− 1 if |X ∩{vi, v

′
i}| = 1 for all i ∈ [n]. Thus, G′ is equidominating with the

equidominating structure (ω, 2n − 1).

On the one hand, this means that the class of equidominating graphs is not hereditary
(compare Section 3.3). On the other hand, the question of determining the minimal
hereditary class containing the class of equidominating graphs is void since this is the
class of all graphs.

18

3.2 General Results

3.2 General Results

The following observation follows immediately from the definition of equidominating
graphs.

Observation 3.2.1. Let G be an equidominating graph with equidominating structure
(ω, t). Then (cω, ct) is an equidominating structure of G for all c ∈ N.

Of course, we can also use a factor c ∈ Q if we can ensure that we only obtain positive,
integer values.

The next theorem deals with some basic graph classes and the question whether they
are equidominating or not. Even though some of the statements might appear trivial,
they are listed here for the sake of completeness. Moreover, they help to get a feeling
for equidomination.

Theorem 3.2.2. Let m, n ∈ N.

(i) The graphs Kn, Kn, K1,n, T (2n, n) and T (2n, n) are equidominating.

(ii) The graph Km,n is equidominating if and only if m = 1 or n = 1 or m = n = 2.

(iii) The path Pn is equidominating if and only if n ≤ 4.

(iv) The cycle Cn is equidominating if and only if n ≤ 4.

Proof. Let m, n ∈ N.

(i) Let ω∗ be the weight function that is constant equal to 1. Then (ω∗, 1), (ω∗, n)
and (ω∗, 2) are equidominating structures of Kn, Kn and T (2n, n), respectively.
For v ∈ K1,n we define ω(v) := deg(v), then (ω, n) is an equidominating structure

of K1,n. The graph T (2n, n) is equidominating since it is the corona of Kn and K1

(compare the proof of Theorem 3.1.3).

(ii) Following (i) and due to symmetry it remains to show that Km,n is not equidomi-
nating if m ≥ 2 and n ≥ 3 (note that K2,2 = T (4, 2)). Let V and W be the color
classes of size m and n, respectively. Since for all v ∈ V and w ∈ W the set {v, w}
is a minimal dominating set, every equidominating function must be constant on V
and on W . Further, V and W both are minimal dominating sets. Taken together,
for any target value t ∈ N every vertex of V and W must have weight t/m and
t/n, respectively. But now we have ω({v, w}) = t

m
+ t

n
< t, a contradiction.

(iii) It follows from (i) and Theorem 3.1.3 that Pn is equidominating for n = 1, . . . , 4
(note that P4 is K2 with a pendant vertex added to each vertex). So let n ≥ 5,
V (Pn) = {v1, . . . , vn}, E(Pn) = {(vi, vi+1) | i = 1, . . . , n − 1} and suppose that
{ω, t} is an equidominating structure. For k = 1, 2 the sets {vk} ∪ {v2i | 2 ≤
i ≤ ⌊n2 ⌋} both are minimal dominating sets, so we get ω(v1) = ω(v2). Moreover,
{v2} ∪ {v1+2i | 2 ≤ i ≤ ⌊n2 ⌋} is a minimal dominating set and thus has a total

19

3.2 General Results

weight t. Now, {v1} ∪ {v1+2i | 2 ≤ i ≤ ⌊n2 ⌋} also has a total weight t, but v3 is not
dominated, a contradiction.

(iv) By (i), Cn is equidominating for n = 3, 4 (note that C4 = T (4, 2)). So, let n ≥
5 and suppose that Cn is equidominating with equidominating structure {ω, t}.
Analogously to the proof of (iii), we can show that two vertices have the same
weight and hence, due to the symmetry of Cn, all vertices. So, ω is constant on
Cn. Since every minimal dominating set of Cn has ⌊n2 ⌋ vertices, ω ≡ t

⌊n

2
⌋
. But if

we take ⌊n2 ⌋ consecutive vertices of Cn, we obtain a subset of total weight t, which
is clearly not a minimal dominating set, a contradiction.

We will now take a look at some graph operations and their relation to equidomination.

Theorem 3.2.3. Let G be a graph and G′ the graph obtained from G by adding a
universal vertex. Then G is equidominating if and only if G′ is equidominating.

Proof. Let the graphs G and G′ be as described above and let x ∈ V (G′) be the added,
universal vertex. Let D and D′ be the set of minimal dominating sets of G and G′,
respectively. Clearly, D′ = D ∪ {x}. Assume that G is equidominating and let (ω, t) be
an equidominating structure of G. We define ω′∣∣

V (G)
:≡ ω and ω′(x) := t. Then (ω′, t)

is an equidominating structure of G′.

Now assume that G′ is equidominating and let (ω′, t′) be an equidominating structure
of G. Let ω :≡ ω′∣∣

V (G)
. Then (ω, t′) is an equidominating structure of G.

The same holds for an isolated vertex, which can be proved similarly.

Theorem 3.2.4. Let G be a graph and G′ the graph obtained from G by adding an
isolated vertex. Then G is equidominating if and only if G′ is equidominating.

Proof. Let the graphs G and G′ be as described above and let x ∈ V (G′) be the added,
isolated vertex. Let D and D′ be the set of minimal dominating sets of G and G′,
respectively. The vertex x is contained in every minimal dominating set of G′ and thus
D′ = {D ∪ {x} | D ∈ D}.

Let (ω, t) an equidominating structure of G. We define a weight function ω′ on V (G′)
by ω′∣∣

V (G)
:≡ ω and ω′(x) := ω(V (G)). Further, let t′ := t + ω(V (G)). Then (ω′, t′) is

an equidominating structure of G′.

Conversely, if (ω′, t′) is an equidominating structure of G′, then (ω, t) defined by ω :≡
ω′∣∣

V (G)
and t := t′ − ω′(x) is an equidominating structure of G.

20

3.2 General Results

In the following remark, we summarize some operations that are not compatible with
equidomination.

Remark 3.2.5. (i) The complete union of two equidominating graphs is not equi-
dominating in general. By 3.2.2(i), the graphs K2 and K3 are equidominating.
However, the complete union of those graphs is K2,3 which is not equidominating,
by Theorem 3.2.2(ii).

(ii) Two non-adjacent vertices that have the same open neighborhood are called false
twins, while two vertices with identical closed neighborhood are called true twins
(see Definition 4.3.1 on page 39 for a more detailed definition). Adding a false or a
true twin does not preserve equidomination. If we add a false twin to the universal
vertex of K1,3, we obtain the non-equidominating graph K2,3. Further, adding a
true twin to any vertex of C4 yields the non-equidominating graph house (compare
Lemma 3.3.3 below on page 26). It follows that substituting an equidominating
graph for a vertex of another equidominating graph (see [16] for a definition) also
does not preserve equidomination.

(iii) The following graph products are standard graph-theoretic notation, for a defini-
tion see for example [40]. The Tensor product of two equidominating graphs is
not necessarily equidominating. For example, C6, which is not equidominating by
Theorem 3.2.2(iv), is the tensor product of the equidominating graphs K2 and C3.
Furthermore, the Cartesian and the Strong product do not preserve equidomina-
tion, since both P2�P3 and P2 ⊠ P4 are not equidominating, which can be shown
similarly to the proof of Theorem 3.2.2(iii).

(iv) Adding a pendant vertex to an equidominating graph does not preserve equidomi-
nating. This follows from Theorem 3.2.2(iii) since P5 can be obtained by adding a
pendant vertex to either of the two vertices of degree 1 of the equidominating graph
P4.

The next theorem seems to deal with an unusual operation. However, this operation
is a generalization of the disjoint union and the chain-join of two graphs. Therefore,
Theorem 3.2.6 can be used to deduce Corollary 3.2.7 and Corollary 3.2.8.

Theorem 3.2.6. For i ∈ {1, 2}, let Gi = (Vi, Ei) be two disjoint, equidominating graphs
and let Ui ⊆ Vi be the (possibly empty) set of universal vertices of Gi. Further, let
Vi \ Ui 6= ∅, for i ∈ {1, 2} (this means that Gi is not a complete graph).

Let G be the graph obtained by connecting the vertices of U1 with the vertices of U2 in
an arbitrary way, that is

G =
(
V1 ∪ V2, (E1 ∪ E2) ∪ E′) ,

with E′ ⊆ U1 × U2. Then G is equidominating.

21

3.2 General Results

Proof. Let (ωi, ti) be an equidominating structure of Gi, for i ∈ {1, 2}, and let k =
1 +

∑
v∈V1

ω1(v). We define a weight function ω on G by ω
∣∣
V1

:≡ ω1 and ω
∣∣
V2

:≡ k · ω2

and t := t1 + kt2. We claim that (ω, t) is an equidominating structure of G.

To see this, pick any set X ⊆ V (G) with ω(X) = t. By the definition of ω and t, we get
ω1(X ∩ V1) = t1 and ω2(X ∩ V2) = t2. Hence, Xi := X ∩ Vi is a minimal dominating set
of Gi, for i ∈ {1, 2}. It follows that X is a dominating set of G. We have to show that
X is minimal.

Suppose that X is not minimal, so there is some x ∈ X with N [X \ {x}] = V (G).
Without loss of generality let x ∈ X1. As X1 is a minimal dominating set of G1, there
is some y ∈ V1 not dominated by X1 \ {x}. It follows that y ∈ NG[X2] and hence
y ∈ U1. Since y is universal in G1 and not dominated by X1 \ {x}, we get X1 = {x}.
Consequently, NG[X2] = V (G), a contradiction to V1 \ U1 6= ∅. This shows that X is a
minimal dominating set of G.

Conversely, let D be a minimal dominating set of G. We have to prove that ω(D) = t.
It suffices to show that Di := D ∩ Vi is a minimal dominating set of Gi, for i ∈ {1, 2}.
Then, ωi(Di) = ti, for i ∈ {1, 2}, and so ω(D) = t1 + kt2 = t.

By symmetry, it suffices to show that D1 is a minimal dominating set of G1. Since
V1 \ U1 6= ∅, we get V1 6⊆ NG[V2] and hence D1 6= ∅. If U1 ∩ D1 6= ∅, together with
V2 \U2 6= ∅ it follows that |D1| = 1. Thus, D1 is a minimal dominating set of G1. So we
may assume that U1 ∩D1 = ∅.

Since NG[V2]∩ (V1 \U1) = ∅, D1 is a dominating set of G1−U1 and thus of G1. Suppose
that D1 is not minimal. Then there is some x ∈ D1 such that D′

1 := D1 \ {x} is still
a dominating set of G1. As U1 ∩ D1 = ∅, we have NG[D1] ∩ V2 = ∅. Hence, D2 is a
dominating set of G2, and so D′

1∪D2 is a dominating set of G. However, this contradicts
the minimality of D. This completes the proof.

Indeed, in the preceding proof the factor k = ω(V1) would be sufficient for most graphs
G1. However, if G1 is an edgeless graph and thus t1 = ω1(V1), and if there is a vertex
v ∈ G2 with ω2(v) = 1, then the argumentation fails. Therefore, we add 1 in the
definition of k.

Furthermore, to prove Theorem 3.2.6 we need that every minimal dominating set of G
is a disjoint union of two minimal dominating set of the graphs G1 and G2. Since this
is not necessarily the case if one of the graphs only has universal vertices, we have to
except complete graphs.

As we do not require to add any edge in Theorem 3.2.6, we obtain the following corol-
lary.

Corollary 3.2.7. The disjoint union of two equidominating graphs is equidominating.

22

3.2 General Results

Proof. The only missing case is one of the graphs being a complete graph. However, this
can be shown straightforwardly using the weight function ω and target value t defined
in the proof of Theorem 3.2.6.

Recall that a chain-join of two disjoint graphs connects the universal vertices of both
graphs in such a manner, that afterward there is an inclusion chain between the neigh-
borhoods of the (former) universal vertices of each graph. This operation is essential in
the context of hereditarily equidominating graphs which we deal with in Section 3.3.

Corollary 3.2.8. The chain-join of two equidominating graphs is equidominating.

Proof. Again, it remains to show that the chain-join G of two equidominating graphs
G1 and G2 is equidominating in the case that one of the graphs G1 and G2 is a complete
graph. By Theorem 3.2.3, we may assume that G has no universal vertex. Then,
by the definition of a chain graph, it follows that there are vertices v1 ∈ V (G1) with
v1 /∈ NG(V (G2)) and v2 ∈ V (G2) with v2 /∈ NG(V (G1)). With this fact, the rest can be
done analogously to the proof of Theorem 3.2.6.

The next theorem is related to previous results. It is the generalization of Theorem 3.2.6
for several equidominating graphs.

Theorem 3.2.9. The graph obtained by connecting the universal vertices of n ∈ N
disjoint, non-complete, equidominating graphs in an arbitrary manner is equidominating.

Proof. Let n ∈ N. For i ∈ [n], let Gi be an equidominating graph with equidominating
structure (ωi, ti) and Ui ⊆ V (Gi) the set of universal vertices of Gi. Further, let G be
the graph obtained by connecting the vertices of the sets Ui in an arbitrary way.

If we define a weight function ω on V (G) by ω
∣∣
V (Gi)

:≡ ωi, then every minimal domi-

nating set of G has a total weight
∑n

i=1 ti. However, we also must ensure that no other
subset of vertices has this total weight. The main idea to do this is to multiply the
given equidominating structures by relatively large values such that subsets of differ-
ent graphs cannot have the same total weight (compare the proofs of Theorem 3.1.3 and
Theorem 3.2.6). This yields further equidominating structures of the graphs G1, . . . , Gn,
by Observation 3.2.1.

To obtain the needed multipliers we define k1 := 1 and ki := 1+
∑i

j=1 kj

(
ωj

(
V (Gj)

))
for

i = 2, . . . , n. Now, let ω : V (G) → N be the weight function defined by ω
∣∣
V (Gi)

:≡ kiωi

(i ∈ [n]) and t :=
∑n

i=1 kiti. Following the discussion above, (ω, t) is an equidominating
structure of G.

Roughly speaking, the following theorem is about attaching an equidominating graph to
every vertex of a graph.

23

3.2 General Results

Theorem 3.2.10. For n ∈ N, let G be a graph on the vertices v1, . . . , vn and G1, . . . , Gn

equidominating graphs. Further, let H be the graph obtained by connecting vi to all
vertices of Gi, for all i = 1, . . . n, that is

V (H) = V (G) ∪ V (G1) ∪ . . . ∪ V (Gn)

E(H) = E(G) ∪ E(G1) ∪ . . . ∪ E(Gn) ∪ {viw | w ∈ V (Gi), i = 1, . . . n}

Then H is equidominating.

Proof. We want to apply Theorem 3.2.9. For that we add a universal vertex ui to every
graph Gi, and then connect two vertices ui and uj if and only if vivj ∈ E(G) (i, j ∈ [n]).
By this, we obtain a graph which is isomorphic to H and which is equidominating by
Theorem 3.2.3 and Theorem 3.2.9.

As in Theorem 3.1.3, it is important for Theorem 3.2.10 that we attach an equidomina-
ting graph to every vertex of G. Only then every minimal dominating set of H contains
either vi or a minimal dominating set of Gi, for every i ∈ [n].

With the results of this section we get several operations that preserve equidomination:

- adding/deleting a universal vertex (Theorem 3.2.3),

- adding/deleting an isolated vertex (Theorem 3.2.4),

- connecting the universal vertices of non-complete graphs (Theorem 3.2.9),

- disjoint union (Corollary 3.2.7),

- chain-join (Corollary 3.2.8),

- attaching equidominating graphs (Theorem 3.2.10).

With these operations, we can construct more complicated equidominating graphs than
those mentioned in Theorem 3.2.2. The graph of Figure 3.1 can also be obtained with
these operations. Further research could be concerned with finding more operations
preserving equidominating. An interesting question in this direction is if we can find an
alternative definition of equidominating graphs as the graphs that can be constructed
using such operations. Such definitions exist for other graph classes (for example thresh-
old graphs, series-parallel graphs or cographs, see [10]). We will give such a character-
ization for so-called hereditarily equidominating graphs in Subsection 3.3.1 (see Theo-
rem 3.3.2(c)).

24

3.3 Hereditarily Equidominating Graphs

3.3 Hereditarily Equidominating Graphs

This section deals with the class of hereditarily equidominating graphs. A graph G is
called hereditarily equidominating if every induced subgraph of G is equidomina-
ting, that is if G[X] is equidominating for all X ⊆ V . In Subsection 3.3.1 we give a
characterization of the class of hereditarily equidominating graphs in terms of the list of
forbidden induced subgraphs and a structural decomposition. This decomposition yields
an O(n(n+m)) time recognition algorithm which we present in Subsection 3.3.2.

3.3.1 Forbidden Induced Subgraph Characterization and Structural

Decomposition

Regarding our decomposition theorem below, we define the class of basic graphs as
{K1}∪{T (2n, n) | n ∈ N}. Remember that the Turán graph T (2n, n) is the complement
of a perfect matching on 2n vertices. By Theorem 3.2.2(i), we already know that every
basic graph is equidominating. By the following lemma, we see that basic graphs are in
fact hereditarily equidominating.

Lemma 3.3.1. Every basic graph is hereditarily equidominating.

Proof. For K1 there is nothing to do. Let n ≥ 2, then T (2n, n) is equidominating,
by Theorem 3.2.2(i). Further, every induced subgraph of T (2n, n) is either T (2n′, n′)
or T (2n′, n′) with a additional universal vertices (n′ ≤ n). Following Theorem 3.2.2(i)
and 3.2.3, the induced subgraph is equidominating in both cases.

Let H be a graph. A graph G is called H-free if no induced subgraph of G is isomorphic
to H. For a set of graphs H we say that a graph G is H-free if G is H-free for all
H ∈ H.

Let C be a graph class and G a graph. If there exists a set of graphs H such that G ∈ C if
and only if G is H-free, then H is said to be the set of forbidden induced subgraphs
of C.

We define F := {P5, C5, bull, banner, house,K2,3, P2 ∪ P3} (see Figure 3.2 for an illustra-
tion). As the next theorem shows, the set F is exactly the set of forbidden induced
subgraphs of the class of hereditarily equidominating graphs.

Theorem 3.3.2. For any graph G, the following assertions are equivalent.

(a) G is hereditarily equidominating.

(b) G is F-free.

(c) One of the following assertions holds.

(i) G is a basic graph.

25

3.3 Hereditarily Equidominating Graphs

Figure 3.2: The set F of forbidden induced subgraphs of hereditarily equidominating
graphs; top row: P5, C5, bull ; bottom row: banner , house, K2,3, P2 ∪ P3.

(ii) G is obtained from a hereditarily equidominating graph by adding a universal
vertex.

(iii) G is the chain-join of two hereditarily equidominating graphs.

The proof of the above theorem builds upon the following five lemmas.

Lemma 3.3.3. No graph in F is equidominating.

Proof. By Theorem 3.2.2, we already know that P5, C5 and K2,3 are not equidominating.

With an appropriate labeling of the vertices, we can prove that the remaining graphs
are not equidominating with an identical argumentation.

For that let us denote the five vertices of each graph by a, b, c, d and e from left to right
and top to bottom. For example, in the bull graph the vertex of degree 2 is denoted
by a, the upper (lower) vertex of degree 3 by b (by c) and the upper (lower) vertex of
degree 2 by d (by e).

Now, let us suppose any graph of bull, banner, house or P2 ∪ P3 is equidominating.
Since {a, e} and {b, e} both are minimal dominating sets, a and b have the same weight.
Furthermore, {b, c} is a minimal dominating set. But now, {a, c} has the same total
weight as {b, c} without being a minimal dominating set, a contradiction.

We need a variant of Theorem 3.2.3 for hereditarily equidominating graphs.

Lemma 3.3.4. Let G be a graph and G′ the graph obtained from G by adding a uni-
versal vertex. Then G is hereditarily equidominating if and only if G′ is hereditarily
equidominating.

26

3.3 Hereditarily Equidominating Graphs

Proof. Sufficiency is trivial. So, let G be hereditarily equidominating. Every induced
subgraph H ′ of G′ is either an induced subgraph of G or an induced subgraph of G with
an additional universal vertex. In both cases is H ′ equidominating. In the first case
since G is hereditarily equidominating and in the latter case due to Theorem 3.2.3.

The next lemma shows that the chain-join operation preserves not only equidominating
but also hereditarily equidominating graphs.

Lemma 3.3.5. Let G1 and G2 be two hereditarily equidominating graphs, and let G be
a chain-join of G1 and G2. Then G is hereditarily equidominating.

Proof. By Corollary 3.2.8, G is equidominating. Let H be any induced subgraph of
G. Then H is a chain-join of the two graphs H1 := G1[V (H) ∩ V (G1)] and H2 :=
G2[V (H) ∩ V (G2)]. This is for two reasons. First, the universal vertices of G1 and G2

are (if existent) also universal in H1 and H2, respectively. Secondly, the neighborhood
relation of two universal vertices does not change in any induced subgraph.

As G1 and G2 are hereditarily equidominating, H1 and H2 are equidominating. By
applying Corollary 3.2.8, we see that H is equidominating, too. As H is arbitrary, G is
hereditarily equidominating.

We now come to the decomposition of F-free graphs. A connected dominating set
is a dominating set that induces a connected subgraph. A minimal connected dom-
inating set is a connected dominated set that does not properly contain a connected
dominating set.

Lemma 3.3.6. Let G be a connected F-free graph without a universal vertex. Assume
that G has a minimal connected dominating set D of size two, say D = {x, y}, such that
there are private neighbors x′ ∈ pn(x,D) and y′ ∈ pn(y,D) with x′y′ ∈ E(G). Then
G ∼= T (2n, n) for some n ≥ 2.

Proof. Since G[{x, y, x′, y′}] ∼= C4 and G is F-free, the set D′ := {x, y, x′, y′} is a module
(recall that this means every vertex of V (G) \D′ is either adjacent to every vertex of D′

or to none). However, D = {x, y} is a dominating set, and thus D′ is a dominating set,
too. So, D′ is a module and a dominating set. Hence, G is the complete union of G[D′]
and G[V (G)−D′].

Let us pick any vertex z ∈ V (G)−D′. Since G does not have a universal vertex, there
must be some non-neighbor z′ of z. Suppose that there is a second non-neighbor of z,
say z′′. Consider the graph G′ := G[{x, y′, z, z′, z′′}]. If z′z′′ ∈ E(G), then G′ ∼= P2 ∪ P3,
a contradiction. Hence, z′z′′ /∈ E(G), and so G′ ∼= K2,3, again a contradiction.

Thus, every vertex of G has exactly one non-neighbor in G. This means that G ∼=
T (2n, n), for some n ≥ 2.

27

3.3 Hereditarily Equidominating Graphs

The next lemma is crucial for the decomposition theorem. It also serves as a basis for
the recognition algorithm presented in Section 3.3.2.

Lemma 3.3.7. Let G be a connected F-free graph without universal vertex that has a
connected dominating set of size two. Assume that for every minimal connected domi-
nating set D of size two, say D = {x, y}, it holds that x′y′ /∈ E(G) for any two private
neighbors x′ ∈ pn(x,D) and y′ ∈ pn(y,D). Then G is a chain-join of two disjoint
connected F-free graphs G1 and G2.

Proof. Let {x, y} be a connected dominating set such that |N(u)| + |N(v)| ≤ |N(x)| +
|N(y)|, for all connected dominating sets {u, v} of G of size two. Let X := N [x] \N [y],
Y := N [y] \N [x] and S := N [x]∩N [y]. It is clear that X, Y and S are pairwise disjoint
and X ∪ Y ∪ S = V (G). Note that, as {x, y} is a minimal connected dominating set,
X 6= ∅ and Y 6= ∅.

Let z ∈ S \ {x, y} be arbitrary. Since G does not have a universal vertex, there is a
non-neighbor of z. Suppose first that X ∪ Y ⊆ N(z). Then there is some z′ ∈ S with
zz′ /∈ E(G). Since G is bull -free, z′ has some neighbor in X ∪ Y , say x′ ∈ X ∩ N(z).
Choose any y′ ∈ Y . If y′z′ ∈ E(G), then G[{x′, y, y′, z, z′}] ∼= P2 ∪ P3, and if otherwise
y′z′ /∈ E(G), then G[{x′, y, y′, z, z′}] ∼= house. Since both are contradictory, we know
that z has some non-neighbor among X ∪ Y , say in Y . As G is bull -free, z is adjacent
to all elements of X. In particular, {z, y} is a connected dominating set.

Suppose that there is some y′ ∈ N(z)∩Y . We claim that |N(z)| > |N(x)|, in contradic-
tion to our assumption that, among all dominating sets of G of size two, |N(x)|+ |N(y)|
is maximum. To prove this claim, suppose |N(z)| ≤ |N(x)|. Since X ∪ {y′} ⊆ N(z) and
y′ /∈ N(x), there must be some z′ ∈ S \ N(z). Pick any x′ ∈ X. Since G is bull -free,
x′z′ ∈ E(G) or y′z′ ∈ E(G). Without loss of generality let x′z′ ∈ E(G). Like above,
this leads to G[{x′, y, y′, z, z′}] ∼= P2 ∪ P3 or G[{x′, y, y′, z, z′}] ∼= house, depending on
whether y′z′ ∈ E(G) or not. Since both is contradictory, we obtain N(z) ∩ Y = ∅.

Summing up, X ⊆ N(z) and N(z) ∩ Y = ∅. As z is arbitrary, for every vertex z′ ∈ S it
either holds that X ⊆ N(z′) and N(z′)∩ Y = ∅, or Y ⊆ N(z′) and N(z′)∩X = ∅. This
partitions the set S into two disjoint sets X ′ and Y ′ where every element of X ′ is adjacent
to X and every element of Y ′ is adjacent to Y . Consider the bipartite graph B with color
classes X ′ and Y ′ induced by the edge set EG(X

′, Y ′) := {xy ∈ E(G) | x ∈ X ′, y ∈ Y ′}.
Let G1 and G2 be the connected components of G − EG(X

′, Y ′) containing X and Y ,
respectively. Note that both G1 and G2 are induced subgraphs of G and hence, also
F-free. Since the elements of X ′ are universal vertices of G1 and the elements of Y ′

are universal vertices of G2, it remains to prove that B is a chain graph. Then G is a
chain-join of G1 and G2 and we are done.

Suppose the opposite holds. That means there are vertices x′, x′′ ∈ X ′ ∪ {x} and
y′, y′′ ∈ Y ′ ∪ {y} such that x′y′, x′′y′′ ∈ E(B) and x′y′′, x′′y′ /∈ E(B). Let x′′′ ∈ X.
Then G[{x′, x′′, x′′′, y′, y′′}] ∼= house, a contradiction. This completes the proof.

28

3.3 Hereditarily Equidominating Graphs

Now, everything is prepared to prove the decomposition theorem. We prove that (a)
follows from (c) secondly, as we use it to show that (c) follows from (b).

Proof of Theorem 3.3.2. (a)=⇒(b): Follows from Lemma 3.3.3.

(c)=⇒(a): Now, let G be such that one of the following conditions holds.

(i) G is a basic graph.

(ii) G is obtained from a hereditarily equidominating graph by adding a universal
vertex.

(iii) G is the chain-join of two hereditarily equidominating graphs.

If G is basic, it is hereditarily equidominating by Theorem 3.2.2. By Lemma 3.3.4 and
Lemma 3.3.5, it follows that any graph obtained from a hereditarily equidominating
graph by attaching a universal vertex or from two hereditarily equidominating graphs
by a chain-join is hereditarily equidominating, too.

(b)=⇒(c): Finally, let G be an F-free graph. We may assume that G is not basic.

Suppose that G has a universal vertex x and let G′ := G− x. Clearly, G′ is F-free, too.
If we can show that (b) implies (c) for G′, then – since we already know that (c) implies
(a) – we get that G′ is hereditarily equidominating and hence, that G satisfies (c).
Moreover, since the disjoint union is a particular chain join, the same argumentation
holds if G′ is a connected component of G. This means that we have to prove that (b)
implies (c) for every connected component of G without any universal vertex (regarding
the connected component).

So, let H be a connected component of G without a universal vertex. Let D be any
minimal connected dominating set of H. Since H is {P5, C5}-free and connected,
D is a clique [12]. Suppose that |D| ≥ 3, and let x, y, z ∈ D be distinct verti-
ces. Let x′ be a private neighbor of x, and y′ be a private neighbor of y. If x′y′ /∈
E(H), then H[{x, x′, y, y′, z}] ∼= bull, a contradiction. Thus x′y′ ∈ E(H). But then
H[{x, x′, y, y′, z}] ∼= house, another contradiction. This shows that |D| ≤ 2.

As we assumed that H does not have a universal vertex, we get |D| = 2, say D = {x, y}.
If x and y have private neighbors, say x′ ∈ pn(x,D) and y′ ∈ pn(y,D), such that
x′y′ ∈ E(H), then H is basic by Lemma 3.3.6.

So we may assume that for every minimal connected dominating set D = {x, y} of H,
every private neighbor of x is non-adjacent to every private neighbor of y. Hence, H is
the chain-join of two F-free graphs H1 and H2, by Lemma 3.3.7.

It remains to show that H1 and H2 are hereditarily equidominating. Though, for that
we can use the same argumentation as above. This completes the proof.

29

3.3 Hereditarily Equidominating Graphs

The proof of Theorem 3.3.2 indicates our recognition algorithm and its recursive char-
acter. We consider connected components without any universal vertex. Either these
are basic or a chain-join of two graphs. In the latter case, we continue with those two
graphs.

3.3.2 Recognition of Hereditarily Equidominating Graphs

Given the fact that hereditarily equidominating graphs admit a finite forbidden induced
subgraph characterization, it is clear that this class can be recognized in polynomial
time by a simple brute force approach. However, a faster recognition is possible using
the decomposition provided by Theorem 3.3.2.

At the end of this subsection, we will also prove the existence of a linear time recogni-
tion algorithm. However, due to the applied meta-theorem using a variation of so-called
monadic second-order logic, we only prove the existence here, without stating it explic-
itly.

Our (explicit) algorithm mimics the decomposition of Theorem 3.3.2 (in particular
see the part of the proof where we show that (b) implies (c)). In order to detect
whether a considered graph is a chain join, the algorithm basically follows the proof
of Lemma 3.3.7.

Recall that a co-chain graph is the complement of a chain graph. Equivalently, a co-
chain graph is a graph obtained from some chain graph by turning the two color classes
into cliques. These cliques are called the co-classes of the co-chain graph. Note that
the partition of a co-chain graph into its two co-classes might not be unique.

Theorem 3.3.8. Let G be a graph on n vertices and m edges. It can be decided in time
O(n(n+m)) whether G is a hereditarily equidominating graph.

Proof. Let G be a graph on n vertices and m edges. To decide whether G is hereditarily
equidominating, we apply the steps presented below to every connected component of
G.

For a connected graph H we proceed as follows. Here, H is either a connected compo-
nent of G or a graph that occurs during the decomposition and to that we reapply the
algorithm (compare Step 11). The input graph G is hereditarily equidominating if and
only if the algorithm terminates without returning at any point that G is not hereditarily
equidominating. For the sake of clarity, we omit the recursive frame of the algorithm.

1. Compute the degrees of all vertices of H.

2. If H is basic, return that H is hereditarily equidominating.

3. If H has a universal vertex, say v, reapply Step 1–11 to each connected component
of H − v.

30

3.3 Hereditarily Equidominating Graphs

4. Let x be a vertex of maximum degree, and let v be any non-neighbor of x.

5. Let y be the vertex of maximum degree among NH(v).

6. Compute the sets X := NH(x) \ NH [y], Y := NH(y) \ NH [x], and S := NH [x] ∩
NH [y].

7. Compute the sets X ′ := {x′ ∈ S : NH(x′) ∩X 6= ∅} and Y ′ := S \X ′.

8. Compute the graph H ′ := H[S].

9. Check whether H ′ is a co-chain graph with co-classes X ′ and Y ′. If not, return
that G is not hereditarily equidominating.

10. Check whether the following conditions are satisfied:

- for every x′ ∈ X ′ it holds that X ⊆ NH(x′) and Y ∩NH(x′) = ∅;

- for every y′ ∈ Y ′ it holds that Y ⊆ NH(y′) and X ∩NH(y′) = ∅.

If one of these conditions fails to hold, return that G is not hereditarily equidomi-
nating.

11. Reapply the algorithm to each connected component of H − S.

Let us first show how the algorithm can be implemented such that each iteration runs
in O(|V (H)|+ |E(H)|) time. Since at least one vertex is removed in each iteration, the
overall running time of the algorithm is of order O(n(n+m)).

Note that H ∼= T (2k, k), for some k ≥ 2, if and only if |V (H)| ≥ 4 and every vertex of
H has degree |V (H)| − 2. Hence, it can be checked in linear time whether H is basic.
Since all other steps are standard, it remains to discuss how to perform Step 9. In this
particular step, we have to decide whether H ′ is a co-chain graph with the prescribed
co-classes X ′ and Y ′. As shown by Heggernes and Kratsch [34], co-chain graphs can
be recognized in time O(|V (H)| + |E(H)|). It is straightforward that the algorithm
of Heggernes and Kratsch can be modified such that it includes prescribed co-classes.
Hence, Step 9 can be performed in time O(|V (H)|+ |E(H)|).

We now come to the correctness of the algorithm. Our aim is to show that the algorithm
performs a decomposition according to Theorem 3.3.2 (if possible). For this, it suffices to
show that in each iteration, the algorithm performs a single step of such a decomposition,
or correctly decides that a decomposition is no longer possible.

Let us first show that ifH is a hereditarily equidominating graph, the algorithm correctly
decomposes H. By Theorem 3.3.2, H is either basic, has a dominating vertex or is a
chain-join.

In the case that H is basic, which is checked in Step 2, the algorithm can safely return
that H is hereditarily equidominating. If H has a universal vertex, say v, this is detected
in Step 3. By Lemma 3.3.4, H is hereditarily equidominating if and only if H − v is

31

3.3 Hereditarily Equidominating Graphs

hereditarily equidominating. Hence, the algorithm is correctly reapplied to the connected
components of H − v.

So let us assume that H is neither basic nor has a universal vertex. Then, according
to Theorem 3.3.2, H is the chain-join of two graphs H1 and H2. Let Ui be the set of
universal vertices of Hi, for i ∈ {1, 2}. Let x be a vertex of maximum degree in H. As
H is a chain-join of H1 and H2, it holds that x ∈ U1 ∪ U2, say x ∈ U1. Moreover, x has
the maximal closed neighborhood in H among all vertices of U1.

Let v ∈ V (H) \NH [x], and let y be the vertex of maximum degree among NH(v). Then
v ∈ V (H2)\NH(x) = V (H2)\NH(V (H1)). Hence, y ∈ U2 and y has the maximal closed
neighborhood in H among all vertices of U2.

Now we define X := NH(x) \ NH [y], Y := NH(y) \ NH [x], S := NH [x] ∩ NH [y], X ′ :=
{x′ ∈ S : NH(x′) ∩ X 6= ∅}, and Y ′ := S \ X ′. Since X ′ ⊆ U1, Y

′ ⊆ U2, and H is a
chain-join, it holds that H[S] is a co-chain graph with co-classes X ′ and Y ′. Thus, both
X ′ and Y ′ satisfy the conditions checked in Step 10. Note that the graph H − S equals
the disjoint union of H1 −X ′ and H2 − Y ′, both being hereditarily equidominating by
assumption. Hence, the algorithm is correctly reapplied to the connected components
of H − S.

Let us now assume that the algorithm performs one iteration on H and does not return
that G is not hereditarily equidominating. We have to show that H is hereditarily
equidominating if and only if all graphs are hereditarily equidominating to which the
algorithm is reapplied. Clearly, this holds if H has a universal vertex. So, we proceed
to analyze the case that the reapplication is called in Step 11.

In this case the sets S, X ′, Y ′ and the graph H ′ are computed, and both Step 9 and
Step 10 are performed successfully. In particular, H ′ is a co-chain graph with co-classes
X ′ and Y ′. This means that X ′ and Y ′ are cliques in H ′ and thus in H, and that the
graph induced by the edge set EH(X ′, Y ′) := {xy ∈ E(H) | x ∈ X ′, y ∈ Y ′} is a chain
graph. After Step 10, we know that for every x′ ∈ X ′ it holds that X ⊆ NH(x′) and
Y ∩NH(x′) = ∅, and that for every y′ ∈ Y ′ it holds that Y ⊆ NH(y′) and X∩NH(y′) = ∅.
Hence, H is a chain-join of the two connected components of the graph H−EH(X ′, Y ′).
Let us denote these two components by H1 and H2. Moreover, let H ′

1 := H1 −X ′ and
H ′

2 := H2 − Y ′. Note that H − S = H ′
1 ∪H ′

2.

By Theorem 3.3.2, H is hereditarily equidominating if and only if both H1 and H2

are hereditarily equidominating. Since X ′ is a set of universal vertices of H1, H1 is
hereditarily equidominating if and only if H ′

1 is hereditarily equidominating, again by
Theorem 3.3.2. The analogous statement holds for H2 and H ′

2. Summing up, H is
hereditarily equidominating if and only if H − S = H ′

1 ∪H ′
2 is hereditarily equidomina-

ting. This completes the proof.

Thanks to an anonymous reviewer of the publication process of the article version we can
prove the existence of a linear time recognition algorithm for hereditarily equidominating

32

3.3 Hereditarily Equidominating Graphs

graphs. For that, we need some notations which we introduce only briefly here. We give
further references for all involved topics.

The following argumentation intersects with the wide field of propositional logic, in par-
ticular with the so-called Monadic Second-Order Logic (MSOL). A detailed consid-
eration of this topic goes beyond the scope of this argumentation. For an introduction
as well as a deeper insight the interested reader is referred to the book [19].

To catch a glimpse of the different variations of MSOL in the context of graph theory
we state the following quotation from Courcelle et al. from the introduction of [20].

”Roughly speaking, MSOL(τ1) is Monadic Second-Order Logic with quantifi-
cation over subsets of vertices, but not of edges; MSOL(τ1,p) is the extension
of MSOL(τ1) by unary predicates representing labels attached to the vertices.
LinEMSOL(τ1,p) is the extension of MSOL(τ1,p) which allows one to search
for sets of vertices which are optimal with respect to some linear evaluation
function.”

By Theorem 3.3.2, we have a characterization of hereditarily equidominating graphs
in terms of finitely many forbidden induced subgraphs. This property is expressible
in LinEMSOL(τ1,p) [18]. Hence, to prove the existence of a linear time recognition
algorithm, we can use the following result by Courcelle et al.

Theorem 3.3.9 ([20], Theorem 4). Let C be a class of graphs of clique-width at most
k such there is a O

(
f(|E|, |V |)

)
algorithm, which, for each graph G = (V,E) in C,

constructs a k-expression defining it. Then every LinEMSOL(τ1,p) problem on C can be
solved in time O

(
f(|E|, |V |)

)
.

Before we can fully understand this theorem we need to define the terms clique-width
and k-expression. The clique-width cwd(G) of a graph G is defined by the minimum
labels needed to construct G with the following four operations (compare [9]):

(i) creation of a vertex labeled by integer i,

(ii) disjoint union of two labeled graphs,

(iii) join between all vertices with label i and all vertices with label j for i 6= j,

(iv) relabeling all vertices of label i be label j.

Furthermore, let G be a graph of clique-width k. A k-expression of G is an expression
to construct G with the above mentioned operations using not more than k different
labels. For complete and more precise definitions of clique-width and k-expression see
for example [21].

We need the next lemma to show that we can obtain a k-expression in linear time for
a given graph we want to check for being hereditarily equidominating. Then it follows
– together with Theorem 3.3.2 and Theorem 3.3.9 – that hereditarily equidominating

33

3.3 Hereditarily Equidominating Graphs

graphs are recognizable in linear time. Recall that a graph G = (V,E) is prime if all its
modules are trivial, that is if |M | ∈ {0, 1, |V |} for all modules M ⊆ V of G.

Lemma 3.3.10. If G is a prime (P5, P5, bull, banner)-free graph with V (G) ≥ 6, then G
is a co-chain graph.

Proof. Theorem 1.2. of [29] implies that G or G is bipartite. Further, every prime P5-free
bipartite graph is a chain graph [53]. It follows – since every prime banner -free chain
graph has at most four vertices – that G cannot be bipartite. Thus, G is bipartite. Since
G is P5-free, G is P5-free and hence a chain graph. This finishes the proof.

Now, to decide if a given graph G is hereditarily equidominating we first apply modular
decomposition to obtain all prime induced subgraphs. Then we check if every prime
induced subgraph with more than five vertices is a co-chain graph. This can be done
in linear time [34]. If we find a prime induced subgraph with more than five vertices
that is not a co-chain graph, then it is not (P5, P5, bull, banner)-free by Lemma 3.3.10.
Hence, G is not (P5, P5, bull, banner)-free and thus not hereditarily equidominating by
Theorem 3.3.2.

If a prime induced subgraph of G is a chain-join, then it has clique-width four and a
4-expressions can be obtained in linear time (see Proposition 2 of [9]). If a prime induced
subgraph of G has at most five vertices, then its clique-width is at most five and we can
get a k-expression (k ≤ 5) in constant time.

Finally, we can combine the k-expressions of all prime induced subgraphs of G to obtain
a k-expression of G, again with the help of the modular decomposition [21]. Taken
together we get the following theorem.

Theorem 3.3.11. There exists a linear time algorithm that decides whether a given
graph is hereditarily equidominating.

34

Chapter 4

Complexity Issues and the Pseudo Class

Partition

In this chapter, we will embed equidomination into the framework of complexity theory.
First, we define and discuss the Equidomination problem in Section 4.1. Then, we
introduce two parameterized versions of the Equidomination problem in Section 4.2.
In Section 4.3, we elaborate a decomposition of a graph that we use to prove the fixed-
parameter results in the next chapter. Using this decomposition, we state an algorithm
to solve the parameterized versions of the Equidomination problem in Section 4.4

4.1 The Equidomination Problem

We start with defining the following decision problem:

Equidomination:

Instance: A graph G.
Problem: Decide whether G is equidominating.

The Equidomination problem deals with the question whether a given graph is equido-
minating or not. Although the complexity of this problem is unknown, we firmly believe
it is at least NP -hard. Apparently, it is not even known whether the Equidomination

problem is in NP. For a given function it is not easy to verify that it is an equidomina-
ting function. To do so, one has to calculate the total weight of every possible subset of
vertices and check if exactly the minimal dominating sets obtain a specific total weight.
Yet, we can give a complexity result regarding the problem defined by this question. We
call this problem Equidominating Function.

Equidominating Function:

Instance: A graph G = (V,E) and a function ω : V → N.
Problem: Is ω an equidominating function?

35

4.1 The Equidomination Problem

Note that there is no target value predetermined. The next theorem and its proof are
analogous to its equistable version discussed by Milanič et al. [49], where it is asked if a
given function is an equistable function. Therefore, we will only sketch the proof here.
To show their result, the authors work with a graph that is the disjoint union of several
K2. This graph is isomorphic to T (2n, n). For the graphs T (2n, n) (n ∈ N), the family
of minimal dominating sets equals the family of maximal stable sets. Every minimal
dominating or maximal stable set of T (2n, n) contains exactly one vertex of each pair of
adjacent vertices.

Theorem 4.1.1. The Equidomination Function problem is coNP-complete.

Proof sketch. A certificate that a function is not an equidominating function consists of
two subsets of vertices. Either both subsets are minimal dominating sets but the total
weights are distinct. Or they have the same total weight but only one of them is a
minimal dominating set. Since all of that can be calculated and checked in polynomial
time, the Equidomination Function problem is in coNP.

To show hardness one can reduce the so-called Weak Partition problem, which is
NP -complete (see [60]), to Equidominating Function. For the Weak Partition

problem a finite set is given and a positive integer is assigned to each element. It is asked
whether there are two disjoint subsets such that the sums of the corresponding integer
values of both subsets are equal. If so, the answer is yes. TheWeak Partition problem
is a special case of the Partition and the Subset Sum problem (see for example [39]).

For a given instance of Weak Partition with n elements, we assign the integer value
of each element of Weak Partition as weights to two adjacent vertices of T (2n, n).
Then the answer to the instance of Weak Partition is yes if and only if the prior
defined function is not an equidominating function.

Furthermore, we can adapt another result of [49]. The proof of Theorem 3.1.3 already
indicates that an exponentially large target value can be necessary.

Theorem 4.1.2. There exist equidominating graphs on 2n (n ∈ N) vertices such that

the target value t of every equidominating structure is of order O
(

2n√
n

)
.

Proof sketch. Again, Milanič et al. worked with T (2n, n). First, the authors proved that
every equistable function on T (2n, n) must assign the same weights to adjacent vertices
and that the (non-multi) set of weights must have the so-called distinct-subset-sums
property. The distinct-subset-sums property requires that the sums of distinct subsets
of a set of integers must not be equal. Both holds also for equidominating functions on
T (2n, n). Lastly, the theorem follows from a result from Erdös [26] that states that the
maximum number of a set of n positive integers with the distinct-subset-sum property

is of order O
(

2n√
n

)
.

36

4.2 Parameterization

The previous two results suggest that any (polynomial time) algorithm for the Equido-
mination problem would have to use structural properties of equidominating graphs.
However, Theorem 3.1.3 shows that this cannot be done with the use of forbidden induced
subgraphs. Together, this motivates our belief that the Equidomination problem is at
least NP -hard and encouraged us to study the Equidomination problem with respect
to its parameterized complexity.

4.2 Parameterization

In this section we introduce two parameterized versions of the Equidomination prob-
lem. We might call these parameterizations natural parameterizations. A third param-
eterization, which is a generalization of one of them, will be discussed in Section 5.4.

First of all, we give two definitions that are essential for the parameterized problems and
the upcoming investigations.

Definition 4.2.1. For a given t ∈ N, a graph G is called target-t equidominating if
there exists an equidominating structure of the form (ω, t) of G.

With target-t equidomination we specify equidominating graphs by the additional ques-
tion which target values can occur. We have already seen, for example, that there is
no polynomial p : N → N such that T (2n, n) is target-p(n) equidominating for all n ∈ N
(compare Theorem 4.1.2). If a graph is target-t equidominating for some t ∈ N, there
is no direct implication to values less or greater than t. For example, the circle on four
vertices C4 is target-4 equidominating. An equidominating structure is given by (ω, t)
with ω ≡ 2 and t = 4. But C4 is neither target-3 nor target-5 equidominating since every
minimal dominating set consists of two arbitrary vertices. Thus, t must be even.

By the next definition only weights up to a certain value are allowed.

Definition 4.2.2. For a given k ∈ N, a graph G is called k-equidominating if there
exists an equidominating structure (ω, t) with ω : V → [k] for some t ∈ N. In this
case, (ω, t) is said to be a k-equidominating structure and ω a k-equidominating

function.

The significant difference to the definition of equidominating is that the codomain now is
[k] instead of N. If a graph is k-equidominating, then it is clearly also k′-equidominating
for every k′ ≥ k.

It is easy to see that every target-t equidominating graph is also t-equidominating: every
vertex is contained in some minimal dominating set (possibly without any other vertex).
Thus, its weight, with respect to any equidominating function, cannot exceed t. The
opposite, however, is not true. Consider, for example, for a given t ∈ N the edgeless
graph Kt+1 on t + 1 vertices. This graph is not target-t equidominating. But it is
1-equidominating and hence k-equidominating for every k ∈ N.

37

4.2 Parameterization

Yet, there is an implication from k-equidomination to target-t equidomination. For k ∈
N, let G = (V,E) be a k-equidominating graph with |V | = n and ω a k-equidominating
function. The weight (with respect to ω) of every vertex is at most k. Further, V is
trivially a dominating set and thus contains a minimal dominating set. It follows that
G has a minimal dominating set of total weight at most kn. This means G is target-t
equidominating for some t ≤ k|V |. We can also consider the total weight of V , which
yields t ≤ ω(V) and may sharpen the bound. In reverse, if a graph on n vertices is not
target-t equidominating for all t ≤ kn (k ∈ N), then it is also not k-equidominating.

We want to emphasize that most of the results of Section 3.2 do not hold for target-t
equidominating and k-equidominating graphs. In their proofs, we often multiply the
weight functions and the target values by natural numbers as needed (compare Obser-
vation 3.2.1). Thus, we obtain higher values than possibly allowed.

The discussion of Section 4.1 persuades us to study parameterized complexity of the
Equidomination problem. To this end, we introduce the following two parameterized
versions of the Equidomination problem corresponding to previously stated defini-
tions:

Target-t Equidomination:

Instance: A graph G and t ∈ N.
Parameter: t.

Problem: Decide whether G is target-t equidominating.

k-Equidomination:

Instance: A graph G and k ∈ N.
Parameter: k.

Problem: Decide whether G is k-equidominating.

In the next chapter we prove that both the k-equidomination and the Target-t Equi-
domination problem are fixed-parameter tractable. We do this using the kernelization
technique, which we explain in Subsection 2.2.2. For that, we want to find a partition of
the vertices of a graph such that two vertices of different blocks of the partition cannot
have the same weight with respect to any equidominating function.

If we can find a way to partition the vertices in such a manner, then in some cases one
can easily decide that a graph is not target-t equidominating or k-equidominating. We
know for both problems how many distinct weights can be allocated. Thus, a graph
is not target-t equidominating or k-equidominating if it has more than t or k blocks,
respectively.

If we further – in the case of fewer blocks – can somehow bound the size of each block of
the partition (in terms of the parameter), we directly get an instance kernel of bounded
size: the maximal number of blocks multiplied by the maximal size of each block. More
precisely, we cannot find general bounds for the size of each block. However, we can

38

4.3 Decomposition

reduce them in such a way that the reduced graph is target-t equidominating or k-
equidominating if and only if the original graph is.

The first step is examined in the following Section 4.3 and the second one in Section 5.1.
In Section 4.4 we use the obtained partition to develop an XP algorithm which can be
used for both parameterized problems. In contrast to the FPT algorithm, we do not
need blocks of bounded size for the XP algorithm.

4.3 Decomposition

In this section we derive a partition of the vertices of a graph that meets the condition
that different blocks must have different weights regarding an equidominating structure
(see Corollary 4.3.18). We start with examining the twin partition with respect to
equidomination, which we then coarsen to obtain the so-called pseudo class partition.

4.3.1 Twin Partition

The first step to obtain the desired partition is the introduction of twins. As we will
see, it provides a helpful frame when dealing with equidomination. It is also used in the
context of equistability (see for example [38]).

Definition 4.3.1. Let G = (V,E) be a graph. Two vertices v, w ∈ V are called twins

if they have the same neighborhood except themselves, that is if

N(v) \ {w} = N(w) \ {v} .

If further vw ∈ E, we say v and w are true twins and otherwise false twins.

We define a relation using the twin property:

v ∼t w :⇐⇒ N(v) \ {w} = N(w) \ {v} .

This relation will be referred to as the twin relation.

Since ∼t-related vertices dominate the same set of vertices (besides themselves in the
case of false twins), it seems reasonable to work with the twin relation in the context of
(minimal) dominating sets.

Lemma 4.3.2. The twin relation is an equivalence relation.

Proof. Let G be a graph with vertex set V and edge set E. Symmetry and reflexivity
follow immediately from the definition. For transitivity, let v, w and x ∈ V with v ∼t w
and w ∼t x. Then N(v) \ {w, x} = N(w) \ {v, x} = N(x) \ {v, w} and for symmetry
reasons it remains to show that vw ∈ E if wx ∈ E. So let wx ∈ E. Since v and w are
related, we get vw ∈ E and the proof is finished.

39

4.3 Decomposition

a

b

c1

c2

d

e

s1

s2

16

7

3

3

3

4

8

8

Figure 4.1: An equidominating graph on 8 vertices; the target value is t = 23; its twin
partition is

{
{a}, {b}, {c1, c2}, {d}, {e}, {s1, s2}

}
and its pseudo class partition{

{a}, {b}, {c1, c2, d}, {e}, {s1, s2}
}
.

Since the considered partition is based on an equivalence relation – more precisely on
equivalence classes – we will use the term class instead of blocks in the following. The
equivalence classes of ∼t are called twin classes and the partition of the vertices into
twin classes is called twin partition. Similar to the proof of Lemma 4.3.2 one can show
that all vertices of a twin class are either pairwise adjacent or pairwise non-adjacent.
Therefore, twin classes are specified to be clique classes in the first and stable set
classes in the latter case.

A twin class can also be a single vertex. Even though a single vertex is strictly speaking
a stable set as well as a clique, we use the terms clique class and stable set class only for
twin classes with at least two elements. We call a twin class with one vertex a singleton
class.

In the following, we refer several times to the graph considered in Chapter 3. To the
reader’s convenience, we state it here again in Figure 4.1. Note that we slightly varied
the equidominating structure. The vertices c1 and c2 form a clique class, the vertices s1
and s2 form a stable set class, and all other vertices are singleton classes.

Now, let T1 and T2 be two twin classes. It is easy to see that either every vertex of T1 is
adjacent to every vertex of T2 or every vertex of T1 is non-adjacent to every vertex of T2.
In the first case we say that T1 and T2 see each other and that T1 sees T2 and vice versa.
We also say that a vertex and a twin class see each other, and likewise two vertices.
Furthermore, if appropriate, we use expressions for twin classes which are usually used
for vertices (for example, a twin class is adjacent to, dominates, is dominated by, et
cetera).

For the sake of completeness, we also define the quotient graph Q(G) of a graph G:
every twin class of G is a vertex of Q(G) and two vertices are adjacent if and only if the
corresponding twin classes see each other. A twin class is a special case of a module and
hence the decomposition into twin classes is a special form of a modular decomposition.
Therefore, the twin partition can be computed in linear time using one of the modular
decomposition algorithms of [22], [47] and [59].

40

4.3 Decomposition

As the following observations show, the twin relation is a helpful instrument with regard
to minimal dominating sets and thus also with regard to equidomination.

Observation 4.3.3. For every minimal dominating set D and every stable set class S,
we have |D ∩ S| ∈ {0, 1, |S|}.

This observation indicates that we have to look carefully at stable set classes with two
elements. If a stable set class S contains only two vertices, then Observation 4.3.3
includes all possible cases. In particular, it can not occur that more than one but not
all vertices of S are elements of a minimal dominating set. It turns out that stable set
classes of size two indeed play a special role (see Lemma 4.3.13 and Definition 4.3.14).

Since, in contrast to stable set classes, the vertices of a clique class do dominate each
other, the situation is less complicated here.

Observation 4.3.4. For every minimal dominating set D and every clique class C, we
have |D ∩ C| ∈ {0, 1}.

The next observation holds not only for stable set classes but also for stable sets in
general. It is based on the fact that every maximal stable set is also a minimal dominating
set. Therefore, every stable set is contained in at least one minimal dominating set.

Observation 4.3.5. For every stable set S and for every equidominating structure (ω, t)
it holds that ω(S) ≤ t and hence |S| ≤ t.

Unfortunately, vertices of different twin classes of an equidominating graph can have the
same weight in an equidominating structure. This means that the twin partition does
not meet the desired condition discussed at the end of the previous section. For example,
let us take a look again at the equidominating structure of the graph of Figure 4.1. The
vertices c1 and d do not lie in the same twin class since only c1 is adjacent to a. However,
they both have the same weight. Therefore, we have to find another way to partition
the vertices which needed a careful and intense analysis.

We want to mention that this is one of the significant differences between equidomination
and equistability. With respect to an equistable function, two vertices of different twin
classes always have different weights [43].

4.3.2 Pseudo Class Partition

Motivated by the previous discussion, we now examine in which cases vertices of different
twin classes of an equidominating graph can have equal weights. It turns out that two
vertices can only have the same weight if they lie in the same twin class or are adjacent.
That means on the one hand that when trying to construct an equidominating structure
one has to consider fewer combinatorial possibilities. And on the other hand, that for a

41

4.3 Decomposition

given number of weights to be allocated one can bound the diameter of an equidominating
graph.

Eventually, this examination leads us to a partition that coarsens the twin partition. To
start with, we introduce the following term.

Definition 4.3.6. Let G = (V,E) be a graph. Two vertices x, y ∈ V are called mds-

exchangeable if and only if

(i) there exists a minimal dominating set D ⊆ V with |{x, y} ∩D| = 1, and

(ii) for all minimal dominating sets D ⊆ V with |{x, y} ∩ D| = 1 the symmetric
difference (D \ {x, y}) ∪ ({x, y} \D) is a minimal dominating set.

Loosely speaking, two vertices are mds-exchangeable if they can be exchanged for each
other in any minimal dominating set containing exactly one of them. Clearly, if two
vertices of an equidominating graph are mds-exchangeable, then they must have the same
weight in every equidominating function. To ensure this implication, we require in the
definition that there is a minimal dominating set that contains only one of the vertices.
Indeed, this implication initially motivated the introduction of mds-exchangeability.

Actually, for nearly all pairs of vertices there exists a minimal dominating set that
contains exactly one of the two vertices. The only exceptional case are false twins of a
stable set class. For such two vertices it can occur that either none or both vertices are
in a minimal dominating set. For example, for this reason the vertices s1 and s2 of the
graph in Figure 4.1 are not mds-exchangeable. Furthermore, c1, c2 and d of this graph
are pairwise mds-exchangeable.

We remark that it can occur that two mds-exchangeable vertices both are elements of one
minimal dominating set. For example, all vertices of C4 are pairwise mds-exchangeable
while every minimal dominating set of C4 contains exactly two arbitrary vertices.

It is easy to see that two vertices of a clique class are mds-exchangeable. Thus, we get
the following observation.

Observation 4.3.7. Every equidominating function is constant on each clique class.

Analogously, if the first part of Definition 4.3.6 is fulfilled, then the same holds for stable
set classes.

Observation 4.3.8. If there exists a minimal dominating set containing exactly one
vertex of a stable set class, then every equidominating function is constant on that stable
set class.

As already mentioned, every (non-maximal) stable set can be extended to a minimal
dominating set. Such an extension of a stable set to a minimal dominating set can be
done in different ways. One way is the following: for a given stable set S ⊆ V of a graph

42

4.3 Decomposition

G = (V,E) we determine a minimal dominating set D′ of G[V \N [S]]. We claim that the
disjoint union D := S ∪̇D′ is a minimal dominating set of G. The domination property
of D is obvious. Every vertex of S is its own private neighbor (possible among others).
Furthermore, ∅ 6= pn(v,D′) = pn(v,D) holds for every vertex v ∈ D′. That means it is
not possible to delete any vertex from D and remain dominating in G. Hence, we obtain
the following observation, which we often use in the proofs of the upcoming lemmas.

Observation 4.3.9. For every stable set S there exists a minimal dominating set D
with S ⊆ D and D ∩N(S) = ∅.

After these preliminaries, we show in which cases vertices of different twin classes cannot
have the same weight. We remark that whenever we speak about weights, we (implicitly)
require the considered graph to be equidominating.

Lemma 4.3.10. Let G = (V,E) be an equidominating graph with equidominating struc-
ture (ω, t) and let x, y ∈ V be two vertices of different twin classes with dist(x, y) ≥ 2.
Then ω(x) 6= ω(y) holds.

Proof. Suppose there are two such vertices x, y ∈ V with ω(x) = ω(y). First, let one of
the vertices be in a clique class C, say x ∈ C. Extend {x, y} to a minimal dominating
set and then exchange another vertex of C for y. We get a subset of total weight t,
by Observation 4.3.7, which is not a minimal dominating set, by Observation 4.3.4, a
contradiction.

So, let both x and y be either elements of singleton classes or stable set classes. As they
are in different classes, without loss of generality let v be a vertex seen by x and not
seen by y. By Observation 4.3.9, we can extend {y, v} to a minimal dominating set D
such that D ∩ N({y, v}) = ∅. If we exchange y for x, again we get a subset (namely
D − y + x) of total weight t, that is not a minimal dominating set since y is no longer
dominated, a contradiction.

Note that in the previous lemma the two mentioned vertices must be of two different
twin classes. Two elements of a stable set class, of course, can have the same weight
while always having distance at least two.

In the following, we take a closer look at adjacent vertices, where we find a slightly more
complicated situation. We begin by showing that vertices of adjacent stable set classes
and clique classes cannot have the same weight.

Lemma 4.3.11. Let G = (V,E) be an equidominating graph with equidominating struc-
ture (ω, t) and let S ⊆ V be a stable set class and C ⊆ V a clique class that see each
other. Then ω(x) 6= ω(y) holds for all x ∈ S and for all y ∈ C.

Proof. Suppose there are vertices x ∈ S and y ∈ C with ω(x) = ω(y). The other
vertices of S must have a different weight than x and y. Otherwise, one could extend

43

4.3 Decomposition

S to a minimal dominating set D such that D ∩N(S) = ∅ (see Observation 4.3.9) and
exchange two vertices of S for two vertices of C while maintaining the total weight t.
This contradicts Observation 4.3.4.

So, extend S to a minimal dominating set D such that D ∩ N(S) = ∅. The set D′ :=
D − x + y has weight t and thus is also a minimal dominating set. Now D′ − x′ + x
(x′ ∈ S, x′ 6= x) has a weight different than t, but since the swapped vertices lie in the
same twin class, it still must be a minimal dominating set, again a contradiction.

Further, with respect to any equidominating function adjacent vertices of a stable set
class and a singleton class cannot have the same weight.

Lemma 4.3.12. Let G = (V,E) be an equidominating graph with equidominating struc-
ture (ω, t). Let S ⊆ V be a stable set class and let {y} be a singleton class with y ∈ N(S).
Then ω(x) 6= ω(y) holds for all x ∈ S.

Proof. Let x, x′ ∈ S and y ∈ N(S) be an adjacent singleton class. Suppose that ω(x) =
ω(y). The set N(S) \N [y] cannot be empty, since otherwise one could extend {y} to a
minimal dominating set D such that D ∩ N(y) = ∅ (see Observation 4.3.9). But now
D − y + x does not dominate x′, which contradicts ω(x) = ω(y). Furthermore, there
must be a vertex v ∈ N(S) \ N [y] with N [v] ⊆ N [S] (otherwise {y} ∪ (V \ N [S]) is a
dominating set, which contains a minimal dominating set D with y ∈ D and x /∈ D, but
D − y + x does not dominate x′).

So, extend {v, y} to a minimal dominating set D such that D ∩ N({v, y}) = ∅. Since
D′ := D − y + x has total weight t and thus is a minimal dominating set, pn(v,D′) =
S \ {x}. It follows that D′ − v + y is also a minimal dominating set, which implies
ω(v) = ω(y), a contradiction to Lemma 4.3.10.

The proof of Lemma 4.3.12 suggests that if v and y lay in one twin class, x and y could
have the same weight. As the next lemma shows, this is indeed possible, but only in a
specific situation.

Lemma 4.3.13. Let G = (V,E) be an equidominating graph with equidominating struc-
ture (ω, t) and let S1, S2 ⊆ V be two adjacent stable set classes. Further, let x ∈ S1, y ∈
S2 be two vertices with ω(x) = ω(y). Then the following assertions hold:

(i) |S1| = |S2| = 2 ,

(ii) ω is constant on S1 ∪ S2 ,

(iii) every twin class seen by S1 is also seen by S2 and vice versa.

Furthermore, if two adjacent stable set classes of size two have the same closed neigh-
borhood, then all vertices of those stable set classes have the same weight in any equido-
minating structure.

44

4.3 Decomposition

Proof. Suppose one of the stable set classes has more than two elements, say S1. We
extend S1 to a minimal dominating set D with D ∩ S2 = ∅. Then, D − x + y has
total weight t, but following Observation 4.3.3 it is not a minimal dominating set. So,
assertion (i) is shown and thus let S1 = {x, x′} and S2 = {y, y′}.

LetD∗ be a minimal dominating set of G[V \N [S1∪S2]]. Then, D := D∗∪{x, y} is a min-
imal dominating set of G (note that y′ ∈ pn(x,D) and x′ ∈ pn(y,D)). Observation 4.3.8
yields assertion (ii).

Now, suppose S2 sees a vertex v which is not seen by S1. Extend S1 ∪ {v} to a minimal
dominating setD∗ such thatD∗∩S2 = ∅. ThenD := (D∗\S1)∪S2 has total weight t, but
D is not a minimal dominating set, as N [D] = N [D \ {y}]. That proves assertion (iii).

The last statement of the lemma follows if we can show that the vertices of such stable
set classes are pairwise mds-exchangeable. For that, let S1 and S2 be two adjacent stable
set classes of size two with N [S1] = N [S2] and let x, y ∈ S1∪S2. If x and y are adjacent,
it is clear that there are minimal dominating sets containing either x or y. Further, we
have already seen above that there exists a minimal dominating set containing only one
vertex if x and y are in the same stable set class.

Now, let D be a minimal dominating set with x ∈ D and y /∈ D. It holds that 1 ≤
|D∩ (S1 ∪S2)| ≤ 2. In both cases we get pn(y,D−x+ y) = pn(x,D). Since x and y see
the same vertices in V \ S1 ∪ S2, pn(v,D) = pn(v,D − x+ y) for all v ∈ D − x. Hence,
D − x+ y is a minimal dominating set and the proof is finished.

As a consequence of Lemma 4.3.13, there can be an arbitrarily large number of stable
set classes of size two with vertices of the same weight in an equidominating graph.
Such an occurrence could be a problem when trying to achieve bounded kernels for the
parameterized problems. But the good thing is that all of those stable set classes both
see each other and see the same twin classes in the remainder of the graph. Therefore,
as we will see in Subsection 5.1, it is possible to reduce them to a manageable number.

For a better handling, we introduce the following new term.

Definition 4.3.14. Let G = (V,E) be a graph and S ⊆ V be a maximal subset such
that:

(i) G[S] ∼= T (2n, n) for some n ≥ 2,

(ii) S is a module.

Then S is called a stable set bundle.

Here, maximal means that no other subset fulfills the two conditions and properly con-
tains S. Every stable set bundle contains several stable set classes of size two with the
same neighborhood outside the stable set bundle. Stable set bundles behave similar to
clique classes. In fact, a stable set bundle forms a clique class in the quotient graph.
Considered the other way around, adding a false twin to every vertex of a clique class

45

4.3 Decomposition

a

b

c1

c2

d

e

s1

s2

t1 t2

19

7

3

3

3

4

8

8

8 8

Figure 4.2: An equidominating graph on 10 vertices; the target value is t = 23; its
twin partition is

{
{a}, {b}, {c1, c2}, {d}, {e}, {s1, s2}

}
, {t1, t2}

}
and its pseudo

class partition
{
{a}, {b}, {c1, c2, d}, {e}, {s1, s2, t1, t2}

}
.

yields a stable set bundle. Following Lemma 4.3.13, the vertices of a stable set bundle
are pairwise mds-exchangeable and, therefore, every equidominating function is constant
on a stable set bundle. In the graph of Figure 4.2 the four vertices s1, s2, t1 and t2 form
a stable set bundle.

Now, regarding whether two vertices can have the same weight in an equidominating
structure, the last open question is: can vertices of a clique class or a singleton class
have the same weight as its neighboring clique class or singleton class? The answer to
this question is yes: there can be a clique, that is not a clique class, whose vertices are
pairwise mds-exchangeable.

Definition 4.3.15. Let G be a graph and C an inclusion-wise maximal clique of pairwise
mds-exchangeable vertices that contains at least two twin classes. Then C is called a
clique bundle.

Upon first reading it seems a little bit odd to define clique bundles exactly as what we
are looking for: pairwise mds-exchangeable vertices of possibly different twin classes.
However, the crucial thing here is that we can identify clique bundles efficiently (see
Algorithm 1 below).

In a clique bundle there can be both clique classes and singleton classes but clearly no
stable set classes. If it is not relevant whether we talk about a clique class or a singleton
class, then we simply refer to a twin class of a clique bundle. We require at least two twin
classes to be in a clique-bundle in order that a (single) twin class is not a clique bundle
and a twin class at the same time. This is needed later on (compare Corollary 4.3.17).

In the graph shown in Figure 4.2 the clique class {c1, c2} and the singleton class {e}
together form a clique bundle. Further, one can see an equidominating graph which

46

4.3 Decomposition

C1 C2

Figure 4.3: An equidominating graph consisting of the two clique bundles C1 and
C2 each containing three clique classes with two to four vertices; clique classes
are indicated by circles and an edge between the circles of two clique classes
represents all edges between the vertices of the corresponding clique classes.

consists of two clique bundles in Figure 4.3. In this graph, every minimal dominating
set contains exactly one vertex of each clique bundle.

We use the term bundle to refer to either a stable set bundle or a clique bundle. As
a bundle consists of several twin classes, we use calligraphic style variables for bundles.
Slightly abusing notation, we will also refer to the twin classes of a bundle and write
T ∈ B, for a twin class T and a bundle B.

Recall that a twin class is either a stable set class, a clique class or a singleton class.
Due to the existence of bundles we introduce a coarsening of twin classes:

Definition 4.3.16. A pseudo class is either a twin class not contained in a bundle or
a stable set bundle or a clique bundle.

That is, a pseudo class is exactly one of following: a) a singleton class, b) a stable set
class, c) a clique class, d) a stable set bundle or e) a clique bundle. For example, the
stable set classes {s1, s2} and {t1, t2} of the graph shown in Figure 4.2 are no pseudo
classes. However, taken together they form a pseudo class which is a stable set bundle.
By this definition and the previous discussion, we get the following result.

Corollary 4.3.17. There is a unique partition of the vertices of a graph into pseudo
classes.

We will refer to this unique partition as the pseudo class partition. The pseudo class
partition of the graph of Figure 4.1 is

{
{a}, {b}, {c1, c2, d}, {e}, {s1, s2}

}
and the one of

Figure 4.2 is
{
{a}, {b}, {c1, c2, d}, {e}, {s1, s2, t1, t2}

}
.

The following corollary is a summary of the previous lemmas. It states that the pseudo
class partition fulfills the condition that the vertices of different blocks of the partition
cannot have the same weight with respect to any equidominating structure.

47

4.3 Decomposition

Corollary 4.3.18. Let G be an equidominating graph with equidominating structure
(ω, t) and P1, P2 be two different pseudo classes. Then ω(x) 6= ω(y) holds for all x ∈ P1

and y ∈ P2.

Furthermore, using the pseudo class partition, we get the following lemma about the
relation of two subsets of vertices regarding domination. It also holds for the twin
partition which can be proved analogously.

Lemma 4.3.19. Let G = (V,E) be a graph with pseudo class partition {P1, . . . , Ps}.
Let D1, D2 ⊆ V be two subset of vertices with |D1 ∩ Pi| = |D2 ∩ Pi| for all i = 1, . . . , s.
Then D1 is a minimal dominating set if and only if D2 is a minimal dominating set.

Proof. Due to symmetry reasons, it is sufficient to show that D2 is a minimal dominating
set if D1 is a minimal dominating set. Let D1 be a minimal dominating set. On singleton
classes D1 and D2 clearly are identical. Since the vertices of a clique class, a clique
bundle and a stable set bundle are pairwise mds-exchangeable, we may assume that
D1 ∩ Pi = D2 ∩ Pi for all pseudo classes Pi that are not stable set classes, i = 1, . . . , s.

For any stable set class S ∈ {P1, . . . , Ps}, we have |D1 ∩ S| ∈ {0, 1, |S|}, by Observa-
tion 4.3.3. So D1 ∩S 6= D2 ∩S only if |D1 ∩S| = 1. However, in this case the vertices of
the stable set class S are pairwise mds-exchangeable. That means we can exchange the
vertices of D1∩S with vertices of D2∩S without losing the property of being a minimal
dominating set.

This means, regarding the question whether a subset of vertices is a minimal dominating
set, it does not matter which vertices of a pseudo class are in the subset. Only the number
of vertices counts. A fact we use to construct an XP algorithm for the k-equidominating
problem in Section 4.4.

What is missing is a possibility to determine the pseudo class partition. For that, we
first compute the twin partition. As already mentioned, there are several linear time
algorithms for this computation (see [22], [47] and [59]). In some cases twin classes are
certainly also pseudo classes, for example, stable set classes with more than two vertices.
However, for singleton classes, clique classes and stable set classes of size two we need
a way to decide whether they form a pseudo class on their own or whether they lie in
a bundle. This means concretely that we have to decide whether two adjacent vertices
are mds-exchangeable.

For that we developed Algorithm 1. For two vertices v1 and v2, it checks if there is
a private neighbor v′ of v1 in any dominating set not containing v2, that is not seen
by v2. If so, the two vertices are not mds-exchangeable. See Figure 4.4 for a better
understanding of Algorithm 1.

Theorem 4.3.20. Let G = (V,E) be a graph with |V | = n and |E| = M and let
x, y ∈ V . Algorithm 1 correctly decides whether x and y are mds-exchangeable and runs
in O(nm) time.

48

4.3 Decomposition

Algorithm 1 Checking adjacent vertices for mds-exchangeability

Input: Two adjacent vertices x, y ∈ V of a graph G = (V,E)
Output: YES, if x and y are mds-exchangeable, otherwise NO
1: for all (v1, v2) ∈ {(x, y), (y, x)} do ⊲ Check both combinations
2: for all v′ ∈ N(v1) \N [v2] do

3: if {v1} ∪
(
V (G) \

(
N [v′] ∪ {v2}

))
is a dominating set then

4: return NO ⊲ v′ is private neighbor of x
5: end if
6: end for
7: end for
8: return YES ⊲ x and y are mds-exchangeable

Proof. First we prove the correctness. Since the algorithm checks both combinations (see
line 1), the following argumentation holds for v1 = x, v2 = y as well as for v1 = y, v2 = x.
If the output is NO, the stated set in line 3 contains a minimal dominating set D with
v′ ∈ pn(v1, D) and v′ /∈ N [v2]. So, v′ is not dominated by D − v1 + v2 and thus x and
y cannot be mds-exchangeable. If the output is YES and the algorithm reaches line 8,
there is no vertex v′ in N(v1), which is not adjacent (or equal) to v2 and which is a
private neighbor of v1 in any minimal dominating set that does not contain v2. So, we
cannot find a minimal dominating set D with v1 ∈ D, v2 /∈ D and pn(v1, D)∩N [v2] 6= ∅.
Further, since v1 and v2 are adjacent, there are minimal dominating sets that contain
only v1 and that contain only v2. Taken together, x and y are mds-exchangeable.

It is clear that the algorithm terminates for a finite graph. There are O(n) vertices in
N(v1) \N [v2]. For each vertex v′ ∈ N(v1) \N [v2] it is sufficient to check if the vertices
of N(v′) \ {v1} are dominated since every other vertex is an element of the set stated
in line 3. With the use of two flags for each vertex and a global counter we can do this
considering every edge two times. So, line 3 needs O(m) time which leads to a total
running time of O(nm).

After computing the twin partition, one can apply Algorithm 1 to adjacent clique classes
and singleton classes, and adjacent stable set classes of size two to find all clique bundles
and stable set bundles, respectively. Of course, one could also check the neighborhoods
of adjacent stable set classes of size two to discover stable set bundles.

To discover all bundles one has to apply Algorithm 1 for every edge, which gives us a
total running time of O(nm2). Hence, we get the following corollary.

Corollary 4.3.21. The pseudo class partition of a graph with n vertices and m edges
can be computed in time O(nm2).

We want to close this section with a brief discussion about different ways to partition
the vertices of a graph in the context of the results of this section. One might ask why

49

4.3 Decomposition

v1

v2

v′

V
\
(N

[v
′]
∪
{v

2
})

N(v′) \ {v1}

Figure 4.4: A visualization of the idea of Algorithm 1; the dashed edge is not existent

and the dotted edges symbolize edges that may exist. If the set {v1}∪
(
V \
(
N [v′]∪

{v2}
))

is a dominating set (compare line 3), then v′ is a private neighbor of v1

in some minimal dominating set and since v2v
′ /∈ E, v1 and v2 are not mds-

exchangeable.

we do not simply use the property of being mds-exchangeable to partition the vertices.
Indeed, mds-exchangeability is an equivalence relation and thus the equivalence classes
yield a partition.

Let us call the equivalence classes of the mds-exchangeable relation mds-ex classes
and the corresponding partition the mds-ex partition. The good thing about using
the mds-ex partition is that vertices of the same mds-ex class clearly must have the
same weight in every equidominating structure – this is what motivated us to introduce
mds-exchangeability.

However, the mds-ex partition fails the desired condition that vertices of different classes
must have different weights with respect to any equidominating function. As already
discussed, two vertices of a stable set class may not be mds-exchangeable because there
exists no minimal dominating set containing only one of them. But such two vertices
could have the same weight (see for example s1 and s2 in Figure 4.1).

Moreover, it would be nice to gain independence from equidomination for the results of
this section (in the previous lemmas we always require the graphs to be equidominating).
This is indeed possible for Lemma 4.3.10, Lemma 4.3.11 and Lemma 4.3.13. In their
proofs, we exchange a vertex of a minimal dominating set with another vertex and show
that the resulting set is not a minimal dominating set. Consequently, the two vertices
are not mds-exchangeable. Therefore, we get the following corollaries, which are non-
equidominating variants of the three lemmas.

Corollary 4.3.22. Let G = (V,E) be a graph and x, y ∈ V be two vertices of different
twin classes with dist(x, y) ≥ 2. Then x and y are not mds-exchangeable.

Corollary 4.3.23. Let G = (V,E) be a graph and let S ⊆ V be a stable set class and
C ⊆ V a clique class that see each other. Then x and y are not mds-exchangeable for

50

4.3 Decomposition

all x ∈ S and for all y ∈ C.

Corollary 4.3.24. Let G = (V,E) be a graph and let S1, S2 ⊆ V be two adjacent stable
set classes. Further let x ∈ S1, y ∈ S2 be two mds-exchangeable vertices. Then the
following assertions hold:

(i) |S1| = |S2| = 2 ,

(ii) the vertices of S1 ∪ S2 are pairwise mds-exchangeable ,

(iii) every twin class seen by S1 is also seen by S2 and vice versa .

Furthermore, if two adjacent stable set classes of size two have the same closed neigh-
borhood, then all vertices of those stable set classes are pairwise mds-exchangeable.

However, Lemma 4.3.12 is a slightly different. In its proof, we use that if two vertices of
an equidominating graph can be exchanged in one minimal dominating set (such that
the resulting set is a minimal dominating set), then this is also the case in every other
minimal dominating set. Thus, the two vertices are mds-exchangeable and have the
same weight in every equidominating structure.

However, this holds not in general. For example, let us take a look at the path P6 on
the vertices v1, . . . , v6 with vivj ∈ E(P6) if and only if |i − j| = 1 (1 ≤ i < j ≤ 6).
We can exchange v1 for v2 in the minimal dominating set {v2, v4, v6} and the resulting
set {v1, v4, v6} is a minimal dominating set, too. This is not the case for the minimal
dominating set {v2, v5}.

This means that there is no non-equidominating version of Lemma 4.3.12. Indeed,
the vertices c (singleton class) and d1 (element of a stable set class) of the graph in
Figure 4.5(a) are mds-exchangeable. Furthermore, one can see in Figure 4.5 a comparison
between the twin partition, the pseudo class partition and the mds-ex partition: on the
left side for a non-equidominating graph and on the right side for the yet considered,
once more extended equidominating graph.

Regarding the relation of the different partitions, the following holds:

- For any graph, the pseudo class partition is a coarsening of the twin partition.

- For an equidominating graph, the mds-ex partition is a refinement of the pseudo
class partition.

It seems that the mds-ex partition is not very helpful with respect to our investigations.
However, there are at least two reasons for considering the mds-ex partition. First, we
can use it to decide that a graph is not equidominating. This is the case if the mds-ex
partition does not refine the pseudo class partition. Secondly, the mds-ex partition tells
us which vertices definitely must have the same weight in any potential equidominating
structure. Both can be used for an implementation of the XP algorithm for the k-
Equidomination problem presented in the next section.

51

4.4 XP Algorithm

a2

a1

b c

d1 d2

e1 e2

f
a

b

c1

c2

d

e1

e2

s1

s2

t1 t2

a1 a2 b c d1 d2 e1 e2 f a b c1 c2 d e1 e2 s1 s2 t1 t2
twin

pseudo
mds-ex

(a) non-equidominating graph (b) equidominating graph

Figure 4.5: A comparison of the twin partition, the pseudo class partition and the
mds-ex partition; the lines under the vertices show which vertices lie in the same
class of the respective partition.

We can compute the mds-ex partition similar to the pseudo class partition. However,
we need a possibility to decide whether the vertices of a stable set class S are mds-
exchangeable or not. More precisely, we have to check if there exists a minimal domi-
nating set that contains exactly one vertex of S.

For that, we can proceed as follows. Let G = (V,E) be a graph, S ⊆ V a stable set
class and s ∈ S. For each x ∈ N(S), we check if {s} ∪ (V \ N [x]) is a dominating
set (we remark that S ⊆ N [x]). If this is the case for one x ∈ N(S), then there is a
minimal dominating set D ⊆ {s} ∪ (V \N [x]) with x ∈ pn(s,D) and S ∩D = 1. Hence,
the vertices of S are pairwise mds-exchangeable. Otherwise, the vertices of S are not
mds-exchangeable.

4.4 XP Algorithm

In this section we describe an XP algorithm which decides whether a given graph is
k-equidominating for some fixed k ∈ N. In the running time of this algorithm only k
appears in the exponents but not the size of the graph (compare Subsection 2.2.2). The
aim is to apply this algorithm to the constructed kernels of the parameterized problems
to achieve FPT algorithms. The algorithm mainly follows the ideas and the algorithm
for the k-Equistability problem of Levit et al. [36], [43].

The basic idea of the algorithm is that by considering the pseudo class partition one
does not have to examine every possible weight function nor every possible subset of
vertices. Since different vertices of the same pseudo class, roughly said, play the same

52

4.4 XP Algorithm

role regarding minimal dominating sets (compare Lemma 4.3.19), two weight functions
that differ only by switched weights for vertices of the same pseudo class can be handled
as the same. This leads to (equivalence) classes of weight functions.

Further, we reduce the running time from a brute force algorithm by classifying subsets
of vertices, again using Lemma 4.3.19. As a result, we have to check only one subset per
class for being a minimal dominating set.

Algorithm 2 An XP algorithm for the k -Equidomination problem

Input: A graph G = (V,E), k ∈ N
Output: a k-equidominating structure if G is k-equidominating, otherwise NO
1: determine pseudo classes P1, . . . Ps by computing the twin partition and identifying

clique bundles and stable set bundles via Algorithm 1
2: if s > k then
3: return NO ⊲ G cannot be k-equidominating
4: end if
5: compute an arbitrary minimal dominating set D
6: compute the set Ω of weight functions to check
7: for all ω ∈ Ω do
8: compute tω =

∑
v∈D ω(v)

9: for all x ∈ Xω do
10: compute an arbitrary S ∈ Sω(x)
11: if S is a minimal dominating set then
12: if

∑k
i=1 ixi 6= tω then ⊲ there is a minimal dominating

13: next ω set of weight unequal to tω
14: end if
15: else if

∑k
i=1 ixi = tω then ⊲ there is a set of weight tω which

16: next ω is not a minimal dominating set
17: end if
18: return (ω, tω) ⊲ ω is a k-equidominating function
19: end for
20: end for
21: return NO ⊲ no k-equidominating function was found

Theorem 4.4.1. For a given k ∈ N, it is decidable whether a graph G = (V,E) is
k-equidominating or not in time O

(
nm2 + nkkk + n2k+2k−k−1 + k3k+3

)
(with |V | = n

and |E| = m). Furthermore, a k-equidominating structure is computed in this time if G
is k-equidominating.

Proof. We first discuss how the algorithm works and compute its running time afterward.
There are kn different weight functions from V to [k] we would have to test and 2n

potential minimal dominating sets. As we will see, we can reduce both numbers using
the pseudo class partition.

53

4.4 XP Algorithm

Let (P1, . . . , Ps) be the partition of V into pseudo classes. If s > k, G is not k-
equidominating and we are done. Otherwise, we define an equivalence relation on the
set of weight functions as follows:

ω1 ∼ ω2 :⇐⇒ ∀i ∈ [r] ∀j ∈ [k] :
∣∣ω−1

1 (j) ∩ Pi

∣∣ =
∣∣ω−1

2 (j) ∩ Pi

∣∣ .

In simple terms two weight functions are equivalent if they assign each weight to the
same number of vertices within every pseudo class.

We claim that either every function of an equivalence class is a k-equidominating function
or none. Basically, this is a direct consequence of Lemma 4.3.19. To prove the claim, let
ω1, ω2 : V → [k] be two weight functions with ω1 ∼ ω2 and let ω1 be a k-equidominating
function. Further, let D be a minimal dominating set. Since ω1 ∼ ω2, there is a subset
D′ ⊆ V with ω1(D

′) = ω2(D) and |D′ ∩ Pi| = |D ∩ Pi| for all i = 1, . . . , s. Following
Lemma 4.3.19, D′ is a minimal dominating set, too, and hence t = ω1(D

′) = ω2(D).

Now, let X ⊆ V with ω2(X) = t. We construct X ′ ⊆ V by exchanging each vertex
v ∈ X with a vertex v′ of the same pseudo class as v with ω1(v

′) = ω2(v). This is
possible since ω1 ∼ ω2. We get ω1(X

′) = t and |X ′ ∩ Pi| = |X ∩ Pi| for all i = 1, . . . , s.
Since ω1 is a k-equidominating function, X ′ is a minimal dominating set and again, by
Lemma 4.3.19, X is a minimal dominating set, too.

Consequently, instead of checking every possible weight function, it is sufficient to check
just one representative of each equivalence class. Further, by Corollary 4.3.18 we even
only have to check one representative of each equivalence class containing weight func-
tions that do not allocate the same weight to several vertices of different pseudo classes.

Let (v1, . . . , vn) be a fixed ordering of V in which vertices of the same pseudo class appear
sequentially. We define Ω to be the set of all weight functions ω : V → [k] for which
the weights also appear sequentially in the weight vector

(
ω(v1), . . . , ω(vn)

)
∈ [k]n and

which do not allocate same weights to different pseudo classes. Now it is sufficient to
check every function of Ω to decide whether G is k-equidominating. This holds since
every k-equidominating function not in Ω has an equivalent weight function in Ω: we
simply have to re-sort the weights within each pseudo class to obtain an equivalent
weight function that lies in Ω.

In a second step, we check for each ω ∈ Ω if it is a k-equidominating function. For
that, let ω ∈ Ω, D ⊆ V be an arbitrary minimal dominating set. We define tω := ω(D)
and Xω := {x ∈ Zk | 0 ≤ xi ≤ |ω−1(i)|, i = 1, . . . , n}. Every vector x ∈ Xω encodes
a family of subsets of vertices Sω(x) ⊆ P(V) (with P(V) being the power set of V)
in the following sense: The value xi of the i-th coordinate of x is equal to the vertices
of weight i being in a subset, that is Sω(x) = {S ⊆ V | |S ∩ ω−1(i)| = xi}. By
Lemma 4.3.19, either every element of Sω(x) is a minimal dominating set or none. In
fact, implicitly we have defined an equivalent relation on P(V) with Sω(x) being the
equivalence classes (x ∈ Xω). Furthermore, by definition every element of Sω(x) has
the same total weight

∑k
i=1 ixi = tω. The last thing to do is to check for each x ∈ Xw

whether x encodes minimal dominating sets if and only if
∑k

i=1 ixi = tω. If so, (ω, tω)

54

4.4 XP Algorithm

is a k-equidominating structure and hence G is k-equidominating. In conclusion, we
achieve Algorithm 2.

Let us analyze the running time of the above-described algorithm. The determination of
the pseudo classes partition in line 1 needs O(n+m+nm2) time (compare Section 4.3).
An arbitrary minimal dominating set D can be calculated straightforwardly in time
O(n +m). We can describe a weight function by its weight vector regarding the fixed
ordering. A basic, combinatorial result states that there are at most

(
n+k−1

n

)
possibilities

to divide the fixed ordered vertices (v1, . . . , vn) into k (possibly empty) intervals, where
an interval only contains consequently in the ordering appearing vertices. There are k!
ways to distribute k weights one-to-one to the intervals, which leads to |Ω| ≤ k!

(
n+k−1

n

)
.

With n̂ := max{n, k2} we can further estimate the number of potential k-equidominating
functions to be |Ω| = O(n̂k/k) and Ω can be computed in time O((kn̂)k) (for more details
see [36]). The lines 8 and 10 can be executed in time O(n). The number of vectors in
Xω is Πk

i=1(|ω
−1(i)| + 1), which is bounded by (n/k + 1)k = O((n̂/k)k) (see Lemma 4

in [36]). The sums in line 12 and 15 are calculated in time O(k). Finally, it takes time
O(n2) to check if a subset of V is a minimal dominating set.

Taken together, we obtain a total running time of Algorithm 2 of

O

(
n+m+ nm2 + (n̂k)k +

n̂k

k

(
n+

(
n̂

k

)k (
n+ n2 + k

)
))

= O

(
nm2 + (n̂k)k +

n̂2kn2

kk+1
+

n̂2k

kk

)

= O

(
nm2 + nkkk +

n2k+2

kk+1
+

n2kk

kk+1
+ k3k +

k4kn2

kk+1
+

k4k

kk

)

= O
(
nm2 + nkkk + n2k+2k−k−1 + k3k+3

)
.

The vertices of clique classes, clique bundles and stable set bundles must have the same
weight with respect to any equidominating function (compare Section 4.3). Even though
we know this in advance, it does not help us to speed up the (theoretical) running time
of Algorithm 2, as there do not need to exist any twin class of cardinality at least two
at all. This is why we do not make use of it in Theorem 4.4.1. However, one should
definitely use this information for any implementation (as well as the stop criterion), as
already mentioned at the end of the previous section.

The domination number of a graph is defined as the minimum cardinality of all
dominating sets while the upper domination number equals the maximum cardinality
of all dominating sets. Basically, the algorithm considers all subsets of vertices. Therefore
it can be easily modified to provide the domination number and the upper domination
number as well as minimal dominating sets of minimum and maximum cardinality.

55

4.4 XP Algorithm

If we modify Algorithm 2 slightly, then we can also use it to solve the Target-t Equi-
domination problem.

Corollary 4.4.2. For t ∈ N, it is decidable whether a graph G = (V,E) is target-t
equidominating in time O

(
nm2 + nttt + n2t+2t−t−1 + t3t+3

)
, with |V | = n and |E| = m.

Furthermore, a target-t equidominating structure is computed in this time if G is target-t
equidominating.

Proof. We simply set k := t and instead of defining tω := ω(D) in line 8 we proceed only
with those weight functions ω ∈ Ω for which ω(D) = t holds.

56

Chapter 5

Fixed-parameter Tractability Results

In this chapter, we deduce complexity results for the two parameterized versions of the
Equidomination problem. We show that the Target-t Equidomination and the k-
Equidomination problem are fixed-parameter tractable in Section 5.2 and Section 5.3,
respectively. For that, we use three reduction rules, which we examine in Section 5.1. In
Section 5.4, we introduce a generalization of the k-Equidomination problem and prove
that this problem also lies in FPT.

5.1 Reduction Rules

In this section, we examine three reduction rules. We use them to construct (generalized)
kernels of the Target-t Equidomination problem as well as the k-Equidomination
problem. The three reduction rules are related to each other. They are all based on
the fact that there are vertices which – roughly speaking – play the same role regarding
minimal dominating sets. For example, it does not matter which vertex of a clique class
is in a minimal dominating set. We show that above a certain number it is not relevant
how many of such vertices exist for being target-t equidominating or k-equidominating.
Therefore, we can reduce the number of vertices to that certain number. However, to
prove the third reduction rule, which concerns clique bundles, we have to use more
elaborated tools and work with a sort of abstraction of graphs.

We call a graph target-t k-equidominating if there is a k-equidominating structure
with target value t. Note that this is stronger than being both k-equidominating and
target-t equidominating. For example, consider the star graph K1,n for some n ∈ N. It
is k-equidominating for every k ≥ n and target-t equidominating for every t ≥ n. But it
is not target-(n′ + 1) n′-equidominating for any n′ ≥ n.

The first two reduction rules concern clique classes and stable set bundles. As clique
classes and stable set bundles behave similarly, so do the reduction rules and their
proofs to show that we can use them for a kernelization of the parameterized problems.
Therefore, with the next lemma we first prove the general case.

57

5.1 Reduction Rules

Lemma 5.1.1. Let G be a graph, r, k ∈ N and M ⊆ V (G) a subset of pairwise mds-
exchangeable vertices with |M | > r. Furthermore, let G′ be the graph obtained from G
by deleting all but r vertices of M . If

(i) |D ∩M | ≤ r for every minimal dominating set D ⊆ V (G) of G,

(ii) the vertices of M ∩ V (G′) are pairwise mds-exchangeable, and

(iii) every dominating set D ⊆ V (G′) of G′ is a dominating set of G,

then the following equivalence holds for all t ≤ r:

G is target-t k-equidominating ⇐⇒ G′ is target-t k-equidominating .

Proof. To start, we claim that a subset D ⊆ V (G′) is a minimal dominating set of G′ if
and only if D is a minimal dominating set of G. For that, let D ⊆ V (G′).

First, let D be a minimal dominating set of G′. By assumption (iii), D is a dominating
set of G. Suppose that D is not minimal in G. Then there is a proper subset D̃ (D
that is a dominating set of G. Since G′ is an induced subgraph of G, D̃ is a dominating
set of G′, a contradiction.

Secondly, letD be a minimal dominating set ofG. Again it follows thatD is a dominating
set of G′. Suppose D is not minimal in G′. Then there is a proper subset D̃ (D that
is a minimal dominating set of G′. It follows from the preceding paragraph that D̃ is
also a minimal dominating set of G. This contradicts the minimality of D in G and the
claim is proved.

Now, we prove the equivalence stated in the lemma. Let t ≤ r and M ′ := M ∩ V (G′).

=⇒: Let G be target-t k-equidominating and (ω, t) be a k-equidominating structure of
G. Any subset of V (G′) is a minimal dominating set of G′ if and only if it is a minimal
dominating set of G, which in turn is the case if and only if it has total weight t. It
follows that (ω′, t) with ω′ := ω

∣∣
V (G′)

is a k-equidominating structure of G′ with target

value t.

⇐=: Let G′ be target-t k-equidominating and (ω′, t) be a k-equidominating structure of
G′. We define

ω(v) :=

{
ω′(v), if v ∈ V (G′),

ω′(w), otherwise,

for any w ∈ M ∩ V (G′). Since every equidominating function is constant on a set of
pairwise mds-exchangeable vertices, the choice of w is irrelevant for the definition of ω.
We show that (ω, t) is a k-equidominating structure of G. It is clear that ω(v) ≤ k for
every v ∈ V (G).

Let X ⊆ V (G) be a subset of vertices of G with ω(X) = t. As ω(X ∩M) ≤ ω(X) = t,
we get |X ∩ M | ≤ t. Therefore, we can exchange vertices of X \ V (G′), if any, with
vertices of M ′ \X (one to one) to obtain a subset X̃ ⊆ V (G′) with ω′(X̃) = ω(X̃) = t.

58

5.1 Reduction Rules

It follows that X̃ is a minimal dominating set of G′ and thus of G, too. To construct X̃,
we only exchanged vertices with each other that are mds-exchangeable. It follows that
X is a minimal dominating set of G.

Now, let D ⊆ V (G) be a minimal dominating set of G. By assumption (i), we have
|D ∩M | ≤ r. As before, we can exchange vertices of D \ V (G′) with vertices of M ′ \D
to get a subset D̃ ⊆ V (G′) that is a minimal dominating set of G and thus of G′. This
means ω(D̃) = t and since ω is constant on M , we get ω(D) = t.

The formulation of Lemma 5.1.1 seems a bit complicated: why are we working with
some r ∈ N and t ≤ r instead of taking a (fixed) t ∈ N from the beginning? Indeed,
for the Target-t Equidominating problem we could do so. However, in the proof
of Theorem 5.3.1, in which we show that the k-Equidominating problem is fixed-
parameter tractable, we can only determine an upper bound for the potential target
value. Therefore, we need Lemma 5.1.1 with a range of possible target values.

The first reduction rule is about reducing the vertices of a clique class to a certain
number r ∈ N.

r-Clique Class Reduction: If a clique class C contains more than r vertices,
delete all but r vertices of C.

The next lemma shows that this rule can be used to construct kernels for the parame-
terized problems.

Lemma 5.1.2. Let G be a graph, r, k ∈ N and C ⊆ V (G) a clique class with |C| > r.
Furthermore, let G′ be the graph obtained from G by applying the r-Clique Class Reduc-
tion rule with respect to C. Then for all t ≤ r, the graph G is target-t k-equidominating
if and only if G′ is target-t k-equidominating.

Proof. The vertices of a clique class are pairwise mds-exchangeable, both in G and G′.
Further, we know that |D ∩ C| ≤ 1 for every minimal dominating set D ⊆ V (G) of G,
by Observation 4.3.4. We define C ′ := C ∩ V (G′). Let D ⊆ V (G′) be a dominating
set of G′. The vertex (or vertices) of D that dominates C ′ also dominates the vertices
of C \ C ′ in G. So, D is a dominating set of G and we can apply Lemma 5.1.1. This
finishes the proof.

One might ask why we cannot reduce the number of vertices of a clique class simply to
one. Analogously to the notion of Lemma 5.1.2, let G′ be the graph obtained from G by
deleting all but one vertex v ∈ C of the clique class. Indeed, G′ is equidominating if G
is. Also, if G′ is equidominating, then we can show that every minimal dominating set
of G has the same total weight. However, we cannot ensure in this situation that every
subset of that total weight is a minimal dominating set. This is because the weight of
v exists several times in G but only once in G′. As a consequence, at least t vertices
(having a total weight of at least t) of a large clique class must remain to obtain the

59

5.1 Reduction Rules

equivalence of being target-t k-equidominating. The same applies for the upcoming two
reduction rules for stable set bundles and clique bundles. Actually, we have already seen
in Remark 3.2.5 that we cannot reduce a clique class to one vertex since adding a true
twin does not preserve equidomination in general.

The next rule is about stable set bundles. As seen before, there can be arbitrarily large
stable set bundles in an equidominating graph. In fact, every stable set bundle itself is
an equidominating graph (see Lemma 3.3.1). Again, a positive integer r ∈ N specifies
the reduction rule.

r-Stable Set Bundle Reduction: If a stable set bundle S contains more
than r stable set classes, delete all but r stable set classes of S.

The upcoming lemma shows that the r-Stable Set Bundle Reduction rule can be used
to obtain kernels for the parameterized problems.

Lemma 5.1.3. Let G be a graph, r, k ∈ N and S ⊆ V (G) a stable set bundle containing
more than r stable set classes. Further, let G′ be the graph obtained from G by applying
the r-Stable Set Bundle Reduction rule with respect to S. Then for all t ≤ 2r, the graph
G is target-t k-equidominating if and only if G′ is target-t k-equidominating.

Proof. Note that there are 2r vertices in S ∩ V (G′). First, we consider the case r =
1. In this case, S becomes a stable set class in G′. Nevertheless, the lemma holds.
There are only the two possible values for t: t = 1 or t = 2. Neither G nor G′ are
target-1 k-equidominating as the complete graphs Kn (n ∈ N) are the only target-1
k-equidominating graphs (with equidominating structure (ω ≡ 1, 1)).

For t = 2, there can exist only one more pseudo class besides S, otherwise G and G′

are not target-2 k-equidominating, by Corollary 4.3.18. If this second pseudo class is
an adjacent singleton class or an adjacent clique class, then both G and G′ are target-2
k-equidominating. In the other cases neither G nor G′ are target-2 k-equidominating
since then a minimal dominating set exists with more than two vertices.

Secondly, let r ≥ 2. Again, we show that all conditions of Lemma 5.1.1 are met.
Following Lemma 4.3.13, the vertices of S are pairwise mds-exchangeable. The same
holds for the vertices of S ∩ V (G′) since at least two stable set classes of S remain in
G′. It is easy to see that |D ∩ S| ≤ 2 for every minimal dominating set D ⊆ V (G) of
G. Finally, we can show, analogously to the proof of Lemma 5.1.2, that every minimal
dominating set of G′ is a dominating set of G.

Note that the condition of Lemma 5.1.1(ii) is only fulfilled if we delete the stable set
classes of S completely, and not only one of the two vertices of a stable set class. However,
we ensure this by the formulation of the r-Stable Set Bundle Reduction rule. Thus,
Lemma 5.1.1 can be applied.

60

5.1 Reduction Rules

a b

c1

c2

c3

c′1

c′2

c′3

d e

C C ′

Figure 5.1: A (non-equidominating) graph on 10 vertices; C and C′ are clique
bundles consisting of three singleton classes and the minimal dominating set
{a, c1, c2, c3, e} contains every vertex of C.

The last reduction rules considers clique bundles. As we already know, the vertices of
a clique bundle can have different neighborhoods. Thus, even though we can bound
the number of pseudo classes of a graph, there can be a large number of twin classes
(more precisely, singleton classes and clique classes) in a clique bundle. In the case of
more than one clique bundle being in a graph, there can be arbitrarily many distinct
neighborhoods, and consequently, arbitrarily many twin classes in a clique bundle. For
example, the graph in Figure 5.1 can be extended to any number of singleton classes in
both clique bundles: we just add adjacent vertices ci and c′i (i ≥ 4) to the clique bundles
C and C′, respectively, analogously to the existing vertices. The same holds for the graph
shown in Figure 4.3 on page 47. Therefore, it is not enough to bound the clique classes
of a clique bundle using the Clique Class Reduction rule.

Furthermore, a special case can occur: if a clique bundle only contains singleton classes,
then more than one vertex of such a clique bundle can be in a minimal dominating set.
Figure 5.1 shows a graph, where even every vertex of a clique bundle is contained in the
same minimal dominating set. However, if there is at least one clique class in a clique
bundle, then at most one vertex of the clique bundle is in a minimal dominating set.
Otherwise, we could exchange vertices such that two vertices of the same clique class are
in a minimal dominating set, a contradiction.

These two facts make it harder to bound the number of vertices in a clique bundle in
terms of the parameters k and t as in the case of clique classes or stable set bundles.
The keynote to overcome this is gathering the vertices of a clique bundle into certain
subsets. In such a subset, the vertices have the same neighborhood regarding all pseudo
classes except clique bundles. With respect to clique bundles, however, the vertices of a
subset have the same number of neighbors in each clique bundle.

To formalize the above-mentioned idea, we introduce the following notion.

Definition 5.1.4. Let G be a graph with pseudo class partition {P1, . . . , Ps}. For every
vertex v ∈ V (G) we define the vector µv = (µv

1, . . . , µ
v
s) ∈ Ns

0 as follows:

61

5.1 Reduction Rules

if v ∈ Pi, then we set

µv
i :=





1, if Pi is a singleton class, clique class or clique bundle, (5.1a)

2, if Pi is a stable set bundle, (5.1b)

|Pi|, if Pi is a stable set class. (5.1c)

If v /∈ Pi and Pi is not a clique bundle, then we set

µv
i :=

{
1, if v is adjacent to Pi, (5.2a)

0, if v is not adjacent to Pi. (5.2b)

If v /∈ Pi and Pi is a clique bundle, then we set

µv
i :=





|Pi \N [v]|+ 1,
if there exists a minimal dominating set
D ⊆ V with N [v] ∩D ⊆ Pi,

(5.3a)

0, otherwise. (5.3b)

We call µv the mds-vector of v.

We remark that µv rather contains information about how v can be dominated by the
pseudo classes of a graph, than how v dominates the pseudo classes (in particular in the
cases (5.3a) and (5.3b)).

Let Pi be a clique bundle and D a minimal dominating set such that N [v] ∩ D ⊆ Pi.
Then, v is dominated only by vertices of Pi. Furthermore, the vertices of Pi are pairwise
mds-exchangeable. This means that there are more vertices in D ∩Pi than in Pi \N [v].
So, the number µv

i tells us how many vertices of Pi must be at least in a minimal
dominating set to dominate v, such that v is dominated only by vertices of Pi.

To decide whether a minimal dominating set D with N [v]∩D ⊆ Pi exists, it is sufficient
to check if (V (G) \N [v]) ∪ Pi is a dominating set. If so, this dominating set contains a
minimal dominating set D ⊆ (V (G) \N [v]) ∪ Pi with N [v] ∩D ⊆ Pi.

The values of µv are bounded by t in every target-t equidominating graph.

Lemma 5.1.5. Let G = (V,E) be a graph with pseudo class partition {P1, . . . , Ps} and
let r ∈ N. If there is a vertex v ∈ V with µv

i > r for some i ∈ [s], then G is not target-t
equidominating for all t ≤ r.

Proof. Let t ≤ r and µv
i > r. If v ∈ Pi and Pi is a stable set bundle, then µv

i = 2 and
hence r = 1. Since we can extend two non-adjacent vertices of Pi to a minimal domi-
nating set (with at least two elements), G is not target-1 equidominating. Analogously,
if v ∈ Pi and Pi is a stable set class, there exists a minimal dominating set containing
more than t vertices.

The last possible case for µv
i > 1 is v /∈ Pi and Pi is a clique bundle. Then, there exists

a minimal dominating set D with N [v] ∩D ⊆ Pi and |D| ≥ |D ∩ Pi| ≥ µv
i > t. Again,

G is not target-t equidominating.

62

5.1 Reduction Rules

As mentioned before, we want to gather – or rather partition – the vertices of clique
bundles into subsets. We do this in a way such that the vertices of each subset have
identical mds-vectors. However, a problem arises if we then reduce such a subset of
a graph. Likewise for the other reduction rules, the main condition to prove that the
reduction is safe for the parameterized problems is: a subset of vertices of the reduced
graph is a minimal dominating set if and only if it is a minimal dominating set of the
original graph (compare Lemma 5.1.1(iii)).

Now the problem is the following: it can occur that the pseudo class partition changes
if we delete some vertices of a clique bundle. For example, if we delete c3 of the graph
shown in Figure 5.1, then c′3 is not part of the clique bundle C′ anymore and becomes a
singleton class instead. Clearly, if the pseudo class partition changes, then we also obtain
different mds-vectors. With possibly different pseudo class partitions and mds-vectors
we cannot prove the above-mentioned main condition.

Since the clique bundles are determined by the graph, we need a more general structure.
Therefore, we introduce a new mathematical object and transfer all relevant information
and properties to it. However, we do this in a way such that neither the pseudo class
partition nor the mds-vectors change when we delete some elements from it. Roughly
speaking, the graph does not determine the partition, but the partition determines the
graph.

Definition 5.1.6. A pseudo graph is a triple P = (V,P, µ), consisting of a non-
empty set V , a partition P = {P1, . . . , Ps} of V and a function µ : V → Ns

0, such that
µ(v) 6= (0, . . . , 0) for all v ∈ V .

Next, we need an equivalent for (minimal) dominating sets in pseudo graphs. By (µ(v))i
we denote the i-th component of µ(v).

Definition 5.1.7. Let P = (V,P = {P1, . . . , Ps}, µ) be a pseudo graph and X ⊆ V . We
call X a dense set of P if for every v ∈ V a block Pi ∈ P exists with 0 < (µ(v))i ≤
|X ∩ Pi|. If every proper subset X ′ (X is not dense, then X is said to be a minimal

dense set of P.

If it is not required for each v ∈ V that at least one component of µ(v) is greater than
zero (see Definition 5.1.6), then it is possible that no (minimal) dense set exists at all.
The next definition motivates the two previous definitions.

Definition 5.1.8. Let G = (V,E) be a graph with pseudo class partition {P1, . . . , Ps}
and mds-vectors µv ∈ Ns

0 for v ∈ V . By P(G) = (V, {P1, . . . , Ps}, µ) we denote the
pseudo graph of G, where µ(v) := µv for each v ∈ V . We say that a pseudo graph P

is induced by a graph G if P(G) = P.

Note that the pseudo graph of a graph is unique (up to the order of the pseudo class
partition), while two different graphs can have the same pseudo graph. For example, two

63

5.1 Reduction Rules

graphs have identical pseudo graphs if they differ only with respect to edges between
a clique bundle C and a vertex v where there is no minimal dominating set D with
N [v] ∩D ⊆ C. Further, there are pseudo graphs that are not induced by a graph.

The pseudo graph of a graph with n vertices and m edges can be calculated in time
O(nm2 + n2). By Corollary 4.3.21, we can compute the pseudo class partition in time
O(nm2). Furthermore, we can determine all mds-vectors in time O(n2 + nm).

The next lemma and the subsequent corollary show that induced pseudo graphs and
minimal dense sets indeed correspond to minimal dominating sets as desired.

Lemma 5.1.9. Let G = (V,E) be a graph with mds-vectors µv, v ∈ V , pseudo class
partition P = {P1, . . . , Ps} and pseudo graph P(G). Further, let D ⊆ V . Then D is a
dominating set of G if and only if D is a dense set of P(G).

Proof. =⇒: Let D ⊆ V be a dominating set of G and v ∈ V with v ∈ Pl (l ∈ [s]). If Pl

is a stable set class, then every vertex of Pl or a neighbor x ∈ Pi ∩ N(v) lies in D. In
the first case we have 0 < µv

l = |Pl| = |D ∩ Pl| (see (5.1c) in Definition 5.1.4). In the
latter case, if there is a vertex w ∈ N [v]∩D that lies in a singleton class, a clique class,
a stable set class or a stable set bundle Pi (i ∈ [s]), then we have 0 < µv

i = 1 ≤ |D ∩Pi|,
by (5.2b). If each vertex of N [v] ∩D lies in a clique bundle, then we cannot exchange
(within each clique bundle) all neighbors of v lying in D with non-neighbor of v not
lying in D, (this would contradict the mds-exchangeability). This means that there is a
clique bundle Pi with 0 < µv

i ≤ |D ∩ Pi| (compare (5.3a)).

If Pl is a singleton class, a stable set class, a clique class or a clique bundle, we can show
analogously that 0 < µv

i = |D ∩ Pi| holds for some i ∈ [s], by considering (5.1a) and
(5.1b). Hence, D is a dense set of P(G).

⇐=: Let D be a dense set of P and v ∈ V with v ∈ Pl (l ∈ [s]). Then, there exists
Pi ∈ P with 0 < (µ(v))i ≤ |D ∩ Pi|. If i = l, then v or a vertex of N(v) ∩ Pl lies in
D, by (5.1). Thus, v is dominated. If i 6= l and Pi is a singleton class, stable set class,
clique class or a stable set bundle (in G), then v is dominated by the vertices of D ∩ Pi,
by (5.2b). If Pi is a clique bundle, then v has less non-neighbors in Pi than there are
vertices in D ∩ Pi (since |Pi \N [v]|+ 1 ≤ |D ∩ Pi|, by (5.3a)). This means, at least one
vertex of N(v) ∩ Pi lies in D. Hence, v is dominated. It follows that D is a dominating
set of G and the proof is finished.

Using Lemma 5.1.9, it is straightforward to prove the following corollary by contradic-
tion.

Corollary 5.1.10. Let G = (V,E) be a graph with pseudo graph P(G) and let D ⊆ V .
Then D is a minimal dominating set of G if and only if D is a minimal dense set of
P(G).

64

5.1 Reduction Rules

Next, we introduce analogous terms to identify the minimal dense sets of a pseudo
graph.

Definition 5.1.11. A pseudo graph P = (V,P, µ) is called equidense if there exists
t ∈ N and a weight function ω : V → N such that for all D ⊆ V the following equivalence
holds:

D is a minimal dense set ⇐⇒ ω(D) = t .

Further, we call the pair (ω, t) an equidense structure, ω an equidense function

and t a target value.

Definition 5.1.12. For a given t ∈ N, a pseudo graph P = (V,P, µ) is called target-t

equidense if there exists an equidense structure of the form (ω, t) of G.

Definition 5.1.13. For a given k ∈ N, a pseudo graph P = (V,P, µ) is said to be k-

equidense if there exists an equidense structure (ω, t) with ω : V → [k] for some t ∈ N.
In this case, (ω, t) is called a k-equidense structure and ω a k-equidense function.

Finally, we call a pseudo graph target-t k-equidense if a k-equidense structure with
target value t exists. By Corollary 5.1.10, we immediately get the following result.

Corollary 5.1.14. Let G be a graph with pseudo graph P(G) and let k, t ∈ N. Then
G is target-t k-equidominating if and only if P(G) is target-t k-equidense. Moreover, in
the affirmative case, we can use the same structure to identify minimal dominating and
minimal dense sets in G and P(G), respectively.

Now, we gathered together everything to define the reduction rule and to prove that we
can use it (in combination with Corollary 5.1.14) for the Target-t Equidomination

problem and the k-Equidomination problem. Again, the rule is specified by a positive
integer r ∈ N.

r-Pseudo Graph Reduction: If a subset M ⊆ P of a block P of the partition
of a pseudo graph with µ(v) = µ(w) for all v, w ∈ M contains more than r
vertices, delete all but r vertices of M .

Lemma 5.1.15. Let r, k ∈ N and P = (V,P = {P1, . . . , Ps}, µ) be a pseudo graph
induced by a graph G = (V,E), with (µ(v))i ≤ r for all v ∈ V and i ∈ [s]. Let Pl

(l ∈ [s]) be a block of P such that Pl is a clique bundle of G. Further, let M ⊆ Pl be a
subset of Pl with µ(v) = µ(w) for all v, w ∈ M and |M | > r.

Let P′ = (V ′,P ′, µ′) be the pseudo graph obtained from P by applying the r-Pseudo
Graph Reduction rule with respect to M . Then for all t ≤ r, P is target-t k-equidense if
and only if P′ is target-t k-equidense.

65

5.1 Reduction Rules

Proof. Note that µ′ = µ
∣∣
V ′

and that besides Pl the partitions P and P ′ of V and V ′,
respectively, have identical blocks.

In the first place, we claim that a subset D ⊆ V ′ is a minimal dense set of P′ if and
only if D is a minimal dense set of P. To prove this, it is sufficient to show that the
equivalence holds for dense sets (not necessarily minimal). So, let D ⊆ V ′. First, let D
be a dense set of P′. Since µ(v) = µ(w) for all v ∈ Pl \ P

′
l and w ∈ P ′

l , we directly get
that D is a dense set of P. Secondly, let D be a dense set of P. By considering the
definition of dense, D is clearly a dense set of P′ and the claim is proved.

Now, we prove the equivalence stated in the lemma. Let t ≤ r and M ′ = M ∩ V ′.

=⇒: Let P be target-t k-equidense and (ω, t) be a k-equidense structure of P. Any
subset of V ′ is a minimal dense set of P′ if and only if it is a minimal dense set of P,
which in turn is the case if and only if it has total weight t. It follows that (ω′, t) with
ω′ := ω

∣∣
V ′

is a k-equidense structure of P′ with target value t.

⇐=: Let P′ be target-t k-equidense and (ω′, t) be a k-equidense structure of P′. Since
P is induced by a graph and Pl is a clique bundle of G, there exists a minimal dense set
D with |D ∩ Pl| = 1. It follows that ω′ is constant on Pl ∩ V ′. We define

ω(v) :=

{
ω′(v), if v ∈ V ′,

ω′(w), otherwise,

with any w ∈ Pl ∩ V ′ and claim that (ω, t) is a k-equidense structure of P. It is clear
that ω(v) ≤ k for every v ∈ V .

First, let X ⊆ V be a subset with ω(X) = t. As ω(X ∩ M) ≤ ω(X) = t, we get
|X ∩M | ≤ t ≤ r. Since |M ′| = r, we can assume |X ∩M | ⊆ M ′ and hence X ⊆ V ′. It
follows that X is a minimal dense set of P′ and thus also of P.

Secondly, let D ⊆ V (G) be a minimal dense set of P. Since (µ(v))i ≤ r for all v ∈ V
and i ∈ [s], we have |D ∩M | ≤ |D ∩ Pl| ≤ r. Again, we can assume that D ⊆ V ′. This
means that D is a minimal dense set of P′. It follows that ω′(D) = t and consequently
ω(D) = t. This finishes the proof.

We remark that the vertices of a clique class (that is contained in a clique bundle) have
identical mds-vectors. This means that every block of P that is a clique class of G is
entirely contained in one of such subsets M . Using Lemma 5.1.5, we can bound the
number of distinct mds-vectors in a clique bundle of a graph for which we have a bound
of possible target values. Together with Lemma 5.1.15, we can bound the number of
elements of a block induced by a clique bundle.

In Appendix A we state two reduction rules that can be applied to clique bundles C
for which |D ∩ C| ≤ 1 holds for every minimal dominating set D. This is the case, for
example, if a clique bundle contains at least one clique class (and not only singleton
classes). Even though these reductions are not useful for our (theoretical) results, they
might speed up implementations of the discussed algorithms.

66

5.2 Target-t Equidomination

5.2 Target-t Equidomination

We will now prove that the Target-t Equidomination problem is fixed-parameter
tractable. For that, we construct a generalized kernel the size of which can be bounded
by a function of t. We apply the XP algorithm described in Section 4.4 to the kernel. In
this way, we do not only obtain a complexity result but also an explicit FPT algorithm.

We begin with the Target-t Equidomination problem since its FPT result is easier
to obtain. The main reason for that lies in the fact that we can bound the size of a stable
set class in a target-t equidominating graph by t (compare Observation 4.3.5). This is
not the case in a k-equidominating graph. For example, the edgeless graph Kn is even
1-equidominating for all n ∈ N.

Theorem 5.2.1. The Target-t Equidomination problem admits a generalized ker-
nel of size O

(
tt+1

)
which is computable in polynomial time. Furthermore, there exists

an O
(
nm2 + n2 + t2t

2+3t+1
)
time algorithm to solve the Target-t Equidomination

problem for a graph on n vertices and m edges.

Proof. Let G be a graph with |V (G)| = n, |E(G)| = m and t ∈ N. First, we use
an algorithm for modular decomposition to compute the twin partition. If there is a
stable set class with more than t vertices, then G is not target-t equidominating, by
Observation 4.3.5. If no such stable set class exists, then we apply Algorithm 1 to
obtain the pseudo class partition {P1, . . . , Ps} and we determine the mds-vectors µv for
all v ∈ V (G).

If s > t or µv
i > t for some v ∈ V (G) and i ∈ [s], then we conclude that G is not

target-t equidominating, by Corollary 4.3.18 and Lemma 5.1.5. Otherwise, we apply the
r-Clique Class Reduction rule with r = t and the r-Stable Set Bundle Reduction rule
with r = ⌈t/2⌉ to all clique classes and stable set bundles, respectively, to obtain an
induced subgraph G′ of G. Then, we determine the pseudo graph P(G′) and apply the
r-Pseudo Graph Reduction rule (simultaneously) to all blocks of P(G′) that are clique
bundles of G′, again with r = t. This yields a pseudo graph P′′ = (V ′′,P ′′, µ′′).

Now, P ′′ has at most t blocks. Every block that is a clique class or stable set class in G
contains at most t elements. Blocks of stable set bundles may have up to t+1 elements.
In blocks of clique bundles there can be at most (t + 1)(t−1) distinct mds-vectors (note
that µv(i) = 1 for all vertices v within a clique bundle Pi). Thus, after the reductions
every block of P ′′ contains at most t(t+ 1)(t−1) elements.

Taken together, we get n′′ := |V ′′| = O
(
tt+1

)
. Finally, by Lemma 5.1.2, Lemma 5.1.3

and Lemma 5.1.15, the obtained pseudo graph P′′ is target-t equidense if and only if G
is target-t equidominating.

We can compute the pseudo class partition of G in time O(nm2). The computation
of the mds-vectors µv for all v ∈ V (G) and the partitioning of the clique bundles in
preparation for the Pseudo Class Reduction can be done in O(n2 + nm). Applying the

67

5.3 k-Equidomination

three reduction rules needs linear time. This finishes the proof of the first statement of
this theorem.

By the proof of Lemma 5.1.1, we know that we can easily extend any target-t equido-
minating structure of G′ to a target-t equidominating structure of G. The same holds
for a target-t equidense structure of P′ and P. Moreover, we can use the same function
and target value for G′ and P′(G′), by Corollary 5.1.14. It follows that an equidense
structure of P′ induces an equidominating structure of G.

Furthermore, by the proofs of the lemmas of Section 5.1, we know that a subset D ⊆ V ′′

is a minimal dense set of P′′ if and only if D is a minimal dominating set of G. Due to
this equivalence, we can analogously apply Algorithm 2 to obtain a target-t equidense
structure of P′′, if existent.

Since we do not have to compute the pseudo class partition, the first two summands of
the running time Algorithm 2 vanish. So, for applying Algorithm 2 to P′′ we need time

O
(
n′′ttt + n′′2t+2

t−t−1 + t3t+3
)
= O

(
tt

2+2t + t2t
2+4t+2t−t−1 + t3t+3

)

= O
(
t2t

2+3t+1
)
.

Together with the computation of the pseudo class partition and the mds-vectors of G,
we achieve a total running time of

O
(
nm2 + n2 + nm+ t2t

2+3t+1
)
= O

(
nm2 + n2 + t2t

2+3t+1
)
.

We point out that – in contrast to an induced pseudo graph – Algorithm 2 cannot be
used to find an equidense structure of an arbitrary pseudo graph. If a pseudo graph
P = (V,P, µ) is not induced by a graph, then it is possible, for example, that an element
of v ∈ V is not contained in any minimal dense set. Therefore, its weight could be
greater than t. Furthermore, elements of different blocks of P can have equal weights.
This means the central requirement of Algorithm 2 is not necessarily fulfilled.

5.3 k-Equidomination

In this section, we show that the k-Equidomination problem admits a generalized
kernel the size of which is bounded by a function of k and, therefore, is fixed-parameter
tractable. The proof of Theorem 5.3.1 is along the lines of the argumentation used in
[36] to prove that the k-Equistable problem is fixed-parameter tractable.

In the following, we assume that k > 1. In a 1-equidominating graph there can only
be one pseudo class. Thus, the only graphs that are 1-equidominating are the graphs

68

5.3 k-Equidomination

Kn, Kn and T (2n, n) (n ∈ N) with equidominating structure (ω ≡ 1, 1), (ω ≡ 1, n) and
(ω ≡ 1, 2), respectively.

Theorem 5.3.1. The k-Equidomination problem admits a generalized kernel of size
O(k3k+1) which is computable in polynomial time. Furthermore, there is an algorithm
to solve the k-Equidomination problem which runs for a given graph on n vertices and

m edges in time O
(
nm2 + n2 + k6k

2+7k+1
)
.

The proof of this theorem builds upon two more lemmas. The first one deals with the
problem that stable set classes are not of bounded size in a k-equidominating graph,
which is the case for target-t equidominating graphs. We show, that if a large stable set
class exists, then every other pseudo class is relatively small.

Lemma 5.3.2. A graph G = (V,E) is not k-equidominating (k ∈ N) if G has two
pseudo classes of size at least k2, where one of those pseudo classes is a stable set class.

Proof. For k ∈ N, let G = (V,E) be a graph with a stable set class S ⊆ V and a
different pseudo class P ⊆ V such that min{|S|, |P |} ≥ k2. Suppose that G is k-
equidominating and let ω : V → [k] be a k-equidominating function. It is straightforward
that – regardless of what kind of pseudo class P is – there is a minimal dominating set
D with S ⊆ D and |P ∩D| ≤ 2.

Let i, j ∈ [k] be weights such that |{s ∈ S | ω(s) = i}| ≥ k and |{p ∈ P | ω(p) = j}| ≥ k.
Such weights exist due to the size of S and P . Further, at least k vertices of P of weight
j are not in D. Now, let S′ ⊆ S be a subset of j vertices of weight i and P ′ ⊆ P be a
subset of i vertices of weight j with P ′ ∩D = ∅. Consequently, we get ω(S′) = ω(P ′).
This leads to a contradiction as the set (D \ S′) ∪ P ′ is not a minimal dominating set
(see Observation 4.3.3) while being of the same total weight as the minimal dominating
set D.

The second lemma concerns relatively large, isolated stable set classes.

Lemma 5.3.3. Let G = (V,E) be a graph and k ∈ N. Furthermore, let S be an isolated
stable set class of size at least k5 and |S \ V | ≤ k3. Then G is k-equidominating if and
only if there exists a k-equidominating function that is constant on S.

Proof. First note that the stable set class S is contained in every minimal dominating
set of G. The sufficiency-part is trivial.

So, let G be k-equidominating with k-equidominating structure (ω, t). As there are
only k different weights and |S| ≥ k5, a weight i ∈ [k] exists such that |Si| ≥ k4, with
Si := {s ∈ S | ω(s) = i}. We show that (ω′, t′) with

ω′(v) :=

{
ω(v), if v ∈ V \ S,

i, if v ∈ S,

69

5.3 k-Equidomination

and t′ := t− ω(S) + ω′(S) = t− ω(S) + i|S| is a k-equidominating structure. It is easy
to see that ω′ is bounded by k and that ω′(D) = t′ holds for every minimal dominating
set D.

As before, the only tricky part is to show that any subset X ⊆ V with ω′(X) = t′ is a
minimal dominating set. So, let X ⊆ V be a subset of vertices with ω′(X) = t′.

We define r := |S \X| and suppose that r > k4. Since |X \ S| ≤ |V \ S| ≤ k3, we get
ω′(X \ S) ≤ k4. It follows that

ω′(X) = ω′(S)− ω′(S \X) + ω′(X \ S)

≤ i(|S| − r) + k4

< i(|S| − r) + ir

= i|S|

≤ t′ ,

a contradiction.

So, r = |S \X| ≤ k4 and hence, together with k4 ≤ |Si| and ω′∣∣
S
≡ i, we may assume

that S \ X ⊆ Si. Otherwise we can exchange vertices of (S \ X) \ Si with vertices of
X ∩ Si until S \ X ⊆ Si. In doing so, we maintain the total weight t′ as well as the
property whether being a minimal dominating set, by Lemma 4.3.19. This yields

ω(X) = ω′(X)− ω′(X ∩ S) + ω(X ∩ S)

= t′ − i(|S| − r) + ω(X ∩ S)

= t′ − i|S|+ (ω(X ∩ S) + ir)

= t′ − ω′(S) + (ω(X ∩ S) + ω(S \X))

= t′ − ω′(S) + ω(S)

= t .

Hence, X is a minimal dominating set of G and the proof is finished.

It follows that if we want to check a graph like the one given in Lemma 5.3.3 for k-
equidomination, it is sufficient to work with k-equidominating functions that are constant
on the isolated stable set class.

Now, we gathered together everything to prove Theorem 5.3.1.

Proof of Theorem 5.3.1. Let G be a graph with |V (G)| = n, |E(G)| = m and k ∈ N.
First, we decompose G into pseudo classes. If there are more than k pseudo classes, then
G is not k-equidominating, by Corollary 4.3.18. Otherwise, following Lemma 5.3.2, two
cases may occur. If none of the cases are fulfilled, then G is also not k-equidominating.

Case 1. Every pseudo class of size at least k2, if any, is either a clique class, a clique
bundle or a stable set bundle.

70

5.3 k-Equidomination

As far as existent, we take one vertex of every singleton class, clique class and clique
bundle, two vertices of an isolated stable set bundle, all vertices of an isolated stable set
class and one neighbor of every other stable set class and stable set bundle. By this,
we get a dominating set of size at most k2 + k, which contains a minimal dominating
set. This means t ≤ k3 + k2 must hold for every k-equidominating structure (ω, t) of G.
Then, we compute all mds-vectors and check if one of them has a component greater
than k3 + k2. If so, G is not k-equidominating, by Lemma 5.1.5.

Otherwise, we perform the r-Clique Class Reduction rule and the r-Stable Set Bundle
Reduction rule with r = k3 + k2 and r = ⌈(k3 + k2)/2⌉, respectively. Next, we compute
the pseudo graph of the reduced graph and apply the r-Pseudo Graph Reduction rule
with r = k3 + k2. We obtain a pseudo graph P′′ = (V ′′,P ′′, µ′′) with |V ′′| = O(k3k+1)
(compare the proof of Theorem 5.2.1). Again, by Lemma 5.1.2, Lemma 5.1.3 and
Lemma 5.1.15, the obtained pseudo graph P′′ is k-equidense if and only if G is k-
equidominating.

Case 2. There is a unique stable set class S with |S| ≥ k2 and every other pseudo class
has fewer than k2 vertices.

In this case |V (G) \ S| ≤ k3, since there are at most k − 1 pseudo classes besides S and
each of them has fewer than k2 vertices. Further, we can assume that |S| ≥ k5 since
otherwise |V (G)| ≤ k5 + k3 = O(k3k+1) and the proof is finished. We distinguish two
subcases.

Case 2.1. The stable set class S does not see any other twin class.
We now construct a graph G′ by deleting all but k5 many vertices of S and claim that
G′ is k-equidominating if and only if G is k-equidominating. Let S′ := S ∩ V (G′) be the
set of the remaining vertices of S. Note that S′ and S are contained in every minimal
dominating set of G′ and G, respectively.

⇐=: Let G be k-equidominating and (ω, t) a k-equidominating structure. We show that
(ω′, t′) with ω′ := ω

∣∣
V (G′)

and t′ := t− ω(S \ S′) is a k-equidominating structure of G′.

Let D′ be a minimal dominating set of G′. Then, D′ ∪̇ (S \ S′) is a minimal dominating
set of G and consequently ω′(D′) = ω(D′) = t− ω(S \ S′) = t′.

Now, let X ′ ⊆ V (G′) be a subset of vertices with ω′(X ′) = t′. Then, ω(X ′ ∪̇ (S \S′)) = t
and hence X ′ ∪̇ (S \S′) is a minimal dominating set of G. It follows that X ′ is a minimal
dominating set of G′.

=⇒: Let G′ be k-equidominating with k-equidominating structure (ω′, t′). Since all
conditions of Lemma 5.3.3 are met, we may assume that ω′∣∣

S′
≡ i for some i ∈ [k]. We

prove that (ω, t) with

ω(v) :=

{
ω′(v), if v ∈ V (G′),

i, if v ∈ S \ S′,

and t := t′ + i|S \ S′| is a k-equidominating structure of G.

71

5.3 k-Equidomination

Let D ⊆ V (G) be a minimal dominating set of G. Then there is a minimal dominating
set D′ ⊆ V (G′) of G′ such that D = (S \ S′) ∪̇D′. Thus ω(D) = ω(S \ S′) + ω(D′) =
i|S \ S′|+ ω′(D′) = t.

Now let X ⊆ V (G) be a subset ω(X) = t. By |V (G)\S| ≤ k3, we get that ω(V (G)\S) ≤
k4. Suppose |S \X| > k4. Then

ω(X) = ω(X ∩ S) + ω(X ∩ (V (G) \ S))

≤ ω(S)− ω(S \X) + ω(V (G) \ S)

≤ i|S| − i|S \X|+ k4

< i|S| − ik4 + k4

≤ i|S|

= ω′(S′) + i|S \ S′|

≤ t′ + i|S \ S′|

= t ,

a contradiction. Thus, |S \ X| ≤ k4 and together with k4 ≤ |S′| we may assume that
S\X ⊆ S′ (compare proof of Lemma 5.3.3). WithX ′ := X∩V (G′) we get S\S′ = X\X ′.
It follows that ω′(X ′) = ω(X) − i|X \X ′| = ω(X) − i|S \ S′| = t′. So, X ′ is a minimal
dominating set of G′ and consequently X is a minimal dominating set of G. Hence, G
is k-equidominating and the claim is proved.

Taken together, we have proved that it is sufficient to check whether G′ is k-equidomi-
nating with |V (G′)| ≤ k5 + k3 = O(k3k+1).

Case 2.2. The stable set class S sees another twin class T .
The idea to show that this subcase can not occur is the following: on the one hand, you
can extend S to a minimal dominating set, which is of relatively large size. However,
on the other hand – due to the non-empty neighborhood of S – there is also a minimal
dominating set that does not intersect with S at all and therefore is relatively small.

So, suppose G is k-equidominating with k-equidominating structure (ω, t) and let D be
a minimal dominating set with D ∩ S = ∅ (compare Observation 4.3.9). It follows that
|D| ≤ |V (G) \ S| ≤ k3 and therefore t ≤ k4. But at the same time t ≥ ω(S) ≥ k5, a
contradiction. Hence, G is not k-equidominating.

The determination of the pseudo class partition, the mds-vectors and the pseudo graph
as well as the application of the reduction rules can be done in polynomial time (compare
the proof of Theorem 5.2.1). This finishes the proof of the first assertion of this theorem.

Having the pseudo class partition and the mds-vectors at hand, we conclude that G is
not k-equidominating if there are more than k pseudo classes, two stable set classes of
size at least k2 or a non-isolated stable set class of size at least k5. If no stable set class

72

5.4 k-W-Equidomination

of size at least k2 exists, we first apply the three reduction rules in linear time and then
Algorithm 2 to the obtained pseudo graph P′′ of size n′′ = O(k3k+1) in time

O
(
n′′kkk + n′′2k+2

k−k−1 + k3k+3
)
= O

(
k3k

2+2k + k6k
2+7k+1 + k3k+3

)

= O
(
k6k

2+7k+1
)
.

If an isolated stable set class exists, then we apply Algorithm 2 to the graph G′ on
at most k5 + k3 vertices, obtained by reducing the stable set class to k5 vertices (if
necessary).

This yields a total running time (compare proof of Theorem 5.2.1) of

O
(
nm2 + n2 + k6k

2+7k+1
)
.

In the proof of Theorem 5.3.1, more precisely in Case 1 of the proof, we obtain an upper
bound of the target value of an equidominating structure by constructing a dominating
set. By this, we make use of one of the few advantages of equidomination in comparison
with equistability.

5.4 k-W-Equidomination

We refine the graph property k-equidominating by allowing k different weights that do
not need to be of the set [k]. However, the weights have to be less than or equal to a
given natural number, which will be a second parameter.

Definition 5.4.1. For given k, W ∈ N, a graph G = (V,E) is said to be k-W -

equidominating if there is an equidominating structure (ω, t) with ω : V → {w1, . . . , wk}
such that 1 ≤ wi ≤ W (i = 1, . . . , k) for some t ∈ N. The pair (ω, t) is called a k-W -

equidominating structure and ω a k-W -equidominating function.

For a better understanding, let us take a look again at the star graphs K1,n (n ∈ N) with
one universal vertex v of degree n and n vertices w1, . . . , wn of degree 1. Every K1,n has
exactly two minimal dominating sets, namely {v} and {w1, . . . , wn}. That means, in any
k-W -equidominating function v has weight at least n and the sum of the weights of the
wi must equal the weight of v. However, one does not necessarily need many different
weights. Indeed, two weights are sufficient, for example ω(v) = n and ω(wi) = 1,
for i ∈ [n], with target value t = n. Taken together, K1,n is 2-n-equidominating and
n-equidominating. However, it is not n′-equidominating for any n′ < n.

It is easy to see that every k-W -equidominating graph is W -equidominating, every k-
equidominating graph is k-k-equidominating and every k-W -equidominating graph is k′-
W ′-equidominating for k′ ≥ k, W ′ ≥ W . So, k-W -equidomination is a generalization of

73

5.4 k-W-Equidomination

k-equidomination. We started with k-equidomination, though, since we believe that this
provides a better access to the topic. In the following we will always assume that W > k,
since otherwise a graph G is k-W -equidominating if and only if G is W -equidominating
and so the question whether a graph is k-W -equidominating would reduce to the already
known case.

Analogously to the parameterized problems Target-t Equidomination and k-Equi-
domination, we define the following decision problem.

k-W -Equidomination

Instance: A graph G and k, W ∈ N.
Parameter: k +W .

Problem: Decide whether G is k-W -equidominating.

The results for k-equidomination as well as their proofs can be adapted to k-W -equi-
domination. The crucial element in doing so is considering for every k, that appears in
the theorems, proofs and algorithms of Section 5.3, whether it appears due to the fact
that k different weights are available or because of its actual value.

A good example for that is Lemma 5.3.2 on page 69. In this lemma, we show that there
is at most one stable set class of size at least k2 in a k-equidominating graph. In its
proof, we exchange two subsets of identical total weight of two different stable set classes
to obtain a contradiction. For this, it is necessary that a weight occurs in each stable set
class at least as many times as the maximal possible weight. To ensure this, the stable
set classes must contain more vertices than the number of different weights times the
maximal weight value. Thus, in the k-W -equidominating case one of the appearing k
in Lemma 5.3.2 remains and the other one is replaced by W . Hence, a graph G is not
k-W -equidominating if G has two pseudo classes of size at least kW such that one of
those pseudo classes is a stable set class.

For Algorithm 2 it is regardless which magnitude the weights have. The algorithm checks
different possibilities of allocating the weights to the vertices. For this only the number of
different possible weights is important. However, by Definition 5.4.1 the actual weights
are not prescribed. Thus, we have to apply Algorithm 2 for every possible choice of k
weights from the set [W]. Hence, we achieve the following result.

Corollary 5.4.2. For given k, W ∈ N, it is decidable whether a graph G = (V,E)

is k-W -equidominating or not in time O

(
nm2 +

(
W

k

) (
nkkk + n2k+2k−k−1 + k3k+3

))

(n = |V | and m = |E|) and a k-W -equidominating structure is computed in this time.

For the construction of a generalized kernel to obtain an FPT result, the situation is
somewhat more complicated. However, the reduction rules can be used exactly in the
same way as in the k-equidominating case. Proving that the Clique Class Reduction,

74

5.4 k-W-Equidomination

the Stable Set Bundle Reduction and the Pseudo Graph Reduction rules are safe for k-
W -equidomination can be done analogously to the proofs of Lemma 5.1.2, Lemma 5.1.3
and Lemma 5.1.15, respectively.

For proving the actual FPT result there is slightly more to do. As already discussed,
the k2 in Lemma 5.3.2 changes to kW . In Lemma 5.3.3, the isolated stable set class
must be of size at least k3W 2 and the rest of the graph of size at most k2W . With that,
we can prove the following corollary in the same way as Theorem 5.3.1.

Corollary 5.4.3. The k-W -Equidomination problem admits a generalized kernel of
size O

(
kk+1W 2k

)
which is computable in polynomial time. Furthermore, there is an

algorithm to solve the k-W -Equidomination problem for a given graph on n vertices

and m edges which runs in time O

(
nm2 + n2 +

((
W

k

)(
k2k

2+3k+1W 4k2+4k
)))

.

75

Chapter 6

Conclusion and Outlook

In Section 6.1, we give a summary of our research results. Then, we state several detailed
conjectures and assertions that might be promising and helpful for further investigations
on equidomination in Section 6.2. We end the chapter by pointing out possible directions
of future research in Section 6.3.

6.1 Our Contribution

In this thesis we dedicated ourselves to the research on equidomination. The initial
motivation was to obtain fixed-parameter tractability results for two parameterized ver-
sions of the Equidomination problem. This turned out to be significantly harder than
we expected. However, on the way we achieved some fruitful results using interesting
techniques.

Since hardly any results regarding equidomination existed, we started by collecting var-
ious general results: we proved that one cannot characterize the class of equidominating
graphs in terms of forbidden induced subgraphs. For several standard graphs – Kn,
Kn, Kn,m, T (2n, n), Pn and Cn (n, m ∈ N) – we examined whether or not they are
equidominating.

Furthermore, we investigated to what extent certain operations are compatible with
equidomination. Adding and deleting isolated and universal vertices preserve the prop-
erty of being equidominating or not. We showed that arbitrarily connecting the universal
vertices of two (non-complete) equidominating graphs yields an equidominating graph.
Consequently, the disjoint union and the chain-join preserve equidomination.

Next, we focused on the class of hereditarily equidominating graphs. We showed that
a graph is hereditarily equidominating if and only if none of its induced subgraphs is
isomorphic to the graphs P5, C5, bull, banner, house, K2,3 or P2 ∪ P3 (see Figure 3.2
on page 26). Further, we gave a structural decomposition: every hereditarily equidomi-
nating graph is either K1 or T (2n, n), for n ∈ N. Or it can be obtained by adding a
universal vertex to a hereditarily equidominating graph or by a chain-join of two hered-
itarily equidominating graphs. We gave an explicit recognition algorithm based on this
decomposition, with a running time of O(n(n + m)) for a graph on n vertices and m

76

6.1 Our Contribution

edges. Using that the prime induced subgraphs of hereditarily equidominating graphs are
of bounded clique-width, we proved the existence of a linear time recognition algorithm
applying a meta-theorem of Courcelle.

Then, we turned our attention to complexity issues. We introduced two parameterized
versions of the Equidomination problem: the k-Equidomination problem (allow only
vertex weights up to a certain value k ∈ N) and the Target-t Equidomination prob-
lem (predetermine the target value t ∈ N). In order to prove that these problems lie
in the complexity class FPT, we needed a partition of the vertices of a graph such that
vertices of different blocks must have different weights with respect to any equidomina-
ting function. As the twin partition seemed to be promising but not completely suffices
the desired condition, we examined in which cases the vertices of different twin classes
can have the same weight. It turned out that this can happen only if such vertices are
adjacent.

Our examination led us to a coarsening of the twin partition: the so-called pseudo
class partition. Each pseudo class is either a twin class, a maximal collection of adja-
cent, mds-exchangeable clique classes or a maximal collection of adjacent stable set
classes of size two with identical neighborhoods. Conveniently, every graph has a
unique pseudo class partition. Using the pseudo class partition, we stated an XP al-
gorithm that decides if a graph on n vertices and m edges is k-equidominating in time
O
(
nm2 + nkkk + n2k+2k−k−1 + k3k+3

)
. The algorithm can easily be modified to also

solve the Target-t Equidomination problem. In this case, for t ∈ N, we achieve a
running time of O

(
nm2 + nttt + n2t+2t−t−1 + t3t+3

)
.

The pseudo class partition is one of the centerpieces to obtain the fixed-parameter
tractability results. The other centerpiece is the examination of three reduction rules,
each of them dealing with a particular pseudo class. The first one is the r-Clique Class
Reduction and the second one the r-Stable Set Bundle Reduction. Having an upper
bound r on the potential target value, we proved that one can safely reduce the num-
ber of vertices of any clique class and stable set bundle to r. This means that the
original graphs is target-t k-equidominating if and only if the reduced graph is target-t
k-equidominating.

The third reduction rule, the r-Pseudo Graph Reduction, concerns clique bundles. Prov-
ing that we can use it for our purposes required a little more work. We introduced pseudo
graphs, a mathematical object to which we transformed all relevant information (with
respect to equidomination) of a graph. With this somewhat technical workaround we
were able to reduce the size of clique bundles, the last piece of the puzzle.

We proved that the Target-t Equidomination problem is fixed-parameter tractable.
Using the three above-mentioned reduction rules, we obtained a generalized kernel of
size O

(
tt+1

)
in polynomial time. Furthermore, by applying the XP algorithm to the

kernel, we achieved an FPT algorithm which runs for a graph on n vertices and m edges
in time O(nm2 + n2 + t2t

2+3t+1).

77

6.2 Discussion

For the k-Equidomination problem there was slightly more to do. This is because – in
contrast to a target-t equidominating graph – stable set classes can have arbitrary many
vertices in a k-equidominating graphs. Nevertheless, we overcame this difficulty and
showed that the k-Equidomination problem lies in FPT, too. Again, we constructed
a generalized kernel in polynomial time. The kernel of the k-Equidomination problem
is of size O(k3k+1) and the FPT algorithm needs time O(nm2 + n2 + k6k

2+7k+1).

Moreover, we generalized the k-Equidomination problem by allowing k different weights
that do not need to be of the set [k], but less than or equal to a second parameter
W > k. For the resulting k-W -Equidomination problem we proved analogous results.
It admits a kernel of size O

(
kk+1W 2k

)
, to which we can also apply the XP algorithm.

Since we do not prescribe the weights, we achieve an FPT algorithm with running time

O
(
nm2 + n2 +

((
W
k

)
(k2k

2+3k+1W 4k2+4k)
))

for the k-W -Equidomination problem.

6.2 Discussion

In this section, we state several rather detailed and technical conjectures and assertions
that came up during our studies. A wider outlook to future research is given in Sec-
tion 6.3. For the reader’s convenience and a better overview, we present the questions
and assertions in a list. Afterwards, we discuss and explain some points more detailed.

Since in the end clique bundles – more precisely, clique bundles that contain only sin-
gleton classes – gave us the most headaches and since the sizes of the kernels are mostly
depending on them, a lot of the following concerns clique bundles. Most of the ques-
tions should be also asked explicitly for equidominating graphs if they do not hold in
general.

In the following, let Pi and Pj be clique bundles of a graph. For the sake of clarity,
we omit a complete declaration of the used variables here. The reader is referred to
Chapter 4 and Chapter 5 for full definitions, which may lead to a better understanding
of the upcoming list:

(1) Let D be a minimal dominating set with |D∩Pi| = 1. Then, each private neighbor
of a vertex of D ∩ Pi either lies in Pi or is adjacent to every vertex of Pi.

(2) If two vertices v, w ∈ Pi exists with N [v] ⊆ N [w], then |D∩Pi| ≤ 1 holds for every
minimal dominating set D.

(3) If |D ∩ Pi| ≤ 1 for all minimal dominating sets D, then we can apply a reduction
rule that deletes particular edges incident to the vertices of Pi (see Lemma A.1 in
Appendix A).

(4) If |D ∩ Pi| ≤ 1 and |D ∩ Pj | ≤ 1 for all minimal dominating sets D, then we can
apply a reduction rule that deletes particular edges incident to vertices of both Pi

and Pj (see Lemma A.2 in Appendix A).

78

6.2 Discussion

(5) What are necessary and sufficient conditions for |D ∩ Pi| ≤ 1 for all minimal
dominating sets D?

(6) Even though there might be a minimal dominating set containing numerous verti-
ces of a clique bundle, there is always also a minimal dominating set that contains
exactly one vertex of this clique bundle.

(7) Let D be a minimal dominating set with l := |D ∩ Pi| > 1. Further, let P ′ ⊆ Pi

be an arbitrary subset of Pi with |P ′| = m. Then, (D \ Pi) ∪ P ′ is a minimal
dominating, a dominating but not minimal or a non-dominating set if m = l,
m > l or m < l, respectively.

(8) Let v, w ∈ Pi and let x be a vertex with µx
i > 0 that is adjacent to v and non-

adjacent to w. Then, x has a neighbor y that is non-adjacent to v and adjacent to
w with N(y) \ {w} ⊆ N [x].

(9) Let v /∈ Pi. Is there always a minimal dominating set D with |D ∩ Pi| = µv
i ?

(10) Is it possible that µv
i /∈ {0, 1, 2, |Pi|} for a vertex v /∈ Pi?

(11) Is there always an equidominating function that is constant on a stable set class?
If so, it there also one that is constant on all stable set classes?

(12) Is it possible that a minimal dominating set of an equidominating graph contains
exactly one vertex of a stable set class or a stable set bundle?

The assertions (1)-(4) concern clique bundles that intersects with minimal dominating
sets in at most one vertex. For a clique bundle Pi, this is the case if and only if µv

i ≤ 1
holds for every vertex v, which we can check in polynomial time. If this holds for
every clique bundle of a graph, then we can use the reduction rules of (3) and (4) to
obtain smaller problem kernels. In particular, one should use the reduction rules for an
implementation of one of the discussed algorithms.

The assertions (6) and (7) might be usefull to answer (5). Assertion (8) results from
the opposing effects of mds-exchangeability and the definition of the mds-vectors with
respect to a clique bundle: since v and w are mds-exchangeable, x has a neighbor y
that only sees neighbors of x, and possibly w (compare Figure 4.4 and Algorithm 1 on
page 50). But at the same time there exists a minimal dominating set such that x is
only dominated by vertices of Pi (since µ

x
i > 0). This means y must be adjacent to w.

Regarding (10), the interesting cases are µv
i > 1. However, (besides 0 and 1) we only

obtained 2 and |Pi| as values for µ
v
i during our studies (see for example the graph shown

in Figure 5.1 on page 61). More specific, in every example we worked with, the following
situation occurred: every vertex of the clique bundle has some kind of partner outside
and is the only one that either does or does not see his partner. For such a partner
v /∈ Pi. we obtain µv

i = |Pi| in the first case and µv
i = 1 in the latter case.

The graph of Figure 4.5(a) on page 52 shows that (12) can be answered with yes in
general. But it might be impossible in an equidominating graph.

79

6.3 Future Directions

6.3 Future Directions

During the studies on equidomination, several questions and ideas arose that provide a
base for future research.

Most importantly, we would like to determine the complexity class the Equidomination
problem lies in. We believe that it is at least NP -hard. It also seems interesting to look
out for complexity results for the Equidomination problem when the input is restricted
to a certain graph class. Moreover, can one deduce complexity results for well-studied
decision problems on the class of equidominating graphs?

One could take further parameterizations into account, for example, using the tree-width
or the clique-width of a graph as parameter. Another frequently used parameter in the
field of parameterized complexity is the vertex cover number. There are direct relations
between the vertex cover number and the clique-width on the one hand and the number
of twin classes and hence of pseudo classes on the other hand (compare [41]). It seems
that the so-called twin-cover [30] is also related to the topic equidomination. Is it possible
to deduce FPT results when the Equidomination problem is parameterized by one of
those graph parameters?

Regarding our parameterizations, it is unanswered if we can further reduce the size of the
kernels, if it is possible to achieve kernels of polynomial size (in terms of the parameter)
or if no of such sized kernels exist at all. Since the sizes of the obtained kernels are
determined by clique bundles, one should begin by trying to achieve a stronger reduction
rule for clique bundles.

For all of the previously mentioned questions, however, it might be necessary to get a
better grip on the combinatorial properties of equidominating graphs. A first step in this
direction could be a characterization of target-t equidominating and k-equidominating
graphs for small t and k. We already know that complete graphs are the only target-
1 equidominating graphs and that a 1-equidominating graph is either a complete, an
edgeless or a particular Turán graph (namely T (2n, n) for n ∈ N). Using Corollary 4.3.18
on page 48, it is possible to describe the corresponding classes for small t, k > 1.

We believe that the most promising access to a better understanding for equidominating
graphs and to achieve further results is to intensify analyzing clique bundles, the rela-
tionship between them and to other pseudo classes. In the previous section, we already
stated several ideas how to approach this issue.

Furthermore, it seems reasonable to search for more operations on graphs that preserve
equidomination (compare Chapter 3). Can we characterize equidominating graphs by
such operations like we did for hereditarily equidominating graphs in Theorem 3.3.2?

There exists an inclusion chain for several super- and subclasses of the class of equistable
graphs (see [48]). Which graph classes are contained in the class of equidominating
graphs and which graph classes contain this class? It is already known that no inclusion

80

6.3 Future Directions

relation exists between the class of equidominating graphs on the one hand and domish-
old or equistable graphs on the other hand (see [44] and [56]). On the affirmative side,
the class of threshold graphs is contained the class of equidominating graphs.

In general, equistability and related topics provide an excellent pattern for new research
directions. For example, one could define and investigate domination related properties
analogous to interstable (taking a target interval instead of a target value) or d-equistable
(using vectorial weights and target values), both defined in [50]. Moreover, one could
adapt the idea of characterizing minimal dominating sets by a weight function and a
target or threshold value to other forms of domination like total, multiple, global and
efficient domination (see [35] for definitions). This concept can also be extended to
any property on subsets of vertices or even on subsets of edges, for example, being a
(maximal) matching. Thoughts in this direction could concern a characterization of
the resulting graph classes as well as the (parameterized) complexity of the according
decision problems.

Furthermore, Chiarelli and Milanič discovered an interesting relation between so-called
total domishold graphs and Boolean functions [14]. Are Boolean functions also useful
with respect to equidomination?

Finally, one could consider exploring further applications of the pseudo class partition
and pseudo graphs (in particular when induced by a graph).

We hope that one day equidomination will gain as many attention as equistability such
that more results will appear. This thesis could be the first step in this direction.

81

Appendix A

Further Reduction Rules

The following two rules can be applied to clique bundles C for which |D ∩ C| ≤ 1 holds
for every minimal dominating set D. Let us call this Condition A. This is the case,
for example, if a clique bundle contains at least one clique class (and not only singleton
classes). More general, if there are two vertices v, w ∈ C with N [v] ⊆ N [w]. However,
Condition A might also be fulfilled in other situations.

The first reduction rule concerns clique bundles that contain two twin classes where the
neighborhood of one twin class is contained in the neighborhood of the other one. Note
that we talk about twin classes here since it could be either a clique class or a singleton
class. Since two such twin classes exist, Condition A is met.

Clique Bundle Neighborhood Reduction: If there are two twin classes T1

and T2 in a clique bundle with N [T1] ⊆ N [T2], delete all edges between the
vertices of T2 and N [T2] \N [T1].

Lemma A.1. Let G = (V,E) be a graph with a clique bundle C and let T1, T2 ⊆ C be
two twin classes with N [T1] ⊆ N [T2]. Let G′ be the graph obtained from G by using the
Clique Bundle Neighborhood Reduction rule with respect to T1 and T2, that is

G′ =
(
V,E \

{
vw ∈ E | v ∈ T2, w ∈ N [T2] \N [T1]

})
.

Let D ⊆ V . Then D is a minimal dominating set of G if and only if D is a minimal
dominating set of G′.

Proof. =⇒: Let D ⊆ V be a minimal dominating set of G and suppose that D is
not dominating in G′. Then either a vertex v ∈ T2 or a vertex w ∈ N [T2] \ N [T1] is
not dominated. In the first case, T1 is also not dominated, neither in G′ nor in G, a
contradiction. In the latter case, w is a private neighbor of T2 not seeing T1. If we
now exchange the (unique) vertex of T2 ∩ D with a vertex of T1, then w is not longer
dominated, again a contradiction. Thus, D is a dominating set of G′ and since we only
deleted edges of G to obtain G′, D is a minimal dominating set of G′.

⇐=: Let D ⊆ V be a minimal dominating set of G′. Since V (G′) = V (G) and E(G′) ⊆
E(G), we get NG[D] ⊇ NG′ [D] = V . Thus, D is also a dominating set of G. Suppose

82

A Further Reduction Rules

that D is not minimal in G. Then there exists a minimal dominating set D̃ (D of G.
However, according to the first part of the proof, D̃ is a minimal dominating set of G′,
a contradiction.

So, when applying the Clique Bundle Neighborhood Reduction rule, we join two clique
classes to only one. This implies the following: if there is a twin class in a clique bundle
which only sees the other twin classes of that clique bundle (see for example Figure 4.3),
then, by applying the Clique Bundle Neighborhood Reduction several times, the clique
bundle becomes a single, isolated clique class.

With the second reduction rule we reduce the edges between two clique bundles.

Clique Bundles Correlation Reduction: If there are two adjacent twin
classes T1 ∈ C1 and T2 ∈ C2 of two clique bundles C1 and C2 such that T1 does
not see every twin class of C2 and T2 does not see every twin class of C1, then
delete all edges between the vertices of T1 and T2.

Lemma A.2. Let G = (V,E) be a graph with two clique bundles C1 and C2 fulfilling
Condition A. Let T1 ∈ C1 and T2 ∈ C2 be two adjacent twin classes with C2 * N(T1)
and C1 * N(T2). Further, let G′ be the graph obtained from G by applying the Clique
Bundles Correlation Reduction rule with respect to T1 and T2, that is

G′ =
(
V,E \

{
vw ∈ E | v ∈ T1, w ∈ T2

})
.

Let D ⊆ V . Then D is a minimal dominating set of G if and only if D is a minimal
dominating set of G′.

Proof. Analogously to the proof of Lemma A.1, it is sufficient to show that every minimal
dominating set of G is also a dominating set of G′. So, let D be a minimal dominating
set of G which is not dominating in G′. Then either T1 or T2 is not dominated. Without
loss of generality let T1 not be dominated in G′. That means there is a vertex x ∈ D∩T2

with T1 as private neighbors, formally T1 ⊆ pnG(x,D). However, if we now exchange x
with a vertex of a twin class of C2 that is not seen by T1 (in G), then T1 is not dominated
(in G). This contradicts the mds-exchangeable property of C2.

It can be shown straightforwardly that the following observation holds. Together with
Lemma A.1 and Lemma A.2, we obtain Corollary A.4.

Observation A.3. Let k, t ∈ N. If two graphs G and G′ on the same vertex set (that
is V (G) = V (G′)) have exactly the same family of minimal dominating sets, then G is
target-t k-equidominating if and only if G′ is target-t k-equidominating.

Corollary A.4. In the context of Lemma A.1 or Lemma A.2, G is target-t k-equidomi-
nating if and only if G′ is target-t k-equidominating.

83

List of Figures

2.1 Relation between complexity classes . 12

3.1 An equidominating graph on 8 vertices . 17
3.2 The set of forbidden induced subgraphs of hereditarily equidominating

graphs . 26

4.1 An equidominating graph on 8 vertices . 40
4.2 An equidominating graph on 10 vertices 46
4.3 An equidominating graph consisting of two clique bundles each containing

three clique classes with two to four vertices 47
4.4 A visualization of the idea of Algorithm 1 50
4.5 A comparison of the twin partition, the pseudo class partition and the

mds-ex partition . 52

5.1 A (non-equidominating) graph on 10 vertices 61

84

Bibliography

[1] Liliana Alcón, Marisa Gutierrez, István Kovács, Martin Milanič, and Romeo Rizzi.
Strong cliques and equistability of EPT graphs. Discrete Applied Mathematics,
203:13–25, 2016.

[2] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving
MAX-r-SAT above a tight lower bound. Algorithmica, 61(3):638–655, Nov 2011.

[3] Claude Benzaken and Peter L. Hammer. Linear separation of dominating sets in
graphs. In Béla Bollobás, editor, Advances in Graph Theory, volume 3 of Annals
of Discrete Mathematics, pages 1–10. Elsevier, 1978.

[4] Claude Berge. The theory of graphs. Courier Corporation, 1962.

[5] Peter Van Emde Boas. Machine models and simulations. Handbook of Theoretical
Computer Science, volume A, pages 1–66, 1990.

[6] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Her-
melin. On problems without polynomial kernels. Journal of Computer and System
Sciences, 75(8):423–434, 2009.

[7] Joseph Bonneau, Jonathan Anderson, Ross Anderson, and Frank Stajano. Eight
friends are enough: Social graph approximation via public listings. In Proceedings
of the Second ACM EuroSys Workshop on Social Network Systems, SNS ’09, pages
13–18. ACM New York, 2009.

[8] Endre Boros, Vladimir Gurvich, and Martin Milanič. On equistable, split, cis, and
related classes of graphs. Discrete Applied Mathematics, 216(1):47–66, 2017.

[9] Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, and Raffaele Mosca. New
graph classes of bounded clique-width. Theory of Computing Systems, 38(5):623–
645, 2005.

[10] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey.
SIAM, 1999.

[11] Andreas Brandstädt, Arne Leitert, and Dieter Rautenbach. Efficient Dominating

85

Bibliography

and Edge Dominating Sets for Graphs and Hypergraphs, pages 267–277. Springer-
Verlag Berlin Heidelberg, 2012.

[12] Eglantine Camby and Oliver Schaudt. The price of connectivity for dominating set:
Upper bounds and complexity. Discrete Applied Mathematics, 177:53–59, 2014.

[13] Nina Chiarelli and Martin Milanič. Linear Separation of Total Dominating Sets in
Graphs, pages 165–176. Springer-Verlag Berlin Heidelberg, 2013.

[14] Nina Chiarelli and Martin Milanič. Total domishold graphs: A generalization of
threshold graphs, with connections to threshold hypergraphs. Discrete Applied
Mathematics, 179:1–12, 2014.

[15] Nina Chiarelli and Martin Milanič. On a class of graphs between threshold and
total domishold graphs. Discrete Applied Mathematics, 195:43–58, 2015.

[16] Václav Chvátal. On certain polytopes associated with graphs. Journal of
Combinatorial Theory, Series B, 18(2):138–154, 1975.

[17] Václav Chvátal and Peter L. Hammer. Aggregation of inequalities in integer pro-
gramming. Annals of Discrete Mathematics, 1:145–162, 1977.

[18] Bruno Courcelle. The expression of graph properties and graph transformations
in monadic second-order logic. Handbook of Graph Grammars and Computing by
Graph Transformation, 1:313–400, 1997.

[19] Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order
logic. A language-theoretic approach. Encyclopedia of Mathematics and its appli-
cations, Vol. 138. Cambridge University Press, 2012.

[20] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable op-
timization problems on graphs of bounded clique-width. Theory of Computing
Systems, 33(2):125–150, 2000.

[21] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs.
Discrete Applied Mathematics, 101(1):77–114, 2000.

[22] Alain Cournier and Michel Habib. A new linear algorithm for modular decom-
position. In Sophie Tison, editor, Trees in Algebra and Programming CAAP’94,
volume 787 of Lecture Notes in Computer Science, pages 68–84. Springer-Verlag
Berlin Heidelberg, 1994.

[23] Reinhard Diestel. Graph Theory. Springer-Verlag, New York, 2016.

[24] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and com-

86

Bibliography

pleteness. Congressus Numerantium, 87:161–187, 1992.

[25] Rod G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complex-
ity. Springer-Verlag Berlin Heidelberg, 2013.

[26] Paul Erdös. Problems and results in additive number theory. Colloque Theorie des
Nombres, pages 127–137, 1956.

[27] Arthur Finbow, Bert Hartnell, and Richard Nowakowski. Well-dominated graphs:
a collection of well-covered ones. Ars Combinatoria, 25A:5–10, 1988.

[28] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer-Verlag
Berlin Heidelberg, 2006.

[29] Jean-Luc Fouquet. A decomposition for a class of (P5, P5)-free graphs. Discrete
Mathematics, 121(1-3):75–83, 1993.

[30] Robert Ganian. Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics,
pages 259–271. Springer-Verlag Berlin Heidelberg, 2012.

[31] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[32] Gregory Gutin and Vadim E. Zverovich. Upper domination and upper irredundance
perfect graphs. Discrete Mathematics, 190(1):95–105, 1998.

[33] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular
decomposition. Computer Science Review, 4(1):41–59, 2010.

[34] Pinar Heggernes and Dieter Kratsch. Linear-time certifying recognition algorithms
and forbidden induced subgraphs. Nordic Journal of Computing, 14(1-2):87–108,
2007.

[35] Teresa W. Heyes, Stephan T. Hedetniemi, and Peter J. Slater. Fundamentals of
Domination in Graphs. Marcel Dekker Inc., 1998.

[36] Eun Jung Kim, Martin Milanič, and Oliver Schaudt. Recognizing k-equistable
graphs in FPT time. 41st International Workshop on Graph-Theoretic Concepts in
Computer Science, WG 2015, pages 487–498, 2016.

[37] Ephraim Korach and Uri N. Peled. Equistable series-parallel graphs. Discrete
Applied Mathematics, 132(1-3):149–162, 2003.

[38] Ephraim Korach, Uri N. Peled, and Udi Rotics. Equistable distance-hereditary
graphs. Discrete Applied Mathematics, 156(4):462–477, 2008.

87

Bibliography

[39] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer-Verlag Berlin Heidelberg, 2000.

[40] Yung-Ling Lai and Kenneth Williams. A survey of solved problems and applications
on bandwidth, edgesum, and profile of graphs. Journal of Graph Theory, 31(2):75–
94, 1999.

[41] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorith-
mica, 64(1):19–37, Sep 2012.

[42] Vadim E. Levit and Martin Milanič. Equistable simplicial, very well-covered, and
line graphs. Discrete Applied Mathematics, 165:205–212, 2014.

[43] Vadim E. Levit, Martin Milanič, and David Tankus. On the recognition of k-
equistable graphs. In Martin C. Golumbic, Michal Stern, Avivit Levy, and Gila
Morgenstern, editors, Graph-Theoretic Concepts in Computer Science, volume 7551
of Lecture Notes in Computer Science, pages 286–296. Springer-Verlag Berlin Hei-
delberg, 2012.

[44] Nadimpalli V. R. Mahadev and Uri N. Peled. Threshold graphs and related topics,
volume 56 of Annals of Discrete Mathematics. North-Holland Publishing Co., Am-
sterdam, 1995.

[45] Nadimpalli V. R. Mahadev, Uri N. Peled, and Feng Sun. Equistable graphs. Journal
of Graph Theory, 18(3):281–299, 1994.

[46] Paola Marchioro and Aurora Morgana. Structure and recognition of domishold
graphs. Discrete Mathematics, 50:239–251, 1984.

[47] Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive
orientation. Discrete Mathematics, 201(13):189–241, 1999.

[48] Štefko Miklavič and Martin Milanič. Equistable graphs, general partition graphs,
triangle graphs, and graph products. Discrete Applied Mathematics, 159(11):1148–
1159, 2011.

[49] Martin Milanič, James Orlin, and Gábor Rudolf. Complexity results for equistable
graphs and related classes. Annals of Operations Research, 188:359–370, 2011.

[50] Martin Milanič and Gábor Rudolf. Structural results for equistable graphs and
related graph classes. RUTCOR Research Report 25-2009, 2009.

[51] Martin Milanič and Nicolas Trotignon. Equistarable graphs and counterexamples
to three conjectures on equistable graphs. Journal of Graph Theory, 84(4):536–551,
2017.

88

Bibliography

[52] Rolf H. Möhring and Franz J. Radermacher. Substitution decomposition for dis-
crete structures and connections with combinatorial optimization. In Rainer E.
Burkard, Ray A. Cuninghame-Green, and Uwe Zimmermann, editors, Algebraic
and Combinatorial Methods in Operations Research, volume 95 of North-Holland
Mathematics Studies, pages 257–355. North-Holland, 1984.

[53] Raffaele Mosca. Polynomial algorithms for the maximum stable set problem on
particular classes of P5-free graphs. Information Processing Letters, 61(3):137–143,
1997.

[54] Oystein Ore. Theory of graphs. American Mathematical Society Providence, Rhode
Island, 1962.

[55] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Courier Corporation, 1982.

[56] Charles Payan. A class of threshold and domishold graphs: equistable and equido-
minating graphs. Discrete Mathematics, 29(1):47–52, 1980.

[57] Uri N. Peled and Udi Rotics. Equistable chordal graphs. Discrete Applied
Mathematics, 132(1-3):203–210, 2003.

[58] Dieter Rautenbach and Vadim E. Zverovich. Perfect graphs of strong domination
and independent strong domination. Discrete Mathematics, 226(1):297–311, 2001.

[59] Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler linear-
time modular decomposition via recursive factorizing permutations. In Luca Aceto,
Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, Automata, Languages and Programming, volume
5125 of Lecture Notes in Computer Science, pages 634–645. Springer-Verlag Berlin
Heidelberg, 2008.

[60] Peter van Emde Boas. Another NP-complete partition problem and the complex-
ity of computing short vectors in a lattice. In Report No. 81-04. Department of
Mathematics, University of Amsterdam, 1981.

[61] Igor E. Zverovich and Vadim E. Zverovich. A characterization of domination perfect
graphs. Journal of Graph Theory, 15(2):109–114, 1991.

89

Index

Page numbers in bold refer to definitions or first appearances. Variables or terms with
a variable at the beginning are included in the alphabetical order, where symbols appear
at the beginning of the index. The · symbolizes an argument of an operator.

[·], 6
∼=, 7
∪̇, 6
|·|, 6
⊂, 6, 7
×, 7

adjacent, 7
algorithm, 10

banner, 26
basic graph, 25, 31
bikernelization, 15
bipartite graph, 7
block, 6
bull, 26
bundle, 47

clique, 46, 61
stable set, 45, 60

C5, 26
certificate, 11
chain

-join, 9, 23, 26, 27
graph, 8

characteristic vector, 6
class, 6

clique, 40, 59
mds-ex, 50
pseudo, 47

singleton, 40, 61
stable set, 40, 69
twin, 40

clique, 8
bundle, 46, 61
class, 40, 59

clique-width, 33
closed neighborhood, 8
Cn, 7, 19
co-chain graph, 9, 30, 34
co-class, 30
coarsening, 6, 51
color class, 7
complement graph, 7
complete

bipartite graph, 7
graph, 7

complete union, 8, 21
component, 8
connected, 8
connected dominating, 27

minimal, 27
coNP, 12

-complete, 12, 36
-hard, 12

cycle, 7

D − x+ y, see V ′ − x+ y
decision problem, 10
deg(·), 8

90

INDEX

degree, 8
dense set, 63
diameter, 8
disjoint union, 8, 22
dist(·, ·), 8
distance, 8
distinct-subset-sums property, 36
dominate, 8
dominating, 8

connected, 27
set, 8

Dominating Set, 11
domination number, 55

upper, 55
domishold, 2, 16

E(·), 7
edge, 7

set, 7
edgeless graph, 7
equidense, 65

function, 65
structure, 65

equidominating, 16
function, 16
hereditarily, 25
structure, 16

Equidominating Function, 35
Equidomination, 35
equistable, 3, 36, 41, 73
equivalence

class, 6, 40
relation, 6, 39, 50

false twin, 21, 39
fixed-parameter tractable, 13
FPT, 13

algorithm, 13
free, 25

G+ E′′, 7
G− E, 7
G− e, 7
G− v, 7
G− V ′, 7

G1 +G2, 8
G1 ∪G2, 8
generalized

kernel, 15, 67, 69, 75
kernelization, 14

graph, 7
bipartite, 7
chain, 8
co-chain, 9
complement, 7
complete, 7
complete bipartite, 7
edgeless, 7
prime, 9
product, 21
pseudo, 63
star, 7

G, 7

hereditarily equidominating, 25
house, 26

implementation, 55, 66, 79
incident, 7
induced pseudo graph, 63, 65
induced subgraph, 7
instances, 10
isolated vertex, 8, 20
isomorphic, 7

k-Equidomination, 38, 53, 69
k-equidense, 65, 71

function, 65
structure, 65

k-equidominating, 37
function, 37
structure, 37

k-expression, 33
k-W -Equidomination, 74, 75
k-W -equidominating, 73

function, 73
structure, 73

K1,n, 7, 19, 57, 73
K2,3, 26
kernel, 14

91

INDEX

generalized, 15, 67, 69, 75
kernelization, 14

generalized, 14
Km,n, 7, 19
Kn, 7, 19
Kn, 7, 19

maximal stable set, 8
mds

-exchangeable, 42, 58
-vector, 62

mds-ex
class, 50
partition, 50

minimal
connected dominating, 27
dense, 63
dominating, 8

modular decomposition, 9, 34
module, 9, 34

trivial, 9
Monadic Second-Order Logic, 33
MSOL, see Monadic Second-Order

Logic
µv, 62

N(·), 8
N [·], 8
neighborhood

closed, 8
open, 8

no-instance, 10
NP, 11

-complete, 11
-hard, 11, 35

O, 10
open neighborhood, 8
order, 11

P, 10
p-Dominating Set, 13
P2 ∪ P3, 26
P5, 26
parameterization, 13

parameterized problem, 13
partition, 6, 38

mds-ex, 50
pseudo class, 47
twin, 40

path, 7
pendant vertex, 8, 21
Pn, 7, 19
pn[·, ·], 8
polynomial time solvable, 10
prime, 9, 34
private neighbor, 8
pseudo class, 47

partition, 47, 52
pseudo graph, 63, 71

induced, 63, 65

quotient graph, 40, 45

recursion, see recursion
reduce, 11
Reduction, 74

r-Clique Class, 59, 67, 71
r-Pseudo Graph, 65, 67, 71
r-Stable Set Bundle, 60, 67, 71
Clique Bundle Neighborhood, 82
Clique Bundles Correlation, 83

reduction rule, 15
refinement, 6, 51
running time, 10

see, 40
set

dense, 63
dominating, 8
stable, 8

set of forbidden induced subgraphs, 25,
33

singleton class, 40, 61
size, 10
stable set, 8

bundle, 45, 60
class, 40, 69
maximal, 8

star graph, 7

92

INDEX

string, 9
subgraph, 7

induced, 7

T (2n, n), see Turán graph
target value, 16, 65
Target-t Equidomination, 38, 56,

67
target-t

equidense, 65, 67
equidominating, 37
k-equidense, 65
k-equidominating, 57

threshold graph, 18
total weight, 6
trivial, 9
true twin, 21, 39
Turán graph, 7, 18, 19, 25, 36, 45
twin, 39

class, 40
false, 39
partition, 40
relation, 39
true, 39

union

complete, 8

disjoint, 8

universal vertex, 8, 20, 23, 26

upper domination number, 55

V ′ − x+ y, 7

V (·), 7
vertex, 7

isolated, 8, 20

pendant, 8, 21

set, 7

universal, 8, 20, 23, 26

Weak Partition, 36

weight, 6

function, 6

total, 6

XP, 13

algorithm, 13, 52

yes-instance, 10

93

Danksagung

Allen voran danke ich Prof. Dr. Rainer Schrader. Er schuf ein angenehmes wie familiäres
Arbeitsklima und -umfeld. Bei Fragen und Angelegenheiten aller Art war er jederzeit
nahezu unverzüglich mit Rat und Tat zur Stelle. Damit gab er mir beste Voraussetzungen
für eine erfolgreiche Promotion.

Weiter danke ich Prof. Dr. Oliver Schaudt. Unsere intensiven Sessions waren ebenso
ertragreich wie spaßbringend. Zweiteres mag an den unterhaltsamen Pausenthemen wie
Gesellschaftsspiel- und Musikdiskussionen, Retrogames, Rätselraten sowie MMA und
Ultimate liegen. Aber auch das Eintauchen in die Tiefen der Abstraktheit, ich sag nur
Ballons oder Graphenüberlappungen, bereitete neben rauchenden Köpfen gleichermaßen
viel Freunde.

Zudem danke ich meinen Arbeitsskollegen, die mich auf meinem Weg begleitet haben
– oder wie ich gerne sage, Arbeitsfreunde. Zunächst sei die Bauspargruppe erwähnt:
Dr. Thomas Chevalier, Marcel Schwalb, Dr. Dominique Ziegelmayer, Dr. Andrea Overs-
berg, Jun-Gyu Kim und Roland Mainka. Ich habe die Zusammenarbeit sehr genossen
und für alle Lebenslagen und -fragen gab es den richtigen Ansprechpartner. In den let-
zten Jahren erlebten wir gemeinsam zu vieles, um hier einzelne Themen, Ereignisse und
Albernheiten hervorzuheben. Aber auch jenseits des Flures, hatte ich das Privileg toller
Kollegen. Ich danke meiner M. Dr. Vera Weil, die mir insbesondere am Ende meiner
Promotion mit ihrer Erfahrung und Weisheit zur Seite stand. Alexander Apke und
Toni Böhnlein danke ich für allerlei Diskussionen und anregende Donnerstagsseminare,
vorzugsweise natürlich nicht am Donnerstag, sowie das kritische Lesen meiner Arbeit.
Auch wenn sie am Ende gewisse Ausdrücke und Bilder nicht mehr hören und sehen kon-
nten, hat man es ihnen kaum angemerkt. Dank ihnen allen fühlte es sich in mancher
Hinsicht gar nicht so an, als würde man zur Arbeit gehen. Es ist sehr viel wert, jeden
Tag auch Spaß zu haben und zu lachen.

Ein herzlicher Dank geht weiterhin an Annette Koenen für schnelle und unkomplizierte
Hilfe in allen Belangen sowie an Martin Olschewski, der immer mit technischer Beratung
zu Stelle war und mir immer öfters gelöschte oder überschriebene Dateien wiederher-
stellte.

Ein besonders großer Dank gilt meinen Eltern, die mich mein Leben lang unterstützt,
gefördert und gefordert haben. Damit haben sie letztlich das Fundament für diese Arbeit
gelegt.

94

Explizit danke ich meinen (bisher nicht erwähnten) Korrekturlesern: Berna Gülmez,
Marvin Brandau, Patrick Senger und Yan Hoepfner! Unabhängig davon danke ich allen
Freunden und lieben Menschen, denen ich bisher begegnen durfte. Ohne euch wäre ich
nicht der Mensch, der ich heute bin!

Katja, ich bin sehr froh, dass es Dich gibt und noch froher, dass sich unsere Wege
gekreuzt haben! Ich danke Dir für deine Unterstützung, insbesondere in den letzten
sieben Monaten.

95

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die
benutzen Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – ein-
schließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut oder
dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht
habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung
vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch
nicht veröffentlicht worden ist, sowie, dass ich eine solche Veröffentlichung vor Abschluss
der Promotionsverfahrens nicht vornehmen werde.

Die Bestimmung der Promotionsordnung sind mit bekannt. Die von mir vorgelegte
Dissertation ist von Herrn Prof. Dr. Rainer Schrader betreut worden.

Fabian Senger

Teilpublikationen

• Oliver Schaudt and Fabian Senger. The Parameterized Complexity of the Equi-
domination Problem. In Hans L. Bodlaender and Gerhard J. Woeginger, editors,
Graph-Theoretic Concepts in Computer Science: 43nd International Workshop,
WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised Selected Papers,
volume 10520 of Theoretical Computer Science and General Issues. Springer-
Verlag Berlin Heidelberg, 2017.

96

	Contents
	1 Introduction
	1.1 Relation to Equistability
	1.2 Outline

	2 Preliminaries
	2.1 Basic Definitions and Notations
	2.2 Complexity Theory
	2.2.1 Fundamentals
	2.2.2 Parameterized Complexity

	3 Equidomination
	3.1 An Introduction
	3.2 General Results
	3.3 Hereditarily Equidominating Graphs
	3.3.1 Forbidden Induced Subgraphs and Structural Decomposition
	3.3.2 Recognition of Hereditarily Equidominating Graphs

	4 Complexity Issues and the Pseudo Class Partition
	4.1 The Equidomination Problem
	4.2 Parameterization
	4.3 Decomposition
	4.3.1 Twin Partition
	4.3.2 Pseudo Class Partition

	4.4 XP Algorithm

	5 Fixed-parameter Tractability Results
	5.1 Reduction Rules
	5.2 Target-t Equidomination
	5.3 k-Equidomination
	5.4 k-W-Equidomination

	6 Conclusion and Outlook
	6.1 Our Contribution
	6.2 Discussion
	6.3 Future Directions

	A Further Reduction Rules
	List of Figures
	Bibliography
	Index

