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resumo 
 

 

A síntese proteica é central para a vida e tem sido extensivamente estudada a 
vários níveis. Contudo, o estudo da fidelidade da tradução do mRNA tem 
progredido lentamente devido a dificuldades técnicas na deteção de 
incorporações incorretas de aminoácidos nas proteínas. Poucos genes têm 
sido associados com o controlo da fidelidade da síntese proteica e não é 
evidente quais os genes que controlam este processo biológico. Nesta tese 
investigámos o papel da modificação dos nucleósidos do RNA na eficiência e 
precisão da síntese proteica. A nossa hipótese é que as enzimas que 
modificam nucleósidos do tRNA (tRNAmods) têm um impacto significativo na 
síntese proteica através da modulação das interações codão-anticodão. A 
biologia das tRNAmods e das modificações do tRNA são ainda pouco 
conhecidas, mas estão envolvidas na estabilidade e função do RNA e 
mutações nos seus genes causam doenças neurodegenerativas, metabólicas, 
cancro, entre outras. Neste projeto realizámos um rastreio genético em 
levedura com o objetivo de identificar tRNAmods que asseguram a 
homeostase do proteoma (proteostase) e usámos espectrometria de massa 
para clarificar o papel das tRNAmods na fidelidade da síntese proteica. 

Os resultados do estudo genético mostram que um sub-grupo de tRNAmods 
envolvidas na modificação de nucleósidos do anticodão do tRNA são 
essenciais para manter a estabilidade do proteoma. Outras tRNAmods 
estudadas não produziram impactos visíveis na proteostase. 

Os genes de proteínas agregadas que isolámos a partir de células de levedura 
com tRNAs hipomodificados são enriquecidos em codões descodificados por 
estes tRNAs. Os nossos dados mostram também que tais proteínas participam 
em processos biológicos específicos e têm níveis de aminoácidos errados 
mais elevados que as células wild-type. Estes dados mostram que certas 
modificações do tRNA são essenciais para a fisiologia celular, estabilidade do 
proteoma e fidelidade da síntese proteica.  
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abstract 

 
Protein synthesis is central to life and is being intensively studied at various 
levels. The exception is mRNA translational fidelity whose study has been 
hampered by technical difficulties in detecting amino acid misincorporations in 
proteins. Few genes have so far been associated to the control of protein 
synthesis fidelity and it is unclear how many genes control this biological 
process. We investigated the role of RNA modification by RNA modifying 
enzymes (RNAmods) in protein synthesis efficiency and accuracy. Our 
hypothesis was that RNAmods that modify tRNA nucleosides (tRNAmods) 
have a significant impact on protein synthesis through modulation of codon-
anticodon interactions. To address this issue, we focused our work on 
tRNAmods involved in the modification of tRNA anticodons. The biology of 
these enzymes is still poorly understood, but they are involved in RNA 
processing, stability and function and their deregulation is associated with 
cancer, neurodegenerative, metabolic and other diseases. 

We have set up a yeast genetic screen and used mass-spectrometry methods 
to determine the role of tRNAmods on proteome homeostasis. Our work 
identified a subgroup of yeast tRNAmods that play essential roles in protein 
synthesis fidelity and folding. 

The genes that encode insoluble proteins isolated from yeast cells lacking U34 
modification were enriched in codon sites that are decoded by the 
hypomodified tRNAs. These aggregated proteins also participate in specific 
biological processes, suggesting that tRNAmods are linked to specific 
physiological pathways. Interestingly, we detected amino acid 
misincorporations at the codon sites decoded by the anticodons of the 
hypomodified tRNAs, demonstrating that tRNA U34 modifications control 
translational error rate. 
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1.1 OVERVIEW 

This introduction is divided in four main topics: transfer RNA, ribosome, protein 

biosynthesis and protein folding, protein misfolding and disease. It provides an 

overview of protein biosynthesis processes and the respective mechanisms of 

quality control. Protein misfolding and aggregation are viewed as being post-

translational processes, but they are affected by mRNA decoding speed and 

accuracy and we explain how the various types of translational errors may result in 

increased protein aggregation. 

 

1.2 TRANSFER RNA 

Transfer RNA (tRNA) molecules have a fundamental role in the transfer of genetic 

information from DNA to proteins. Indeed, tRNAs are adaptor molecules that 

connect the 20 canonical amino acids of proteins and mRNA codons (Crick, 1958). 

Each tRNA is charged with a particular amino acid by a cognate aminoacyl-tRNA 

synthetase (aaRS) and carries that amino acid to peptide chains being synthesized 

in the ribosome. 

In S. cerevisiae, 275 nuclear-encoded tRNA genes code for 42 different 

cytoplasmic tRNAs (1 initiator and 41 elongator tRNAs) that pair with the 61 sense 

codons (Percudani et al. 1997;  

http://gtrnadb.ucsc.edu/genomes/eukaryota/Scere3/). The tRNA pool can be 

subdivided into tRNA isoacceptor families, each tRNA family is charged with a 

specific amino acid, but is composed by more than one tRNA which decode the 

different codons (synonymous codons) of that amino acid (codon family) (Goldman, 

2008; Kutter et al., 2011). There are 21 isoacceptor families (20 standard amino 

acids + selenocysteine), the number of tRNAs and the number of copies of each 

tRNA gene within a family are variable. In this way, there is both tRNA gene as well 

as codon redundancy in the genetic code. Additionally, one tRNA anticodon can pair 

with multiple codon triplets using wobble at the 1st anticodon position (3rd codon 

position) (Ikemura, 1985; Goodenbour and Pan, 2006; Marck et al., 2006; Kutter et 

al., 2011). 
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Apart from their main function in translation, tRNAs are also involved in other 

biological processes. Aminoacylated tRNAs can target proteins for degradation by 

donating their amino acids for the N-terminal of polypeptides to be degraded 

(Varshavsky, 1997). In yeast, uncharged tRNAs interact with Gcn2 (protein kinase 

that phosphorylates translation initiation factor eIF2), inducing the phosphorylation 

of eIF2 and decreasing the levels of general translation. Interestingly, the 

transcription regulator Gcn4 that regulates amino acid synthesis is translated more 

efficiently in these conditions (Wek, Zhu and Wek, 1995; Dever and Hinnebusch, 

2005). tRNAs have also been implicated in the regulation of apoptosis in mammalian 

cells by binding and preventing the interaction of cytochrome c with Apaf-1 (the 

caspase activator) and avoiding its activation (Mei et al., 2010). Therefore, tRNAs 

can function as molecular sensors, regulators of gene expression and modulators 

of cellular growth and proliferation (Pavon-Eternod et al., 2009; Gu, Begley and 

Dedon, 2014; Wilusz, 2015). 

 

1.2.1 tRNA structure 

tRNA molecules have a length of 73 to 90 nucleotides. The secondary structure of 

tRNAs is highly conserved and form a cloverleaf structure (Figure 1.1) (Kim et al., 

1972; Goldman, 2008). It consists of an acceptor stem, three stem-loops (or arms) 

and a variable-loop, stabilized by hydrogen bonds between the stems. The stem-

loops are the dihydrouridine (D) loop, the anticodon-loop and the TΨC-loop. 

Additionally, there are specific nucleotides conserved in most tRNA species that 

stabilize tertiary interactions. The 3’-end of tRNAs contains the CCA sequence. The 

acceptor stem is formed by the 5’- and 3’-ends of the molecule, with seven base 

pairs (bp) followed by an overhanging unpaired nucleotide at position 73 and the 

CCA tail. The amino acid is attached to the ribose of the 3’-terminal A residue. The 

D-loop (8-11 bases) is located on the left side of the cloverleaf structure and is 

followed by a stem of 3-4 bp. On the right-hand side of the cloverleaf structure there 

is the 7-base TΨC-loop or T-loop, which is followed by a 5-base pair stem. Below 

the T-loop there is the variable-loop, which is the main source of sequence variability 

in tRNAs and may contain 4 to 21 (or even more) bases. Finally, the anticodon-loop 
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contains 7 unpaired bases. The anticodon, i. e. a 3-base sequence complementary 

to the codon, is located in the middle of the loop at positions 34-35-36. The pairing 

of codon-anticodon occurs in an antiparallel fashion, meaning that the 5’-anticodon 

base in the tRNA (nucleotide 34) pairs with the 3’-codon base in the mRNA, and the 

3’-anticodon base (nucleotide 36) with the 5’-codon base (Kim et al., 1972; Rich and 

Schimmel, 1977; Goldman, 2008). This cloverleaf structure folds into a L-shaped 

structure, which is the mature functional form of tRNAs (Figure 1.1). 

 

 

Figure 1.1. The structure of tRNAs. On the left, the crystallographic structure of yeast 

tRNAPhe represents global three-dimensional structure of tRNA. On the right is represented 

the cloverleaf secondary structure. In red: amino accepting stem or aminoacyl-stem (AA); 

in black: dihydrouridine stem and loop domain (DSL); in green: anticodon stem and loop 

domain (ASL); in orange: extra loop (EL); and, in blue, the ribothymidine, or TΨC, stem and 

loop (TSL). Adapted from Agris, 2004. 

 

1.2.2 tRNA biogenesis 

Biogenesis of tRNAs comprises multiple processes, namely transcription, 

processing of the 5’ leader and the 3’ trailer, splicing, post-transcriptional 

modification of nucleoside residues, CCA addition and aminoacylation, nuclear-to-
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cytoplasmic shuttling (in eukaryotes) and import into mitochondria (Figure 1.2). 

Furthermore, tRNA biosynthesis has multiple levels of regulation, including 

regulation of tRNA transcription, end maturation and splicing (Hopper and Phizicky, 

2003; Goldman, 2008). 

In yeast, tRNA transcription and pre-tRNA 5’-terminus processing occurs in 

the nucleolus (Thompson et al., 2003; Phizicky and Hopper, 2010).  Other tRNA 

processing events occur at several distinct sub-cellular locations, including 

nucleoplasm, inner nuclear membrane (INM), cytoplasm, and cytoplasmic surface 

of mitochondria (Table 1.1). 

 

 

Figure 1.2. tRNA biogenesis in S. cerevisiae. tRNA transcription and 5’-end processing 

happen in the nucleolus. The 3’-end processing, CCA addition and modification steps 

happen in the nucleoplasm and at the inner nuclear membrane (INM). Intron-containing pre-

tRNAs are exported to the cytoplasm by Los1, where splicing occurs on the cytoplasmic 

surface of mitochondria. After tRNA splicing, additional modification and aminoacylation 

occur to allow mature charged tRNAs to participate in protein synthesis. Cytoplasmic tRNAs 

are imported into nuclei via Mtr10 and re-export of nuclear tRNAs is mediated by Los1 and 

Msn5. Green circles: parts of the tRNA that are maintained in the mature structure; red 

circles: anticodon; purple circles: transcribed 5’ leader and 3’ trailer sequences; dark-blue 
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circles: intron sequence; light-blue circles: CCA end; yellow, orange, and pink circles: 

several modifications made in the nucleoplasm, at the INM, and in the cytoplasm, 

respectively; aa: amino acid. Adapted from Phizicky and Hopper, 2010. 

 

Table 1.1. Subcellular location of the biosynthesis, processing and turnover of the 

cytoplasmic tRNAs in yeast and vertebrates. Adapted from Hopper et al., 2010. ND: not 

determined. 

Step 
Cellular 
compartment – 
yeast 

Cellular sub-
compartment – 
yeast 

Cellular 
compartment – 
vertebrate cells 

Cellular sub-
compartment – 
vertebrate cells 

Transcription Nucleus Nucleolus Nucleus ND 

5’ processing Nucleus Nucleolus Nucleus ND 

3’ processing Nucleus ND Nucleus ND 

Splicing Cytoplasm 
Mitochondrial 
surface 

Nucleus Nucleoplasm 

Nucleoside 
modification 

Nucleus or 
cytoplasm 

Nucleoplasm, 
nuclear 
membrane, ER, 
cytoplasm 

Nucleus and ND ND 

TRAMP-
mediated 3’→5’ 
turnover 

Nucleus ND ND ND 

RTD 5’→3’ 
turnover 

Nucleus and 
cytoplasm 

ND ND ND 

Half molecule 
production 

Cytoplasm 
Vacuolar 
enzyme 

Cytoplasm 
Endocytosed 
enzyme 

 

1.2.2.1 tRNA transcription 

tRNA genes are highly transcribed, producing 3 million tRNAs per generation in 

yeast (Waldron and Lacroute, 1975), where about 60 000 mRNAs are also produced 

(Ares, Grate and Pauling, 1999). tRNA genes are transcribed by RNA polymerase 

III (Pol III), whose activity is guided by two transcription factors with multi-subunits: 

TFIIIB and TFIIIC. TFIIIB is a multi-subunit complex formed by B double prime 1 

(BDP1), B-related factor 1 (BRF1) and TATA-binding protein (TBP) and is recruited 

upstream of the transcription start site. TFIIIC binds to the intragenic A- and B-boxes 

that encode parts of the D- and T-stems and loops of tRNAs, respectively (Figure 

1.3). Pol III also binds to the transcription start site and this binding is modulated by 

the sequence diversity among tRNA genes in their 5’ upstream region, resulting in 

the observed variability in expression levels among tRNA isoacceptors (Ishiguro et 

al., 2002; Kirchner and Ignatova, 2014). 
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Figure 1.3. Structure of yeast tRNA genes and model of tRNA transcription. 

Transcription complex assembly on a yeast tRNA gene (tDNA). The solid black bar 

represents upstream and downstream DNA, the open orange rectangle the mature product 

and the blue and red rectangles the A- and B-boxes, respectively. The horizontal arrow 

indicates the transcription start site (TSS). The components of TFIIIB and TFIIIC are 

represented as green and blue ovals, respectively. The 17-subunits of Pol III enzyme are 

represented as a unique purple oval. Adapted from Acker et al., 2013. 

 

tRNA transcription by Pol III is coordinated with rRNA transcription by Pol I 

because tRNAs and ribosomes depend on each other to function properly. 

Additionally, tRNA transcription is regulated in response to cellular nutrient 

availability and other environmental information. 

At the end of transcription, a tRNA precursor is formed with a 5’ leader, a U-

rich 3’ trailer, and occasionally an intron-sequence that experiences several 

processing events to produce mature tRNAs. 

 

1.2.2.2 tRNA processing 

The processing of tRNAs is complex and requires five main steps: 1) elimination of 

the 5’ leader by RNase P; 2) elimination of the 3’ trailer sequence by endonucleases 

and exonucleases; 3) addition of CCA; 4) splicing of introns in some tRNAs by an 

endonuclease and a ligase; and 5) introduction of several modifications at various 
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residue sites (Figure 1.2 and Figure 1.4). This specific order of processing events is 

not mandatory; instead the trafficking of pre-tRNA through the cellular 

compartments seems to influence the order of maturation events. 

 

 

Figure 1.4. From tRNA precursor to mature tRNA. Processing of pre-tRNA (left) into 

mature tRNA (right) includes removal of 5’ leader and 3’ trailer sequences (purple circles), 

addition of CCA sequence (white circles), splicing of introns (blue circles) and modification 

of residues throughout the tRNA molecule. Green circles represent part of the mature tRNA. 

All processes are carried out by protein enzymes, except for 5’-end processing that is 

carried out by a ribonucleoprotein. Adapted from Hopper and Phizicky, 2003. 

 

1.2.2.2.1 5’-end processing 

The 5’ leader sequence of tRNA transcripts is removed by endonuclease 

Ribonuclease P (RNase P). This processing event occurs in the nucleolus (Table 

1.1) and produces a tRNA molecule with a mature 5’-end containing a phosphate, 

releasing the leader sequence with a 3’-OH terminus. 

In yeast, the RNase P contains a RNA component (RPR1) and nine protein 

subunits (Pop1, Pop3, Pop4, Pop5, Pop6, Pop7, Pop8, Rpr2 and Rpp1) (Marquez 

et al., 2005; Walker and Engelke, 2006). The RNA component is essential for 

substrate recognition and recognizes L-shaped tRNA substrates via the TΨC loop, 
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the acceptor stem and the CCA end (in the case of most bacteria) (Figure 1.5) 

(Grosjean, 2009a). 

 

 

Figure 1.5. The 5′ leader sequence from pre-tRNAs is cleaved by RNase P. The site of 

cleavage is denoted with an arrow. Substrate recognition and cleavage by RNase P 

requires the acceptor stem and T-stem-loop structures. Adapted from Walker and Engelke, 

2006. 

 

1.2.2.2.2 3’-end processing 

Processing of the 3’-end of tRNA requires ablation of the 3’ sequence from the pre-

tRNA by either endonucleolytic cut at or close to the discriminator or exonucleolytic 

activity (Figure 1.6). This 3’ endonucleolytic processing of tRNAs requires the yeast 

La protein, Lhp1 (Yoo and Wolin, 1997), and the endonuclease RNase Z (also 

tRNase Z). Lhp1 binds not only to precursors of tRNAs, but also to precursors of 5S 

ribosomal RNA, the spliceosomal U6 RNA, the signal recognition particle SRP RNA, 

and the cytoplasmic Y RNAs, since Lhp1 recognizes the sequence UUUOH of the 3’-

terminus of most newly synthesized RNAs (Stefano, 1984). La protein assists 

folding of some pre-tRNAs and also protects the 3’-terminus of precursors of RNAs 

from exonucleases, favoring terminus removal by an endonuclease (Yoo and Wolin, 
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1997). So, the endonuclease RNase Z then removes the 3’-terminus of tRNAs 

immediately upstream of the discriminator base (N73), before the addition of CCA 

(Schiffer, Rösch and Marchfelder, 2002). 

Regarding the exonucleolytic pathway, Rex1 is the main exonuclease 

participating in the 3’-end processing. This enzyme is also involved in the nuclear 

CCA turnover (Copela et al., 2008). 

 

 

Figure 1.6. Model for pre-tRNA 3’-end processing. In the endonucleolytic pathway, 

Lhp1p binds to the 3’-ends of various pre-tRNAs protecting them from exonucleases. 
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Consequently, RNase P first cleaves the 5-ends and, then, RNase Z removes the 3’-ends 

(bound to Lhp1). In the exonucleolytic pathway, pre-tRNAs free of Lhp1p are first processed 

at their 3’-ends by Rex1. Followed by deletion of the 5’-ends by RNase P and maturation of 

the 3’-ends by Rex1 and other exonucleases. In both pathways, Rex1 also participates in 

end turnover, after CCA addition. Adapted from Copela et al., 2008. 

 

1.2.2.2.3 Addition of CCA 

All mature tRNAs must have a 3’ CCA sequence to participate in protein 

biosynthesis since it serves to attach the amino acids. The 3’ CCA terminus is added 

post-transcriptionally by the enzyme ATP(CTP):tRNA nucleotidyltransferase which 

transfers CMP and AMP from CTP and ATP to the 3’-ends of tRNA molecules (Aebi 

et al., 1990). Although there are CCA nucleotidyltransferases located either in the 

nucleus and in the cytoplasm, it was demonstrated that nucleoplasmic CCA 

nucleotidyltransferase adds CCA to 3’-ends of end-processed intron-containing pre-

tRNAs, whereas cytoplasmic CCA nucleotidyltransferase functions in tRNA end 

repair (Wolfe, Hopper and Martin, 1996; Phizicky and Hopper, 2010). 

 

1.2.2.2.4 Splicing 

In S. cerevisiae, introns occur in genes for only ten different tRNA species, totalizing 

61 tRNAs with introns (Hani and Feldmann, 1998; 

http://gtrnadb.ucsc.edu/genomes/eukaryota/Scere3/). tRNA introns are 14–60 

nucleotides in length and are always located immediately 3’ to the anticodon 

(between nucleotides 37 and 38) (Abelson, Trotta and Li, 1998). Introns are required 

for the introduction of specific nucleoside modifications in some pre-tRNAs (Johnson 

and Abelson, 1983). Splicing of the pre-tRNAs occurs in three steps: 1) a tRNA 

splicing endonuclease (4 subunits: Sen54, Sen2, Sen34, and Sen15) removes the 

intron, resulting in a 5’ tRNA half-molecule ending in a 2’–3’ cyclic phosphate and a 

3’ tRNA half-molecule beginning with a 5’-OH group (Peebles, Gegenheimer and 

Abelson, 1983); 2) a tRNA ligase (Trl1p) joins the excised exons (tRNA half-

molecules) after adenylylation of the 5’-P end (Phizicky et al., 1992); and 3) a 2’-

phosphotransferase (Tpt1p) transfers the 2’-phosphate at the splice junction to 
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NAD+ to form ADP-ribose 1’-2’-cyclic phosphate (Abelson, Trotta and Li, 1998) 

(Figure 1.7). 

In yeast, tRNA splicing endonuclease subunits are located in the cytoplasmic 

surface of the mitochondria and the other two enzymes required for splicing are 

located in the nucleus and in the cytoplasm (Yoshihisa et al., 2003). In this way, 

tRNA splicing occurs in the cytoplasm. 

 

 

Figure 1.7. The pre-tRNA splicing pathway in yeast.  Pre-tRNA sequence is shown with 

anticodon indicated by red circles and the intron located after residue 37 by yellow circles. 

The endonuclease (comprised of Sen2, Sen34, Sen15 and Sen54) removes the intron by 

cleaving the pre-tRNA at each exon/intron border, leaving tRNA half-molecules with a 2’–3’ 

cyclic phosphate and a 5’-OH group at their ends. In yeast, the ligase Trl1, through its RNA 

5’ kinase activity, phosphorylates the 5’-OH end of the 3’ half-molecule, and the ligase cyclic 

phosphodiesterase activity opens the 2’–3’ cyclic phosphate to a 2’ phosphate. Then ligase 

Trl1 joins the half-molecules (after activation of the 5’ phosphate by the ligase 

adenyltransferase activity), using the 5’ phosphate as the junction phosphate, and leaving 
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the 2’ phosphate at the splice junction. This 2’ phosphate is subsequently transferred to 

NAD by the 2’ phosphotransferase Tpt1. Adapted from Hopper, 2013. 

 

1.2.2.2.5 tRNA modification 

tRNA nucleosides are highly modified (Figure 1.8), exhibiting the largest number 

and the widest variety of nucleoside modifications among RNAs. The RNA 

Modification Database currently contains 112 modified ribonucleoside entries, 

distributed by RNA type and phylogenetic source (http://mods.rna.albany.edu). In S. 

cerevisiae, 27 different modifications were found among the sequenced tRNAs 

(http://modomics.genesilico.pl) (Annex I.1, Annex I.2 and Annex I.3). These 

modifications occur at 36 different positions, corresponding to 14.6% of the residues 

of all tRNA species, with a range of 7 to 17 modifications per cytoplasmic tRNA and 

6 to 9 modifications per mitochondrial tRNA (Annex I.2 and Annex I.3). 

 

 

Figure 1.8. Schematic pattern of modifications found in S. cerevisiae tRNA. A. 

Localization of modified residues in tRNA with the frequency of modification observed in all 

tRNAs species from S. cerevisiae. Graph constructed in http://modomics.genesilico.pl. B. 

Type of modification observed in each residue of cytoplasmic tRNAs. Green circles: 

residues that are unmodified in all yeast tRNA species; pink circles: residues that are 

A B

http://modomics.http/modomics.genesilico.plgenesilico.pl
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modified in some or all tRNA species; white circles: additional residues (20a and 20b) that 

are present in some tRNAs and are occasionally modified; red circles: anticodon residues, 

which are modified in some tRNAs; light-blue circles: the CCA end. Adapted from Phizicky 

and Hopper, 2010. 

 

A substantial number of genes and energy is required for post-transcriptional 

modification of tRNA. The tRNA-modifying enzymes can be localized in the 

cytoplasm and distinct sub-nuclear compartments, namely in the nucleolus, in the 

nucleoplasm, or at the INM (Hopper and Phizicky, 2003). Many tRNA-modifying 

enzymes are highly conserved, however most of the yeast genes encoding tRNA-

modifying enzymes are unessential (Phizicky and Hopper, 2010). 

Generally, modified nucleosides in the structural core of the L-shaped structure 

of tRNA are formed by reactions, involving methylation, pseudouridylation, or 

dihydrouridine formation, and they are important for the correct folding of tRNA and 

to stabilize the L-shaped tertiary structure (Helm, 2006). On the other hand, 

modifications within the anticodon stem loop include methylations, 

pseudouridylations and more complex additions which contribute to stabilize the 

codon-anticodon pairing, maintain the translational reading frame and to allow 

translocation of the tRNA from the A-site to the P-site of the ribosome, ensuring 

efficiency and fidelity of translation (Agris, 2008; Gustilo, Vendeix and Agris, 2008). 

Additionally, tRNA modifications can function as identity elements for 

aminoacylation and in discrimination of tRNAs during translation (Grosjean, 1998, 

2005; Motorin and Grosjean, 2005; Gustilo, Vendeix and Agris, 2008; Jühling et al., 

2009; Kramer and Hopper, 2013; Perrochia et al., 2013).  For example, the 2′-O-

ribosyl phosphate [Ar(p)] modification at position 64 of the initiator methionine tRNA 

(tRNAi
Met) interferes with Met-tRNAi

Met binding to elongator factor 1 (eEF1α), but not 

with the binding to the initiator factor 2 (eIF2), thus discriminating the role of the 

initiator tRNA in translation (Forster, Chakraburtty and Sprinzl, 1993; Shin et al., 

2012). 

Some tRNA positions are almost always modified (Figure 1.8A). For example, 

the nucleotide at position 37 is modified in > 70% of the tRNAs (Grosjean, 1998) 

and usually contains a modified purine nucleoside which can be a hypermodified 

nucleoside with N1-methyl-guanosine (m1G), N6-threonylcarbamoyladenosine (t6A) 
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or wybutosine (yW) (Noma et al., 2006; Perrochia et al., 2013). These modifications 

are important in the stabilization of the codon-anticodon pairing by base-stacking 

interactions and in the maintenance of the reading frame (Noma et al., 2006; Kramer 

and Hopper, 2013). Similarly, position 34 is frequently modified and these wobble 

modifications stabilize codon-anticodon interactions, important for precise decoding 

(Yarian et al., 2002; Näsvall, Chen and Björk, 2007; Kramer and Hopper, 2013). 

Methylation is the most extensively and prevalent tRNA modification, occurring 

in yeast tRNAs at the 2’-OH of specific nucleotide residues and at multiple base 

positions, namely the position 1 of adenine, 5 of uracil, 3 and 5 of cytosine and 1, 2, 

and 7 of guanine (Alexandrov, Martzen and Phizicky, 2002; Sprinzl and Vassilenko, 

2005). On the other hand, pseudouridine (Ψ) is the most widely distributed modified 

nucleoside in tRNAs from S. cerevisiae and is found at 15 different positions (Annex 

I.2 and Annex I.3). The second most extensively distributed modified nucleoside is 

dihydrouridine, which is found at 6 different positions in tRNA (Annex I.2 and Annex 

I.3). The m5U residue (also known as ribothymidine – rT) at position 54 is present in 

all yeast tRNAs, except in the tRNAi
Met and in the mitochondrial tRNAPhe

GAA (Annex 

I.2 and Annex I.3). More complex nucleoside modifications are located at position 

34 of tRNAArg
UCU, tRNAGly

UCC, tRNAAla
UGC, tRNAThr

UGU, tRNAPro
UGG, tRNASer

UGA, 

tRNAGlu
UUC, tRNALys

UUU, tRNAGln
UUG, tRNAVal

UAC and tRNALeu
UAA, namely ncm5U, 

ncm5Um, mcm5U and mcm5s2U (Annex I.2). 

 

1.2.2.3 tRNA aminoacylation and aminoacyl-synthetases (aaRSs) 

Mature tRNAs can then be aminoacylated at the ribose of the 3’-terminal A residue. 

Each family of tRNA isoacceptors is recognized by an aminoacyl-tRNA synthetase 

(aaRS); the cognate enzyme, i. e., each of the 20 amino acids is recognized by a 

specific synthetase (Schimmel, 1979; Pouplana and Schimmel, 2001; Goldman, 

2008). In this reaction, each amino acid forms an ester linkage with one of the 

hydroxyl groups of the terminal adenosine (Schimmel, 1979). This is a two-step 

mechanism (Figure 1.9). In the first step, called activation step, one α-carboxylate 

carbon of the amino acid (AA) attacks the α-phosphorus of ATP, forming an enzyme-

bound aminoacyl-adenylate (aaRS·AA-AMP) with release of pyrophosphate (PPi);  

in the second step, called transfer step, the 2’- or 3’-hydroxyl group of the 3’-terminal 
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of the A76 nucleotide of tRNA attacks the α-carbonyl carbon of the aminoacyl-

adenylate, resulting in the 3’ esterification of the aminoacyl-tRNA with release of 

AMP (Ibba and Soll, 2000; Schimmel, 2008b). 

 

 

Figure 1.9. Two-step mechanism of aminoacylation by aaRS. First, formation of the 

aminoacyl adenylate intermediate (upper right) and then the aminoacyl-tRNA (bottom right). 

The tRNA nucleophile in the second step is the oxygen atom from one of the two ribose 

hydroxyl groups of the 3’-A76 nucleotide, depending of the structural class to which the aaRS 

belongs. Adapted from Kim, 2014. 

 

The aminoacyl-tRNA synthetases can be divided in two distinct families of 

enzymes: class I and class II, based on the architecture of catalytic sites (Eriani et 

al., 1990; Pouplana and Schimmel, 2001). Class I aaRSs comprise 10 families 

(ArgRS, CysRS, GlnRS, IleRS, LeuRS, GluRS, MetRS, TrpRS, TyrRS and ValRS) 

and contains a Rossmann nucleotide-binding fold in the catalytic domain, composed 

of five-stranded parallel β-sheets connected by α-helices (Eriani et al., 1990). Most 

class I aaRSs bind the tRNA anticodon region by the carboxyl-terminal domains, but 

their structures are globally divergent. In these enzymes, the Rossmann nucleotide-

binding fold binds the acceptor stem of the tRNA and the 3’-end of the tRNA adopts 

a hairpin structure to bind in the active site, where the amino acid is transferred onto 

the 2’-OH group of the ribose of the last A nucleotide of tRNA. In contrast, class II 

aaRSs comprise other 10 families (AlaRS, AsnRS, AspRS, GlyRS, HisRS, LysRS, 

PheRS, ProRS, SerRS and ThrRS) and the common catalytic domain is organized 
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as a seven-stranded β-sheets flanked by α-helices (Eriani et al., 1990). This 

common domain binds and accurately juxtaposes the amino acid, ATP and the 3’-

terminus of tRNA for the catalytic reactions. Additionally,  most class II aaRSs 

acylate the amino acid to the 3’-OH group of the terminal ribose of the tRNA and 

face the tRNA from different angles (Woese et al., 2000; Pouplana and Schimmel, 

2001; Perona and Hadd, 2012). 

aaRSs recognition of the correct tRNA involves interaction of the enzyme with 

discriminator base (N73), the acceptor stem (helical structure formed by base pairing 

of 1 to 7 with 72 to 66 bases), and/or the anticodon. However, interactions with other 

regions in tRNA were described, namely the extra arm, the D stem, the inside of the 

L-shaped tRNA structure, and the phosphate backbone (Figure 1.10). As mentioned 

before, modified nucleotides have also been identified as strong determinants for 

cognate aminoacylation (Ibba and Soll, 2000). 

 

 

Figure 1.10. Aminoacyl-tRNA synthetase recognition hot spots present in the three-

dimensional structure of tRNA. Circles indicate the position of the hot spot nucleotides 

and their size is related to the frequency they are used for recognition by aaRSs. Adapted 

from Ibba and Soll, 2000. 
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1.2.3 tRNA quality control 

Product tRNAs produced during tRNA biogenesis are not always stable and, in this 

way, cells have quality control mechanisms to evaluate the integrity of tRNAs during 

and post biosynthesis. The mechanisms ensuring that the correct levels of properly 

structured, modified and charged tRNAs exist in the cytoplasm involve 

discrimination of precursor tRNAs during tRNA export, the nuclear surveillance 

pathway, the rapid tRNA decay (RTD) pathway and amino acid editing by 

aminoacyl-tRNA synthetases. 

tRNA quality control is observed during primary tRNA export, when pre-tRNAs 

are discriminated for export by Los1. Los1 binds and exports appropriately 

structured tRNAs with mature 5’ and 3’-ends (Figure 1.2) (Lipowsky et al., 1999). 

Another exportin present in yeast is Msn5, which exports tRNAs encoded by genes 

lacking introns, tRNAs earlier imported from the cytoplasm and aminoacylated 

tRNAs (Figure 1.2) (Feng and Hopper, 2002; Murthi et al., 2010). Aminoacylation of 

mature tRNAs in the nucleus is also important for tRNA nuclear export (Sarkar, Azad 

and Hopper, 1999; Grosshans, Hurt and Simos, 2000). 

For hypomodified pre-tRNAs and tRNAs with unprocessed 3’-ends, tRNA 

turnover requires proteins comprising the nuclear TRAMP complex, namely Mtr4 (a 

RNA-dependent helicase), Trf4 or Trf5 (poly(A) polymerases), and Air1 or Air2 (RNA 

binding proteins). TRAMP complex polyadenylates the misfolded forms of mature 

tRNAs and these activated substrates containing the TRAMP complex interact with 

the nuclear exosome (3’ to 5’ exoribonuclease), assisting the 3’-ends decay (Copela 

et al., 2008; Hopper, 2013) as part of the nuclear surveillance pathway (Figure 1.11). 

The exosome is a multi-subunit complex of proteins occurring in the nucleus and 

cytoplasm, which is involved in the processing, degradation and retention of stable 

and unstable RNAs. The nuclear exosome contains two nucleases, Rrp6 and Rrp44, 

and other proteins. This mechanism of tRNA turnover in the nucleus was first 

observed in hypomodified pre-tRNAi
Met that is 3’ polyadenylated by Trf4 and the 

poly(A)-containing tRNA is degraded by the nuclear exosome (Kadaba et al., 2004; 

Kadaba, Wang and Anderson, 2006). Similarly, 3’-5’ exonuclease Rex1 has been 
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implicated in the degradation of pre-tRNAs with unprocessed 3’-ends (Copela et al., 

2008). 

 

 

Figure 1.11. The nuclear surveillance pathway of tRNAs. Hypomodified pre-tRNA, e.g. 

pre-tRNAi
Met lacking m1A58, is degraded by polyadenylation of the 3’-end by the TRAMP 

complex (Trf4, Mtr4 and Air2), followed by exonuclease digestion catalyzed by the nuclear 

exosome Rrp44/Rrp6. Adapted from Grosjean, 2009. 

 

The hypomodified tRNAs and/or tRNAs with unstable acceptor and T stems 

that expose their 5’-ends undergo tRNA decay by the 5’ to 3’ exonucleases Rat1 

(nuclear) and Xrn1 (cytoplasmic). This mechanism belongs to the rapid tRNA decay 

pathway that degrades mature tRNAs destabilized in structure, in both the nucleus 

and the cytoplasm (Figure 1.12) (Alexandrov et al., 2006; Chernyakov et al., 2008; 

Whipple et al., 2011). Related to the RTD pathway is the retrograde tRNA nuclear 

import, in which abnormal tRNAs are imported into the nucleus and are repaired or 

eliminated, ensuring that only correctly structured and modified tRNAs are present 

in the cytoplasm to participate in translation (Kramer and Hopper, 2013). 
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Figure 1.12. The rapid tRNA decay (RTD) pathway. The RTD pathway mediates 

degradation of several mature tRNAs lacking different modifications and partially unfolded 

tRNAs that transiently expose the 5’-end to Rat1 or Xrn1 in the nucleus or cytoplasm, 

respectively. Nuclear tRNA degradation mediated by Rat1 imply retrograde import of mature 

tRNAs by Mtr10. The metabolite pAp is hydrolyzed by Met22 to yield AMP (pA) and 

inorganic phosphate (Pi) and inhibits Rat1 and Xrn1. Precise activities of described 

enzymes and participation of others remains undefined. Adapted from Grosjean, 2009. 

 

Another mechanism of tRNA cleavage and degradation involves the nuclease 

Rny1, which is a member of RNAseT2 family that is secreted and targeted to 

membrane-bound components, namely the vacuole. This nuclease cleaves tRNAs 

in the anticodon loop during stress (Macintosh et al., 2001; Thompson and Parker, 

2009). 

Finally, errors can emerge during tRNA charging by aminoacyl-tRNA 

synthetases. These errors are mostly caused by the incorrect recognition of cognate 

tRNAs by aaRSs or by inability of the aaRSs to differentiate between similar amino 

acids. These errors are minimized by aaRSs editing mechanisms, responsible to 

reject incorrectly activated amino acids or incorrectly charged tRNAs by specific 
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tRNA-aaRS interaction networks (Schimmel, 2008a). Aminoacyl-tRNA synthetase 

editing activities can occur either before and/or after the misactivated amino acid is 

attached to tRNA, known as pre-transfer editing and post-transfer editing, 

respectively. Post-transfer editing, was first demonstrated by Eldred and Schimmel 

and by Yarus (Eldred and Schimmel, 1972; Yarus, 1972; Ling, Reynolds and Ibba, 

2009). The pre-transfer editing involves hydrolysis of misactivated aminoacyl-

adenylates (aa-AMPs) and may occur via 3 pathways: pathway 1 involves the 

dissociation of an aaRS·aa-AMP complex to free aa-AMP, which spontaneously 

hydrolyzes in solution; pathway 2 is the tRNA-independent hydrolysis of an 

aaRS·aa-AMP within the canonical aminoacylation site of the aaRS; and pathway 3 

is the tRNA-dependent hydrolysis of an aaRS-bound aa-AMP without transient 

mischarging of tRNA (Figure 1.13A) (Jakubowski, 2012; Yadavalli and Ibba, 2012). 

Pre-transfer editing is utilized for the clearance of misactivated Ile by LeuRS, Ala by 

ProRS, Val by IleRS, and Ser by ThrRS (Jakubowski, 2012). On the other hand, the 

post-transfer editing requires that the 3’-end of mischarged aa-tRNAs translocate 

from the active site to editing site of the aaRS, where it deacylates the aminoacyl 

ester bond between non-cognate amino acid and tRNA. Post-transfer editing can 

occur by 2 proposed models: the direct translocation model that refers to the 

movement of the 3’ CCA of the mischarged tRNA from the aminoacylation site to 

the editing site of the aaRS; and/or the dissociation-reassociation model that refers 

to the release of the mischarged tRNA into solution to be rebound by the aaRS 

editing site, where hydrolysis occurs, or where it is hydrolyzed by an accessory 

trans-editing factor (Figure 1.13B) (Yadavalli and Ibba, 2012). Post-transfer editing 

activities are associated with both class I and II aaRSs (IleRS, ValRS, LeuRS, 

PheRS, ThrRS, ProRS, and AlaRS) to eliminate non-cognate aminoacyl-tRNAs 

(Ling, Reynolds and Ibba, 2009; Jakubowski, 2012; Yadavalli and Ibba, 2012). 
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Figure 1.13. Quality control steps for mischarged tRNA. A. Pre-transfer editing 

pathways in aaRS. The misactivated aa-AMP may be hydrolyzed spontaneously in solution 

after selective release of non-cognate aa-AMP (pathway 1) or in a tRNA-independent 

manner through the direct catalysis of aa-AMP hydrolysis by the aminoacylation active site 

(pathway 2). tRNA-dependent pre-transfer hydrolysis can occur within the aminoacylation 

active site in some aaRS (pathway 3). B. Post-transfer editing pathways in aaRS. A non-

cognate aminoacyl-tRNA may be translocated into the editing site of the aaRS for hydrolysis 

(pathway 1). If the mischarged aminoacyl-tRNA is released from the aaRS without being 

edited it is subjected to editing through resampling by the aaRS (pathway 2) or by trans-

editing factors (pathway 3). Adapted from Yadavalli and Ibba, 2012. 
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1.3 THE RIBOSOME 

Ribosomes are critical for protein synthesis since they provide the catalytic activity 

for the translation of the information contained in mRNA into proteins. An eukaryotic 

ribosome (80S) consists of two ribonucleoprotein subunits: a small subunit (SSU) – 

named 40S in yeast, which contains one ribosomal RNA (rRNA) (18S, 1800 nt long) 

and 33 ribosomal proteins (r-proteins); and a large subunit (LSU) – named 60S in 

yeast, which contains three rRNAs (5S, 121 nt; 5.8S, 158 nt; and 25S, 3396 nt) and 

46 r-proteins, whose function seems to be the stabilization of the highly compact 

rRNA structures. The mRNA and aminoacylated-tRNA are brought together 

according to the mRNA sequence in the SSU. The peptidyltransferase reaction that 

catalyzes peptide bond formation occurs in the LSU. 

The small subunit is responsible for the decoding process and its major 

functional sites are the mRNA path used to conduct mRNA during translation and 

the decoding center containing the tRNA binding sites (A, P and E). The A-site is 

where incoming aminoacyl-tRNA is bound during translation, the P-site is where the 

peptidyl-tRNA with the associated nascent polypeptide chain is located, and the E-

site is where deacylated tRNA from the P-site can bind before leaving the ribosome 

(Rodnina, Beringer and Wintermeyer, 2006; Melnikov et al., 2012). On the other 

hand, the major functional sites of the large subunit are the tRNA binding sites (A, 

P and E), the peptide exit tunnel that extends along the body of the LSU, and the 

peptidyl transferase center (PTC). The PTC is where peptide formation occurs and 

is located at the beginning of the peptide exit tunnel in a conserved region mainly 

composed of rRNA. So, as the peptide bond formation occurs in the PTC, the 

nascent polypeptide chain is transferred from the peptidyl-tRNA in the P-site to the 

aa-tRNA in the A-site and the nascent chain extends by one amino acid (Melnikov 

et al., 2012). Additionally, the occupation of the E-site can change allosterically the 

affinity of the A-site during selection of in-coming aa-tRNAs and influences decoding 

fidelity (Wilson and Nierhaus, 2006). The ribosome experiments two conformational 

states during translation: pre-translocational state and post-translocational state. 

The former is characterized by high affinity for tRNA in A- and P-sites and low affinity 

in the E-site, while in the second sate the P- and E-sites have high affinity for tRNA 

and the A-site has low affinity. Interestingly, transitions from one state to the other 
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occur when the previous low affinity binding site is occupied (Kirillov, Makarov and 

Semenkov YuP, 1983; Gnirke et al., 1989). 

80% of total RNA in cells is rRNA, followed by tRNA (15%) and then mRNA 

(only 5%). Cells produce around 2 000 ribosomes per min, thus, in a cell with a 

generation time of nearly 100 minutes, there are approximately 200 000 ribosomes 

per cell  (Warner, 1999). Ribosome assembly is a major task for cells, requiring a 

significant number of resources. For example, it is supported by the three RNA 

polymerases: RNA Pol I and III transcribe the rRNAs, and RNA Pol II transcribes 

the mRNA encoding r-proteins (at least 60% of its transcripts). Additionally, 

ribosome assembly is subjected to quality control simultaneous to nuclear export of 

pre-rRNPs. 

Production of ribosomes is closely related to the growth and proliferation of 

cells and deregulation of ribosome assembly has a high impact on cell physiology 

and disease (ribosomopathies). 

 

1.3.1 Structure of ribosomes 

The structure of ribosomes has been elucidated by both X-ray crystallography and 

cryo-EM (Armache et al., 2010; Klinge et al., 2011, 2012; Jenner et al., 2012; 

Weisser et al., 2013). These studies reveal that the core of each ribosomal subunit 

contains RNA with the r-proteins (15 conserved proteins in the SSU and 19 in the 

LSU) assembled on the surface and occasionally projecting into the rRNA core, 

mentioned above (Spahn et al., 2001; Melnikov et al., 2012). Besides the core, the 

ribosome contains domain-specific proteins, insertions and extensions of conserved 

proteins and expansion segments of rRNAs located mostly on the solvent-exposed 

surface of the subunits (Melnikov et al., 2012). This composition of ribosomes may 

vary slightly under different conditions of growth and stress. 

In the 40S ribosomal subunit the 18S rRNA sequences form four secondary 

structural domains: the 5’, central, 3’ major and 3’ minor domains (Figure 1.14A). 

These domains fold into tertiary structures and together with r-proteins form the 

head, beak, platform, body, shoulder regions of the SSU (Figure 1.15B) (Klinge et 

al., 2012; Melnikov et al., 2012; Woolford and Baserga, 2013). The mRNA-binding 
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site is located at the 40S subunit interface and each subunit contains the three 

tRNA-binding sites (A, P and E) at the 40S/60S interface. The incoming 

aminoacylated tRNAs bind to their matching codons in the A-site, but the methionyl 

initiation tRNA binds directly to the P-site. The deacylated tRNAs bind to the E-site 

(Mahoney, Dempsey and Blenis, 2009) prior to leaving the ribosome. The mRNA 

enters the ribosome through a tunnel located between the head and the shoulder of 

the 40S subunit and wraps around the neck of the SSU, while its exit site (5’-end of 

the mRNA) is located between the head and the platform (Figure 1.15B) (Melnikov 

et al., 2012). The decoding center of the SSU is located at the 40S/60S interface, 

where the codons and anticodons pair, conveying fidelity to mRNA decoding 

(Jenner et al., 2010; Melnikov et al., 2012). 

In the large subunit of the ribosome, the 25S rRNAs are arranged into six 

domains (I-VI) and the 5.8S rRNAs base pair with domain-I of the 25S rRNAs (Figure 

1.14B). The central protuberance that contains 5S rRNA is one of the features of 

the LSU (Figure 1.15A, C, D) (Melnikov et al., 2012; Woolford and Baserga, 2013). 

The 60S subunit contains 27 eukaryote-specific proteins, multiple insertions and 

extensions of conserved proteins and a variety of rRNA expansion segments that 

are concentrated on the periphery of the subunit forming a partial ring-shaped 

assembly involving the core (Figure 1.15D) (Melnikov et al., 2012). Located at the 

40S/60S interface side of the LSU are also the peptidyl transferase center where 

the peptide bond formation is catalyzed. This PTC is adjacent to the entrance of the 

polypeptide exit tunnel along which nascent polypeptides progress before they 

emerge from the ribosome on the solvent side (Melnikov et al., 2012). 

The two ribosomal subunits interact through several contact points of the 

interface, named bridges. Seven bridges connect the ribosomal core and a few 

bridges are distinct in prokaryotic and eukaryotic ribosomes. Those distinct bridges 

are formed by a ribosomal protein of the LSU, which binds to the SSU (Melnikov et 

al., 2012). The two subunits of the ribosome rotate and swivel relative to each other 

during translation in order to allow translocation of tRNAs and mRNA along the 

subunit interface (Jenner et al., 2012). 
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Figure 1.14. Secondary structure of the S. cerevisiae ribosomal RNA. A. Secondary 

structure of SSU rRNA: 18S rRNA – blue. The 18S rRNA secondary structure has four 

domains: 5’, central, 3’ major, and 3’ domains. B. Secondary structure of LSU rRNAs: 25S 

rRNA – orange, 5.8S rRNA – red and 5S rRNA – violet. The 25S rRNA contains six domains 

(I-VI) of the secondary structure. The 5.8S rRNA (red) base pairs with domain I of 25S 

rRNA. In red are shown the eukaryote expansion segments (ES). Adapted from Jenner et 

al., 2012. 

 

B
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Figure 1.15. Three-dimensional structure of the yeast ribosome. A-D. Views from the 

E-site, small subunit site, A-site and large subunit site. B, C and D were rotated 90º, 180º 

and 270º around the z-axis relative to A. The LSU is shown in yellow with orange proteins 

and the SSU in cyan with blue proteins. In red are shown the eukaryote expansion segments 

(ES), that are located on the surface of the ribosome and concentrated in two large clusters. 

CP, central protuberance. Adapted from Jenner et al., 2012. 

 

1.3.2 Ribosome biogenesis 

The synthesis of ribosomes is one of the major cellular activities that takes place 

primarily in the eukaryotic nucleolus, a non-membrane-bound sub-compartment of 

the cell nucleus. It comprises transcription of the rDNA, processing of the pre-rRNA 

BA

DC
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transcript, covalent modification of the mature rRNA regions of the pre-rRNA, 

assembly of the rRNAs with the ribosomal proteins imported from the cytoplasm, 

and export of the ribosomal subunits from the nucleolus to the cytoplasm (Figure 

1.16) (Mélèse and Xue, 1995; Lafontaine and Tollervey, 2001). As mentioned 

previously, ribosomes are composed of one small (40S) and one large (60S) 

subunits, which contain rRNA and protein components. Ribosome biogenesis is a 

complex mechanism involving all three RNA polymerases and translation. 

The transcription of the large precursor occurs at the limit of the nucleolar 

fibrillar center (FC) and dense fibrillar component (DFC) of the nucleolus. Initial 

processing and assembly happens in the DFC of the nucleolus and late processing 

in the granular component (GC) and then in the nucleoplasm, before exporting of 

the pre-ribosomal particles through nuclear pores to the cytoplasm (Sandmeier et 

al., 2002; Nazar, 2004). In S. cerevisiae, the maturation process is completed in the 

cytoplasm (Figure 1.16). 

 

 

Figure 1.16. Eukaryotic ribosome synthesis. Most steps of pre-rRNA processing occur 

within the nucleolus, where the pre-rRNAs yield the mature rRNAs that also undergo 
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extensive covalent modification. In eukaryotes, most modification involves methylation of 

the sugar 2’ hydroxyl group (2’-O-methylation) or pseudouridine formation, which are 

mediated by small nucleolar ribonucleoprotein (snoRNP) particles. During pre-rRNA 

processing many of the r-proteins assemble into the mature rRNA regions of the rRNA. 

During maturation, the pre-ribosomal particles diffuse to the nuclear pore complex (NPC), 

mediated by the small GTPase Ran and the export factor Xpo1, which binds to the 

ribosomal protein Rpl10 through an adaptor protein, Nmd3 in the case of pre-60S subunit. 

Export of the pre-40S subunit only requires Ran. In the cytoplasm, structural 

rearrangements occur that convert the pre-ribosomal particles to the mature ribosomal 

subunits. Adapted from Lafontaine and Tollervey, 2001. 

 

1.3.2.1 Transcription of pre-rRNAs 

In S. cerevisiae, the genes coding for the 35S rRNA precursor are organized in one 

cluster containing 100-200 tandem repeats separated by short spacers (non-

transcribed spacer – NTS) containing also the 5S rRNA gene (transcribed in the 

opposite direction by RNA Pol III) (Figure 1.17) and an origin of DNA replication on 

chromosome XII (Venema and Tollervey, 1995). Contrary to the rRNA genes, the 

genes for r-proteins are scattered throughout the eukaryotic genomes (Planta and 

Raué, 1988). 

rRNA genes are highly transcribed in the nucleolus by RNA Pol I and RNA Pol 

III. RNA Pol I transcribes the 35S rDNA that contains the 25S, 18S, and 5.8S rRNA 

components separated by two internal transcribed spacers, ITS1 and ITS2, and 

flanked by two external transcribed spacers, the 5' ETS and 3' ETS (Figure 1.17) 

(Venema and Tollervey, 1995). On the other hand, Pol III transcribes the 5S rRNA 

as a 3’-end extended precursor (Lee and Nazar, 2003). Pre-40S ribosomal subunits 

contain the 18S rRNA and the pre-60S ribosomal subunits integrate the 28S, 5.8S, 

and 5S rRNA species. Maturation of pre-40S and pre-60S ribosomal subunits 

occurs in the cytoplasm (Venema and Tollervey, 1995; Mahoney, Dempsey and 

Blenis, 2009). 

rRNA transcription is regulated by transcriptional initiation frequency and/or 

elongation from each open rRNA gene and by the ratio of active (opening) to inactive 

(closing) rDNA repeats (Sandmeier et al., 2002; Woolford and Baserga, 2013). 
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Additionally, Pol I activity depends on four transcription factors: TATA binding 

protein (TBP), Rrn3, upstream activating factor (UAF; comprises Rrn5, Rrn9, Rrn10, 

Uaf30 and histones H3 and H4) and core factor (CF; comprises Rrn6, Rrn7 and 

Rrn11). Additionally, rRNA synthesis is coordinated with the ribosomal proteins 

synthesis in order to ensure an efficient assembly of ribosomal subunits (Warner, 

1999). 

 

 

Figure 1.17. Structure of rDNA in yeast. The rDNA repeats are located on chromosome 

XII. RNA Pol I transcribes a single repeat unit to synthetize the 35S primary pre-rRNA 

transcript, whose processing produces the mature 18S, 5.8S and 25S rRNAs (arrow 

pointing right). RNA Pol III also transcribes a single repeat unit to synthetize the 5S rRNA 

(arrow pointing left). NTS: non-transcribed spacer; ETS: external transcribed spacer; ITS: 

internal transcribed spacer. Adapted from Woolford and Baserga, 2013. 

 

1.3.2.2 Processing of pre-rRNAs 

Maturation of the primary 35S precursor into the mature 18S, 5.8S and 25S rRNA 

involves a multistep pathway and requires many different trans-acting factors (e.g. 

snoRNPs, putative helicases, ribonucleases) for the removal of the four transcribed 

spacers by endonucleolytic and exonucleolytic processing reactions (Venema and 

Tollervey, 1995; Dieter Kressler et al., 1999).  On the other hand, processing of the 

pre-5S rRNA is independent of the 35S pre-rRNA processing. This precursor only 
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needs to be processed at its 3’-end by an exonucleolytic cleavage (Lee and Nazar, 

2003). 

The first pre-35S rRNA processing event is the cleavage by the endo-RNase 

Rnt1 in the 3’ ETS followed by cleavage at the site A0 in the 5’ ETS to generate the 

33S primary pre-rRNA transcript (Figure 1.18) (Hughes and Ares, 1991; Lafontaine 

and Tollervey, 1995; Dieter Kressler et al., 1999; Venema and Tollervey, 1999). 

Then cleavage at A1 site in the 5’ ETS produces 32S pre-tRNA and cleavage at the 

A2 site in the ITS1 generates the 20S and 27SA2 pre-rRNAs, which can occur co-

transcriptionally in 40-80% of the nascent transcripts  (Hughes and Ares, 1991; 

Woolford and Baserga, 2013). The cleavage of the IST1 can also be done by the 

RNase MRP at the A3 site, producing instead the 23S and 27SA3 pre-rRNAs 

(Tollervey, 1996; Dieter Kressler et al., 1999; Woolford and Baserga, 2013). The 

20S pre-rRNA undergoes endonucleolytic cleavage by Rio1/Rrp10 at D site to 

remove the remaining ITS1 sequences, producing mature 18S rRNA, a step which 

occurs after export to the cytoplasm (Vanrobays et al., 2001). On the other hand, 

27SA2 pre-rRNA processing can occur by two alternative pathways (Figure 1.18). 

Most frequently (85-90%), 27SA2 pre-rRNA is first processed to 27A3 pre-rRNA via 

MRP RNase at the A3 site in the ITS1, and then 5’-3’ exonucleases Rat1 and Rrp17 

(or Xrn1) eliminate the remaining ITS1 spacer sequences from 27SA3 pre-rRNA, 

stopping at the B1S site and forming the 5’-end of 27SBS pre-rRNA. The alternative 

pathway (10-15%) of 27SA2 pre-rRNA processing involves direct cleavage at the 

B1L site in 27SA2 pre-rRNA (by an unknown endonuclease), generating 27SBL pre-

rRNA. Either the 27SBS and 27SBL pre-rRNAs are endonucleolytic cleaved at the 

C2 site of the ITS2 spacer to form the 25.5S and 7SS/7SL pre-rRNAs. Finally, the 5’-

end of 25.5S pre-rRNA is trimmed by Rat1 to generate mature 25S rRNA. And, the 

3’-ends of 7S pre-rRNAs are processed via a 3’-5’ exonucleolytic processing 

mechanism requiring the exosome (composed of three 3’-5’ exonucleases – Rrp4, 

Rrp41/Ski6, Rrp44 – and eight putative ones – Csl4, Mtr3, Rrp40, Rrp42, Rrp43, 

Rrp45, Rrp46 and Rrp6), and producing mature 5.8SS and 5.8SL rRNAs, which differ 

by 6 nucleotides at their 5’-ends (Dieter Kressler et al., 1999; Venema and Tollervey, 

1999; Woolford and Baserga, 2013). 
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Some of the removed pre-rRNA spacer fragments, namely A0-A1, D-A2, and 

A2-A3 fragments, are degraded by Rat1 and Xrn1 (Dieter Kressler et al., 1999). 

rRNA processing and ribosome biogenesis require interaction with snoRNA-

protein complexes (snoRNPs), such as U3 snoRNA. Interestingly, a 10-nucleotide 

sequence, 250 nucleotides before the A1 cleavage site, is complementary to the 5’-

end of the U3 snoRNA and acts as a binding site for a U3 snoRNA, whose binding 

directs nuclease activities. A few other snoRNAs also participate in pre-RNA 

cleavage (U8, U14, U22, snR10 and snR30) (Nazar, 2004). For instance, pre-18S 

processing requires U3, U14, snR30 and snR10, in addition to RNase MRP (Lemay 

et al., 2011; Woolford and Baserga, 2013). 

 

 

Figure 1.18. Pre-rRNA processing in S. cerevisiae. An rDNA repeat unit contains a large 

operon encoding the 35S pre-rRNA, which is transcribed by RNA Pol I and comprises 

sequences for 18S, 5.8S and 25S rRNAs (black, dark gray, and light gray cylinders), and 

an RNA Pol III-transcribed 5S rRNA gene (white cylinder). Processing steps to generate 

each rRNA are indicated and include removal of spacer sequences in a series by 
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endonucleases and exonucleases. rRNA processing begins in the nucleolus of the cell, but 

later phases occur in the nucleoplasm and cytoplasm. Adapted from Woolford and Baserga, 

2013. 

 

1.3.2.3 Modification of pre-rRNAs 

Many specific nucleotides within the rRNA also undergo covalent modification 

during rRNA maturation and even co-transcriptionally. The modifications include 

isomerization of uridine to pseudouridine by base rotation (Ψ; 45 modified 

nucleotides), methylation of the 2’-hydroxyl group of sugar residues (2’-O-ribose 

methylation – Nm; 67 modified nucleotides) and base methylation (mN; 

approximately 10 modified nucleotides) (Dieter Kressler et al., 1999; Woolford and 

Baserga, 2013). Little is known about the functional roles of nucleotide modification 

in rRNA: pseudouridine residues seem to alter base stacking and has an extra 

hydrogen bond donor (relative to uridine), contributing to RNA stability (Charette and 

Gray, 2000; Helm, 2006); Nm residues seem to alter RNA structure and protect from 

hydrolysis by nucleases and bases (Decatur and Fournier, 2002; Helm, 2006; 

Baxter-Roshek, Petrov and Dinman, 2007). However, rRNA modifications do not 

seem to be positioned arbitrarily. Those modifications occur at sites that cluster near 

the active core of the ribosome, namely in the ribosomal large subunit, where 

modifications cluster in highly conserved regions of the ribosome dedicated to 

peptidyl transfer, sites of tRNA binding (A- and P-sites – domain V of LSU), the 

peptide exit tunnel and inter-subunit bridges (Figure 1.19 and Figure 1.20), and help 

the tight packing of the rRNAs through tertiary interactions (Decatur and Fournier, 

2002). In yeast, the sites of modification in the SSU are concentrated in the area 

where the head and upper body regions converge, particularly in A- and P-sites and 

in the mRNA-channel latch region, which could affect its function in mRNA binding 

(Figure 1.20A, B). Also, modifications are concentrated at the subunit interface, 

particularly for the Nm nucleotides in the yeast SSU (Figure 1.20B), and are present 

in inter-subunit bridges, suggesting their influence in subunit interactions (Decatur 

and Fournier, 2002). In turn, almost all modifications in the LSU occur at domains 

II, IV and V (Figure 1.19B). Interestingly, domain V is at the center of the subunit 

interface, including the PTC, and is surrounded by domains II and IV. So, almost all 
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modifications in the yeast LSU cluster near the core of the subunit and define a shell 

around the regions for the A- and P-sites tRNAs. In fact, modified nucleotides at the 

A- and P-sites, particularly Nm modified nucleotides, are predicted to base pair with 

nucleotides of the tRNA acceptor end to modulate tRNA binding (Decatur and 

Fournier, 2002). The overall effect of rRNA modification could be associated with 

changes in rRNA structure that could enhance rRNA folding, rRNA assembly, or 

ribosome activity, trafficking and half-life (Decatur and Fournier, 2003). Additionally, 

defects in rRNA modification were shown to have influence in ribosome integrity and 

translation rates (Baxter-Roshek, Petrov and Dinman, 2007). 

 



1. Introduction 

35 

 

 

Figure 1.19. Distribution of rRNA modifications in the yeast ribosome. Secondary 

structure maps showing modification sites for the 18S (A) and 25S-5.8S (B) rRNAs. RNA 

domains are identified with Roman numerals. The color scheme for modifications is red 

B

A
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triangle for Ψ, orange square for mN and green circle for Nm. Adapted from Decatur and 

Fournier, 2002. 

 

 

Figure 1.20. Three-dimensional distribution of rRNA modifications in the S. cerevisiae 

ribosome. A, B. Sites of yeast modification in two views of the SSU. C, D. Positions of 

yeast modifications in two views of the LSU. Predicted sites for modifications are shown in 

the three-dimensional subunits for 44 (of 45) pseudouridines (red), 54 (of 67) 2’-O-

methylations (green) and 10 (of ~10) base methylations (orange). The distribution of these 

modifications within the SSU and the LSU are: Ψ – 14/30, mN – 3/7 and Nm – 17/37. 

Unmodified nucleotides in the rRNA of the ribosomal subunits are represented in grey, 
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whereas protein chains are represented in blue for SSU and in maroon for LSU. Adapted 

from Decatur and Fournier, 2002. 

 

Covalent modifications are first introduced on the 35S pre-rRNA (Figure 

1.21A), which is extensively modified particularly by 2’-O-ribose methylation and 

pseudouridylation at sites that are selected by small ribonucleoprotein particles 

(snoRNPs) (Venema and Tollervey, 1999). The snoRNPs are complexes 

comprising nuclear proteins and snoRNAs, whose function is to guide the 

modification by enzymatic activities associated with the protein complex. The 

snoRNAs (75-100 different in yeast) are divided into two families called C/D box and 

H/ACA box snoRNAs (Nazar, 2004). Each class of guide snoRNAs and snoRNPs 

is both modification type-specific and site-specific. Members of the H/ACA box 

family contain guide sequences for pseudouridylation, while those of the C/D box 

family are complementary to targets of rRNA for methylation. Each box H/ACA 

snoRNA has two hairpins separated by a short single stranded sequence (hinge) 

(Figure 1.21C), thus binding to one or two sites of pseudouridine formation, where 

it forms short base-paired regions with the rRNA sequence (guide sequences of 4-

8 nt) to modify uracil in the pseudouridylation pocket (Venema and Tollervey, 1999; 

Decatur and Fournier, 2002; Reichow et al., 2007). The H/ACA snoRNPs box 

comprises four protein components: Cbf5 (dyskerin in humans), that is the catalytic 

pseudouridine synthase; Gar1, Nop10, and Nhp2, which perform structural 

functions, stabilizing the tertiary fold of the RNA and ensuring correct positioning of 

the target nucleotide in the Cbf5 active site (Figure 1.21C) (Henras et al., 2004; 

Normand et al., 2006). On the other hand, each C/D snoRNA box base-pairs to one 

or two 2’-O-ribose methylation sites. At those sites, the C/D snoRNA box forms an 

extended region of complementarity, where the D box region is placed five base 

pairs from the nucleotide to be modified (Venema and Tollervey, 1999; Gagnon, Qu 

and Maxwell, 2009). The box C/D guide RNAs comprise the box C (RUGAUGA, 

where R is purine) and box D (CUGA) sequence elements located at the 5’ and 3’ 

RNA ends, respectively, and the internal box C’ and D’ elements. Those terminal 

and internal boxes create the box C/D and C’/D’ motifs, respectively. Both motifs 

fold into RNA elements known as kink-turns (K-turns), which are characterized by 
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an asymmetric bulge flanked by two stems and stabilized by tandem, shared G:A 

pairs (Figure 1.21B) (Reichow et al., 2007; Grosjean, 2009a). The four protein 

components of C/D snoRNA box are fibrillarin/Nop1, the methyltransferase that 

catalyzes nucleotide modification; Snu13, that binds to the K-turn in the C/D 

snoRNA box; Nop58 and Nop56, which have extensive coiled-coil domains with 

which they heterodimerize (Figure 1.21B) (Watkins et al., 2000; Gagnon, Qu and 

Maxwell, 2009; Woolford and Baserga, 2013). 

However, a pseudouridine (Ψ50) present in yeast 5S rRNA and a 2’-O-

methylation (Gm2922) in the 25S rRNA are generated by protein-only enzymes (Pus7 

and Spb1, respectively) that recognize the U50 and G2922 and catalyze their 

modification, respectively (Lapeyre and Purushothaman, 2004; Decatur and 

Schnare, 2008). Similarly, base methylation is mediated by specific protein 

enzymes. 

As verified in tRNAs, rRNA modifications can be a source of ribosome 

heterogeneity that may alter ribosome function in response to distinct environmental 

conditions (Sloan et al., 2016). 
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Figure 1.21. rRNA modification by snoRNPs. A. Overview of ribosome synthesis. 

snoRNPs modify pre-rRNA in the nucleolus during or post transcription. B. The diagram 

shows the interaction of C/D snoRNA box with its target rRNA. C. The diagram shows the 

interaction of H/ACA snoRNA box with its target rRNA. Adapted from Decatur and Fournier, 

2003. 

 

1.3.2.4 Ribosome assembly 

Assembly of the 4 rRNAs and 79 r-proteins into ribosomes requires 76 small 

nucleolar RNAs and >200 assembly factors and occurs concomitantly with 

maturation and folding of the pre-rRNA (Nazar, 2004; Woolford and Baserga, 2013). 

In yeast, many r-proteins associate with pre-ribosomes at the earliest events of 

subunits assembly to initiate assembly. Some r-proteins enter into the rRNA core, 

but part of them has also extensions that overpass the RNA surface to function as 

B

A

C



1. Introduction 

40  

 

binding site for assembly or translation factors. r-proteins located in the body of 40S 

subunits, bound near the 5’ domain of 18S rRNA, are important for early steps in 

pre-rRNA processing. Contrary, r-proteins relevant for later steps (S10, S25, S27, 

S31, S32, S33 and S34) are mainly located in the head of the SSU, bound to 3’ 

domain of 18S rRNA (Kruiswijk, Planta and Krop, 1978). Similarly, LSU r-proteins 

bound to domains I and II in the 5’-end of 25S/5.8S rRNA are required for early 

steps, the processing of 27SA2 and 27SA3 pre-rRNA. r-proteins bound to domains I 

and III, located near the polypeptide exit tunnel, are required for a middle step of 

pre-rRNA processing, cleavage of 27SB pre-rRNA. Finally, r-proteins involved in 

late steps (L6, L7, L8, L9, L11, L15, L16, L23, L24, L30, L32, L36, L40, L41, L42, 

L44 and L45), processing of 7S pre-rRNA and nuclear export, are located on the 

interface surface of LSUs and near the central protuberance (Kruiswijk, Planta and 

Krop, 1978; Woolford and Baserga, 2013). 

Approximately 90 proteins are in the 66S precursors of mature 60S subunits 

and the earliest pre-40S subunit contains the U3 snoRNA (enable correct folding) 

and more than 75 proteins, all participating in assembly (Grandi et al., 2002; 

Woolford and Baserga, 2013) (Figure 1.22). Among those proteins are endo- and 

exonucleases (for processing), enzymes that modify RNA or proteins, RNA 

helicases/ATPases, AAA ATPases, GTPases, kinases and phosphatases, RNA 

binding proteins, putative scaffolding proteins, and few proteins with high homology 

to r-proteins. Each of those proteins function at a specific event(s) in pre-rRNA 

processing, nuclear export, and/or subunit maturation (Watkins and Bohnsack, 

2012). 

Assembly initiates with pre-40S and pre-60S subunits associated with some 

assembly factors and r-proteins. During maturation of these initial pre-ribosomes, 

they experience RNA-protein alterations that requires helicases and includes 

release of some assembly factors (Figure 1.22). In the earliest events of pre-40S 

maturation that follows the cleavage at the A2 site, large number of the early-acting 

factors as well as the U3 subunit are discarded and a few late-acting factors 

assemble onto pre-rRNPs (Schafer et al., 2003; Woolford and Baserga, 2013). On 

the other hand, maturation of 66S pre-ribosomes, to generate mature 60S subunits, 

involves: construction of stable early assembly intermediates containing 27SA2 pre-
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rRNA, cleavage of 27SA2 pre-rRNA at the A3 site and removal of ITS1 to form 27SB 

pre-rRNA, release of early-assembly factors, cleavage at the C2 site in ITS2, 

removal of ITS2 from 25.5S and 7S pre-rRNAs, nuclear export and cytoplasmic 

maturation of subunits. The early pre-60S ribosomes comprising 27SA2 or 27SA3 

pre-rRNA contains at least 45-50 assembly factors. Among those factors are 

proteins that form the Pwp1 complex, namely Ebp2, Brx1, Nop12, L8 and Pwp1, 

that function together to process 27SA2 and 27SA3 pre-rRNAs. Few assembly 

factors join these intermediates, in order to catalyze release of the early factors and 

elimination of the ITS2 spacer from 27SB pre-rRNA, or to ease the export of the pre-

RNPs to cytoplasm. After export, the last steps in pre-rRNA processing and 

assembly of the late r-proteins are facilitated by 10-12 late-acting factors that bind 

to cytoplasmic pre-ribosomes. Finally, the last 6-8 assembly factors are released 

(Figure 1.22) (Nissan et al., 2002; Woolford and Baserga, 2013). 

Exported pre-40S particles into the cytoplasm contain seven assembly factors 

and lack two r-proteins (S10 and S26). Those assembly factors are important to 

protect pre-40S subunits from premature association with translation initiation 

factors and with 60S ribosomal subunits by overlapping their respective binding sites 

(Strunk et al., 2011). Pre-60S subunits are also prevented from participating in 

translation by blocking their association with 40S subunits (Gartmann et al., 2010; 

Strunk et al., 2012). 

In mature ribosomes, all r-proteins directly interact with rRNA and stabilize 

rRNA folding (Ramaswamy and Woodson, 2009; Woodson, 2011; Woolford and 

Baserga, 2013). 
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Figure 1.22. Maturation of pre-ribosomes to form 40S and 60S ribosomal subunits. 

Intermediates for sequential assembly are shown associated with the respective pre-rRNA 

processing intermediate. The early nucleolar/nuclear precursors are associated to most r-

proteins (light blue) and many assembly factors (dark blue). Some other assembly factors 

connect pre-ribosomes in middle steps of assembly or even during late steps in the 

cytoplasm. During early, middle or late stages of subunit maturation assembly factors are 

released from pre-ribosomes. Adapted from Woolford and Baserga, 2013. 

 

1.3.3 Quality control 

Alterations in the structure and dynamics of ribosomal subunits can lead to 

decreased fidelity of protein synthesis. Thus, a proofreading mechanism for 

assembly of pre-ribosomes, assuring that only functional RNA is incorporated, and 

for degradation of misassembled pre-ribosomes is essential. 

One quality control mechanism was attributed to the 5S rRNA-binding protein 

Rpl5 that binds over or caps the termini in a critical manner, protecting the nascent 

5S rRNA from degradation by housekeeping nucleases. This precise binding is 

crucial to 5S rRNA stability and even for ribosome integrity (Lee and Nazar, 2003). 

Additionally, the formation of the nucleolar pre-ribosome particle comprising the two 
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pre-ribosomal subunits as well as a third domain with spacer elements, nucleolar 

proteins and snoRNAs is a process of fitting everything correctly into this large 

particle, acting as a kind of “checklist” to ensure that all is normal. Failure during this 

step makes aberrant pre-rRNA susceptible to housekeeping nucleases, which 

degrade the nascent rRNA, avoiding its incorporation into ribosomes (Nazar, 2004). 

rRNA modification may also act as a quality control mechanism, in addition to 

its role on rRNA conformation and stability, protein binding, and even ribosome 

function. Since rRNA modifications are mediated by snoRNAs, which share long 

sequence complementarities and pair with the rRNA, these interactions could be a 

form of proofreading (Song and Nazar, 2002). In this way, altered sequences in the 

rRNA would not effectively pair with snoRNAs and would disrupt the modification 

process. Thus, modified nucleotide position would be unstable or less stable, being 

critical sites for nuclease attack and elimination (Song and Nazar, 2002; Nazar, 

2004). 

The mechanism for surveillance and degradation of misassembled ribosomes 

is performed by the exosome complex of exonucleases (Allmang et al., 2000). For 

that, pre-rRNAs are adenylated at their 3’-end by nuclear TRAMP complexes, 

containing poly(A) polymerase Trf4 or Trf5, the RNA helicase Mtr4, and RNA-

binding protein Air1 or Air2. The Mtr4 helicase help to disassemble pre-rRNAs or 

pre-RNPs and adenylation of pre-rRNAs may form an ideal substrate for binding 

and 3’ degradation by the exosome (Lacava et al., 2005; Houseley, LaCava and 

Tollervey, 2006; Woolford and Baserga, 2013). This mechanism of nucleolar 

surveillance can be initiated co-transcriptionally and might take place in a distinct 

region of the nucleolus, termed “No-body” (Dez, Houseley and Tollervey, 2006; 

Wery et al., 2009; Woolford and Baserga, 2013). 
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1.4 PROTEIN BIOSYNTHESIS 

The translation of mRNA is divided in four main steps: initiation, elongation, 

termination and recycling. The goal of initiation is to position the ribosome at the 

start of the coding region, i. e., at the initiation codon of the mRNA with a methionyl 

initiator tRNA bound in the ribosomal P-site. Elongation of the peptide chain then 

begins with the selection of tRNAs in the acceptor A-site, and then the ribosome 

catalyzes the formation of a peptide bond. The tRNAs and mRNA are translocated, 

so that the next codon can be moved into the A-site. Termination occurs when a 

stop codon (UAA, UAG, or UGA) arrives at the active ribosomal A-site. The finished 

polypeptide chain is then released from the ribosome. Finally, ribosome recycling 

involves the separation of the ribosomal subunits, releasing the mRNA and the 

deacylated tRNA (Jansen et al., 1995; Kapp and Lorsch, 2004). These fundamental 

events sometimes differ between bacteria, eukaryote, and archaea (Kapp and 

Lorsch, 2004). 

As mentioned before, the small unit is responsible for the decoding process, 

where aminoacylated tRNAs are selected according to the mRNA sequence, and 

the large subunit is responsible for the peptide bond formation. 

Gene expression is regulated at different levels, namely chromatin structure 

(histones modifications and DNA methylation), transcription of the gene into mRNA, 

processing and modification of mRNA transcripts, transport of the mRNA from the 

nucleus to the cytoplasm, stability/decay of mRNA transcripts, binding of the mRNA 

to ribosomes, initiation, elongation and termination of translation, and processing of 

proteins to their final and functional conformation (Lodish, 1976; Adeli, 2011). At the 

translation level, the main control point is the initiation step, but elongation and 

termination are also important. Furthermore, eukaryotic mRNAs have structural cis-

acting elements such as 5’- and 3’-UTRs facilitating specific regulation by trans-

acting RNA binding proteins. mRNA stability and its rate of translation is also 

controlled by small microRNAs (miRNAs) that hybridize to mRNA sequences within 

the 3’-UTR or other regions. On the other hand, translational efficiency could be 

determined by motifs within mRNA, namely the presence of start-site consensus 

sequence, secondary structure, upstream open reading frames (uORFs), the 

canonical end modification of mRNA molecules – the cap structure and the poly(A) 
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tail, and internal ribosomal entry sites (IRES) (Gebauer and Hentze, 2004; Adeli, 

2011). Since mRNAs are translationally active by default, those regulatory 

mechanisms are mostly inhibitory (Gebauer and Hentze, 2004). Deregulation of one 

of those steps could lead to errors during protein synthesis that are summarized in 

Figure 1.23. 

 

 

Figure 1.23. Types of errors that may affect protein synthesis and folding. Errors could 

occur at many steps of protein synthesis, namely during transcription, splicing, translation, 

folding and during post-translational modification of the proteins. Adapted from Allan 

Drummond and Wilke, 2009. 

 

1.4.1 Translation 

1.4.1.1 Initiation 

During transcription in the nucleus, mRNA loses its introns and acquires a cap 

structure at its 5’-end and a poly(A)-tail at the 3’-end. The mature strand of RNA can 

be divided into three domains, namely the 5’-untranslated region (5’-UTR), the 

protein encoding region (ORF − open reading frame), and the 3’-UTR or 3’-tail 

(Jansen et al., 1995). 
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The translation initiation process begins when the eukaryotic initiation factor 

(eIF) 2·GTP·Met-tRNAi ternary complex is assembled. The formation of this 

complex is assisted by eIF2B to recycle the eIF2·GDP complex after each initiation 

cycle: eIF2 is a G protein and has higher affinity for GDP than GTP (Kapp and 

Lorsch, 2004). After the formation of eIF2·GTP·Met-tRNAi ternary complex, 

eIF2·GDP helps the association of Met-tRNAi to the P-site of the small ribosomal 

subunit (40S), forming the 43S pre-initiation complex. The formation of this complex 

is mainly assisted by eIF1, eIF1A and eIF3 (Dever, 1999; Kapp and Lorsch, 2004; 

Mahoney, Dempsey and Blenis, 2009). The Met-tRNAi binds to the P-site of the 

ribosome, in contrast to the delivery of specific aa-tRNA to the A-site of the ribosome 

during elongation (Dever, 2002). 

The 5’-cap of the mRNA is used to assemble the eIF4F complex that opens 

secondary structures present in the 5’-UTR. eIF4F complex contains a cap-binding 

protein – eIF4E, a DEAD-box RNA helicase responsible for unwinding the 

secondary structure at the 5’-UTR – eIF4A, and eIF4G that serves as a scaffold for 

eIF4A, poly(A)-binding proteins (PABPs), and eIF3 (or probably eIF5 in yeast). 

Additionally, eIF4F and eIF4B, together with the PABP bound to the 3’-poly(A) tail 

and eIF3 bring the mRNA onto the 43S pre-initiation complex, forming the 48S pre-

initiation complex. The opening of the mRNA entry tunnel latch is stabilized by the 

closed orientation of the helix 16 of the SSU altered with the help of eIF1 and eIF1A 

factors. This allows the 48S pre-initiation complex to scan the message in the 5’ to 

3’ direction until the initiation codon is found (Passmore et al., 2007; Mahoney, 

Dempsey and Blenis, 2009; Jackson, Hellen and Pestova, 2010). As soon as the 

43S complex finds the proper start AUG codon (with a purine at position -3 and a G 

at position +4 relative to the A of the AUG codon) on the mRNA it stops due to the 

interaction of the AUG codon with the anticodon of the initiator tRNA in the ternary 

complex (Kozak, 1991; Jackson, Hellen and Pestova, 2010). This leads to the 

hydrolysis of GTP by eIF2, facilitated by eIF5, the GTPase-activating protein (GAP). 

Then, eIF2·GDP releases the Met-tRNAi into the P-site of the 40S subunit and 

dissociates from the complex, as well as eIF1, eIF1A, eIF3 and eIF5 (Kapp and 

Lorsch, 2004). Simultaneously, eIF5B·GTP binds to the complex, and facilitates the 

binding of the large ribosomal subunit (60S) to the 40S·Met-tRNAi·mRNA complex, 



1. Introduction 

47 

 

generating a translationally competent ribosome (Figure 1.24) (Dever, 2002; Kapp 

and Lorsch, 2004). This event is the signal for GTP hydrolysis by eIF5B, followed 

by its dissociation from the complex, due to the low affinity of the GDP-bound form 

for the ribosome (Kapp and Lorsch, 2004). 

This first translational event depends on the binding of eIFs to the 5’-cap and 

5’-UTR scanning to identify the AUG initiation codon, whose recognition is 

dependent on the context and position of the first AUG codon (as mentioned above). 

However, changes in the phosphorylation state of initiation factors or their 

interacting partners are the key elements of global control of protein synthesis. One 

example is the phosphorylation of residue Ser51 of the α-subunit of the eIF2, 

blocking the GTP-exchange reaction (Gebauer and Hentze, 2004). 
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Figure 1.24. Eukaryotic translation initiation model. The pathway of eukaryotic initiation 

follows the recycling of post-termination complexes (post-TC; 1), where 40S and 60S 

ribosomal subunits are separated. Then the eukaryotic translation initiation involves 

eIF2·GTP·Met-tRNAi ternary complex formation (2); generation of the 43S pre-initiation 

complex (40S subunit, eIF1, eIF1A, eIF3, eIF2–GTP–Met-tRNAi
Met and probably eIF5) (3); 
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mRNA activation by eIF4F and eIF4B (4); binding of the 43S complex to the unwound 

mRNA region (5); 5’-UTR mRNA scanning in a 5’ to 3’ direction by 43S complex (6); 

formation of the 48S initiation complex after recognition of the initiation codon (7); 60S 

subunits joins 48S complex with release of eIF2–GDP and other factors (eIF1, eIF3, eIF4B, 

eIF4F and eIF5) mediated by eIF5B (8); and hydrolysis of eIF5B-bound GTP and release 

of eIF1A and eIF5B from the assembled 80S ribosome (9). Translation is a cyclic process, 

in which elongation and termination follows initiation and leads to recycling (1), resulting in 

detached ribosomal subunits. Adapted from Jackson et al., 2010. 

 

1.4.1.2 Elongation 

Translation elongation uses a conserved machinery to the three kingdoms of life. 

During elongation an aminoacyl-tRNA is transferred to the ribosomal A-site as a 

ternary complex with GTP and the elongation factor (eEF1A) (Kapp and Lorsch, 

2004). This eEF1A·GTP·aa-tRNA ternary complex binds to the matching codon in 

the A-site of the ribosome (Figure 1.25) (Agris, 2004; Kapp and Lorsch, 2004; 

Mahoney, Dempsey and Blenis, 2009). In order to ensure that only the cognate 

tRNA is selected for the next stage of elongation the codon-anticodon base pairings 

between the mRNA and the tRNA are checked and conformational changes in the 

decoding center of the small ribosomal subunit and GTP hydrolysis by eEF1A 

provide additional proofreading of that interaction. In the first step, codon-anticodon 

base pairing induces a conformational change of the three bases (G567, A1755 and 

A1756) in the 40S subunit to interact with the minor groove of the codon-anticodon 

helix and monitor the stereochemical correctness of that base pairing via hydrogen-

bond interactions. The correct interaction between SSU and the mRNA-tRNA duplex 

is likely to activate eEF1A’s GTPase activity, resulting in the release of the 

aminoacyl-tRNA into de A-site by eEF1A·GDP (Agris, 2004; Kapp and Lorsch, 2004; 

Ogle and Ramakrishnan, 2005). Then, the formation of a peptide bond between the 

incoming amino acid and the peptidyl-tRNA is catalyzed by the ribosomal peptidyl 

transferase center of the 60S subunit at the A-site. Thus, a deacylated tRNA in a 

hybrid state is formed with its anticodon in the P-site of the 40S subunit and its 

acceptor terminal in the E-site of the 60S subunit of the ribosome. At the same time, 

the peptidyl-tRNA is in a similar hybrid conformation with its anticodon in the A-site 
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of the small subunit and its acceptor terminal in the P-site of the large subunit. For 

progression of elongation, this complex is translocated so that the deacylated tRNA 

is in the E-site only, the peptidyl-tRNA in the P-site only, and the mRNA moves three 

nucleotides downstream to place the next codon of the mRNA into the A-site. These 

steps require elongation factor 2 (eEF2), which is responsible for the hydrolysis of 

GTP that facilitates translocation. After the hydrolysis of GTP and the discharge of 

aminoacyl-tRNA onto the ribosome, eEF1A·GDP is also released and recycled to 

its GTP-bound form, mediated by eEF1B (a multifactor complex); to participate in 

further cycles of polypeptide elongation (Figure 1.25). This process is repeated until 

a stop codon enters the A-site, leading to the beginning of the termination of 

translation (Kapp and Lorsch, 2004). 

 

 

Figure 1.25. Eukaryotic translation elongation model. After initiation, an elongating 

ribosome is characterized by containing a peptidyl-tRNA in the P-site and a deacylated 

tRNA in the E-site (top). The aa-tRNA for the cognate codon in the A-site is delivered when 

it is bound to eEF1A (1)·GTP (green circle). The codon-anticodon pairing in the A-site 

induces conformational changes in eEF1A, GTP hydrolysis, and release of eEF1A·GDP 

(red circle), whereas the aa-tRNA stays in the A-site to form the peptide bond catalyzed by 

the ribosome. Simultaneously, eEF1A interacts with eEF3 (3) to assist the release of the E-

site tRNA. Then, eEF2 (2)·GTP is involved in the movement of the A-site peptidyl-tRNA to 
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the P-site and of the now deacylated tRNA in the P-site to the E-site. The mRNA also moves 

three nucleotides downstream to place the next codon into the A-site to allow another cycle 

of elongation. Adapted from Dever, Kinzy and Pavitt, 2016. 

 

1.4.1.3 Termination 

As referred above, the presence of a stop codon in the ribosomal A-site leads to the 

termination of translation. This happens because a stop codon located in the A-site 

is recognized by a release factor (RF) or release factor complex. In eukaryotes, 

termination is mediated by a heterodimer of release factors eRF1 and eRF3 (Figure 

1.27). eRF1 recognizes the three stop codons and induces peptidyl-tRNA hydrolysis 

by the ribosome, releasing the nascent polypeptide (Inge-Vechtomov, Zhouravleva 

and Philippe, 2003). eRF3 is a GTPase that stimulates the activity of eRF1 bound 

to the stop codon, enhancing termination efficiency (Inge-Vechtomov, Zhouravleva 

and Philippe, 2003). In response to a stop codon in the ribosomal A-site, formation 

of a quaternary complex comprising the ribosome, eRF1, GTP and eRF3 triggers 

GTP hydrolysis and the peptidyl transferase center of the ribosome catalyzes the 

hydrolysis of the ester bond, linking the polypeptide chain to the P-site tRNA, which 

results in the release of the completed polypeptide (Figure 1.26) (Bertram et al., 

2001; Kapp and Lorsch, 2004). 

 

1.4.1.4 Recycling 

The last stage of translation is the recycling of the ribosomal subunits, for another 

cycle of translation. In eukaryotes, ribosome recycling requires eIF3, which binds to 

the small ribosomal subunit opposite to the interface. In this way, eIF3 induces a 

conformational change in the 40S subunit, increasing the rate of subunit dissociation 

and lowering the rate of association. Another model for ribosomal recycling posits 

that termination and recycling may not discharge the 40S subunit back into the 

cytoplasm, instead this subunit may be transferred over or across the poly(A)-tail 

back to the 5’-end of the mRNA, mediated by the interaction of eRF3 and PABP with 

initiation factor eIF4G (Figure 1.26). These events facilitate the re-initiation of 

translation eliminating the need of the first initiation event (Kapp and Lorsch, 2004). 
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Figure 1.26. Translation termination complex. The finding of a termination codon (“stop”) 

by the ribosome elongation machinery (dotted) begins translation termination. The eRF1 

interacts with the stop codon, resulting in the hydrolysis of the peptidyl-tRNA bond with 

consequent formation of eRF1/eRF3 complex with PABP. Thus, ribosome recycling and re-

initiation of translation at a “start” codon is mediated by the interaction of PABP with 

translation factors (green circles). Adapted from Inge-Vechtomov et al., 2003. 

 



1. Introduction 

53 

 

 

Figure 1.27. Eukaryotic translation termination and ribosome recycling model. 

Translation termination occurs when eRF1-eRF3 initially bind to the ribosome, as a 

heterodimer (1). The GTPase hydrolysis of eRF3 occurs as a consequence of stop codon 

recognition (2). Following GTP hydrolysis, eRF3 in the GDP bound state dissociate from 

the eRF1-eRF3 complex (3). Then, eRF1 accommodates into the active site, analogous to 

accommodation of the aminoacyl-tRNA (4). After accommodation, peptide release occurs 

promoted by an ATP-independent process (5). Post-accommodation complexes then 

proceed to the final step, which initiates recycling in an ATP-dependent manner (6). 

Adapted from Shoemaker and Green, 2011. 

 

1.4.2 Translation fidelity 

Translation fidelity relies deeply on discrimination between complementary Watson-

Crick, wobble base pairs and non-complementary base pairing. However, 

translation is the most error-prone event of gene expression with an observed fidelity 

of 1 error in 103-104 polymerized amino acids (Cochella and Green, 2005). 

Translation errors can emerge during tRNA charging by aminoacyl-tRNA 

synthetases and when mRNA is decoded by the ribosome (Figure 1.23). In terms of 

aminoacylation errors, these are mostly caused by the incorrect recognition of non-

cognate tRNAs by aaRSs or by the inability of the aaRSs to differentiate between 
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similar amino acids. These errors are minimized by aaRS editing mechanisms, 

responsible to reject incorrectly bound amino acids, and by specific tRNA-aaRS 

interaction networks, as described previously (Figure 1.13), reducing error 

frequencies to a range of 1 in 104-105. At the ribosome level, mRNA decoding can 

be affected by four major types or errors: missence errors, which cause incorrect 

amino acid incorporation into polypeptide chains, resulting in the synthesis of mutant 

proteins (Bouadloun, Donner and Kurland, 1983); nonsense errors, which cause 

readthrough of stop codons, producing proteins with extended C-ends; frameshifting 

errors that alter the mRNA reading frame, resulting in out-of-frame truncated 

proteins (Björk et al., 1999); and, processivity errors that stop translation early, 

producing truncated proteins. Two mechanisms of correction of the errors that occur 

at the ribosome level were described. The kinetic proofreading model states that the 

ribosome distinguishes between cognate and non-cognates tRNAs by the kinetics 

of their association or dissociation from the ribosome (Farabaugh and Björk, 1999). 

Thus, during the encounter between the eEF1A·GTP·aa-tRNA ternary complex and 

the ribosome (initial selection), a cognate ternary complex is more likely to induce 

GTP hydrolysis than to dissociate, whereas a near-cognate ternary complex is more 

likely to dissociate (Cochella and Green, 2005). And, in the following step of 

proofreading, the cognate aa-tRNA is more likely to “accommodate” into the A site 

and participate in peptide bond formation, while the near cognate aa-tRNAs are 

more likely to be rejected from the ribosome (Cochella and Green, 2005). In an 

alternative model, the discrimination between cognate and non-cognate tRNAs is 

achieved by an allosteric interaction between tRNAs in the E-site and the A-site of 

the ribosome, reducing the rate of incorrect tRNAs biding to the A-site. In fact, the 

E-site of the ribosome has a role in reducing the effects of misincorporation and in 

the maintenance of the translational reading frame (Wilson and Nierhaus, 2006), as 

the accuracy of selection of the aa-tRNA at the A-site is dependent on the E-site 

occupation. The E-site influences the affinity state of the A-site by monitoring codon-

anticodon interaction (Wilson and Nierhaus, 2006). Those models also point out that 

a determinant element for translation accuracy is the concentration of cognate-tRNA 

relative to all other incorrect tRNAs, also demonstrated in the no more than 10-fold 

(approximately) difference between the most and the least abundant tRNAs 
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(Ikemura, 1985; Farabaugh and Björk, 1999; Kramer and Farabaugh, 2007; Shah 

and Gilchrist, 2010). 

The most frequent translational errors correspond to mistakes in selecting the 

correct aa-tRNA at the A-site and consequently misincorporation of the incorrect 

aminoacyl residue. Amino acid misincorporation occurs in about 10-3 to 10-4 amino 

acid incorporations, but only one in 400 misincorporations affects the structure 

and/function of proteins (Bouadloun, Donner and Kurland, 1983; Parker, 1989; Ogle 

and Ramakrishnan, 2005; Wilson and Nierhaus, 2006). On the other hand, 

frameshifting errors occurs only once in at least 3 x 104 amino acid incorporations 

(Jørgensen and Kurland, 1990), but are more detrimental; resulting in the synthesis 

of erroneous and most frequently incomplete polypeptides. Various models exist to 

explain these errors. A dual error model states that low number or slow entry of an 

aa-tRNA into the A-site could induce pausing during the acceptance of a near-

cognate tRNA (first error), and even after a normal three nucleotide translocation 

the near-cognate tRNA then slips into the +1 or -1 frame due to an aberrant 

anticodon-codon interaction in the P-site (second error). In contrast, altered tRNAs, 

for instance hypomodified tRNAs, may be accepted into the A-site instead of a near-

cognate tRNA, which may be prone to frameshift in the P-site after translocation 

depending on the sequence of the mRNA (Qian et al., 1998; Björk et al., 1999). A 

great number of frameshifting events were associated to tRNA hypomodification 

(Björk, Wikström and Byström, 1989; Esberg et al., 1997; Qian et al., 1998; Björk et 

al., 1999), since the presence of modified nucleosides in tRNA improves the aa-

tRNA selection rate and optimizes the fitness of the tRNA in the P-site. 

Most processivity errors occur by a process denominated ribosome editing. In 

this process erroneously decoding non-cognate peptidyl-tRNAs dissociate 

spontaneously from the P-site of the ribosome (“drop-off”), due to their weak 

interaction with the mRNA (Menninger, 1977). 

Translational errors often interfere with protein folding, leading to misfolded 

molecules that could be toxic. For instance, a single mutation in the editing domain 

of an Ala-tRNA synthetase causes misacylation with consequent general translation 

errors and protein misfolding. This was observed in the mouse cerebellum 

associated with degeneration of Purkinje cells, ataxia and death (Lee et al., 2006). 
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Protein synthesis errors (mistranslation) have a major impact on yeast biology 

(Table 1.2), and most likely in the biology of all organisms, but its relevance for 

protein misfolding/aggregation and proteotoxic stress is still poorly understood. 

 

Table 1.2. Major effects of mistranslation in S. cerevisiae (Santos et al., 1999; Gomes 

et al., 2007; Silva et al., 2007; Moura, Paredes and Santos, 2010). 

Effects of CUG mistranslation in S. cerevisiae 

- Increased ploidy (up to 4N); 

- Large chromosomal rearrangements; 

- Blocking mating and sexual reproduction; 

- Altered sporulation; 

- Altered expression of molecular chaperones and carbohydrate metabolism; 

- Increased proteasome activity; 

- Up-regulation of cell wall structural proteins; 

- Down-regulation of protein synthesis and amino acid metabolism; 

- Alterations in genome and gene expression → phenotypic alterations: 

- Morphology and cell shape and size heterogeneous; 

- Formation of pseudohyphae and hyphae; 

- Increased resistance to several agents (e. g. nutrient starvation, cadmium, H2O2); 

- Accumulation of glycogen and trehalose; 

- Increased secretion of extracellular hydrolases: lipases and proteases; 

- Strong effect on cell adhesion. 
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1.5 PROTEIN FOLDING AND MISFOLDING 

After biosynthesis and in order to become active the newly synthesized protein 

chains must be converted into folded compact structures, based on the information 

encoded in their amino acids sequence (Barral et al., 2004; Dobson, 2004). The 

term protein folding is universally recognized as the process responsible for the 

acquisition of the native structure, starting from a completely or partially unfolded 

state. This folding process occurring within the cells is assisted by a large number 

of auxiliary factors, including molecular chaperones and folding catalysts, enabling 

polypeptide chains to fold efficiently (Barral et al., 2004; Dobson, 2004; Outeiro, 

2004). This hypothesis of a relationship between the primary amino acid sequence 

of a protein and its conformation was initially proposed in 1973 (Anfinsen, 1973). 

There are various forces involved in the folding process, such as Van der Waals 

force, electrostatic force, hydrogen bonding, and hydrophobic force, but there are 

evidences that the hydrophobic force is a dominant force, determining the overall 

folded structure (Dobson, 2004; Outeiro, 2004). Protein folding is now considered a 

stochastic process and involves the hypothesis of an “energy landscape” for each 

protein. And, there is a limited possibility for proteins to misfold and adopt non-native 

states, still being transiently stable (kinetic traps) (Dobson, 2004; Outeiro, 2004; 

Hartl, Bracher and Hayer-Hartl, 2011). 

Protein folding can begin while a nascent chain is still attached to the ribosome 

(Kosolapov and Deutsch, 2009), some proteins fold in the cytoplasm after release 

from the ribosome, or in specific compartments such as the endoplasmic reticulum 

(ER). The environment in which protein folding takes place influences the folding 

process (Dobson, 2001). The folding energy landscape and folding outcome can 

also be influenced by ribosome effects, polypeptide elongation rate, molecular 

crowding and co-translational interactions with cellular chaperones (Berg, Ellis and 

Dobson, 1999; Zhang, Hubalewska and Ignatova, 2009; Kaiser et al., 2011; Lin et 

al., 2012; Mashaghi et al., 2013; Sander, Chaney and Clark, 2014). These 

mechanisms are known as translational tuning (Kim et al., 2015), which is regulated 

by elongation rates, tRNA abundance, codon content and mRNA secondary 

structure. Thus, decreasing these rates can affect the folding efficiency of newly  

synthesized proteins (Kaiser et al., 2011). Co-translational limitations can bias 
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kinetically competing folding events to generate alternate stable structures with 

different functional properties (Kim et al., 2015). 

Protein misfolding describes processes that result in the acquirement of a 

number of persistent non-native interactions that biologically affect protein’s 

architecture and/or its properties, leading to the formation of insoluble protein 

aggregates (Dobson, 2004; Salomons et al., 2009).  Protein synthesis errors 

frequently disrupt folding of proteins. The accumulation of misfolded proteins 

generates proteotoxic stress, which can occur under a variety of conditions, 

including hypoxia, hyperthermia, and exposure to denaturing agents or drugs that 

inhibit chaperone or proteasome activities. Misfolded proteins can be toxic, most 

likely due to the presence of oligomeric species that interfere with cellular processes 

(Walter and Buchner, 2002; Salomons et al., 2009; Neznanov et al., 2011). 

Fortunately, living systems have elaborated strategies that prevent interactions of 

misfolded proteins with other molecules (Walter and Buchner, 2002; Dobson, 2004). 

One of these strategies involves the presence of molecular chaperones, which 

associate with unfolded protein chains, avoiding aggregation and supporting a more 

efficient folding in an ATP-dependent manner (Walter and Buchner, 2002). 

Additionally, there are folding catalysts, whose function is to accelerate potentially 

slow steps in the folding process. Peptidylprolyl isomerases and protein disulphide 

isomerases (PDI) are the most important folding catalysts. The first ones amplify the 

rate of cis/trans isomerization of peptide bonds involving proline residues and, the 

second ones, improve the rate of formation and reorganization of disulphide bonds 

within proteins (Dobson, 2001, 2004). Additionally, in cases of proteotoxic stress, 

cells also activate an adaptive response, known as the heat shock response (HSR) 

(Neznanov et al., 2011). 

 

1.5.1 Protein aggregation 

Protein aggregates are oligomeric complexes that arise from non-native interactions 

among structured intermediates in protein folding or assembly. They have poor 

solubility in aqueous or detergent solvents, non-native secondary structure and 

abnormal sub-cellular or extracellular localization (Kopito, 2000). There are different 
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types of protein aggregates: 1) amyloid fibrils – ordered (or structured) aggregates 

and 2) inclusion bodies – disordered (or amorphous) aggregates (Fink, 1998; 

Kopito, 2000). In both cases, aggregates are insoluble and stable in physiological 

conditions (Kopito, 2000). 

The formation and structure of protein aggregates imply specific intermolecular 

interactions between hydrophobic surfaces of structural subunits in partially folded 

intermediates. Thus, initial stages of aggregation involve the interaction between 

surface elements of one molecule and hydrophobic surface areas of structural 

subunits of neighboring molecules. When a great number of interactions occur, the 

formation of large aggregates becomes possible. Probably, these aggregates 

(dimmers and tetramers) will be soluble in the beginning, but with the formation of 

larger aggregates will exceed the solubility limit, and then accumulate over time in 

distinct compartments (Fink, 1998). In yeast, protein accumulation occurs at two 

major sites that have distinctive properties: 1) a juxtanuclear quality control 

compartment (JUNQ) and 2) perivacuolar insoluble protein deposits (IPODs) (Figure 

1.28) (Kaganovich, Kopito and Frydman, 2008). The JUNQ seems to serve as 

temporary storage domain for misfolded and/or ubiquitinated proteins and 

concentrates disaggregating chaperones and proteasomes, during stress or ageing. 

IPODs consist of aggregated, mostly non-ubiquitinated, proteins that are 

sequestered from the cytosol to protect the cell from their potential toxicity 

(Kaganovich, Kopito and Frydman, 2008; Buchberger, Bukau and Sommer, 2010). 

Both the JUNQ and the IPOD are retained in the mother cell during cell division, 

clearing daughter cells from potentially harmful misfolded or aggregated proteins 

(Sontag, Vonk and Frydman, 2014). 
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Figure 1.28. Model for sorting of misfolded proteins to different quality control 

compartments. Adapted from Kaganovich et al., 2008. 

 

The main factors that influence protein aggregation, the rate and the extent of 

the aggregation are: the amino acid sequence, pH, temperature and ionic strength, 

concentration of the protein, presence of co-solutes (for instance denaturants), and 

the presence/absence of molecular chaperones (Fink, 1998). However, 

environmental conditions, mutations, RNA hypomodification or translational amino 

acid misincorporation can also lead to differential destabilization of the native state 

relative to the partially folded intermediate (Fink, 1998; Kopito, 2000). 

Protein aggregates are more stable than the intermediate conformers from 

which they are originated, so the destiny of misfolded proteins will be determined by 

kinetic competition between proteasomal degradation and aggregation into high 

molecular weight oligomers (Kopito, 2000). 

 

1.5.2 Cellular protein quality control mechanisms 

The production of aberrant proteins occurs in cells even in physiological conditions, 

so cellular protein quality control mechanisms are required to deal with non-native 
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proteins at all times (Figure 1.29). This machinery avoids the formation of 

aggregates by ensuring the fidelity of transcription and translation, by chaperoning 

nascent or unfolded proteins, and by degrading improperly folded polypeptides 

before they can aggregate (Kopito, 2000). In fact, protein folding is rarely achieved 

autonomously. As mentioned before, the nascent polypeptide chain in the ribosome 

needs help to reach its translation end, and many proteins (20-30%) also need 

assistance to reach their folding state. Thus, the protein quality control (PQC) 

network is able to maintain cellular protein homeostasis (proteostasis) by 

maximizing cellular protein folding capacity (by the chaperone system), minimizing 

intrinsic and extrinsic attacks and degrading misfolded proteins (by proteases, the 

ubiquitin-proteasome system (UPS) and lysosome) (Figure 1.29) (Outeiro, 2004; 

Lindner and Demarez, 2009). Aberrant or misfolded proteins are marked by protein 

quality control mechanisms and tagged for degradation via the UPS (Salomons et 

al., 2009). Some molecular chaperones are linked to the UPS and bind to non-native 

proteins, mediating their refolding or degradation (Berke and Paulson, 2003). Also, 

most misfolded soluble proteins are favorably degraded by autophagy if the 

proteasome capacity is exceeded. But, aggregates can only be degraded by 

autophagy (Lilienbaum, 2013). 

The endoplasmic reticulum (ER) also has a PQC compartment, which in yeast 

is a membrane-bound ER-Associated Compartment (ERAC), where soluble 

misfolded proteins concentrate for ER-Associated Degradation (ERAD) by the UPS. 

Aggregated proteins are also cleared from the ER by autophagy (Sontag, Vonk and 

Frydman, 2014). 
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Figure 1.29. Protein quality control. Chaperones help in the co-translational folding of 

newly synthesized polypeptides (1), the folding of unfolded proteins released from the 

ribosome (2) and the refolding of non-native proteins (3), which are usually caused by stress 

conditions (4). Moreover, non-native proteins may be targeted for degradation (5). Some 

chaperones prevent protein misfolding and aggregation (6). During stress, chaperone 

network could be overwhelmed and non-native proteins may aggregate (7). However, other 

chaperones can unfold polypeptides from aggregates (8), being another opportunity for 

correct folding (3). Adapted from Doyle et al., 2013. 
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1.5.2.1 Chaperones 

The first evidence of the existence and function of molecular chaperones occurred 

during proteotoxic stress conditions. Many chaperones are known as Hsps (heat 

shock proteins), and this phenomenon of cells responding to insults by producing 

increased amounts of specific protective proteins is referred as heat-shock response 

or stress response (Walter and Buchner, 2002; Dobson, 2004; Lindner and 

Demarez, 2009). Chaperones help to avoid and reverse non-functional 

conformations; to facilitate co- and post-translational folding and to assist in 

assembly and disassembly of protein complexes (Morimoto, 2008; Lindner and 

Demarez, 2009). They often support the folding process via cycles of substrate 

binding and release, regulated by ATPase activity (Barral et al., 2004). The 

chaperone expression is also controlled by specific transcription factors (TF), 

namely RpoH and heat shock factor (HSF) variants. Under native conditions the TF 

are retained as monomers by chaperones to be separated from their chromosomal 

targets. Misfolding proteins titrate chaperones, releasing the TF to trimerize, 

translocate to the nucleus and induce chaperones expression (Lindner and 

Demarez, 2009; Buchberger, Bukau and Sommer, 2010). Depending on the 

molecular chaperone, misfolded proteins, exposing buried hydrophobic amino acid 

residues, can be rescued by chaperones to enable their correct fold, or be 

solubilized to some form of aggregates (Dobson, 2004). Additionally, chaperones 

can act together and in synergy within the chaperone network and with other PQC 

systems as the proteasome and lysosomal/vacuolar degradation pathways (Lindner 

and Demarez, 2009). 

Molecular chaperones interact momentarily with unfolded or partially folded 

intermediates, covering hydrophobic surfaces from forming inappropriate intra- or 

intermolecular contacts (Kopito, 2000). Chaperones are also involved in other 

cellular processes, including protein targeting, regulation of translocation, 

degradation and signal transduction (Barral et al., 2004; Morimoto, 2008). 

Chaperones are divided into different families or classes, classified by size and 

actions: small Hsp (sHsp), ATP-dependent Hsp60 chaperones, ATP-dependent 

Hsp70 chaperones, ATP-dependent Hsp90 family, and ATPase Associated with 

diverse Activities (AAA+) or Hsp100 family (Figure 1.30) (Walter and Buchner, 2002; 
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Lindner and Demarez, 2009). Each family contains multiple members, which share 

sequence identity and have also common functional domains (Gething and 

Sambrook, 1992). 

The ATP-independent sHsp family has molecular mass <43 kDa and the 

capacity to maintain the solubility of partially unfolded proteins through binding to 

their exposed hydrophobic surface, functioning as “holdases” and buffering 

aggregation. It was suggested that sHsp destabilize the aggregates and ease their 

solubility, refolding, or degradation, mediated by Hsp104 and Hsp70/40 chaperones 

(Buchberger, Bukau and Sommer, 2010; Hartl, Bracher and Hayer-Hartl, 2011). 

The Hsp60 (chaperonin) family member TRiC/CCT (TCP1-ring complex or 

chaperonin containing TCP1) recognizes a small range of substrates and facilitates 

protein folding or refolding using an isolated cavity, known as the “Anfinsen cage”. 

This chaperonin binds ATP with high affinity and has weak ATPase activity (Gething 

and Sambrook, 1992; Buchberger, Bukau and Sommer, 2010; Hartl, Bracher and 

Hayer-Hartl, 2011). In eukaryotes, these chaperones are present in the 

mitochondria. 

The Hsp70 chaperones are cytosolic and in eukaryotes are also present in 

organelles, such as mitochondria and endoplasmic reticulum (BiP/Kar2). All 

members of Hsp70 family bind ATP, which cause conformational changes in Hsp70 

proteins, altering their sensitivity to proteases or their oligomeric state (Gething and 

Sambrook, 1992). These chaperones need numerous co-factors to work efficiently 

in the folding of nascent polypeptides, refolding of misfolded proteins, translocation 

of proteins targets through membrane for organelles and secretion, and controlling 

the function and life-time of signaling and regulatory proteins (Hartl, Bracher and 

Hayer-Hartl, 2011; Doyle, Genest and Wickner, 2013; Willmund et al., 2013). 

The ATP-dependent Hsp90 family has similar functions to Hsp70 to avoid non-

specific aggregation of generic proteins, and is subjected to complex regulation by 

many co-chaperones, such as p23/Sba1, Hop/Sti1 (inhibitors) and Aha1 (activator) 

(Hessling, Richter and Buchner, 2009). The Hsp90 binds ATP in a cation-dependent 

manner and undergoes autophosphorylation, in contrast with Hsp70 and 

chaperonins that catalyze the hydrolysis of ATP (Gething and Sambrook, 1992). 

Besides that, Hsp90 possesses a wide range of substrates, among them are 
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proteins involved in signal transduction, cell cycle, meiosis, transport, secretion and 

chromatin remodeling, epigenetic gene regulation and viral replication. Moreover, 

Hsp90 can mediate conformational changes of folded proteins to ensure their 

stabilization, activation or degradation (Buchberger, Bukau and Sommer, 2010; 

Jarosz and Lindquist, 2010). 

The Hsp104 proteins are members of the ring-shaped Hsp100 AAA+ family 

and are highly induced by external stress conditions, conferring resistance to them. 

Their functions are to prevent misfolding and, mainly, to disaggregate proteins 

(Lindner and Demarez, 2009). However, activity of the members of this family is 

dependent of the prior activity of Hsp70, co-chaperoned by Hsp40 and a nucleotide 

exchange factor (NEF), to present aggregated polypeptides to the central core of 

the Hsp100 unfoldase (Buchberger, Bukau and Sommer, 2010; Doyle, Genest and 

Wickner, 2013; Houry et al., 2015). 

Interestingly, the different classes of molecular chaperones cooperate in the 

cell and all chaperones can suppress the aggregation of folding proteins. In this way, 

all chaperones are overproduced simultaneously in stress conditions (Walter and 

Buchner, 2002). 

Chaperones are regulated by co-chaperones; proteins that interact with 

chaperones to modulate their activity and to provide substrate selectivity. For 

example, members of the Hsp40 co-chaperone family stimulate the ATPase activity 

of Hsp70, stabilizing substrate interactions, and interact directly with unfolded 

proteins to assist folding. Other co-chaperones function as nucleotide exchange 

factors (NEFs), releasing bound ADP from Hsp70 and re-binding of ATP, which in 

turn triggers release of bound substrate. Additionally, co-chaperones function to 

manage interactions between chaperones to promote protein folding or degradation 

(Buchberger, Bukau and Sommer, 2010; Voisine, Pedersen and Morimoto, 2010). 

Moreover, ribosome-binding chaperones, namely ribosome-associated 

complex (RAC) and nascent-chain-associated complex (NAC), interact first with the 

polypeptide, followed by chaperones that have no direct affinity for the ribosome, 

including the Hsp70/Hsp40 system (Balchin, Hayer-Hartl and Hartl, 2016). 
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Figure 1.30. Protein folding assisted by chaperones and co-chaperones as a protein 

quality control mechanism. Chaperones guide folding of proteins from the initial steps of 

protein synthesis and protect native folded protein during stresses. As a newly nascent 

polypeptide chain exits the ribosome tunnel, various chaperones bind to and interact with 

the protein during its maturation. Folding is assisted by the core chaperone families, Hsp70, 

Hsp90 and chaperonin, which are modulated by specific co-chaperones depending of the 

substrate and the step in the folding pathway. Protein aggregation is avoided by Hsp100s 

and sHsps, which work with other chaperones to refold denatured proteins. The chaperone 

quality system also guides the aberrant proteins for refolding or degradation via the UPS.  

Adapted from Voisine et al., 2010. 

 

1.5.2.2 Ubiquitin-proteasome system 

With respect to the UPS, it is known that this is the major non-lysosomal/vacuolar 

degradation pathway for cytosolic and nuclear proteins (including short-lived, 
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misfolded and damaged polypeptides) and is ubiquitin-dependent. So, proteins 

destined to degradation must be ubiquitinated for proteasome recognition. 

Ubiquitinated proteins (with at least four ubiquitin moieties) selectively bind to 

proteasome, which in turn unfolds and translocates ubiquitinated proteins into a 

proteolytic chamber where proteins are hydrolyzed into short peptide fragments. 

Further, deubiquitinating enzymes present in the proteasome convert ubiquitin 

chains into monomers that can be used in a new ubiquitination process. Beyond its 

proteolytic function, ubiquitination may function as a post-translational modification 

that regulates target protein localization and activity, being involved in membrane 

trafficking, cell-cycle progression, differentiation, synaptic plasticity, apoptosis, 

endocytosis, DNA repair and transcriptional regulation (Berke and Paulson, 2003; 

Salomons et al., 2009). 

Aberrant proteins for degradation are marked with ubiquitin in an ATP-

consuming process using a catalytic cascade of E1 (ubiquitin-activating enzyme), 

E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin protein ligase) activities 

(Hershko and Ciechanover, 1998). In a first step, the C-terminal glycine residue of 

ubiquitin is activated by E1, forming an intermediate ubiquitin adenylate, with the 

release of PPi, followed by the binding of ubiquitin to a cysteine residue of E1 in a 

thioester linkage, with release of AMP. Activated ubiquitin is next transferred to an 

active site cysteine residue of E2 and then is linked by its C-terminus in an amide 

isopeptide linkage to an internal lysine residue of the substrate protein, mediated by 

E3 (Hershko and Ciechanover, 1998; Mogk, Schmidt and Bukau, 2007). Substrate 

selectivity is mainly determined by E3 enzymes. E4 enzyme is another component 

of the ubiquitination machinery that is involved in the elongation of short ubiquitin 

chains, since in eukaryotes most substrates are polyubiquitinated (Koegl et al., 

1999; Lilienbaum, 2013). 

On the other hand, the 26S proteasome is a large protein complex composed 

of 2 different sub-complexes: the 20S proteolytic core and a 19S complex (Figure 

1.31). The 20S core complex is arranged in a hollow cylinder, composed of four 

heptameric rings with α- or β-subunits. The proteolytic active sites are in the interior 

chamber of the 20S complex. The 19S complex is located at either end of the 

proteolytic 20S complex and contains six AAA+ proteins that promote the ATP-
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dependent unfolding. Additionally, the 19S cap cleaves ubiquitin moieties from the 

substrate, unfolds the polypeptide and introduces it through the proteolytic chamber 

of the 20S core, where the polypeptide is cleaved into short peptides by three distinct 

peptidase activities (Mogk, Schmidt and Bukau, 2007). 

 

 

Figure 1.31. The ubiquitin-proteasome system. Misfolded or non-native proteins (green) 

are mainly recognized by E3 ligases, which mediate the covalent labeling of bound 

substrates with ubiquitin (Ub), with associated E2 ubiquitinating enzymes. After the initial 

Ub attachment, a substrate-linked polyubiquitin chain is formed and recognized by 

components of the 19S cap complex of the proteasome. AAA+ proteins within the base of 

the 19S complex facilitate the ATP-dependent unfolding and translocation of bound 
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substrates into the core of the proteolytic 20S complex. Finally, ubiquitin is released from 

the substrate by deubiquitinating enzymes present in the 19S complex prior polypeptide 

degradation. Adapted from Mogk et al., 2007. 

 

1.5.2.3 Autophagy 

The autophagy clearance of aggregated proteins also requires ubiquitination of their 

substrates by the ubiquitin-binding proteins p62 and NBR1 (ATG19 in yeast). This 

process of intracellular lysosomal or vacuolar degradation is characterized by the 

formation of autophagosomes (double-membrane vesicles). There are three types 

of autophagy: macroautophagy or only autophagy, which requires the formation of 

the phagophore (PAS) that expands to form the double-membrane autophagosome 

needed for the fusion with the lysosome or vacuole; microautophagy, in which 

lysosomes or vacuoles invaginate and sequester cytosolic components; and 

chaperone-mediated autophagy (CMA), in which translocation of unfolded proteins 

occurs throughout the lysosomal membrane (only in higher eukaryotes) (Figure 

1.32) (Kirkin et al., 2009; Lilienbaum, 2013). Additionally, in yeast there is a 

cytoplasm-to-vacuole targeting (Cvt) pathway, in which an autophagy-related 

constitutive transport system delivers some vacuolar enzymes, such as α-

mannosidase (Ams1) and aminopeptidase I (Ape1) (Figure 1.32) (Lynch-Day and 

Klionsky, 2010). 

In macroautophagy, the autophagosome encloses a portion of cytoplasm or 

organelle, such as mitochondria, peroxisome (macropexophagy) or aggregates, for 

delivery to the lysosome or vacuole (Figure 1.32). This type of autophagy is believed 

to be the major mode of autophagy, allowing cells to degrade aggregated proteins 

as well as organelles with the final release of building blocks into cytosol for reuse 

in biosynthetic processes (Huang and Klionsky, 2002; Lilienbaum, 2013). 
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Figure 1.32. Types of autophagy in yeast. Morphology of Cvt pathway, micro- and 

macroautophagy, and micro- and macropexophagy. The pre-autophagosomal structure 

(PAS) is needed for Cvt vesicle and autophagosome formation as donor membrane. 

Microautophagy and micropexophagy involve uptake at the vacuole surface. Adapted from 

Huang and Klionsky, 2002. 
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1.6 TRANSLATIONAL FIDELITY, PROTEIN AGGREGATION AND DISEASE 

Errors during protein synthesis as well as limitations and malfunction of chaperones, 

UPS and autophagy are risk factors for many diseases; collectively called protein 

conformation diseases. In such diseases, protein aggregates cause proteotoxicity, 

resulting in cellular pathology due to toxicity, incorrect trafficking or premature 

degradation (Morimoto, 2008). Additionally, the most typical feature of many of the 

aggregation diseases is the final deposition of proteins in the form of amyloid fibrils 

and plaques. Such deposits can form in vital organs, such as brain, liver and spleen, 

or in the skeletal tissue, depending on the disease type (Dobson, 2004). 

Conformational diseases include CAG-repeat/polyglutamine (polyQ) expansion 

diseases (Huntington’s disease, HD; Kennedy’s disease; spinocerebellar ataxias, 

SCAs) and non-CAG diseases (Parkinson’s disease, PD; prion disease, such as 

Creutzfeldt–Jakob disease, CJD; amyotrophic lateral sclerosis, ALS; and, 

Alzheimer’s disease, AD) (Barral et al., 2004; Morimoto, 2008). These diseases are 

characterized by an age-dependent onset and a progressive fatal clinical endpoint 

(Morimoto, 2008). The presence of aggregation and formation of fibrils can be toxic 

(but not always) and frequently is caused by mutations in the disease proteins, 

resulting in cellular dysfunction and pathology (Morimoto, 2008). Other examples of 

diseases due to the presence of aberrant proteins are cystic fibrosis and 

hypertrophic cardiomyopathy (Barral et al., 2004). Additionally, several other protein 

deposition diseases involve non-ordered proteins deposits, such as inclusion body 

myositis, light-chain deposition disease and cataracts (Fink, 1998). A summary of 

the main diseases related to protein aggregation is present in Table 1.3. Proteins 

involved in the group of aggregation disorders do not have sequence similarities; 

instead the amyloid fibrils into which they can form are similar in morphology. To the 

formation of these fibrils, misfolded monomers may oligomerize into pre-fibrillar 

assemblies, giving rise to mature fibrillar structures (Barral et al., 2004). The exact 

mechanism by which protein misfolding and aggregation are related to disease is 

still unclear. In the case of systemic disease, insoluble proteins may physically 

disrupt the functioning of specific organs. In the other cases, it is the loss of 

functional protein that leads to the failure of some essential cellular process (Barral 

et al., 2004; Dobson, 2004). 
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Table 1.3. Summary of the main diseases related to protein aggregation (Dobson, 

2001; Barral et al., 2004; Stefani, 2004). 

Clinical syndrome Proteins peptides involved 

Alzheimer’s disease 

Scrapie/Creutzfeldt-Jakob’s disease 

Polyglutamine expansion disease: 

Huntington’s disease 

Dentatorubto-pallido-Luysian atrophy 

Cerebellar ataxias 

Kennedy disease 

Spino cerebellar ataxia 17 

Familial amyloidosis 

Cystic fibrosis 

Familial hypercholesterolemia 

Phenylketonuria 

MCAD deficiency 

Hypertrophic cardiomyopathy 

Osteogenesis imperfecta 

Epidermolysis bullosa simplex 

Hereditary spastic paraplegia 

Desmin-related myopathy 

Sanjad-Sakati and Kenny-Caffrey 

Marfan syndrome 

Sickle cell anaemia 

α1-antitrypsin deficiency 

Tay-Sachs disease 

APP β-peptide 

Prion protein 

Various polyQ proteins: 

Huntingtin 

Atrophin 1 

Ataxins 

Androgen receptor 

TATA box-binding protein 

Transthyretin/lysozyme 

CFTR 

LDL receptor 

Phenylalanine hydroxylase 

Medium-chain acyl-CoA dehydrogenase 

Various sarcometric proteins 

Collagens 

Keratins 

Mitochondrial Hsp60 

αB-Crystallin 

TBCE 

Fibrillin 

Haemoglobin 

α1-antitrypsin 

β-hexosaminidase 

 

Molecular chaperones play fundamental roles in the pathogenesis of these 

diseases since the accumulation of toxic misfolded proteins may only occur if the 

folding capacity of chaperones is exceeded. Therefore, the frequency of these 

diseases increases with age; due to reduced efficiency of the quality control 

machinery. In this situation, there is an imbalance between the production of toxic 

misfolded species and the protective capacity of the chaperone machinery (Barral 

et al., 2004; Dobson, 2004; Voisine, Pedersen and Morimoto, 2010). Moreover, the 

ubiquitin-proteasome system targets disease aggregates for degradation. But, there 
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is an overall reduction in proteolytic activity of the proteasome in diseased tissues, 

so proteasomal function is compromised during aggregation disease pathogenesis 

(Barral et al., 2004). 

Another type of diseases characterized by the presence of misfolded proteins 

occur due to an imbalance of some mediators of proteins synthesis, namely 

ribosomes and tRNAs. For instance, absence of RNA modifications could have an 

impact on protein translation fidelity and many studies have shown a link between 

defects in tRNA modifications and human diseases, such as neurological disorders, 

cancer, type 2 diabetes and mitochondrial disorders (Table 1.4) (Kirino and Suzuki, 

2005; Shimada et al., 2009; Nguyen et al., 2010; Igoillo-Esteve et al., 2013; Torres, 

Batlle and Ribas de Pouplana, 2014). Similarly, rRNA modification defects are also 

related to human disease, such as X-linked dyskeratosis congenital (X-linked DC) 

and cancer (Ruggero et al., 2003; Montanaro et al., 2006). Defects in ribosome 

biogenesis are related with a diverse and heterogeneous group of disorders known 

as ribosomopathies (Armistead and Triggs-Raine, 2014). Some ribosomopathies 

are X-linked DC and Hoyeraal-Hreidarsson syndrome, in which the pseudouridine 

synthase dyskerin is deregulated; Diamond-Blackfan anemia, in which some 

ribosomal proteins have mutations (RPS7, RPS10, RPS17, RPS19, RPS24, 

RPS26, RPL5, RPL11, RPL26, RPL35A); Treacher Collins syndrome, in which 

transcription of rRNA genes is impaired; among other disorders (Ruggero et al., 

2003; Valdez et al., 2004; Choesmel et al., 2007; Armistead and Triggs-Raine, 

2014). 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

74  

 

Table 1.4. tRNA-related diseases. MELAS: Mitochondrial encephalomyopathy, lactic 

acidosis and stroke-like episodes; MERF: Myoclonic epilepsy with ragged-red fibres; 

MLASA: Myopathy, lactic acidosis and sideroblastic anemia; LBSL: Leukoencephalopathy 

with brain stem and spinal cord involvement and lactate elevation. 

Disease 
category 

Disease 
Affected 

gene 
Pathological effect Refs 

Neurological 

Intellectual disability 

FTSJ1 
impaired modification: 2'-O-
methylribose 

Ramser et al., 2004; 
Freude et al., 2004 

TRM1 impaired modification: m2
2G Najmabadi et al., 2011 

NSUN2 impaired modification: m5C 
Ahmad Khan et al., 
2012; Abbasi-Moheb et 
al., 2012 

WDR4 impaired modification: m7G Michaud et al., 2000 

ADAT3 A-to-I editing Alazami et al., 2013 

Familial dysautonomia IKBKAP 
impaired modification: 
mcm5s2U 

Anderson et al., 2001; 
Slaugenhaupt et al., 
2001 

Amyotrophic lateral 
sclerosis 

ELP3 
impaired modification: 
mcm5s2U 

Simpson et al., 2009 

Rolandic epilepsy ELP4 
impaired modification: 
mcm5s2U 

Strug et al., 2009 

Dubowitz-like NSUN2 
impaired modification of 
tRNAAsp

GTC: m5C 
Martinez et al., 2012 

Charcot-Marie-Tooth 
(CMT) syndrome 

GARS impaired aminoacylation Sleigh et al., 2014 

AARS 
reduced aminoacylation and 
mischarging 

Latour et al., 2010 

KARS impaired aminoacylation Yao and Fox, 2013 

Pontocerebellar 
hypoplasia 

CLP1 
tRNA misprocessing and 
reduced tRNA levels 

Karaca et al., 2014; 
Schaffer et al., 2014 

Cardiac Noonan-like syndrome NSUN2 impaired modification: m5C Fahiminiya et al., 2014 

Respiratory Bronchial asthma IKBKAP 
impaired modification: 
mcm5s2U 

Takeoka et al., 2001 

Cancer 

Skin, breast, and 
colorectal 

NSUN2 impaired modification: m5C 
Frye and Watt, 2006; 
Chan et al., 2010 

Breast 
TRMT12 impaired modification: yW Rodriguez et al., 2007 

TRMT2A impaired modification: m5U Bartlett et al., 2010 

Colorectal HRG9MTD2 impaired modification: m1G Berg et al., 2010 

Urothelial HABH8  impaired modification: mcm5U Shimada et al., 2009 

Breast, bladder, 
colorectal, cervix, 
testicular 

HTRM9L impaired modification: mcm5U Goll et al., 2006 

Metabolic Type 2 diabetes CDKAL1 impaired modification: ms2t6A 
Steinthorsdottir et al., 
2007; Wei et al., 2011 

Mitochondrial-
linked 

MELAS mt tRNALeu
UAA impaired modification: τm5U 

Yasukawa et al., 2000; 
Kirino et al., 2005 

MERRF mt tRNALys
UUU impaired modification: τm5s2U 

Takehiro Yasukawa et 
al., 2000 

Infantile liver failure MTU1 (TRMU) impaired modification: s2U Zeharia et al., 2009 

Deafness MTU1 (TRMU) impaired modification: s2U Guan et al., 2006 

MLASA YARS2 reduced aminoacylation Bonnefond et al., 2007 

LBSL DARS2 reduced aminoacylation Scheper et al., 2007 

Recessive ataxia MARS2 
reduced aminoacylation and 
reduced protein synthesis 

Scheper et al., 2007 

Myopathy and Infantile 
CMT syndrome 

AARS2 reduced aminoacylation Yao and Fox, 2013 
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1.7 OBJECTIVES OF THE STUDY 

The objective of this thesis was to identify tRNA- and rRNA-modifying enzymes 

(RNAmods) that play a role in proteome homeostasis, using yeast as a work model. 

In particular, we have investigated the role of tRNA modification by tRNAmods in 

protein synthesis efficiency and accuracy. Our working hypothesis was that certain 

tRNA and rRNA modifications play a role in protein folding by fine tuning the 

accuracy and efficiency of codon-anticodon interactions at the ribosome decoding 

center. To test this hypothesis, we have combined yeast RNAmods gene knockout 

strains with a fluorescent sensor to identify gene knock out strains containing high 

level of protein aggregates, using a high throughput genetic screen that we have 

implemented in our laboratory. The specific objectives of the project were the 

following: 

1. Construct a series of strains expressing a fluorescent protein aggregation 

sensor. 

2. Set up a genetic screen, using high content microscopy, to identify 

RNAmods whose deletion results in increased protein aggregation. 

3. Determine the tRNA modifications pattern in the candidate deletion strains, 

using mass spectrometry. 

4. Identify the aggregated proteins associated with specific tRNA 

hypomodifications. 

5. Identify tRNA modifications that are essential to maintain translational 

fidelity. 
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2.1 YEAST STRAINS AND GROWTH CONDITIONS 

All S. cerevisiae strains used are derivatives of BY4743 (MATa/α; his3Δ1/his3Δ1; 

leu2Δ0/leu2Δ0; LYS2/lys2Δ0; met15Δ0/MET15; ura3Δ0/ura3Δ0), here referred to 

as wild-type (WT), and have the gene of interest replaced by the KanMX4 cassette 

(EUROSCARF; Giaever et al. 2002) (Table 2.1). All yeast strains were grown at 30 

°C in YPD medium (glucose: 2% (w/v), yeast extract: 0.5% (w/v), and peptone: 1% 

(w/v)) (Formedium) and minimal medium without histidine (MM-His; glucose: 2% 

(w/v), yeast nitrogen base without amino acids: 0.67% (w/v), each required amino 

acids (100 µg/ml)) (Formedium). BY4743 transformed cells were grown in MM-His 

and preserved at -80 °C in MM-His + 40% (v/v) glycerol. Solid media were performed 

by addiction of 2% agar (Formedium). All media were heat sterilized. 

 

Table 2.1. List of strains used in this study (from EUROSCARF). 

No. 
Yeast 
gene 

knockout 

Systematic 
name 

RNA-modifying 
Enzyme Function 

Genotype 

1  BY4743  
MATa/α; his3Δ1/his3Δ1; leu2Δ0/leu2Δ0; 

LYS2/lys2Δ0; met15Δ0/MET15; 
ura3Δ0/ura3Δ0 

2 MOD5 YOR274w i6A37 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOR274w::kanMX4/YOR274w::kanMX4 

3 
KTI13 
(ATS1, 
FUN28) 

YAL020c 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YAL020c::kanMX4/YAL020c 

4 
MTR10 

(KAP111) 
YOR160w Retrograde import 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOR160w::kanMX4/YOR160w 

5 PUS7 YOR243c Ψ13, Ψ35 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOR243c::kanMX4/YOR243c::kanMX4 

6 PUS8 YOL066C Ψ32 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOL066c::kanMX4/YOL066c 

7 TRM112 YNR046c 
mcm5U34 and 

mcm5s2U34, m2G10 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YNR046w::kanMX4/YNR046w 

8 
TRM4 
(NCL1) 

YBL024w 
m5C34, m5C40, 
m5C48, m5C49 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 
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MET15/met15∆0; ura3∆0/ura3∆0; 
YBL024w::kanMX4/YBL024w::kanMX4 

9 TAD1 YGL243w I37 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGL243w::kanMX4/YGL243w::kanMX4 

10 NBP35 YGL091c mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGL091c::kanMX4/YGL091c 

11 
ISU2 

(NUA2) 
YOR226c mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOR226c::kanMX4/YOR226c::kanMX4 

12 
CFD1 

(DRE3) 
YIL003w mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YIL003w::kanMX4/YIL003w 

13 
KTI14 

(HRR25) 
YPL204w 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YPL204w::kanMX4/YPL204w 

14 TYW3 YGL050w yW37 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGL050w::kanMX4/YGL050w::kanMX4 

15 
ISU1 

(NUA1) 
YPL135w mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YPL135w::kanMX4/YPL135w::kanMX4 

16 
ELP2 

(TOT2, 
KTI3) 

YGR200c 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGR200c::kanMX4/YGR200c::kanMX4 

17 TRM3 YDL112w Gm18 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YDL112w::kanMX4/YDL112w::kanMX4 

18 

NCS6 
(TUC1, 

YGL210w-
A) 

YGL211w mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGL211w::kanMX4/YGL211w::kanMX4 

19 DUS4 YLR405w D20a, D20b 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YLR405w::kanMX4/YLR405w::kanMX4 

20 
TRM9 
(KYI1) 

YML014w 
mcm5U34, 

mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YML014w::kanMX4/YML014w::kanMX4 

21 SUA5 YGL169w t6A37 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGL169w::kanMX4/YGL169w 

22 
ELP6 

(HAP3, 
YMR312w 

mcm5U34, 
mcm5s2U34, 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 
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TOT6, 
KTI4) 

ncm5U34, 
ncm5Um34 

MET15/met15∆0; ura3∆0/ura3∆0; 
YMR312w::kanMX4/YMR312w::kanMX4 

23 

TRM2 
(NUC2, 
NUD1, 
RNC1) 

YKR056w m5U54 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YKR056w::kanMX4/YKR056w::kanMX4 

24 TRM44 YPL030w 
m5C34, m5C40, 
m5C48, m5C49 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YPL030w::kanMX4/YPL030w::kanMX4 

25 TUM1 YOR251c mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOR251c::kanMX4/YOR251c::kanMX4 

26 CIA1 YDR267c mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YDR267c::kanMX4/YDR267c 

27 
ELP1 (IKI3, 

TOT1, 
KTI7) 

YLR384c 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YLR384c::kanMX4/YLR384c::kanMX4 

28 PUS6 YGR169c Ψ31 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGR169c::kanMX4/YGR169c::kanMX4 

29 
UBA4 

(YHR1) 
YHR111c mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YHR111w::kanMX4/YHR111w::kanMX4 

30 
TYW4 

(PPM2) 
YOL141w yW37 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOL141w::kanMX4/YOL141w::kanMX4 

31 
DUS2 

(SMM1) 
YNR015w D20 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YNR015w::kanMX4/YNR015w::kanMX4 

32 
MSN5 

(KAP142, 
STE21) 

YDR335w Re-export 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YDR335w::kanMX4/YDR335w::kanMX4 

33 
NFS1 

(SPL1) 
YCL017c mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YCL017c::kanMX4/YCL017c 

34 TRM1 YDR120c m2
2G26 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YDR120c::kanMX4/YDR120c::kanMX4 

35 DUS3 YLR401c D47 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YLR401c::kanMX4/YLR401c::kanMX4 

36 LOS1 YKL205w Export, re-export 
BY4743; Mat a/α; his3∆1/his3∆1; 

leu2∆0/leu2∆0; lys2∆0/LYS2; 
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MET15/met15∆0; ura3∆0/ura3∆0; 
YKL205w::kanMX4/YKL205w::kanMX4 

37 ELP3 YPL086c 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YPL086c::kanMX4/YPL086c::kanMX4 

38 TYW1 YPL207w yW37 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YPL207w::kanMX4/YPL207w::kanMX4 

39 TRM7 YBR061c 
Cm32, Cm34, Gm34, 

ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YBR061c::kanMX4/YBR061c 

40 
NCS2 

(TUC2) 
YNL119w mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YNL119w::kanMX4/YNL119w::kanMX4 

41 URM1 YIL008w mcm5s2U34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YIL008w::kanMX4/YIL008w::kanMX4 

42 TRM8 YDL201w m7G46 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YDL201w::kanMX4/YDL201w::kanMX4 

43 
TYW2 

(TRM12) 
YML005w yW37 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YML005w::kanMX4/YML005w::kanMX4 

44 SAP190 YKR028w 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YKR028w::kanMX4/YKR028w::kanMX4 

45 KTI12 YKL110c 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YKL110c::kanMX4/YKL110c::kanMX4 

46 
PUS3 

(DEG1, 
HRM3) 

YFL001w Ψ38, Ψ39 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YFL001w::kanMX4/YFL001w::kanMX4 

47 PUS1 YPL212c 
Ψ26, Ψ27, Ψ28, Ψ34, 

Ψ(35), Ψ36, Ψ65, 
Ψ67 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YPL212c::kanMX4/YPL212c::kanMX4 

48 ELP4 YPL101w 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YPL101w::kanMX4/YPL101w::kanMX4 

50 TRM10 YOL093w m1G9 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOL093w::kanMX4/YOL093w::kanMX4 

51 TRM5 YHR070w m1G37, m1I37, yW37 
BY4743; Mat a/α; his3∆1/his3∆1; 

leu2∆0/leu2∆0; lys2∆0/LYS2; 
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MET15/met15∆0; ura3∆0/ura3∆0; 
YHR070w::kanMX4/YHR070w 

52 TRM82 YDR165w m7G46 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YDR165w::kanMX4/YDR165w::kanMX4 

53 RIT1 YMR283c Ar(p)64, tRNAi
Met 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YMR283c::kanMX4/YMR283c::kanMX4 

54 PUS4 YNL292w Ψ55 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YNL292w::kanMX4/YNL292w::kanMX4 

55 SAP185 YJL098w 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YJL098w::kanMX4/YJL098w::kanMX4 

56 SIT4 YDL047w 

mcm5U34, 
mcm5s2U34, 

ncm5U34, 
ncm5Um34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YDL047w::kanMX4/YDL047w 

57 TAN1 YGL232w ac4C12 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGL232w::kanMX4/YGL232w::kanMX4 

58 TRM11 YOL125w m2G10 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOL124c::kanMX4/YOL124c::kanMX4 

59 TRM13 YOL125w Am4, Gm4, Cm4 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOL125w::kanMX4/YOL125w::kanMX4 

60 
SLM3 

(MTO2, 
MTU1) 

YDL033c 
mcm5s2U34 in mt 

tRNAs 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YDL033c::kanMX4/YDL033c::kanMX4 

61 MSS1 YMR023c 
mcm5U34 in mt 

tRNAs 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YMR023c::kanMX4/YMR023c::kanMX4 

62 PUS2 YGL063w 
Ψ27, Ψ28 in mt 

tRNA 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGL063w::kanMX4/YGL063w::kanMX4 

63 PUS9 YDL036c Ψ32 in mt tRNA 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YDL036c::kanMX4/YDL036c 

64 Bud32 YGR262c t6A 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YGR262c::kanMX4/YGR262c::kanMX4 

65 Cgi121 YML036w t6A 
BY4743; Mat a/α; his3∆1/his3∆1; 

leu2∆0/leu2∆0; lys2∆0/LYS2; 



2. Methods 

83 

 

MET15/met15∆0; ura3∆0/ura3∆0; 
YML036w::kanMX4/YML036w::kanMX4 

67 
Tad2 

(ADAT2) 
YJL035c I34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YJL035c::kanMX4/YJL035c 

68 
Tad3 

(ADAT3) 
YLR316c I34 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YLR316c::kanMX4/YLR316c 

69 Trm140 YOR239w m3C 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YOR239w::kanMX4/YOR239w::kanMX4 

70 Trm61 YJL125c m1A 

BY4743; Mat a/α; his3∆1/his3∆1; 
leu2∆0/leu2∆0; lys2∆0/LYS2; 

MET15/met15∆0; ura3∆0/ura3∆0; 
YJL125c::kanMX4/YJL125c 

71 
NOP1 
(LOT3) 

YDL014w Xm 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YDL014w::kanMX4/YDL014w 

72 NOP58 YOR310c Cofactor (Xm) 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YOR310c::kanMX4/YOR310c 

73 
NOP56 
(SIK1) 

YLR197w Cofactor (Xm) 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YLR197w::kanMX4/YLR197w 

74 SNU13 YEL026w Cofactor (Xm) 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YEL026w::kanMX4/YEL026w 

75 
NOP2 

(YNA1) 
YNL061w m5C 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YNL061w::kanMX4/YNL061w 

76 
DIM1 

(CDH1) 
YPL266w m6A, m6

2A 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YPL266w::kanMX4/YPL266w 

77 MRM1 YOR201c Gm 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YOR201c::kanMX4/YOR201c::kanMX4 

78 MRM2 YGL136c Um 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YGL136c::kanMX4/YGL136c::kanMX4 

79 SPB1 YCL054w Gm, Um 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YCL054w::kanMX4/YCL054w 

80 CBF5 YLR175w Ψ 
BY4743; Mat a/a; his3Δ1/his3Δ1; 

leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 
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MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YLR175w::kanMX4/YLR175w 

81 NOP10 YHR072w Cofactor(Ψ) 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YHR072w::kanMX4/YHR072w 

82 NHP2 YDL208w Cofactor(Ψ) 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YDL208w::kanMX4/YDL208w 

83 
MTO1 
(IPS1) 

YGL236c 
cmnm5U, 

cmnm5s2U 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YGL236c::kanMX4/YGL236c::kanMX4 

84 PUS5 YLR165c Ψ 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YLR165c::kanMX4/YLR165c::kanMX4 

85 NAF1 YNL124w Cofactor(Ψ) 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YNL124w::kanMX4/YNL124w 

86 SHQ1 YIL104c Cofactor(Ψ) 

BY4743; Mat a/a; his3Δ1/his3Δ1; 
leu2Δ0/leu2Δ0; lys2Δ0/LYS2; 

MET15/met15Δ0; ura3Δ0/ura3Δ0; 
YIL104c::kanMX4/YIL104c 

 

2.2 IN VIVO DETECTION OF PROTEIN AGGREGATES 

Protein aggregates were analyzed as described previously (Erjavec et al., 2007). 

Briefly, a molecular sensor of protein aggregation was constructed by fusing the 

Hsp104 and GFP genes under the control of the yeast Hsp104 promoter (Figure 

2.1). Since Hsp104 is a molecular chaperone that recognizes and binds aggregated 

proteins the Hsp104-GFP chimera permits visualizing the cellular localization of the 

aggregates by monitoring GFP fluorescence emission using epifluorescence or 

confocal microscopy. Cells containing soluble proteins have GFP fluorescence 

homogenously distributed throughout the cytoplasm, while cells containing protein 

aggregates have it concentrated in foci. 
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Figure 2.1. Strategy for the construction of fluorescent molecular sensors of protein 

aggregation. PCR products containing the GFP tag and a selectable marker gene (plasmid 

pKT128  pFA6a-GFP(S65T)-His3MX6) were fused in-frame to the C-terminal coding 

region of the Hsp104 gene through homologous recombination, yielding an Hsp104-GFP 

fusion protein. Adapted from Huh et al., 2003. 

 

2.2.1 Amplification of the genes of interest by PCR 

The Hsp104-GFP fusion protein was constructed following the method described 

previously by Huh et al., 2003. For this, two oligonucleotides (oUA2403 and 

oUA2404, Table 2.2) were designed to share complementary sequences to the GFP 

tag-marker cassette at the 3’-end and contain 40 bp of homology to the C-terminal 

coding region of Hsp104 gene in order to construct a fusion cassette were the GFP 

tag was in-frame fused to the C-terminal coding region of the Hsp104 gene. The 

fusion cassette was generated by PCR using the plasmid pKT128 (pFA6a–

GFP(S65T)–His3MX6) as template. This plasmid also contains the S. pombe His5 

gene which is important for the selection of transformants in histidine-free media. 

PCR reactions were performed with 500 ng of plasmid pKT128, 1x DreamTaq DNA 

polymerase buffer, 0.5 µM of each specific forward and reverse primer, 0.2 µM of 

each dNTP and 1.25 units of DreamTaq DNA Polymerase (Fermentas) in a final 

volume of 50 µl. PCR reactions were carried out in a thermal cycler (BioRad or 

Eppendorf) using a standard DNA amplification program of 94 °C  for 2 min followed 

by 30 cycles (94 °C for 30 sec, 54 °C for 30 sec, 72 °C for 3 min) and a final extension 

of 72 °C for 7 min. PCR products were purified using the QIAquick PCR purification 
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kit (QIAGEN), according to the manufacturer instructions, and 3 µg of purified 

product was transformed into each yeast strain (Table 2.1). 

 

Table 2.2. List of oligonucleotides used for GFP fusion proteins construction. 

Name Tm (°C) Sequence 5’-3’ 

Hsp104-GFP fusion construction 

oUA2403 57 
GACGATAATGAGGACAGTATGGAAATTGATGATGACCTA 

GATGGTGACGGTGCTGGTTTA 

oUA2404 57 
GATTCTTGTTCGAAAGTTTTTAAAAATCACACTATATTAAA 

TCGATGAATTCGAGCTCG 

Hsp104-GFP confirmation of fusion integration 

oUA2405 53 CTTGAACATAACCTTCTGGC 

oUA2406 53 GACTTCTTGGCCAAATATGG 

 

2.2.2 Yeast transformation 

The transformation of yeast was performed using the LiAc/SS Carrier DNA/PEG 

method (Gietz and Woods, 2006). Yeast cells were inoculated onto YPD and 

incubated overnight at 30 °C, with 180 rpm shaking, until an OD600 of 0.4-0.5. Cells 

were then centrifuged (5 000 rpm; 1 minute) in 1.5 mL microcentrifuge tubes. The 

supernatant was discarded and the transformation reagents were added to the pellet 

in the following order: 240 µL of PEG 3 500 (50% [w/v]), 36 µL of 1.0 M LiAc, 50 µL 

of boiled single-stranded carrier DNA (2.0 mg/mL), and 34 µL of an aqueous solution 

of the amplified DNA (containing 3 µg of DNA). Microcentrifuge tubes were vortexed 

until a homogeneous suspension was obtained, followed by incubation at 42 °C for 

40 minutes, in a Thermomixer comfort (Eppendorf). Cells were then centrifuged at 

maximum speed for 1 minute, the transformation mixture (supernatant) was 

discarded, and pellets were carefully resuspended in 200 µL of sterile mQ water. 

Each cell suspension was plated in selective medium plates (MM-His) and 

incubated at 30 °C until isolated transformant colonies were visible (2-4 days). 

Strains more difficult to transform were manipulated using a different protocol. 

Yeast cultures grown overnight were diluted into fresh YPD (OD600 of 0.3) and were 

grown for an additional 4 h period to an OD600 of 0.8 – 1.2. Cells were then 

centrifuged (3 220 x g; 5 min) in 50 mL falcons and were washed with sterile water. 

Cell pellets were resuspended in 600 µL of LiAc-sol (0.1 M LiAc pH 7.5, 1X TE) and 
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aliquoted in 200 µL each. To each 200 µL aliquot were added 50 µL of an aqueous 

solution of the amplified DNA (containing 5 µg of DNA), 100 µg of boiled single-

stranded carrier DNA and 600 µL of PEG/LiAc-sol (50% PEG 3500, 50% LiAc-sol). 

Microcentrifuge tubes were vortexed until a homogeneous suspension was obtained 

and incubated at 30 °C for 1 h, followed by a heat shock of 20 min at 42 °C, in a 

Thermomixer comfort (Eppendorf) with agitation. Cells were then incubated on ice 

for about 2 min, centrifuged (4 000 rpm; 15 sec) and gently resuspended in 230 µL 

of MM-His. Each cell suspension was plated in selective medium plates (MM-His) 

and incubated at 30 °C, until isolated transformant colonies were visible (2-3 days). 

 

2.2.3 Analytical colony PCR 

Insertion of the fusion cassette by homologous recombination was confirmed by 

colony PCR using a primer internal to the GFP tag and a primer specific to Hsp104 

(oUA2405 and oUA2406 primers, Table 2.2).  PCR reactions were performed with 

a single colony of each KO strain (heated in a microwave for 1 min), 1x DreamTaq 

DNA polymerase buffer, 0.5 µM of each specific forward and reverse primer, 0.2 µM 

of each dNTP and 1.25 units of DreamTaq DNA Polymerase (Fermentas) in a final 

volume of 12 µL. PCR reactions were carried out in a thermal cycler (BioRad or 

Eppendorf) using a standard program of 94 °C for 2 min followed by 30 cycles (94 

°C for 30 sec, 50 °C for 30 sec, 72 °C for 3 min) and a final extension of 72 °C for 7 

min. Positive clones were then analyzed by fluorescence microscopy. 

 

2.2.4 Fluorescence microscopy 

The cells grown overnight were immobilized on 1% agarose-coated slides in order 

to be visualized using an Axio Imager.Z1 (Zeiss) epifluorescence upright 

microscope; using a 63X oil-immersion objective and 38 HE GFP and Brightfield 

filters. Images were captured using AxionVision Software (Zeiss). The images were 

taken in one representative focal plane and were processed and analyzed using 

ImageJ software (http://rsb.info.nih.gov/ij). The presence of fluorescent foci in cells 

was checked and their number was counted manually. On average, 500 cells of 3 

clones were analyzed. 
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2.3 VALIDATION OF GENE DELETIONS BY PCR 

The gene knock outs of the strains selected from the genetic screen were validated 

as described below. 

 

2.3.1 DNA extraction 

Yeast cultures grown overnight were centrifuged (2 000 rpm; 5 min) and 

resuspended in 500 µL of Solution I (1 M Sorbitol, 0.1 M EDTA-Na2, pH 7.4). After 

transferring to microcentrifuge tubes, 5 µL of Lyticase (5 U/µL; 10 mg/mL) was 

added to cells and incubated at 37 °C for 60 min. Samples were then centrifuged (2 

000 rpm; 1 min) and resuspended in 500 µL of Solution II (50 mM Tris-HCl; 20 mM 

EDTA-Na2, pH 7.4) and 50 µL of 10% SDS. Samples were vortexed before 

incubation at 65 °C for 30 min. 200 µL of 5 M Potassium Acetate was added to 

samples and samples were incubated for 60 min on ice. Samples were centrifuged 

(2 000 rpm; 5 min) and the supernatants were transferred to new microcentrifuge 

tubes. DNA was precipitated with 2 vol of 100 % ethanol (cold) and 0.1 vol of 5 M 

NaCl for 2 h at -30 °C. After centrifugation and supernatant discard, DNA pellets 

were air-dried. DNA was resuspended in mQ water and stored at -30 °C. 

 

2.3.2 PCR 

The primers of PCR reactions carried out using DreamTaq™ DNA Polymerase 

(ThermoFisher Scientific) are summarized in Table 2.3. PCR reactions were 

performed with 500 ng of DNA of each selected KO strain, 1x DreamTaq DNA 

polymerase buffer, 0.5 µM of each specific forward and reverse primer, 0.2 µM of 

each dNTP and 1.25 units of DreamTaq DNA Polymerase (Fermentas) in a final 

volume of 12 µL. PCR reactions were carried out in a thermal cycler (BioRad or 

Eppendorf) using a standard program of 95 °C for 3 min followed by 25-30 cycles 

(95 °C for 30 sec, Tm for 30 sec, 72 °C for 1 min) and a final extension of 72 °C for 

7 min. PCR products were fractionated on agarose gels and visualized by UV 

exposition using a Gel Doc System (BioRad). 

 



2. Methods 

89 

 

Table 2.3. Primers used for selected KO strains validation. 

Name Tm (°C) Sequence 5’ – 3’ 

ELP1 Forward Primer 62 TCCGACATTAGAGCCGTTCG 

ELP1 Reverse Primer 60 TGGCACGCACTCTTTCATCT 

KTI12 Forward Primer 62 CAAGCAACCGATGGGACTCT 

KTI12 Reverse Primer 62 TGTTCCGTTACTTACCCCGC 

SHQ1 Forward Primer 62 GAGTGCTTGGACCATGGGAA 

SHQ1 Reverse Primer 64 GTGTCTCCCACTCAGGTTCG 

SLM3 Forward Primer 62 TGCTTCACCGTACAGACCAC 

SLM3 Reverse Primer 62 ACTCTCTCAGCTTGCCGAAC 

SPB1 Forward Primer 62 CTGCTCCTGGTTCATGGTGT 

SPB1 Reverse Primer 62 TCCTGAACCCAACCCAAACC 

TRM9 Forward Primer 60 TAGCTCCGCATTTCTCGCAA 

TRM9 Reverse Primer 62 ACCTCAACACGTCTCTCCCT 

 

2.4 TRANSMISSION ELECTRON MICROSCOPY FOR ULTRASTRUCTURAL ANALYSIS 

Transmission electron microscopy was performed according to the methodology 

described in Wright, 2000 by the HEMS group of IBMC – Porto. Briefly, cultures 

(OD600 = 0.8-1.0) were fixed overnight at 4 °C with fixative solution (0.1 M PIPES, 

pH 6.8; 0.1 M sorbitol; 1 mM MgCl2; 1 mM CaCl2; 2% glutaraldehyde). Samples 

were then washed with mQ water, post-fixed with 2% potassium permanganate, 

pre-stained with 1% aqueous uranyl acetate, dehydrated in graded ethanol series 

(25%, 50%, 75%, 95%, and 100% ethanol), and embedded in Epon 812 resin. The 

polymerization of the resin proceeded at 60 °C for 24 h. Thin sections (80-120 nm 

thickness) were prepared on a Ultramicrotome RMC PowerTome, collected in grids, 

and stained with Reynolds’ lead citrate. Grids were observed on a JEOL JEM 1 400 

(80 kV) transmission electron microscope equipped with an Orius Sc1000 Digital 

Camera. 
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2.5 PHYSIOLOGY OF SELECTED KO STRAINS 

2.5.1 Growth curves 

The growth rate of the selected KO strains was determined by analyzing the growth 

of three independent clones. Yeast cells were grown overnight at 30 °C in liquid 

MM-His medium as a pre-culture. For main cultures, fresh medium (MM-His) was 

inoculated with cells from the pre-culture to an initial OD600 of 0.02. These cultures 

were grown at 30 °C, 180 rpm, until late stationary phase. At various time points, 

aliquots of the culture were removed and OD600 was measured using a Microplate 

Reader (BioRad). Time dependent OD600 values were plotted using a logarithmic 

scale. Specific growth rate (µ) corresponds to the growth of yeast cells in 

exponential phase and was determined using the following equation: 

𝜇 =
ln𝑂𝐷2−ln𝑂𝐷1

𝑡2−𝑡1
, 

where OD1 and OD2 corresponds to the OD600 measured in time (t) 1 and t2, 

respectively. 

 

2.5.2 Cell viability assays 

2.5.2.1 Spotting test 

To determine cell viability, 0.5 OD600 units of yeast cells from the exponential phase 

culture were centrifuged and washed with sterile water. Yeast cells were 

resuspended in 200 μL of sterile water and 10 μL of each suspension was then 

subjected to a series of 10-fold dilutions. Samples (5 μL) of each suspension were 

inoculated onto solid MM-His medium and incubated at 30 °C. Colony growth was 

inspected after 2 days and colonies were photographed using a Gel Doc System 

(BioRad). All images were imported and processed using ImageJ software. Each 

spot of the assay was measured and a growth score was calculated (corresponding 

to the ratio between the area of the spot in the KO strain and the area of the same 

spot in the WT strain). The growth score average of all the spots correspond to the 

score for that specific strain (GS). 
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2.5.2.2 Propidium iodide incorporation 

Cell death was determined using the propidium iodide (PI) labeling. Cells were 

collected in different time points, washed and resuspended in 1X PBS. PI was added 

to cells to a final concentration of 2 μM. Cells were incubated in the dark, at 30 ºC 

during 30 min and analyzed by flow cytometry (BD Accuri™ C6 flow cytometer). 

Quantification of PI positive cells was carried out using BD Accuri C6 Software. 

 

2.5.3 Proteasome activity assay 

Chymotrypsin-like activity of the proteasome was assayed by monitoring the 

production of 7-amino-4-methylcoumarin (AMC) from the fluorogenic peptide 

succinyl-leucine-leucine-valine-tyrosine-AMC (s-LLVY-AMC) (Grune et al., 1998; 

Demasi, Silva and Netto, 2003). As described previously in Silva et al., 2007, 10 

OD600 units of cells grown at 30 °C to middle exponential phase and stationary 

phase were harvested by centrifugation at 4 000 rpm, 4 °C for 5 minutes, washed 

and frozen at -80 °C. Cell pellets were resuspended in 300 µL of lysis buffer (10 mM 

HEPES, 10 mM KCl and 1.5 mM MgCl2), disrupted with glass beads using 

Precellys™ 24 disrupter (2 cycles of 25 sec at 6 500 rpm; samples were kept on ice 

between each cycle), and centrifuged for 5 min at 5 000 rpm followed by 10 min at 

13 000 rpm, 4 °C. Protein extracts were quantified using the BCA protein 

quantification kit (Pierce) and were kept at -80 °C until further use. 100 µg of protein 

extracts were resuspended in assay buffer (10 mM Tris pH 8.0, 20 mM KCl, 5 mM 

MgCl2) to a final volume of 100 µL and were incubated at 37 °C for 15 min. The 

proteasome substrate N-SLLVY-AMC (Sigma) was added to a final concentration 

of 50 µM, and cells were incubated at 37 °C during 60 min. Fluorescence of the 

proteolytically released AMC was measured using Synergy 2 (Biotek), a multi-

detection microplate reader, at 360 nm (excitation) and 460 nm (emission). Relative 

proteasome activity was calculated by determining the increase of the amount of 

released AMC (difference between fluorescence emission at time 60 min and at time 

0 min) relatively to control (WT) cells. 
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2.6 BIOCHEMICAL CHARACTERIZATION OF tRNAS 

The function of the putative RNAmod genes selected from the genetic screen were 

confirmed by LCMS/MS analysis using the tRNA and rRNA substrates. This 

validation included total RNA extraction, tRNA purification in DEAE cellulose 

columns, enzymatic hydrolysis, reverse-phase HPLC resolution of ribonucleosides 

and identification and quantification of individual ribonucleosides by LC-MS (Su et 

al., 2014). 

 

2.6.1 RNA extraction and tRNA purification 

For total RNA extractions, 250 mL of cultures were grown until early stationary 

phase (OD600 of 1-1.5) and were harvested. Cell pellets were washed and frozen 

overnight at -80 °C. Cells were resuspended in 10-15 mL of acid phenol chloroform 

5:1 pH 4.7 (phenol volume = culture volume x [OD600/25]) and equal volume of TES 

buffer (10 mM Tris pH 7.5, 10 mM EDTA, 0.5% SDS). Cells suspension was 

vigorously shaken for 30 seconds and incubated at 65 °C for 1 h with agitation every 

10 min. The aqueous phase containing RNAs was separated from the phenolic 

phase by centrifugation at 7 500 rpm for 30 min at 4 °C, and re-extracted with same 

volume of fresh phenol at 7 500 rpm for 20 min at 4 °C. Aqueous phases were re-

extracted with the same volume of Chloroform Isoamyl Alcohol 24:1 by 

centrifugation at 7 500 rpm for 20 min at 4 °C. RNA was precipitated overnight at -

30 °C with 3 volumes of ethanol 100% and 0.1 volumes of 3 M sodium acetate pH 

5.2. RNAs were harvest by centrifugation at 7 200 rpm for 30 min at 4 °C and 

resuspended in 1 mL of 0.1 M sodium acetate pH 4.5. tRNAs were isolated on a 40 

mL DEAE-cellulose column equilibrated with the RNA resuspension buffer (Santos, 

Perreau and Tuite, 1996). Samples were washed with 2.5 volumes of 0.1 M sodium 

acetate pH 4.5/0.3 M sodium chloride, and tRNAs were eluted with 2 volumes of 0.1 

M sodium acetate pH 4.5/1 M sodium chloride. tRNAs precipitated with 2.5 volumes 

of 100% ethanol overnight at -30 °C were harvested by centrifugation and finally 

resuspended in mQ water and stored at -80 °C. tRNAs were verified at room 

temperature in 15% polyacrylamide-8 M urea gels, buffered with TBE. 
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2.6.2 Isolation of total tRNA and total rRNA by HPLC 

tRNAs purified as described above were also analyzed with the Agilent RNA 6000 

Pico Assay before further separation from rRNA by HPLC. HPLC-based purification 

of the tRNA and rRNA (25S, 18S, 5S and 5.8S) was carried out using an Agilent 

1100 HPLC Series with an Agilent Bio SEC-3 300 Å column (300 mm length x 7.8 

mm inner diameter) with a temperature-controlled column compartment at 60 °C 

with 100 mM ammonium acetate aqueous phase (isocratic gradient) at a flow rate 

of 1 mL/min for 15 min. tRNA and rRNA peaks were detected by measuring 

absorbance at 260 nm and collected with a fraction collector using their retention 

times (Figure 2.2 and Table 2.4). Fractions were concentrated in a SpeedVac and 

rehydrated with pure water. 

  

 

Figure 2.2. Retention time and peak width of tRNA and rRNA signals recorded in the 

HPLC system for programmed fraction collection. 

 

Table 2.4. Fraction collection timetable used for HPLC-based purification of tRNA and 

rRNA. 

Fractions RNA isolation Begin time (min) End time (min) 

1 25S and 18S rRNAs 4.9999 5.8001 

2 5.8S rRNA 6.5999 7.0001 

3 5S rRNA 7.1999 7.6001 

4 tRNA 7.6999 7.9801 

5 tRNA 7.9999 8.5001 
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2.6.3 Quantification of ribonucleosides by LC-MS/MS 

2.6.3.1 RNA digestion 

tRNAs and rRNAs (20 µg) were enzymatically hydrolyzed and dephosphorylated in 

a 2 h incubation at 37 °C with coformycin (50 µg/mL), tetrahydrouridine (THU; 0.3 

mg/mL), MgCl2 (0.5 mM), Tris pH 8.0 (0.2 M), alkaline phosphatase (0.05 U/µL), 

PDE1 (Snake venom phosphodiesterase; 0.005 U/µL), butylated hydroxytoluene 

(BHT; 0.3 mM) and Benzonase (0.03 U/µL). Deaminase inhibitors (coformycin and 

THU) and antioxidants (BHT) were present throughout the process to prevent 

damage artifacts (Chan et al., 2010). Enzymes were removed from ribonucleosides 

by ultrafiltration with a 10 kDa membrane (12 000 x g, 4-10 min). Digested 

ribonucleosides were mixed with 5 µM of [15N]5-deoxyadenosine ([15N]5-dA) to 

function as an internal control. 

 

2.6.3.2 Optimization of the mass spectrometer parameters 

Ribonucleoside standards were used to optimize mass spectrometer parameters. 

10 pmol of each ribonucleoside standard were injected into a UPLC system 

connected directly to a QQQ mass spectrometer with 5 mM ammonium acetate as 

the solvent. The UPLC system consisted in a Synergi 2.5 µm Fusion – RP 100-Å 

(100 x 2 mm) column with a mobile phase of 0-80% acetonitrile (ACN) in 5 mM 

ammonium acetate (Table 2.5) at a flow rate of 0.350 mL/min and 35 °C. The HPLC 

column was coupled to a 6430 Triple Quad mass spectrometer with an electrospray 

ionization (ESI) source operated in positive ion mode with the following parameters: 

gas temperature – 350 °C; gas flow – 10.0 L/min; nebulizer – 40.0 psi; capillary 

current – 5549 nA. Ribonucleoside standards were identified by HPLC retention time 

and collision-induced dissociation (CID) fragmentation pattern (Table 2.6 and Table 

2.7). 
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Table 2.5. Solvent gradient used by the UPLC-MS system. 

Time (min) 
Solvent A (%) 

(5 mM NH4OAc pH 5.3) 

Solvent B (%) 

(ACN) 

0.00 100.00 0.00 

1.00 100.00 0.00 

10.00 90.00 10.00 

14.00 60.00 40.00 

15.00 20.00 80.00 

16.00 100.00 0.00 

20.00 100.00 0.00 

 

Table 2.6. Dynamic MRM parameters for tRNA ribonucleosides identification based 

on optimized results. 

Compound 
Name 

Precursor 
Ion (m/z) 

Product 
Ion (m/z) 

Fragment 
(V) 

Collision 
Energy (V) 

Cell 
Accelerator 

Voltage 

Ret. 
Time 
(min) 

Delta Ret. 
Time (min) 

15N-dA 257 141 90 10 2 7.3 1 

ac4C 286 154 80 6 2 6.5 1 

Am 282 136 100 15 2 8.3 1 

Cm 258 112 80 8 2 4.2 1 

cm5U 303.2 171.1 90 7 2 2.2 1 

cm5Um 317 171.1 90 7 2 4.4 1 

cmnm5s2U 348 216 90 10 2 4.1 3 

cmnm5U 331 200 80 5 2 1.6 3 

ct6A 395 263 100 8 2 4 1 

D 247 115 80 5 2 1.6 1 

Gm 298 152 80 7 2 6.2 1 

I 269 137 80 10 2 4.5 1 

i6A 336 204 100 17 2 13.9 1 

m1A 282 150 100 16 2 2 2 

m1G 298 166 90 10 2 6.1 0.5 

m1I 283 151 80 10 2 5.9 1 

m2,2,7G 326 194 80 10 2 6.7 1 

m2
2G 312 180 100 8 2 7.8 1 

m2A 282 150 100 16 2 9 0.5 

m2G 298 166 90 10 2 6.5 0.5 

m3C 258 126 80 8 2 2.6 2 

m3U 259 127 100 16 2 5.7 1 

m5C 258 126 80 8 2 3.8 1 
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m5s2U 275 143 80 5 2 7.2 1 

m5U 259 127 80 7 2 4.9 1 

m5Um 273 127 100 10 2 7.4 2 

m6
2A 296 184 100 15 2 12.6 1 

m6A 282 150 100 16 2 9.5 0.5 

m7G 298 166 90 10 2 3.7 1 

mcm5s2U 333 201 100 10 2 8.8 1 

mcm5U 317.2 185.1 90 8 2 6.3 2 

mcm5Um 331.2 153.1 90 8 2 8.6 1 

ncm5U 302 153 100 10 2 2.5 2 

ncm5Um 316 170 90 7 2 5 1 

s2C 260 128 100 10 2 3.3 1 

s2U 261 129 80 5 2 5.5 1 

t6A 413 281 100 8 2 8.5 1 

Um 259 113 80 7 2 5.4 1 

Ψ 245 191 80 10 2 1.6 1 

yW 509 377 80 5 2 13 1 

 

Table 2.7. Dynamic MRM parameters for rRNA ribonucleosides identification based 

on optimized results. 

Compound 

Name 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

Fragment 

(V) 

Collision 

Energy (V) 

Cell 

Accelerator 

Voltage 

Ret. 

Time 

(min) 

Delta Ret. 

Time (min) 

15N-dA 257 141 90 10 2 7.3 1 

ac4C 286 154 80 6 2 6.5 1 

acp3Ψ 346 292 80 5 2 10.3 1 

Am 282 136 100 15 2 8.4 1 

Cm 258 112 80 8 2 4.2 1 

cm5U 303.2 171.1 90 7 2 1.8 1 

cmnm5s2U 348 216 90 10 2 4.1 1 

cmnm5U 331 200 80 5 2 1.6 1 

Gm 298 152 80 7 2 6.2 1 

hm5C 274 142 80 5 2 1.6 1 

I 269 137 80 10 2 4.5 1 

Im 283 137 80 5 2 5.5 2 

m1A 282 150 100 16 2 1.7 1 

m1acp3Ψ 360.1 306.1 80 5 2 11.4 1 

m1G 298 166 90 10 2 6.1 0.5 
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m1Ψ 259 127 80 5 2 4.8 1 

m2
2G 312 180 100 8 2 7.8 1 

m2G 298 166 90 10 2 6.5 0.5 

m3C 258 126 80 8 2 3.8 1 

m3U 259 127 100 16 2 5.7 1 

m4C 258 126 80 5 2 2.2 1 

m5C 258 126 80 8 2 4.2 2 

m6
2A 296 184 100 15 2 12.6 1 

m6A 282 150 100 16 2 9.4 1 

m7G 298 166 90 10 2 3.2 1 

Um 259 113 80 7 2 5.4 1 

Ψ 245 191 80 10 2 1.6 1 

Ψm 259 113 80 5 2 4 3 

 

2.6.3.3 Quantification of ribonucleosides by LC-MS/MS 

Digested ribonucleosides (4 ug) were analyzed by the UPLC-MS/MS system and 

the modified nucleosides were quantified by pre-determined molecular transitions 

obtained with ribonucleoside standards using a dynamic multiple reaction 

monitoring (MRM) program (Table 2.6 and Table 2.7). After background subtraction, 

the signal intensity of each ribonucleoside was normalized against the signal 

intensity of [15N]5-dA, in order to adjust for day-to-day fluctuations in MS sensitivity. 

Additionally, the signal intensity for each ribonucleoside was normalized by dividing 

the raw peak area for the ribonucleoside by the sum of the UV absorbance peak 

areas for the 4 canonical ribonucleosides, in order to adjust for variations in total 

tRNA in each sample. Abundance of the modified nucleosides was compared with 

WT. Data represent 3 independent clones with 3 technical replicates and statistical 

significance was determined using a Student’s t-test. Data were transformed to log2 

ratios of modification levels in KO strains relative to WT. Hierarchical clustering 

analysis were performed using Cluster 3.0: average linkage algorithm based on the 

distance between each data set measured using Euclidean distance, with the heat 

map representations produced using Java TreeView. 
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2.7 tRNA QUANTIFICATION USING FOUR-LEAF CLOVER qRT-PCR 

Hypomodified tRNAs in selected KO strains were quantified using a PCR-based 

method described in Honda et al., 2015, as described below. 

 

2.7.1 Total RNA isolation 

Yeast cells were lysed in hot acidic phenol and all species of RNA were extracted 

by separating the lysate into two phases with chloroform, followed by the collection 

of the aqueous phase (Collart and Oliviero, 2001). For that, 25 OD units of yeast 

cultures were collected during exponential phase (OD600 of 0.5) and were harvested 

(4 000 rpm; 4 min). Cell pellets were washed and frozen overnight at -80 °C. Cells 

were resuspended in 500 µL of acid phenol chloroform 5:1 pH 4.7 (warmed up at 

65 °C) and an equal volume of TES buffer (10 mM Tris pH 7.5, 10 mM EDTA, 0.5% 

SDS). Cells suspension was vigorously shaken for 20 seconds and incubated at 65 

°C for 1 h with agitation every 10 min. The aqueous phase containing RNAs was 

separated from the phenolic phase by centrifugation at 14 000 rpm for 20 min at 4 

°C, and re-extracted twice with the same volume of acid phenol chloroform 5:1 pH 

4.7 at 14 000 rpm for 10 min at 4 °C. Aqueous phases were re-extracted with the 

same volume of Chloroform Isoamyl Alcohol 24:1 by centrifugation at 14 000 rpm 

for 10 min at 4 °C. RNA was precipitated overnight at -30 °C with 3 volumes of 100% 

ethanol (cold) and 0.1 volumes of 3 M sodium acetate pH 5.2. RNAs were harvested 

by centrifugation at 14 000 rpm for 5 min, washed in 80% ethanol (cold), air-dried 

and resuspended in 100 µL of mQ water. The integrity and purity of RNA were 

analyzed using a Bioanalyzer small RNA chip, after DNase treatment using DNase 

I (Amplification grade; Invitrogen™). 

 

2.7.2 Deacylation treatment 

Total RNA (1 µg) was incubated in 20 mM Tris-HCl pH 9.0 at 37 °C for 40 min in 

order to remove amino acids from the mature tRNAs. Deacylated tRNAs were 

cleaned with RNA Clean & Concentrator™-5 (Zymo Research), according to the 

manufacturer instructions. 
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2.7.3 Annealing and ligation of SL-adaptors to mature tRNAs 

Each specific adapter (20 pmol; Table 2.8) was incubated with 100 ng of the 

deacylated total RNA in 9 mL mixture at 90 °C for 3 min. Annealing buffer (1X; 50 

mM Tris-HCl pH 8.0, 5 mM EDTA and 100 mM MgCl2) was added to the mixture 

and incubated at 37 °C for 20 min. Ligation of the annealed adapter to mature tRNAs 

were performed by adding 1X reaction buffer containing 1 unit of T4 RNA ligase 2 

(New England Biolabs) and the mixture was incubated at 37 °C for 1 h, and then 

incubated overnight at 4°C. 

 

Table 2.8. Sequences of adaptors for FL-PCR. 

Adaptor Sequence (5’-3’) 

SL-Adaptor-C /5Phos/TCGTAGGGTCCGAGGTATTCACGATGrGrC 

SL-Adaptor-U /5Phos/TCGTAGGGTCCGAGGTATTCACGATGrGrU 

SL-Adaptor-A /5Phos/TCGTAGGGTCCGAGGTATTCACGATGrGrA 

SL-Adaptor-G /5Phos/TCGTAGGGTCCGAGGTATTCACGATGrGrG 

 

2.7.4 TaqMan qRT-PCR for mature tRNAs 

Ligated RNA (10-27.5 ng) was incubated with 1 pmol of specific RT primer (Table 

2.9) and 5 nmol of dNTPs in a 7 µL mixture at 90 °C for 2 min and then placed on 

ice for at least 1 min. Reverse transcription was performed by adding SuperScript™ 

III Reverse Transcriptase and its reaction buffer (Life Technologies), according to 

the manufacturer instructions, to create a 10 µL mixture that was incubated for 30 

min at 50 °C. The resultant cDNA solution was diluted 1:5, and 3 µL of this solution 

was added to the Real-Time PCR mixture containing 1X Premix Ex Taq reaction 

solution (Clontech Lab), 400 nM TaqMan probe (5’-/56-

FAM/CCATCGTAG/ZEN/GGTCCGAGGTATTC/3IABkFQ/-3’; Integrated DNA 

Technologies), 2 pmol of each specific forward and reverse primers (Table 2.9) and 

1X ROX Reference Dye II in a final volume of 20 µL. Real-time PCR reactions were 

carried out in an Applied Biosystems 7 500 Real-Time PCR System using a 

standard program of 95 °C for 20 sec followed by 40 cycles (95 °C for 5 sec, Tm for 

34 sec). All reactions were run in triplicate and the threshold cycles (Ct) were 

determined. 5S rRNA expression was quantified to be used as an internal control 
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using SsoFast EvaGreen Supermix (BioRad) and the primers represented in Table 

2.9, according manufacturer instructions. The amplified cDNA was developed by 

10% native PAGE. 

For statistical evaluations of the determined CP and relative expression 

variations, data were analyzed for significant differences by REST-MCS© (Pfaffl, 

Horgan and Dempfle, 2002). 

 

Table 2.9. Sequences of primers for FL-PCR. 

Primer Name Sequence (5’-3’) Comments 

5S rRNA – Forward primer GGTTGCGGCCATATCTACCA 20 nt; Tm: 59.89 °C; GC%: 55.00 

5S rRNA – Reverse/RT primer AGCACCTGAGTTTCGCGTAT 20 nt; Tm: 59.75 °C; GC%: 50.00 

tRNAAla
TGC – Reverse/RT primer CGCTACCAACTGCGCCATGT 20 nt; Tm: 63.73 °C; GC%: 60.00 

tRNAAla
TGC – Forward primer GAGGTCATCGGTTCGATTCC 20 nt; Tm: 58.15 °C; GC%: 55.00 

tRNAArg
TCT – Reverse/RT primer TCAGACGCGTTGCCATTACG 20 nt; Tm: 61.35 °C; GC%: 55.00 

tRNAArg
TCT – Forward primer AGATTATGGGTTCGACCCCC 20 nt; Tm: 58.86 °C; GC%: 55.00 

tRNAGln
TTG – Reverse/RT primer CCGAAAGTGATAACCACTACAC 22 nt; Tm: 56.82 °C; GC%: 45.00 

tRNAGln
TTG – Forward primer ACAACCCCGGTTCGAATCCG 20 nt; Tm: 62.79 °C; GC%: 60.00 

tRNAGlu
TTC – Reverse/RT primer 

GATGTGATAGCCGTTACACTAT
ATCG 

26 nt; Tm: 59.31 °C; GC%: 42.00 

tRNAGlu
TTC – Forward primer GGGGTTCGACTCCCCGTATC 20 nt; Tm: 61.74 °C; GC%: 65.00 

tRNAGly
TCC – Reverse/RT primer GATAACCACTACACTAACCGCC 22 nt; Tm: 58.55 °C; GC%: 50.00 

tRNAGly
TCC – Forward primer ACACGGGTTCGATTCTCGTA 20 nt; Tm: 58.83 °C; GC%: 50.00 

tRNALeu
TAA – Reverse/RT primer CCTTAGACCACTCGGCCAAC 20 nt; Tm: 60.39 °C; GC%: 60.00 

tRNALeu
TAA – Forward primer GCGAGTTCGAACCTCGCATC 20 nt; Tm: 61.74 °C; GC%: 60.00 

tRNALys
TTT – Reverse/RT primer CCGAACGCTCTACCAACTGA 20 nt; Tm: 59.76 °C; GC%: 55.00 

tRNALys
TTT – Forward primer AAATGTCAGGGGTTCGAGCC 20 nt; Tm: 60.32 °C; GC%: 55.00 

mit tRNALys
TTT – Reverse/RT 

primer 
CTGTTTTAACCAATTAAACAATA
TTCTC 

28 nt; Tm: 54.87 °C; GC%: 25.00 

mit tRNALys
TTT – Forward primer GCGGTTCAACTCCAGCTATT 20 nt; Tm: 58.26 °C; GC%: 50.00 

tRNAPro
TGG – Reverse/RT primer GCGAGAATCATACCACTAGACC 22 nt; Tm: 58.10 °C; GC%: 50.00 

tRNAPro
TGG – Forward primer AGAGGCCCTGGGTTCAATTC 20 nt; Tm: 59.67 °C; GC%: 55.00 

tRNASer
TGA – Reverse/RT primer CCTTAACCACTCGGCCATAG 20 nt; Tm: 57.76 °C; GC%: 55.00 

tRNASer
TGA – Forward primer GCTGGTTCAAATCCTGCTGG 20 nt; Tm: 58.09 °C; GC%: 55.00 

tRNAThr
TGT – Reverse/RT primer GCAACGCTCTACCACTAAGC 20 nt; Tm: 59.00 °C; GC%: 55.00 

tRNAThr
TGT – Forward primer GGTCGCTAGTTCAATTCTGG 20 nt; Tm: 56.24 °C; GC%: 50.00 

tRNAVal
TAC – Reverse/RT primer CGTCTTGAACCACTGGACCATT 22 nt; Tm: 60.81 °C; GC%: 50.00 

tRNAVal
TAC – Forward primer CCCGAGTTCGAACCTCGGTT 20 nt; Tm: 62.15 °C; GC%: 60.00 
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2.8 PROTEOME PROFILING AND QUANTIFICATION OF AMINO ACID 

MISINCORPORATIONS 

2.8.1 Extraction of insoluble aggregates 

Isolation of insoluble proteins from WT and selected KO strains was performed as 

described by Koplin et al., 2010, with minor alterations. 50 OD600 units of 

logarithmically growing cells cultivated in MM-His were harvested at 4 000 rpm and 

4 °C for 10 minutes and cell pellets were frozen. For preparation of cell lysates, the 

cell pellets were resuspended in 500 µL of lysis buffer (20 mM Na-phosphate, pH 

6.8, 10 mM DTT, 1 mM EDTA, 0.1% (v/v) Tween, 1 mM PMSF, protease inhibitor 

cocktail (Roche), 3 mg/mL lyticase and 1.25 U/mL benzonase) and incubated at 30 

°C for 30 min. Glass beads were used to disrupt the yeast cells using a Precellys™ 

24 disrupter; 2 cycles of 25 sec at 6 500 rpm; samples were kept on ice between 

each cycle. Cell lysates were then centrifuged for 20 min at 200 x g at 4°C, 

supernatants were adjusted to identical protein concentrations (4.8 mg/mL for 

protein gels and 4 mg/ml for LC-MS/MS analysis) and membrane and aggregated 

proteins were isolated at 16 000 x g for 20 min at 4 °C. Supernatants were aspirated 

and membrane proteins were removed by washing twice the aggregated proteins 

with 2% NP-40 (in 20 mM Na-phosphate, pH 6.8, 1 mM PMSF and protease inhibitor 

cocktail), sonicating (6 x 5 sec at cycle 0.1 and amplitude 20%) and centrifuging the 

extracts at 16 000 x g for 20 min at 4 °C. The final insoluble protein extracts were 

washed in NP-40–deficient buffer (sonication, 4 x 5 sec at cycle 0.1 and amplitude 

20%), boiled in 1X laemli sample buffer, separated by SDS-PAGE (14%) and 

analyzed by Coomassie staining. Experiments were performed in duplicate for the 

three biological replicates. 

Protein aggregates for mass spectrometry analysis were precipitated with TCA 

(100% w/v; 1 vol of TCA to 4 vol of protein sample) at 4 °C for 30 min. Samples 

were then washed with 200 µL ice cold acetone (9:1) and pellets were dried at RT. 

Protein pellets were resuspended in 50 µL of 8 M urea. 

 



2. Methods 

102  

 

2.8.2 Protein sample preparation (Reduction, Alkylation and Tryptic 

Digestion) 

Proteins were reduced with 10 mM dithiothreitol for 1 h at 56 °C and then alkylated 

with 55 mM iodoacetamide for 1 h at room temperature in the dark. Proteins were 

then digested with modified trypsin (Thermo Scientific) at an enzyme/substrate ratio 

of 1:50 in 100 mM ammonium acetate pH 8 at 30 °C overnight. Synthetic peptides 

mimicking amino acid misincorporation (designed by us) were added to each 

sample (1 μg of digested protein) (Table 2.10). 

Peptides were desalted using MicroSpin C18 columns (The Nest Group, Inc) 

prior to LC-MS/MS analysis. 

 

Table 2.10. Synthetic peptides (Pepscan) added to insoluble fraction samples for LC-

MS/MS analysis. 

Peptide Name Sequence MW (Da) Quantity added (fmol) 

WT (Q02892) H-NVYDFLDPEIAAK-OH 1494.7 100 

Mut1 H-NVYEFLDPEIAAK-OH 1508.7 1 

Mut2 H-NVYDLLDPEIAAK-OH 1460.7 0.5 

Mut3 H-NVYDFSDPEIAAK-OH 1468.6 0.1 

Mut4 H-NVYDFLDPEISAK-OH 1510.7 0.05 

 

2.8.3 Chromatographic and mass spectrometric analysis 

The peptide mixes were analyzed using an Orbitrap Fusion Lumos mass 

spectrometer (Thermo Scientific, San Jose, CA, USA) coupled to an EasyLC 

(Thermo Scientific (Proxeon), Odense, Denmark). Peptides were loaded directly 

onto the analytical column and were separated by reversed-phase chromatography 

using a 50 cm column with an inner diameter of 75 μm, packed with 2 μm C18 

particles (Thermo Scientific, San Jose, CA, USA). Chromatographic gradients 

started at 95% buffer A (0.1% formic acid in water) and 5% buffer B (0.1% formic 

acid in acetonitrile) with a flow rate of 300 nL/min and gradually increased to 22% 

buffer B in 79 min and then to 35% buffer B in 11 min. After each analysis, the 

column was washed for 10 min with 5% buffer A and 95% buffer B. 
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The mass spectrometer was operated in DDA mode and full MS scans with 1 

micro scans at resolution of 120 000 were used over a mass range of m/z 350-1 

500 with detection in the Orbitrap. Auto gain control (AGC) was set to 1E5 and 

dynamic exclusion to 50 seconds. In each cycle of DDA analysis, following each 

survey scan Top Speed ions with charged 2 to 5 above a threshold ion count of 1E4 

were selected for fragmentation at normalized collision energy of 28%. Fragment 

ion spectra produced via high-energy collision dissociation (HCD) were acquired in 

the Orbitrap, AGC was set to 3E4, isolation window of 1.6 m/z and maximum 

injection time of 80 ms was used. All data were acquired with Xcalibur software 

v3.0.63. 

 

2.8.4 Data analysis 

2.8.4.1 Proteome Profiling 

MS/MS raw data were analyzed using PEAKS Studio (v.8.0, Bioinformatics 

Solutions Inc.) for peptide identification and label-free quantification. Samples were 

searched against a S. cerevisiae database available at the Saccharomyces 

Genome Database (version of July 2017), a list of common contaminants and all the 

corresponding decoy entries. Trypsin was chosen as the protein digestion enzyme 

and a maximum of three missed cleavages were allowed. Carbamidomethylation 

was set as a fixed modification, whereas oxidation (M) was set as a variable 

modification. Searches were performed using mass tolerances of 7 ppm for parent 

ions and 20 mmu for fragment ions. Resulting data files were filtered for FDR of 1% 

(or less). 

 

2.8.4.2 Biochemical characterization of proteins 

Data of the molecular weight, isoelectric point, hydrophobicity, aromaticity and 

protein degradation signal of the yeast proteome were collected from Lu et al., 2007 

and Ibstedt et al., 2014. Translation rate per protein and protein abundance data 

were collected during non-stress conditions by Arava et al., 2003 and 

Ghaemmaghami et al., 2003, respectively. Codon adaptation index of yeast 
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proteome were calculated by our codon usage analysis software package Anaconda 

(Moura et al., 2005) and the frequency of optimal codons were collected by Lu et 

al., 2007. Statistical analysis was performed on the set of up-regulated aggregated 

proteins in each mutant strain using yeast proteome as background. Mann-Whitney 

U-tests were performed. 

 

2.8.4.3 Codon usage bias and GO term analysis 

The full sequences of the genes encoding the insoluble proteins identified were 

downloaded from the Yeast genome database (http://www.yeastgenome.org), with 

the "Gene ID" and "Associated Gene Name", in FASTA format, for uploading by our 

codon usage analysis software package Anaconda (Moura et al., 2005). Codon 

usage, normalized for the amino acid usage of each protein in the whole genome 

(as in Begley et al., 2007), and RSCU values for all genes, also normalized 

according to the distance between individual genes and the whole genome were 

determined. Normalized as described, these new RSCU values eliminate the bias 

effect of the amino acid frequency between proteins and also the effect of the 

number of synonymous codons for each amino acid. Since individual gene-specific 

codon frequencies can deviate significantly from genome averages, the gene-

specific codon frequency for each S. cerevisiae gene, weighted with BY4743 gene 

expression from a previous study (GSE42554), was analyzed to obtain a gene-

specific codon Z score also weighted by tRNA availability (Figure 2.3). The data 

were clustered in both dimensions using Cluster 3.0 (default settings, x/y clustering 

through hierarchical single linkage analysis using uncentered correlation as the 

similarity metric) and the resulting maps were visualized using Java TreeView to 

detect genes that may form specific codon clusters. 

 Differences in amino acid and codon composition were compared using 

heteroscedastic Student’s t-test with CI 95% relative to the reference genome. 
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Figure 2.3. Method to calculate gene-specific codon usage patterns weighted by 

tRNA availability. 

 

A GO term analysis was carried out for the gene groups belonging to each 

codon cluster, using GeneCodis (http://genecodis.cnb.csic.es/) and “GO-Biological 

process”, “GO-Molecular function”, “Go-Cellular component” and “KEGG 

Pathways”, as annotations (Carmona-Saez et al., 2007; Nogales-Cadenas et al., 

2009; Tabas-Madrid, Nogales-Cadenas and Pascual-Montano, 2012). GO term 

enrichment was compiled in tables, for each annotation, and p-values were 

calculated with a chi-square test using 7 109 genomic genes as background. p-

values were filtered with FDR < 5%. 

 

2.8.4.4 Quantification of amino acid misincorporation 

Detection of amino acid misincorporations were performed using the SPIDER 

algorithm present in PEAKS Studio (v.8.0, Bioinformatics Solutions Inc.). Samples 

were searched against a S. cerevisiae database from Saccharomyces Genome 

Database (version of July 2017) plus a list of common contaminants and all the 

corresponding decoy entries. Trypsin was chosen as enzyme and a maximum of 

three missed cleavages were allowed. Carbamidomethylation was set as a fixed 

modification, whereas oxidation (M), Asn→Lys substitution, Asp→Glu substitution, 
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His→Gln substitution, Phe→Leu substitution, and Ser→Arg substitution were set as 

variable modifications. Searches were performed using mass tolerances of 7 ppm 

for parent ions and 20 mmu for fragment ions. Additional search parameters were 

analyzed to identify common and unspecified post-transcriptional modifications 

(PTM). Resulting data files were filtered for FDR of 1% (or less). Data sets of the 

technical replicates were merged in a single dataset. Amino acid misincorporations 

were validated by bioinformatically introducing misincorporations into a new 

database and re-searching as in 2.8.4.1 Proteome Profiling. Only new proteins with 

mutant peptides identified in the second search and filtered with 1% FDR were 

considered as valid amino acid misincorporations. This was done to reduce the 

number of false positives. 

Quantification of misincorporation fractional occupancy were calculated using 

an R script that calculated the total peak areas of all modified unique peptides that 

have a specific misincorporation and the total peak areas of both modified and 

unmodified unique peptides covering the same fragment. Fractional occupancy was 

calculated as the total peak area of a misincorporation site out of the total peak area 

of that site. 

 

2.8.4.5 Identification of human orthologues 

Identification of orthologues between yeast and human disease aggregates in 

Alzheimer’s disease (Liao et al., 2004; Wang et al., 2005), Parkinson’s disease (Xia 

et al., 2009) and/or familial amyotrophic lateral sclerosis (Basso et al., 2009) were 

identified with the OMA browser (http://omabrowser.org/). The level of orthology was 

determined by counting the number of orthologues between up-regulated 

aggregated proteins in each mutant strain and disease-associated aggregates and 

the reference genome, respectively. Significance of the analysis was achieved using 

Fisher’s exact test. 
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3.1 INTRODUCTION 

During the maturation process of pre-RNAs several enzymes chemically modify 

ribonucleotide residues. Chemical alterations may occur at the 2’-hydroxyl group of 

the ribose, in the base, or both (Figure 3.1) (Grosjean, 2009b), resulting in alteration 

of physical and/or chemical properties of the nucleotides that generally modulate 

the flexibility and function of RNAs (Ishitani, Yokoyama and Nureki, 2008). The 

distribution, abundance and location of various types of modification diverge 

significantly between different RNA molecules, organisms and organelles. In fact, 

these post-transcriptional modifications of the four normal ribonucleosides are 

present in tRNA, rRNA, mRNA, snRNA, snoRNA, and tmRNA (Ishitani, Yokoyama 

and Nureki, 2008). Growth conditions and the physiological environment of the cell 

also influence RNA modification patterns (Grosjean, 2009b). Considering both tRNA 

and rRNA, there are more than 100 known ribonucleoside modifications across all 

organisms which expand the repertoire of the canonical adenosine, guanosine, 

cytidine and uridine nucleotides (Cantara et al., 2011; Machnicka et al., 2013). 

Beyond the well-known functions of modifications in tRNA folding, tRNA 

aminoacylation and translational fidelity (Motorin and Grosjean, 2005; Agris, 

Vendeix and Graham, 2007; Phizicky and Hopper, 2010; El Yacoubi, Bailly and de 

Crécy-Lagard, 2012), tRNA and rRNA modifications are critical in the responses to 

cellular stress (Begley et al., 2007; Thompson and Parker, 2009) and cell growth 

(Emilsson, Näslund and Kurland, 1992; Heiss, Reichle and Kellner, 2017). 

 



3. Genetic screen to identify RNAmods and their regulators 

109 

 

 

Figure 3.1. Modified bases and ribose moieties of RNAs. In the boxes are the various 

types of chemical groups that can be enzymatically attached to selected atoms of a 

B

A
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pyrimidine (A) and purine (B) ring (in red) during maturation of RNA precursor in Bacteria, 

Eukarya or Archaea. The base modifications that are also found in DNA are circled. Adapted 

from Grosjean, 2009. 

 

More than 100 proteins are involved in RNA modification; both functional 

enzymes and protein co-factors necessary for multi-protein enzymatic processes 

(Czerwoniec et al., 2009; Machnicka et al., 2013). Much progress has been made 

since the identification of the first RNA-modifying enzyme, a m5U tRNA 

methyltransferase (now designated Trm2 in Eukarya and TrmA in Bacteria), in 1962-

63 (Fleissner and Borek, 1962; Starr, 1963; Svensson et al., 1963). Most of these 

enzymes alter the chemical nature of the nucleosides by deamination, reduction and 

thiolation, or by addition of a chemical group (for instance, a methyl or an isopentenyl 

group) on one atom of the base or the ribose (Grosjean, 2005). Moreover, a large 

number of co-factors is required for these enzymatic reactions to occur, particularly 

metabolites from the central metabolism, such as S-adenosylmethionine (AdoMet 

or SAM), NADH, FAD, methylene tetrahydrofolate, ATP, GTP, isopentenyl-

pyrophosphate, and/or numerous amino acids. The location of most RNA-modifying 

enzymes within distinct cellular compartments as well as the possible association of 

these enzymes with cellular and subcellular structures or commitment in multi-

enzymatic complexes are crucial for the RNA maturation process. These enzymes 

can be site-specific (acting on the same position), multisite-specific (acting on 

various positions within the same RNA molecule) or dual-specific (acting on different 

types of RNA). Interestingly, RNA-modifying enzymes can have additional roles 

beyond RNA modification, as previously explained (Grosjean, 2005). 

At least, five types of RNA-modifying enzymes are known, namely: 

methyltransferases, thiolases, deaminases, pseudouridine synthases, and 

dihydrouridine synthases. 

 

3.1.1 Methyltransferases  

These enzymes are responsible for methylation-based modifications of RNA. A 

series of methyltransferases utilize SAM as a methyl donor to methylate RNA 



3. Genetic screen to identify RNAmods and their regulators 

111 

 

molecules (Grosjean, 2009a). In S. cerevisiae, there are 16 tRNA methyltransferase 

(Trm) genes, whose proteins are involved in the formation of more than 20 different 

methyl-based modifications in tRNAs, varying in nucleotide position and 

modification type (Cherry et al., 1998). Those tRNA methyltransferases are involved 

in the synthesis of 5-methoxycarbonylmethyluridine (mcm5U), 5-

methoxycarbonylmethyl-2-thiouridine (mcm5s2U), N2, N2-dimethylguanosine 

(m2
2G), 5-methyluridine (m5U), 5-methylcytidine (m5C), 3-methylcytidine (m3C), 1-

methylguanosine (m1G), 1-methyladenosine (m1A), 7-methylguanosine (m7G), 2-

methylguanosine (m2G), 1-methylinosine (m1I), wybutosine (yW) and 2’-O-

methylated nucleosides. 

In rRNA, most of the methylation at the 2’-O-ribose position is carried out by a 

methyltransferase of a ribonucleoprotein (RNP) complex consisting of a box C/D 

guide RNA and associated core proteins. Moreover, box C/D snoRNAs function in 

pre-rRNA processing (Hughes and Ares, 1991; Morrissey and Tollervey, 1993; Wu 

et al., 1998), in pre-rRNA maturation (important for specific endonucleolytic 

cleavage, functioning as organizers for a trans-acting RNase) (Beltramel and 

Tollervey, 1995) and in pre-rRNA folding (Liang and Fournier, 1995; Gagnon, Qu 

and Maxwell, 2009). Eukaryotic box C/D snoRNPs contain four conserved core 

proteins, namely the nucleolar proteins Nop56 and Nop58, the methyltransferase 

Nop1 (fibrillarin) and Snu13. Nop1 is the catalytic subunit of the box C/D RNPs 

(Watkins et al., 2000; Gagnon, Qu and Maxwell, 2009). 

 

3.1.1.1 The Elongator complex and its regulators 

The Elongator complex belongs to the methyltransferases group and is required for 

the synthesis of the 5-carboxymethyluridine (cm5U) side chain in some wobble 

uridines (Huang, Johansson and Byström, 2005). It consists of a core complex 

constituted by Elp1-Elp3 and a sub-complex formed by Elp4-Elp6 (Figure 3.2) 

(Krogan and Greenblatt, 2001; Winkler et al., 2001). Structurally, Elp4, Elp5 and 

Elp6 form a heterohexamer containing two copies of each polypeptide, which 

interacts with two copies of an Elp1-Elp2-Elp3 sub-complex to form the 

holoElongator complex (Glatt et al., 2012; Dauden et al., 2017). Elp1 functions as a 
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scaffold for Elp2 and Elp3 and acts as the docking platform for Elp4-Elp6 sub-

complex (Dauden et al., 2017). Thus, Elp1, particularly its C-terminus (CTD), is 

essential for the assembly of the overall Elongator complex. Moreover, Elp1 

contains a conserved lysine/arginine-rich basic region in its C-terminal domain that 

can bind tRNA with high affinity (Santo, Bandau and Stark, 2014). Elp3 is likely to 

catalyze the tRNA modification because in addition to the potential acetyl-CoA 

binding domain (KAT domain) in its C-terminal, it has an iron-sulphur (FeS) cluster 

in the central region, which uses SAM to catalyze various radical reactions, as other 

members of the Radical SAM superfamily (Wittschieben et al., 1999; 

Paraskevopoulou et al., 2006). In this way, the FeS cluster and the SAM binding 

regions of the radical SAM domain of Elp3 are critical for the tRNA modification 

reaction (Chen, Huang, Anderson, et al., 2011), whereas KAT domains are critical 

for interaction with Elp1 (Dauden et al., 2017). 

 

 

Figure 3.2. The holoElongator complex structure. A. The Elongator complex has a core 

complex constituted by Elp1-Elp3 and a sub-complex formed by Elp4-Elp6. Elp1 (orange), 

Elp2 (yellow), Elp3 (represented by its KAT and SAM domains – purple), Elp4 (green), Elp5 

(blue) and Elp6 (sand) are shown in surface representation. B. View of the active site cavity 

Elp3
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of the Elongator complex (left) and zoom-in to the tRNA binding sites and a region of Elp2 

needed for tRNA modification activity (right). Adapted from Dauden et al., 2017. 

 

Kti11-Kti14, Sit4 or Sap185/Sap190 regulate the Elongator complex (Fichtner 

et al., 2002, 2003, Jablonowski et al., 2004, 2009; Petrakis et al., 2005; Bär et al., 

2008; Mehlgarten et al., 2009; Abdel-Fattah et al., 2015; Kolaj-Robin et al., 2015). 

Elp1 is a phosphoprotein, which is hypophosphorylated in the absence of kinases 

Kti12 and Hrr25 (or Kti14), and hyperphosphorylated in phosphatase Sit4 mutants 

(Jablonowski et al., 2004; Mehlgarten et al., 2009). The regulatory factor Kti12 was 

reported to interact with Elp2, Elp3, Elp5 (Fichtner et al., 2002) and Hrr25 (Kti14) to 

modulate phosphorylation of Elp1 (Mehlgarten et al., 2009). On the other hand, the 

complex Sit4-Sap185-Sap190 dephosphorylate Elp1 (Jablonowski et al., 2004, 

2009). Moreover, Elp1 phosphorylation is dynamic, turning wobble uridine 

modification by the Elongator complex up or down in response to growth conditions 

and protein synthesis demands as observed during the cell cycle (Mehlgarten et al., 

2009; Abdel-Fattah et al., 2015). It is hypothesized that phosphorylation of Elp1 

influences binding of tRNA during Elongator wobble uridine modification, as a 

regulatory mechanism. 

Kti11 and Kti13 form a heterodimer that interacts with Elongator complex by 

binding to Elp2 and Elp5 (Bär et al., 2008; Glatt et al., 2015). For that, Kti11 acts as 

an electron donor to the FeS cluster of the Elp3 subunit and Kti13 modulates this 

activity of Kti11 by interacting with Elp3 (or more subunits) or by facilitating this 

binding by orienting Kti11 (Kolaj-Robin et al., 2015). 

 

3.1.1.2 Trm9 methyltransferase and its regulator 

Trm9 (S-adenosylmethionine-dependent tRNA methyltransferase 9) is a wobble 

uridine methyltransferase that catalyzes the esterification of modified uridine 

nucleosides, resulting in the formation of 5-methoxycarbonylmethyluridine (mcm5U) 

and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) in specific tRNAs (Kalhor 

and Clarke, 2003). Trm9 uses SAM as the methyl donor to complete the synthesis 

of mcm5U34, after the synthesis of the cm5U34 by the Elongator complex (Figure 3.3) 

(Kalhor and Clarke, 2003). Like Elp3, Trm9 contains a SAM-dependent 
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methyltransferase domain that catalyzes the formation of mcm5U34 modification. 

Trm9 forms a complex with Trm112 to catalyze the last step of the synthesis of 

mcm5U34 (Mazauric et al., 2010). 

 

 

Figure 3.3. Pathway for mcm5s2U34 modification. Left: proteins involved in the mcm5 

modification. Right: proteins involved in the s2 modification. Modified side groups are in red. 

Adapted from Ranjan and Rodnina, 2016. 

 

3.1.1.3 Methyltransferases in wybutosine synthesis 

Wybutosine (yW) occurs at position 37 of tRNAPhe
GAA in Archaea and Eukarya, 

which enhances base-stacking interactions with adjacent adenosines (A36 and A38) 

to reduce the flexibility of the anticodon (Stuart et al., 2003). Synthesis of yW in 
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eukaryotes involves at least four sequential reactions requiring Tyw1-Tyw4 

enzymes that use m1G37 as precursor (Figure 3.4). These enzymes are 

methyltransferases that require SAM as a methyl donor (Tyw3 and Tyw4), as 

aminocarboxypropyl (acp) donor (Tyw2) and as a radical generator (Tyw1) (Noma 

et al., 2006). Tyw1 (tRNA-yW synthesizing protein 1) catalyzes conversion of m1G 

to imG-14 (4-demethylwyosine). Then, Tyw2 catalyzes the transfer of the acp group 

from SAM to the C7 position of the tricyclic core structure of imG-14 base, forming 

yW-86, which is methylated at the N3 position of the imidazo-purine ring by Tyw3 to 

form yW-72 (Noma et al., 2006). Finally, the acp side chain at the C7 position of the 

tricyclic ring is methylated and methoxycarbonylated by Tyw4 to yield yW (Noma et 

al., 2006; Suzuki et al., 2009; Perche-Letuvée et al., 2014). 

 

 

Figure 3.4. Pathway for yW modification. Detailed information in the text above. Adapted 

from Rodriguez et al., 2012. 

 

3.1.1.4 Other methyltransferases 

Other tRNA methyltransferases (Trm) modify site-specific or multisite-specific 

nucleosides within the tRNA. Figure 3.5 shows the modifications catalyzed by these 

enzymes. 
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Figure 3.5. tRNA modifications synthesized by some methyltransferases. 

 

3.1.2 Thiolases and mediators 

The yeast tRNA wobble bases contain two thiouridines, 5-methoxycarbonylmethyl-

2-thiouridine (mcm5s2U34) in cytoplasmic tRNAs and 5-carboxymethyl-2-thiouridine 

(cmnm5s2U34) in mitochondrial tRNAs. The biogenesis of 2-thiouridine derivatives 

in tRNAs requires a complicated sulfur-relay system that involves multiple sulfur 

mediators. The genes identified so far involved in the biosynthesis of thio-containing 

nucleosides in yeast are: Nfs1, Cfd1, Cia1, Nbp35, Tum1, Urm1, Uba4, Ncs2-Ncs6 

(cytoplasmic tRNAs) (Figure 3.3); Nfs1, Isu1-Isu2, Mtu1, Mss1, Mto1 (mitochondrial 

tRNAs). 

Nfs1 is a cysteine desulfurase that catalyzes the desulfuration of L-cysteine 

using the cofactor pyridoxal-5’-phosphate (PLP) and generating cysteine persulfide 

(Nsf1-S-SH) that is necessary for subsequent reactions (Noma, Sakaguchi and 

Suzuki, 2009). Tum1 is required to stimulate the cysteine desulfurase activity of Nfs1 

and accepts persulfide sulfurs through rhodanese-like domains (RLDs); the sulfur is 
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then relayed to the RLD of Uba4 to direct the flow to 2-thiouridine formation (Noma, 

Sakaguchi and Suzuki, 2009). Uba4, ubiquitin-activating enzyme-like protein 4, is a 

sulfurtransferase that binds to its partner the ubiquitin-related modifier 1 (Urm1) via 

a thioester bond  (Furukawa et al., 2000) to provide sulfur to Urm1, forming a 

thiocarbozylate at the conserved C-terminal glycine of Urm1 (Nakai, Nakai and 

Yano, 2017). Ncs6 contains a nucleotide binding motif (PP-loop motif) and forms a 

heterodimer complex with Ncs2, which is thought to be important to activate the 

target positions of pyrimidine bases by forming acyl-adenylate intermediates (Noma, 

Shigi and Tsutomu, 2009; Nakai, Nakai and Yano, 2017). The specific details of the 

thio-modification reaction in tRNAs and the involvement of all these enzymes, 

namely the CIA machinery (cytosolic iron-sulfur cluster assembly) composed by 

Cia1 (WD40 protein), Nar1 (iron-only hydrogenase-like protein), Cdf1 and Nbp35 

(NTPases), remain to be elucidated. But the mechanism proposed by Noma, 

Sakaguchi and Suzuki, 2009 is detailed in Figure 3.6. 

 

 

Figure 3.6. Cellular sulfur trafficking related to thiouridine formation of cytoplasmic 

tRNA anticodon in S. cerevisiae. Detailed information in the text above. Adapted from 

Noma, Sakaguchi and Suzuki, 2009. 
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The mitochondrial iron-sulfur cluster assembly system (ISC), contains two 

scaffold proteins Isu1 and Isu2. So, the sulfur atom produced by Nfs1 is transferred 

to Isu1 and Isu2, in which the Fe/S cluster is assembled (Lill and Uhlenhoff, 2006). 

These two proteins function as sulfur mediators to the thiolation of the U34 of mt-

tRNAs catalyzed by Mtu1 (Slm3 or Mto2), after methylation by Mss1 and Mto1 

heterodimer complex (Colby, Wu and Tzagoloff, 1998; Grosjean, 2005) (Figure 3.7). 

 

 

Figure 3.7. Thiouridine formation of mitochondrial tRNA anticodon in S. cerevisiae. 

Mss1 and Mto1 are involved in the first step of cmnm5s2U34 synthesis on mt-tRNAs. In the 

second step, glycine is incorporated into mt-tRNAs by unknown transferases. In the third 

step, the sulfur from cysteine is transferred to sulfur mediators, likely Isu1 and Isu2, by Nsf1. 

Finally, Mtu1 (Slm3) uses the activated sulfur from the mediators to catalyze the thiolation 

of mt-tRNAs. Adapted from Grosjean, 2005. 

 

3.1.3 Deaminases 

Adenosine deaminases that act on RNA are known as ADARs (act on duplex coding 

RNA) and those acting on tRNA are named ADATs/Tads. Adenosine deaminases 

catalyze the hydrolytic deamination of adenosine (A) to inosine (I or 6-deaminated 

adenosine) in the context of folded substrates. A distant class of cytidine 

deaminases (CDAs) converts cytidine (C) to uridine (U) in the context of RNA or 

DNA (Wedekind and Beal, 2009). 
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Adenosine is deaminated to inosine in the anticodon loops of tRNAs 

(tRNAAla
IGC, tRNAArg

ICG, tRNAIle
IAU, tRNASer

IGA, tRNAThr
IGU and tRNAVal

IAC). Tad1 is 

responsible for deamination at position A37 in the tRNA anticodon loop of tRNAAla
IGC 

(Gerber et al., 1998). Inosine is also present at position 34 (I34) in the anticodon loop 

of those tRNAs and its synthesis depends on the heterodimeric Tad2/Tad3 protein 

complex. The relevance of adenosine deamination in tRNA is emphasized by the 

fact that Tad2 and Tad3 are essential in S. cerevisiae (Auxilien et al., 1996; Gerber 

and Keller, 1999). 

 

3.1.4 RNA pseudouridine synthases 

Pseudouridine synthases (RNA uridine transglycosylases) are enzymes responsible 

for the most abundant and conserved post-transcriptional modification in cellular 

RNAs. These enzymes catalyze an isomerization reaction of specific uridine 

residues of RNAs; i. e., pseudouridine synthases perform an internal 

transglycosylation reaction (Mueller and Ferré-D’Amaré, 2009). These enzymes are 

not capable of isomerizing free uridine into pseudouridine. Pseudouridine 

modification increases the rigidity of the sugar phosphate backbone and base 

stacking of tRNAs (Charette and Gray, 2000; Spenkuch, Motorin and Helm, 2015). 

An important characteristic of pseudouridine synthases is their substrate specificity. 

Several of these enzymes are highly specific and can recognize a single nucleotide 

in one particular RNA among the numerous different RNAs in the cell. Other 

interesting characteristic of pseudouridine synthases is that some enzymes (for 

instance, Pus4) recognize one nucleotide in the same structural context in many 

different substrate tRNAs, while other pseudouridine synthases recognize multiple 

RNAs, or multiple adjacent sites in one or a few closely related RNAs (Mueller and 

Ferré-D’Amaré, 2009). 

In yeast, there are 9 genes encoding putative RNA pseudouridine synthases. 

Pus8 and Pus9 are required for the pseudourydilation of position 32 in cytoplasmic 

and mitochondrial tRNAs, respectively (Behm-Ansmant et al., 2004). Besides Pus9, 

Pus3, Pus4, and Pus6 are tRNA-specific enzymes also acting on both mitochondrial 

and cytoplasmic tRNAs, while Pus2 only modifies mt-tRNAs at positions 27 and 28 
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(Behm-Ansmant, Branlant and Motorin, 2007). Pus3, a region-specific enzyme, is 

responsible for pseudourydilation at positions 38 and 39 (Lecointe et al., 1998), 

Pus4 at position 55 (Becker et al., 1997) and Pus6 at position 31 (Ansmant et al., 

2001). Pus5 modifies the mitochondrial 21S rRNA at position 2819 (Ansmant et al., 

2000) and Pus1 and Pus7 modifies both U2 snRNAs and tRNAs. Pus1 is a 

pseudouridine synthase with multisite specificity, modifying positions 1, 26, 27, 28, 

34, 36, 65, and 67 of tRNAs and position 44 of U2 snRNA (Motorin et al., 1998; 

Verine Massenet et al., 1999; Behm-ansmant et al., 2006). On the other hand, Pus7 

modifies position 35 of U2 snRNAs and positions 13 and 35 of tRNAs (Behm-

Ansmant et al., 2003; Ma, Zhao and Yu, 2003). The mode of target recognition for 

some pseudouridine synthases is yet incompletely defined. Some of those 

enzymes, such as Pus1 and Pus2, also modify mRNA targets and those 

modifications are regulated in response to environmental signals, such as nutrient 

starvation (Carlile et al., 2014). 

 Other pseudouridine synthases, namely Cbf5, have a completely different 

mechanism of substrate recognition. Cbf5 associated with Nop10, Gar1 and Nhp2 

directly binds to a guide RNA that has sequence complementarity to nucleotides 

contiguous to the site of the modification of its substrate RNA. Base pairing between 

the guide RNA and the substrate RNA brings the active site of Cbf5 to the proximity 

of its substrate. These guide RNAs are known as the box H/ACA RNAs (Reichow 

et al., 2007). Shq1 and Naf1 interact with each other and also participate in the 

biogenesis of H/ACA snoRNP (Dez et al., 2002; Yang et al., 2002). Naf1 has a role 

in the recruitment of Cbf5 during snoRNA transcription, binding to the same site as 

Gar1, and in the later stages of the maturation process also recruits Gar1 to occupy 

its place and to activate the enzymatic activity (Fatica, Dlakic and Tollervey, 2002; 

Yang et al., 2005; Leulliot et al., 2007). Nhp2 binds to the Cbf5 and Nop10 complex 

and stabilizes it prior to assembly with RNA, assuring that Nhp2 binds specifically 

to H/ACA RNAs (Koo et al., 2011). Nop10 binds to Cbf5 near the active site and has 

been proposed to stabilize it, but it also forms some contacts with the guide RNA as 

well as Cbf5 (Hamma et al., 2005). Gar1 is the only protein of the box H/ACA 

snoRNP not directly interacting with RNA; it binds to the thumb loop of Cbf5 

stabilizing it in an open conformation to modify rRNAs (Yang et al., 2012; Wang et 
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al., 2015). In fact, thumb-Gar1 interaction is important for substrate turnover 

regulation, leading to a better control on the pseudouridylation reaction (Li, Duan, 

Li, Yang, et al., 2011). 

 

3.1.5 Dihydrouridine synthases 

The enzymes required for formation of dihydrouridine (D) in six specific positions in 

tRNA are Dus1 (D16, D17), Dus2 (D20), Dus3 (D47), and Dus4 (D20A, D20B) (Xing, 

Martzen and Phizicky, 2002; Xing et al., 2004). These enzymes reduce the 5,6-

double bond of uridine residues (Madison and Holley, 1965) and are responsible for 

all dihydrouridine modification of cytoplasmic tRNAs in yeast. Interestingly, Dus2 

and Dus3 are site-specific enzymes while Dus1 and Dus4 are region-specific 

enzymes; i. e. they modify more than one nucleotide in the same region of the tRNA 

(Xing et al., 2004). 

 

3.1.6 Overview of this study 

In this thesis, we have set up a yeast genetic screen to identify tRNA and rRNA 

modifications that are required for proteome stability. In other words, modifications 

whose absence results in protein aggregation. We started with a mini-collection of 

83 yeast strains containing deletions in genes coding for RNAmods and we were 

able to identify 6 genes whose deletions significantly increase the level of protein 

aggregation in yeast. 

 

3.2 RESULTS 

3.2.1 RNA-modifying enzymes are important for protein synthesis fidelity 

Our main working hypothesis was that a subset of the yeast RNAmods, in particular 

those present in the anticodon loop of tRNAs and in the rRNA maintain proteome 

homeostasis by fine tuning codon-anticodon interactions, mRNA decoding accuracy 

and codon decoding efficiency. We postulated that perturbation of RNAmods by 

point mutations, deletions, environmental factors and metabolic deregulation 
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induces protein aggregation, proteotoxic stress, cell death and loss of fitness. A 

literature search allowed us to group RNAmods according to their function in tRNA 

and rRNA modification (Table 3.1). 

 

Table 3.1. KO strains grouped according their function on RNA modification (data 

mining analysis). 

Enzyme Function Yeast KO strains 

tRNA wobble 

uridine 

modification 

Methyltransferases 

and regulators 

Elp1Δ, Elp2Δ, Elp3Δ, Elp4Δ, Elp6Δ, Trm9Δ, 

Trm112Δ; Kti12Δ, Kti13Δ, Kti14Δ, Sit4Δ, Sap185Δ, 

Sap190Δ 

Thiolases 

Cfd1Δ, Cia1Δ, Ncs2Δ, Ncs6Δ, Nbp35Δ, Tum1Δ, 

Uba4Δ, Urm1Δ, Isu1Δ, Isu2Δ, Nfs1Δ, Mss1Δ, 

Mto1Δ, Slm3Δ 

Pseudouridine tRNA modification 
Pus1Δ, Pus2Δ, Pus3Δ, Pus4Δ, Pus6Δ, Pus7Δ, 

Pus8Δ, Pus9Δ 

Dihidrouridine tRNA modification Dus2Δ, Dus3Δ, Dus4Δ 

Wybutosine tRNA modification Tyw1Δ, Tyw2Δ, Tyw3Δ, Tyw4Δ 

Adenosine deaminases Tad1Δ, Tad2Δ, Tad3Δ 

t6A tRNA modification Bud32Δ, Cgi121Δ, Sua5Δ 

Other tRNA modifications 

Mod5Δ, Rit1Δ, Tan1Δ, Trm1Δ, Trm10Δ, Trm11Δ, 

Trm13Δ, Trm140Δ, Trm2Δ, Trm3Δ, Trm4Δ, 

Trm44Δ, Trm5Δ, Trm61Δ, Trm7Δ, Trm8Δ, Trm82Δ 

tRNA transport Los1Δ, Msn5Δ, Mtr10Δ 

rRNA 

modification 

Pseudouridine 

synthases and 

regulators 

Cbf5Δ, Naf1Δ, Nhp2Δ, Nop10Δ, Pus5Δ, Shq1Δ 

Methyltransferases 

and regulators 
Dim1Δ, Mrm1Δ, Mrm2Δ, Nop1Δ, Nop2Δ, Nop56Δ, 

Nop58Δ, Snu13Δ, Spb1Δ 

 

The studied RNA-modifying enzymes form network interactions, 

independently of their specific function (Figure 3.8). Network analysis of the 83 

RNAmods was performed using the STRING database for known and predicted 

protein-protein associations (Snel et al., 2000; Szklarczyk et al., 2015, 2017). 

Network clustering was determined using a Markov Cluster (MCL) algorithm with 

inflation equal to 2, in order to enhance the contrast between regions of strong or 

weak confidence interaction (Brohée and Van Helden, 2006; Moschopoulos et al., 

2011). Data clustering showed five clusters (Figure 3.8); two clusters (red and green 



3. Genetic screen to identify RNAmods and their regulators 

123 

 

clusters at Figure 3.8) were specific for most of the tRNA wobble uridine modifying 

enzymes; t6A tRNA-modifying enzymes and enzymes for tRNA transport were also 

found in individual clusters (brown and yellow clusters at Figure 3.8); the remaining 

tRNA-modifying enzymes and all rRNA-modifying enzymes were found in the blue 

cluster (Figure 3.8, Annex VII.1 and Annex VII.2). 

 

 

Figure 3.8. Network analysis of RNAmods. The interactome was predicted using the 

STRING database (version 10.0). Clustering was performed using MCL algorithm with 

inflation parameter = 2. Colored lines between the proteins indicate the various types of 

predicted mode of action. Small nodes represent proteins of unknown 3D structure; Large 

nodes represent some known or predicted 3D structure. Dashed lines represent inter-

cluster edges. 

 

In order to test our hypothesis, we studied in vivo the impact of deleting the 

genes encoding the tRNA and rRNA-modifying enzymes on protein aggregation 

Wobble uridine thiolases

Wobble uridine 

modifiers

tRNA and rRNA modifiers

t6A tRNA 

modifiers

tRNA transport
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using Hsp104-GFP reporter system. Hsp104 is a protein disaggregase and its 

induction and cellular distribution are indicative of increased protein aggregation in 

the cell (Fujita et al., 1998; Erjavec et al., 2007). Yeast cells expressing the Hsp104-

GFP reporter system were analyzed by epifluorescence microscopy in order to 

detect protein aggregates (example in Figure 3.9). The number of cells containing 

GFP fluorescence foci was quantified (Figure 3.10, Figure 3.11 and Figure 3.12) 

and the data showed significant increase in localized Hsp104-GFP in cells with 

deletion of Kti12, Trm9, Mto1, Dus2, Pus6, Los1, Tyw4, Tad1, Trm3, Dim1, Mrm2, 

Shq1, Sbp1 (*), Elp1, Cia1, Slm3 and Nop10 (**), relative to WT (Figure 3.10, Figure 

3.11 and Figure 3.12). 

 

 

Figure 3.9. Deletion of specific RNAmods induces cytoplasmic protein aggregates. 

WT (BY4743) and tRNAmod gene KO yeast cells expressing the Hsp104-GFP reporter 

protein were collected in middle exponential growth phase and observed by fluorescence 

microscopy (60x objective). Cells harboring a KO in the Slm3 gene showed localized 

Hsp104-GFP fluorescence, indicating the presence of protein aggregates. 

SLM3Δ

BY4743

Brightfield GFP
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Figure 3.10. Effect of deletion of wobble uridine modifying enzymes on the formation 

of protein aggregates. The plots show the percentage of yeast cells containing localized 

Hsp104-GFP fluorescence foci. Data represent the mean ± SEM of triplicates of three 

independent clones (n = 9) (   p<0.01,   p<0.05 Kruskal-Wallis post Dunn’s multiple 

comparisons test with CI 95% relative to WT). Grey bar represents homozygous diploid KO 

strains; Blue bar represents heterozygous diploid KO strains; WT is represented with a 

black bar. 
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Figure 3.11. Effect of deletion of tRNA-modifying enzymes on the formation of protein 

aggregates.  The plots show the percentage of yeast cells containing localized Hsp104-

GFP fluorescence foci. Data represent the mean ± SEM of triplicates of three independent 

clones (n = 9) (  p<0.05 Kruskal-Wallis test post Dunn’s multiple comparisons test with CI 

95% relative to WT). Grey bar represents homozygous diploid KO strains; Blue bar 

represents heterozygous diploid KO strains; WT is represented with a black bar. 
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Figure 3.12. Effect of deletion of rRNA-modifying enzymes on the formation of protein 

aggregates. The plots show the percentage of yeast cells containing localized Hsp104-

GFP fluorescence foci. Data represent the mean ± SEM of triplicates of three independent 

clones (n = 9) (   p<0.01,   p<0.05 equal variances not assumed t-test with CI 95% relative 

to WT). Grey bar represents homozygous diploid KO strains; Blue bar represents 

heterozygous diploid KO strains; WT is represented with a black bar. 

 

Besides the total number of cells with protein aggregates in each KO strain, 

other characteristics were studied, namely, the size of the aggregates and the 

number of aggregates per cell. The data show that each KO strain has slightly 

different protein aggregation phenotypes (Figure 3.13 and Annex II.1). 
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Figure 3.13. Heat-map representing the number and type of protein aggregates per 

cell. Yeast cells containing localized Hsp104-GFP fluorescence foci were counted and 
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differentiated according to the number (A) and the size (B) of localized Hsp104-GFP 

fluorescence foci per cell. Results are expressed as the percentage of positive cells (with 

Hsp104-GFP foci) relative to the total number of cells with protein aggregates. Data 

represent the mean of triplicates of three independent clones. S: small protein aggregates; 

I: intermediate protein aggregates; L: large protein aggregates. 

 

The top 10 KO strains with highest level of protein aggregates were selected 

(Figure 3.14): six tRNAmods that modify tRNA wobble uridines, three rRNAmods 

and one tRNAmod that modifies nucleosides in the D-loop of tRNA. Then, a cutoff 

selection of <10% of cells containing protein aggregates allowed us to identify the 6 

KO strains with the highest level of protein aggregation for further analysis (Figure 

3.14). The selected KO strains harbor deletions in genes encoding four enzymes 

involved in tRNA wobble uridine modification (Trm9, Elp1, Kti12 and Slm3) and two 

enzymes involved in rRNA modification (Spb1 and Shq1). 

Trm9 is a wobble uridine methyltransferase that catalyzes the esterification of 

modified uridine nucleosides, resulting in the formation of mcm5U34 and mcm5s2U34 

in specific tRNAs (Kalhor and Clarke, 2003). Elp1 is one of the subunits in the 

Elongator complex, which is required for the formation of the cm5U side chain in 

some wobble uridines (Huang, Johansson and Byström, 2005). Kti12 is important 

for the phosphorylation status of Elp1 and it is also required for the formation of 

mcm5 and ncm5 side chains at some wobble uridines (Huang, Johansson and 

Byström, 2005). Slm3 is known as mitochondrial tRNA-specific 2-thiouridylase 1 

(Mtu1) and is responsible for the formation of the s2 group in cmnm5s2U34-containing 

tRNA species (only in mitochondrial tRNAs) (Umeda et al., 2005). The formation of 

s2 and mcm5 groups occurs independently of each other. 

Spb1 is an essential S-adenosylmethionine-dependent methyltransferase 

required for 60S ribosomal subunit biogenesis (D Kressler et al., 1999), which 

modifies the universally conserved G2922 located within the A loop of the catalytic 

center of the ribosome. This enzyme was also associated with the Um2921 

modification in the ribosome (Lapeyre and Purushothaman, 2004). On the other 

hand, Shq1 enzyme is an essential assembly factor for the H/ACA particles that 

functions as site-specific pseudouridine synthases in a RNA-guided mechanism 

(Walbott et al., 2011). 



3. Genetic screen to identify RNAmods and their regulators 

130  

 

The deletion of the tRNAmods genes was validated by PCR, as described in 

2.3 Validation of gene deletions by PCR, and deletion of the four tRNAmod genes 

was confirmed (Annex III.1). Since the two strains harboring rRNAmod deletions are 

heterozygous (diploid KOs), we could not validate the deletion of 1 of the alleles 

using one set of primers (Annex III.1). However, those strains were previously 

validated by the Saccharomyces cerevisiae Deletion Project. 

 

 

Figure 3.14. Top 10 KO strains with protein aggregates. The plots show the percentage 

of yeast cells containing localized Hsp104-GFP fluorescence foci. Data represent the mean 

± SEM of triplicates of three independent clones (n = 9) (    p<0.0001,    p<0.01,   p<0.05 

Student’s t-test with CI 95% relative to WT). Dotted line represents the selection of more 

relevant KO strains (cutoff value is less than 10). Grey bar represents homozygous diploid 

KO strains; Blue bar represents heterozygous diploid KO strains; WT is represented with a 

black bar. 

 

We have also analyzed 4 of the selected KO strains by transmission electron 

microscopy (TEM) to obtain a more detailed picture of the protein aggregates. 

Electron dense material not involved by membranes was clearly visible in the 

cytoplasm of the selected KO strains (Figure 3.15, red arrows), but not in the control 

strain, as expected. Such membrane free electron dense materials have been 

previously described as protein aggregates (Fujita et al., 1998). We also observed 

T O P 1 0  s tr a in s

C
e

ll
s

 w
it

h
 p

r
o

te
in

 a
g

g
r
e

g
a

te
s

 (
%

)

W
T

D
u

s
2


C
ia

1


D
im

1


M
to

1


S
h

q
1


T
rm

9


K
ti

1
2


S
p

b
1


E
lp

1


S
lm

3


0

1 0

2 0

3 0

4 0

5 0

* * * *

* * * *

*

* *

* *

* *

* *
* * *

* *



3. Genetic screen to identify RNAmods and their regulators 

131 

 

that vacuoles were larger and in higher number in Elp1 and Kti12 KO strains relative 

to control WT cells (Figure 3.15). 

 

 

Figure 3.15. Ultrastructure of WT and selected RNAmod KO yeast cells. All cells were 

fixed at the same time and with the same solutions and embedded in Epon 812 resin. 

Electron dense materials indicated by the red arrows correspond to protein aggregates. N: 

nucleus; M: mitochondrion; V: vacuole. 

 

The protein aggregates of the selected KO strains were also quantified by 

isolating the insoluble fraction and fractionating it by SDS-PAGE (Tomoyasu et al., 

2001; Jang et al., 2004; Haslbeck et al., 2005; Rand and Grant, 2006; Koplin et al., 

2010). Selected KO strains showed slightly increased levels of aggregated proteins 

(Figure 3.14), but the level of insoluble protein observed in the gels was relatively 

low (Figure 3.16). This may be explained by the fact that less than 50% of cells of 

each KO strain had protein aggregates and the extraction of insoluble protein was 

done using both types of cells. However, different SDS-PAGE band patterns were 

observed in different KO strains. Different aggregated protein bands were also 

observed for different clones from each strain. 
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Misfolded proteins may aggregate or may be degraded by the ubiquitin-

proteasome system (UPS) and/or the autophagy-lysosome system (reviewed in 

Lindner and Demarez, 2009). To understand whether insoluble proteins were being 

degraded we quantified the activity of the proteasome of the selected KO strains. 

No significant increase in activity relative to WT strain either at exponential phase 

and at stationary phase was observed (Figure 3.17). Although Trm9Δ and Slm3Δ 

had slightly higher proteasome activity in stationary phase; these KO strains also 

showed high variability of proteasome activity and the increase in activity was not 

significantly different from WT. 

 

 

Figure 3.16. Deletion of RNAmods increases the level of insoluble proteins. A. Cells 

were grown to logarithmic phase in MM-His media at 30 °C and, after lysis, aggregated 

material was isolated, separated by SDS-PAGE and visualized by Coomassie staining. Gel 

lanes intensities were then quantified. Representative gel lanes showing the insoluble 

protein fraction of 1 or 2 clones of the selected KO and WT strains. B. The graph represents 

the relative quantification of insoluble proteins in selected KO strains relative to WT. Data 

represent the mean ± SEM of duplicates of three independent clones (Kruskal-Wallis post 

Dunn’s multiple comparisons test with CI 95% relative to WT). 
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Figure 3.17. Deletion of selected RNAmods slightly increases proteasome activity. 

Cells were grown in MM-His and collected at middle exponential phase (A) and stationary 

phase (B). Proteasome activity was quantified in total protein extracts by measuring 

degradation of the fluorogenic peptide Suc-LLVY-AMC (chymotrypsin-like substrate) at 37 

°C for 1 h. Quantification of degraded AMC was calculated by measuring fluorescence 

emission intensity at 460 nm after 60 min. Values were corrected using fluorescence values 

at time zero. Data represent the mean ± SEM of triplicates of three independent clones 

(Kruskal-Wallis post Dunn’s multiple comparisons test with CI 95% relative to WT). 

 

3.2.2 Absence of RNAmods influences cellular fitness 

Since our tRNAmod KO strains had higher levels of protein aggregation than the 

WT control, we decided to clarify the impact of aggregation on growth rate; as a 

measure of fitness (Vermulst et al., 2015). Surprisingly, the relative growth rate of 

all selected KO strains was not significantly different from that of the WT strain 

(Figure 3.18A, B); there was only a slight decrease in growth rate. 

In order to determine whether that slight decrease in growth rate was due to 

increased cell death we evaluated this parameter using the propidium iodide (PI) 

method. The PI dye stains cells with disrupted membranes and provides an indirect 

measure of viability. This assay was performed at various time points of the growth 

curve to better understand the effect of RNAmods deletion on growth. The time 

points chosen for this analysis were T10h, T15h, T20h, T25h and late stationary 
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phase. Cell death was slightly increased in the Slm3, Trm9, Spb1 and Kti12 KO 

strains (Figure 3.18C). 

There was good correspondence between cell death and growth rate/scores 

since cells lacking Trm9, Slm3, Kti12 and Spb1 enzymes showed the highest 

decrease in growth rate/scores and the highest percentage of cell death (PI 

incorporation). 

 

 

Figure 3.18. Growth rate and cell viability of the selected KO strains. A. Yeast cultures 

were inoculated at an initial OD600 of 0.02 and were grown in selective medium (MM-His) at 

30 °C and 180 rpm until stationary phase. At the indicated time points the OD600 was 

measured. B. Relative growth rate of KO strains was determined using the growth values 

of the exponential growth phase, relative to WT. Data represent the mean ± SEM of 

duplicates of three independent clones (one-way analysis of variance post Dunnett’s 

multiple comparison test with CI of 95%, relative to WT). C. Viability of selected KO strains 

was accessed by labeling yeast cells with propidium iodide (PI) at different time points. 10 

000 cells were analyzed by flow cytometry at each time point. Data represent the mean ± 

SEM of three independent clones (**** p< 0.0001, * p< 0.05 Two-way RM Anova post 

Dunnett’s multiple comparison test with CI 95% relative to WT). D. Colony survival of 

selected KO strains compared to WT strain. Equal densities of yeast cells (10 µl) grown in 
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exponential phase were serially diluted 101–105-fold and were spotted onto MM-His plates 

and their colony-forming abilities were then analyzed after 2 days of incubation at 30 °C. 

The growth score represents a ratio between growth of a KO strain and growth of WT strain. 

Data represent mean ± SEM of three independent clones (*** p< 0.001, ** p< 0.01 Friedman 

post Dunn’s multiple comparison test with CI 95% relative to WT). 

 

To determine whether stress exacerbates the tRNAmod KO phenotypes under 

stress conditions, 10 RNAmod KO strains were exposed to stress conditions. The 

percentage of cells containing protein aggregates was similar to that of the WT 

control strain during exposure to transient heat stress 37 ºC for 30 minutes (Figure 

3.19A). Longer exposure to heat stress (37 ºC for 120 minutes) resulted in a trend 

of increased protein aggregation in all KO strains relative to WT, but such increase 

was only statistically significant in Elp2Δ (Figure 3.19A). 

Growth score of selected KO strains grown at 37 ºC was statistically decreased 

in Trm9Δ, Elp1Δ and Kti12Δ (Figure 3.19B). 
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Figure 3.19. Cells lacking RNAmods are sensitive to heat stress.  A. Yeast cells were 

subjected to a transient stress for 30 min at 37 ºC and also for 120 min at 37 ºC. The plots 

show the percentage of yeast cells containing localized Hsp104-GFP fluorescence foci. 

Data represent the mean ± SEM of three independent clones (  p<0.05 Kruskal-Wallis test 

post Dunn’s multiple comparisons test with CI 95% relative to WT). This experiment was 

carried out by Margarida Ferreira, MSc, under our supervision. B. Colony survival of 

selected KO strains compared to WT strain grown at 37 ºC. Equal densities of yeast cells 

(10 µl) grown in exponential phase were serially diluted 101–105-fold and were spotted onto 

MM-His plates and their colony-forming abilities were then analyzed after 2 days of 

incubation at 37 °C. The growth score represents a ratio between growth of a KO strain and 

growth of WT strain. Data represent mean ± SEM of three independent clones (*** p< 0.001, 

** p< 0.01 Friedman post Dunn’s multiple comparison test with CI 95% relative to WT). 
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3.2.3 Deletion of RNAmods decreases tRNA stability and modification levels 

To assess the overall dynamics of tRNA modification and validate the absence of 

the modified nucleosides in the KO strains, we used LC-MS/MS. This method 

allowed us to quantify the full set of tRNA and rRNA modifications in selected strains, 

after tRNA and rRNA purification using a HPLC approach. The data were used to 

assess population-level changes in the relative quantities of the ribonucleosides 

regardless of whether the changes occur by alterations in tRNA copy number, in the 

activity of tRNA-modifying enzymes or both. The tRNA modification patterns 

provided clues for subsequent analysis of individual tRNAs and tRNA copy 

numbers. The LC-MS/MS approach allowed us to determine the presence or 

absence of certain modifications in our mutant strains lacking specific modification 

pathways, but also to quantify changes in modification levels that result from altered 

regulatory pathways. We have also determined the abundance of the hypomodified 

tRNAs in mutant strains relative to WT, using a four-leaf clover qRT-PCR test, a 

method used to quantify mature tRNA (Honda et al., 2015). 

Regarding tRNA modified nucleosides, we observed the expected decrease in 

wobble uridine modifications in the tRNAmod KO strains, particularly ncm5U, 

mcm5U, and mcm5s2U in Elp1, Kti12 and Trm9 KO strains (Figure 3.20, Annex V.1, 

and Annex V.2). The mutant of the Slm3 thiolase showed a significant decrease in 

mcm5s2U and a significant increase in mcm5U, as a result of the absence of uridine 

thiolation (Figure 3.20, Annex V.1, and Annex V.2). We also observed a statistical 

decrease in yW in Kti12, Trm9 and Slm3 KO strains. Modified nucleosides in 

rRNAmod KO strains did not change significantly relative to WT, except for a small 

increase in I modification (Figure 3.20, Figure 3.21 and Annex V.1 to Annex V.8). 
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Figure 3.20. Hierarchical cluster of the relative levels of tRNA ribonucleoside 

modifications in selected KO strains. tRNA modification data from WT and RNAmod KO 

strains were identified and quantified by mass-spectrometry. Log-based fold-change values 

were determined relative to WT and the ratios of ribonucleoside levels from Annex V.2 were 

subjected to hierarchical cluster analysis. Data represent mean of triplicates of three 

independent clones (n = 9) (** p < 0.01, * p < 0.05, Student’s t-test with CI 95% relative to 
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WT). Red: fold increase; Green: fold decrease; according to the scale in the top-left color 

bar. 

 

 

Figure 3.21. Hierarchical cluster visualization of the relative levels of rRNA 

ribonucleoside modifications in rRNAmods KO strains. rRNA modification data from 

WT and rRNAmod KO strains were identified and quantified by mass-spectrometry in 25 

and 18s rRNAs (A), 5.8S rRNA (B) and 5S rRNA (C). Log-based fold-change values were 

determined relative to WT and the ratios of ribonucleoside levels from Annex V.4, Annex 

V.6 and Annex V.8 were subjected to hierarchical cluster analysis. Data represent mean of 

triplicates of three independent clones (Student’s t-test with CI 95% relative to WT). Red: 

fold increase; Green: fold decrease, according to the scale in the bottom-left color bar in 

each panel.  

 

Regarding tRNA abundance, we first selected relevant wobble uridine modified 

tRNAs from the tRNA pool (Figure 3.22). Eleven out of the 13 yeast cytoplasmic 

tRNA species that contain uridine at position 34 (U34) are modified by at least two 

tRNAmods deleted in our mutant cells. The eleven tRNA species that contain a 

wobble mcm5, ncm5 or mcm5s2 side chain are the following: tRNAArg
mcm5UCU, 

tRNAGly
mcm5UCC (modified by Trm9, Elp1 and Kti12), tRNALys

mcm5s2UUU, 

tRNAGln
mcm5s2UUG, tRNAGlu

mcm5s2UUC (modified by Trm9, Elp1, Kti12 and Slm3), 

tRNAVal
ncm5UAC, tRNASer

ncm5UGA, tRNAPro
ncm5UGG, tRNAThr

ncm5UGU, tRNAAla
ncm5UGC and 

5S5.8S25S and 18S

A B C
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tRNALeu
ncm5UmAA (modified by Elp1 and Kti12). We also added the mitochondrial 

tRNALys
cmnm5s2UUU, which is thiolated by the Slm3 enzyme. 

The abundance of tRNAs modified by Trm9 and Slm3 in the respective mutant 

cells was not significantly affected by tRNA hypomodification (Figure 3.23). 

However, we observed significant reduction of the abundance of tRNAAla
ncm5UGC, 

tRNAThr
ncm5UGU and tRNAArg

mcm5UCU in Elp1Δ, as well as in tRNAGln
mcm5s2UUG, 

tRNAGlu
mcm5s2UUC, tRNAThr

ncm5UGU and tRNAArg
mcm5UCU in Kti12Δ (Figure 3.23). 

 

 

Figure 3.22. Distribution of cytoplasmic S. cerevisiae tRNAs through the genetic 

code. The anticodon sequence of the 42 different tRNAs along with anticodon nucleosides 

modification. tRNAs containing wobble mcm5, ncm5 or mcm5s2 side chains are shown in 

bold with the respective codon box filled in grey. Adapted from Johansson et al., 2008. 

 

 

Figure 3.23. Quantification of wobble modified tRNAs in selected tRNAmod KO 

strains. The plots show the level of each studied tRNA in mutant strains relative to the level 
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of the respective tRNA in WT control cells, obtained using Four-leaf clover qRT-PCR 

method. Data represent relative tRNA abundance ± SD in a 2-log scale (calculated with 

REST software (Pfaffl, Horgan and Dempfle, 2002)). 

 

3.3 DISCUSSION 

Our genetic screen identified yeast RNAmod genes whose deletion results in 

increased protein aggregation. These KO strains harbor deletions in RNAmod 

genes whose proteins modify the wobble uridine at position 34 (U34) of tRNA and 

some nucleosides in rRNA. These data are in line with previous results showing that 

modification of the anticodon loop ribonucleosides modulate translational fidelity 

and efficiency, namely reading frame maintenance and/or restriction or 

improvement of codon-anticodon interactions (Agris, Vendeix and Graham, 2007). 

Our data are also consistent with previous observations showing that modifications 

at the wobble position could affect anticodon positioning in the ribosome and allow 

for codon-dependent translation of specific transcripts, namely translation of DNA 

damage response genes (Agris, 2004, 2008; Begley et al., 2007; Huang, Lu and 

Byström, 2008). 

 Most tRNA-modifying enzymes are encoded by nonessential genes whose 

deletion does not affect cell growth (exception for Trm1 and Bud32 KO strains) 

(Giaever et al., 2002). Our results showed that some tRNAmod KO strains cannot 

be significantly differentiated from their WT parental strains in the level of cell growth 

or protein aggregation, but around 80% of the deletions increased protein 

aggregation. Previous reports showed that combined deletions decrease fitness and 

produce new phenotypes, indicating that tRNAmods interact (epistasis) (Alexandrov 

et al., 2006; Chen, Tuck and Byström, 2009; Bauer et al., 2012; and our 

bioinformatic data), which may explain the lack of visible phenotype in some of our 

KO strains. Conversely, most of the rRNA-modifying enzymes are encoded by 

essential genes and deletion of a single allele in diploid backgrounds is sufficient to 

produce fitness and protein aggregation phenotypes. 

The lack of strong phenotypes in some of the tRNAmod KO strains, particularly 

in the methyltransferase-deficient strains, complicates the elucidation of the 

respective biological roles. As mentioned before, of the 42 cytosolic yeast tRNA 
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species, 11 have modified uridine at position 34: ncm5U, ncm5Um, mcm5U or 

mcm5s2U (tRNALeu
ncm5UmAA, tRNAVal

ncm5UAC, tRNASer
ncm5UGA, tRNAPro

ncm5UGU, 

tRNAThr
ncm5UGU, tRNAAla

ncm5UGC, tRNAArg
mcm5UCU, tRNAGly

mcm5UCC, tRNAGln
mcm5s2UUG, 

tRNALys
mcm5s2UUU and tRNAGlu

mcm5s2UUC) (Johansson et al., 2008). Synthesis of ncm5 

and mcm5 chains at U34 requires at least 13 proteins (Table 2.1 and Figure 3.3), but 

our genetic screen showed that only deletion of Elp1, Kti12 and Trm9 had significant 

impact on protein aggregation (Elp1Δ: 21.8-fold; Kti12Δ: 17.5-fold; Trm9Δ: 14.3-fold 

change relative to WT; Figure 3.10A). Other studies with Elp1Δ-Elp6Δ, Kti11Δ, 

Kti12Δ, Kti14Δ, Trm9Δ or Sit4Δ strains confirmed the absence of mcm5U34 and 

mcm5s2U34 nucleosides in total tRNAs and ncm5U34 was absent in one of the 

possible 5 tRNA isoacceptors (tRNAPro
ncm5UGG). Deletion of the Kti13 gene resulted 

in reduced levels of those nucleosides (Huang, Johansson and Byström, 2005; 

Huang, Lu and Byström, 2008). Elp3Δ also showed decrease in ncm5U modification 

in three out of 5 tRNAs, namely tRNAAla
ncm5UGC, tRNASer

ncm5UGA and tRNAThr
ncm5UGU 

(Johansson et al., 2008). We have also observed a significant decrease or complete 

absence of those modified nucleosides in the Elp1Δ, Kti12Δ and Trm9Δ strains and 

also absence and significant decrease of ncm5U34 and ncm5Um34 nucleosides 

(Figure 3.20, Annex V.1 and Annex V.2) in Elp1Δ and Kti12Δ strains, respectively. 

Therefore, it is not clear why certain deletions produced stronger protein 

aggregation phenotypes than others. Elp1 and, consequently its regulator Kti12, are 

critical enzymes for tRNAAla and tRNAThr ncm5U34 modification since their deletion 

reduces dramatically the abundance of these tRNAs (Figure 3.23), suggesting that 

the strong protein aggregation phenotype observed may be due to ribosome 

pausing at the codons lacking a cognate tRNA. It is also likely that absence of 

ncm5U34, ncm5Um34, mcm5U34 and mcm5s2U34 in Elp1-Elp6, Kti11-Kti14, Trm9 and 

Sit4 is dependent on the genetic background of the strains. Indeed, some 

homozygous diploid deletions were lethal in our BY4743 yeast strains, whereas 

other haploid yeast strains (e. g. W303) harboring the same deletions are viable 

(Huang, Johansson and Byström, 2005; Björk et al., 2007; Chen, Huang, Eliasson, 

et al., 2011; Bauer et al., 2012). 
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3.3.1 Proteins involved in the U34 modification are critical for proteostasis 

3.3.1.1 The Elongator complex 

Disruption of the yeast genes encoding Elongator proteins produces similar 

phenotypes, namely slow growth, slow gene activation and sensitivity to 

temperature and various chemicals (Wittschieben et al., 1999; Krogan and 

Greenblatt, 2001; Winkler et al., 2001). However, in our genetic screen Elp1Δ 

produced much higher levels of protein aggregates than the other subunits of the 

Elongator complex (Elp1Δ: 21.8-fold; Elp2Δ: 2.2-fold; Elp3Δ: 2.7-fold; Elp4Δ: 1.6-

fold; Elp6Δ: 2.0-fold change relative to WT; Figure 3.10A and Table 3.2). ELP5 is 

an essential gene so we could not include it in our screen. Although, in a stress 

condition (37 ºC), the Elongator complex had similar behavior between each 

element relative to the percentage of cells with protein aggregates (Figure 3.19A), 

suggesting that the main role of the cm5U34 modification occurs in the translation of 

mRNAs needed to facilitate cell survival during stress, as previously reported during 

oxidative stress (Fernández-Vázquez et al., 2013). 

 

Table 3.2. Summary of the Elongator complex protein aggregation data. The symbol 

+ indicates the relative increase in protein aggregation. Arbitrary scale. 

Strains Protein aggregation phenotype 

Elp1Δ ++++++++++++++++++++++ 

Elp2Δ ++ 

Elp3Δ +++ 

Elp4Δ ++ 

Elp6Δ ++ 

 

The Elongator complex is conserved in eukaryotes and inactivation of its 

subunits is associated with multiple defects, namely developmental, cell 

proliferation, cell migration and neuron projection defects (Close et al., 2006; 

Johansen et al., 2008; Chen, Tuck and Byström, 2009; Creppe et al., 2009). In 

humans, inactivation of each one of its subunits produces different diseases. For 

instance, mutations in human Elp1 (IKBKAP) have been associated with the 

hereditary neuropathy Familial Dysautonomia, a severe recessive 
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neurodevelopmental disease (Anderson et al., 2001; Slaugenhaupt et al., 2001; 

Karlsborn et al., 2014), and male infertility (Lin et al., 2013), while mutations in other 

Elongator subunits, namely the human homologous Elp3 and Elp4, have been 

related to the neurologic disorders Amyotrophic Lateral Sclerosis (ALS) (Simpson 

et al., 2009) and Rolandic Epilepsy (Strug et al., 2009), respectively. Moreover, 

absence of Elp1 in mouse leads to embryonic lethality and defects in vascular and 

neural development (Chen et al., 2009). 

 

3.3.1.2 Regulators of the Elongator complex 

Elongator complex is regulated by Kti11-Kti14, Sit4 or Sap185/Sap190 (Fichtner et 

al., 2002, 2003, Jablonowski et al., 2004, 2009; Petrakis et al., 2005; Bär et al., 

2008; Mehlgarten et al., 2009; Abdel-Fattah et al., 2015; Kolaj-Robin et al., 2015). 

Those enzymes were also included in our genetic screen, but their deletion did not 

significantly increase protein aggregation levels, relative to WT, except in the case 

of Kti12Δ (Kti12Δ: 17.5-fold; Kti13Δ: 2.3-fold; Kti14Δ: 1.9-fold; Sap185Δ: 2.1-fold; 

Sap190Δ: 1.5-fold; Sit4Δ: 0.8-fold change relative to WT; Figure 3.10A). Kti14Δ and 

Sit4Δ did not increase the levels of protein aggregation, but the strains used were 

heterozygous diploids since the respective genes are essential. Kti11 is an essential 

gene (without heterozygous diploid strain) and was not included in our screen. 

However, similar protein aggregation phenotypes were observed in the absence of 

these regulatory factors, particularly in Kti12, relative to the Elongator mutants 

(Petrakis et al., 2005). Most of these regulatory factors are also involved in other 

cellular functions. For instance, Kti11 (Dph3) is involved in the biosynthesis of 

diphthamide, a post-transcriptional modified histidine residue in eEF2 (Fichtner et 

al., 2003; Bär et al., 2008). Kti13 (Ats1) was identified as a suppressor of class 2 α-

tubulin, and the Kti11/Kti13 heterodimer has a double role in modifications of tRNA 

and eEF2 (Bär et al., 2008; Glatt et al., 2015). 
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Table 3.3. Summary of protein aggregation data of the regulators of the Elongator 

complex. The symbol + indicates the relative increase in protein aggregation. Arbitrary 

scale. 

Strains Protein aggregation phenotype 

Kti12Δ +++++++++++++++++ 

Kti13Δ ++ 

Kti14Δ ++ 

Sit4Δ ++ 

Sap185Δ + 

Sap190Δ + 

 

3.3.1.3 Trm9 methyltransferase and its regulator 

We observed a significant increase in protein aggregation in Trm9Δ (Trm9Δ: 14.3-

fold relative to WT; Figure 3.10A) relative to the enzymes that complete the 

synthesis of mcm5U34. Since Trm112 mutants had a severe negative growth 

phenotype (Chen, Huang, Anderson, et al., 2011), we used a heterozygous diploid 

strain in our studies that do not show increased protein aggregation (Trm112Δ: 3.2-

fold relative to WT; Figure 3.10A). 

Previous studies show that Trm9Δ strain grows slow in YEPD medium at both 

30 °C and 37 °C (Chen, Huang, Anderson, et al., 2011) and our data showed a 

similar fitness defect (Figure 3.18 and Figure 3.19B). Additionally, Trm9 has been 

associated with modulation of the toxicity of methylmethanesulfonate (MMS) and 

ionizing radiation (particularly, γ radiation) (Bennett et al., 2001; Begley et al., 2007; 

Chan et al., 2010); Trm9-deficient yeast cells are sensitive to these DNA damaging 

agents. Cells deficient in Trm9 also displayed sensitivity to the translational error 

inducing antibiotic paromomycin at elevated temperatures (Kalhor and Clarke, 

2003). Trm9 mammalian homologs are ALKBH8 and KIAA1456, also known as 

hTRM9L (human TRM9-like protein). The hTRM9L gene is located in the end of 

human chromosome 8, a region frequently lost or silenced in various types of 

cancer, including colorectal tumors, suggesting that hTRM9L is a tumor suppressor 

gene (Flanagan et al., 2004; Begley et al., 2013) and its deletion may lead to 

aberrant proteins synthesis in these tumors. 
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3.3.1.4 Wobble uridine thiolases and respective modifiers in mt-tRNAs 

Regarding wobble uridine thiolases and mitochondrial wobble uridine modifying 

enzymes, most of the gene deletions did not result in increased protein aggregation, 

except Cia1 and the mitochondrial enzymes Mto1 and Slm3 (Cia1Δ: 6.9-fold; Mto1Δ: 

9.4-fold; Slm3Δ: 39.9-fold change relative to WT; Figure 3.10B, C and Table 3.4). 

However, deletion of the Cfd1, Nbp35, Nfs1 and Cia1 genes (heterozygous diploids) 

is lethal, but not necessarily due to the lack of the 2-thio group in tRNAs. Nfs1 is a 

phosphate-containing cysteine desulfurase that supplies sulfur to many cellular 

processes (Grosjean, 2005), besides the 2-thio modification of both mitochondrial 

(mt) and cytosolic (cy) tRNAs, particularly tRNALys
UUU (Nakai et al., 2004). 

Interestingly, those essential genes belong to the cytosolic iron-sulfur cluster 

assembly (CIA) machinery, composed by WD40 protein, Cia1, the iron-only 

hydrogenase-like protein, Nar1 (not available for this work) and two cytosolic P-loop 

nucleoside triphosphatases (NTPases), Cdf1 and Nbp35 (Lill and Uhlenhoff, 2006). 

Cdf1, Npb35 and Cia1 are required for the 2-thio modification of cy-tRNAs (Figure 

3.3) (Nakai et al., 2007). Two scaffold proteins Isu1 and Isu2 also required for the 

2-thio modification of cy-tRNAs and mt-tRNAs. Depletion of Nfs1 or Isu proteins 

induces a strong defect in the 2-thio modification of cy-tRNAs (Nakai et al., 2007). 

Additionally, a cytosolic ubiquitin-like protein (UBL), Urm1, and its partner 

sulfurtransferase, Uba4, as well as the two cytosolic 2-thioridine synthetases, Ncs6 

and Ncs2, are required for the formation of s2U34 in cy-tRNAs (Huang, Lu and 

Byström, 2008; Schlieker et al., 2008; Leidel et al., 2009; Noma, Sakaguchi and 

Suzuki, 2009). The importance of Ncs6 for the 2-thiolation of tRNAs are 

demonstrated by the absence of mcm5s2U with concomitant increase in the levels 

of mcm5U in strains lacking Ncs6 gene (Björk et al., 2007). Another enzyme whose 

gene disruption resulted in partial reduction of 2-thio modification in cy-tRNAs is 

Tum1, which functions as sulfur carrier to catalyze sulfur transfer reactions (Björk et 

al., 2007; Noma, Shigi and Tsutomu, 2009; Nakai, Nakai and Yano, 2017). 

Lack of s2U34 in tRNA anticodon was reported to modulate the decoding activity 

of RAA (R representing C, G or U) codons, since s2U34 modification is present in 

tRNAs for Glu, Gln and Lys, and may affect the global translation profile (Begley et 
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al., 2007; Björk et al., 2007). Thiolation of mt-tRNALys
UUU, mt-tRNAGlu

UUC and mt-

tRNAGln
UUG is not altered in the absence of Urm1 and Uba4 enzymes, but is absent 

in strains lacking the Slm3 enzyme (Umeda et al., 2005; Leidel et al., 2009). Slm3 

(also known as Mtu1 or Mto2) is a mitochondrial tRNA-specific 2-thiouridylase that 

is required for the formation of cmnm5s2U and τm5s2U in mitochondrial tRNAs in 

yeast and mammals, respectively. It synthesizes the 2-thio group by using ATP and 

sulfur provided by a mediator, likely Nfs1 (Umeda et al., 2005). In our study, the 

absence of this enzyme resulted in higher percentage of cells with protein 

aggregates (39.9-fold change relative to WT; Figure 3.10C). We have also observed 

a decrease in mcm5s2U34 with concomitant increase in mcm5U34 (Figure 3.20), 

suggesting an additional effect in the thiolation of the cytosolic tRNAs. This supports 

the hypothesis that Slm3 affects the synthesis of mcm5s2U34 in some cytoplasmic 

tRNAs, contrary of what was observed in cy-tRNALys
mcm5s2UUU (Umeda et al., 2005). 

Mss1 and Mto1 genes are responsible for the biosynthesis of the cmnm5 group of 

cmnm5s2U34 in mt-tRNALys, since Mss1 and Mto1 mutants lack cmnm5s2U modified 

nucleoside but have s2U34 (Umeda et al., 2005). These observations suggest that 

the modifications of positions 2 and 5 of U34 in mt-tRNAs proceed independently, as 

observed in cy-tRNAs. Mto1 and Mss1 form a functional heterodimer complex 

(Colby, Wu and Tzagoloff, 1998) and Mss1 and Mto1 mutants cause mitochondrial 

dysfunction, but the effect is weaker than that observed in Slm3Δ (Umeda et al., 

2005), similarly to what we have observed in our protein aggregation study (Mss1Δ: 

3.2-fold; Mto1Δ: 9.4-fold change relative to WT; Figure 3.10C). These results 

suggest that the 2-thio modification of mt-tRNAs is important for mitochondrial 

translation, but our observation that mcm5s2U modified nucleoside was also 

decreased in Slm3Δ (Figure 3.20) suggests an additional function of Slm3 in the 2-

thiolation of cy-tRNAs. Thus, defects in both mitochondrial and cytosolic 

translational fidelity may explain the higher percentage of cells with protein 

aggregation observed in Slm3Δ (Figure 3.10C). 
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Table 3.4. Summary of protein aggregation data of the U34 thiolases and modifiers of 

mt-tRNAs. The symbol + indicates the relative increase in protein aggregation. Arbitrary 

scale. 

Strains Protein aggregation phenotype 

Slm3Δ ++++++++++++++++++++++++++++++++++++++++ 

Mto1Δ +++++++++ 

Cia1Δ +++++++ 

Cfd1Δ ++ 

Nbp35Δ + 

Ncs2Δ ++ 

Ncs6Δ ++ 

Tum1Δ +++ 

Urm1Δ ++ 

Uba4Δ ++ 

Isu1Δ +++ 

Isu2Δ ++ 

Mss1Δ +++ 

Nfs1Δ +++ 

 

The absence of those modified nucleosides in only one mt-tRNA (mt-

tRNALys
τm5s2UUU) is associated to the human MERRF disease (myoclonic epilepsy 

with ragged-red fibers) (Yasukawa et al., 2001; Umeda et al., 2005). Additionally, 

down-regulation of Mss1, Mto1 and Slm3 was observed in another mitochondrial 

disorder called MELAS (mitochondrial encephalomyopathy, lactic acidosis and 

stroke-like episodes) (Meseguer et al., 2015). In other words, hypomodified mt-

tRNAs in MELAS and MERFF are likely to alter the expression of nuclear-encoded 

mitochondrial proteins, resulting in serious mitochondrial dysfunctions (Meseguer et 

al., 2015). Mutations in the Slm3 gene were also associated with acute infantile liver 

failure (Zeharia et al., 2009; Wu et al., 2016). The mechanism of these diseases is 

unknown but the steady-state levels of the hypomodified mt-tRNAs present in cells 

lacking Slm3 may decrease to critical levels compromising protein synthesis (Wang, 

Yan and Guan, 2007). In any case we did not observe differences in the levels of 

mt-tRNALys relative to WT cells (Figure 3.23). The aminoacylation levels of 
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unmodified mt-tRNAs were also reported to decrease, since unmodified mt-tRNAs 

are poor substrates for cognate aminoacyl-tRNA synthetases (Wang, Yan and 

Guan, 2009, 2010). Moreover, the loss of both cmnm5U34 and s2U34 modifications 

has been related to significant failures in mitochondrial metabolism, complete loss 

of mitochondrial protein synthesis, instability of mitochondrial genome and a 

respiratory deficient phenotype (Wang, Yan and Guan, 2009, 2010). These 

phenotypes were not evaluated in our study, but it will be interesting to study them 

in future studies using our strains. 

 

3.3.2 Deletion of rRNA-modifying enzymes causes protein aggregation 

Regarding the strains harboring deletions in the 15 rRNAmods that we have 

analyzed (Figure 3.12), there was no statistical difference relative to the WT in the 

percentage of cells containing protein aggregates, but deletion of Shq1Δ and Spb1Δ 

resulted in increased levels of protein aggregates (Shq1Δ: 14.2-fold; Spb1Δ: 18.4-

fold; Cbf5Δ: 2.7-fold; Dim1Δ: 7.4-fold; Mrm1Δ: 1.7-fold; Mrm2Δ: 3.7-fold; Naf1Δ: 6.2-

fold; Nhp2Δ: 1.0-fold; Nop1Δ: 0.6-fold; Nop10Δ: 3.2-fold; Nop2Δ: 1.0-fold; Nop56Δ: 

0.5-fold; Nop58Δ: 1.8-fold; Snu13Δ: 2.1-fold; Figure 3.12). These values of protein 

aggregation could be underestimated since we used heterozygous diploid strains in 

almost all cases. 

Spb1 is a SAM-dependent methyltransferase, that is enriched in the nucleolus 

and is involved in the methylation of 1 of the 67 2’-O-ribose-methylated sites in 

cytoplasmic rRNA, Gm2922 (D Kressler et al., 1999). This modification occurs at a 

late rRNA processing stage, before the conversion of 27S into 25S (Lapeyre and 

Purushothaman, 2004). Spb1 is also capable of catalyzing the formation of Um2921, 

next to their target nucleoside, in some conditions, since in normal growth conditions 

snR52 acts on rRNA prior to Spb1 (Grosjean, 2005). Those two putative target 

positions of Spb1 are in the A-loop of the catalytic center of the ribosome, which is 

important for docking tRNAs (Grosjean, 2005; Baxter-Roshek, Petrov and Dinman, 

2007). Some mutations in Spb1 result in a strong growth defect and severe deficit 

in 60S ribosomal subunits, with impaired production of 25S and 5.8S rRNAs due to 

accumulation of 27SB pre-rRNAs. In the same way, blocking the formation of Gm, 
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but not Um, strongly affected ribosome biogenesis and/or translation (D Kressler et 

al., 1999; Lapeyre and Purushothaman, 2004). Our observation of high protein 

aggregation levels in a heterozygous diploid strain for Spb1Δ (Spb1 

haploinsuficiency) are in line with previous results. 

The other rRNAmod selected in our genetic screen was Shq1, which is an 

essential gene that encodes an assembly factor required for the stability and 

accumulation of box H/ACA snoRNPs, which in turn is involved in the 

pseudouridylation of rRNA precursors during ribosome biogenesis (Yang et al., 

2002; Grozdanov, Roy, et al., 2009). Shq1 binds to the RNA-binding surface of Cbf5, 

the catalytic subunit of the box H/ACA snoRNP, through its C-terminal domain, 

whereas its N-terminal CS domain (CHORD-containing proteins and Sgti) is 

homologous to the Hsp90 chaperone, suggesting its participation in chaperone-

assisted maintenance or assembly of the H/ACA snoRNP (Godin et al., 2009; 

Grozdanov, Roy, et al., 2009; Walbott et al., 2011). Genetic depletion of Shq1 

resulted in ribosomal RNA processing defects due to the loss of stable accumulation 

of box H/ACA snoRNAs (Yang et al., 2002). 

As mentioned before, Cbf5 is the catalytic subunit of the box H/ACA snoRNP 

possessing a pseudouridine synthase activity that catalyzes the isomerization of 

uridine in rRNAs. Mutations in the Cbf5 homolog dyskerin are associated with X-

linked dyskeratosis congenita (X-DC), a rare bone marrow failure syndrome. Those 

mutations in dyskerin modulate affinity of dyskerin for Shq1, suggesting that 

disruption of Shq1 function in the maturation of H/ACA snoRNPs could be a 

consequence of X-DC mutations (Grozdanov, Fernandez-Fuentes, et al., 2009; Li, 

Duan, Li, Ma, et al., 2011). X-DC mutations have also been identified in Nhp2 and 

Nop10 proteins, with impairment of the pre-RNP assembly (Trahan, Martel and 

Dragon, 2010). Other mutations in Shq1 have been identified in leukemia and 

human prostate cancers, indicating that Shq1 acts as a tumor suppressor (Bullinger 

et al., 2010; Taylor et al., 2010). 
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3.3.3 Phenotypic characterization of the selected KO strains 

Extensive analysis of each RNAmod and of its (putative) role in protein aggregation 

allowed us to identify the 6 RNAmods that are more relevant for protein folding: 2 

rRNA-modifying enzymes involved in two different types of rRNA modification 

(Gm/Um and Ψ) and 4 tRNA wobble uridine modifying enzymes that function in the 

different reactions to form mcm5s2U34 and its intermediates. 

We have observed a slight increase (not statistically significant) of insoluble 

proteins in the 6 selected mutant strains relative to WT, which was not comparable 

with the increase in protein aggregation observed in the genetic screen. However, 

we observed that the SDS-PAGE protein profiles of the tRNAmod mutants were 

different relative to the WT, suggesting that the proteins that aggregate in the mutant 

strains are different from those that aggregate in the WT control. However, this 

analysis should be repeated with sorted cells since our genetic screen data showed 

that 50% or more of the cells of the RNAmod KO strains did not have protein 

aggregates and isolation of insoluble proteins was done using cell cultures 

containing both types of cells. 

 

3.3.3.1 Degradation pathway of aggregated proteins 

There are at least three different types of cytoplasmic protein aggregates, namely 

aggregates forming juxtanuclear inclusions (JUNQs), insoluble protein deposits 

(IPODs) and aggresomes. The JUNQs occur after severe stress conditions and 

contain misfolded ubiquitylated proteins that cannot be refolded or degraded by the 

UPS. These structures usually co-localize with proteasomes and with Hsp104 

(Kaganovich, Kopito and Frydman, 2008). The IPODs are large perivacuolar 

inclusions located at the cell periphery and are formed by non-ubiquitylated proteins. 

These structures can be formed either in stressed and non-stressed cells and 

usually co-localize with the autophagosome marker Atg8 and with Hsp104 

(Kaganovich, Kopito and Frydman, 2008). The aggresomes were first observed in 

mammalian cells, in which the ubiquitin proteasome system is overloaded 

(Johnston, Ward and Kopito, 1998), and correspond to insoluble perinuclear 

inclusions frequently targeted for degradation via autophagy that co-localize with the 
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microtubule organizing center (Kopito, 2000). Aggresomes were also observed in 

yeast, but do not co-localize with Hsp104 (Wang et al., 2009). 

The selected RNAmod KO strains analyzed by transmission electron 

microscopy showed the presence of protein aggregates as electron dense materials 

in their cytoplasm and, interestingly, we could also observe that Elp1 and Kti12 KO 

strains (cm5U34 synthesis) had larger and dense vacuoles (Figure 3.15), suggesting 

that protein degradation via the autophagy pathway is activated in these strains. On 

the other hand, Slm3 and Spb1 KO strains showed more dense material dispersed 

over the entire cytoplasm, which was similar to dispersed protein granules (Figure 

3.15), suggesting that these aberrant proteins may activate different mechanisms 

involved in the recovery of misfolded/unfolded proteins or their degradation, namely 

the molecular chaperones and the ubiquitin-proteasome system (UPS); autophagy 

being an auxiliary process in this case. The overexpression of Hsp104 and the 

binding of Hsp104 to the aggregated proteins was demonstrated by our GFP-

Hsp104 reporter. 

As mentioned before, Elp1 and Kti12 KO strains showed large vacuoles in their 

cytoplasm, suggesting that degradation of aggregated proteins was active via 

autophagy in these cells. To better understand whether protein degradation was 

also active in the other KO strains, we have quantified proteasome activity. In fact, 

Elp1 and Kti12 mutants (containing large vacuoles) seemed to use only the 

autophagy pathway to target proteins for degradation, since proteasome activity was 

at basal levels (Figure 3.17). Proteasome activity was slightly increased in the other 

mutants, particularly in Trm9Δ and Slm3Δ. Regarding rRNAmod mutants, 

proteasome activity was increased in Spb1Δ, but not in Shq1Δ, suggesting that 

aberrant proteins are targeted to the autophagy pathway or somehow escape 

degradation. Indeed, the proteasome is not the major degradation pathway of 

aggregated proteins, since they normally block its activity (Bence, Sampat and 

Kopito, 2001). Thus, it is likely that protein aggregates are mainly degraded by 

autophagy, as observed in Elp1Δ and Kti12Δ. 
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3.3.4 Characterization of the KO strains 

Our mass-spectrometry analysis of the tRNA modifications showed that the level of 

ncm5U and ncm5Um drops to nearly undetectable levels in the Elp1 and Kti12 KO 

strains, while mcm5s2U levels were highly decreased in Trm9, Elp1, Kti12 and Slm3 

KO strains (Figure 3.24). 

 

 

Figure 3.24. Synthesis of U34 modification by the tRNAmods analyzed in this study. 

 

Surprisingly, yW levels were decreased in strains with Trm9 and Kti12 

deletions (0.13- and 0.36-fold) and were almost undetectable in the Slm3 mutant, 

suggesting that these enzymes influence critical pathways for yW formation, which 

was also observed in cells deficient in other tRNA modification enzymes (Chan et 

al., 2010). 

Interestingly, we have observed an increase in the modification levels of U34 (I 

and mcm5U; 1.6 – 2.3-fold) in both Spb1 and Shq1 rRNA mutants, suggesting 

signature changes in tRNA modification to increase translation fidelity when 

ribosome biogenesis and function are impaired. Indeed, global pseudouridine 

defects in rRNA, as expected in the absence of Shq1, affect tRNA binding to the 

ribosome (Jack et al., 2011). 
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The modifications of 25S and 18S rRNAs were almost undetectable or highly 

decreased in Spb1 and Shq1 mutants, with exception of the m4C modified 

nucleoside in the Spb1 mutant, which was slightly increased (Figure 3.21). Since 

deletion of Spb1 was previously associated with decrease in 60S subunit and pre-

rRNA processing defects (D Kressler et al., 1999; Lapeyre and Purushothaman, 

2004), we expected that modifications in the 60S subunit would be absent. The 

increase of m4C suggests that its synthesis occurs prior to the action of both Spb1 

and pseudouridylation H/ACA snoRNPs. In fact, Spb1 modification of the rRNA was 

reported to occur at a late processing stage (Lapeyre and Purushothaman, 2004). 

Interestingly, we could detect more modified nucleosides in rRNAs, particularly 5S 

and 5.8S, than the previously reported in bacteria and eukaryotes, namely hm5C, 

m1acp3Ψ, m1Ψ, m2
2G, m2G, m3U, m5C, and m6A (Cantara et al., 2011; Machnicka 

et al., 2013; Hia et al., 2015). We isolated rRNAs by HPLC purification and used a 

highly sensitive chromatography-coupled mass spectrometry platform to identify 

modified ribonucleosides in RNA, which were confirmed with synthetic standards or 

CID fragmentation patterns. Again, we observed a specific pattern of modified 

nucleosides in the 5S and 5.8S rRNAs in the mutants lacking Shq1 and Sbp1, 

probably to compensate the lack of modified nucleosides in 18S and 25S rRNAs. 

The hypomodification of tRNAs results in decreased translational efficiency, 

increased translational errors and/or tRNA degradation. In fact, lack of tRNA 

modifications can induce specific RNA degradation pathways (Kadaba et al., 2004; 

Alexandrov et al., 2006; Kadaba, Wang and Anderson, 2006; Chernyakov et al., 

2008). For instance, loss of the m1A58 modification, due to mutation of Trm6 or 

Trm61, resulted in specific degradation of pre-tRNAMet
i by the nuclear pre-tRNA 

surveillance pathway (Anderson et al., 1998; Kadaba et al., 2004). Contrary, the 

absence of m5C and m7G46 modifications, due to deletion of Trm4 and Trm8 genes, 

resulted in rapid degradation and deacylation of mature tRNAVal
AAC at elevated 

temperatures, by a mechanism distinct from the nuclear pre-tRNA surveillance 

pathway, the rapid tRNA degradation (RTD) pathway (Alexandrov et al., 2006). 

Indeed, RTD pathway has been demonstrated to interact with the translation 

machinery and to act widely on hypomodified tRNAs (Dewe et al., 2012). However, 

lack of a single modification or a combination of modifications only affects the levels 
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of one or two tRNA species, even when the modification occurs in various tRNAs. 

This was observed in 20 sequenced yeast tRNAs lacking m1A58 (Annex I.2), which 

is particularly associated with loss of pre-tRNAMet
i (Anderson et al., 1998). Also, the 

absence of m7G46 and m5C49 in 3 different tRNAs results in degradation of 

tRNAVal
AAC only (Alexandrov et al., 2006). Our results are in line with these published 

data since tRNA hypomodification in Elp1Δ and Kti12Δ strains only altered the levels 

of specific tRNAs: tRNAAla
TGC in Elp1Δ; tRNAThr

TGT and tRNAArg
TCT in both strains, 

and tRNAGln
TTG and tRNAGlu

TTC in Kti12Δ (Figure 3.23). Hypomodification induced 

by Trm9 and Slm3 gene deletion did not reduce abundance of the affected tRNAs, 

as reported previously for Trm9Δ and the Tuc1Δ thiolase (Johansson et al., 2008). 

Our KO strains grew slightly slower than the WT control strain, possibly 

because protein refolding and degradation increased energetic requirements. 

Interestingly, we observed that growth phenotypes of mutant strains were more 

pronounced in solid media than in liquid culture (Figure 3.18B and D), particularly in 

the case of the rRNAmods mutants (Figure 3.18D). 

Regarding cell viability, in the exponential phase and early stationary phase, 

all mutant strain cultures (excepting Shq1Δ) had slightly increased levels of death 

cells; 2-7-fold higher relative to WT cells (Annex IV.1), but the data were only 

statistically significant in middle stationary phase for Slm3, Trm9, Spb1 and Kti12 

KO strains (Figure 3.18C). These differences decreased in stationary phase, 

suggesting that cell death occurred mainly during the initial stages of growth and 

that cells recover viability over time. For Shq1Δ, we did not observe significant 

differences in PI positive cells, relative to the control cells, suggesting that single 

copy expression of the RNAmod is sufficient to ensure cell viability and growth rate 

(Figure 3.18C). 

Recent studies showed that translation elongation is dynamically regulated in 

presence of stress by the tRNA modification pattern (Gu, Begley and Dedon, 2014; 

Su et al., 2014). We observed slightly higher levels of protein aggregation in the KO 

strains relative to WT (control) at 37 ºC (120 min exposure), although without 

statistical significance (Figure 3.19A). Interestingly, all the Elongator KO strains had 

similar patterns of protein aggregation in this condition (Figure 3.19A), conversely 

to the observed during normal growth. This should be investigated in future studies. 
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3.4 CONCLUSION 

The role of RNA modifications has been a subject of increasing study. Our study 

pointed out the relevance of modifications in the anticodon region of the tRNA for 

translation, being in line with previous studies (Laten, Gorman and Bock, 1978; 

Dihanich et al., 1987; Lecointe et al., 1998; Gerber and Keller, 1999; Björk et al., 

2001; Urbonavicius et al., 2001; Pintard et al., 2002; Kalhor and Clarke, 2003; Patil, 

Chan, et al., 2012). We also observed an additional function of the thiolase Slm3, 

known as a mitochondrial enzyme, in the catalysis of cytoplasmic tRNAs and with 

high impact on protein synthesis fidelity. 
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4.1 INTRODUCTION 

4.1.1 The role of modified nucleosides in translation 

The role of tRNAs in translating the genome is critical for life. In yeast, the 42 

different cytoplasmic tRNAs (1 initiator and 41 elongator tRNAs), encoded by 275 

tRNA genes, are responsible for reading 61 sense codons, which code for the 20 

universal amino acids (Percudani, Pavesi and Ottonello, 1997; Hani and Feldmann, 

1998; Marck and Grosjean, 2002; 

http://gtrnadb.ucsc.edu/genomes/eukaryota/Scere3/). The same amino acid can 

have 2 or 3 synonymous triplets belonging to degenerated codon family boxes 

(Crick, 1968). There are 8 boxes in which all 4 codons belong to the same amino 

acid, known as unsplit boxes (Leu, Val, Gly, Arg, Ala, Thr, Pro and Ser); five boxes 

in which the two pyrimidine ending codons belong to one amino acid and the two 

purine ending codons belong to another, known as two-split boxes (Phe/Leu, 

His/Gln, Asn/Lys, Asp/Glu and Ser/Arg); and three special codon boxes (Ile/Met, 

Tyr/Stop and Cys/Stop/Trp) (Figure 4.1) (Crick, 1968). 

 

 

Figure 4.1. The standard genetic code table. The standard genetic code covers 64 

codons of which 61 encode 20 different amino acids and 3 encode stop codons. Unsplit 

boxes are shown in light grey; Stops codons are shown in dark grey. 
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Decoding of the genetic code depends on the interaction between the three 

bases of the mRNA codon (numbered 1, 2 and 3) and the three bases of the cognate 

aminoacyl-tRNA anticodon (numbered 36, 35 and 34). Anticodon-codon pairing 

rules at the third codon position are flexible and allow one tRNA molecule to decode 

more than one codon triplet. In other words, the first base of the anticodon (position 

34 or wobble nucleoside) may pair with more than one base in the third position of 

the codon (Crick, 1966); wobble rules. Additionally, nucleoside modification in tRNA 

anticodons guarantee that the decoding process is rigorous enough to differentiate 

between closely related codons, but also relaxed enough to allow decoding of more 

than one codon. 

The first anticodon modifications to be associated with the recognition of 

specific codons by tRNA were at the wobble position 34, namely inosine, and at the 

conserved purine 37, 3’ adjacent to the anticodon, namely N6-isopentenyladenosine 

(Crick, 1966; Gustilo, Vendeix and Agris, 2008). U at position 34 of the anticodon 

was initially considered to be able to recognize both A and G at the third position of 

the codon (Crick, 1966) and was later confirmed that modification of the uridine in 

the wobble position restrict and limit the recognition to only A and/or G in the third 

position of the codon. Unmodified U34 can, in turn, recognize all four bases 

(Yokoyama et al., 1985; Lim and Curran, 2001). 

In two split codon-boxes, modifications function to better discriminate between 

the cognate pyrimidine-ending and noncognate purine-ending codons (Figure 4.2). 

For example, xnm5U in bacteria and xcm5U in eukaryotes (where x represents any 

of several different groups). Moreover, xm5s2U modification is responsible for 

decoding two codon sets that end in purine (R) (NNR codons). Since the 

conformation of xm5s2U is mostly fixed in C3’-endo form, conferring conformational 

rigidity, the xm5s2U modified nucleoside prefers to base pair with A and prevents 

misreading of NNY codons (Y for pyrimidine) (Agris, Soell and Seno, 1973; 

Yokoyama et al., 1985). On the other hand, the presence of mcm5U34 improves the 

ability of the tRNA to read G-ending codons (Johansson et al., 2008). 

In eukaryotes, all tri-pyrimidine anticodons (Lys – mcm5s2UUU, Arg – 

mcm5UCU, Glu – mcm5s2UUC, Gly – mcm5UCC) bear either mcm5U34 or 
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mcm5s2U34. Additionally, the mcm5s2 modification occurs only in the two tRNAs 

which contain U35, while the mcm5U modification occurs for the two tRNAs which 

contain C35. The other anticodon harboring mcm5s2U34 (Gln – mcm5s2UUG) also 

contains a U35. Thus, anticodon sequence context is central to understanding the 

function of tRNA modifications (Grosjean, 2009a). 

Moreover, position 37 of the anticodon stem loop, also called the dangling 

base, is often modified to i6A37, t6A37, m1I37, m1G37 and yW37. Usually, when position 

36 is an A or U, position 37 is modified. Modifications at this position increase 

stacking, ordering the 3’ side of the anticodon domain (Agris, 2008). During 

translation, the modified nucleoside at position 37 moves to a position above the 

third base of the anticodon and the first base of the codon to maintain the 3’-stack 

of the anticodon domain and stabilize the first base pair of the anticodon-codon 

interaction, facilitating codon binding (Agris, 1996, 2004). The diversity of 

modifications mostly stabilizes the first base pair of the codon-anticodon interaction, 

particularly A•U and U•A pairs and contributes to accurate decoding by reducing 

frameshifts (Agris, 1996, 2008; Urbonavicius et al., 2001). 
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Figure 4.2. Codon-anticodon pairing rules (yeast). 

 

4.1.2 The role of modified nucleosides in translational accuracy 

Ribosomal selection of a tRNA depends in part on the modification pattern of the 

tRNA and can be divided in two stages. First, the ribosome detects whether the 

mRNA-tRNA pairing is correct by checking the formation of Watson-Crick base pairs 

in the first two positions of the codon-anticodon minihelix. Non-cognate tRNAs are 

rejected, while near-cognate tRNAs are discriminated against with lower binding 
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energy compared to cognate tRNAs. This energy of binding of the tRNA to the codon 

is a critical component of the second stage of the ribosomal selection. If the binding 

energy for a cognate tRNA to the codon is insufficient, the dissociation energy will 

increase and the tRNA has higher probability of being rejected (Rodnina and 

Wintermeyer, 2001). The RNA modifications are important for regulation of the 

energy of binding of the tRNA to a codon presented in the ribosomal A-site. This 

regulation can be achieved by influencing the structure of the anticodon stem loop 

prior to binding to the A-site and/or the energetics of base pairing at the wobble 

position (Yarian et al., 2002; Grosjean, 2009a). In fact, hypomodification of the U34 

residue may lead to misreading in the third position of the codon and consequently 

the incorporation of the wrong amino acid into proteins. Although the decoding of 

the mRNA is faithful, errors occur at frequency of 10-3 to 10-4 per codon (Bouadloun, 

Donner and Kurland, 1983; Farabaugh and Björk, 1999). Most missense errors are 

not deleterious, since many amino acid substitutions are conservative and do not 

affect protein structure, but, in contrast, almost all frameshift errors are harmful due 

to the usual inactivation of the peptide caused by the shift in the reading frame 

(Farabaugh and Björk, 1999). Nucleoside hypomodification also influences 

frameshifting frequency (Qian et al., 1998; Urbonavicius et al., 2001). 

 

4.1.3 Overview of this study 

In this part of the thesis, we investigated the role of wobble uridine modifications, 

ncm5U34, mcm5U34 and mcm5s2U34, on translational fidelity. Our main objective was 

to clarify if protein aggregation induced by tRNA hypomodification could be related 

to codon mistranslation. For this, we biochemically isolated aggregated proteins 

from yeast strains lacking Trm9, Elp1 or Slm3 tRNA-modifying enzymes, which 

modify the anticodons of 11 tRNAs in yeast (Kalhor and Clarke, 2003; Johansson 

and Byström, 2005; Björk et al., 2007; Huang, Lu and Byström, 2008; Johansson et 

al., 2008). Elp1, an element of the Elongator complex, uses uridine as substrate and 

catalyzes the formation of cm5U at the wobble position of tRNAArg
AGA, tRNAGly

GGA, 

tRNALys
AAA, tRNAGln

UUG, tRNAGlu
UUC, tRNALeu

UUA, tRNAVal
GUA, tRNASer

UCA, 

tRNAPro
CCA, tRNAThr

ACA and tRNAAla
GCA. In association with Trm112, Trm9 uses 
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cm5U as substrate to catalyze the formation of mcm5U at the wobble position of 

tRNAArg
AGA, tRNAGly

GGA, tRNALys
AAA, tRNAGln

UUG and tRNAGlu
UUC (Kalhor and Clarke, 

2003; Huang, Johansson and Byström, 2005; Huang, Lu and Byström, 2008; 

Mazauric et al., 2010; Chen, Huang, Anderson, et al., 2011). Slm3 is involved in the 

thiolation of the wobble uridine of tRNALys
AAA, tRNAGln

UUG and tRNAGlu
UUC, to yield 

mcm5s2U, as suggested previously. With the overall goal of assessing the effects of 

loss of ncm5U, mcm5U and mcm5s2U on global protein translation, we used yeast 

cells harboring deletions in the genes encoding the Trm9, Elp1 and Slm3 enzymes. 

As mentioned before, these strains lacked the ncm5U, mcm5U and mcm5s2U 

ribonucleosides (Figure 3.20), but the abundance of most of the hypomodified 

tRNAs was not significantly affected (Figure 3.23). By crosschecking codon bias and 

gene ontology (GO) term analysis data with amino acid misincorporation data we 

found that loss of ncm5U, mcm5U or mcm5s2U increased amino acid 

misincorporations specifically at codons that are decoded by the hypomodified 

tRNAs. 

 

4.2 RESULTS 

4.2.1 Identification of proteins that aggregated in yeast strains lacking U34 

modification 

We observed up-regulation of the Hsp104 cytosolic chaperone in strains that lacked 

U34 modifications, indicating perturbation of the conformational integrity of proteins 

(Figure 3.9 and Figure 3.10). Accordingly, loss of U34 modifications resulted in 

increased protein aggregation (Figure 4.3). To identify the aggregated proteins, we 

collected exponentially growing yeast cells from WT and Trm9Δ, Elp1Δ and Slm3Δ 

strains. Aggregated proteins were isolated using differential density centrifugation 

and were identified and quantified using label-free LC-MS/MS (see Methods 2.8 and 

Figure 4.4). A total of 1116, 970 and 1250 proteins were identified as being up-

regulated relative to WT (fold-change > 1.2) in Trm9Δ, Elp1Δ and Slm3Δ strains, 

respectively. Of these, 274 proteins were found to aggregate in all KO strains 

(Figure 4.5). 392, 288 and 450 aggregated proteins were unique to Trm9, Elp1 and 

Slm3 KO strains, respectively (Figure 4.5). 78% of the proteins present in the 



4. tRNA modifications at U34 maintain proteome integrity avoiding mistranslation 

164  

 

insoluble fraction of our strains are aggregation-prone proteins previously identified 

in the insoluble fraction of yeast cells (Ibstedt et al., 2014). However, the up-

regulated proteins in the insoluble fractions of Trm9Δ, Elp1Δ and Slm3Δ strains only 

included 8%, 27% and 7% of the aggregation-prone proteins identified in that study, 

respectively. In other words, most of the up-regulated proteins in each KO strain 

aggregated due to the absence of U34 tRNA modification. 

 

 

Figure 4.3. Absence of U34 modifications leads to protein aggregation in yeast. Yeast 

growing cells of WT and KO strains were lysed with glass beads using a PrecellysTM 24 

disrupter. Insoluble protein fractions were then isolated by differential centrifugation. Total 

extracts and detergent insoluble protein aggregates isolated from WT and KO strains were 

visualized by SDS-PAGE (14%) and Coomassie staining.  
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Figure 4.4. Workflow for proteome analysis of insoluble fractions by LC-MS/MS. Yeast 

cultures were lysed to isolate protein extracts and then insoluble proteins. Aggregated 

proteins were reduced, alkylated and tryptic digested into peptides in solution prior clean-

up in a C18 column. Desalted peptides were separated by reversed-phase liquid 

chromatography and MS/MS spectra were acquired in an Orbitrap mass analyzer. 

Database search and interpretation of the search results were achieved using PEAKS 

Studio (v.8.0, Bioinformatics Solutions Inc.). 

 

Yeast cultures Protein extraction Insoluble fraction isolation

Digestion with trypsin

LC-MS/MS

C18 clean-up

Yeast database searching

Spectral annotation and interpretation
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Figure 4.5. Label-free quantitative mass spectrometry identification of up-regulated 

proteins that aggregated in mutant strains, relative to WT. Venn diagram of the overlap 

between up-regulated aggregated proteins in each KO strain. 

 

Aggregated proteins in Trm9Δ and Slm3Δ strains have higher molecular 

weight than the yeast proteome average (Figure 4.6D) and have a slight higher 

fraction of PEST sequences (Figure 4.6J), which are ubiquitination signals for 

protein degradation (Rogers, Wells and Rechsteiner, 1986). Aggregated proteins in 

Elp1Δ have slightly larger size than the yeast proteome average (Figure 4.6D), but 

are clearly more abundant and highly expressed (indicated by high CAI) with higher 

translation rates and higher frequency in optimal codons than the yeast 

proteome/genome average (Figure 4.6A, B, E and F). Aggregated proteins in all KO 

strains have lower isoelectric point, hydrophobicity and aromaticity than the 

proteome average (Figure 4.6G, H and I). 
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Figure 4.6. Biochemical characterization of up-regulated proteins that aggregated in 

the mutants lacking U34 modifications. A. Predicted expression levels. The codon 

adaptation index (CAI) is an indication of gene expression level. B. Frequency of optimal 

codons in the aggregated proteins in each mutant strain relative to the reference genome. 
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C. Protein length distribution in the aggregated proteins of the mutant strains relative to the 

reference proteome. D. Molecular weight distribution of the aggregated proteins of the 

mutant strains relative to the yeast proteome. E. Translation rates estimated per protein 

species in the insoluble fraction of the mutant strains relative to the average proteome. F. 

Protein abundance of the aggregated proteins in the KO strains relative to the proteome. 

G. Isoelectric point values for each dataset. H. Hydrophobicity of aggregated proteins in 

each dataset shown through the GRAVY scores. I. Frequency of the aromatic amino acids 

in the aggregated proteins of the KO strains relative to the proteome. J. Protein degradation 

signal of the aggregated proteins in each KO strains measured as the PEST score. (     p 

< 0.0001,     p < 0.001,    p < 0.01,   p < 0.05 Mann Whitney test with CI 95% relative to 

Reference Genome/Proteome). x represents the mean of each set. 

 

Gene ontology analysis indicated that aggregated proteins are enriched in 

certain functional categories. In the Trm9Δ strain, functions related to DNA 

transcription, histone acetylation and chromatin silencing, RNA processing and 

ribosome biogenesis, tRNA wobble uridine modification, mRNA and tRNA 

catabolism, nuclear pore organization, microtubule-based movement and protein 

deacetylation were highly overrepresented (Figure 4.7). The Elp1Δ strain was 

enriched in functions related to translation, regulation of chromatin silencing at 

telomeres, proteolysis involved in cellular protein catabolism, namely by 

proteasomal action, oxidation-reduction and various metabolic processes (Figure 

4.8). Interestingly, Slm3Δ, also proposed as mitochondrial tRNA-modifying enzyme, 

was enriched in functions related to mitochondrial translation, as well as 

nucleocytoplasmic transport (Figure 4.9). However, the percentage of mitochondrial 

proteins present in the insoluble protein fractions was similar in the three mutant 

strains (Trm9Δ: 14.2%; Elp1Δ: 15.7%; Slm3Δ: 15.4%; 17.3% of mitochondrial 

proteins is shared). 

As mentioned before, several aggregated proteins present in the insoluble 

protein fraction were shared by the 3 KO strains. These proteins are involved in 

DNA repair, replication, regulation of transcription, maturation of ribosomal subunits, 

protein polyubiquitination, signal transduction, cellular response to stress, cell cycle 

cytokinesis, among others (Figure 4.10 and Annex VIII.4). Glutathione metabolism 

and the sulfur relay system were enriched in all mutant strains (Annex VIII.4), 
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whereas cell cycle, basal transcription factors and nucleotide excision repair 

pathways were enriched in Trm9Δ (Annex VIII.3A). Amino acids, purine and fatty 

acid metabolism, glycolysis/gluconeogenesis, amino acids and steroid biosynthesis, 

among other pathways were enriched in Elp1Δ (Annex VIII.3B). 

 

 

Figure 4.7. Functional enrichment in up-regulated proteins that aggregated in Trm9Δ. 

Biological processes that are significantly enriched in the insoluble fraction of Trm9Δ. A. 

Diagram indicates the distribution of aggregated proteins into functional categories. All 

shown categories were significant with 5% FDR. B. Bars indicate the fold-enrichment of 
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functional categories compared to the genome using GO data from 

http://genecodis.cnb.csic.es. 

 

 

Figure 4.8. Functional enrichment in up-regulated proteins that aggregated in Elp1Δ. 

Biological processes that are significantly enriched in the insoluble fraction of Elp1Δ. A. 

Diagram indicates the distribution of aggregated proteins into functional categories. All 

shown categories were significant with 5% FDR. B. Bars indicate the fold-enrichment of 

functional categories compared to the genome using GO data from 

http://genecodis.cnb.csic.es. 
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Figure 4.9. Functional enrichment in up-regulated proteins that aggregated in Slm3Δ. 

Biological processes that are significantly enriched in the insoluble fraction of Slm3Δ. A. 

Diagram indicates the distribution of aggregated proteins into functional categories. All 

shown categories were significant with 5% FDR. B. Bars indicate the fold-enrichment of 

functional categories compared to the genome using GO data from 

http://genecodis.cnb.csic.es. 
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Figure 4.10. Heat-map of the functional enrichment in biological processes verified 

in the up-regulated proteins that aggregated in mutant strains. Biological processes 

that are significantly enriched in the insoluble fraction of each mutant strain compared to 

the genome using GO data from http://genecodis.cnb.csic.es.. All shown categories were 

significant with 5% FDR. 
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enriched in codons decoded by the ncm5U34 containing tRNAs, namely UUA, GUA, 

UCA, CCA, ACA and GCA in the Elp1Δ and AGA and GGA in the mcm5U34 Elp1Δ 

and Trm9Δ insoluble fractions, as well as the mcm5s2U-dependent codons CAA, 

GAA and AAA in Elp1Δ, Trm9Δ and Slm3Δ insoluble fractions (Figure 4.11). Since 

the mcm5 side chain facilitates wobble decoding of A- and G-ending codons and 

ncm5 and s2 side chains restrict wobble decoding to A (Lim and Curran, 2001; 

Johansson et al., 2008; Grosjean and Westhof, 2016), proteins enriched in AGG 

and GGG may equally be affected by loss of U34 modification (Figure 4.11). 

 

 

Figure 4.11. Codons hypothetically affected by U34 hypomodification. Decoding of the 

13 codons highlighted is affected by absence of Elp1. Trm9 absence affects the decoding 

Elp1, Trm9 and Slm3Elp1 and Trm9Elp1
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of 7 codons highlighted in blue and green. Deletion of the gene encoding the Slm3 enzyme 

affects translation of the 3 codons highlighted in green. 

 

The sequences of those proteins and their respective genes were analyzed to 

determine amino acid and codon composition of the aggregated proteins (Figure 

4.12). Codons that paired with the anticodons of the hypomodified tRNAs were 

analyzed with special attention and a summary of data results are in Table 4.1. The 

Elp1Δ aggregated proteins had statistically higher content of Ala, Glu, Gly, Lys and 

Val; the Trm9Δ aggregated proteins had statistically higher content of Gln, Glu, Gly, 

Lys and the Slm3Δ aggregated proteins had statistically higher content of the three 

expected amino acids (Gln, Glu and Lys), relative to the genome average (Figure 

4.12A). Regarding codon usage patterns of the genes of the aggregated proteins 

the AAA, CAA and GAA codons that pair with tRNAs containing mcm5s2U34 were 

overrepresented in all KO strains, with exception of the AAA codon in Elp1Δ (Figure 

4.12B). Since mcm5s2U34 and ncm5U34 modifications allow tRNAs to preferentially 

read A-ending codons and to less extent G-ending codons (Grosjean and Westhof, 

2016), whereas mcm5U34 modification allows tRNA to read both A- and G-ending 

codons, we analyzed the usage of both codons. The content of AGA, AGG and GGG 

codons that pair with mcm5U34 containing tRNAs was statistically higher in Trm9Δ, 

whereas only AGA codon content was statistically higher in Elp1Δ, relative to 

genome average (Figure 4.12C). Content of CCA and UUG codons that pair with 

ncm5U34 containing tRNAs was also statistically higher in Elp1Δ, relative to the 

reference genome (Figure 4.12D). 
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Figure 4.12. Amino acid and codon composition of aggregated proteins in the 

absence of wobble uridine modification. A. Relative amino acid composition of 

aggregated proteins in mutant cells compared to the yeast genome. B, C, D. Relative codon 
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composition of corresponding genes of the aggregated proteins in mutant cells relative to 

the yeast genome average. B. Codons that pair with tRNAs modified with mcm5s2U. C. 

Codons that pair with tRNAs modified with mcm5U. D. Codons that pair with tRNAs modified 

with ncm5U. Relative content is shown for each mutant strain and reference genome. Data 

show mean ± SEM (     p < 0.0001,     p < 0.001,    p < 0.01,   p < 0.05 heteroscedastic 

Student’s t-test with CI 95% relative to Reference Genome). 

 

Table 4.1. Summary of amino acid and codon composition data of the aggregated 

proteins in the absence of U34 modification. 

Strain 
Codons with positive 

biases 

Amino acid positive 

biases 

Codons theoretically 

affected (aa) 

Trm9Δ 

AGA, AGG 

CAA --------------------→ 

GAA, GAG ------------→ 

GGG -------------------→ 

AAA, AAG ------------→ 

AAU --------------------→ 

GAC, GAU ------------→ 

 

Gln 

Glu 

Gly 

Lys 

Asn 

Asp 

AGA, AGG (Arg) 

CAA, CAG (Gln) 

GAA, GAG (Glu) 

GGA, GGG (Gly) 

AAA, AAG (Lys) 

AAC, AAU (Asn) 

GAC, GAU (Asp) 

CAC, CAU (His) 

AGC, AGU (Ser) 

Elp1Δ 

 

AGA 

CAA 

GAA, GAG ------------→ 

 

UUG 

AAG --------------------→ 

CCA 

 

AAC 

GAC, GAU ------------→ 

Ala 

 

 

Glu 

Gly 

 

Lys 

 

Val 

 

Asp 

GCA, GCG (Ala) 

AGA, AGG (Arg) 

CAA, CAG (Gln) 

GAA, GAG (Glu) 

GGA, GGG (Gly) 

UUA, UUG (Leu) 

AAA, AAG (Lys) 

CCA, CCG, CCC, CCU (Pro) 

GUA, GUG (Val) 

AAC, AAU (Asn) 

GAC, GAU (Asp) 

CAC, CAU (His) 

UUC, UUU (Phe) 

AGC, AGU (Ser) 

Slm3Δ 

CAA, CAG ------------→ 

GAA, GAG ------------→ 

AAA, AAG ------------→ 

AAC, AAU ------------→ 

GAC, GAU ------------→ 

Gln 

Glu 

Lys 

Asn 

Asp 

CAA, CAG (Gln) 

GAA, GAG (Glu) 

AAA, AAG (Lys) 

AAC, AAU (Asn) 

GAC, GAU (Asp) 

CAC, CAU (His) 
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Additionally, gene-specific codon usage patterns of the 6705 genes of the 

yeast genome were analyzed to identify groups of proteins that are significantly 

enriched in each codon. We calculated a Z-score, using yeast BY4743 mRNA and 

tRNA abundance data, to identify over- or under-represented codons and the 

respective genes in the aggregated protein fraction relative to the genome average. 

Hierarchical clustering analysis of Z-scores of all genes showed clusters of codons 

with relatively similar patterns of usage across the genome. Regarding the up-

regulated set of proteins, we observed that at least one codon of interest was 

enriched (Z-score > 0) relative to the genome average in the KO strains, with 

exception of Slm3Δ (99% of the up-regulated proteins had at least one codon of 

interest enriched) (Figure 4.13, Figure 4.14 and Figure 4.15). However, only 23.4%, 

23.9% and 22.8% of that codon enrichment was statistically significant (p-value < 

0.05) in Trm9Δ, Elp1Δ and Slm3Δ, respectively. 
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Figure 4.13. Hierarchical clustering analysis of gene-specific codon usage patterns 

(Z-scores) for genes corresponding to the aggregated proteins in Trm9Δ. Z-scores 

were calculated as the difference between the frequency of each codon used by each 

transcript and the genome average using BY4743 gene expression as a reference, divided 

by the standard deviation and weighted by yeast tRNA availability. The scores indicate 

whether a transcript is over- (red) or under-represented (green) with a specific codon 
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relative to the genome average. Codons showing no difference from the genome average 

are displayed in black. 

 

 

Figure 4.14. Hierarchical clustering analysis of gene-specific codon usage patterns 

(Z-scores) for genes corresponding to the aggregated proteins in Elp1Δ. Z-scores 

were calculated as the difference between the frequency of each codon used by each 

transcript and the genome average using BY4743 gene expression as a reference, divided 

by the standard deviation and weighted by yeast tRNA availability. The scores indicate 
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whether a transcript is over- (red) or under-represented (green) with a specific codon 

relative to the genome average. Codons showing no difference from the genome average 

are displayed in black. 

 

 

Figure 4.15. Hierarchical clustering analysis of gene-specific codon usage patterns 

(Z-scores) for genes corresponding to the aggregated proteins in Slm3Δ. Z-scores 

were calculated as the difference between the frequency of each codon used by each 
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transcript and the genome average using BY4743 gene expression as a reference, divided 

by the standard deviation and weighted by yeast tRNA availability. The scores indicate 

whether a transcript is over- (red) or under-represented (green) with a specific codon 

relative to the genome average. Codons showing no difference from the genome average 

are displayed in black. 

 

As mentioned previously, hypomodified tRNAs in Slm3Δ are still mcm5U34 

modified (Figure 3.20), thus those tRNAs should read AAA, CAA and GAA, but also 

G-ending codons AAG, CAG and GAG. Indeed, the content of these codons was 

also statistically higher in Slm3Δ (Figure 4.12B). Since the hypomodified tRNAs in 

Trm9Δ strain should have cm5U34 or even cm5s2U34 (not confirmed by MS data), 

pairing with AAA, CAA, GAA, AGA and GGA codons should not be significantly 

affected because tRNAs with ncm5U modification reads preferentially A-ending 

codons and also G-ending codons to a less extent. On the other hand, U34 is 

unmodified in the Elp1Δ strain (Figure 3.20), the exception being s2U34 which could 

be present in Gln, Glu and Lys U34 tRNAs. In these cases, the affected tRNAs 

containing unmodified U34 could read all 4 nucleotides in the third codon position 

and base pair with non-cognate codons; when those codons belong to split codon 

boxes. If so, an incorrect amino acid could be inserted in the nascent polypeptide, 

inducing protein instability and even aggregation. We observed positive usage 

biases of AAC, GAC and GAU non-cognate codons that may pair with the 

hypomodified tRNAs present in Elp1Δ (Figure 4.16), as well as a higher content of 

Asp (Figure 4.12A and Table 4.1). Trm9Δ aggregated proteins had positive usage 

biases of AAU, GAC and GAU non-cognate codons, accompanied by higher content 

of the respective amino acids, Asn and Asp (Figure 4.16, Figure 4.12A and Table 

4.1). Aggregated proteins in Slm3Δ presented a positive usage biases in AAC, AAU, 

GAC and GAU non-cognate codons, correlated with higher content of the respective 

amino acids (Figure 4.16, Figure 4.12A and Table 4.1). 
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Figure 4.16. Codon composition of the proteins that aggregated in the absence of 

wobble uridine modification. Relative codon composition of the genes of the aggregated 

proteins in mutant cells, relative to the average yeast genome. Represented codons are 

expected to pair with hypomodified tRNAs in mutant cells. Relative content is shown for 

Trm9Δ, Elp1Δ, Slm3Δ and reference genome. Data show mean ± SEM (     p < 0.0001, 

    p < 0.001,    p < 0.01,   p < 0.05 heteroscedastic Student’s t-test with CI 95% relative 

to Reference Genome). 

 

4.2.3 U34 modifications fine tune translational accuracy 

In vitro studies have shown that wobble base tRNA modifications play a role in 

translation fidelity (Yarian et al., 2002). Molecular modeling, nuclear magnetic 

resonance and X-ray data show that these modifications can alter the geometry of 

the ribosome-decoding center and promote the binding of anticodons to their 

cognate codons (Agris, 2004; Durant et al., 2005). As mentioned before, ncm5U and 

mcm5s2U modifications improve reading of A-ending codons, whereas mcm5U 

modification improves reading of A- and G-ending codons (Lim and Curran, 2001; 

Björk et al., 2007; Johansson et al., 2008; Grosjean and Westhof, 2016). 

Additionally, tRNA wobble base modifications found in two-split codon boxes can 

prevent binding to U and C-ending codons (Agris, 2004; Durant et al., 2005). Thus, 
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it is possible that mutants lacking modifications at the wobble position incorporate 

in vivo incorrect amino acids at a significant rate by failing to prevent anticodon 

binding to U- and C-ending codons. 

The mcm5s2U34 modification catalyzed by Trm9, Elp1 and Slm3, the mcm5U34 

modification catalyzed by Trm9 and Elp1 and the ncm5U34 modification catalyzed by 

Elp1 promote discrimination of cognate from near-cognate codons in mRNA, for 

example, AAA and AAG from AAU and AAC. Thus, in the absence of ncm5U34, 

mcm5U34 and mcm5s2U34 modifications, amino acid misincorporations should occur 

during translation of codons belonging to Arg, Glu, Gln, Lys and Leu mixed codon 

boxes (Figure 4.17). In this sense, we hypothesized that serine-to-arginine, aspartic-

to-glutamic acid, asparagine-to-lysine, histidine-to-glutamine and phenylalanine-to-

leucine misincorporations could occur in the KO strains. Indeed, we identified amino 

acid misincorporations in the insoluble fraction of KO and WT strains using the 

SPIDER algorithm integrated in the PEAKS studio software platform (Figure 4.18). 

We observed higher frequency of predicted amino acid misincorporations in the up-

regulated aggregated proteins in the KO strains, except for Asp-to-Glu in Trm9Δ and 

Ser-to-Arg and Phe-to-Leu in all mutant cells (Figure 4.19A). Regarding the 

distribution of amino acid misincorporations in near-cognate codon sites, we 

observed that Asp-to-Glu misincorporation at GAU codons was higher in Elp1Δ and 

Slm3Δ, while misincorporation at GAC codons was higher in Slm3Δ; His-to-Gln 

misincorporation at CAC codons occurred in Trm9Δ and Slm3Δ and at CAU codons 

in the Elp1Δ and Slm3Δ strains. Asn-to-Lys misincorporation at AAU codons was 

increased in all KO strains and AAC codon was mistranslated more frequently in 

Elp1Δ and Slm3Δ (Figure 4.19C). 
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Figure 4.17. Mini-genetic code table with two-split codon boxes. U34 modifications in 

tRNAs in the two-split codon boxes promote discrimination of cognate from near-cognate 

codons in mRNA, suggesting that tRNAs lacking such U34 modifications may mistranslate 

the indicated near-cognate codons. 

 

Codon Anticodon Amino acid Codon Anticodon Amino acid

 UUU  UCU  IGA

 UUC  GmAA  UCC

 UUA  ncm5UmAA  UCA  ncm5UGA

 UUG  m5CAA  UCG  CGA

 CAU  CGU  ICG

 CAC  GUG  CGC

 CAA  mcm5s2UUG  CGA

 CAG  CUG  CGG  CCG

 AAU  AGU

 AAC  GUU  AGC  GCU

 AAA  mcm5s2UUU  AGA  mcm5UCU

 AAG  CUU  AGG  CCU

 GAU  GGU

 GAC  GUC  GGC  GCC

 GAA  mcm5s2UUC  GGA  mcm5UCC

 GAG  CUC  GGG  CCC

Lys Arg

Asp

Gly

Glu

His

Arg

Gln

Asn Ser

Phe

Ser

Leu

Elp1, Trm9 and Slm3Elp1 and Trm9Elp1
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Figure 4.18. Detection of amino acid misincorporation. A. Diagram of the various steps 

used in the detection of amino acid misincorporations. Samples preparation involved lysis 

of yeast cells, extraction of protein total extracts, isolation of insoluble fraction and tryptic 

digestion. We added synthetic peptides to the digested peptides prior clean-up and LC-

MS/MS analysis, to use in data analysis. MS/MS data was searched against yeast proteome 

and amino acid misincorporations were identified using SPIDER algorithm from PEAKS 
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software. To remove false-negatives, MS/MS data was searched against yeast proteome 

plus new proteins with the misincorporations detected. An R script was used to find codons 

where misincorporations occurred. B. Spectrum of the WT synthetic peptide. C. Spectrum 

of a peptide with misincorporation of Glu at Asp site. 
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Figure 4.19. Amino acid misincorporations observed in up-regulated aggregated 

proteins in KO strains. A. Relative frequency of predicted amino acid misincorporations 
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Phe→Leu

No. Slight increase at AGU

Yes: GAU

Yes: AAC and AAU

Yes: CAU

No

Slm3Δ

Asp→Glu

Asn→Lys

His→Gln

Yes: GAC and GAU

Yes: AAC and AAU
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and other misincorporations in the mutant and WT strains. B. Relative frequency of 

predicted amino acid misincorporations distributed by the specific codons in the mutant and 

WT strains. Distribution of amino acid misincorporations is relative to total number of amino 

acid misincorporations in each sample. C. Summary table with expected and observed 

misincorporations. 

 

We also collected data of the relative abundance of peptides containing amino 

acid misincorporations. In other words, we analyzed the frequency of peptides with 

amino acid misincorporations at a specific codon site relative to the total number of 

peptides for that specific codon site and plotted it displaying also the relative 

frequencies of each misincorporation type (Annex IX.4). The frequency of peptides 

with higher level of amino acid misincorporations relative to WT peptides was higher 

in KO relative to the WT strain, except for Phe-to-Leu misincorporation in Elp1Δ and 

His-to-Gln in Trm9Δ (Annex IX.4). In other words, amino acid misincorporations 

occurred in both KO and WT strains, but the frequency of peptides containing those 

amino acid misincorporations was higher in the KO strains than in the WT strain. 

The absence of U34 modifications may also decrease decoding speed of a 

subset of codons enriched in the aggregated proteins. This could also lead to protein 

misfolding and degradation. We have analyzed the distribution of codons in the 

mutated sites (Figure 4.20A, Annex IX.3 and Annex IX.5-Annex IX.7) and in the 

specific codons that pair with hypomodified tRNAs in the KO strains (Figure 4.20B, 

C and D). These codons corresponded to sites for amino acid misincorporation, 

particularly codons AAA and GAA in Trm9Δ and Slm3Δ, AGG in Trm9Δ and CAA, 

AGA, CCC, GCG and UUA in Elp1Δ (Figure 4.20B, C and D). 
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Figure 4.20. Amino acid misincorporations occurred in specific codon sites. A. 

Distribution of amino acid misincorporations among codons in KO relative to WT strains. B, 
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C, D. Relative frequency of amino acid misincorporations in the codons indicated in the x-

axis. B. Codons that pair with tRNAs modified with mcm5s2U34. C. Codons that pair with 

tRNAs modified with mcm5U34. D. Codons that pair with tRNAs modified with ncm5U34. 

Distribution of amino acid misincorporations among specific codons is relative to total 

number of amino acid misincorporations in each sample. 

 

4.2.4 Aggregated proteins have homologues in humans 

Protein misfolding and aggregation occur in various neurodegenerative and age-

related disorders, namely Alzheimer’s disease (AD), Parkinson’s disease (PD) and 

familial amyotrophic lateral sclerosis (ALS). These disorders are primarily 

characterized by acquisition of non-native conformations and aggregation of specific 

proteins. However, aberrant interactions between disease-associated and other 

cellular proteins might result in extensive co-aggregation and loss of function of non-

disease proteins (Stefani and Dobson, 2003; Hartl, Bracher and Hayer-Hartl, 2011). 

We searched our protein aggregation data set to identify possible human 

orthologues. For this, we used human or mouse proteins that are implicated in 

protein folding disorders and/or co-aggregate with specific folding disorder-

associated proteins in AD (Liao et al., 2004; Wang et al., 2005), PD (Xia et al., 2009) 

and/or familial ALS (Basso et al., 2009). Interestingly, yeast orthologues of disease-

associated proteins are statistically overrepresented among the aggregated 

proteins present in Elp1Δ only. Considering that up-regulated protein aggregates 

identified in Elp1Δ constitute 14% of the total yeast genome, it is notable that this 

protein set contains 36% more orthologous proteins that co-aggregate with α-

synuclein in PD (p = 0.047) than the genome average and 35% more orthologous 

proteins that aggregate in a familial ALS mouse model (p = 0.036) than the genome 

average. These findings suggest that the basic mechanisms that govern protein 

aggregation associated with translational errors in yeast may be valid in human 

disease processes. In particular, the enzyme SOD1, which is associated with 

familial ALS pathogenesis (Basso et al., 2009), is also aggregated in Elp1Δ mutant 

(Table 4.2 and Annex X.1). 
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Table 4.2. List of human orthologues associated to disease found in the aggregated 

proteins in the Elp1Δ strain. 

Disorder Uniprot ID Description 
Yeast orthologues in 

aggregated proteins Elp1Δ 
α

-s
y
n

u
c
le

in
 a

s
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o

c
ia

te
d

 

P06744 
Glucose phosphate 
isomerase 

PGI1 

P04406 
Glyceraldehyde-3-
phosphate dehydrogenase 

TDH3 

P09471 
Guanine nucleotide binding 
protein α 

GPA2 

P08238 Heat shock protein 90kda HSC82 

P31939 Imp cyclohydrolase ADE16 

P30044 Peroxiredoxin 53 AHP1 

Q96QK1 Vacuolar protein sorting 35 VPS35 

F
a
m

il
ia

l 
A

L
S

 a
s
s
o

c
ia

te
d

 

P07901 
Heat shock protein HSP 90 
α 

HSC82 

Q99KI0 Aconitase ACO1 

P26443 Glutamate dehydrogenase 1 GDH3, GDH1 

P17182 α-enolase ENO1, ENO2 

P05201 Aspartate aminotransferase AAT2 

P17742 
Peptidyl-prolyl cis-trans 
isomerase A (CypA) 

CPR1 

P00441 SOD1 SOD1 

 

4.3 DISCUSSION 

For most amino acids, there is more than one codon (codon redundancy), but these 

codons are not used at the same frequency in genes and influence gene expression 

in ways that are not yet fully understood. This mechanism of codon usage bias, as 

well as the tRNA modification patterns, are important to coordinate the expression 

of groups of genes involved in specific cellular pathways (Bauer et al., 2012). Recent 

evidences suggest that tRNA activity is highly coordinated with mRNA codon 

demand (Maraia and Iben, 2014). This study showed that loss of tRNA anticodon 

modification increases protein aggregation. Our amino acid misincorporation data 

also show that proteins may aggregate as a direct consequence of loss of 

translational accuracy. 
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4.3.1 U34 modification is important to maintain proteome homeostasis 

In the Elp1Δ strain, where mcm5s2U, mcm5U and ncm5U are absent in 11 different 

tRNAs, 970 enriched proteins were identified in the insoluble fraction (fold change 

> 1.2 relative to WT). These proteins are mainly involved in translation and ribosome 

biogenesis, proteolysis and proteasomal ubiquitin-dependent protein catabolism, 

phosphorylation, regulation of chromatin silencing, among other metabolic 

processes (Figure 4.8). The enrichment of proteins involved in proteasomal and 

ubiquitin-dependent mechanisms (Annex VIII.2B) suggest that U34 modification 

defects increase proteotoxic stress in yeast. Interestingly, Elp1Δ cells contained up-

regulated aggregated proteins involved in the regulation of chromatin silencing at 

the telomeres. The Elongator complex is apparently required for efficient translation 

of factors regulating chromatin silencing at centromeres and chromatin remodeling 

in yeast (Esberg et al., 2006; Bauer et al., 2012), supporting our data. One of those 

candidate genes is Sir4 (a known regulator of telomere maintenance), whose 

efficient mRNA translation is impaired in Elongator mutants (Chen, Huang, Eliasson, 

et al., 2011). We also observed up-regulation of Sir4 in the insoluble fraction of 

Elp1Δ and Slm3Δ (fold-change of 2.6 and 12.0, respectively), suggesting that Sir4 

protein is mistranslated in these strains. In higher eukaryotes, the Elongator 

complex is also associated to tubulin acetylation in the context of neuron migration 

and differentiation (Creppe et al., 2009). 

The Trm9Δ strain had 1116 up-regulated proteins in the insoluble fraction, 

where mcm5U and mcm5s2U absence affected 5 different tRNAs. A gene ontology 

analysis also revealed a significant enrichment of RNA processing and ribosome 

biogenesis, histone metabolism and chromatin modification, tRNA and mRNA 

catabolism genes, among others (Figure 4.7). Trm9 activity was previously linked 

with enhanced translation of 425 transcripts, whose proteins are involved in stress 

response, protein biosynthesis and other biological processes (Begley et al., 2007). 

However, we only found 39 of those 425 proteins in the insoluble fraction of Trm9Δ. 

The enrichment of proteins involved in the cell cycle (Figure 4.7) confirmed previous 

observations that Trm9-dependent translation regulates cell cycle progression 

(Patil, Dyavaiah, et al., 2012; Deng et al., 2015). 
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In the Slm3Δ strain, where mcm5s2U is absent in 3 tRNAs, the 1250 up-

regulated proteins found in the aggregated fraction (fold change > 1.2 relative to 

WT) are involved in transcription and its regulation, cell cycle, protein 

phosphorylation, histone deacylation and chromatin modification and mitochondrial 

translation (Figure 4.9). Mitochondrial translation defects and deficient expression 

of mitochondrial genes were previously described in Slm3Δ cells (Wang, Yan and 

Guan, 2010). We observed the presence of 193 mitochondrial proteins in the 

insoluble fraction of Slm3Δ, including Cox12, Ai1m and Atp23 (fold-change 4.1, 2.2, 

and 12.6, respectively). 

The up-regulated proteins that were shared among the KO strains are enriched 

in functional groups of protein polyubiquitination and free ubiquitin chain 

polymerization and cellular response to amino acid starvation (Annex VIII.4B). 

Proteins involved in the regulation of RNA polymerase II transcription were enriched 

in the set of proteins that aggregated in all mutant strains. Previous studies have 

shown that Elongator mutants, having hypomodified tRNAs lacking mcm5s2U34, 

have RNA polymerase II dependent phenotypes (Esberg et al., 2006). tRNAs 

containing mcm5s2U are also important for efficient expression of gene products 

required for DNA damage response. And loss of Trm9 was suggested to recapitulate 

the stress response associated with exposure to protein- and nuclei acid-damaging 

agents (Begley et al., 2007; Chen, Huang, Eliasson, et al., 2011), which is consistent 

with our data on the enrichment of proteins involved in DNA repair, regulation of 

DNA damage checkpoint and DNA double-strand break processing (Annex VIII.4B). 

Additionally, 5’-3’ exonuclease activity is enriched in the shared proteins between 

mutant strains (Annex VIII.4A), suggesting increased hydrolysis of nucleic acids 

ester bonds; likely in tRNAs due to their hypomodification. 

 

4.3.2 Loss of U34 modifications affects the translation of genes enriched in 

specific codons 

It was proposed that specific transcripts, named MoTTs (modification tunable 

transcripts), may have over-representation of specific codons, particularly of split 

codon boxes to fine tune their translation (Begley et al., 2007; Dedon and Begley, 
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2013). From the list of 425 MoTTs identified in S. cerevisiae, we detected 39, 90 

and 48 proteins encoding transcripts in the insoluble protein fraction of the Trm9Δ, 

Elp1Δ and Slm3Δ strains, respectively. Those protein transcripts contain statistically 

significant deviations in the usage of 29 codons relative to the genome average 

(Begley et al., 2007). 

We found that the genes encoding the aggregated proteins present in the 

insoluble protein fraction of mcm5s2U mutant cells had statistically higher content of 

GAA, GAG and AAG codons, and to a lesser extent CAA, whereas the content of 

AAA codons was statistically higher in aggregated proteins of the Trm9Δ and Slm3Δ 

strains, while CAG codon content was statistically higher in Slm3Δ, relative to the 

genome average (Figure 4.12B and summary at Table 4.1). Regarding mcm5U 

mutant cells, only the AGA codon content was statistically higher in up-regulated 

aggregated proteins of the Elp1Δ and Trm9Δ strains (Figure 4.12C). The CCA 

codon content was statistically higher in aggregated proteins found in ncm5U mutant 

cells (Figure 4.12D and summary at Table 4.1). Since mcm5U34 modification allows 

tRNAs to read both A- and G-ending codons (Johansson et al., 2008), we also 

analyzed codon content of G-ending near-cognate codons. The content of the AGG 

and GGG codons that base pair with tRNA anticodons containing mcm5U34 was 

statistically higher in Trm9Δ relative to genome average (Figure 4.12C and summary 

at Table 4.1). Although, ncm5U modification preferentially read A-ending codons, it 

can also read G-ending codons less efficiently. Exceptions were previously 

observed in Pro and Ala tRNAs with ncm5U modification that can read A-, G-, C- or 

U- and A- or G-ending codons, respectively (Grosjean and Westhof, 2016). Our data 

only showed positively biased usage of the UUG codon in the Elp1Δ strain relative 

to genome average (Figure 4.12D and summary at Table 4.1). 

Global proteome data support the hypothesis that Trm9-catalyzed tRNA 

anticodon modifications enhance decoding of AGA, GAA and CAA codons of 

arginine, glutamic acid and glutamine mixed codon boxes, respectively (Begley et 

al., 2007; Deng et al., 2015). This is consistent with our results, because the 

absence of Trm9-catalyzed tRNA anticodon modifications should affect tRNA 

selection if the AGA, GAA, CAA and AAA codons are present in the ribosome A-

site, increasing translational errors (Figure 4.12B, C). Analysis of codon bias of 
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fission yeast Elongator mutants showed overrepresentation of A-ending codons, 

particularly AAA and GAA in proteins expressed at low level (Bauer et al., 2012), 

whereas codon bias analysis of our Elongator mutant (Elp1Δ) showed that the 

aggregated protein genes are enriched in GAA and CAA codons (Figure 4.12B). 

To identify/exclude confounding factors, namely gene expression and tRNA 

availability, we calculated Z-scores, which indicate whether a certain codon is over- 

or under-represented in each gene, relative to the genome average. We observed 

that in each mutant strain, at least one codon of interest was enriched (Z-score > 0) 

relative to genome average of the KO strains (Figure 4.13, Figure 4.14 and Figure 

4.15). However, that enrichment of the codons of interest was statistically significant 

(p-value < 0.05) only in 23.4%, 23.9% and 22.8% of the cases in Trm9Δ, Elp1Δ and 

Slm3Δ, respectively. The higher content of expected codons in our samples is also 

in line with ribosome footprinting data showing that U34 non-modified tRNAs bind 

poorly to the ribosome, reducing translation rate at specific codons. Loss of mcm5 

modification (Elp3Δ) was associated with increased ribosome density at CAA and 

GAA codons located at the ribosomal A-site and to less extent in GAG codons 

(Zinshteyn and Gilbert, 2013), which is consistent with the enrichment of aggregated 

proteins in CAA, GAA and GAG codons observed in Elp1Δ (Figure 4.12B). On the 

other hand, loss of s2 modification increased CAA and AAA codons enrichment at 

ribosomal A-sites (Ncs6Δ and Uba4Δ mutants) and to less extent the GAA and GAG 

codons (Uba4Δ) (Zinshteyn and Gilbert, 2013), which is again consistent with the 

enrichment of aggregated proteins in AAA, CAA, GAA and GAG codons that we 

observed in Slm3Δ (Figure 4.12B). Recent works showed that loss of mcm5U and 

mcm5s2U reduced the translation of genes enriched in AGA and GAA codons due 

to ribosomal pausing (Deng et al., 2015). These data did not clarify the slight 

increase in the occupancy of ribosomes by codons that pair with mcm5U or mcm5s2U 

modified tRNA anticodons. Since we observed increased aggregation of proteins 

whose genes are enriched in codons affected by the hypomodification of tRNAs, we 

assume that a slight increase in pausing of the ribosomes at those codon sites could 

lead to amino acid misincorporation or misfolding of the respective protein products. 
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4.3.3 Loss of U34 modifications elevates codon mistranslation rate 

As mentioned above, the mcm5U34 and mcm5s2U34 modifications have been 

implicated in differentiating between cognate and near cognate codons in split 

codon boxes and optimizing codon-anticodon interactions (Kalhor and Clarke, 2003; 

Patil, Chan, et al., 2012). U34 hypomodification of glutamine, glutamic acid and lysine 

tRNAs reduced the speed of translation in a codon-dependent context (Ashraf et al., 

1999; Begley et al., 2007), a phenotype that was reversed by overexpression of the 

hypomodified tRNAs (Esberg et al., 2006; Bauer et al., 2012). Two hypotheses can 

be extrapolated from these observations. First, mcm5s2U34, mcm5U34 and ncm5U34 

modifications enhance ribosomal binding of anticodons to cognate codons, 

increasing speed of translation in a codon-dependent context. Second, the primary 

role of the mcm5s2U or mcm5U modifications is not to reduce misreading of non-

cognate codons ending with U or C in the split codon boxes, but to improve the 

efficiency of reading cognate codons ending with A. Since U34 modification defects 

lead to codon-specific translational pausing (Zinshteyn and Gilbert, 2013; 

Nedialkova and Leidel, 2015), we propose that pausing affects co-translational 

protein folding and amino acid misincorporation rate. 

Indeed, we observed that up-regulated aggregated proteins in Trm9Δ cells 

were not only enriched in AAA, AAG, CAA, GAA, GAG, AGA, AGG and GGG 

codons that pair with hypomodified tRNAs (Figure 4.12B, C), but also had higher 

frequency of amino acid misincorporations at AAA, GAA, GAG, AGG and GGA 

codons relative to WT (Figure 4.20A, B, C and Annex IX.3A). Similarly, the genes 

of the up-regulated aggregated proteins in Slm3Δ cells were enriched in the codons 

that pair with mcm5s2U modified tRNAs (AAA, GAA and GAG, and to a less extent 

CAA, AAG and CAG, Figure 4.12B) and amino acid misincorporations were also 

detected at higher frequency in AAA and GAA codons, relative to WT (Figure 4.20A, 

B and Annex IX.3A). Interestingly, the genes encoding the up-regulated aggregated 

proteins in the Elp1Δ strain showed different patterns of codon enrichment and 

amino acid misincorporation at the same codon sites, however we could also 

observe aggregated proteins enriched in CAA and AGA codons and higher level of 

amino acid misincorporations at these codon sites relative to WT (Figure 4.20). 
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tRNAs in Elp1Δ lacking U34 modification should read 4 codons by base pairing 

with all 4 nucleotides at the third position of codons; they may even pair with near-

cognate codons that belong to split codon boxes. Ribosome occupancy data 

showed increased occupancy of only CAC and CAU codons in Elongator mutants 

(Nedialkova and Leidel, 2015), whereas we observed that the content of AAC, GAC 

and GAU near-cognate codons that may pair with the hypomodified tRNAs of Elp1Δ 

was higher relative to the genome average (Figure 4.16 and Table 4.3). This 

suggests that amino acid misincorporation at those codon sites may be a major 

contributor to protein aggregation. In fact, we observed higher frequency of Asn-to-

Lys misincorporation at AAC and AAU codons and a slight increase in the frequency 

of Asp-to-Glu misincorporation at GAU codons in the Elp1Δ compared to WT strain 

(Figure 4.19 and Table 4.3). Amino acid misincorporations also occurred more 

frequently in split codon boxes in the other mutant strains, namely Asn-to-Lys and 

His-to-Gln misincorporations at AAU and CAC codons, respectively, in Trm9Δ and 

Asp-to-Glu, His-to-Gln and Asn-to-Lys misincorporations at GAC/GAU, CAU and 

AAC/AAU codons, respectively, in the Slm3Δ strain (Figure 4.19 and Table 4.3). 

Comparing these results with the codon content observed in the aggregated 

proteins of these strains, we observed an increase in the content of those codons, 

namely AAU, GAC and GAU in Trm9Δ and AAC, AAU, GAC and GAU in Slm3Δ 

(Figure 4.16 and Table 4.3). 

 

Table 4.3. Summary of codon usage and amino acid misincorporation observed in 

KO strains. 

Strain 
Codons with positive 

biases 

Codons with aa 

misincorporations 

Type of aa 

misincorporation 

Trm9Δ 

AAU ----------------------→ 

GAC, GAU 

AAU ------------------→ 

 

CAC ------------------→ 

Asn→Lys 

 

His→Gln 

Elp1Δ 

AAC ----------------------→ 

GAC, GAU -------------→ 

AAC, AAU -----------→ 

GAU ------------------→ 

AGU ------------------→ 

CAU ------------------→ 

Asn→Lys 

Asp→Glu 

Ser→Arg 

His→Gln 

Slm3Δ 

AAC, AAU --------------→ 

GAC, GAU -------------→ 

AAC, AAU -----------→ 

GAC, GAU ----------→ 

CAU ------------------→ 

Asn→Lys 

Asp→Glu 

His→Gln 
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Other studies reported that hypomodified tRNALys
AAA (mcm5s2U34) cause 

significant +1 frameshifting at AAG codons and to less extent at the AAA cognate 

codon sites (Urbonavicius et al., 2001; Agris, 2004). Those frameshift errors could 

not be detected using our methodology, but are likely to occur in mutant cells 

considering the higher content of AAG codons in the up-regulated aggregated 

proteins (Figure 4.12B). 

 

4.4 CONCLUSION 

Our study confirmed the role of tRNA modification, in particular at position U34 of the 

anticodon, in the efficiency and accuracy of translation of specific codons. The 

global protein aggregation patterns that accompanied loss of U34 tRNA 

modifications was likely caused by perturbed codon-anticodon interactions at the 

ribosome level, resulting in slower decoding of near- and cognate codons and 

mistranslation. Loss of U34 tRNA modifications has been associated with 

neurodegeneration (Chen, Tuck and Byström, 2009) and other protein misfolding 

diseases, in which protein aggregation is a hallmark. Remarkably, several 

orthologues of our Elp1Δ aggregated proteins are associated with PD and familial 

ALS, suggesting that tRNA modification may play a role in these diseases. 
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Protein biosynthesis is a highly regulated and energetically demanding biological 

process. In normal laboratory conditions, exponentially growing yeast cells produce 

13 000 proteins per second (Haar, 2008). Inherent protein synthesis errors usually 

occur at low level, but drugs, nutritional stress, oxidative stress and other 

physiological perturbations can increase those errors, disrupting protein structure 

and contributing to proteotoxic stress. Those errors are produced by mischarging of 

tRNAs (error rate > 10-4) or tRNA-mRNA mispairing in the ribosome (error rate in 

vitro of 10-4) (Ibba and Soll, 2000), but do not occur at similar levels in different 

codons or at the same level for all amino acids. tRNA-mRNA pairing and mRNA 

decoding efficiency have been linked to the presence of tRNA anticodon 

modifications. The modification of ribonucleosides is a key step of RNA maturation 

and is performed by a wide variety of RNA-modifying enzymes, with direct or indirect 

action on the ribonucleosides. We focused our study on the role of RNA 

modifications in the fidelity of protein synthesis by analyzing proteome homeostasis 

in yeast strains lacking specific RNAmods. 

 

5.1 rRNA MODIFICATIONS AND PROTEOSTASIS 

Despite the advances in identifying rRNAmods, the functions of rRNA modifications 

in translation remain mostly unknown. However, their conservation, their presence 

at functional sites and the elaborated pathways used to synthetize them, suggest 

that they are important for regulating ribosome function and optimizing translation. 

In fact, rRNA modifications have been associated with mRNA decoding accuracy by 

stabilizing the codon-anticodon mini-helix formed in the decoding center of the SSU 

of the ribosome (Polikanov et al., 2015). We observed increased protein aggregation 

in yeast strains lacking rRNAmods, even in diploid strains where one copy of the 

gene was still intact, reinforcing the fundamental role of rRNA modifications on 

translational accuracy. 
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5.2 tRNA MODIFICATIONS AND PROTEOSTASIS 

Biochemical and molecular studies showed that some tRNA modifications affect 

tRNA stability, processing, interaction with proteins and gene expression, and that 

tRNAs are the most modified of all RNAs. However, the majority of the tRNA 

modifications are nonessential and deletion of many genes encoding tRNAmods 

causes only mild phenotypes (Grosjean, 2009a; Phizicky and Hopper, 2010), raising 

the question of how tRNA modifications contribute to translational fidelity and gene 

expression? In the present study, we used KO strains of the known tRNA-modifying 

enzymes to understand the impact of the different modifications (Figure 5.1) in the 

efficiency of tRNA selection by the ribosome and codon-anticodon interaction 

accuracy. We demonstrated that tRNA modifications that occur in the anticodon-

loop, in particular at the first anticodon base, have a strong impact in proteostasis. 

On the other hand, lack of modifications in the body of the tRNAs did not significantly 

disturb proteostasis, reinforcing their role in fine tuning tRNA folding, stability and 

aminoacylation. Indeed, defects in aminoacylation and rapid degradation of 

hypomodified tRNAs were observed in cells lacking modifications in the body of 

tRNAs (Alexandrov et al., 2006; Chernyakov et al., 2008; Whipple et al., 2011). 

Our data contribute to clarify the role of tRNA modifications in codon decoding 

efficiency, accuracy and translational regulation of gene expression in a type and 

site-dependent manner. In yeast, Trm9 dependent tRNA modification (mcm5U) 

permits Arg-tRNAs to decode Arg-AGA codons and lack of this enzyme slowed 

translation of AGA-rich transcripts (Begley et al., 2007). Deletion of Trm7 down 

regulates the expression of specific Phe-codon rich genes due to its role in the 

synthesis of Cm32 and Gm34 in tRNAPhe. These modifications influence codon-

anticodon recognition and affect interaction of the Phe-tRNA isoacceptors with 

PheRS (Guy et al., 2012). Deletion of the Pus3 gene, which is responsible for the 

synthesis of pseudouridine at position 39 in tRNATrp
CmCA, tRNATyr

GΨA and 

tRNALys
CUU, decreases readthrough efficiency of stop codons in yeast (Grosjean, 

2005) and Sua5 mediated modification of A37 to t6A37 in the anticodon-loop of 

various tRNAs, including the initiator tRNAMet, stabilizes codon-anticodon 

interactions for efficient translation initiation and reading frame maintenance (Lin, 

Ellis and True, 2010). In other words, lack of tRNA modifications is likely to slow 
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down codon decoding or even stall ribosomes at specific codon sites, increasing the 

level of missense, nonsense and frameshifting events and protein aggregation. 

 

 

Figure 5.1. Positions of the modifications catalyzed by the tRNAmods analyzed in 

this study. Each tRNAmod studied is highlighted accordingly to the relative percentage of 

cells with protein aggregates. The number of tRNAs modified by each tRNAmod is shown 

between parenthesis. 

 

5.2.1 tRNAmods that modify the body of tRNAs have little impact on 

proteostasis 

We observed only few cases in which deletion of enzymes that modify the body of 

tRNAs increased the percentage of cells with protein aggregates. In the case of the 

dihydrouridine synthases, deletion of Dus2 showed significant effect on protein 
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aggregation (6.65-fold change relative WT; Figure 3.11D). Dihydrouridine synthases 

reduce the C5-C6 bond in uridine to form dihydrouridine, whose non-planar base is 

incapable of forming stacking interactions with bases of other nucleosides, 

increasing flexibility (Dalluge et al., 1996). Additionally, dihydrouridine has been 

associated to translational fidelity by promoting cognate interactions with correct 

aminoacyl-tRNA synthetases (D20) (Hendrickson, 2001). As observed in our genetic 

screen, synthesis of D nucleoside at position 20 of the tRNAs by Dus2 is important 

for translation fidelity. Interestingly, lung cancer cells overexpress the Dus2 enzyme 

to increase survival and tumor growth (Kato et al., 2005). 

Regarding pseudouridine synthases, nine genes encoding putative RNA 

pseudouridine synthases were identified in yeast. Our genetic screen showed that 

deletion of Pus6 increases protein aggregation with statistical significance by 4-fold 

relative to WT; which is similar to the other pseudouridine synthases (Figure 3.11E 

and Figure 3.12). Disruption of pseudouridine synthase genes were reported to have 

no marked effect on cell viability and growth, even in cases of double disruptions, 

with exception of the Pus3 gene KO, as mentioned above (Agostoni Carbone et al., 

1991; Lecointe et al., 2002; Behm-Ansmant, Branlant and Motorin, 2007). 

Homozygous mutation of the human Pus3 gene is correlated with intellectual 

disability (Shaheen et al., 2016) and a mutation in the human Pus1 gene is 

associated with Mitochondrial Myopathy and Sideroblastic Anemia (MLASA) 

(Bykhovskaya et al., 2004; Patton et al., 2005).  

The 2’-O-ribosyl-phosphate transferase Rit1 modifies adenosine at position 64 

in tRNAMet
i, tagging it for translation initiation (Aström and Byström, 1994). In this 

way, 2’-O-ribosyl-phosphate modification at position 64 of the initiator tRNAMet
i has 

a role as an initiator/elongator tRNA discriminatory element. Although discrimination 

between the initiation and the elongation processes of protein biosynthesis is 

imperative for translation regulation, the absence of the Rit1 enzyme and the 

respective modification in tRNAMet
i has no effect on yeast growth (Aström and 

Byström, 1994; Astrom et al., 1999) and our results show that it has little effect on 

protein aggregation (Figure 3.11G). 

N4-acetylcytidine (ac4C) modification at position 12 of serine and leucine 

tRNAs is synthesized by Tan1 and deletion of its gene affects the stability of tRNASer 
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(Johansson and Byström, 2004). We did not observe a significant difference in the 

percentage of cells with protein aggregates  in our Tan1 KO strain (Figure 3.11G), 

suggesting that Tan1 may not play a significant role in proteome homeostasis. 

Regarding the group of tRNA methyltransferases (Trm) that modify site-

specific or multisite-specific nucleosides within the tRNA (Figure 3.11G), we did not 

observe a significant difference in the levels of protein aggregates in the strains 

lacking Trm enzymes relative to the WT control strain, with exception of Trm3Δ 

(Figure 3.11G). Most of the modifications catalyzed by the tRNA methyltransferases 

may affect tRNA folding and structure and stabilize correctly folded anticodon stems 

(Steinberg and Cedergren, 1995; Purushothaman et al., 2005). These modifications 

are critical for tRNA maturation and stability (Anderson et al., 1998; Anderson, Phan 

and Hinnebusch, 2000). A mutation in the human homolog of Trm4, NSun2, was 

identified in Autosomal-Recessive Intellectual Disability and mutations in the Trmt1 

(homolog of Trm1 in yeast), FtsJ1 (homolog of yeast Trm7), and Wdr4 (homolog of 

yeast Trm82) genes are associated with Intellectual Disability (Michaud et al., 2000; 

Najmabadi et al., 2011; Abbasi-Moheb et al., 2012; Ahmad Khan et al., 2012). 

Additionally, a splice mutation in NSun2 was identified as the first causal gene in 

Dubowitz syndrome spectrum phenotype, characterized by mild microcephaly, 

growth and mental retardation, eczema and peculiar facies (Martinez et al., 2012); 

and  mutations in Trm82 homolog Wdr4 were associated to microcephalic primordial 

dwarfism, characterized by extreme pre-natal and post-natal growth deficiency 

(Shaheen et al., 2015). Moreover, NSun2 and Trm6/61  are overexpressed in tumor 

cells, suggesting that these RNA methyltransferases induce cell-proliferation and 

growth, being involved in cancer progression and aggressiveness (Frye and Watt, 

2006; Macari et al., 2015). These data suggest that RNA methyltransferases are 

relevant in the context of neurocognitive development and cancer. 

 

5.2.2 tRNAmods that modify the tRNA anticodon loop affect proteostasis 

5.2.2.1 Modifications of position 37 of the tRNA anticodon loop 

Our data show that deletion of some of the enzymes that modify anticodon loop 

position 37 increases the levels of protein aggregation. For instance, Tad1Δ mutant 
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strains have a mild increase in protein aggregation; less than 10% (Figure 3.11A). 

This adenosine deaminase converts A37 to I37 in yeast tRNAAla
IGC, which then is 

methylated to m1I37 by Trm5 methyltransferase (Gerber et al., 1998; Björk et al., 

2001). In cells lacking Tad1 or Trm5, the levels of m1I37 dropped to nearly 

undetectable levels, but growth rate was similar to the WT  (Gerber et al., 1998; 

Björk et al., 2001). Trm5 is also involved in the m1G37 and, subsequent, yW37 

modifications in a subset of tRNAs, namely tRNAAla
IGC, tRNALeu, tRNAAsp

GUC, 

tRNAHis
GUG, tRNAPro

ncm5UGG, and tRNAPhe
GmAA (Björk et al., 2001; Sprinzl and 

Vassilenko, 2005; Czerwoniec et al., 2009). 

Another group of tRNAmods involved in the modification of position 37 is 

responsible for the synthesis of t6A in almost all ANN (N representing one of the four 

canonical nucleotides) decoding tRNAs. t6A is synthetized in a two-step reaction: 

first, the threonyl-carbamoyl-AMP (TC-AMP) intermediate is produced by Tcs1 

(YrdC) or Tcs2 (Sua5), using threonine and CO2/HCO3
- as substrates; second, TC-

AMP is placed on tRNA by the threonyl-carbamoyl transferase complex (TCTC, 

KEOPS or EKC complex), consisting of Tcs3 (Kae1), Tcs5 (Bud32), Tcs6 (Pcc1), 

and Tcs7(Cgi121). Fungi have an extra enzyme called Tcs8 (Gon7) (El Yacoubi et 

al., 2009, 2011; Perrochia et al., 2013; Thiaville, Iwata-Reuyl and de Crécy-Lagard, 

2014). The involvement of the KEOPS complex in the formation of t6A was 

demonstrated in vitro, with Kae1 comprising the catalytic subunit that condensates 

TC-AMP with tRNA (Perrochia et al., 2013). Bud32 is an ATPase in the presence of 

Kae1 that undergoes autophosphorylation when it is in a complex with Cgi121 

(Perrochia et al., 2013). Sua5 is also involved in the formation of t6A in mt-tRNAs, 

together with Tcs4 (Qri7). It was reported that mutating Bud32 and Gon7 in yeast 

abolishes t6A, but this did not occur when Pcc1, Kae1 and Cgi121 were mutated. In 

these cases, the mutant strains had t6A reduction to 30%, 25% and 60% of WT 

levels, respectively (Daugeron et al., 2011; Thiaville, Iwata-Reuyl and de Crécy-

Lagard, 2014). Similarly, deletion of the Sua5 gene erases the t6A modification, 

slowing growth and increasing +1 frameshift events (El Yacoubi et al., 2009). In our 

study, Bud32 and Cgi121 KO diploid heterozygous strains produced similar levels 

of cells with protein aggregates, but only the levels observed in the Sua5Δ strain 

were statistically significant (Figure 3.11B). In fact, the t6A37 modified nucleoside 
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produces a planar hydrophobic structure that stacks above the third base of the 

anticodon and the first base of the codon, stabilizing the weaker A·U base pair, and 

increasing ribosome binding (Weissenbach and Grosjean, 1981; Agris, Vendeix and 

Graham, 2007; Agris, 2008). 

Mod5 is a tRNA isopentenyltransferase that catalyzes the addition of an 

isopentenyl group to adenosine, forming i6A, at position 37 of mitochondrial and 

cytoplasmic tRNAs (tRNACys
GCA, tRNASer, and tRNATyr

GψA), using dimethylallyl 

pyrophosphate (DMAPP) as substrate (Dihanich et al., 1987; Gillman et al., 1991; 

Benko et al., 2000). Mutation in the Mod5 gene reduced both the levels of i6A and 

the decoding efficiency of a tRNATyr UAA suppressor due to destabilization of the 

codon-anticodon interaction (Laten, Gorman and Bock, 1978). However, lack of i6A 

does not affect growth rate (Laten, Gorman and Bock, 1978) and our screen did not 

show significant differences in protein aggregation levels between Mod5Δ and WT 

control strains (1.9-fold change relative to WT; Figure 3.11G). 

Wybutosine (yW) is other modification that occurs at position 37 of tRNAPhe
GAA 

in Archaea and Eukarya that enhances base-stacking interactions with adjacent 

adenosines (A36 and A38), to reduce the flexibility of the anticodon (Stuart et al., 

2003). Deletion of one of the Tyw1-to-Tyw4 genes erases yW, but the mutant strains 

do not show significant differences in growth rate (Noma et al., 2006; Rodriguez et 

al., 2012). Similarly, in our study the Tyw1-to-Tyw4 KO strains had similar 

percentage of cells with protein aggregates and only Tyw4Δ strain showed 

statistically significant protein aggregation levels, relative to WT controls (Figure 

3.11C). tRNAPhe lacking yW can be found in rat, mouse and in Ehrlich ascites tumors 

and neuroblastoma mice cells, suggesting a role of yW in translation fidelity 

(Mushinski and Marini, 1979; Kuchino et al., 1982). Overexpression of Tyw2 was 

also observed in breast cancer cells (Rodriguez et al., 2007). 

 

5.2.2.2 Modifications of position 34 of tRNA anticodon 

The formation of I34 requires an adenosine deaminase, consisting of two subunits 

Tad2 and Tad3, with Tad2 being the catalytic subunit of the heterodimer (Gerber 

and Keller, 1999). These two genes are essential for cell viability (Gerber and Keller, 

1999). We used heterozygous diploid KO strains for Tad2 and Tad3 in our genetic 
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screen and there was no increase of protein aggregation in these strains relative to 

WT controls (Figure 3.11A). I34 containing tRNA is predicted to read U, C and A 

ending codons while unmodified A34 read codons ending with U and rather poorly 

A-ending codons (Grosjean, 2005). I34 in tRNAIle
IAU is also a positive identity 

determinant for isoleucyl-tRNA synthase (Senger et al., 1997) and a single mutation 

in human Tad3 (Adat3) is the likely cause of intellectual disability and strabismus 

(Alazami et al., 2013). 

The synthesis of the yeast wobble nucleoside mcm5U requires at least 14 gene 

products of which 7 actively modify uridine (Elongator complex and Trm9), while the 

others regulate the former (namely, Kti12, Sap185, Sit4, etc.) (Figure 3.3) (Kalhor 

and Clarke, 2003; Huang, Lu and Byström, 2008). Similarly, tRNA wobble uridine 

thiolation requires the cytosolic iron-sulfur cluster assembly machinery (CIA), 

composed by Cfd1, Nbp35 and Cia1, two mitochondrial scaffold proteins (Isu1 and 

Isu2) and other regulators (e.g. Urm1 and Uba4) (Huang, Lu and Byström, 2008). 

In our genetic screen, the absence of Elp1, Kti12, Trm9 and Slm3 tRNAmods 

significantly increased the level of cells containing protein aggregates. We have also 

identified another protein involved in thiolation of cytosolic tRNAs, Slm3, which was 

previously identified as an exclusive mitochondrial thiolase (Umeda et al., 2005). 

The pattern of tRNA modification observed in the Slm3Δ strain was similar to that of 

the Urm1Δ strain: those tRNAs contained mcm5U34 (increased) and lacked the s2U34 

modification (Huang, Lu and Byström, 2008; Schlieker et al., 2008).  

 

5.3 WOBBLE URIDINE MODIFICATION 

We demonstrated that absence of n/mcm5U34 modification and defects in tRNA 

thiolation in the Trm9Δ, Elp1Δ and Slm3Δ strains lead to codon specific translational 

defects (Figure 5.2). Our data are consistent with yeast genetic evidences indicating 

that the reading of A-ending codons is enhanced by the mcm5s2U34 modification 

(Johansson et al., 2008; Rezgui et al., 2013). Recent studies indicated that 

transcripts enriched in AAA, GAA and CAA codons are poorly translated in those 

mutant cells and that the respective proteins are involved in specific biological 

processes such as translation, rRNA processing and ribosomal subunit biogenesis 
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(Laxman et al., 2013; Rezgui et al., 2013). Similarly, our data showed that transcripts 

enriched in codons that base pair with wobble uridine modified tRNAs (Figure 5.2) 

encode proteins that aggregate at higher level. 

 

 

Figure 5.2. The genetic code and tRNA wobble modifications. The coding capacities of 

tRNAs modified in the wobble position is shown. A circle corresponds to a codon read by a 

tRNA with the position 34 described. A line connecting two or more circles indicates that the 

same tRNA is able to read those codons. A red circle indicates the capability of that tRNA 

to base pair with a particular codon, either by Watson-Crick or by wobble rules, whereas a 

grey filled circle indicates a restricted base pairing (Grosjean and Westhof, 2016). Adapted 

from Björk et al., 2007. 

 

Our results are also in line with previous studies showing impairment of 

mitochondrial protein synthesis due to deletion of wobble uridine tRNAmods (Tigano 

et al., 2015). Aggregated mitochondrial proteins are observed in the absence of 

wobble uridine modification in the cytosolic tRNAs, re-enforcing evidences that 

nuclear-encoded tRNAs are imported into mitochondria (Kamenski et al., 2007; 

Schneider, 2011), namely mcm5s2U modified tRNAs. 

Deletion of Trm9 and Slm3 affected the yW modification and the enzymes 

involved in yW modification aggregated in those strains (Tyw1-Tyw3 in Trm9Δ and 
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Tyw1-Tyw4 in Slm3Δ). TAN1 was slightly up-regulated in the aggregated protein 

fraction of Trm9Δ, Elp1Δ and Slm3Δ, and ac4C levels were slightly lower in the 

mutant cells, particularly in Elp1Δ and Trm9Δ. Surprisingly, Ncs2 and Ncs6 

enzymes, which are involved in the thiolation of the wobble uridine, were enriched 

in the insoluble fractions of Trm9Δ and Slm3Δ, whereas Ncs6 was enriched in Elp1Δ 

strain. Thus, the absence of s2U modification in cells lacking Trm9 and Elp1 

enzymes was due to the presence of non-functional enzymes of the thiolation 

pathway. 

 

5.3.1 Absence of U34 modifications increases mistranslation 

Our data highlight a critical role of tRNA modifications in preventing translational 

errors (mistranslation), which is fundamental for proteome stability and function. 

Thus, preventing mistranslation is an important role of the modified ribonucleosides. 

The level of amino acid misincorporations into proteins is usually very low (below 

0.001%) and the identification of such misincorporations in complex protein mixtures 

is a significant technical challenge. We used insoluble proteins (instead of total 

extracts) to enrich our proteins in misincorporated amino acids to increase the 

probability of detecting mutant peptides. Synthetic peptides containing specific 

amino acid mutations were also added to our samples at different concentrations to 

validate our bioinformatics pipeline. To reduce the percentage of false positives, the 

peptides containing misincorporations were matched to the respective WT proteins, 

creating a secondary database of yeast proteins. Re-searching LC-MS/MS raw data 

against this new database with mutant proteins was used to validate the amino acid 

misincorporations. In this way, we were able to match amino acid misincorporations 

with codons in a large data set, using R scripts. 

Our data showed a clear increase in amino acid misincorporations in our yeast 

KO strains, harboring tRNA hypomodifications. Previous works showed that 

mistranslation induced protein aggregation saturates the proteostasis network, 

activates the UPR and down-regulates protein synthesis rate (Paredes et al., 2012). 

We were able to identify the proteins and the cellular pathways whose activity is 

regulated by RNA modifications. The amino acid misincorporations detected 
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occurred mostly in abundant proteins, suggesting that amino acid misincorporation 

detection should be optimized to detect misincorporations in low abundant proteins, 

namely in those that aggregate in the KO strains. 

 

5.3.2 Protein synthesis errors and human disease 

Protein conformational diseases are a group of heterogeneous diseases with high 

impact in society. Most of the neurodegenerative and some metabolic and liver 

diseases are associated with protein aggregation (Gregersen et al., 2006). The 

molecular and structural basis of these diseases are under intense analysis, but 

studies focus on the mechanisms of protein folding, degradation and on the 

proteostasis network. Apparently there is down regulation of molecular chaperones 

during aging which may explain the perturbation of the proteome homeostasis 

across the lifespan (Soti and Csermely, 2003; Hartl, Bracher and Hayer-Hartl, 2011). 

Additionally, protein aggregation itself impairs the function of the UPS, resulting in 

accumulation of protein ubiquitin conjugates (Bence, Sampat and Kopito, 2001), 

increased protein aggregation and saturation of the proteostasis network. This 

mechanism of positive-feedback might explain the cell death phenotype and the loss 

of neuronal function, which are characteristic of various neurodegenerative 

diseases. 

These proteostasis network mechanisms play critical roles in human health, 

but recent genome wide association studies and other genetic studies have 

identified multiple single nucleotide polymorphisms (SNPs) in genes encoding 

tRNAmods and rRNAmods associated with cancer, neurodegenerative diseases, 

diabetes, hearing loss and several metabolic syndromes (T. Yasukawa et al., 2000; 

Gonzales et al., 2005; Montanaro et al., 2006; Chen, Tuck and Byström, 2009; 

Torres, Batlle and Ribas de Pouplana, 2014), suggesting that they also play a role 

in protein misfolding diseases. For example, mutations in the FTSJ1 

methyltransferase, which modifies positions 32 and 34 of tRNAPhe were found in 

patients with non‐syndromic X‐linked mental retardation (Guy et al., 2015), while the 

MELAS and MERRF syndromes are associated with hypomodification of 

mitochondrial tRNAs (T. Yasukawa et al., 2000; Takehiro Yasukawa et al., 2000). 
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Also, mutations in tRNA methyltransferases are associated with type 2 diabetes 

(Igoillo-Esteve et al., 2013) and lack of mcm5 and ncm5 side chains of tRNA wobble 

uridines cause neurological and developmental defects in C. elegans (Chen, Tuck 

and Byström, 2009). Indeed, Elongator complex activity is impaired in patients with 

familial dysautonomia (Nguyen et al., 2010) and evidences suggest that the 

Elongator complex may be disrupted in other neurological diseases, such as 

sporadic ALS (Simpson et al., 2009) and rolandic epilepsy (Strug et al., 2009). We 

identified several proteins in the Elp1Δ strain that are orthologous to human proteins 

involved in PD and familial ALS, suggesting that perturbation of RNA modifications 

by mutations in RNAmods, environmental factors and metabolic deregulation might 

induce protein aggregation, proteotoxic stress, saturation of the proteostasis 

network, cell death and/or loss of fitness. This suggests that yeast could be a good 

model organism to study the role of tRNA- and rRNA-modifying enzymes and tRNA 

hypomodification in human diseases. 

 

5.4 CONCLUSION AND FUTURE WORK 

Our study identified RNA-modifying enzymes that are fundamental to maintain the 

folding state of the proteome and proteome homeostasis. The data showed that 

modifications in the tRNA anticodon loop are essential for protein synthesis fidelity 

and highlighted in diverse phenotypes that have also been described by other 

groups (Frohloff et al., 2001; Esberg et al., 2006; Grosjean, 2009a; Wang, Yan and 

Guan, 2010). Aggregated proteins identified in the tRNAmod KO strains are 

encoded by genes enriched in codons that base pair with the tRNAs modified by 

such enzymes. Some of these codons are decoded with elevated level of error. 

Translation accuracy of near-cognate codons is also degraded further highlighting 

the role of tRNAmods in proteome stability. 

 Our proteomics study was carried out with a low number of biological and 

technical replicates of each mutant strain: 1 biological replicate for Elp1Δ and Trm9Δ 

and 2 biological replicates for Slm3Δ, one of these datasets (Slm3Δ clone 2) has 4 

technical replicates. Therefore, it is necessary to increase the number of replicates 

to validate the conclusions described in this thesis. It would also be interesting to 
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analyze soluble protein fractions of each mutant strain to evaluate if the pattern of 

amino acid misincorporations is different from that of the insoluble fraction. 

 

 Since RNA modifications have impact on protein synthesis accuracy, we 

postulate that tRNA hypomodification activates the unfolded protein response 

(UPR), repressing protein synthesis rate through phosphorylation of the translation 

initiation factor eIF2α. This hypothesis should be validated in future studies. It would 

also be interesting to evaluate protein synthesis rate in the mutant cells to clarify if 

decreased fitness induced by mistranslation is associated to repression of protein 

synthesis rate (Paredes et al., 2012).  

 

Remarkably, stress-induced regulation of tRNA modification allows 

ribosomes to efficiently translate yeast stress genes (Chan et al., 2012), while 

mRNA mistranslation produces both genetic and phenotypic diversity of high 

adaptation potential (Pan, 2013). In other words, tRNA modifications may, at least 

in yeast, play important roles in stress adaptation and evolution of adaptive 

phenotypic traits. The role of RNA modifications in phenotypic variability and 

inheritance of stress tolerance traits should also be investigated. 

 

Unfortunately, we did not have time to clarify the role of rRNA modifications 

in protein synthesis fidelity. Thus, the level of rRNA modification in the heterozygous 

diploid strains and the stability of the hypomodified rRNA should be clarified in future 

studies. 

 

Ribosome pausing sites were identified by others using similar strains that we 

have used in our study (Zinshteyn and Gilbert, 2013; Nedialkova and Leidel, 2015). 

It will be interesting to map ribosome pausing sites in our strains using ribosome 

profiling analysis and compare these data with mistranslation data to clarify if amino 

acid misincorporation events occur at codon pausing sites. Additionally, RNAseq 

analysis will be important to evaluate the transcriptome of each strain and better 

understand functional codon usage. The study of codon context associated with 

amino acid misincorporations and the study of codon usage of RNAmod genes 

should also be investigated. 
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 S. cerevisiae tRNAs and modified nucleosides 

 

 

Annex I.1. Structures of modified nucleosides found in S. cerevisiae cytoplasmic 

tRNAs. R: ribose; X: any base; Nm: 2’-O-methylated nucleosides. Adapted from Grosjean, 

2005. 

 



Annex I.2. Distribution of modified nucleosides in cytoplasmic tRNAs in S. cerevisiae. In S. cerevisiae, 275 nucleus-encoded tRNA 

genes code for the 42 different cytoplasmic tRNA species (1 initiator and 41 elongator tRNAs) that pair with the 61 sense codons (Percudani 

et al., 1997; Hani and Feldmann, 1998; http://gtrnadb.ucsc.edu/genomes/eukaryota/Scere3/). Of the 42 tRNA species, 31 RNA sequences 

are known and could be consulted at http://modomics.genesilico.pl/sequences/list/tRNA/. For the remaining eleven tRNA species, the RNA 

sequence is not known. Indicated within parenthesis is the number of genes for each specie. The position of each modified nucleoside in 

the tRNA is indicated and positions that are not observed in all subspecies are indicated within parenthesis. 

 

 

I m1I m1A t6A i6A Ar(p) Am m5C ac4C m3C Cm m1G m2G m2
2G Gm m7G yW Ψ D m5U Um mcm5U mcm5s2U ncm5U ncm5Um

tRNAAla
IGC (11) 34 37 9 26 38, 55 16, 20, 47 54

tRNAArg
ICG (6) 34 58 49 9 10 26 1, 27, 55 16, 20, 47 54

tRNAArg
mcm5UCU (11) 58 37 9 10 26 27, 39, 55 16, 47 54 34

tRNAAsn
GUU (10) 58 37 48 10 26 39, 55 16, 17, 20, 20A, 47 54

tRNAAsp
GUC (16) 49 37 13, 32, 55 16, 20 54

tRNACys
GCA (4) 58 37 48 46 32, 39, 55 16, 20, 47 54

tRNAGlu
mcm5s2UUC (14) 49 13, 27, 55 20A 54 34

tRNAGly
GCC (16) 49 4 9 13, 32, 38, 55 16, 20 54

tRNAGly
mcm5UCC (3) 13,55 16, 20, 20A 54 34

tRNAHis
GUG (7) 4 49 37 18 13, 32, (39), 55 16, 20, 20A 54

tRNAIle
IAU (13) 34 58 37 48 9 10 55 16, 17, 20, 20A, 47 54

tRNAIle
ΨAΨ (2) 58 37 48 10 46 27, 34, 36, 55, 67 16, 20, 20A, 47 54

tRNALeu
m5CAA (10) 34, 48 12 37 10 26 18 32, 39, 55 20, 20B 54

tRNALeu
ncm5UmAA (7) 58 48 12 32 37 10 26 18 39, 55 16, 20, 20B 54 34

tRNALeu
UAG (3) 58 48 12 37 10 26 18 27, 32, 39, 55 16, 20, 20A, 20B 54

tRNALys
CUU (14) 58 37 9 10 26 46 27, 39, 55 16, 20 54

tRNALys
mcm5s2UUU (7) 58 37 48 10 26 46 1, 27, 28, 55, 67 16, 17, 20, 47 54 34

tRNAMet
i (5) 58 37 64 48, 49 9 10 26 46 16, 47

tRNAMet
m (5) 58 37 48 10 26 46 27, 31, 39, 55 16, 47 54

tRNAPhe
GmAA (10) 58 40, 49 32 10 26 34 46 37 39, 55 16, 17 54

tRNAPro
ncm5UGG (10) 58 4 9, 37 46 13, 32, 38, 55 16, 20 54 34

tRNASer
CGA (1) 37 48 12 32 26 18 39, 55 16, 20, 20A 54 44

tRNASer
GCU (4) 37 48 12 26 18 55 16, 20, 20A 54 44

tRNASer
IGA (11) 34 37 48 12 26 18 32, 39, 55 16, 20, 20A 54 44

tRNASer
ncm5UGA (3) 37 48 12 32 26 18 39, 55 16, 20, 20A 54 44 34

tRNAThr
IGU (11) 34 58 37 48 32 10 26 39, 55 16, 17, 20, 47 54

tRNATrp
CmCA (6) 58 32, 34 9 10 18 46 26, 27, 28, 39, 55, 65 16, 20, 47 54

tRNATyr
GΨA (8) 58 37 48 10 26 18 35, 39, 55 16, 17, 20, 20A, 20B, 47 54

tRNAVal
CAC (2) 58 49 10, 26 46 13, 27, 28, 32, 55 20A, 47 54

tRNAVal
IAC (14) 34 58 49 9 46 13, 27, 32, 55 16, 20, 20A, 47 54

tRNAVal
ncm5UAC (2) 58 49 10 26 27, 32, 55 16, 20, 20A, 47 54 34

Modified nucleoside / position in tRNAtRNA species 

(Number of genes)

http://gtrnadb.ucsc.edu/genomes/eukaryota/Scere3/
http://modomics.genesilico.pl/sequences/list/tRNA/
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Annex I.3. Distribution of modified nucleosides in mitochondrial tRNAs in S. cerevisiae. 16 RNA sequences of mitochondrial tRNAs 

are known and could be consulted at http://modomics.genesilico.pl/sequences/list/tRNA/. The position of each modified nucleoside in the 

tRNA is indicated and positions that are not observed in all subspecies are indicated within parenthesis. 

 

 

 

t6A i6A m1G m2G m2
2G Ψ D m5U cmnm5U cmnm5s2U Unknown

tRNAArg
ACG 27, 39, 55 16, 20 54

tRNAArg
UCU 37 27, 39, 55 16, 20 54 U34

tRNAGly
UCC 37 26 31, 55 16, 20 54 U34

tRNAHis
GUG 37 27, 38, 55 16, 20 54

tRNAIle
GAU 37 31, 55 16, 17, 20 54

tRNALeu
cmnm5UAA 37 26 31, 39, 55 16, 20 54 34

tRNALys
cmnm5s2UUU 37 28, 31, 55 16, 20 54 34

tRNAMet
i 37 55, 72 16, 20 54

tRNAMet
m 37 31, 55 16, 17, 20 54

tRNAPhe
GAA 37 26 39, 55 16, 20

tRNAPro
UGG 37 26 55 20 54

tRNASer
GCU 31, 55 16, 20 54

tRNASer
UGA 37 26 (27), 39, 55 16, 20 54

tRNAThr
UAG 37 26 27, 31, 38, 55 16, 20 54

tRNATrp
cmnm5UCA 39, 55 16,20 54 34 A37

tRNATyr
GUA 37 26 27, 55 16, 20 54

tRNA species
Modified nucleoside / position in tRNA

http://modomics.genesilico.pl/sequences/list/tRNA/
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 Characterization of protein aggregates from genetic 

screen 

 

 

Annex II.1. Number and type of protein aggregates per cell in selected KO strains. 

Yeast cells containing localized Hsp104-GFP fluorescence foci were counted and 

differentiated according to the number (A) and the size (B) of localized Hsp104-GFP 

fluorescence foci per cell. Results are expressed as the percentage of positive cells (with 

Hsp104-GFP foci) relative the total number of cells with protein aggregates. Data represent 

the mean ± SEM of triplicates of three independent clones. 

 

 

Annex II.2. Number of protein aggregates per cell in wobble uridine modifying 

enzyme KO strains. Yeast cells containing localized Hsp104-GFP fluorescence foci were 

counted and differentiated according to the number of localized Hsp104-GFP fluorescence 

foci per cell. Results are expressed as the percentage of positive cells (with Hsp104-GFP 
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foci) relative the total number of cells with protein aggregates. Data represent the mean ± 

SEM of triplicates of three independent clones. 

 

 

Annex II.3. Number of protein aggregates per cell in tRNAmod KO strains. Yeast cells 

containing localized Hsp104-GFP fluorescence foci were counted and differentiated 

according to the number of localized Hsp104-GFP fluorescence foci per cell. Results are 

expressed as the percentage of positive cells (with Hsp104-GFP foci) relative the total 

number of cells with protein aggregates. Data represent the mean ± SEM of triplicates of 

three independent clones. 
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Annex II.4. Number of protein aggregates per cell in rRNAmod KO strains. Yeast cells 

containing localized Hsp104-GFP fluorescence foci were counted and differentiated 

according to the number of localized Hsp104-GFP fluorescence foci per cell. Results are 

expressed as the percentage of positive cells (with Hsp104-GFP foci) relative the total 

number of cells with protein aggregates. Data represent the mean ± SEM of triplicates of 

three independent clones. 

 

 

Annex II.5. Type of protein aggregates per cell in wobble uridine modifying enzyme 

KO strains. Yeast cells containing localized Hsp104-GFP fluorescence foci were counted 

and differentiated according to the size of localized Hsp104-GFP fluorescence foci per cell. 

Results are expressed as the percentage of positive cells (with Hsp104-GFP foci) relative 
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the total number of cells with protein aggregates. Data represent the mean ± SEM of 

triplicates of three independent clones. 

 

 

Annex II.6. Type of protein aggregates per cell in tRNAmod KO strains. Yeast cells 

containing localized Hsp104-GFP fluorescence foci were counted and differentiated 

according to the size of localized Hsp104-GFP fluorescence foci per cell. Results are 

expressed as the percentage of positive cells (with Hsp104-GFP foci) relative the total 

number of cells with protein aggregates. Data represent the mean ± SEM of triplicates of 

three independent clones. 
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Annex II.7. Type of protein aggregates per cell in rRNAmod KO strains. Yeast cells 

containing localized Hsp104-GFP fluorescence foci were counted and differentiated 

according to the size of localized Hsp104-GFP fluorescence foci per cell. Results are 

expressed as the percentage of positive cells (with Hsp104-GFP foci) relative the total 

number of cells with protein aggregates. Data represent the mean ± SEM of triplicates of 

three independent clones. 
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 Validation of gene deletion in the selected KO strains 

 

 

Annex III.1. Validation of gene deletion in the selected KO strains by PCR. Agarose 

gels from PCR validation of gene deletion. A. Lane 1: negative control; Lane 2: BY4743; 

Lanes 3, 4 and 5: BY4743 clone 1, clone 2, and clone 3, respectively; Lane 6: Trm9Δ 

(original from EUROSCARF); Lanes 7, 8 and 9: Trm9Δ clone 1, clone 2, and clone 3, 

respectively. B. Lane 1: negative control; Lane 2: BY4743; Lanes 3, 4 and 5: BY4743 clone 

1, clone 2, and clone 3, respectively; Lane 6: Elp1Δ (original from EUROSCARF); Lanes 7, 

8 and 9: Elp1Δ clone 1, clone 2, and clone 3, respectively. C. Lane 1: negative control; Lane 

2: BY4743; Lanes 3, 4 and 5: BY4743 clone 1, clone 2, and clone 3, respectively; Lane 6: 

Kti12Δ (original from EUROSCARF); Lanes 7, 8 and 9: Kti12Δ clone 1, clone 2, and clone 

3, respectively. D. Lane 1: negative control; Lane 2: BY4743; Lanes 3, 4 and 5: BY4743 

clone 1, clone 2, and clone 3, respectively; Lane 6: Slm3Δ (original from EUROSCARF); 

Lanes 7, 8 and 9: Slm3Δ clone 1, clone 2, and clone 3, respectively. E. Lane 1: negative 

control; Lane 2: BY4743; Lanes 3, 4 and 5: BY4743 clone 1, clone 2, and clone 3, 

respectively; Lane 6: Spb1Δ (original from EUROSCARF); Lanes 7, 8 and 9: Spb1Δ clone 

1, clone 2, and clone 3, respectively. F. Lane 1: negative control; Lane 2: BY4743; Lanes 

3, 4 and 5: BY4743 clone 1, clone 2, and clone 3, respectively; Lane 6: Shq1Δ (original from 

EUROSCARF); Lanes 7, 8 and 9: Shq1Δ clone 1, clone 2, and clone 3, respectively. M: 

GeneRuler™ 100 bp DNA Ladder. 
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 Viability of selected RNAmods 

 

 

Annex IV.1. Viability of S. cerevisiae cells lacking Trm9 and WT cells, from 10 hours 

to 66 days. Cells were labeled with PI and analyzed by flow cytometry at different time 

points. Increased PI incorporation correlates with lower viability of cells. Data represent the 

mean ± SEM of 3 independent clones (****p<0.0001, two-way Anova post Sidak’s multiple 

comparison test with CI 95% relative to WT). 

 

 

Annex IV.2. Viability of S. cerevisiae cells lacking Elp1 and WT cells, from 10 hours 

to 66 days. Cells were labeled with PI and analyzed by flow cytometry at different time 
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points. Increased PI incorporation correlates with lower viability of cells. Data represent the 

mean ± SEM of 3 independent clones (****p<0.0001, **p< 0.01, two-way Anova post Sidak’s 

multiple comparison test with CI 95% relative to WT). 

 

 

Annex IV.3. Viability of S. cerevisiae cells lacking Kti12 and WT cells, from 10 hours 

to 66 days. Cells were labeled with PI and analyzed by flow cytometry at different time 

points. Increased PI incorporation correlates with lower viability of cells. Data represent the 

mean ± SEM of 3 independent clones (***p< 0.001, *p< 0.05, two-way Anova post Sidak’s 

multiple comparison test with CI 95% relative to WT). 
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Annex IV.4. Viability of S. cerevisiae cells lacking Slm3 and WT cells, from 10 hours 

to 66 days. Cells were labeled with PI and analyzed by flow cytometry at different time 

points. Increased PI incorporation correlates with lower viability of cells. Data represent the 

mean ± SEM of 3 independent clones (****p<0.0001, ***p< 0.001, two-way Anova post 

Sidak’s multiple comparison test with CI 95% relative to WT). 

 

 

Annex IV.5. Viability of S. cerevisiae cells lacking Spb1 and WT cells, from 10 hours 

to 66 days. Cells were labeled with PI and analyzed by flow cytometry at different time 

points. Increased PI incorporation correlates with lower viability of cells. Data represent the 

mean ± SEM of 3 independent clones (two-way Anova post Sidak’s multiple comparison 

test with CI 95% relative to WT). 
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Annex IV.6. Viability of S. cerevisiae cells lacking Shq1 and WT cells, from 10 hours 

to 66 days. Cells were labeled with PI and analyzed by flow cytometry at different time 

points. Increased PI incorporation correlates with lower viability of cells. Data represent the 

mean ± SEM of 3 independent clones (two-way Anova post Sidak’s multiple comparison 

test with CI 95% relative to WT). 
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 Biochemical characterization of RNAs 

 

Annex V.1. Normalized mass spectrometer signal intensities for tRNA modifications in S. cerevisiae KOs. Data represent mean ± 

SD of triplicates of three independent clones, with Student's t-test relative to WT. Significant values (p-value < 0.05) are highlighted in gray. 

 

  

Mod Average SD Average SD t-test Average SD t-test Average SD t-test Average SD t-test Average SD t-test Average SD t-test

ac4C 23889 21660 15716 12388 0,601 9293 4225 0,316 15710 7599 0,571 25890 15704 0,903 30190 10805 0,675 36464 2949 0,375

Am 24697 4027 23117 1723 0,566 25132 754 0,863 24267 583 0,864 22942 986 0,504 25996 1099 0,619 25015 394 0,899

Cm 118435 35416 77032 10706 0,125 97356 10959 0,380 93889 5329 0,301 80375 13653 0,157 76851 9911 0,122 61724 2369 0,050

D 24899 3686 29211 3369 0,209 26724 3628 0,574 27257 1651 0,369 27958 3019 0,329 27355 1413 0,342 30104 1327 0,083

Gm 73843 25471 56720 8216 0,330 57606 5426 0,341 63759 6446 0,543 62808 9478 0,521 69606 3086 0,789 67145 2117 0,673

I 7212 3332 10184 4375 0,402 5924 1793 0,587 9076 1185 0,413 9762 4404 0,469 14091 2015 0,038 16875 2674 0,017

i6A 41678 2717 35695 7320 0,255 45217 2658 0,182 47623 3700 0,088 31650 1875 0,006 50738 2179 0,011 45831 2644 0,131

m1A 432318 114816 302270 16877 0,124 321851 34899 0,186 373422 75281 0,499 355266 122769 0,472 428120 91018 0,963 521926 121269 0,405

m1G 376179 203818 273230 24157 0,434 263472 19886 0,394 270447 5048 0,420 268086 9697 0,411 281691 21616 0,469 277591 12130 0,450

m1I 72072 24532 55394 1845 0,305 56738 2815 0,343 56147 1967 0,325 55110 3046 0,300 59031 5793 0,421 55880 1374 0,317

m2
2G 455779 176405 346880 27244 0,350 348048 32000 0,357 366641 22269 0,434 360658 25143 0,407 392989 21116 0,574 375334 8043 0,474

m2G 287876 78923 232710 17620 0,303 244787 13003 0,404 243928 6967 0,391 207323 30328 0,174 234786 29265 0,336 200580 15882 0,134

m3C 120827 7655 120525 14569 0,976 113059 4849 0,212 134898 25541 0,412 108754 7963 0,131 113638 7144 0,300 88510 47469 0,309

m5C 212366 57489 174035 15486 0,327 165388 41038 0,313 193851 15976 0,619 188074 29468 0,550 205062 16405 0,843 189325 9301 0,531

m5U 23769 1457 28349 149 0,006 26884 1967 0,092 27097 1708 0,062 23278 1584 0,713 26131 561 0,059 25909 282 0,067

m6A 93290 38013 119137 65089 0,585 127265 17616 0,233 130103 52971 0,383 84680 42041 0,805 118995 104715 0,710 48520 17193 0,137

m7G 233709 56924 141249 47520 0,097 167160 30658 0,149 183423 58476 0,346 201483 74323 0,583 216591 83759 0,784 279226 23420 0,269

mcm5s2U 1202 625 6 4 0,030 3 1 0,029 25 5 0,031 123 34 0,041 978 1236 0,794 804 956 0,579

mcm5U 3089 951 123 100 0,006 26 8 0,005 177 69 0,006 8169 1008 0,003 5080 1375 0,108 6220 1862 0,060

ncm5U 841 399 848 615 0,988 0 1 0,022 6 10 0,022 759 199 0,766 731 178 0,684 693 12 0,554

ncm5Um 456 448 309 336 0,673 0 0 0,153 5 6 0,156 450 210 0,983 659 249 0,532 547 68 0,747

t6A 18308 2323 23231 9486 0,432 17876 2606 0,841 21542 7130 0,497 21889 5205 0,338 23767 9006 0,367 19709 514 0,365

Um 316 219 408 228 0,640 335 77 0,892 606 209 0,172 451 233 0,504 565 27 0,123 569 22 0,118

Ψ 9589 1570 11476 985 0,153 10336 1358 0,567 10620 656 0,353 10849 1265 0,340 10568 632 0,373 11692 572 0,095

yW 2829 1023 377 587 0,023 2891 236 0,924 1029 262 0,042 32 31 0,009 1277 1278 0,176 1278 1667 0,242

WT Spb1Δ Shq1ΔTrm9Δ Elp1Δ Kti12Δ Slm3Δ



 

Annex V.2. Ratios of the levels of tRNA modifications in selected KO strains relative 

to WT. Underlined: mutant was determined to be significantly different from WT by 

Student’s t-test with p-value < 0.05; Yellow: ratios < 0.02 (values of 0.001 indicate 

undetectable ribonucleosides in the mutant strains); Green: ratios < 0.6; Red: ratios > 1.5. 

 

  

Mod Trm9Δ Elp1Δ Kti12Δ Slm3Δ Spb1Δ Shq1Δ

ac4C 0.658 0.389 0.658 1.084 1.264 1.526

Am 0.936 1.018 0.983 0.929 1.053 1.013

Cm 0.650 0.822 0.793 0.679 0.649 0.521

D 1.173 1.073 1.095 1.123 1.099 1.209

Gm 0.768 0.780 0.863 0.851 0.943 0.909

I 1.412 0.821 1.258 1.354 1.954 2.340

i6A 0.856 1.085 1.143 0.759 1.217 1.100

m1A 0.699 0.744 0.864 0.822 0.990 1.207

m1G 0.726 0.700 0.719 0.713 0.749 0.738

m1I 0.769 0.787 0.779 0.765 0.819 0.775

m2
2G 0.761 0.764 0.804 0.791 0.862 0.824

m2G 0.808 0.850 0.847 0.720 0.816 0.697

m3C 0.998 0.936 1.116 0.900 0.941 0.733

m5C 0.820 0.779 0.913 0.886 0.966 0.892

m5U 1.193 1.131 1.140 0.979 1.099 1.090

m6A 1.277 1.364 1.395 0.908 1.276 0.520

m7G 0.604 0.715 0.785 0.862 0.927 1.195

mcm5s2U 0.005 0.002 0.021 0.103 0.814 0.669

mcm5U 0.040 0.008 0.057 2.645 1.645 2.014

ncm5U 1.008 0.001 0.007 0.903 0.869 0.823

ncm5Um 0.678 0.001 0.011 0.986 1.443 1.198

t6A 1.269 0.976 1.177 1.196 1.298 1.077

Um 1.292 1.062 1.919 1.429 1.788 1.800

Ψ 1.197 1.078 1.107 1.131 1.102 1.219

yW 0.133 1.022 0.364 0.011 0.451 0.452
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Annex V.3. Normalized mass spectrometer signal intensities for 25S and 18S rRNA 

modifications in S. cerevisiae KOs. Data represent mean ± SD of triplicates of three 

independent clones, with Student's t-test relative to WT. 

 

  

Mod Average SD Average SD t-test Average SD t-test

ac4C 4002254 6914302 2 3 0.373 1142 1017 0.373

Am 14127112 24284714 108029 7860 0.374 127851 16311 0.375

Cm 3220799 5465476 38031 3951 0.370 59138 25689 0.373

Gm 6429842 10974156 88429 7593 0.374 111091 17919 0.375

I 3545379 6140397 488 180 0.374 303 297 0.374

m1A 6465752 11198995 0 0 0.374 0 0 0.374

m1acp3Ψ 4099567 7099670 195 17 0.374 210 33 0.374

m1G 3378944 5811814 40035 16883 0.376 43127 12397 0.376

m2
2G 4693105 8062596 58333 19784 0.376 60829 12982 0.376

m2G 2893988 4994033 21303 8619 0.375 21023 8699 0.375

m4C 3383 1139 6077 2140 0.127 3487 3212 0.961

m5C 2887790 4949841 34897 9962 0.375 38913 2773 0.375

m6
2A 398375 689905 24 2 0.374 28 3 0.374

m6A 106470 178417 21825 4330 0.458 25004 4311 0.473

m7G 14531231 25095740 4513 824 0.373 6298 5955 0.373

Um 98149 167559 1422 138 0.374 1380 45 0.374

Ψ 1760 783 1466 74 0.552 1500 160 0.603

WT Spb1Δ Shq1Δ
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Annex V.4. Ratios of the levels of 25S and 18S rRNA modifications in selected KO 

strains relative to WT. Underlined: mutant was determined to be significantly different from 

WT by Student’s t-test with p-value < 0.05; Yellow: ratios < 0.02 (values of 0.000000 indicate 

undetectable ribonucleosides in the mutant strains); Green: ratios < 0.6; Red: ratios > 1.5. 

 

  

Mod Spb1Δ Shq1Δ

ac4C 0.000000 0.000285

Am 0.007647 0.009050

Cm 0.011808 0.018361

Gm 0.013753 0.017277

I 0.000138 0.000086

m1A 0.000000 0.000000

m1acp3Ψ 0.000048 0.000051

m1G 0.011848 0.012763

m2
2G 0.012429 0.012961

m2G 0.007361 0.007264

m4C 1.796319 1.030544

m5C 0.012084 0.013475

m6
2A 0.000061 0.000071

m6A 0.204990 0.234845

m7G 0.000311 0.000433

Um 0.014487 0.014058

Ψ 0.832743 0.852208
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Annex V.5. Normalized mass spectrometer signal intensities for 5.8S rRNA 

modifications in S. cerevisiae KOs. Data represent mean ± SD of triplicates of three 

independent clones, with Student's t-test relative to WT. 

 

 

Annex V.6. Ratios of the levels of 5.8S rRNA modifications in selected KO strains 

relative to WT. Underlined: mutant was determined to be significantly different from WT by 

Student’s t-test with p-value < 0.05; Yellow: ratios < 0.02 (values of 0.000000 indicate 

undetectable ribonucleosides in the mutant strains); Green: ratios < 0.6; Red: ratios > 1.5. 

 

Mod Average SD Average SD t-test Average SD t-test

ac4C 11209 12337 2597 2171 0.300 20859 25705 0.589

Am 33294 13059 18631 5008 0.144 15802 6132 0.104

Cm 9720 3722 4550 1299 0.086 3525 2710 0.080

Gm 28211 11027 18008 6534 0.240 11912 8079 0.108

I 305 86 246 16 0.305 233 121 0.446

m1A 8757 15146 8 10 0.374 28878 39596 0.457

m1acp3Ψ 585 619 206 46 0.350 362 204 0.584

m1G 29472 23068 29747 18033 0.988 16647 10404 0.430

m2
2G 112824 29365 116227 23868 0.884 105828 53642 0.853

m2G 16528 11739 15103 7189 0.866 11491 4963 0.531

m4C 33979 31943 49755 10870 0.463 16810 29115 0.529

m5C 42900 13976 37928 11517 0.659 36363 21590 0.683

m6A 15147 13911 24322 5896 0.352 10128 16936 0.712

m7G 12008 14922 1535 450 0.291 17483 21548 0.736

Um 708 271 581 131 0.507 402 233 0.212

Ψ 1571 281 1215 262 0.184 876 457 0.088

WT Spb1Δ Shq1Δ

Mod Spb1Δ Shq1Δ

ac4C 0.231662 1.860968

Am 0.559600 0.474632

Cm 0.468091 0.362659

Gm 0.638318 0.422224

I 0.805620 0.762870

m1A 0.000863 3.297670

m1acp3Ψ 0.352337 0.618312

m1G 1.009334 0.564859

m2
2G 1.030163 0.937993

m2G 0.913735 0.695219

m4C 1.464294 0.494707

m5C 0.884101 0.847624

m6A 1.605668 0.668626

m7G 0.127818 1.455982

Um 0.821097 0.567371

Ψ 0.773455 0.557386
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Annex V.7. Normalized mass spectrometer signal intensities for 5S rRNA 

modifications in S. cerevisiae KOs. Data represent mean ± SD of triplicates of three 

independent clones, with Student's t-test relative to WT. 

 

 

  

Mod Average SD Average SD t-test Average SD t-test

ac4C 12211 8907 11226 10114 0.905 14965 10553 0.747

Am 17798 8910 8880 2401 0.169 6322 902 0.091

Cm 7169 3474 3074 1198 0.126 2100 1999 0.094

Gm 20785 7395 15413 4327 0.339 8392 6917 0.101

hm5C 4 6 3 5 0.888 0 0 0.369

I 797 184 466 181 0.091 507 275 0.204

m1A 18632 17281 5 5 0.135 16275 15306 0.868

m1acp3Ψ 716 457 355 181 0.273 604 789 0.843

m1G 53030 12065 43935 13933 0.441 28996 22210 0.175

m1Y 965 741 968 425 0.994 375 369 0.285

m2
2G 91986 13024 84468 19068 0.603 55911 37241 0.188

m2G 27560 6292 24739 8730 0.673 17552 10239 0.223

m3U 35 32 16 23 0.451 1 1 0.138

m4C 6733 11662 7765 12970 0.923 0 0 0.374

m5C 37655 11529 35609 8600 0.818 28158 20746 0.526

m6
2A 68 41 34 13 0.237 63 70 0.921

m6A 5763 9910 5947 9492 0.983 100 94 0.378

m7G 24662 15860 25976 21150 0.936 27200 18405 0.865

Ψ 1364 722 1609 205 0.601 904 590 0.441

WT Spb1Δ Shq1Δ
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Annex V.8. Ratios of the levels of 5S rRNA modifications in selected KO strains 

relative to WT. Underlined: mutant was determined to be significantly different from WT by 

Student’s t-test with p-value < 0.05; Yellow: ratios < 0.02 (values of 0.000000 indicate 

undetectable ribonucleosides in the mutant strains); Green: ratios < 0.6; Red: ratios > 1.5. 

 

 

  

Mod Spb1Δ Shq1Δ

ac4C 0.919362 1.225600

Am 0.498922 0.355221

Cm 0.428813 0.292932

Gm 0.741525 0.403769

hm5C 0.824662 0.080893

I 0.584347 0.635779

m1A 0.000293 0.873520

m1acp3Ψ 0.496376 0.844193

m1G 0.828489 0.546780

m1Y 1.003901 0.388835

m2
2G 0.918267 0.607821

m2G 0.897656 0.636876

m3U 0.455216 0.027708

m4C 1.153220 0.000045

m5C 0.945665 0.747772

m6
2A 0.496387 0.927791

m6A 1.031778 0.017424

m7G 1.053272 1.102905

Ψ 1.180084 0.662685
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 Wobble uridine modified tRNAs quantification 

 

 

Annex VI.1. Native PAGE of cDNA amplified by FL-PCR. Wobble uridine modified tRNAs 

were quantified by FL-PCR and generated specific bands of amplified cDNAs developed by 

M                    WT                      Trm9Δ Elp1Δ M              Kti12Δ Slm3Δ
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native PAGE. Each lane represents an independent clone of the strain mentioned above 

each lane and contains cDNA from three technical replicates (NOTE: Due to the low amount 

of same tRNAs in specific KO strains, bands could be very light – but detected in an Applied 

Biosystems 7500 Real-Time PCR System with confidence). A. Amplified cDNA for 5S rRNA 

in WT, Trm9Δ, Elp1Δ, Kti12Δ and Slm3Δ strains (expected band size: 113 bp). B. Amplified 

cDNA for tRNAAla
TGC in WT, Elp1Δ and Kti12Δ strains (expected band size: 86 bp). C. 

Amplified cDNA for tRNAArg
TCT in WT, Trm9Δ, Elp1Δ and Kti12Δ strains (expected band 

size: 90 bp). D. Amplified cDNA for tRNAGln
TTG in WT, Trm9Δ, Elp1Δ, Kti12Δ and Slm3Δ 

strains (expected band size: 93 bp). E. Amplified cDNA for tRNAGlu
TTC in WT, Trm9Δ, Elp1Δ, 

Kti12Δ and Slm3Δ strains (expected band size: 83 bp). F. Amplified cDNA for tRNAGly
TCC in 

WT, Trm9Δ, Elp1Δ and Kti12Δ strains (expected band size: 81 bp). G. Amplified cDNA for 

tRNALeu
TAA in WT, Elp1Δ and Kti12Δ strains (expected band size: 81 bp). H. Amplified cDNA 

for tRNALys
TTT in WT, Trm9Δ, Elp1Δ, Kti12Δ and Slm3Δ strains (expected band size: 94 bp). 

I. Amplified cDNA for tRNAPro
TGG in WT, Elp1Δ and Kti12Δ strains (expected band size: 92 

bp). J. Amplified cDNA for tRNASer
TGA in WT, Elp1Δ and Kti12Δ strains (expected band size: 

79 bp). K. Amplified cDNA for tRNAThr
TGT in WT, Elp1Δ and Kti12Δ strains (expected band 

size: 89 bp). L. Amplified cDNA for tRNAVal
TAC in WT, Elp1Δ and Kti12Δ strains (expected 

band size: 84 bp). M. Amplified cDNA for mt-tRNALys
TTT in WT and Slm3Δ strains (expected 

band size: 86 bp). M: GeneRuler™ Ultra Low Range DNA Ladder. 
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 Network analysis of the 83 studied RNAmods 

 

 

Annex VII.1. Network analysis of RNAmods. Interactome was predicted using STRING 

database (version 10.0). Clustering was performed using MCL algorithm with inflation 

parameter = 2. Colored lines between the proteins indicate the various types of interaction 

evidence. Small nodes represent proteins of unknown 3D structure; Large nodes represent 

some known or predicted 3D structure. Dashed lines represent inter-cluster edges. 
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Annex VII.2. Network analysis of RNAmods. Interactome was predicted using STRING 

database (version 10.0). Clustering was performed using MCL algorithm with inflation 

parameter = 2. Blue lines between the proteins indicate the various types of interaction 

confidence. Small nodes represent proteins of unknown 3D structure; Large nodes 

represent some known or predicted 3D structure. Dashed lines represent inter-cluster 

edges. 
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 Functional enrichment of up-regulated proteins that 

aggregated in the absence of U34 modification 

 

 

Annex VIII.1. Functional enrichment in up-regulated proteins that aggregated in 

mutant strains lacking U34 modification. Molecular functions that are significantly 

enriched in the insoluble fraction of Trm9Δ (A), Elp1Δ (B) and Slm3Δ (C) cells compared to 

the S. cerevisiae genome. Circle diagrams indicate the distribution of aggregated proteins 

into functional categories. Bar diagrams indicate the fold-enrichment of functional 

categories compared to the genome using GO data from http://genecodis.cnb.csic.es. All 

shown categories were significant with 5% FDR. 
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Annex VIII.2. Functional enrichment in up-regulated proteins that aggregated in 

mutant strains lacking U34 modification. Cellular components that are significantly 

enriched in the insoluble fraction of Trm9Δ (A), Elp1Δ (B) and Slm3Δ (C) cells compared to 

the S. cerevisiae genome. Circle diagrams indicate the distribution of aggregated proteins 

into functional categories. Bar diagrams indicate the fold-enrichment of functional 

categories compared to the genome using GO data from http://genecodis.cnb.csic.es. All 

shown categories were significant with 5% FDR. 
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Annex VIII.3. Functional enrichment in up-regulated proteins that aggregated in 

mutant strains lacking U34 modification. KEGG pathways that are significantly enriched 

in the insoluble fraction of Trm9Δ (A) and Elp1Δ (B) cells compared to the S. cerevisiae 

genome. Diagrams indicate the fold-enrichment of KEGG pathways compared to the 

genome using GO data from http://genecodis.cnb.csic.es. All shown categories were 

significant with 5% FDR. 
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Annex VIII.4. Functional enrichment in common up-regulated proteins that 

aggregated in Trm9Δ, Elp1Δ and Slm3Δ mutant strains lacking U34 modification. 

Molecular functions (A), biological processes (B), cellular components (C) and KEGG 

pathways (D) that are significantly enriched in common proteins that aggregated in Trm9Δ, 

Elp1Δ and Slm3Δ cells compared to the S. cerevisiae genome. Circle diagrams indicate the 

distribution of aggregated proteins into functional categories. Bar diagrams indicate the fold-

enrichment of functional categories compared to the genome using GO data from 

http://genecodis.cnb.csic.es. All shown categories were significant with 1% FDR. 
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 Amino acid misincorporations pattern in cells lacking 

U34 modification 

 

Annex IX.1. Summary of the amino acid misincorporations found in up-regulated 

proteins that aggregated in mutant cells and WT. Highlighted in grey are amino acid 

misincorporations not expected to occur by the hypomodification observed in that strain. 

Sample # aa S→R D→E N→K H→Q F→L 
Other aa 

misincorporations 
Total aa 

misincorporations 

WTc1 530262 5 13 3 0 6 59 86 

WTc2 413777 4 6 2 2 6 33 53 

WTc3 435846 7 12 1 1 8 29 58 

Trm9Δ c3 487269 12 14 7 3  99 135 

Elp1Δ c1 448507 10 21 8 3 9 66 117 

Slm3Δ c1 337702  14 3 5  38 60 

Slm3Δ c2 979201  119 32 20  496 667 

 

Annex IX.2. Percentage of amino acid misincorporations shared between samples. 

Shared WT Trm9Δ Elp1Δ Slm3Δ 

WT 100.0% 8.8% 15.5% 5.3% 

Trm9Δ 7.0% 100.0% 7.2% 3.2% 

Elp1Δ 10.5% 6.2% 100.0% 4.4% 

Slm3Δ 21.0% 15.9% 25.8% 100.0% 

 

 

Annex IX.3. Amino acid misincorporations occurred in specific codon sites. Relative 

frequency of amino acid misincorporations in the codons indicated in the x-axis, in the 

mutant strains and WT. A. Codons that pair with tRNAs modified with mcm5s2U34. B. 

Codons that pair with tRNAs modified with ncm5U34. Distribution of amino acid 
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misincorporations among specific codons is relative to total number of amino acid 

misincorporations in each sample. 

 

 

Annex IX.4. Plots show the relative abundance of peptides with amino acid 

misincorporations relative to the abundance of the WT peptide. Relative peptide 

abundances were calculated by dividing the area of each peptide with misincorporations at 

a specific codon site by the total area of all peptides for that specific codon site. 
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Annex IX.5. Amino acid misincorporations patterns observed in Trm9Δ relative to WT 

samples. The heat map shows the relative frequency of amino acid substitutions and the 

codons in which those substitutions occurred comparatively to WT. Over-represented 

codons are displayed in red and under-represented codons are displayed in green. Codons 

showing no difference from the genome average are displayed in black. 
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Annex IX.6. Amino acid misincorporations patterns observed in Elp1Δ relative to WT 

samples. The heat map shows the relative frequency of amino acid substitutions and the 

codons in which those substitutions occurred comparatively to WT. Over-represented 

codons are displayed in red and under-represented codons are displayed in green. Codons 

showing no difference from the genome average are displayed in black. 
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Annex IX.7. Amino acid misincorporations patterns observed in Slm3Δ relative to WT 

samples. The heat map shows the relative frequency of amino acid substitutions and the 

codons in which those substitutions occurred comparatively to WT. Over-represented 

codons are displayed in red and under-represented codons are displayed in green. Codons 

showing no difference from the genome average are displayed in black.  
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 Identification of human orthologues 

 

Annex X.1. Identification of orthologues between human disease aggregates in 

Alzheimer’s disease (Liao et al., 2004; Wang et al., 2005), Parkinson’s disease (Xia et 

al., 2009) and/or familial amyotrophic lateral sclerosis (Basso et al., 2009) and yeast. 

+ represents the presence of the human orthologue in the insoluble fraction of the mutant 

strain. 

Disorder Uniprot ID Description Yeast orthologue Trm9Δ Elp1Δ Slm3Δ 

β
 a

m
y
lo

id
 a

s
s
o

c
ia

te
d

 

Q93050 
ATPase, H+-transporting, lysosomal V0 
subunit A 

VPH1, STV1       

P21281 
ATPase, H+-transporting, lysosomal V1 
subunit B 

VMA2 + + + 

P53675 Clathrin, heavy polypeptide 1 CHC1       

Q14204 Dynein, heavy polypeptide 1 DYN1 +   + 

P08238 Heat shock 90-kDa protein 1, β HSC82, HSP82   +   

Q01813 Phosphofructokinase PFK1, PFK2     + 

P22314 Ubiquitin-activating enzyme E1 UBA1       

Q05193 Dynamin 1         

P62258 14-3-3 ε BMH2, BMH1       

P63104 14-3-3 ζ         

P31946 14-3-3 β/α         

P31146 Coronin, actin-binding protein         

Q01814 ATPase, Ca2+-transporting PMC1 +     

P07339 Cathepsin D PEP4       

Q9Y5K8 
ATPase, H+-transporting, lysosomal V1 
subunit D 

VMA8       

P36543 
ATPase, H+-transporting, lysosomal V1 
subunit E 

VMA4       

Q9UI12 Vacuolar ATPase subunit H         

P08670 Vimentin         

P14136 Glial fibrillary acidic protein (GFAP)         

P02679 Fibrinogen γ         

P10636 tau         

P05067 Amyloid β-peptide         

P01009 Antitrypsin         

P02452 Collagen I, α-1 polypeptide         

P04080 Cystatin B         

P01034 Cystatin C         
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P60709 Actin, cytoplasmic 1 ACT1       

P06733 α enolase 
ENO1, ENO2, 
ERR3, ERR2 

   + +  + + 

P25705 ATP synthaseα chain ATP1       

P06576 ATP synthase β chain ATP2 +     

Q13885 β tubulin TUB2 +   + 

Q3ZCM7 β-tubulin 4Q TUB2 +   + 
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Q00610 Clathrin heavy chain 1 CHC1       

Q6IQ15 Elongation factor 1-α 1         

P06744 Glucose 6-phosphate isomerase PGI1   + + 

P11142 Heat shock cognate 71 kDa protein SSA3, SSA2, SSA4     + 

Q13509 Tubulin β-4 chain         

P38606 Vacuolar ATP synthase catalytic subunit A         

P04350 Hypothetical protein TUB2 +   + 

P00558 Phosphoglycerate kinase 1 PGK1       

P68366 Tubulin α-4 chain TUB3, TUB1  + +  + + + 

P14618 Pyruvate kinase 3 isoform 2 CDC19, PYK2       

P04406 Glyceraldehyde-3-phosphate dehydrogenase TDH3, TDH1, TDH2   +   

Q05193 Dynamin-1         

P28482 Mitogen-activated protein kinase 1 FUS3, KSS1 +     

P40926 Malate dehydrogenase MDH1       

P12236 ADP, ATP carrier protein, liver isoform T2 PET9, AAC1, AAC3       

Q06830 Peroxiredoxin1 TSA2       

Q3MIH3 
Ubiquitin A-52 residue ribosomal protein 
fusion product 1 

RPL40A       

Q9HAV0 
Guanine nucleotide-binding protein β subunit 
4 

STE4       

B3KRA9 Hexokinase         

P30041 Peroxiredoxin PRX1       

P04908 H2A histone family, member A HTA2, HTA1       

P62805 H4 histone family, member C HHF1       

A6NIW5 Peroxiredoxin 2 isoform b         

B7Z2V7 Syntaxin binding protein 1         

Q9UPY8 
Microtubule-associated protein RP/EB family 
member 3 

BIM1 +     

P48047 
ATP synthase oligomycin sensitivity conferral 
protein 

ATP5       

Q6AWC5 Guanine nucleotide binding protein α         

P23528 Cofilin         

P09936 
Ubiquitin carboxyl-terminal hydrolase isozyme 
L1 

        

Q16555 Dihydropyrimidinase related protein-2         

Q01082 Spectrin β chain         

Q99962 SH3-containing GRB2-like protein 2         

P40925 Cytosolic malate dehydrogenase         

P61978 Heterogeneous nuclear ribonucleoprotein K         

P07195 Lactate dehydrogenase B         

B4DGT1 Spectrin α chain         

P15924 Desmoplakin         

O00499 Myc box dependent interacting protein 1         

P08670 Vimentin         

Q92508 Hypothetical protein KIAA0233         

P05026 
Sodium/potassium-transporting ATPase β-1 
chain 

        

P00918 Carbonic anhydrase II         

B3KTM0 Microtubule-associated protein tau isoform 4         
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Q02413 Desmoglein 1 precursor         

P07196 
Similar to neurofilament, light polypeptide 68 
kDa 

        

P08758 Annexin A5         

P02686 Myelin basic protein         

Q8TC62 Septin 7         

P04075 Fructose-bisphosphate aldolase A         

Q86W61 Versican core protein precursor         

Q9GZV7 Brain link protein-1 precursor         

P09972 Aldolase C, fructose-bisphosphate         

P02768 Similar to α-fetoprotein         

Q92752 Tenascin-R         

P17600 Synapsin I         

Q16352 α-internexin         

Q4W5L2 α-synuclein         

B4DFN6 2’,3’-cyclic nucleotide 3’-phosphodiesterase         

A8K161 
Calcium/calmodulin-dependent protein kinase 
type II α chain 

        

P12277 Creatine kinase, B chain         

P13073 Cytochrome c oxidase subunit IV isoform 1         

P02792 Ferritin light chain         

P47929 Galectin 7         

P62937 Peptidyl-prolyl cis-trans isomerase A 
CPR1, CPR5, 
CPR2, CPR3 

+ + + 

Q92777 Synapsin II         
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Q99798 Aconitase 2         

O95782 Adaptor-related protein complex 2, α 1 APL3       

P63010 Adaptor-related protein complex 2, β 1         

P37840 α-synuclein         

P38606 Atpase, lysosomal 70 kd, v1 subunit α         

Q9ULU8 Calcium-dependent secretion activator         

P06702 Calgranulin β         

P16152 Carbonyl reductase 1         

Q00610 Clathrin heavy chain 1 CHC1       

P53621 Coatomer protein complex, subunit α COP1       

Q16555 
Collapsin response mediator protein HCRMP-
2 

        

Q13616 Cullin 13 CDC53       

O15075 Doublecortin-like kinase3         

Q14203 Dynactin 1         

O00429 Dynamin-like protein DNM1       

Q14204 Dynein, heavy polypeptide 1 DYN1 +   + 

Q5XPI4 
E3 ubiquitin ligase kpc1, ring finger protein 
1233 

        

Q9UK22 F-box protein 23         

P06396 Gelsolin         

P06744 Glucose phosphate isomerase PGI1   + + 

P04406 Glyceraldehyde-3-phosphate dehydrogenase TDH3, TDH1, TDH2   +   

P09471 Guanine nucleotide binding protein α GPA1, GPA2   + + 
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P08238 Heat shock protein 90 kda HSC82, HSP82   +   

P31939 Imp cyclohydrolase ADE16, ADE17   +   

Q02750 
Mek1, mitogen-activated protein kinase 
kinase 1 

        

P30044 Peroxiredoxin 53 AHP1 + + + 

Q15149 Plectin 1         

Q13200 Proteasome 26s non-ATPase subunit 23 RPN1       

P30101 Protein disulfide isomerase-associated 3 EUG1 +     

P05771 Protein kinase c, β 1         

Q13813 Spectrin, α         

Q01082 Spectrin, β         

P09936 Ubiquitin c-terminal hydrolase l1         

P62988 Ubiquitin3         

P22314 Ubiquitin-activating enzyme E1 UBA1       

Q96FW1 Ubiquitin-specific protease otubain 13         

Q96QK1 Vacuolar protein sorting 35 VPS35 + + + 

O75083 WD repeat-containing protein 1 AIP1   +   
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P08553 Neurofilament triplet M protein (NFM)         

P19246 Neurofilament triplet H protein (NFH)         

P08551 Neurofilament triplet L protein (NFL)         

P08553 NFM         

P03995 Glial fibrillary acidic protein (GFAP)         

P08113 Endoplasmin         

Q01853 Transitional endoplasmic reticulum ATPase CDC48       

P07901 Heat shock protein HSP 90 α HSC82, HSP82   +   

Q91VD9 
NADH-ubiquinone oxidoreductase 75 kDa 
subunit 

        

Q64521 Glycerol-3-phosphate dehydrogenase         

Q99KI0 Aconitase ACO1   + + 

P20152 Vimentin         

P63017 Heat shock cognate 71 kDa protein (HSC70) SSA2       

P09103 Protein disulfide-isomerase (PDI) PDI1       

P46660 α-internexin         

O08553 Dihydropyrimidinase-related protein 2 DAL1 +   + 

P52480 Pyruvate kinase M2 CDC19, PYK2       

P26443 Glutamate dehydrogenase 1 GDH3, GDH1    + +   

Q03265 ATP synthase α chain (ATPase) ATP1       

P20152 Vimentin         

P17182 α-enolase 
ENO1, ENO2, 
ERR2, ERR3 

   + +  + + 

P30275 Creatine kinase         

P15105 Glutamine synthetase GLN1       

P15106 Glutamine synthetase         

P05201 Aspartate aminotransferase AAT2   +   

Q9D6R2 Isocitrate dehydrogenase [NAD] subunit α IDH2       

P63085 Mitogen-activated protein kinase 1 (ERK2) FUS3, KSS1 +     

P05063 Fructose-bisphosphate aldolase C (aldolase)         
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P16858 
Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) 

        

Q9D051 Pyruvate dehydrogenase E1+ PDB1     + 

P62880 
Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit β-2 

        

P16125 L-lactate dehydrogenase B chain (LDH)         

P14152 Cytosolic malate dehydrogenase         

P48036 Annexin A5         

P61982 14-3-3 protein γ         

P14602 Heat-shock protein β-1 (HSP27)         

P23927 α crystallin B chain         

P17742 Peptidyl-prolyl cis-trans isomerase A (CypA) CPR1 + + + 

P00441 SOD1 SOD1   +   

Q61292 Laminin subunit β-2         

Q60932 
Voltage-dependent anion-selective channel 
protein 1 (VDAC1) 

POR1, POR2     + 

 

 


