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resumo 
 
 

Os recifes de coral são ecossistemas extremamente complexos e produtivos, 
que fornecem habitat a milhares de espécies marinhas. Apesar da sua 
importância ecológica e socioeconómica, os recifes de coral estão globalmente 
ameaçados por impactos naturais e antropogénicos. A descarga de resíduos 
domésticos e industriais contribui para a introdução de xenobióticos, 
nomeadamente filtros UV orgânicos, nestes ecossistemas marinhos, como os 
recifes de corais, contribuindo para sua degradação nas últimas décadas. 
Estima-se que aproximadamente 40 % dos recifes de corais localizados ao 
longo das áreas costeiras correm o risco de exposição a filtros UV orgânicos, 
como a Benzophenona-3 (BP-3) e 3- (4-metilbenzilideno) cânfora (4-MBC), 
amplamente usados em protetores solares e produtos de cuidados pessoais. 
Por conseguinte, é importante avaliar os efeitos destes contaminantes 
emergentes nas espécies que habitam as áreas mais afetadas, 
nomeadamente as zonas intertidais. O género Zoanthus (Anthozoa: 
Hexacorallia) contém inúmeras espécies abundantes em recifes de corais e 
áreas intertidais de regiões tropicais e subtropicais. Estes corais 
fotossintéticos, que vivem em simbiose com dinoflagelados do género 
Symbiodinium, podem ter potencial aplicação como organismos indicadores. A 
pesquisa existente em ecologia de zoantídeos é, no entanto, escassa, em 
comparação com outros grupos de cnidários. Neste estudo, procuramos 
avaliar os potenciais efeitos nefastos da exposição a curto prazo de Zoanthus 
sp. a BP-3 e 4-MBC. Expuseram-se mini colónias (4 a 6 pólipos) de Zoanthus 
sp. a 4 concentrações (0.5; 1; 2 e 4 mg/L) de BP-3 e 4-MBC durante 96 h. 
Após exposição, as mini colónias foram fotografadas para uma avaliação da 
resposta comportamental dos pólipos, mediu-se in vivo a eficiência 
fotossintética do fotossistema II, através da fluorometria de pulso modulado 
(PAM) e, finalmente, as células de Symbiodinium sp. foram quantificadas e 
normalizadas para o peso seco de Zoanthus sp.. Os resultados sugeriram que 
a exposição de Zoanthus sp. a concentrações sub-letais e ambientalmente 
relevantes de BP-3 e 4-MBC, induziu reações comportamentais nos pólipos 
(aumento do número de pólipos fechados com o aumento das concentrações), 
diminuição da eficiência fotossintética e do número de endossimbiontes. Para 
além da alteração comportamental dos pólipos, os filtros UV orgânicos 
testados provaram ter potencial para induzir o branqueamento de corais. 
Estudos ecotoxicológicos adicionais devem ser realizados com outros 
compostos e diferentes espécies de corais, para avaliar o efeito destes 
contaminantes emergentes em recifes de corais e também para a identificação 
de filtros UV menos prejudiciais ao meio ambiente. 
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abstract 

 
Coral reefs are extremely complex and productive ecosystems, providing 
habitat for thousands of marine species. Despite their ecological and socio-
economic importance, coral reefs are globally threatened by natural and 
anthropogenic impacts. The discharge of domestic and industrial wastes 
contributes for the introduction of xenobiotics, namely organic UV filters, in 
marine ecosystems such as coral reefs, contributing for their degradation over 
the past few decades. It is estimated that approximately 40 % of coral reefs 
located along coastal areas are at risk of exposure to organic UV filters such as 
Benzophenone-3 (BP-3) and 3-(4-methylbenzylidene) camphor (4-MBC), two 
widely used compounds in sunscreen lotions and personal-care products. It is 
therefore important to evaluate the effects of these emerging contaminants on 
local species inhabiting the more affected areas, namely the intertidal 
environments. The genus Zoanthus (Anthozoa: Hexacorallia) contains 
numerous species abundant in coral reefs and intertidal areas of tropical and 
sub-tropical regions. These photosynthetic corals, which live in symbiosis with 
dinoflagellates of genus Symbiodinium, might have potential application as 
indicator organisms. The existing research in zoanthids ecology is however 
scarce in comparison with other cnidarian groups. In this study, we aimed to 
evaluate the effects of short-term exposure of Zoanthus sp. to BP-3 and 4-
MBC. Zoanthus sp. mini colonies (4 – 6 polyps) were exposed to 4 
concentrations (0.5; 1, 2 and 4 mg/L) of BP-3 and 4-MBC during 96 h. After 
exposure, mini colonies were photographed for polyp behavioral response 
evaluation, the photosynthetic efficiency of photosystem II was measured in 
vivo, through PAM fluorometry, and finally, the Symbiodinium sp. cells were 
quantified and normalized to Zoanthus sp. dry weight. Results suggested that 
Zoanthus sp. exposure to sub-lethal and environmentally relevant 
concentrations of BP-3 and 4-MBC induced behavioral reactions in the polyps 
(increase of closed polyps with increased concentrations), decreased 
photosynthetic efficiency and the number of endosymbionts. Beside the polyp 
behavioural response, tested organic UV filters proven to have potential to 
induce coral bleaching. Further ecotoxicological studies should be undertaken 
with other compounds and with different coral species, to evaluate the effect of 
these emergent contaminants on coral reefs, and identify UV filter compounds 
less harmful to the environment. 
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1. General introduction 

 

1.1. Coral reefs 

 

Coral reefs are known as the rainforests of the sea, for being one of the most diverse 

and productive marine ecosystems, providing shelter, food, spawning and nursery 

habitat to several species of fish, sponges, cnidarians, worms, crustaceans, molluscs, 

echinoderms, algae, sea snakes, sea turtles, and sea squirts (Reaka-Kudla, 1997; Ruppert 

et al., 2004).  

Besides their ecological relevance, coral reefs also have an important socio-economic 

value for several countries, estimated in more than 20 trillion dollars annually (Costanza 

et al., 1997), through commercial fish stocks maintenance (Costanza et al., 1997) and 

tourism activities, providing a high impact on local employability and economies around 

the world (Brander et al., 2007). Despite their huge ecological and economic importance, 

coral reefs are suffering a serious decline. It is estimated that 30 % are already highly 

damaged and in 2030 close to 60 % may be lost (Hughes et al., 2003a). 

Corals are affected by a number of natural stressors, such as environmental factors, 

predation, competition, or natural diseases, being bacteria considered the main cause of 

diseases in these organisms (Bourne et al., 2009; Cooney et al., 2002; Pantos et al., 2003; 

Sheridan et al., 2013). Among the competition effects, phase shifts processes, 

characterized by dominance of non-reef-building organisms (e.g. algae or soft corals) 

and the consequent decrease in coral abundance or cover (Done, 1992), can lead to 

changes in biodiversity (Done, 1999) and threaten ecosystem stability (Mumby, 2009). 

The natural stressors can also substantially affect corals. El Nino events and global 

warming contribute for ocean acidification and rising water temperature, which can 

induce massive bleaching events (loss of endosymbiotic dinoflagellates; figure 1) 

(Hoegh-Guldberg, 1999; Lesser et al., 1990).  
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Figure 1: Massive bleaching event (posted by Courtney Mattison of Mission Blue in Ocean Views 
on October 29, 2015). 

 

Anthropogenic pressures such as destructive fishing practices (use of explosives and 

cyanide), irresponsible tourism activities and urban and industrial pollution might also 

negatively affect coral reefs (Hughes et al., 2003b). Amongst xenobiotics released to 

coastal areas and coral reefs, some constituents of sunscreens, the organic UV filters are 

of special importance due to their widespread occurrence and potential ecological 

effects.  
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1.2. Corals 

 

"Coral" is a common designation to identify some cnidarians of class Anthozoa.  

 

 

 

 

 

 

 

Figure 2: Corals phylogeny schematic representation (WoRMS, 2017). 

 

Anatomically, corals do not have a central nervous system and their polyps have two 

epithelial cell layers, epidermis and gastrodermis. Between these two layers is the 

mesoglea (involved in phagocytosis processes). The mouth is surrounded by tentacles, 

and separates the gastro-vascular cavity from the exterior (Rocha, 2013). 

Coral species that live in symbiosis with Symbiodinium sp. have a mixotrophic feeding, 

once their nutrition is both autotrophic and heterotrophic. In autotrophy, the coral 

provides protection, nutrients and carbon dioxide used for photosynthesis, whereas the 

symbiont dinoflagellate reciprocates its host with amino acids, photosynthetically 

derived carbon compounds and saturated and polyunsaturated fatty acids (Muscatine 

and Porter, 1977; Papina et al., 2003). Through heterotrophy, coral feeds on 

phytoplankton, zooplankton, bacteria, or organic particles in a more passive way (water 

intake through the mouth) or more actively capturing food with the tentacles (mediated 

by the stinging cells). Food intake is decomposed by enzymes in the gastro-vascular 

cavity with posterior intracellular digestion (Ferrier-Pagès et al., 2011; Houlbrèque and 

Ferrier-Pagès, 2009).  
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Corals are informally divided into two main groups, hard or stony corals, and soft corals. 

Hard corals contain a skeleton formed by calcium carbonate that gives support to the 

coral colony, while soft corals do not.  

 

Figure 3: Hard and soft coral polyp illustrations: a – epidermis or ectoderm, b – gastrodermis or 
endoderm, c – mesoglea, d – gastrovascular cavity, e – mouth, f – tentacles. Image addapted 
from Rocha (2013). 

 

The genus Zoanthus (Anthozoa: Hexacorallia) includes cosmopolitan species, commonly 

found in coral reefs and intertidal zones of tropical and sub-tropical regions, living in 

symbiosis with dinoflagellates of genus Symbiodinium (Reimer et al., 2006). Zoanthus sp. 

might be good models to evaluate the effect of contaminants since it forms a colony 

bound by a single tissue, being each individual polyp a genetic clone of the rest of the 

colony, allowing the assessment of effects without confounding effects arising from 

genetic variability. Moreover, they are easy to reproduce asexually and maintain in 

laboratory, having polyps with good dimensions for behavioral analysis (Acosta et al., 

2005; Ryland, 1997). 
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1.1. Organic UV filters and the marine environment 

 

People are becoming concerned about protecting themselves from the effects of sun 

exposure (sunburns, photo aging, DNA damage and potential cancerous skin lesions), 

thus leading to a greater use of products with organic ultraviolet filters (UV filters) in 

their constitution. 

Organic UV filters have been developed to absorb or block ultraviolet radiation (UV-A, 

UV-B), protecting the skin from solar radiation through dermal application, and materials 

from degradation (Murphy, 1999). Sunscreens are divided into three categories: 

products composed with UV organic chemical absorbers, metal oxides (inorganic UV 

filters) or products that use of a combination of organic and inorganic agents (Dransfield, 

2000; Gasparro et al., 1998; Sambandan and Ratner, 2011). 

With an annual average consumption per capita of 20 mL (with a worldwide increase of 

7 % per year), the economy of the sunscreens market is growing with an estimated 

profit of 7 billion euros in 2014 (Osterwalder et al., 2014). Organic UV filters are 

increasingly used in sunscreens and in other personal care products (PCPs) such as 

creams, lipsticks, shampoos or insect repellants, being considered important emerging 

pollutants due to its increasing demand and high production volume (CIR, 2005; Hauri et 

al., 2003). 

Among organic UV filters, Benzophenone-3 (BP-3, oxybenzone, 2-hydroxy-4-

methoxybenzophenone) and 4-methylbenzylidene camphor (4-MBC) are two of the 

most commonly used chemicals, frequently reported as pollutants of aquatic systems 

(Balmer et al., 2005; Gago-Ferrero et al., 2011; Kameda et al., 2011; Ramos et al., 2015). 

These chemicals can be indirectly transferred to the aquatic environment through 

wastewater treatment plant discharges (WWTP) or directly, when released from the skin 

into the environment during recreational activities (Eichenseher, 2006; Poiger et al., 

2004). It is estimated that about 6.000 and 14.000 tons of sunscreen lotion are released 

into coral reefs every year, putting approximately 40 % of coral reefs located in coastal 

areas at risk of exposure (Danovaro et al., 2008; Shaath, 2005). These substances act as 

pseudo-persistent pollutants, since their half-life in seawater is of several months and 
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the contamination of the exposed sites can often be renewed (Vione et al., 2013). BP-3 

and 4-MBC due to their lipophilic characteristics (log Kow of 3.79 and 4.95 respectively) 

and high stability (Gago-Ferrero et al., 2012) tend to be more accumulated in soils and 

particles and more concentrated in the microlayer surface (Tovar-Sánchez et al., 2013a). 

Also, potential for bioaccumulation and biomagnification has been suggested for organic 

UV filters such as BP-3 and 4-MBC (Giokas et al., 2007). 

The reefs closest to the coast, usually used for tourist purposes such as bathing areas or 

for recreational dives, are usually more exposed to these pollutants. Although there is 

no exhaustive information on this problematic, it is known that in coral reefs located 

from 300 to 600 m away from public swimming beaches in Okinawa, BP-3 

concentrations ranged from 4 × 10-7 and 3.8 × 10-6 µg L-1 (Tashiro and Kameda, 2013) 

and in South America, also in sediments near coral reefs, concentrations between 0.054 

and 0.578 µg Kg-1 were reported (Barón et al., 2013). The highest concentration of BP-3 

found in literature was reported for nearshore U.S. Virgin Islands, ranging from 75 µg L-1  

to 1.4 mg L-1 (Downs et al., 2016). Also nearshore, in Norway concentrations of 4-MBC in 

seawater reached 0.488 µg L-1 (Langford et al., 2008). Significant concentrations of 

organic UV filters have been also measured in lakes, swimming pools, wastewaters, 

sediments, rivers and sewage sludge (Barón et al., 2013; Downs et al., 2016; Fent et al., 

2010, 2008). 

Mostly, organic UV filters are reported to act as neurotoxicants and endocrine disruptors 

that induce reproductive pathologies, vitellogenin induction and reduction of the 

reproductive fitness (Blüthgen et al., 2012; Coronado et al., 2008; Kunz and Fent, 2006; 

Schlumpf et al., 2001; Schmitt et al., 2008). 

In vertebrates, exposure to BP-3 led to a reduction in the number of fish eggs produced 

as well as egg hatchings (Coronado et al., 2008; Kunz and Fent, 2006). Also, a potential 

antiandrogenic activity has been observed in two different life stages of zebrafish when 

exposed to BP-3 (Blüthgen et al., 2012). Several benzophenones, including BP-3, have 

been shown to induce oxidative stress in freshwater fish, Carassius auratus and also 

histopathological lesions (Liu et al., 2015a). Exposure to 4-MBC induced muscle and 

neuronal defects in Zebrafish (Danio rerio) embryos, which can therefore cause 

developmental defects (Li et al., 2016). 
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Exposure to BP-3 and 4-MBC, has shown to harm the growth and development in 

invertebrates (Campos et al., 2017b; Paredes et al., 2014), to alter the activity of 

hormonal genes and cause a disruptive effect in the initial genomic response to 

ecdysteroids in the insect Chironomus riparius (Ozáez et al., 2014, 2013a), to inhibit 

feeding in Sericostoma vittatum larvae (Campos et al., 2017a) and decrease the somatic 

growth of Daphnia magna (Sieratowicz et al., 2011). It has been reported that 4-MBC 

also disrupts normal endocrine function and development in rats, sea urchins, aquatic 

molluscs and insects (Ozáez et al., 2013a; Schlumpf et al., 2004; Schmitt et al., 2008; 

Torres et al., 2016).  

Although the ecotoxicological data on the ecological effects of these compounds on 

marine invertebrates is scarce, it is known that there is a negative effect on corals. It was 

demonstrated that both BP-3 and 4-MBC promote lytic viral cycle in Symbiodinium sp. 

(symbiotic dinoflagellates) in concentrations of 10 μL L-1 of sunscreen containing a 

percentage concentration of the respective UV filters allowed in sunscreen formulations, 

6 and 3 % of BP-3 and 4-MBC respectively, causing viral infections, which lead to 

complete bleaching of hard corals (Acropora sp., Stylophora pistillata and Millepora 

complanata) (Danovaro et al., 2008). Another study has also shown that BP-3 causes 

bleaching of a scleractinian coral (Stylophora pistillata) in larval stage by promoting the 

ossification of the planula, being therefore a skeletal endocrine disruptor (Downs et al., 

2016).  

Taking all these into account, both pollutants have entered European Union's SIN List 

(Substitute It Now) as a substance of "Very High Concern" (ChemSec., 2017). 
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1.2. Objectives 

 

The aim of this thesis was to evaluate the effect of two of the main compounds used in 

sunscreens (organic UV filters), BP-3 and 4-MBC, in the photobiology and behavioral 

reaction of Zoanthus sp. polyps, which are known to react to stressors by retracting and 

closing the oral disc.  

We formulated as null hypothesis that organic UV filters, BP-3 and 4-MBC, do not impair 

the photobiology, endosymbiont density nor the behavioral reaction of Zoanthus sp. 

polyps. 

Mini colonies of Zoanthus sp. were exposed to a gradient of concentrations of BP-3 and 

4-MBC in laboratory trials. Effects were evaluated in terms of behavioral response, 

photosynthetic efficiency of photosystem II and density of Symbiodinium sp. 

quantification. 
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2.  Effects of the organic- UV filters, oxybenzone and 4-methylbenzylidene, on the 

photobiology of the hexacoral Zoanthus sp. 

 

2.1. Abstract 

 

Benzophenone-3 (BP-3; oxybenzone) and 4-methylbenzylidene camphor (4-MBC) are 

organic ultraviolet filters (UV filters), considered important emerging pollutants and 

used for protection against radiation in sunscreens, personal care products (PCPs) and 

other materials. These chemicals can be transferred to the aquatic environment 

indirectly from wastewater treatment plant discharges (WWTP) or directly released by 

the skin in contact with water. Several studies reported its presence in distinct 

environments and their adverse effects on different species, prevailing their capacity of 

endocrine disruption. However, the effect of these pollutants in marine invertebrates, 

namely corals, remains understudied. The detrimental effects of BP-3 and 4-MBC on 

zoantharians, were evaluated through exposure of Zoanthus sp. mini colonies to 4 

concentrations (0.5; 1; 2 and 4 mg L-1) of these pollutants during 96 h. After exposure, 

polyps were photographed for behavioral response evaluation, the photosynthetic 

efficiency of photosystem II was measured in vivo, through PAM fluorometry, and lastly, 

the Symbiodinium sp. cells were quantified and normalized to Zoanthus sp. dry weight. 

Both organic UV filters shown to induce behavioral reactions in Zoanthus sp. polyps and 

impaired both photosynthetic efficiency and endosymbionts density in comparison to 

control treatments. These compounds have a potential bleaching effect on these marine 

invertebrates and may pose a threat to coral reefs, so further ecotoxicological studies on 

this topic should be undertaken. 

 

Key-words: corals; emerging contaminants organic UV filters; Benzophenone-3; 4-MBC; 

marine ecotoxicology 
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2.2. Introduction 

 

Organic UV filters are commonly used in sunscreen lotions, personal care products 

(PCPs), such as lotions, lipsticks, shampoos and insect repellants protecting skin from 

sun exposure by absorbing ultraviolet radiation (UV-A, UV-B) and other materials from 

degradation (e.g. textiles) (CIR, 2005; Díaz-Cruz et al., 2008; Hauri et al., 2003).  

The contents and concentrations of organic UV filters in PCPs can vary in different 

countries/regions, according to the legislation practiced at the place of manufacture, 

being able to constitute up to 20 % of the composition of the product (Salvador and 

Chisvert, 2007). Due to their wide production and applications organic UV filters leads to 

an increase in the introduction of these compounds into the environment (Danovaro et 

al., 2008). Organic UV filters can be transferred to many aquatic environments either 

directly due to the release of the compound from skin, or indirectly from wastewater 

treatment plant discharges (WWTP) (Eichenseher, 2006; Poiger et al., 2004). These 

substances can be considered as potential emerging pollutants due it’s growing trend 

and once they might act like pseudo-persistent pollutants, since the exposure of 

organisms in contaminated areas can frequently be renewed (Vione et al., 2013). EU 

authorities have recognized organic UV filters as important organic contaminants of the 

aquatic environment due to its high lipophilic properties, potential leading to 

bioaccumulation in organisms and potential biomagnification through aquatic food 

chains (Kunisue et al., 2012; Díaz-Cruz et al., 2008).  

The presence of organic UV filters has been detected in coastal waters, sediments, 

rivers, lakes, swimming pool waters and sewage sludge (Barón et al., 2013; Downs et al., 

2016; Fent et al., 2010, 2008) as well as in biota (Balmer et al., 2005; Blüthgen et al., 

2012; Buser et al., 2006; Fent et al., 2010).  

Benzophenone-3 (BP-3) and 3-(4-methylbenzylidene) camphor (4-MBC) are among the 

most found organic UV filters in the environment. The presence of these compounds has 

already been recorded the U.S. Virgin Islands (1.4 mg L-1 of BP-3) (Downs et al., 2016), in 

Majorca island (577.5 ng L-1 of BP-3 and 113.4 ng L-1 of 4-MBC) (Tovar-Sánchez et al., 

2013b) or in Norway (269 ng L-1 of BP-3 and 488 ng L-1 of 4-MBC) (Langford et al., 2008).  
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Regarding these two organic UV filters one of the most reported ecotoxicological effects 

on the aquatic ecosystem is hormonal activities in fish, including alteration in 

reproduction and endocrine disruption (Blüthgen et al., 2012; Christen et al., 2011; 

Coronado et al., 2008; Kunz and Fent, 2006; Schlumpf et al., 2001). A potential 

antiandrogenic activity has been observed in two different life stages of zebrafish when 

exposed to BP-3 (Blüthgen et al., 2012). For the same species, 4-MBC has shown to 

induce muscle and neuronal defects in embryos, which may cause developmental 

defects (Li et al., 2016). In invertebrates BP-3 and 4-MBC shown to harm their growth 

and development (Campos et al., 2017b; Paredes et al., 2014), and causes an inhibition 

of feeding in Sericostoma vittatum larvae (Campos et al., 2017a). It has also been shown 

to cause a decrease in somatic growth of Daphnia magna (Sieratowicz et al., 2011) and 

reduce the reproductive output in oligochaete Lumbriculus variegatus (Schmitt et al., 

2008). Furthermore, in Desmodesmus subspicatus algae and Isochrysis galbana 

microalgae, exposures lead to reductions in the cell density (Paredes et al., 2014; 

Sieratowicz et al., 2011). 

Although organic UV filters presence in the environment and their effects on the biota 

have already been proven, there are still few studies that report the potential 

ecotoxicological impact of these pollutants on invertebrates from marine ecosystems, as 

corals.  

Coral reefs are the most diverse and productive marine ecosystems, providing shelter, 

food, spawning and nursery places for fish, algae, mollusks, cnidarians and crustaceans, 

being estimated that between 172.000 and 9 million species can be found in this 

ecosystem (Reaka-Kudla, 1997; Ruppert et al., 2004). Additionally, coral reefs also have a 

high socio-economic value being evaluated in more than 20 trillion dollars annually 

(Costanza et al., 1997). Despite their ecological and socio-economic value, coral reefs 

around the world are increasingly threatened both by environmental disasters and 

anthropogenic threats (Hughes et al., 2003b). Studies of organic UV filters effect on 

corals are scarce. However, it is known that organic UV filters can promote viral 

infections on scleractinian corals that lead to bleaching (Danovaro et al., 2008), induce 

ossification of coral planules and promote genotoxicity (Downs et al., 2016). Due to the 
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scarcity of studies and the importance of corals in such a relevant ecosystem, further 

studies are needed to explore the effects of organic UV filters.  

Zoanthids (sub-class hexacorallia and family Zoanthidae) may be good models to 

evaluate the effects of organic UV filters in photosynthetic corals. This coral genus 

includes reef and intertidal species from tropical and sub-tropical areas (Burnett et al., 

1995), thus inhabiting coastal areas which are more susceptible to a higher 

concentration of these substances by direct transmissions to water. Moreover, 

zoanthids form colonies with several polyps/replicates without genetic variability, are 

easy to reproduce asexually and maintain in laboratory, having polyps with good 

dimensions for behavioral observations. 

The objective of this study was to test the potential deleterious effects of BP-3 and 4-

MBC in Zoanthus sp. polyps. After 96 h exposure to different concentrations behavioral 

reaction of Zoanthus sp. polyps was analyzed, the photosynthetic efficiency of 

photosystem II was assessed in vivo and Symbiodinium sp. cell density quantified. 

 

2.3. Materials and methods 

  

2.3.1. Zoanthus sp. husbandry and fragmentation 

 

Two colonies of Zoanthus sp. were kept in the laboratory for a 3 weeks quarantine in a 

recirculating system, with artificial salt water (ASW) prepared by mixing Red Sea Coral 

Pro Salt (Red Sea, Germany) with freshwater purified by reverse osmosis (Aqua-win RO-

6080, Taiwan). Colonies were individually stabulated in a system composed of two 90L 

tanks (60 × 60 × 30 cm) equipped with a circulation pump (Turbelle nanostream - 6025; 

Tunze, Germany), providing a water flow rate of approximately 2.500 L/h. Quarantine 

tanks were illuminated with 54 W T5 luminaires (2 × T5 Reef-Spec Actinic 22.000 K and 2 

× T5 Reef-Spec Pink; Red Sea, Germany), with a PAR intensity of 120 ± 10 µmol 

quanta/m2/s, and a photoperiod of 12 h of light and 12 h of darkness. The main tank 

used for the assays, was connected, through polyvinyl chloride (PVC) pipes, to a 100 L 

filter tank, equipped with a protein skimmer (ESC150 ReefSet, Portugal), a biological 
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filter (composed of live rock and submersed bioballs), a 300 W submersible heater 

(EHEIM Jäger, Germany), activated carbon (placed at the water outlet of the skimmer) 

and a pump (Universal 2.400, EHEIM, Germany) to return the water back to the main 

aquarium with a flow rate of approximately 1.500 L/h. The system was also equipped 

with a UV filter (Vecton V2 600, UV-C 25 Watt; TMC, U.K.), allowing the disinfection of 

microorganisms present in water.  

The TAN (Total Ammonia Nitrogen), alkalinity, PO4
3−, NO2

-, NO− 

3, Ca2+ and pH concentrations in water were regularly monitored. Temperature was 

maintained at 26 ± 0.5 ºC. Salinity was maintained at 35 through an osmoregulator 

which compensated the evaporation with reverse osmosis water (Aquastat 1000, Deltec, 

Germany). 

After quarantine, colonies were fragmented using a scalpel, and mini colonies with four 

to six polyps were produced, as represented in figure 4. Fragments were fixed to the top 

of Eppendorf tubes with veterinary surgical glue (Surgibond®, UK). Eppendorf tubes, 

used as substrate, were filled with coral rock to provide weight so that it remained 

submerged and stable on the support. After bonding, mini colonies were placed in the 

same tank of original colonies and allowed to heal for three weeks. 

 

 

 

 

 

 

 

 

Figure 4: Zoanthus sp. colony and detail of post-fragmentation mini colonies used in assays. 

 



24 
 

2.3.2. Experimental design 

 

2-hydroxy-4-methoxybenzophenone (BP- 3; CAS No. 131-57-7; purity ≥98 %) and 3-(4-

methylbenzylidene) camphor (4-MBC; CAS No. 36861-47-9, purity ≥98 %) were obtained 

from Sigma-Aldrich (Portugal). 

Stock solutions were prepared with 20 g L-1 and 4 g L-1 of BP-3 and 4-MBC, respectively, 

dissolved in dimethyl sulfoxide (DMSO). To prepare the experimental solutions (0.5; 1; 2 

and 4 mg L-1), different volumes of stock solutions were diluted in artificial salt water 

(salinity of 35). ASW control (containing only artificial salt water) and solvent control 

(DMSO) (0.002 % and 0.01 % for BP-3 and 4-MBC tests, respectively) were also prepared. 

Seven replicates were used in each treatment. Each mini colony was placed in a 300 mL 

flask for individual exposure to organic UV filters and control experimental solutions. 

Flasks were placed inside a 90 L water-bath tank and the temperature was maintained at 

26 ± 0.5 ºC through a refrigerator (HC 500A, Hailea, China) and a 300 W submergible 

heater (EHEIM Jäger, Germany). Artificial illumination PAR and photoperiod were 

maintained under the same conditions as previously described for quarantine system. 

Experimental flaks were randomly distributed under the illumination system, in order to 

ensure that PAR values were similar for all mini colonies.  Mini colonies were exposed 

for 96 h. Every twenty-four h 50 % of the medium was renewed and replaced with a new 

solution with the same concentration.  

 

 

 

 

 

 

Figure 5: Experimental design of assays for determination of BP-3 and 4-MBC exposure effects, 

in Zoanthus sp. mini colonies.   

24h renewal  

96 h 
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2.3.3. Polyp behavioral response 

 

To evaluate the polyp reaction to the organic UV filters exposure, a photographic record 

was performed at the end, after 96 h exposure. 

The data were treated by analyzing each mini colony image, registering the state of each 

polyp, according to the criteria defined in table 1, obtaining a percentage for each state 

in each replicate (mini colony).  

 

Table 1: Brief description of behavioral states of Zoanthus sp. polyps, after 96 h exposure to 

different concentrations of BP-3 and 4-MBC. 

 

 

 

 

 

 

 

 

 

 

2.3.4. In vivo chlorophyll fluorescence 

 

Chlorophyll fluorescence was measured in vivo using a Pulse Amplitude Modulation 

fluorometer (Junior PAM, Walz, Germany). Saturating light was provided by a blue LED-

lamp (peaking at 450 nm) located inside the fluorometer. The fiber optic was placed 

perpendicularly to the top of each polyp next to the oral disc. Measurements were 

 

State 
Polyp 

representation 

 

Polyp picture  

 

State Description 
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performed 2 h after the illumination system turn on and mini colonies were dark 

adapted for 30 minutes before the application of the saturating pulse (0.8 s). Each mini 

colony was measured in 5 non-overlapping points (different polyps) Fo (minimum- or 

dark-level fluorescence) and Fm (maximum fluorescence after a saturation pulse), were 

used to quantify the maximum quantum yield of PSII according to (Schreiber et al., 

1986):  Fv/Fm = (Fm−Fo)/Fm  

 

2.3.5. Symbiodinium sp. quantification 

 

After the chlorophyll fluorescence analyses, all the mini colonies were preserved in 15 

mL falcons with 2 mL of Lugol solution and 2 mL of ASW for later counting of 

Symbiodinium sp. cell density. Mini colonies were chopped with a scalpel until a 

homogeneous mixture was obtained and transferred back to the falcon filled with 14 mL 

of ASW. Falcon tubes were shaken for approximately 1 minute to aid in the 

homogenization of the sample. The counting was performed using an improved 

Neubauer chamber, with 6 counts being made for each replicate. Samples were then 

centrifuged for 10 minutes at 4000 rpm, the supernatant was discarded and the 

resulting pellet dried in a 60-degree oven for about 48 h. After cooldown, the dry pellet 

was weighed and the concentration of Symbiodinium sp. cell normalized to the total dry 

weight of Zoanthus sp. 

 

 

 

 

 

Figure 6: Resume of Symbiodinium sp. quantification procedure. A) Chopped samples; B) 

Resuspension with ASW; C) Neubauer chamber; D) Symbiodinium sp. cell counting. 

 

A 

B

B C 

D 
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2.3.6. Statistical analysis 

 

T-tests were performed to access differences between control and solvent control in 

both assays. As no significant differences were found between control and solvent 

control, multiple comparisons were conducted between all treatments and the solvent 

control. To assess effects of UV filters all endpoints were analyzed using one-way 

analysis of variance (ANOVA) followed by Dunnett's multiple comparisons post-hoc test.  

All variables were previously assessed for normality using Bartlett's test while Brown-

Forsythe test verified the homoscedasticity of data. Differences in all statistical tests 

were considered significant at p ≤ 0.05. All statistical analyses were performed using 

GraphPad Prism (version 7.00, GraphPad Software, La Jolla California, USA). 

 

2.4. Results 

  

2.4.1.  Polyp behavioral response 

 

Image analysis suggested that BP-3 and 4-MBC induced a behavior response in Zoanthus 

sp. mini colony polyps. Overall, there were behavioral changes induced by the 

compounds through retraction of the polyps as well as in a visible diminution of size, 

becoming more noticeable with the increase of the concentrations. Most polyps used in 

ASW and DMSO control treatments, in both assays, were in state I, having the oral disc 

and tentacles completely open. ASW control revealed 92 % and 67 % of polyps 

completely open (state I) for exposures with BP-3 and 4-MBC, respectively. The solvent 

control also demonstrated a high number of polyps in the state I, 97 % in BP-3 and 71 % 

in 4-MBC exposure.  

BP-3 induced a strong behavioral response since all polyps were in state II or state III in 

the two highest concentration tested, whereas in the two lower concentrations it was 

still possible to verify the existence of some polyps in the state I. Additionally, an 
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increase from 13 to 49 % of polyps in stage III was observed, comparing the results 

obtained in 2 mg L-1 and 4 mg L-1 treatments, respectively.  

Effects of 4-MBC were also observed with about half of the polyps already in state III at 

the concentration of 1 mg L-1 and this percentage increased considerably in the two 

highest concentrations to 64 % and 79 %, respectively. It was also possible to observe 

polyps in state I up to the concentration of 2 mg L-1. 

 

 

 

 

 

Figure 7: Polyp behavioral response of Zoanthus sp. after 96 h of exposure to sub-lethal 
concentrations of BP-3. State I: Polyps with the oral disc open and distended tentacles; State II: 
polyps with the oral disc semi-closed and the tentacles retracted; State III: completely closed 
polyps. 
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Figure 8: Polyp behavioral response of Zoanthus sp. after 96 h of exposure to sub-lethal 
concentrations of 4-MBC. State I: Polyps with the oral disc open and distended tentacles; State 
II: polyps with the oral disc semi-closed and the tentacles retracted; State III: completely closed 
polyps.  

 

2.4.2.  In vivo chlorophyll fluorescence 

 

The photosynthetic efficiency of Zoanthus sp. endosymbionts, evaluated through the 

measurement of the maximum quantum yields of PSII (Fv/Fm), presented on figures 9 

and 10, was influenced by the concentration gradient of the contaminants in the water. 

No significant differences were observed between negative (ASW) and solvent (DMSO) 

control treatments in both assays. 

It was possible to observe that values of Fv/Fm decrease with the increasing of BP-3 

concentration in water (fig. 3) (one-way ANOVA, F4,  30 = 28.518; p< 0.001). There were 

significant statistical differences between each concentration and the solvent control. 

For the concentrations of 0.5; 1; 2 and 4 mg L-1, there were decreases of 12.7 %, 13.3 %, 
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17.8 % and 32.6 % of Fv/Fm values, respectively, in comparison with the values obtained 

for the solvent control. 

Concerning the exposure to 4-MBC, it was possible to observe a slightly decrease in 

Fv/Fm values with the increasing of contaminant concentrations (one-way ANOVA, F4,  30 = 

12.34; p< 0.001). However, significant statistical differences were registered only in 4 mg 

L-1 concentration treatment, where Fv/Fm values decreased 10.4 %, when compared to 

the value obtained in the solvent control. 

 

 

 

 

 

 

 

Figure 9: Maximum quantum yield of PSII (Fv/Fm) measured on Zoanthus sp. polyps after 96 h of 
exposure to BP-3 sub-lethal concentrations. All values are presented as mean + SEM, n =7. 
Asterisks (*) denote significant differences compared to the solvent control treatment 
(Dunnett's test, p < 0.05). 
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Figure 10: Maximum quantum yield of PSII (Fv/Fm) measured on Zoanthus sp. polyps after 96 h of 
exposure to 4-MBC sub-lethal concentrations. All values are presented as mean + SEM, n = 7. 
Asterisks (*) denote significant differences compared to the solvent control treatment 
(Dunnett's test, p < 0.05). 

 

 

2.4.3.  Symbiodinium sp. quantification 

 

It was possible to observe a general decrease of the endosymbionts density with the 

increasing concentrations (one-way ANOVA, F4,  30 = 5.363, p< 0.001 and F4,  30 = 2.427, p< 

0.05 for BP-3 and 4-MBC assays, respectively). Statistically significant differences were 

observed between the solvent control and the 4 mg L-1 concentration in both assays. The 

effect of the highest concentration of BP-3 was severe, causing a huge reduction of 73 % 

in the endosymbiont cell density, when compared to mini colonies from solvent control. 

It was possible to observe that exposure to BP-3 have induced a reduction of the 

number of Symbiodinium sp. cells immediately at the lowest concentration, with a cell 

density 22.3 % lower than the registered in solvent control. 4-MBC effects were not as 

accentuated, being noticed a decrease of 34 % in cell density in the highest 

concentration. 
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Figure 11: Symbiodinium sp. density (nº of cells per gram of Zoanthus sp. dry weight) in polyps 
exposed to sub-lethal concentrations of BP-3. All values are presented as mean + SEM, n = 7. 
Asterisks (*) denote a significant difference compared to the solvent control treatment 
(Dunnett's test, p < 0.05). 

 

 

 

Figure 12: Symbiodinium sp. density (nº of cells per gram of Zoanthus sp. dry weight) in polyps 
exposed to sub-lethal concentrations of 4-MBC. All values are presented as mean + SEM, n = 7. 
Asterisks (*) denote a significant difference compared to the solvent control treatment 
(Dunnett's test, p < 0.05). 

* 
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2.5. Discussion 

 

The present study demonstrates that the organic UV filters, BP-3 and 4-MBC, induced 

effects in the polyps behavior, photobiology and endosymbiont cell density of Zoanthus 

sp..  

Through the characterization of the behavioral response over the 96 h of exposure there 

seems to exist a pattern between concentration, induced stress and behavioral response 

(polyps closure). It was possible to conclude that in the highest concentrations the 

organisms manifested a behavioral change, once they retracted their polyps being 

almost all closed (with increasing concentrations the number of closed polyps raised) 

but also showing a visible size reduction in the retracted polyps.  

The damage in the photosynthetic apparatus of the coral is one of the first symptoms of 

possible occurrence of bleaching, which impacts include increased susceptibility to 

disease, reduced growth and reproduction and sometimes leads to coral death (Baird 

and Marshall, 2002; Szmant and Gassman, 1990). Such damage can be measured 

through changes in the photochemical efficiency of PSII (Warner et al., 1999). The 

maximum quantum yield of PSII (Fv/Fm), is one of the most used parameter to quantify 

the photochemical efficiency and therefore the photo physiological health of the coral 

(Maxwell and Johnson, 2000). Significant differences in analysis of chlorophyll 

fluorescence were obtained immediately in the first tested concentration of BP-3 (0,5 

mg L-1), therefore it is expectable that negative impacts at lower concentrations can 

occur. The values determined in the controls on the evaluation of chlorophyll 

fluorescence (Fv/Fm) for ASW and solvent control are within the range of reported values 

for zoanthids in their natural habitat (ranging from 0.5 to 0.7) (eg Leal et al., 2016; Rosa 

et al., 2016). Some little discrepancy in values between organisms in their natural habitat 

and those acclimatized in laboratory can be related to PAR influence on Fv/Fm values. It is 

known that Fv/Fm tend to decrease with the increasing of PAR values, and usually high 

light acclimated corals tend to present lower Fv/Fm values than low light conspecifics 

(Rocha et al., 2013a, 2013b). PAR values used for both assays were similar for all 

replicates and mini colonies were clones from the same original Zoanthus sp. colony in 
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each assay, therefore the diminution of Fv/Fm values can be directly related with the 

contaminant exposure. 

 Both compounds appear to induce expulsion or loss of Symbiodinium sp. as the mean 

cell density decreased after 96 h of exposure. A decrease in Fv/Fm does not necessarily 

predict coral bleaching (Fisher et al., 2012), but both factors combined indicate a decline 

in the general health of the organism.  

Healthy cnidarian hosts are considered mixotrophic, as their nutrition is complemented 

with both autotrophy, obtaining photosynthates provided by Symbiodinium sp., and 

heterotrophic feeding. Endosymbionts are the main carbon suppliers, used as energy by 

these organisms (Falkowski et al., 1993; Muscatine et al., 1981). Most species cannot 

thrive for long periods without endosymbionts, since autotrophy is the main nutritional 

source of zoanthids (Leal et al., 2017).  The decrease in Symbiodinium sp. concentration 

as well as photochemical efficiency suggest that autotrophic nutrition in Zoanthus sp. 

may be impaired by the presence of organic UV filters. Heterotrophy is another carbon 

source especially important during bleaching events (Houlbrèque and Ferrier-Pagès, 

2009) so, it is also important to note that the fact that the behavioral analysis 

demonstrate a closure of the polyps throughout the concentrations, the ability to feed 

on phytoplankton or zooplankton can be also compromised. 

The results obtained in the present study show that BP-3 caused a greater behavioral 

response as well as greater damage in the photobiology of the organisms, appearing to 

be more toxic than 4-MBC, although further studies (e.g. using the same colony of 

organisms for the substances studied) are needed in order to make a comparison of 

toxicities more accurate. The reported results of the highest toxicity of one or other 

compound as the most toxic are not consensual, since depending on the species under 

study the results diverge (Paredes et al., 2014). It was also reported through a 

probabilistic risk assessment that BP-3 is more likely to pose a risk to fishes and of 

bleaching in hard corals and 4-MBC poses greater risk to algae (Tsui et al., 2014). 

Our results are in agreement with two previous studies showing that exposure to 

organic UV filters can lead to an occurrence of bleaching, although both studies used 

species of sceleterian corals, zoantharians are phylogenetically close to sceleterian 
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corals. There are evidences that the occurrence of bleaching is potentially due to 

sunscreens capacity to promote lytic viral cycle in the endosymbionts, causing viral 

infections and leading to a rapid and complete bleaching of hard corals (Danovaro et al., 

2008). The loss of photosynthetic pigments and membrane integrity in the 

endosymbionts released was also verified when exposed to a commercial sunscreen 

lotion which included a mixture of organic UV filters (Danovaro et al., 2008). In line with 

our study, a relationship between exposure to increasing concentrations and diminution 

of chlorophyll fluorescence values was also observed in planulae of the hard coral 

Stylophora pistillata (Downs et al., 2016). It was shown that BP-3 promoted the 

ossification of the planula under study, being therefore a skeletal endocrine disruptor. 

The author interpreted the results by stating that BP-3 probably "induces photo-

oxidative stress to the molecular structures that form the thylakoid membranes (Downs 

et al., 2014)." 

Regarding the sensitivity of the parameters used, the measurement of chlorophyll 

fluorescence is the most objective parameter since it is not dependent on the personal 

observation or counting, therefore, it is less susceptible to errors and it is also possible 

to perform in vivo and even in situ. Despite this, the parameters used are 

complementary and should be used together to obtain a perception of the 

photosynthetic efficiency of the endosymbionts, but also of behavior responses and 

endosymbiosis itself, so that it is possible to obtain the greatest response number of the 

organism used at all levels.  

The concentrations used are environmentally relevant since values for BP-3 of 1.4 mg L-1 

in nearshore waters were reported (Downs et al., 2016). Although the values found in 

nature for 4-MBC are considerably lower, in coastal areas or in tide pools (at low tide), 

environments inhabited by this species, the concentrations may be highly superior to 

those recorded nearshore by earlier studies, especially during the summer season when 

the tourist influx is considerably higher. This hypothesis should be analyzed with 

seasonal surveys so it would be possible to obtain data about long-term effects. 

The model organism of this study, Zoanthus sp., has proved to be a good organism to be 

used in ecotoxicological trials to evaluate the effects of organic UV filters. These 

organisms allow us to evaluate the effects at three different levels, at the host level (for 
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having polyps with good dimensions for behavioral evaluation), at the level of the 

endosymbiont (measurements of changes in the photochemical efficiency) and 

symbiosis relationship (Symbiodinium sp. cell density evaluation). Zoanthus sp. was 

sensitive to the presence of organic UV filters according to the parameters used, and in 

following works it could be used to test different organic UV filters present in the 

environment. 

In addition, studies indicate that the reproductive period of Zoanthus sp., e.g. in Great 

Barrier Reef during November (Ryland and Babcock, 1991) and in tropical North Atlantic-

Caribbean occur between June-July (Karlson, 1983), coincides with the greater influx of 

tourists which is expected to be associated with a greater input of this compound into 

the ecosystem (Balmer et al., 2005; Torres et al., 2016). Additionally, knowing that the 

half-life of these UV filters can reach several months and since effects have already been 

reported in planulae (Downs et al., 2016), the growing presence of organic UV filters in 

aquatic systems can have effects even at the level of species life cycle and ecosystem 

balance. 

In only 15 years, documented losses in coral diversity ranging between 30 – 60 % in reefs 

degraded due to anthropogenic activities (Edinger et al., 1998) and it was estimated that 

10 % of the coral reefs in the world are threatened by sunscreen pollution (Danovaro et 

al., 2008). The present study highlights the need for implementation of different UV 

filter substances or the development of new ones that do not have a toxic activity 

against aquatic organisms. Since in formulations of commercial sun lotions there is a 

mixture of different substances it is also important to evaluate the effects of these 

combinations and their possible synergistic effects (Ozáez et al., 2016). In vivo 

Chlorophyll fluorescence measurements can be good indicators of photo physiological 

health of symbiotic and photosynthetic organisms. The utilization of this noninvasive 

parameter allows the development of ecotoxicological studies in situ.  

With the increase both populational and tourist it is difficult to be optimistic about the 

future of this valuable ecosystem (Wilkinson, 1999). It is, therefore, necessary to 

continue the development of new studies leading to a deep understanding of the 

ecotoxicological effects of most commonly used organic UV filters, in aquatic systems 

using relevant species. 
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3. Final considerations and future perspectives 

BP-3 and 4-MBC induced responses in zoanthids, leading to the reduction of their 

photosynthetic capacity, its number of symbionts and behavior responses. The results 

obtained demonstrate the toxicity of these substances used worldwide, in Zoanthus sp.. 

Thus, the null hypothesis “organic UV filters, BP-3 and 4-MBC, do not impair the 

photobiology, photo symbiont density nor the behavioral reaction of Zoanthus sp. 

polyps” was rejected. 

One of the objectives of the work was also to test if Zoanthus sp. would be a good 

indicator to demonstrate the potential effects of organic UV filters and this was achieved 

since it shown to be sensitive through the parameters analyzed. 

From all parameters analyzed, it is important to note that the behavioral analysis is the 

one most prone to display a high variability. This is due to the variation in interpretation 

of photographic data that may vary depending on the perspective of the observer. The 

organism can also resent, at the moment of the photograph, and retract its oral disc. 

Overall, the survey of this parameter still needs improvement, although a clear pattern 

between the toxic concentration and zoanthid reaction can be perceived. On the other 

hand, the measurement of chlorophyll fluorescence is the most objective parameter 

once do not dependent on this personal observation, being less susceptible to errors. 

Despite this, the parameters used are complementary and should be used together.   

This work should have a follow-up study, where the same colony of organisms is used in 

all assays for the possibility of toxicological comparison of the pollutants. It's also 

important the execution of chronic tests, taking into account other factors to which 

organisms may be subject (such as tides, tourism seasonality, fluctuations in 

temperature, salinity, solar radiation, etc). Since measurements of chlorophyll 

fluorescence are performed in vivo, in situ investigations can also be carried out at 

contaminated sites. Since sunscreen formulas are made with a mixture of different UV 

filters, it would also be interesting to study the effects of their interactions (synergistic 

effects) as well as with other compounds that can be found in the area under study. 

Taking into account that both 4-MBC and BP-3 were found in muscle tissues of several 

different species of fish reaching concentrations of some μg/g (Balmer et al., 2005; Buser 
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et al., 2006; Gago-Ferrero et al., 2015; Subedi et al., 2011), and due to their high 

lipophilic properties, a possible occurrence of bioaccumulation and biomagnification 

should also be approached. 

For coral speciesBP-3 appears to induce a higher toxicity, although there is no clear 

trend line when looking at available data from all animal species previously studied (e.g. 

Gao et al., 2013; Ozáez et al., 2013; Paredes et al., 2014; Sieratowicz et al., 2011). It is 

therefore necessary to keep developing further studies using, with these and other 

organic UV filters that may be harmful in different aquatic species for a comprehensive 

toxicological evaluation.   

Another issue of major concern is that, although the concentrations in treated 

wastewater (WWTP effluent) are considerably lower (Balmer et al., 2005), these 

compounds are not degraded completely by common methods in WWTP.  It is reported 

a degradation method of BP-3 by UV / H2O2 in aqueous solution (Gong et al., 2015) and 

of 4-MBC through photo-Fenton process (Ji et al., 2017). Despite the existence of 

effective methods for the removal of these substances, it is necessary to develop new 

methods of remediation that can be applied on a large scale and used in WWTP, 

enhancing the biodegradation of emerging contaminants. 

Finally, it is of great importance to investigate organic UV filters that do not cause 

damage to any living being, so that they are implemented by regulatory agencies and in 

the PCP's industry, as an alternative to those that proven to be harmful to the 

environment. It is also important to keep a close monitoring of these pollutants, 

especially in places subject to a higher presence of tourists and where endangered 

species occur. Thus, future investigations should consider the persistence of these and 

others organic UV filters, and the possibility of bioaccumulation and biomagnification 

through the food chain in long-term ecotoxicological tests. 
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4.  Annexes 

 

4.1.   Preliminary tests with BP-3 

 

Preliminary tests were initially conducted to refine the defined protocol and to reach 

optimal test conditions where no disturbances were observed in the control organisms. 

• In the first preliminary test performed, the stock solution (BP-3 in 100% DMSO) had a 

concentration of 200 g L-1. The concentrations of 20 mg L-1; 10 mg L-1; 2 mg L-1 were 

tested and also negative and DMSO control. Three replicates were used for each 

concentration. It was observed that all polyps were closed. Some of the test conditions 

were changed for the second preliminary test, such as the installation of a cooler to keep 

the temperature constant and the luminaires were moved to a larger distance from the 

organisms so that the corals did not have too much light exposure and also a change of 

water was performed. 

• In the second preliminary test, only four replicates were used, with no contaminant to 

evaluate the new test conditions, and the four jars were placed at different points in the 

aquarium. The 72-hour test was successful with all polyps open. 

• The test concentrations were then changed to a minimum of 0.2 mg L-1 and a 

maximum of 2 mg L-1. In this test, the stock solution was 20 g L-1 (since the 

concentrations to be used were smaller than in the first test). Three replicates were 

used for each concentration as for the controls. In this test, it was noticed in the first 24 

hours that the corals were reacting to the highest concentration. But at 72 hours and 96 

hours it was also observed that the lower concentration as well as the control of DMSO 

were reacting with semi-open and closed polyps. It was concluded that the problem 

could be the amount of DMSO used to perform SS (stock solution) once that control also 

had effects, so the following test was only using different concentrations of DMSO. 

 

DMSO concentrations of 5 μL, 15 μL and 30 μL in 300 mL of ASW (30 μL corresponding to 

the concentration used in the previous assay: 100 microliters in 1L of water) + negative 
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control was tested. The replicates of the highest concentration reacted by closing the 

polyps, so it was decided to change the concentration of the stock solution again to 200 

g L-1 so that the volume to be used of SS and therefore DMSO was smaller. 

• In this last test, the luminaires were also changed so it would be possible to have a 

better distribution of light throughout the aquarium since for the final test 42 jars would 

be used. It was also decided to change half of the medium of each replica every 24 

hours. This previous test was performed in order to analyse the change of all these 

variables. Concentrations of 0.2 mg L-1 and 4 mg L-1 (lowest and highest) were used as 

also the controls, having 3 replicates each. The medium was exchanged at 24, 48 and 72 

h using syringes and a volume of half the medium was withdrawn.  

• Results: at the first 24 h it was possible to observe closed and semi-closed polyps in the 

highest concentration and the same was verified at the end of the test for all their 

replicates. Since there were no changes in the controls, the final test was conducted. 

For the final assay, briefly, concentrations of 4 mg L-1; 2 mg L-1; 1 mg L-1 and 0.5 mg L-1 of 

BP-3 and 4-MBC were used, as also both controls. Seven replicates were used per 

concentration, in a total of 42 jars, identified with a color code for easier identification. 

The jars were placed randomly in the aquarium, being performed a change of medium 

every 24 h and a photographic record at the beginning and end of the assay. Water was 

collected every 24 h after the change of medium for further analysis. 

 



51 
 

 

4.2. Dissemination of Results 

 

The first results of this study were presented at SETAC Europe 27th Annual meeting, 

held this year in Brussels. My participation took place through the exposure of a poster, 

which is presented in the following figure. The results presented are only relative to the 

BP-3 assay. 

 

 

 

 

 

 

 

 

 

 


