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Abstract
Background: Polyunsaturated fats (PUFAs) have been shown to reduce type 2 diabetes (T2DM) risk and improve insulin
responsiveness in T2DM subjects, but whether the plant sources of omega-3 PUFA (alpha-linolenic acid [ALA]) have an effect on
glycemic control requires further investigation.

Methods: The parameters of interest were glycated hemoglobin (HbA1c), fasting blood glucose (FBG), fasting blood insulin (FBI),
homeostatic model assessment for insulin resistance (HOMA-IR), fructosamine, and glycated albumin. A comprehensive search was
conducted with MEDLINE, Embase, CINAHL, and Cochrane. Eligible studies included randomized controlled trials (RCTs) ≥1 month
in duration that compared diets enriched in ALA with usual diets on glycemic parameters. For each study, the risk of bias as well as
the study quality was assessed. Using the statistical software RevMan (v5.3), data were pooled using the generic inversemethod with
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random effects model, and final results were expressed as mean differences (MD) with 95% confidence intervals (CI). Heterogeneity
was assessed by the Cochran Q statistic and quantified by the I2 statistic.

Results: A total of 8 trials (N=212) were included in the meta-analysis. Compared to a control diet, a median dose of 4.4g/day of
ALA intake for a median duration of 3 months did not affect HbA1c (%) (MD=–.01; [95%: –.32, .31], P= .96). A median ALA dose of
5.4g/day did not lower FBG (MD= .07; [95% CI: –.61, .76], P= .84) or FBI (MD=7.03, [95% CI: –5.84, 19.89], P= .28). Summary
effect estimates were generally compromised by considerable and unexplained heterogeneity (I2 ≥75%). In the subgroup analysis of
continuous predictors, a reduction in HbA1c (%) and FBG (mmol/L) was significantly associated with an increased intake of ALA.
Further adjustment for Publication Bias using Duval and Tweedie’s trim-and-fill analysis provided an adjusted, significant MD of –.25
(95% CI: –.38, –.12; P<.001) for HbA1c (%).

Conclusions: ALA-enriched diets did not affect HbA1c, FBG, or FBI. The scarce number of existing RCTs and the presence of
heterogeneity in our meta-analysis limit the ability tomake firm conclusions about ALA in T2DMmanagement. The potential for ALA to
have dose-dependent effects warrants further research in this area.

Abbreviations: ALA= alpha-linolenic acid, AMDR= acceptable macronutrient distribution range, CI= confidence interval, DHA=
docosahexaenoic acid, EAR = estimated average requirement, EPA = eicosapentanoic acid, FBG = fasting blood glucose, FBI =
fasting blood insulin, HbA1c = glycated hemoglobin, HOMA-IR = homeostatic model assessment for insulin resistance, MD =mean
difference, MQS = methodological quality score, RCTs = randomized controlled trials, SD = standard deviation, T2DM = type 2
diabetes mellitus, UL = tolerable upper intake level.

Keywords: ALA, alpha-linolenic acid, diabetes, glucose, glycemic control, omega-3 fatty acid, polyunsaturated fatty acid
1. Introduction

Dietary modifications have strong potential to improve the
management of glycemic parameters in type 2 diabetes (T2DM).
One specific modification recommended by both the American
and Canadian Diabetes Association is to increase consumption of
unsaturated fats as a substitute for saturated and trans fats.[1,2] In
particular, polyunsaturated fats (PUFA) have been associated
with reducing cardiovascular disease risk, however their benefits
beyond improving the lipid profile remain inconclusive.[3,4]The
Nutrition Evidence Library, which pools together available
prospective cohort data, has reported that there is strong evidence
to support PUFAs for the reduction of T2DM risk and for
improvements in insulin responsiveness, without specifying
which particular PUFA source.[5] Evidence from randomized
controlled trials (RCTs) suggests that fish omega-3 PUFAs,
eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA), do
not improve glycemic parameters in T2DM.[1,6,7] Rather,
evidence points toward ALA for benefits in glycemic control,
as associations have been observed between ALA and lowered
T2DM risk as well as improved insulin sensitivity.[8,9] In light of
recent research supporting ALA’s role in T2DM management
and the increasing pressures on global fish stocks,[10] identifying
the physiological effects of ALA, the only plant-derived omega-3
available, is urgently needed.
ALA is an 18-carbon omega-3 PUFA of plant origin, mainly

derived from our diet through walnut, flaxseed, salba-chia seed,
and canola oil. According to the American Heart Association, an
intake of 1.5 to 3g of ALA per day seems to be beneficial for
individuals at risk for coronary heart disease.[11] Although some
health agencies advocate increasing consumption of ALA-
containing foods, the benefit of ALA in T2DM is not well
established. Numerous animal and in vitro studies have
demonstrated the ability of ALA to regulate glucose homeostasis
by affecting insulin sensitivity through potential functions in gene
regulation, fat metabolism, and adipocyte formation.[12–18]

However, human studies have shown mixed findings in regards
to the effect of dietary ALA on glycemic parameters, in both
healthy populations[19–21] and T2DM populations.[22–30] There-
fore, in the present study, we conducted a systematic review and
2

meta-analysis to synthesize existing evidence from RCTs that
evaluated the effect of ALA, from all sources, on glycemic control
in a population with T2DM.
2. Methods

2.1. Protocol and registration

The systematic review and meta-analysis was conducted
following the Cochrane Handbook for Systematic Reviews of
Interventions[31] and reported following the PRISMA guide-
lines.[32] The study was registered online at ClinicalTrials.gov
[ID: NCT02701894].
2.2. Search strategy and data sources

The electronic databases MEDLINE, Embase, CINAHL, and the
Cochrane Central Register of Controlled Trials were searched
using specific search terms (see Supplementary Table 1, http://
links.lww.com/MD/B651which lists the search terms in the order
they were searched), from inception through December 28, 2015,
without language restrictions. The search terms identified dietary
sources of ALA and biomarkers of T2DM: glycated hemoglobin
(HbA1c), fasting blood glucose (FBG), fasting blood insulin
(FBI), glycated albumin, and the homeostatic model for insulin
resistance (HOMA-IR). This was supplemented by a manual
search of the references of the included articles. One article[33]

was obtained through contacting the author.[34]
2.3. Eligibility criteria

The titles and abstracts of the articles were assessed using
prespecified inclusion and exclusion criteria by VD for studies up
to December 2012, and by DL for those published between
December 2012 and December 2015. We included RCTs that
compared ALA intake with an appropriate control in a T2DM
population, with a duration ≥1 month, to allow for inclusion of
articles that tested shorter changes of glycemic control, fructos-
amine, and glycated albumin.[35,36] Included studies assessed at
least one of HbA1c, fasting blood glucose (FBG), fasting blood
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insulin (FBI), HOMA-IR, fructosamine, or glycated albumin.
Articles were required to report the amount of ALA administered
to participants, and doses were to be≥1.3g/day, as defined by the
lower end of AMDR to prevent ALA deficiency.[11] Studies that
were not conducted in human subjects were not randomized,
lacked a suitable control group, lacked suitable endpoint data,
and were <1 month in duration were excluded.
2.4. Data collection and quality assessment

Several independent reviewers, DL, ACRM, VD, and ES, assessed
the included articles that fulfilled the inclusion criteria, and
extracted data following a standardized proforma. Relevant data
included: study design, sample size, study characteristics (weight,
gender, disease state, age, medications, etc.), treatment and
control diet, endpoints assessed, diet compositions, settings
(inpatient or outpatient), statistical analyses used, and funding
source.Mean±SD estimates for all relevant endpoints for control
and intervention arms were extracted (HbA1c, FBG, FBI,
HOMA-IR, fructosamine, and glycated albumin) for baseline,
end, and change-from-baseline values. If necessary and possible,
the SD was derived from available data (95% CI, P-values, t of F
values, and standard error of the mean [SEM]), following
standard formulas.[31] If presented, the absolute mean difference
(MD) in change±SE values and/or the change (MD)±SE values
between the control and treatment group were also extracted.
The primary effect measure is the difference in change score
between ALA and control arms in HbA1c; when not available,
difference in end values are used. Our choice of primary outcome
measure, HbA1c, is reflective of an individual’s average blood
glucose during the previous 3 months. This method remains
useful for detecting long-term and sustainable changes in diabetic
complications.[37] If critical data could not be retrieved from the
article (such as the dose of ALA administered) and authors could
not be contacted after 3 email attempts, then the article was
excluded and data was deemed irretrievable. The present meta-
analysis extracted patient data from eligible RCTs, which have
obtained patient consent for data collection. For this reason, our
study did not require an ethics committee approval.
The risk of bias was assessed using the Cochrane Collaboration

Tool for Assessing Risk of Bias.[31] The test for risk of bias
ultimately determines whether the articles have credible results,
which cannot be confirmed by assessment of the studies for
appropriate methodological procedures or study quality.[31]

We assessed each trial for an “Unclear,” “Low,” or “High” risk
of bias in the following domains: sequence generation, allocation
concealment, blinding, outcome data, and outcome reporting.
Articles that were considered high risk had methodological flaws
that likely influenced the results, and low risk articles indicated the
use of methodology that is conventionally recognized to eliminate
bias. If insufficient data were presented to make this assessment,
then the article was indicated to have an unclear risk of bias.
The quality of the studies was assessed using the Heyland

Methodological Quality Score (MQS).[38] A maximum of 12
points could be assigned to each article, and these points were
given based on methodology (randomization, blinding, and
analysis), sample (selection, compatibility, and follow-up), and
intervention (protocol and co-interventions). Studies that were
given a score of ≥8 were deemed higher quality. Any
discrepancies between the study MQS and data extracted by
the co-extractors were resolved by discussion and consensus.
Likewise, the final inclusion of articles was decided based on
discussion and agreement.
3

2.5. Statistical analysis

The statistical software Revman v5.3 (The Nordic Cochrane
Centre, The Cochrane Collaboration, Copenhagen, Denmark)
was used to analyze the data. When at least 2 studies provided
data, we performed a DerSimonian and Laird random effects
meta-analysis, which yields conservative confidence intervals
(CIs) around effect estimates in the presence of heterogeneity.
Paired analyses were conducted for crossover trials using 0.5 as a
correlation coefficient. This represents a conservative estimate,
which is used when the pooled correlation coefficient could not
be derived for the imputation of unavailable SD.[39] Data are
presented as MD with 95% CIs. A 2-sided P-value of <.05 was
used to determine the significance of the difference.
Heterogeneity was determined by the Cochran Q test

(significant at P <.10), quantified by the I2 statistic (range
0%–100%). I2 <50%, <75%, and ≥75% represented “moder-
ate,” “substantial,” and “considerable” heterogeneity, respec-
tively.[31] Irrespective of outcome, sources of heterogeneity for
each outcome measure were explored with subgroup analysis,
using STATA software to perform meta-regression and explore
the significance of the subgroup effects. Subgroups were
determined a priori, based on: ALA source (flaxseed oil, flax
seed, salba-chia, or walnut), ALA dose, study duration, study
quality (MQS), study design (control or parallel), method of
intake, and baseline outcome values for each respective outcome.
Study characteristics were analyzed as continuous (dose,
duration, and baseline values) or categorical predictors (dose,
MQS, study type, ALA source, duration, and method of
intake).
Sensitivity analyses were conducted to explore the effect of

each individual trial on the total summary effect and heterogene-
ity. This was done by systematically removing an individual trial
at a time from the meta-analysis to allow for a recalculation
of the effect size and heterogeneity for the remaining trials
(a “leave-one-out” analysis).
Publication bias was investigated by visual inspection of funnel

plots for asymmetry and quantitatively assessed using Egger’s
and Begg’s tests. P <.10 was considered evidence of small study
effects. To correct for publication bias, Duval and Tweedie’s
trim-and-fill analysis was used to estimate the number of studies
that may have been suppressed and provide an adjusted summary
effect with the filled studies.[40,41]
3. Results

3.1. Search results

The literature search identified 1189 potentially relevant articles.
After duplicate studies were removed and ineligible studies were
excluded, 48 studies were reviewed in full, and 8 studies were
included in the quantitative syntheses (Fig. 1). One trial that had
irretrievable information for the dose of ALA[42] and another trial
that incorporated a low dose of 1.2g/day [33] in an exclusive post-
menopausal female population were both excluded after careful
consideration. Sensitivity analysis in which both of these trials
were independently added to the meta-analysis did not
significantly alter the results. Four used flaxseed oil, [22,26,27,29]

3 studies [24,25,28] incorporated walnuts, and 1 used salba-chia
seed as the source of ALA. All 8 trials reportedHbA1c and 7 trials
reported FBG and FBI. Only 1 article [29] reported onHOMA-IR,
so meta-analysis could not be performed on this outcome
measure. None of the studies provided values for glycated
albumin or fructosamine.

http://www.md-journal.com
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3.2. Trial characteristics

Table 1 summarizes the characteristics of the included trials. All
studies were in outpatient settings. Five studies were conducted in
North America: 4 in Canada (50%) [22,26,27,30] and 1 in United
States (12.5%) [24]; 2 were conducted in Australia (25%) [25,28]

and 1 was conducted in Brazil (12.5%).[29] Five trials (62.5%)
[22,25,26,28,29] were parallel designs, and 3 (37.5%) [24,27,30] were
crossover designs. Participants were generally middle-aged
(median age=54 years, range=47–64 years) and overweight
or obese (median BMI=30.7, range=28.0–33.2). Overall,
participants had controlled diabetes (median HbA1c: 6.8%,
median FBG: 7.95mmol/L), and the majority of studies indicated
the use of hypoglycemic drugs or other medications, although all
studies excluded the use of insulin therapy. The dose of ALA
ranged from 1.5 to 7.4g/day with a median assigned dose of 4.4,
5.4, and 5.4g/day of ALA for trials that reported HbA1c, FBG,
and FBI, respectively. The median duration of the treatment was
3 months, ranging from 2 to 12 months. Seven studies (87.5%)
[24–30] were considered high quality (MQS ≥8).
Using the Cochrane Risk of Bias Tool (see Supplementary Fig.

1, http://links.lww.com/MD/B651 which illustrates the risk of
4

bias across the included studies), a moderate number of trials had
unclear risk of selection bias: 50% (4 trials)[22,25,26,29] had an
unclear risk of bias for random sequence generation, and 62.5%
(5 trials)[22,24,25,27,29] had an unclear risk of bias for allocation
concealment. While half of the studies (4 trials, 50%)[24,27,29,30]

had a low risk of performance bias, 2 trials (25%) [26,28] had a
high risk of performance bias, meaning they did not mention
blinding or only the subjects were blinded. The vast majority of
trials (7 trials, 87.5%)[22,24–27,29,30] had a low risk of attrition
bias (incomplete outcome data), therefore they were transparent
about numbers and reasons for drop-outs. Lastly, 3 studies
(37.5%)[22,25,27] had an unclear risk of reporting bias (selective
reporting) and 5 studies (62.5%)[24,26,28–30] had a low risk.
Funding of trials included agency (7 trials, 87.5%)[22,24,26–30] and
agency industry (1 trial, 12.5%).[25]
3.3. Effect on HbA1c

A median dose of 4.4g/day of ALA for a median duration of 3
months did not significantly affect HbA1c (%) levels compared to
control (MD=–.01 [95%: –.32, .31], P= .96; see Fig. 2). There

http://links.lww.com/MD/B651
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Study, year ALA 

(N)

Control 

(N)

Weight 

(%)

Mean Difference, 95% 

CI, in HbA1c (%) 

 Mean Difference, 95% CI, in HbA1c (%)

McManus, et al. 1996 11 11 6.20% 0.50 [-0.54, 1.54]
Tapsell, et al. 2004 17 21 14.70% 0.14 [-0.24, 0.52]
Vuksan, et al. 2007 20 20 16.90% -0.19 [-0.43, 0.05]
Barre, et al. 2008 18 14 8.70% 0.00 [-0.78, 0.78]
Tapsell, et al. 2009 18 16 9.60% 0.40 [-0.31, 1.11]
Ma, et al. 2010 22 22 18.70% -0.00 [-0.00, 0.00]
Taylor, et al. 2010 25 9 17.80% -0.71 [-0.88, -0.54]
Gomes, et al. 2015 10 10 7.40% 0.80 [-0.10, 1.70]

Total [95% CI] 141 123 100.00% -0.01 [-0.32, 0.31]

Heterogeneity: Tau² = 0.14; Chi² = 75.84, df = 7 (P < 0.00001); I² = 91%
Test for overall effect: Z = 0.05 (P = 0.96)

Favours ALA Favours Control

Figure 2. Forest plot of randomized controlled trials investigating ALA on HbA1c (%). Pooled effect estimate (diamond) for HbA1c from 10 trials. Data expressed at
MD±SD, with 95% CIs, using the generic inverse-variance method with random effects model. Between-study heterogeneity quantified by I2 at a significance
P<.10. N=number of participants in each treatment group. ALA = alpha-linolenic acid, CI = confidence interval, HbAc1 = glycated hemoglobin, MD = mean
difference, SD = standard deviation.
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was considerable inter-study heterogeneity (I =91%, P<.00).
The “leave-one-out” analysis did not identify any influential
trials whose removal altered the pooled summary effect or
reduced heterogeneity.

3.4. Effect on FBG

Amedian dose of 5.4g/day for amedian duration of 3months did
not significantly affect FBG levels (MD= .07, [95%CI: –61, .76],
P= .84; Fig. 3). Considerable inter-heterogeneity was present
(I2=78%, P<.001), and the “leave-one-out” analysis did not
reveal any influential trials whose removal significantly affect the
summary effect size or degree of heterogeneity.

3.5. Effect on FBI

Amedian dose of 5.4g/day for amedian duration of 3months did
not significantly affect FBI (MD=7.03, [95% CI: –5.84, 19.89],
P= .28; Fig. 4). There was considerable inter-study heterogeneity
(I2=82%, P<.001). The “leave-one-out” analysis did not
identify any influential trials whose removal altered the pooled
summary effect or reduced heterogeneity.
Study, year ALA 

(N)

Control 

(N)

Weight 

(%)

McManus, et al. 1996 11 11 11.60%
Vuksan, et al. 2007 20 20 18.40%
Barre, et al. 2008 18 14 7.60%
Tapsell, et al. 2009 18 16 13.80%
Ma, et al. 2010 22 22 18.70%
Taylor, et al. 2010 25 9 22.60%
Gomes, et al. 2015 10 10 7.30%

Total (95% CI) 124 102 100.00%
Heterogeneity: Tau² = 0.53; Chi² = 27.50, df = 6 (P = 0.0001); I² = 78%
Test for overall effect: Z = 0.21 (P = 0.84)

Mean Differ

CI in FBG

1.14 [-

0.07 [-0

0.30 [-
-0.90 [-1

0.50 [-
1.30 [0

0.39 [-
-0.76 [-0

Figure 3. Forest plot of randomized controlled trials investigating ALA on FBG (mm
MD±SD, with 95% CIs, using the generic inverse-variance method with random
P<.10. N=number of participants in each treatment group. ALA = alpha-linolen
difference, SD = standard deviation.
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3.6. Subgroup analysis

There are several possible sources of the heterogeneity for our
results, including the varying sources of ALA, dose, and method of
intake (supplement or dietary intake). Sources of heterogeneity
were explored with continuous subgroup analysis, which revealed
dose to be a significant effect modifier for HbA1c and FBG levels,
but not for FBI. The results indicate that the treatment effect in
HbA1c (P<.02) and FBG (P<.01) was inversely related to ALA
dose (see SupplementaryTable 2, http://links.lww.com/MD/B651).
Subgroup analysis of characteristics treated as categorical
predictors (see Supplementary Figures 2–4, http://links.lww.com/
MD/B651 ) revealedno significant influences bydoseorother traits:
method of intake, endpoint baseline value, duration, ALA source,
study design, and MQS, as indicated by P-value. Nonetheless, in
analyses of HbA1c and FBG, residual I2 was dramatically reduced
to ∼35% when accounting for different ALA sources.
3.7. Publication bias

Funnel plots for HbA1c, FBG, and FBI are displayed in Fig. 5. By
visual inspection, the results illustrate a slight asymmetry toward
Mean Difference, 95% CI in FBG (mmol/L)

Favours ALA Favours Control

ence, 95% 

 (mmol/L) 

0.95, 3.24]

.61, 0.76]

1.11, 1.71]
.62, -0.18]
1.54, 2.54]

.14, 2.46]
0.29, 1.07]
.94, -0.58]

ol/L). Pooled effect estimate (diamond) for FBG)from 9 trials. Data expressed at
effects model. Between-study heterogeneity quantified by I2 at a significance
ic acid, CI = confidence interval, FBG = fasting blood glucose, MD = mean

http://links.lww.com/MD/B651
http://links.lww.com/MD/B651
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Study, year ALA 

(N)

Control 

(N)

Weight 

(%)

Mean Difference, 95% CI in FBI (pmol/L)

McManus, et al. 1996 11 11 17.90%
Vuksan, et al. 2007 20 20 18.90%
Barre, et al. 2008 18 14 4.30%
Tapsell, et al. 2009 18 16 12.70%
Ma, et al. 2010 22 22 7.50%
Taylor, et al. 2010 25 9 19.00%
Gomes, et al. 2015 10 10 19.70%

Total (95% CI) 124 102 100%

Heterogeneity: Tau² = 202.28; Chi² = 33.31, df = 6 (P < 0.00001); I² = 82%
Test for overall effect: Z = 1.07 (P = 0.28)

Favours ALA Favours Control

Mean Difference, 95% 

CI in FBI (pmol/L) 

0.00 [-7.91, 7.91]

7.03 [-5.84, 19.89]

-9.00 [-21.09, 3.09]
8.83 [-1.13, 18.79]

74.31 [18.80, 129.82]
25.00 [2.07, 47.93]

48.62 [10.93, 86.31]
-16.08 [-25.84, -6.32]

Figure 4. Forest plot of randomized controlled trials investigating ALA on FBI (pmol/L). Pooled effect estimate (diamond) for FBI from 9 trials. Data expressed at MD
±SD, with 95% CIs, using the generic inverse-variance method with random effects model. Between-study heterogeneity quantified by I2 at a significance P<.10.
N=number of participants in each treatment group. ALA= alpha-linolenic acid, CI= confidence interval, FBI= fasting blood insulin, HbAc1= glycated hemoglobin,
MD = mean difference, SD = standard deviation.
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studies reporting a non-beneficial effect on glycemic control,
suggesting a lack of publication bias. Egger’s and Begg’s test
indicate a lack of small-study effects, as quantified by P values,
except in the analysis on FBI (Eggers; P= .082, Begg’s; P= .035).
Possible sources could be true heterogeneity, such as differing
intensities of ALA interventions. Using Duval and Tweedie’s
trim-and-fill analysis, we observed “missing studies” in each of
the outcome measures (Fig. 6), deriving an adjusted MD of –.25
[95% CI: –.38, –.12], P<.001; I2=99.79, P= .00, for our
primary outcome of interest, HbA1c (%).

4. Discussion

This systematic review and meta-analysis of 8 RCTs involving
212 participants with T2DM, with a median ALA dose of 4.4g/
day, found a neutral effect of ALA intake on HbA1c, fasting
blood glucose, or fasting blood insulin levels. We observed,
however, that ALA dose was correlated with reductions in
HbA1c (%) and FBG (mmol/L) outcome measures. A significant
reduction in Hba1c (%) was also observed after Duval and
Tweedie’s trim-and-fill analysis. This is the first meta-analysis of
RCTs to assess the effect of ALA on biomarkers of glycemic
control exclusively in individuals with T2DM.
Two previously conducted systematic reviews that primarily

investigated the effect of ALA on cardiovascular risk markers in a
mixed population of participants with and without T2DM
provided inconclusive evidence on glycemic markers. A meta-
analysis byWendland et al, [21] observed that ALA intake reduced
FBG by .20mmol/L (95% CI: –.3, –.1, P<.01); however, this
estimate was based on 2 trials (N=127) in nondiabetic,
moderately hyperlipidemic participants. Balk et al[43] reported,
over 10 years ago, on the effects of 2 ALA intervention trials in
individuals without T2DM. A meta-analysis was not performed
on the 2 studies that reported FBG (N=529) because of concerns
of validity for 1 study that showed a reduction (MD=–.28,
P<.001).[44] The other study was high quality and showed no
effect (MD=–.28, P=NS).[45] None assessed HbA1c modifica-
tion. While our primary analysis did not find an effect of ALA
intake onHbA1c or other related glycemic measures, a significant
reduction in HbA1c (%) was observed after trim-and-fill analysis
was used to impute the missing studies (MD=–.25, 95% CI:
–.38, –.12, P<.001). Caution should be taken when interpreting
7

the adjusted effect estimate, as this method may not be reliable in
the presence of substantial inter-study heterogeneity, which still
remained (I2=99.79, P= .00).[31]

The potential of ALA as a blood glucose-lowering dietary
component was not supported by our results but should not be
discounted based on the totality of available evidence. Preclinical
literature suggests that omega-3 PUFAs, including ALA, activate
PPARg and other globally distributed peroxisome proliferation
activated receptors.[46] It is believed that PPARg activation in
T2DM may cause significant improvements in whole-body
insulin sensitivity, and thus, improvements in parameters of
glycemic control.[47] As adipose tissue is a significant modulator
of PPARg’s effect on insulin sensitivity and ALA is the most
abundant omega-3 in adipose tissue,[48] there may be a
connection between ALA intake and insulin sensitivity on
a whole-body level. Despite this suggested preclinical link, a
clinically meaningful effect on any parameters of glucose
regulation within the experimental dose range was not observed.
However, a factor that should be considered is the rather low
median HbA1c level of 6.8% among participants at baseline.
This is indicative of awell-controlled T2DMpopulation receiving
effective oral hypoglycemic agents, with perhaps a limited
possibility for further improvements.
The mechanistic properties of ALA have yet to be fully

understood, and it is unclear whether the null effect of ALA on
glycemic control observed in our study is transferable to other
omega-3 sources. ALA is a precursor in the desaturation and
elongation pathway for the production of the very-long chain
metabolites EPA and DHA; however, this degree of conversion
remains controversial.[49] There is evidence supporting conver-
sion rates as low as 0.2% to as high as 15% for EPA and DHA
altogether,[11,50] although it is generally believed that ALA
cannot contribute to substantial amounts of EPA/DHA in the
plasma.[48] Due to this metabolic inefficiency, the potential effect
stemming from ALA-derived EPA/DHA is questionable. Preclin-
ical data suggest that all 3 sources of omega-3 improve insulin
signaling,[46] however, clinical data has shown inconsistency,
which may be attributed to different regulation systems between
rodents and humans. The most recent systematic review and
meta-analysis of marine omega-3 fatty acid supplementation in
individuals with T2DM observed that EPA and DHA intake did
not have an effect on glycemic control (HbA1c: –.05 [–.20, .11],

http://www.md-journal.com


[51]

Figure 5. Funnel plots assessing publication bias. The funnel plots represent a
visual assessment of publication bias for the studies investigating ALA on (A).
HbA1c (%) (B). FBG (mmol/L) (C). FBI (pmol/L). The solid line represents the
pooled summary effect expressed as a weighted MD. The dashed lines
represent pseudo 95% CIs. Publication bias and small-study effects were
quantitatively assessed using Egger’s and Begg’s test and presented as P-
values. ALA = alpha-linolenic acid, CI = confidence interval, FBG = fasting
blood glucose, FBI = fasting blood insulin, HbAc1 = glycated hemoglobin, MD
= mean difference.
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Figure 6. Funnel Plots for correcting Publication bias using trim-and-fill
analysis. Funnel plots for trim-and-fill analysis of (A). HbA1c (%) (B). FBG (mmol/
L) (C). FBI (pmol/L). The horizontal line represents the pooled effect estimate
expressed as a mean difference, and the diagonal lines represent pseudo-95%
CIs of the mean difference. Clear circles represent the effect estimates of the
included studies, and the black squares represent the imputed studies. CI =
confidence interval, FBG = fasting blood glucose, FBI = fasting blood insulin,
HbAc1 = glycated hemoglobin.
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FPG: .19 [–.01, .39]). The present investigation aimed to
synthesize the glycemic effects of ALA intake, which may be
distinctive from their downstream EPA and DHA metabolites.
However, our results are consistent with clinical findings of
marine omega-3 sources, which have not been associated with
improvements in glycemic outcomes in T2DM.
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Plant sources of omega-3 may be more accessible than marine
sources globally, but advocating for increased ALA intake for
dietary management of T2DM remains unsupported in light of
our results. Considering Americans’ average diet consists of
about 1.4g of ALA/day,[11] the median dose of 4.4g/day in our
meta-analysis may not be representative but can be readily
achieved by taking 1 to 2 tablespoons of flax or salba-chia seeds,
or about 12 whole walnuts per day.[52] Furthermore, it has been
suggested that our diets during the Paleolithic period consisted of
a much higher omega-3 to omega-6 fatty acid ratio and our
estimated daily intakes were ∼11.4g ALA/day because of the
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natural abundance of omega-3 in wild plants, nuts, and
berries.[53] Thus, there remains an opportunity to incorporate
higher doses into our modern diet to induce physiological
benefits. Presently, at the levels administered in the trials of our
study, including the highest dose being 7.4g ALA/day [26,30],
safety and adverse effects were not reported. To date, the
tolerable upper intake level (UL) has not been established for
ALA, and although toxicological data for ALA are limited, little
adverse effects have been reported to date.[50] However, there is
the potential concern of ALA and prostate cancer risk. In a
systematic review and meta-analysis of prospective cohorts (N=
155,503) by Brouwer et al,[54] ALA was associated with a
reduced risk of fatal heart disease (RR= .79, 95% CI: .6, 1.04)
but was also correlated with an increased risk of prostate cancer
(RR=1.7, 95% CI: 1.12, 2.58). Conversely, a recent meta-
analysis of prospective cohorts and case–control studies did not
corroborate a significant relationship between ALA and prostate
cancer risk (RR: 1.08, 95% CI: .90–1.29), P= .40).[55] The
relevance of this association must be further studied, as present
findings are complicated with the presence of heterogeneity and
remain inconclusive.
The strengths of our study include the high methodological

quality of the included trials (87.5% of included studies were
graded a MQS ≥8), which suggests a selection of RCTs with
properly described methods, sampling, and interventions of high-
quality data collection. Second, our analysis included participants
that spanned 5 countries, suggesting moderate generalizability of
results and reduction of potential confounders that may be
present in a single geographical location. Participants were
middle-aged (median age=54 years) and obese or overweight,
which is consistent with the T2DM phenotype. Third, the
inclusion criteria aimed to encompass all major food sources of
ALA, making the results relevant in the context of populations’
derived ALA intake. Furthermore, we acknowledge the effective-
ness of incorporating whole foods and dietary pattern
approaches in dietary changes, as opposed to single nutrient
recommendations.[56] In many cases, the presence of ALA in food
represents a marker of other healthy ingredients such as dietary
fiber, vegetable protein, minerals, and antioxidants.
Several caveats complicate interpretation of the present

findings. One limitation of our study is the presence of
considerable heterogeneity (≥75%) across all outcome measures.
ALA dose can partially explain this; it was observed to be a
significant predictor for bothHbA1c and FBG, and accounted for
100% of the heterogeneity (I2) for FBG. The observed inverse
relationship suggests that higher ALA intake may be considered
in future directions, as dose may be an important factor in
determining effect size. Subgroup analysis did not reveal any
significant categorical predictors from the method of intake,
endpoint baseline value, duration, ALA source, dose above or
below 4.4g/day, study design, or MQS. Nonetheless, heteroge-
neity was dramatically reduced to ∼35% when the effects of
different ALA sources on HbA1c and FBG were considered. It
appears in our results that ALA from certain sources such as
flaxseed and salba-chia seed are more effective in the reduction of
HbA1c and FBG, but this was only supported by 1 trial each.
With a small total sample size, it is likely that subgroup analysis
did not have sufficient power to detect differences. Additionally,
the systematic removal of individual articles did not significantly
alter heterogeneity, demonstrating that the inconsistency may be
from all trials.
Second, we were unable to assess the risk of bias across several

domains of the included studies. Five trials (62.5%) had an
9

unclear risk of allocation concealment (selection bias). This was
assigned when studies did not describe methods of concealment
in detail for reviewers to assess whether subjects could foresee
their allocation to treatments or not. Two (20%) studies had a
high risk of performance bias because of lack of blinding or
blinding only the participants.
Third, the variability in ALA-containing foods, their respective

bioactive components and the differential ALA absorption
among individuals may have resulted in potential co-linearity
or counteracting of ALA’s isolated effect. Although ALA source
and method of intake was not identified as an effect modifier in
categorical subgroup analysis, again, the analysis remains limited
by the small number of studies.
Difficulty in controlling background diet has been a long-

standing barrier in the elucidation of ALA effects, especially
in ad-libitum diets where differences may lie in macronutrient
portions and the intake of high versus low glycemic index
carbohydrates. The included trials, however, indicate isocaloric
interventions, except 1,[22] and macronutrient fractions that were
not markedly different. Furthermore, the intake ratio of different
types of fatty acids could alter downstream effects, such as
omega-6 competing with omega-3 for shared enzymes in the
elongation and desaturation pathway.[53] The use of well-
designed RCTs employing ALA supplementation and serumALA
testing in future interventions could further improve the accuracy
of gathered data and re-assess ALA efficacy in T2DM.
5. Conclusions

The present analysis, despite including a relatively small number
of studies, represents the most comprehensive and updated
synthesis of evidence for ALA on glycemic control markers in
T2DM. Although the overall effect was neutral, the associations
observed between ALA dose and glycemic outcomes, as well as
the reduction in HbA1c after adjusting for publication bias, calls
for further research on this relationship. While there may be
greater benefit from incorporating ALA-containing foods,
prioritizing focus on ALA dose-response studies could clarify
the need for larger, longer and well-designed RCTs administering
newly defined doses. Overall, the relatively low number of
existing trials and the presence of unexplained heterogeneity limit
our ability to draw definite conclusions; however, further
explorations into the role of ALA in T2DM management should
be considered.
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