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A retinopatia diabética é uma complicação progressiva da diabetes e é a 

principal causa de cegueira em adultos. Apesar de ter sido, por muitos anos, 

considerada uma doença microvascular, estudos recentes sugerem que há 

neurodegeneração da retina antes de ocorrerem danos a esse nível.  

A família das sinucleínas é composta por três proteínas que partilham 

uma grande homologia, alfa-sinucleína (aSyn), beta-sinucleína (bSyn) e 

gama-sinucleína (gSyn), que estão associadas a doenças 

neurodegenerativas, tal como a doença de Parkinson. A agregação das 

sinucleínas foi descrita em pacientes com outras doenças 

neurodegenerativas, assim como ocorrendo com o envelhecimento. Estas 

proteínas são também expressas na retina, mas tanto a sua função 

fisiológica como possíveis papéis patológicos estão por estudar neste 

contexto. 

Vários estudos sugerem um mecanismo de neurodegeneração comum 

entre a Doença de Parkinson e a Retinopatia Diabética. Nomeadamente, o 

facto da diabetes ser um fator de risco para a Doença de Parkinson; o facto 

da Diabetes promover a toxicidade e agregação da aSyn devido à possível 

glicação da mesma; O facto de L-DOPA levar à recuperação de danos 

visuais em ratinhos modelo da Retinopatia Diabética e drogas anti-

diabéticas tecerem um efeito neuroprotetor em neurónios nigrostriatais e da 

retina em modelos de ratinho da Doença de Parkinson. Para além disso, o 

ambiente diabético do olho, onde se sabe ocorrer stress oxidativo, 

inflamação, aumento dos níveis de AGEs e debilitação na mitocôndria, 

apresenta semelhanças extraordinárias com elementos que se sabe 

estarem envolvidos na agregação da aSyn no cérebro de doentes de 

Parkinson.   

O objetivo deste trabalho é estabelecer uma correlação entre o perfil das 

sinucleínas na retina e a progressão da retinopatia diabética, num modelo 

de ratinho diabético (Ins2Akita) e em controlos, em vários estadios de 

desenvolvimento da doença.  

Pretende-se caracterizar o padrão de distribuição das sinucleínas nas 

várias populações neuronais da retina de ratinhos Ins2Akita e ‘Wild Type’, por 

imunohistoquímica. Os níveis de expressão das proteínas sinucleínas vão 

ser também avaliados nestes mesmos animais por western-blot. 

Os resultados obtidos indicam que a aSyn e a bSyn se encontram 

distribuídas pela camada plexiform interna (IPL), nos terminais pré-

sinápticos das células amácrinas, assim como em corpos celulares da 

camada nuclear interna (INL).  

 



 
 

 

 

 

 

Para além disso, foi possível localizar a aSyn nas células amácrinas 

dopaminérgicas, considerando-se a possibilidade da aSyn levar à 

degeneração destas células com o envelhecimento, tendo em conta a sua 

co-localização e a diminuição das células dopaminérgicas nas retinas de 

ratinhos WT ao longo do envelhecimento. O aumento de co-localização 

entre a aSyn e a Syntaxina 1A na IPL pode sugerir alterações a nível das 

sinapses destas proteínas.  

A bSyn encontra-se localizada em células bipolares na INL e a gSyn 

em células horizontais na INL e em corpos celulares da camada de células 

ganglionares (GCL). Outra observação interessante é o facto de ocorrer 

co-localização entre a aSyn e bSyn, e aSyn e gSyn em corpos celulares 

da INL. Um aumento da co-localização entre a aSyn e a bSyn nas células 

amácrinas poderá levar a danos nestas células devido a um aumento de 

toxicidade da aSyn e bSyn como descrito em levedura, indicando um 

possível papel destas proteínas na retinopatia diabética. 

Estes resultados são promissores e podem sugerir alterações 

importantes destas proteínas no contexto da retinopatia diabética, mas 

especialmente com o envelhecimento. Apesar da função exata das 

sinucleínas na visão e na retinopatia diabética permanece por esclarecer, 

este trabalho contribuiu para o conhecimento da distribuição das 

sinucleínas na retina, assim como para a sua potencial contribuição no 

envelhecimento. 
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Diabetic retinopathy is a progressive complication of diabetes and the 

leading cause of irreversible vision in adults. While it is considered a 

microvascular pathology, recent evidence suggests that 

neurodegeneration is an earlier event in diabetic retinopathy. 

The synuclein family is composed of three proteins that share high 

homology, alpha-synuclein (aSyn), beta-synuclein (bSyn) and gamma-

synuclein (gSyn), which have been associated with neurodegenerative 

diseases, such as Parkinson’s disease. Aggregation of the synucleins was 

described in other neurodegenerative disorders as well as with ageing. 

These proteins are also expressed in the retina, but both its physiological 

function and its pathologic role are yet to be described in this context.  

Several indications point to a shared mechanism of neurodegeneration 

in PD and DR. Namely, diabetes being a risk factor for Parkinson’s 

disease; diabetes promoting aSyn toxicity and aggregation due to aSyn 

glycation; L-DOPA being observed to rescue visual impairment in a DR 

mouse model, and an antidiabetic drug demonstrating to have a 

neuroprotective effect on retinal and nigrostriatal neurons in a PD mouse 

model. Moreover, the environment of the diabetic eye where it is known to 

occur oxidative stress, inflammation, increased levels of AGE and 

mitochondrial impairment, has remarkable similarities with the features 

that are known to be involved in aSyn aggregation in the brain of PD 

patients.  

The aim of this study is to establish a correlation between the retina 

profile of the synucleins and the progression of diabetic retinopathy, using 

diabetic model mice (Ins2Akita) as well as Wild Type controls in different 

stages of the disease. We intended to characterize the distribution pattern 

of these proteins in the different neuronal populations of the retina in 

Ins2Akita and wild type mice, through immunohistochemistry. The 

synucleins proteins expression levels were also assessed in these animals 

by western blot techniques. 

Our results show that aSyn and bSyn are pre-synaptic proteins in the 

Inner Plexiform Layer of the retina, and are localized in amacrine cells pre-

synaptic terminals but also in amacrine cell bodies in the Inner Nuclear 

Layer (INL). aSyn is further localized in the dopaminergic amacrine cells, 

where aSyn might be leading to dopaminergic amacrine cells 

degeneration with ageing, considering its localization in those cells and a 

loss of dopaminergic amacrine cells. 
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Moreover, the increased colocalization between aSyn and Syntaxin 1A 

in the might suggest alterations in amacrine cell synapses. 

 bSyn was found to be localized in bipolar cells in the INL and gSyn in 

horizontal cells in the INL but also in the Ganglion Cell Layer.  

Another interesting observation is that co-localization between aSyn 

with bSyn and aSyn with gSyn might occur in the INL. The increased 

colocalization between aSyn and bSyn in amacrine cells of 9 months old 

Ins2Akita may lead to damages to amacrine cells due to exacerbation of 

cytotoxicity by aSyn and bSyn, similar to what is described in yeast, 

indicating that these proteins’ colocalization may play a part in DR.  

These results are promising and may suggest important alterations in 

these proteins, especially in ageing. Although the exact role of the 

synucleins in vision and in DR pathophysiology remains unclear, this work 

contributed to furthering the knowledge about the synucleins in the retina, 

by elucidating their special distribution in normal and diabetic retina, 

providing insights on their potential contribution in ageing.  
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1. Introduction 

 

1.1. Diabetes mellitus 

Diabetes mellitus (DM) is a chronic disease characterised by hyperglycaemia that is becoming a 

global issue mainly due to changes in people’s alimentary and exercise habits as well as ageing. 

The World Health Organization estimated that the number of people with diabetes has risen from 

108 million in 1980 to 422 million in 2014, mostly due to sedentary lifestyles, lack of physical activity 

and obesity (1).  

Diabetes can be classically classified in type 1 DM and type 2 DM but there is also gestational 

diabetes, Latent Autoimmune Diabetes in Adults and Maturity-Onset Diabetes of the Young (MODY). 

Type 1 DM, known as the insulin-dependent type, is characterised by the deficient insulin production 

due to the destruction of the islets of Langerhans in the pancreas and requires insulin administration. 

Type 2 DM, on the other hand, is the most common type and results from hyperglycaemia and insulin 

resistance (2). 

DM is responsible for significant macro- and microvascular complications. Macrovascular 

complications include cardiovascular disease, stroke, and peripheral vascular disease. 

Microvascular complications include damage in the nervous and renal systems (neuropathy and 

nephropathy, respectively) and eye damage including increased risk for glaucoma, cataracts and, 

the most threatening ocular implication, diabetic retinopathy (DR) (3,4). 

 

1.2. Diabetic retinopathy 

Diabetic retinopathy is a progressive complication of diabetes and the leading cause of 

irreversible vision loss in working age adults (20-70 years old) (5).   

The onset of diabetic complications such as DR is directly related to the duration of diabetes and 

the quality of glycaemic control (6). Since it may be asymptomatic until vision loss occurs and its 

diagnostics is based on direct ophthalmoscopy analysis or medical history upon complaint, DR is 

usually late diagnosed. However by 20–25 years of diabetes almost 90% of patients present some 

forms of retinopathy (7,8). 

 

1.2.1. Proliferative and non-proliferative DR 

Diabetic retinopathy can be classified into two stages, according to its severity: a less-severe form 

is non proliferative DR (NPDR) and a severe-form proliferative diabetic retinopathy (PDR) (2). 

Non proliferative DR shows as early signs microaneurisms that arise from the retinal capillaries, 

leading to haemorrhages caused by the release of erythrocytes from said microaneurisms (9). These 

can be visible through the observation of some leakage by fundus photography, documenting the 

retina, and fluorescein angiography, a technique that examines the circulation of the retina and the 

choroid using a fluorescent dye and special camera (10).  
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Proliferative DR, which may occur up to 50% of type 1 diabetes patients and up to 10% of type 2 

diabetes ones (11,12), is characterized by further ischemia resulting in the formation of new blood 

vessels that, untreated, extend into the vitreous cavity of the eye with the possibility of haemorrhage 

and consequent tractional retinal detachment. Furthermore, the formation of new blood vessels in 

other chambers of the eye may lead to block the outflow of the aqueous humour causing neovascular 

glaucoma. Altogether, these events lead to vision loss (13,14). 

Both non proliferative and proliferative DR can lead to another change: the diabetic macular 

edema (DME), that can affect up to 20% of type 1 diabetes patients and up to 25% of patients with 

type 2 diabetes (15). It is characterized by increased vascular permeability and breakdown of the 

blood-retinal barrier, culminating in leakage from plasma from the macula, responsible for the major 

part of visual function, causing the swelling of the central retina. This event is followed by the 

formation of exudates from deposition of the lipid and lipoprotein content from the plasma, disrupting 

the light path in the macula and, ultimately, vision loss (9,13,15). 

 

1.2.2. Retinal microvascular dysfunction 

Microvasculature of the retina is considered by many the main site of pathology associated with 

DR. Although its biochemical mechanisms are not fully elucidated, it is known that continuous 

exposure of the retina to hyperglycaemia leads to metabolic abnormalities, including the activation 

of several pathways, accumulation of advanced glycation end products (AGEs), protein kinase C 

(PKC) activation and increase in oxidative stress (16,17).  

In DR, increased AGEs and PKC are reported within retinal capillaries. Increased AGEs are 

associated with increased inflammation while PKC activation leads to increased vascular 

permeability, alterations on blood flow and stimulation of neovascularization due to its relation with 

the vascular endothelial factor (VEGF) which is suspected to be a primary peon in the induction of 

vascularization in diabetes (Fig. 1.1) (18,19). Metabolic abnormalities combined with auto-oxidation 

of glucose and an impaired antioxidant defence system result in the production of reactive oxygen 

species (ROS) (Fig. 1.1) (20).  

Under pathological conditions, the excessive bioavailability of ROS, as a result of increased 

production and/or decreased removal of ROS, will further increase the production of PKC and 

damage proteins, lipids and DNA  (21). Mitochondria and its DNA (mtDNA) are one of the targets of 

its damaging effects (20,22).  

ROS, by activating matrix metalloproteinases, damages the mitochondrial membrane changing 

its permeability allowing apoptotic induced factors to be released in the cytosol and subsequently 

activate the apoptosis machinery (Fig. 1.1). Thereby, retinal capillary and non-capillary cells undergo 

accelerated apoptosis. In early stages of DR, pericytes start to undergo accelerated death which is 

followed by the loss of endothelial cells resulting in pericyte ghosts, acellular capillaries and 

microaneurysms (23). Moreover, damages to the mtDNA impairs its transcription, further interfering 

with its homeostasis and compromising the mitochondrial machinery, namely the electron transport 

chain resulting in an increased ROS production (24). 
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Overall, microvascular complications result in an increase of vascular permeability, alterations of 

blood flow and neovascularization, which are the hallmarks of DR. This leads to edema, ocular 

haemorrhage and eventual retinal vessel closure (16,22). 

 

Fig. 1.1. Common intersecting pathways underlying DR microvascular complications. Diabetic 

environment increases the production of ROS and also metabolic abnormalities leading to capillary cell 

apoptosis and ultimately development of diabetic retinopathy. PKC, AGEs and the production of inflammatory 

mediators feed the metabolic abnormalities and continuous ROS production as well as oxidative damage to 

mitochondria, accelerating apoptosis. Adapted from (17). 

 

1.2.3. Neurodegeneration in DR 

However, even though DR was for many years seen as solely a microvascular disease caused 

by significant alterations in the retinal vasculature and blood barrier of the retina, recent evidence 

suggests that neurodegeneration occurs prior the microvascular complication onset, through deficits 

in the neural retina (5,26).  

It is thought that alteration in the levels of various neurodegenerative metabolites’ and 

neurodegenerative factors as well as a decrease in neurotrophic factors damage the retinal neurons 

in early stages of the disease (27).  
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Apoptosis markers were identified in higher levels in diabetic retinas. Increased levels of pro-

apoptotic protein Bax (Bcl-2-associated X protein) was found in diabetic retinas by several studies 

(28). Other resesarchers have shown a correlation between TUNEL (terminal deoxynucleiotidyl 

transferase nick end labeling)-positive cells and increased Caspase 3 levels in neuronal retinas of 

diabetic rats (29–31). In recent studies, clinical tools like multifocal and flash electroretinography 

(ERG), contrast sensitivity, color vision and short-wavelength automated perimetry indicate that 

neurons are vulnerable to damage, shortly after the onset of diabetes (32). Degeneration of retinal 

neurons has been reported on amacrine and ganglion cells (33,34). Studies in animal models further 

show photoreceptors’ death (35,36) and abnormalities in horizontal and bipolar synaptic terminals 

(36,37).  

In the retina, glia and neurons share a close interaction with retinal vasculature to maintain a 

normal retinal function. It has been shown that apoptosis of neurons and activation of glial cells may 

cause oxidative stress and initiate vasoregretion (38), here suggesting a link between 

neurodegeneration and microvascular changes in diabetic retinopathy (39,40) 

 

1.2.4. Prevention and treatment methods 

The prevention methods for DR combine glucose and blood pressure control to normal levels, 

considerably retarding the progression of the disease. Further prevention and treatment methods 

usually apply to more severe forms of DR, relying on retinal laser photocoagulation to slow the 

formation of new vessels and the progression of vision loss (41). More advanced retinal disease, 

such as late stages of proliferative DR and macular edema, that combine vitreous haemorrhages 

and detachment of the retina upon new vessel formation, benefits from intravitreal anti-VEGF 

injections, vitrectomy, focal laser and argon laser treatment (42,43). 

 

1.3. The retina functional architecture 

The retina is a layered structure that includes both sensory neurons and intricate neural circuits 

that respond to light and perform the first stages of image processing before traveling through the 

optic nerve into the brain (44). 

It is composed of vascular cells (pericytes and endothelial cells), microglia, macro glial cells 

(Müller cells, astrocytes) and neurons (17). 

There are, essentially, five major neuronal cell classes distributed between the nuclear layers of 

the retina. Rod and Cone photoreceptors are integrated in the Outer Nuclear Layer (ONL) followed 

by horizontal, bipolar and amacrine cells that share the Inner Nuclear Layer (INL) and ganglion cells 

that, along with a subtype of amacrine cells, is found in the Ganglion Cell Layer (GCL) (Fig. 1.2). All 

cells communicate with each other electrically, through gap junctions and chemically, using 

neurotransmitters (45,46). 

In between the nuclear layers, the Outer Plexiform Layer (OPL) and the Inner Plexiform Layer 

(IPL) assure the communication between neuronal cell populations of different layers through 
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synapses (Fig. 1.2). The plexiform layers can also be divided into strata, depending on the 

connections that take place in each one. The IPL is divided in 5 strata, whereas the OPL is 

traditionally divided in 3 (45). Strata 1 and 2 of the IPL comprise synapses between OFF-bipolar cells 

and retinal ganglion and amacrine cells as strata 3-5 contain synaptic connections between ON-

bipolar cells and retinal ganglion and amacrine cell bodies (47). 

ON- and OFF-type cells are so called depending on the stimulation. ON-cells are stimulated by a 

spot of light brighter than the background, occurring an ON-discharge. When the cells are stimulated 

by light darker than the background, OFF-cells are activated and an OFF-discharge occurs (47,48). 

 

Fig. 1.2. Schematic enlargement of the neuronal retina. Outer Nuclear Layer (ONL), containing the 

photoreceptors rodes and cones; the Inner Nuclear Layer (INL), containing the horizontal, bipolar and amacrine 

cells and the Ganglion Cell Layer (GCL) containing the ganglion cells; and the plexiform layers: Outer Plexiform 

Layer (OPL), containing the presynaptic terminals of the photoreceptors, bipolar and horizontal cells and Inner 

Plexiform Layer (IPL), containing the presynaptic terminals of amacrine, bipolar and ganglion cell bodies (in 

Webvision: Simple Anatomy of the Retina). 

 

1.3.1. Processing of visual information 

Photoreceptors rods and cones are the first response to photons each having specific roles in the 

retina. Rods show an elevated sensitivity to light and are therefore responsible for dim-light vision. 

Cones, although less sensitive to light than rods, exhibit a higher sensitivity to a specific light wave 

consequently engaging bright-light, high acuity color vision (49,50). 

The processing of the visual information begins with the conversion of light into depolarizing 

spikes of neurotransmitter glutamate by photoreceptors into glutaminergic ON-center bipolar cells in 
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the OPL and hyperpolarizing spikes into OFF-center bipolar cells, mediated by horizontal cells (Fig. 

1.3) (47,50).  

Bipolar cells can be divided into two major classes, rod and cone bipolar cells and further divided 

into depolarizing bipolar cells (the ON-type) and hyperpolarizing bipolar cells (the OFF-type). Rod 

bipolar cells are ON bipolar cells and contact primarily with rod photoreceptors, whereas cone bipolar 

cells, which can be either ON- or OFF-type, mostly synapse with cone photoreceptors. Moreover, 

ON- and OFF-bipolar cells also contact with retinal ganglion and amacrine cells within the IPL (Fig. 

1.3) (51,52). 

When depolarized, bipolar cells release glutamate into ganglion cells but when hyperpolarized 

they decrease its release what increases or decreases ganglion cell firing rate, respectively (Fig. 1.3) 

(52).    

Regarding the amacrine cells, there are more than 30 known types of these, that communicate 

with different neurons using different neurotransmitter, playing several roles in the retina (53). When 

responsible for the excitation of ganglion cells, they act in two ways, both relying on γ-aminobutyric 

acid (GABA) and glycine neurotransmitters: 1) direct feedforward inhibition from amacrine cells onto 

retinal ganglion cells, or 2) feedback inhibition, where amacrine cells are intermediates between 

bipolar and ganglion cells. In the end, the retinal ganglion cells send the message to the brain (54,55). 

Amacrine cells are classified by the width of their connection and layer of the IPL they are in and 

also by the neurotransmitter they use. The AII amacrine cells are the most studied amacrine cells 

and participate predominantly in the vertical flow of information in the photoreceptor-bipolar-ganglion 

cell chain, transmitting both rod and cone-driven signals within the ON- and OFF-pathways (54,56). 

Other examples include the A8, A17, A19 and A20 amacrine cells, intermediates in several neuronal 

cell chains of the retina, not forgetting the dopaminergic amacrine cells (56).  
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Fig. 1.3. Responses of retinal photoreceptors, bipolar and ganglion cells to darkness and illumination 

in the respective field surround. Depending on light availability, cone photoreceptors either hyperpolarize or 

depolarize, decreasing or increasing glutamate release rates, respectively, leading to hyperpolarization of 

depolarization of ON- and OFF-center biplar cells, thus mediating ganglion cell’s firing rate and vision adaptation 

to light. Adapted from Webvision: Bipolar Cell Pathways in the Vertebrate Retina. 

 

1.4. Parkinson’s Disease  

Parkinson’s disease (PD) is the second most common neurodegenerative disease in middle-aged 

and elderly people. It is characterized by the loss of dopaminergic (dopamine-producing) neurons in 

the substantia nigra pars compacta of the brain and the aggregation of alpha-synuclein (aSyn) in 

association with other proteins such as ubiquitin in Lewy bodies (LBs) in the remaining nigral 

neurons, impairing optimal neuron functioning (57).  

Epidemiological studies reveal that a small percentage of <10% of PD are familial cases of PD 

while the majority of cases are sporadic (58). This complex disease has multiple factors involved in 

its pathogenesis. Ageing seems to be the most potent risk for PD but other risk factors have shown 

to be important, such as predisposing factors, diabetes and exposure to environmental toxins like 

pesticides. Studies from both environmental factors and familial PD-related genes helped identifying 

the several pathways involved in the events leading to the death of dopaminergic neurons due to 

mitochondrial dysfunction, oxidative damage and protein accumulation (59).  
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Pathogenic mutations in the familial PD-linked genes aSyn, Parkin, DJ-1 and PINK1 as well as 

environmental factors have been associated with abnormalities in mitochondrial structure, function 

and protection system, oxidative damage, abnormal protein aggregation and protein phosphorylation 

compromising dopaminergic neuronal function and survival. (Fig. 1.4) (60). These mutated proteins 

are thought to bind to lipids and increase mitochondrial, lysosomal and vesicular membrane 

permeability, leading to mitochondrial dysfunction, impairment of the respiratory chain, decrease 

ubiquitin proteasome system (UPS) activity, increased calcium influx, ion homeostasis disruption and 

activation of Caspase 3 (Fig. 1.4). This cycle of events leads to cell death, by release of the apoptosis 

machinery (61,62).  

The main manifestations of PD are motor changes such as resting tremor, bradykinesia, postural 

instability and cogwheel rigidity and, especially in early stages, symptomatic relief is available 

through dopamine (DO) restoring therapies. Moreover, non-motor manifestation such as 

constipation, rapid eye movement sleep (REM sleep) behaviour disorder, depression, cognitive 

disturbances and visual impairment have been rising awareness (63).  

 

 

Fig. 1.4. Common intersecting pathways underlying PD pathogenesis. aSyn undergoes aggregation due 

to pathogenic mutations which in turn compromise ubiquitin proteasome function (UPS) and cause mitochondrial 

dysfunction. Mitochondrial dysfunction and oxidative damage lead to a decrease in ATP which may compromise 

the UPS function promoting abnormal protein aggregation. Parkin increases mitochondrial biogenesis by 

activating mitochondrial transcription factor A (TFAM) and blocks PINK1-induced mitochondrial dysfunction, 

while pathogenic mutations in the protein and oxidative damage severely compromise its protective function. 

DJ-1 protects against oxidative stress, functions as a chaperone to block aSyn aggregation and protects against 
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mitochondrial dysfunction. PINK1, when not compromised by pathogenic mutations, seems to protect against 

mitochondrial dysfunction. Adapted from (64). 

 

1.4.1. Visual impairment in PD 

Decreased visual acuity, reduced colour vision, deficits in vision-spatial orientation and contrast 

sensitivity are commonly found in patients with PD (65). 

The pathological changes that have been reported in the eye in PD refer mostly to the retina and 

include cell loss related to reductions in retinal dopamine, with a visible thinning of the retinal fiber 

layer observed (66,67). Dopamine is a key neuromodulator in the brain and is highly present in the 

retina, as a chemical messenger for light adaptation, modulating photoreceptor activity, organizing 

ganglion and bipolar cell receptive fields and coupling horizontal cells and the amacrine lateral 

system (68). It is synthetized and released by the dopaminergic amacrine cells, upon light input and 

circadian clock, and activates D1 and D2 dopamine receptors distributed throughout the retina. When 

reaching the horizontal cells it uncouples their gap junctions blocking the communication between 

cells. Similar occurs for the amacrine cells themselves, considering that dopamine is thought to lead 

to the uncoupling of gap junctions of AII amacrine cells. In this way dopamine controls the light signal 

that reaches the ganglion cells, decreasing their sensitivity which is important to avoid saturation to 

light stimulation (54,69). Therefore, dopamine release reduction would be catastrophic.   

In the brain, dopamine reduction in subcortical regions involved in eye movement, like basal 

ganglia and substancia nigra pars reticulata, could also be implicated in visual impairment of PD 

patients (70). 

 

1.5. The synuclein family 

The synucleins (syn) are a family of small and highly conserved proteins, very closely related: 

aSyn, beta-synuclein (bSyn) and gamma-synuclein (gSyn), that are encoded by the SNCA, SNCB 

and SNCG genes, respectively (Fig. 1.5). The first 42 aminoacids are identical between the 

synucleins but studies show that aSyn and bSyn and more closely related to each other (71). 

These proteins are divided in three domains: residues between 1 and 60 make up the N-terminal 

which contains four lysine-rich repeats highly conserved motif similar to the lipid-binding motifs in 

lipoproteins that form a α-helice in the presence of lipids, allowing lipid-binding capacity to these 

proteins; residues between 61 and 95 form the central domain which has a high hydrophobic 

aminoacid content responsible for the amyloidogenic properties of the protein and, finally, residues 

96-140 make up the C-terminus which is thought to confer chaperone-like activity to the synucleins 

(Figure 1.5) (72).  
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1.5.1. aSyn 

aSyn is a 14kDa protein that has been the center of focus in a group of neurodegenerative 

disorders called α-synucleinopathies, which includes both familial and sporadic PD, PD dementia 

(PDD), Dementia with Lewy bodies (DLB), multiple system atrophy (MSA), among others (73).  

aSyn is located in the central nervous system (CNS), predominantly in the presynaptic terminals 

of neurons, where synaptic vesicles constantly approach in order to release their neurotransmitter 

content, being later on recycled to clear the active zone (74).  Even though its role in the brain is not 

fully known, it has been speculated that aSyn is involved in synaptic signaling and membrane 

trafficking, being suggested to play a role in both exo- and endocytosis of synaptic vesicles (74).  

Regarding the role of aSyn on synapses, its role in the assembly of the soluble N-ethylmaleimide-

sensitive factor (NSF) attachment protein receptor (SNARE) complex is suggested. The SNARE 

complex is an assembly of plasma membrane proteins, namely syntaxin and synaptopsome-

associated protein 25 (SNAP-25), with vesicle-associated membrane protein 2 (VAMP2), that bind 

vesicles to the plasma membrane, undergo fusion and stimulate neurotransmitter release (75). Upon 

binding to synaptic vesicles during docking and priming, aSyn undergoes conformation changes 

folding into an amphipathic a-helix. As a result, this synuclein promotes the SNARE complex 

assembly by bounding to the SNARE-protein synaptobrevin-2/VAMP2 during synaptic exocytosis 

(73,75,76).  

Moreover, aSyn may play a complementary role in endocytosis, facilitating membrane retrieval in 

order to maintain the membrane structure and facilitate further neurotransmitter release although the 

exact mechanisms are not fully understood (77). aSyn was described as being able to sense 

membrane curvature and stabilize it  by binding its N-terminal region as well as residues between 

65-97 region to lipid membranes and applying a double anchor mechanism by which aSyn tethers 

two vesicles to one another or to the plasma membrane, facilitating exo- and endocytosis (74).  

 

1.5.1.1 aSyn toxicity  

In its native state, aSyn is thought to predominantly exist as an unfolded monomer in equilibrium 

between cytosolic and membrane-bound states. However, duplication and triplication of the SNCA 

gene, post-translational modifications such as Ser129 and Ser87 phosphorylation (Figure 2), 

truncation and glycation as well as disease related mutations are thought to change this protein’s 

aggregation dynamics (78). All known clinical mutations, such as A30P, E46K, H50Q, G51D, A53T 

and A53E are present in the N-terminal, emphasizing the importance of this domain in the 

aggregation of aSyn (Fig. 5). 

Evidence suggests that the principle mechanism behind α-synucleinopathies is the misfolding of 

aSyn into aggregates in intracellular bodies, beginning with the formation of relatively soluble 

oligomers that can self-assemble into insoluble fibrils, resulting in the formation of deposits (79). This 

leads to neuroinflammation, neurodegeneration and cell death (80).  

Increased aSyn levels are thought to disrupt neurotransmitter release through a decrease in size 

and mobility of the synaptic-vesicle recycling-pool (81). Overexpression of aSyn stabilizes the 
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SNARE complex in the membrane, inhibiting vesicle fusion and, therefore, neurotransmitter release 

(82) such as dopamine release (83).  

Not only can aggregated aSyn interfere with neurotransmitter release but it can also affect its 

synthesis. Dopamine synthesis consists on the conversion of tyrosine into dopamine in two steps: 

tyrosine is firstly converted into L-3,4-dihydroxyphenylalanine (L-DOPA), mediated by 

phosphorylated tyrosine hydroxylase (TH), following L-DOPA conversion into dopamine by DOPA 

decarboxylase (DDC) (84). However, aSyn binds to the dysphosphorilated TH, maintaining its 

inactive form and, subsequently, causing a decrease in its enzymatic activity and dopamine synthesis 

(85).  

Overall, this protein has been found to interact with mitochondria, mitochondria-endoplasmic 

reticulum (mitochondria-ER) and ER-Golgi networks and with the ubiquitin proteasome system (86).  

Mitochondria are essential for the synthesis of adenosine triphosphate (ATP), regulation of 

calcium, lipid metabolism and, overall, neuronal survival (87). ATP is synthesized via oxidative 

phosphorylation complexes, which are present in the inner membrane of mitochondria: ubiquinone 

oxidoreductase Complex I, succinate dehydrogenase Complex II, ubiquinol–cytochrome c 

oxidoreductase Complex III, cytochrome c oxidase Complex IV and ATP synthase Complex V 

mitochondrial (88). Mitochondrial complex I is responsible for catalyzing the first step of the electron 

transport chain which is the main source of ROS (89). 

Studies revealed that aggregated aSyn binds to the inner membrane of mitochondria, altering its 

normal function by associating with complex I (90). This events lead to cytochrome c release and a 

consequent increase of Ca2+ uptake and ROS levels which ultimately leads to cell death (91). 

Furthermore, wild type aSyn and A53T mutant are proposed to promote an up-regulation of 

mitophagy, the delivery of damaged and dysfunctional mitochondria to the lysosome, culminating in 

an abnormal mitochondrial activity, increased ROS levels and further mitochondrial degradation 

levels (92–94). However, is not only aSyn that promotes ROS levels to rise. Increased ROS, and 

consequently oxidative stress, is suggested to promote aSyn aggregation, creating a never ending 

cycle of degeneration (95). 

Moreover, mitochondria communicates with the ER to regulate several cellular processes (96). 

Alterations in this mitochondria-ER communication can cause deregulation of Ca2+ homeostasis 

resulting in protein misfolding, metabolic alterations and apoptosis (97). ER stress, which is usually 

caused by the accumulation of misfolded proteins within the ER, is associated with the development 

of several neurodegenerative diseases. By either interacting with ER chaperones or affect ER 

function while compromising ER membranes integrity and exposing portions for the ER lumen to the 

cytosol, Insoluble aSyn aggregates could generate ER stress (98). Actually, aSyn was reported to 

inhibit trafficking in the ER-Golgi network in yeast models, increasing protein accumulation in the ER, 

cell toxicity and cell loss and exacerbating ER stress (99). Moreover, similar to what was seen in 

yeast cells, vesicle accumulations due to trafficking impairment have been observed in neurons 

before Lewy body formation (100). Furthermore, vesicle accumulations are often found in proximity 

to Lewy bodies in later stages of disease (101). 



Qual o papel das sinucleínas na neurodegeneração da retina? 

12 
 

Ultimately aSyn is degraded both by the UPS and by the autophagy/lysosomal pathway (ALP). 

However, some mutations such as the A30P and A53T may cause a failure in the release of aSyn 

and clogging of the autophagy translocation machinery thus accumulating aSyn (102). 

 

1.5.2. bSyn and gSyn 

bSyn is slightly smaller than aSyn but shares some of the synuclein features, including the 

location, being mainly found in the CNS (Fig. 1.5). Even though it is not as prone to aggregate as 

aSyn due to the lack of 11 aminoacids in its NAC domain, studies suggest that when exposed to 

toxins such as metal ions and pesticides, bSyn tends to fibrillate (103). Furthermore, when co-

expressing with aSyn, it leads to an increase in cytotoxicity in yeast and forms heterodimers in both 

yeast and cell lines (104). 

gSyn is the least conserved and the smallest of the three proteins (Fig. 1.5) (71). This synuclein 

is a putative marker for breast cancer (105). In the nervous system, it can be found mainly in the 

peripheral nervous system (PNS), including in primary sensory neurons, sympathetic neurons and 

motor neurons (106) but can also be found in other tissues such as ovarian and breast cancer (71). 

Although its function is likewise not known, exogenous expression of the protein potentiates the 

metastatic ability of breast tumours (107). 

 

Fig. 1.5. Schematic structure of synuclein proteins. aSyn, bSyn and gSyn share high homology. The N-

terminal region is highly conserved between the three proteins. Major differences are observed in the acidic C-

terminal, with bSyn and gSyn having a shorter size when compared to aSyn (adapted from (108)). 

 

1.5.3. Synucleins in the eye 

All the members of the synuclein family can be found ocular tissues. aSyn and bSyn are both 

located in synapse-rich IPL of the retina showing similar distribution patterns although bSyn is also 

found in the INL. gSyn, on the other hand, can be found in the GCL which is mainly composed of 

ganglion cells (109).  

To date, few have dedicated to the task of describing in detail the exact neuronal population where 

these proteins are located.  
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A study conducted by Martínez-Navarrete et al. in several animal models, namely in rodent (rat 

and mouse), bovine, and primate (human and monkey) retinas, not only reports the presence of aSyn 

in the presynaptic terminals of retinal neurons in the IPL (110), in agreement with the findings of 

Surguchov et al. (76), but also in the OPL due to the colocalization with synaptophysin (110), a 

synaptic-vesicle transmembrane protein involved in the regulation of vesicular exocytosis in the CNS, 

that can be found in both plexiform layers of the retina (111). The same group claims that aSyn was 

further localized in the somata and dendrites of both GABAergic and glycinergic amacrine cells and 

showed high levels in the RPE in all vertebrate tested (110).  

gSyn localization as well as physiological and pathological role are very poorly known. However, 

this synuclein was found by Martínez-Navarrete et al in cultured bovine retinal pigment epithelium 

(RPE) cells (110). Moreover, studies in rodent and human retinas, using suitable markers for 

ganglion cells, such as Brn-3 and Thy1-1 family proteins, were able to detect colocalization between 

these markers and gSyn antibody. gSyn was even suggested as a specific marker for that neuronal 

population (112). This synuclein was also implicated in glaucoma and even though a lot is yet to 

describe about its role in eye disease, has been found in the optic nerve of glaucomatous patients, 

in a subset of glial cells identified as possibly reactive astrocytes, which did not happen for healthy 

controls (106). Furthermore, in Alzheimer’s disease (AD) patients, a study revealed a decrease in 

gSyn levels, with no differences occurring in the levels of the other two synucleins, though the 

reasons behind this event remain unknown (109).  

 

1.6. Common pathophysiology between PD and DR 

Recent evidence points to a common pathophysiology in the visual impairment of PD patients 

and in DR, as an effect of a disruption in the dopaminergic system in both diseases. Dopamine is an 

essential neuromodulator in the brain and is highly present in the retina. In addition to regulating 

motor, cognition, and retinal function, dopamine present in the retina modulates light-adapted vision 

through the activation of selective receptors and retinal pathways (113,114). In fact, studies suggest 

that injecting the diabetic mice with dopamine-restoring and dopamine-activating drugs already used 

in PD can restore dopamine levels in dopaminergic amacrine cells and significantly improve retinal 

function (115).  

Moreover, another study in a rodent PD model suggested that the administration of antidiabetic 

drugs proved to have a neuroprotective effect on retinal and nigrostriatal neurons in PD patients. 

This further suggests a common pathophysiology between these two pathologies (116). 

Moreover, there is a resemblance between the diabetic retina and the environment underlying 

aSyn aggregation and, subsequently, PD. Hyperglycemia activates several pathways that, along with 

the impairment of the antioxidant defence system, result in an excessive bioavailability of ROS (20) 

that damages the mitochondrial membrane and mtDNA, compromising the mitochondrial machinery, 

namely the electron transport chain resulting in a continuous and increasing ROS production that 

leads to release of the apoptosis machinery (23). Likewise, in PD, increased oxidative stress and 
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inflammation processes as well increased glucation potentiate aSyn aggregation, a hallmark of PD 

(117). On the other way around, aSyn is believed to bind to the inner mitochondrial membrane, where 

it associates with mitochondrial complex I, culminating in increased ROS production, Ca2+ levels and 

release of cytochrome c, leading to cell death (90,91). 

The synuclein family members, which play a major role in PD due to the formation of aggregates 

in brain tissues and consequent relation with neurodegeneration, are also highly expressed in the 

retina (118). Triple knockout of aSyn, bSyn and gSyn in mice leads to altered synapse structure and 

physiology and age-dependent neuronal dysfunction and decreased survival. Importantly, these 

animals developed retinal dysfunction and age dependent blindness, a strong indicative that 

synucleins play an important role in retina function (119).  

Furthermore, aSyn aggregation was, as previously mentioned, also described in other 

degenerative diseases such as AD (120) but also in ageing retinas (121). Although LBs are the 

hallmark lesions of PD, aSyn-positive LBs also occur frequently in the brains of many AD patients 

(122). Also, within ageing, progressive accumulation of potentially toxic protein aggregates and the 

dysfunction of the ubiquitin proteasome system, eventually contribute to neuronal degeneration 

(121,123).  

Altogether these data suggest a possible role of the synucleins in DR’s pathology.  

 

1.7. Ins2Akita as a diabetic model  

The most commonly used diabetes animal models include rodents, dogs and primates with 

diabetes induced by chemical toxins such as streptozotocin. Streptozotocin enters the pancreatic β-

cells via a glucose transporter, glucose transporter 2 (GLUT2), and causes alkylation of DNA. DNA 

damage induces later on the formation of superoxide radicals. Consequently, hydrogen peroxide and 

hydroxyl radicals are also generated. As a result of the streptozotocin action, β-cells are destroyed 

(124).  

Still, due to the creation of strain-dependent resistance to streptozotocin, studies have been 

developed in order to describe a better model for early diabetic retinal complications in diabetes.   

The Ins2Akita, a C57BL/6 mutant heterozygous mouse, is a relatively recent and improved model 

for type 1 diabetes complications’ studies, such as DR. It consists of a point mutation in the insulin 2 

gene, which replaces a cysteine with tyrosine at the seventh amino acid of the A chain of the insulin 

2 gene product (125,126). This spontaneous mutation causes a conformational change in the protein, 

leading to its accumulation in the ER of pancreatic β-cells, triggering the unfolded protein response 

and consequently β-cell death. Loss of β-cells in the pancreas results in systemic hypoinsulinemia 

and hyperglycaemia, which are significant after only 4 weeks with significant as well as significantly 

less weight (Fig. 1.6) (126). Importantly, these mice develop diabetes complications including 

diabetic neuropathy (126–128).  

Although the Ins2Akita mice show a few signs of proliferative DR like indices of neovascularization 

and new capillary bed formation (129), this model is particularly strong in retinal pathologies 
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characteristic of early, nonproliferative DR, such as increased frequency of apoptotic retinal neurons, 

microaneurysms, vascular damage, and increased vascular leakage, accompanied by vision loss 

(126,130,131).   

When compared to other models, such as the streptozotocin(STZ)-induced diabetic rats, the 

Ins2Akita mice mimic several outcomes of diabetes established in the STZ-model, namely retinal 

complications such as increased vascular permeability, increased acellular capillaries and vascular 

inflammation (Fig. 1.6) (126). Moreover, increased levels of apoptosis markers such as Caspase 3 

was reported in both models (Fig. 1.6) (126,132). However, the Ins2Akita model shows some earlier 

the other models such as the acute STZ-model. Thinning of the inner layers of the retina were 

reported in the Ins2Akita model after little more than 5 months of diabetes onset, more than two months 

earlier than in STZ mice, suggesting a degeneration and loss of horizontal, bipolar and amacrine 

cells (Fig. 1.6) (133,134).  

Overall, the Ins2Akita has several advantages over other models. This heterozygotic mouse model 

breeds well, presents stable insulin-deficient diabetes that can be maintained at a noncatabolic state 

without exogenous insulin and shows a mechanism of diabetes onset that does not involve systemic 

immunologic alterations making it possible to evaluate the metabolic impact on the retina (126).

 

Fig. 1.6. Diabetes progression and molecular markers in the STZ and Ins2Akita diabetic retinopathy 

model. The Ins2Akita mice present several retinal complications. By one month these mice show a higher blood 

glucose concentration and higher levels of Caspase 3 in the retina and considerably less weight than controls. 

By 2 months old swollen processes in the retina are noticed and shortly after increased vascular permeability. 

Thinning of the Inner Nuclear and Inner Plexiform Layers of the retina are considerably increased in the Ins2Akita 

model after little more than 5 months of diabetes onset, suggesting a degeneration and loss of horizontal, bipolar 

and amacrine cells. By 7 months old, increased acellular capillaries and vascular inflammation occur. 
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1.8. Scientific question and aims 

Diabetes is a chronic disease responsible for significant macro- and microvascular complications 

such as Diabetic Retinopathy. Recently, DR was described as a neurodegenerative disease, where 

degeneration of neurons occurs prior to the microvascular onset. PD, the second most common 

neurodegenerative disease in the world, and DR are proposed to share a common pathophysiology 

in visual impairment due to the disruption of the dopaminergic system as well as to a similar hostile 

environment that, in PD, culminates in aSyn aggregation, toxicity and neuronal death. aSyn is the 

main focus not only in PD but also in other neurodegenerative diseases and can be found in ocular 

tissues. Its precise location in the retina and pathophysiological role are not fully described though it 

is suggested that it is crucial for vision to occur.  

The aim of this study is to do a description of the synucleins distribution pattern in the retina and 

to establish a correlation between the synucleins profile and the progression of diabetic retinopathy, 

using a type 1 diabetes mice model, the Ins2Akita, as well as Wild Type controls in different stages of 

the disease. 
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2. Material and Methods 

 

2.1. Sample handling 

C57Bl6/WT (WT) and C57Bl6/Ins2Akita (Ins2Akita) mice of matching ages 6, 9 and 12-months old 

were euthanized and their brains, eyes and kidneys removed. All animal procedures were performed 

according to the FELASA (Federation of European Laboratory Animal Science Associations) 

recommendations for laboratory animal research and wellfair guidelines, approved by the CEDOC-

NMS|FCM-UNL rodent facility. This facility is certified by the Portuguese Directorate-Gereral of 

Animal Wellfare.  

The retinas destined for protein extraction and consequent Western blot (WB) analysis were 

immediately dissected in Phosphate-Buffered Saline (PBS, pH 7.2; Gibco, Grand Island, New York, 

USA) with phosphatase (Phosphostop, Roche Diagnosis GmbH, Mainhein, Germany) and protease 

inhibitors (cOmplete, Roche Diagnosis GmbH, Mainhein, Germany) and protein extraction protocol, 

in detail bellow, was followed.  

All the organs destined for immunohistochemistry (IHC) were stored in 4% paraformaldehyde 

(PFA)/PBS at 4ºC for 48 hours and then transferred into a solution of 30% sucrose/PBS. In the case 

of the eyes, this was done through a sucrose gradient, remaining in a solution of 10% sucrose/PBS 

for 1h at RT shaking, then in a solution of 20% sucrose/PBS shaking for another hour at room 

temperature (RT) and finally put in a solution of 30% sucrose/PBS at 4ᵒC, shaking at 4ºC overnight 

(O/N).  

 

2.2. Cryosections of the Ins2Akita and Wild type mice retinas 

The eyes used for IHC were embedded in a cryo embedding media (Tissue Tek, Sakura Finetek, 

Torrance, California, USA) in the plastic mold and the eye oriented with the optic nerve pointing right 

from viewers point. The sample was then frozen at -80°C until used. 

The sectioning was performed in the Cryostat Leica CM3050 S, with an object temperature (OT) 

of -20°C and camera temperature (CT) of -22°C, as suggested in literature. The sections were 10 

µm thick. 

The sectioning was sequential, containing each portion of the eye (6-8 sections), so that every 

slide is representative.  

Superfrost Plus Microscope Slides (Thermofisher scientific, Braunschweigh, Germany), 

containing the cryosections were dried for 12 hours at RT and then stored at -20°C until needed. 

 

2.3. Localization of the synucleins in the Wild Type and Ins2Akita mice retinas 

and colocalization with specific markers 

Immunohistochemistry allows the visualization of the localization and distribution of specific tissue 

components by the interaction of target antigens with antibodies tagged with a label.  
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For that purpose, frozen retina sections were thawed at room temperature (RT) for 2 hours and 

rehydrated with PBS 1x for 30 min. The cryo embedding media was washed three times for 15 

minutes each with PBS-0,25% Triton (PanReac AppliChem, Barcelona, Spain) (PBS-T) and the 

slides blocked for 1 hour with blocking solution 1% Bovine Serum Albumin (BSA; (NZYTech, 

Lisboa, Portugal)/3% Goat serum (Sigma-Aldrich, Saint-Louis, Missouri, USA)/PBS-T. Primary 

antibodies were diluted in PBS-T and incubated O/N at 4°C. The slides were, once again, washed 

with PBS-T (3 washes of 15min) and secondary antibody, diluted in PBS-T, was incubated for 1 hour. 

Mounting media Fluoromount-G™ containing DAPI (4',6-diamidino-2-phenylindole; Southern 

biotech, Birmingham, USA) was added to the slides and, after dried, the slides were stored at 4°C.  

Moreover, controls using exclusively secondary antibodies were performed. 

The slides were imaged in the Zeiss Z2 widefield fluorescent microscope (Carl Zeiss 

MicroImaging GmbH, Germany) with the 20x or 40x objective and in the confocal microscope Zeiss 

LSM710. Confocal microscope images were analysed with the ImageJ – Fiji image analysis software 

(135), obtaining maximum intensity projection images and orthogonal view of the colocalization sites. 

This software was also used to calculate colocalization percentages between antibodies’ signals in 

the IPL region as well as the amount of cell bodies. For quantifications, three different images of 

each independent animal were used.  

Colocalization results were obtained addressing the Mander’s colocalization coefficients for 

channel 1 (M1) and channel 2 (M2), being M1 the percentage of green dye molecules that share 

their location with a red dye molecule and M2 the percentage of red dye molecules that share their 

location with a green dye molecule. 

The antibodies specification and dilutions used are listed in Table 2.1 and 2.2. 

 

Table 2.1. Description of primary antibodies used for IHC. 

Antibody Reference Species Dilution (in PBS-T) 

aSyn Cell signalling (2629S) Rabbit 1:200 

bSyn Abcam (ab76111) Rabbit 1:200 

gSyn Abcam (ab55424) Rabbit 1:200 

Syntaxin 1A Sigma (S0664) Mouse 1:200 

Synaptopysin Sigma (S5768) Mouse 1:200 

PKC-α Santa Cruz (sc-8393) Mouse 1:200 

Calbindin Sigma (C9848) Mouse 1:200 

TH Abcam (ab112) Rabbit 1:500 
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Table 2.2. Description of secondary antibodies used for IHC. 

Antibody Reference Dilution (in PBST-T) 

Alexa Fluor Goat anti-rabbit 488 Invitrogen, A11008 1:1000 

Alexa Fluor Goat anti-mouse 594 Invitrogen, A11005 1:1000 

 

2.4. Soluble protein from whole retina extraction 

For total protein extraction from the animals’ retina, whole retina (≈30µg) was homogenized in 

50µg RIPA lysis buffer with protease and phosphatase inhibitors, using a pellet pestle and 

centrifuged for 20 minutes at 4°C and full speed (13,200g). Supernatant was stored at -80°C. 

 

2.5. Total soluble protein quantification from retina protein extracts 

Protein quantification was done according to the bicinchoninic acid (BCA) assay (Thermo Fisher 

Scientific Inc., Waltham, MA, USA) protocol. The BCA Protein Assay consists of the reduction of 

Cu2+ to Cu1+ by protein in an alkaline medium which is then detected by the bicinchoninic acid, 

developing colour. The intense purple-colored reaction is then quantified. The protocol was followed 

according to the manufacturer’s instructions with the following observations: due to the small amount 

of each sample, 10µL of sample and standard were used. 

 

2.6. Assessment of the levels of the synucleins and other markers of interest  

Protein sample buffer (200mM Tris-HCl pH 6.8, 6% 2-mercaptoethanol, 8% sodium dodecyl 

sulfate (SDS), 40% glycerol, 0.4% bromophenol blue) was added to each sample with a total protein 

concentration of 15 µg/µL. Protein extracts from whole retina were analyzed by Western blot in order 

to determine the levels of the synucleins and other markers of interest. The samples were denatured 

at 100°C for 10 min and then loaded in a 12% acrylamide gel. After running, the proteins were 

transferred into a nitrocellulose membrane (Bio-Rad, USA) using the Trans-Blot® Turbo™ Transfer 

System (Bio-Rad, Hercules, CA, USA), through a 7 min transfer. The nitrocellulose membranes were 

divided in two, between the 35 kDa and 25 kDa bands, in order to incubate the membrane with both 

β-actin, which was used as loading control, and the synucleins and other markers.  

The membranes were then blocked with 5%BSA/Tris-buffered Saline – Tween 20 (5% BSA/TBS-

T) (w/v) for 1 hour and incubated O/N with the primary antibody diluted in 5%BSA/TBS-T. The 

membranes were afterwards washed with TBS-T three times for 15 min each and incubated with the 

secondary antibody diluted in 5%BSA/TBS-T for 1 hour at RT. After washing with TBS-T, the 

membranes were analyzed in the Chemidoc Touch (Bio-Rad, Hercules, CA, USA) using the Pierce™ 

ECL Western Blotting Substrate (Thermo Fisher Scientific, Waltham, MA, USA). 

The antibodies’ specification and dilution used are listed in Tables 2.2 and 2.3. 
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The images acquired were treated using the Image Lab Software (Bio-Rad, Hercules, CA, USA) 

for quantification of the protein levels and comparison between diabetic animals and controls. 

 

Table 2.3. Description of primary antibodies used for Western Blot. 

Antibody Reference Species 
Dilution (in 5%BSA-
TBST) 

aSyn Cell signalling (2629S) Rabbit 1:1000 

bSyn Abcam (ab76111) Rabbit 1:1000 

Syntaxin 1A Sigma (S0664) Mouse 1:1000 

Synaptopysin Sigma (S5768) Mouse 1:1000 

SNAP25 111 002 Rabbit 1:1000 

PSD95 Milipore (04-1066) Rabbit 1:1000 

Rab3a Sicgen (AB10032-200) Goat 1:1000 

Caspase 3 Cell Signaling /Izasa (8G10) Rabbit 1:1000 

β-actin Sigma, A-5441 Mouse 1:10000 

 

 

Table 2.4. Description of secondary antibodies used for Western Blot. 

Antibody Reference 
Dilution (in 5%BSA-
TBST) 

Donkey anti-rabbit GE Healthcare (NA934V) 1:5000 

Sheep anti-mouse GE Healthcare (NA931V) 1:5000 

Donkey anti-goat Santa Cruz (sc-2620) 1:5000 

 

In order to incubate other antibodies in the same membranes, membranes were stripped using a 

stripping solution (glycine, 10% SDS, ddH2O; pH 2.0) during 45 min, followed by three washes with 

TBS 1x and three washes with TBS-T, for 10 min each. Membranes were again blocked and 

incubated with new primary antibodies, following WB protocol.  
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2.7. Statistical Analysis 

To perform the statistical analysis, the Prism 7 (GraphPad Software Inc., La Jolla, CA, USA) was 

used. The analysis of the colocalization between proteins was performed using a two-way ANOVA, 

comparing ages and WT and Ins2Akita samples. Statistical analysis of protein levels was performed 

using parametric t-test and non-parametric Mann-Whitney test, comparing the mean between two 

groups, WT and Ins2Akita mice. P value ≤ 0.05 was considered statistically significant. Results are 

shown as mean ± standard deviation.  
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3. Results 

3.1. Characterization of the WT and Ins2Akita population 

The Ins2Akita is a mouse model for type 1 diabetic complications’ studies, such as diabetic 

retinopathy. When compared to controls, these animals present hyperglycemia and a smaller weight 

(126).  

Before sample collection, the animals used for this study were weighted and glycaemia levels 

measured in order to characterize the mice population and to criticize possible variations in the 

results (Fig. 3.1 and 3.2).  

 

Fig. 3.1. Glycemia levels of WT and Ins2Akita mice sacrificed between September 2016 and August 2017.  

N=23 for 6 months old, N=23 for 9 months old and N=18 for 12 months old WT and N=19 for 6 months old, 

N=15 for 9 months old and N=8 for 12 months old Ins2Akita. Data are presented as Mean ± SD. ****p<0.001  

Ins2Akita compared with WT; T-test.  

 

 

Fig. 3.2. Weight levels of WT and Ins2Akita mice sacrificed between September 2016 and August 2017.  

N=23 for 6 months old, N=23 for 9 months old and N=18 for 12 months old WT and N=19 for 6 months old, 

N=15 for 9 months old and N=8 for 12 months old Ins2Akita. Data are presented as Mean ± SD. ****p<0.001  

Ins2Akita compared with WT; T-test. 
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Weight and glycemia levels measurment revealed a consistency in both parameters between WT 

animals of all ages and between Ins2Akita animals of all ages. Ins2Akita mice show significantly higher 

levels of glycemia (183.16 ± 33.80 vs 576.31 ± 42.19) and significantly lower weight than WT mice 

(28.55 ± 2.84 vs 21.76 ± 3.70, p<0.001 ) (Fig. 3.1 and 3.2).   

With diabetes, thinning of the INL was described in Ins2Akita mice (126) as well as other models 

such as the STZ mice (133). The area of the INL in the central retina was measured and compared 

between WT and Ins2Akita retinas of all ages (Fig. 3.3).  

 

 

 

Fig. 3.3. INL area (mm2) of WT and Ins2Akita mice. N=5 to 6 and 9-months old group; N=3 to 12-months old 

group. Data are presented in Mean ± SD. ****p<0.001  Ins2Akita compared with WT; Mann-Whitney test. 

 

Regarding the area of the INL, results show that the INL of 6, 9 and 12-months old Ins2Akita retinas 

is significantly thinner than controls (7676.33 ± 94.78 vs 5546.76 ± 196.31, P<0.001 ), not showing 

any differences with ageing (Fig. 3.3). 

Overall, these results show that the Ins2Akita mice model we used in our study is reproducing the 

halmarks previously described by Barber and colaborators (126). 

 

3.2. Evaluation of synucleins profile in WT and Ins2Akita retinas  

3.2.1. The synucleins in the retina 

The localization of the synucleins in the retina is of major importance as its location may dictate 

or at least influence its function.  

In order to localize aSyn in the retinal cell populations of WT or Ins2Akita mice of different ages (6, 

9 and 12-months old) and, therefore, different disease stages, IHC was performed according to 

protocol (Fig. 3.4).  
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Fig. 3.4. Immunohistochemistry for aSyn in retinal sections of WT and Ins2Akita mice of 6, 9 and 12-

months old. N=5 to 6 and 9-months old group; N=4 to 12-months old group. Nucleus are stained with DAPI 

(blue) and aSyn stained with Alexa Fluor 488 GAR (Green). GCL, ganglion cell layer; IPL, inner plexiform layer; 

INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Confocal images obtained with a 

40x objective. 

 

aSyn is localized in the IPL and to be stratified in strata 1, 3 and 5 (s1, s3 and s5) in both WT and 

Ins2Akita, being more intense in s5 which is where the ON bipolar and ON ganglion cells as well as 

amacrine cells communicate (Fig. 3.4). Also, aSyn is localized in cell bodies of the GCL and INL (Fig. 

3.4). Aiming to detect differences within ageing and diabetes, the number of cell bodies containing 

aSyn in both layers was counted (Fig. 3.5 and 3.6).  
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Fig. 3.5. Quantification of the amount of cell bodies containing aSyn in the GCL of 6, 9 and 12-months 

old WT and Ins2Akita mice retinas. N=4 to 6 and 9-months old group; N=3 to 12-months old group. Data are 

presented as Mean ± SD, considering the number of cell bodies containing aSyn per area. *p<0.05 Ins2Akita 

compared with WT; Mann-Whitney Test. 

  

Fig. 3.6. Quantification of the amount of cell bodies containing aSyn in the INL of 6, 9 and 12-months 

old WT and Ins2Akita mice retinas. N=3 to each group. Data are presented as Mean ± SD considering the 

number of cell bodies containing aSyn per mm2. *p<0.05; **p<0.005 Ins2Akita compared with WT; Mann-Whitney 

test. 

 

Regarding the amount of cell bodies containing aSyn in the GCL, there are no differences 

between WT and Ins2Akita retinas of all ages. With ageing however, there is a significant decrease in 
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the amount of cells expressing aSyn by 12 months old WT retinas when comparing to 6 months old 

samples and a decrease by 12 months old Ins2Akita when compared to 9 months old Ins2Akita retinas 

(Fig. 3.5). 

In the INL the same is observed. The amount of cell bodies with aSyn appears to be similar 

between WT and Ins2Akita retinas and between Ins2Akita retinas of all ages (6, 9 and 12-motnhs old). 

With ageing, the amount of cell bodies with aSyn is considerably lower in 12 months old WT retinas 

than in 6 and 9-months old controls (Fig. 3.6).  

 

bSyn localization in the retinal cell populations of WT and Ins2Akita mice of different ages was also 

evaluated, in 6, 9 and 12-months old animal retinas (Fig. 3.7).  

 
Fig. 3.7. Immunohistochemistry for bSyn in retinal sections of WT and Ins2Akita mice of 6, 9 and 12-

months old. N=5 to 6 and 9-months old group; N=4 to 12-months old group. Nucleus are stained with DAPI 

(blue) and bSyn stained with Alexa Fluor 488 GAR (Green). GCL, ganglion cell layer; IPL, inner plexiform layer; 

INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Confocal images obtained with a 

40x objective. 

 

bSyn is localized in the IPL, similarly to aSyn, however less stratified. Furthermore, bSyn is 

expressed in the OPL and in cell bodies in the INL and GCL (Fig. 3.7). Considering bSyn distribution 

with ageing and diabetes progression, between images there appear to be no striking differences 

with ageing nor between WT and Ins2Akita retinas (Fig. 3.7). However, in order to conclude if there 

are in fact differences, a quantification, similar to what was done for aSyn, must be done.    
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Regarding gSyn, its localization in the retina was also determined in 6, 9 and 12-months old 

animals (Fig. 3.8). 

 

Fig. 3.8. Immunohistochemistry for gSyn in retinal sections of WT and Ins2Akita mice of 6, 9 and 12-

months old. N=5 to 6 and 9-months old group; N=4 to 12-months old group. Nucleus are stained with DAPI 

(blue) and gSyn stained with Alexa Fluor 488 GAR (Green). GCL, ganglion cell layer; IPL, inner plexiform layer; 

INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Confocal images obtained with a 

40x objective. 

 

gSyn, unlike aSyn and bSyn, is not present in the IPL. It presents a localization both in the GCL 

and in the INL of the retina of WT and Ins2Akita of all ages (Fig. 3.8). The images obtained suggest 

that there might be an increased number of cell bodies of the INL containing gSyn in aged retinas, 

both in healthy but specially in diseased animals (Fig 3.8), but that will need quantification analysis 

for confirmation. 

aSyn and bSyn protein levels were also assessed and compared between WT and Ins2Akita 

samples of different ages (6, 9 and 12-months old) and between ages in WT and Ins2Akita samples 

(Fig.3.9). 
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Fig. 3.9. Assessment of aSyn levels in 6, 9 and 12-months old WT and Ins2Akita protein extracts from 

whole retina. A) Western blot for the comparison of aSyn protein levels between WT and Ins2Akita mice of 

different ages (6, 9, and 12 months old). Data are presented as Mean ± SD. *p<0.05 Ins2Akita compared with 

WT; T-test. B) Western blot for the comparison of aSyn protein levels between ages (6, 9 and 12-months old) 

in WT and Ins2Akita mice. Data are presented as Mean ± SD.  

 

aSyn levels are similar between WT and Ins2Akita samples by 6 and 9-months old. However, by 

12-months old, its levels are significantly increased in the Ins2Akita samples (Fig. 3.9 A). Interestingly, 

also by 12 months old Ins2Akita samples, there are to be two distinct groups with no distinct pattern, 

meaning that there is no explanation for this separation considering glycemia levels, weight and 

cages. Nevertheless, these differences do not seem to be biologically significant. aSyn levels do not 

seem to be affected with ageing nor disease progression since there are no significant differences 

between ages in WT and Ins2Akita samples (Fig. 3.9 B).  

bSyn was the next to be evaluated, compared between WT and Ins2Akita samples of different ages 

(6, 9 and 12-months old) and between ages in WT and Ins2Akita samples (Fig.3.10). 
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Fig. 3.10. Assessment of bSyn levels in 6, 9 and 12-months old WT and Ins2Akita protein extracts from 

whole retina. A) Western blot for the comparison of bSyn protein levels between WT and Ins2Akita mice of 

different ages (6, 9, and 12 months old). Data are presented as Mean ± SD. B) Western blot for the comparison 

of bSyn protein levels between ages (6, 9 and 12-months old) in WT and Ins2Akita mice. Data are presented as 

Mean ± SD. 

 

bSyn levels are similar between WT and Ins2Akita samples by 6 and 12 months old. However, by 

9 months old, it is significantly decreased in the Ins2Akita samples. It is possible that, with ageing, we 

might be looking at a recovering from this difference (Fig. 3.10 A).  

bSyn does not seem to be affected with ageing (Fig. 3.10 B).   

It was not possible to assess the levels of gSyn as no signal was obtained for this protein using 

WB assay. 

Overall, these results show that aSyn and bSyn are localized in the IPL the retina and that all 

three synucleins are localized in the cell bodies of the INL and GCL. bSyn is further localized in the 

OPL of retinas. The results also show that by 12 months old, both WT and Ins2Akita, show a decreased 

number of cell bodies with aSyn in both the INL. Regarding GCL, there was a decreased number of 

cell bodies with aSyn with ageing in WT but not in Ins2Akita mice. Furthermore, aSyn levels are 

increased by 12 months old Ins2Akita when compared to WT samples of the same age, whereas bSyn 

decrease by 9 months old Ins2Akitas when compared to controls.  
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3.2.2 Are aSyn and bSyn presynaptic proteins in the retina? 

The IPL is composed of the synaptic terminals of bipolar, amacrine and ganglion cells. Previously, 

the results obtained indicated that aSyn and bSyn are expressed in the IPL of these mice retinas. In 

order to specify these proteins location in this layer, synaptic markers were used.  

Synaptophysin is an integral membrane glycoprotein that occurs in presynaptic vesicles of 

neurons, thought to play several roles in synaptic function, including exocytosis, synapse formation, 

biogenesis and endocytosis of synaptic vesicles (136–140). Although no direct contact between aSyn 

and Synaptophysin is established, both proteins are involved in trafficking of synaptic vesicles, 

interacting with several other proteins (141). aSyn colocalization with Synaptopysin in the IPL was 

quantified and the profile of presynaptic marker Synaptophysin with ageing and diabetes evaluated 

through Western Blot (Fig. 3.11).  

aSyn and Synaptophysin colocalized in s1, s3 and s5 of the IPL of WT and Ins2Akita mice retinas 

of all ages (6, 9 and 12-months old) (Fig. 3.11 A). Regarding the quantification of the colocalization 

of both proteins in the IPL, the percentage of aSyn that colocalizes with Synaptophysin and the 

percentage of Synaptophysin that colocalizes with aSyn in the IPL is similar between WT and Ins2Akita 

retinas, showing no differences with ageing as well (Fig. 3.11 B). Synaptophysin protein levels are 

also similar between WT and Ins2Akita samples of all ages (6, 9 and 12-months old), revealing no 

changes with diabetes nor ageing in WT mice (Fig. 3.11 C).  
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Fig. 3.11. Evaluation of the profile of presynaptic marker Synaptophysin with ageing and diabetes and 

its colocalization with aSyn in the same conditions. N=5 to 6 and 9-months old group; N=3 to 12-months 

old group. (A) Immunohistochemistry for aSyn and Synaptophysin colocalization evaluation in retinal sections 

of 6, 9 and 12-months old WT and Ins2Akita mice. Nucleus are stained with DAPI (blue), aSyn stained with Alexa 

Fluor 488 GAR (Green) and Synaptophysin stained with Alexa Fluor 594 GAM (red). GCL, ganglion cell layer; 

IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. White 
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arrows indicate the colocalization sites. Confocal images obtained with a 40x objective. (B) Quantification of 

aSyn and Synaptophysin colocalization in the IPL of 6, 9 and 12-months old WT and Ins2Akita mice retinas. N=3 

to each group. Data are presented as Mean ± SD. (C) Western blot for the comparison of Synaptophysin protein 

levels between WT and Ins2Akita mice of different ages (6, 9, and 12 months old). Data are presented as Mean 

± SD. (D) Western blot for the comparison of Synaptophysin protein levels in WT and Ins2Akita mice between 

ages (6, 9, and 12 months old). Data are presented as Mean ± SD.  

 

The colocalization between bSyn and Synaptophysin was also evaluated (Fig. 3.12). 

 

Fig. 3.12. Immunohistochemistry with colocalization between bSyn and Synaptophysin in retinal 

sections of WT and Ins2Akita mice of 6, 9 and 12-months old. N=3 to each group. White arrows indicate the 

colocalization sites. Nucleus are stained with DAPI (blue), bSyn stained with Alexa Fluor 488 GAR (Green) and 

Synaptophysin stained with Alexa Fluor 594 GAM (red). GCL, ganglion cell layer; IPL, inner plexiform layer; 

INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Confocal images obtained with a 

40x objective. 

 

bSyn and Synaptophysin colocalize both in the IPL and OPL of WT and Ins2Akita mice retinas of 

all ages. In the IPL, this colocalization seems to be specifically happening between s3 and s5 (Fig. 

3.12). For more conclusions to be drawn, quantification of the colocalization between bSyn and 

Synaptophysin in the IPL must be performed.  

Syntaxin 1A is a specific presynaptic marker for amacrine cells, being of special importance for 

the trafficking of synaptic vesicles as part of the SNARE complex (142). The colocalization between 

aSyn and Syntaxin 1A, as well as the profile of presynaptic marker Syntaxin 1A with ageing and 

diabetes were evaluated (Fig. 3.13).  
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aSyn and Syntaxin 1A colocalize in the IPL of WT and Ins2Akita mice retinas of all ages, specially 

in s1, s3 and s5 due to aSyn described stratification (Fig. 3.13 A). Moreover, aSyn and Syntaxin 1A 

colocalize in cell bodies of the INL of WT and Ins2Akita retinas of all ages, corresponding to amacrine 

cells of the INL (Fig. 3.13 A). Interestingly, by 9 and 12-months old Ins2Akita retinas, these two proteins 

also colocalize in cell bodies of the GCL, where few amacrine cells exist (Fig. 3.13 A, 7 and 8).  

Considering the quantification of aSyn colocalization with Syntaxin 1A in the IPL, it is considerably 

increased between 6 and 9-months old WT samples (46.12 ± 8.59 vs 72.36 ± 2.33), but to drastically 

decrease by 12 months old when compared to 9 months old samples (44.86 ± 8.82). Similarly, in 

Ins2Akita samples, the percentage of aSyn that colocalizes with Syntaxin 1A significantly decreases 

between 9 and 12-months old samples (83.33 ± 4.49 vs 53.75 ± 4.42) (Fig. 3.13 B). Regarding the 

percentage of Syntaxin 1A that colocalizes with aSyn in the IPL, it is significantly increased in 9 

months old Ins2Akita samples, when compared to 9 months old controls (59.56 ± 0.74 vs 90.83 ± 

2.18). It is also significantly increased by 9 months old WT when compared to 6 months old controls 

(59.56 ± 0.74 vs 32.03 ± 5.11). Between Ins2Akita samples, it is considerably decreased by 12 months 

old when compared to 9 months old samples (53.53 ± 4.79 vs 90.83 ± 2.1) (Fig. 3.13 B). 

Regarding Syntaxin 1A protein levels, it is significantly decreased by 6 months old Ins2Akita 

samples when compared to controls (0.67 ± 0.05 vs 1 ± 0.17 vs) and by 9 months old (0.45 ± 0.27 

vs 1 ± 0.66), seeming to recover by 12 months old where the levels appear to be similar between 

conditions (Fig. 3.13 C).  

Ageing also seems to affect this protein. In controls, its levels are significantly higher by 9 months 

old when compared with younger and older WT mice (6 and 12-months old WT mice) (1.65 ± 0.21 

vs 1 ± 0.22 and 1.65 ± 0.21 vs 1.08 ± 0.27). In Ins2Akita samples there are no differences between 

ages (Fig. 3.13 D).  
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Fig. 3.13. Evaluation of the profile of presynaptic marker Syntaxin 1A with ageing and diabetes and its 

colocalization with aSyn in the same conditions. N=5 to 6 and 9-months old group; N=3 to 12-months old 

group. (A) Immunohistochemistry for aSyn and Syntaxin 1A colocalization evaluation in retinal sections of 6, 9 



Qual o papel das sinucleínas na neurodegeneração da retina? 

36 
 

and 12-months old WT and Ins2Akita mice. Nucleus are stained with DAPI (blue), aSyn stained with Alexa Fluor 

488 GAR (Green) and Syntaxin 1A stained with Alexa Fluor 594 GAM (red). GCL, ganglion cell layer; IPL, inner 

plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. White arrows 

indicate the colocalization sites. Confocal images obtained with a 40x objective. (B) Quantification of aSyn and 

Syntaxin 1A colocalization in the IPL of 6, 9 and 12-months old WT and Ins2Akita mice retinas. N=3 to each 

group. Data are presented as Mean ± SD. *p<0.05, **p<0.005, ***p<0.0005, ****p<0.001 ; Mann-Whitney test. 

(C) Western blot for the comparison of Syntaxin 1A protein levels between WT and Ins2Akita mice of different 

ages (6, 9, and 12 months old). Data are presented as Mean ± SD. *p<0.05, **p<0.005 Ins2Akita compared with 

WT; T-test. (D) Western blot for the comparison of Syntaxin 1A protein levels in WT and Ins2Akita mice between 

ages (6, 9, and 12 months old). Data are presented as Mean ± SD. *p<0.05 9 months old WT  compared with 6 

and 12-months old WT; T-test. 

 

The colocalization between bSyn and Syntaxin 1A was also evaluated (Fig. 3.14). 

 

 

Fig. 3.14. Immunohistochemistry with colocalization between bSyn and Syntaxin 1A in retinal sections 

of WT and Ins2Akita mice of 6, 9 and 12-months old. N=3 to each group. White arrows indicate the 

colocalization sites. Nucleus are stained with DAPI (blue), bSyn stained with Alexa Fluor 488 GAR (Green) and 

Syntaxin 1A stained with Alexa Fluor 594 GAM (red). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, 

inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Confocal images obtained with a 40x 

objective. 

 

bSyn and Syntaxin 1A colocalize both in the IPL as well as the INL of WT and Ins2Akita mice retinas 

of all ages. In the IPL, this colocalization seems to be similarly distributed between strata (Fig. 3.14). 

However, quantification analysis can be more detailed information.  

Overall these results show that both aSyn and bSyn are presynaptic proteins in the retina and 

that both are located in amacrine cells and their terminals. Furthermore, the quantification of the 

colocalization between aSyn and Syntaxin 1A in the IPL indicated that the colocalization between 

both proteins decreases by 12 months old for both WT and Ins2Akita samples.  
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3.2.3 Colocalization between the synucleins 

Next, it was evaluated if the members of the synuclein family can be expressed in the same 

neuronal cell types of the retina, since colocalization might implicate some form of synergistic or 

antagonistic relation between them. IHC was performed in 6, 9 and 12-months old WT and Ins2Akita 

mice retinas and the colocalization of aSyn and bSyn and aSyn and gSyn evaluated and, when 

between aSyn and bSyn in the IPL, quantified (Fig. 3.15 and 3.16, respectively). 

 

Fig. 3.15. Evaluation of the colocalization of aSyn and bSyn in retinal sections of WT and Ins2Akita mice 

of 6, 9 and 12-months old. N=5 to 6 and 9-months old group; N=4 to 12-months old group. A) Confocal imaging 

of the colocalization of aSyn and bSyn in 6, 9 and 12-months old WT and Ins2Akita retinas. Nucleus are stained 

with DAPI (blue), bSyn stained with Alexa Fluor 488 GAR (Green) and aSyn stained with Alexa Fluor 594 GAM 

(red). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; 

ONL, outer nuclear layer. White arrows indicate the colocalization sites. Confocal images obtained with a 40x 
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objective. B) Quantification of the colocalization of aSyn and bSyn in the IPL of 6, 9 and 12-months old retinas. 

N=5 to 6 and 9-months old group; N=4 to 12-months old group. Data are presented as Mean ± SD. C) 

Quantification of the colocalization of aSyn and bSyn in the GCL of 6, 9 and 12-months old retinas. N=3 to each 

group. Data are presented as Mean ± SD. **p<0.005 12 months old WT when compared to 6 and 9-months old 

WT; ##p<0.005 12 months old Ins2Akita when compared to 6 and 9-months old Ins2Akita. D) Quantification of the 

colocalization of aSyn and bSyn in the INL of 6, 9 and 12-months old retinas. N=3 to each group. Data are 

presented as Mean ± SD. **p<0.005, ***p<0.0005, ****p<0.001 ; T-test.  

 

The results indicate that aSyn and bSyn colocalize in the IPL but also in the GCL and INL (Fig. 

3.15 A). In the INL, it looks like by 12 months old Ins2Akita retinas, colocalization is less evident (Fig. 

3.15 A). Considering the quantification of aSyn and bSyn colocalization in the IPL, results show that 

there are no differences between WT and Ins2Akita retinas (Fig. 3.15 B). Regarding aSyn and bSyn 

colocalization in the GCL, there seem to be no differences between WT and Ins2Akita retinas. 

However, with ageing, it is significantly decreased by 12 months old WT mice when compared to 6 

and 9-months old controls (0.13 ± 0.01 vs 0.26 ± 0.03 and 0.13 ± 0.01 vs 0.25 ± 0.02). The same 

happens for Ins2Akita samples where aSyn and bSyn colocalization is significantly decreased by 12 

months old WT mice when compared to 6 and 9-months old controls (0.15 ± 0.01 vs 0.25 ± 0.01 and 

0.15 ± 0.01 vs 0.28 ± 0.01) (Fig. 3.15 C).  

Regarding aSyn and bSyn colocalization in the INL, it is significantly lower in the Ins2Akita retinas 

by 6 months old when compared to controls (5510 ± 219.69 vs 8657 ± 354) but to be significantly 

higher by 9 months old (5450 ± 325.67 vs 3643.67 ± 425.74). By 12 months old, there seem to be 

no differences between WT and Ins2Akita samples (Fig. 3.15 D). Furthermore, it is significantly lower 

in the 12 months old WT when compared to other control ages (6 and 9-months old)(2823.67± 243.05 

vs 8657 ± 354 and 2823.67± 243.05 vs 3643.67 ± 425.74), as well as significantly lower in the 12 

months old Ins2Akita samples, when compared to the other ages (6 and 9-months old)(3110 ± 253.11 

vs 5110 ± 219.69 and 3110 ± 253.11 vs 5450 ± 325.67)(Fig. 3.15 D). 
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Fig. 3.16. Immunohistochemistry with colocalization between aSyn and gSyn in retinal sections of WT 

and Ins2Akita mice of 6, 9 and 12-months old. N=5 to 6 and 9-months old group; N=4 to 12-months old group. 

Nucleus are stained with DAPI (blue), gSyn stained with Alexa Fluor 488 GAR (Green) and aSyn stained with 

Alexa Fluor 594 GAM (red). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, 

outer plexiform layer; ONL, outer nuclear layer. White arrows indicate the colocalization sites. Confocal images 

obtained with a 40x objective. 

 

Considering aSyn colocalization with gSyn, it is observed in the GCL. Although no quantification 

was done, images suggest that the colocalization is more evident by 12 months old WT and by 

Ins2Akita samples (Fig. 3.16). 

Overall, these results show that aSyn colocalizes with both bSyn and gSyn. aSyn and bSyn not only 

colocalize in the IPL, with no differences between WT and Ins2Akita of all ages, but also in the INL 

and GCL, where their colocalization is decreased in late stages of the disease (12 months old).  

 

3.2.3. The synucleins and specific retinal neuronal markers 

As previously described, the retina is composed of several layers, each hosting different neuronal 

cell populations. To further and more accurately evaluate the localization of the synucleins in the 

retina, specific neuronal cell markers were used and their colocalization with the synucleins analyzed. 

Previous results showed that aSyn was localized in the presynaptic terminals of amacrine cells, 

further being localized in amacrine cell bodies in the INL. As mentioned, dopaminergic amacrine cells 

are extremely important due to their ability to produce and release dopamine: a system that, when 

disrupted in the brain leads to motor features (143). TH is a specific marker for dopaminergic 

amacrine cells, considering its role as a mediator in the production of dopamine (84). The 

colocalization between aSyn and TH was determined and the number of dopaminergic amacrine 

neurons containing aSyn quantified in order to evaluate these cells behaviour with ageing and 

diabetes progression and a possible relation with aSyn (fig. 3.17).  
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Fig. 3.17. Evaluation of the profile of dopaminergic amacrine cells with ageing and DR and the 

colocalization of TH with aSyn in the same conditions. N=3 to each group. (A) Immunohistochemistry for 

aSyn and TH colocalization evaluation in retinal sections of 6, 9 and 12-months old WT and Ins2Akita mice. 

Nucleus are stained with DAPI (blue), aSyn stained with Alexa Fluor 488 GAR (Green) and TH stained with 

Alexa Fluor 594 GAM (red). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, 

outer plexiform layer; ONL, outer nuclear layer.Confocal images obtained with a 40x objective. (B) Quantification 

of aSyn and TH colocalization in cell bodies of the INL/TH-positive cell bodies in the INL of 6, 9 and 12-months 

old WT and Ins2Akita mice retinas. N=3 to each group. Data are presented as Mean ± SD. * p>0.05 9 months old 

WT compared to 12 months old WT; ** p>0.005 6 months old WT compared to 12 months old WT; Mann-

Whitney test. 

 

aSyn and TH colocalize in the INL in both WT and Ins2Akita retinas of all ages (6, 9 and 12-months 

old) (Fig. 3.17 A). The images analysed, within a total of 3N to each group, demonstrated that aSyn 

and TH may colocalize in 100% of cases. There is a tendency for these cells to significantly decrease 

in number with ageing in healthy animals, considering that the number of dopaminergic cells are 
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significantly higher by 6 months old than by 12 months old (13 ± 0.81 vs 9.66 ± 0.47) and significantly 

higher by 9 months old than by 12 months old (12.33 ± 0.47 vs 9.66 ± 0.47)(Fig. 3.17 B). However, 

between WT and Ins2Akita and between Ins2Akita samples there seem to be no differences (Fig. 3.17 

B).  

PKC-α is an abundant protein in retinal bipolar cells, due to its role in the activation of these cells 

(144). Therefore, it is a specific marker for this neuronal cell population retina, which are the most 

direct pathway between the photoreceptors and ganglion cells. It’s colocalization with the synucleins 

was evaluated (Fig. 3.18 – 3.20) and a match found for bSyn (3.19). 

 

 

Fig. 3.18. Immunohistochemistry with colocalization between aSyn and PKC-α in retinal sections of WT 

and Ins2Akita mice of 6, 9 and 12-months old. N=3 to each group. Nucleus are stained with DAPI (blue), aSyn 

stained with Alexa Fluor 488 GAR (Green) and PKC-α stained with Alexa Fluor 594 GAM (red). GCL, ganglion 

cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear 

layer. White arrows indicate the colocalization sites. Fluorescence microscope Zeiss Z2 images obtained with 

a 40x objective. 

 

aSyn and PKC-α seem to colocalize in the IPL, although no colocalization seems to occur in the 

INL where bipolar cells are. However, confocal analyzis shows that there is no colocalization between 

aSyn and PKC-α in WT and Ins2Akita retinas of all ages (Fig. 3.18). 
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Fig. 3.19. Immunohistochemistry with colocalization between bSyn and PKC-α in retinal sections of WT 

and Ins2Akita mice of 6, 9 and 12-months old. N=5 to 6 and 9-months old group; N=3 to 12-months old group. 

Nucleus are stained with DAPI (blue), bSyn stained with Alexa Fluor 488 GAR (Green) and PKC-α stained with 

Alexa Fluor 594 GAM (red). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, 

outer plexiform layer; ONL, outer nuclear layer. White arrows indicate the colocalization sites. Confocal images 

obtained with a 40x objective. 

  

bSyn and PKC-α do colocalize in the IPL and in the INL (Figure 3.18). The images obtained show 

no clear differences in bSyn and PKC-α colocalization between WT and Ins2Akita retinas of all ages 

(Fig. 3.19).  

 

Fig. 3.20. Immunohistochemistry with colocalization between gSyn and PKC-α in retinal sections of WT 

and Ins2Akita mice of 6, 9 and 12-months old. N=3 to each group. Nucleus are stained with DAPI (blue), gSyn 

stained with Alexa Fluor 488 GAR (Green) and PKC-α stained with Alexa Fluor 594 GAM (red). GCL, ganglion 

cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear 
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layer. White arrows indicate the colocalization sites. Fluorescence microscope Zeiss Z2 images obtained with 

a 40x objective.  

 
gSyn and PKC-α do not colocalize in WT and Ins2Akita retinas of 6, 9 and 12-months old (Fig. 

3.20). These results were confirmed in the confocal microscope.  

Calbindin is a specific marker for horizontal cells, which allow the interactions between 

photoreceptors and bipolar cells (47,50,145). It’s colocalization with the synucleins was evaluated 

(Fig. 21-23) and a match found for gSyn (Fig. 3.22). 

 

Fig. 3.21. Immunohistochemistry with colocalization between aSyn and Calbindin in retinal sections of 

WT and Ins2Akita mice of 6, 9 and 12-months old. N=3 to each group. Nucleus are stained with DAPI (blue), 

aSyn stained with Alexa Fluor 488 GAR (Green) and Calbindin stained with Alexa Fluor 594 GAM (red). GCL, 

ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer 

nuclear layer. Fluorescence microscope Zeiss Z2 images obtained with a 40x objective. 

 

aSyn and Calbindin do not colocalize in WT and Ins2Akita retinas of 6, 9 and 12-months old (Fig. 

3.21). These results were confirmed in the confocal microscope.  
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Fig. 3.22. Immunohistochemistry with colocalization between bSyn and Calbindin in retinal sections of 

WT and Ins2Akita mice of 6, 9 and 12-months old. N=3 to each group. Nucleus are stained with DAPI (blue), 

gSyn stained with Alexa Fluor 488 GAR (Green) and Calbindin stained with Alexa Fluor 594 GAM (red). GCL, 

ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer 

nuclear layer. Fluorescence microscope Zeiss Z2 images obtained with a 40x objective. 

 

bSyn and Calbindin do not colocalize in WT and Ins2Akita retinas of 6, 9 and 12-months old (Fig. 

3.22). These results were confirmed in the confocal microscope.  

 

Fig. 3.23. Immunohistochemistry with colocalization between gSyn and Calbindin in retinal sections of 

WT and Ins2Akita mice of 6, 9 and 12-months old. N=5 to 6 and 9-months old group; N=3 to 12-months old 

group. Nucleus are stained with DAPI (blue), gSyn stained with Alexa Fluor 488 GAR (Green) and Calbindin 

stained with Alexa Fluor 594 GAM (red). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear 

layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Confocal images obtained with a 40x objective. 
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gSyn and Calbindin colocalize in the INL, from 6 to 12-months old WT and Ins2Akita mice retinas. 

The images, acquired using the same parameters, seem to reveal that, by 9 months old, the 

colocalization is stronger both in WT and Ins2Akita than in younger and older retinas. However, in 

order to conclude so, some form of quantification must be made (Fig. 3.23).  

Overall, the results obtained suggest that aSyn is localized in the dopaminergic amacrine cells, 

that seem to be decreased in number with ageing. bSyn and gSyn were also localized in different 

neuronal populations, namely bipolar and horizontal cells, respectively.  

 

3.3. Synaptic markers in the retina 

A diabetic environment in the retina leads to a series of events that affect several pathways and 

the proteins involved. Therefore, the levels of markers of interest, that might be affected in the retina 

with ageing and diabetes, were assessed.  

In the brain aSyn functions as a presynaptic protein that, in its native state, is involved in synaptic 

signaling and membrane trafficking (74). However, overexpression of aSyn, oligomerization and gain 

of toxicity might not only affect the homeostasis of several cellular organelles but also affect 

neurotransmitter synthesis and release, namely the normal function of the SNARE complex (82). 

Considering aSyn presynaptic location in the retina and the resemblance of Parkinson’s and diabetic 

environment, synapse-associated proteins were analysed in order to evaluate the impact of diabetic 

retinopathy in synapses. The levels of SNAP-25, one of the proteins involved in the SNARE complex, 

were assessed (Fig. 3.24).  
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Fig. 3.24. Assessment of SNAP-25 levels in 6, 9 and 12-months old WT and Ins2Akita protein extracts from 

whole retina. A) Western blot for the comparison of SNAP-25 protein levels between WT and Ins2Akita mice of 

different ages (6, 9, and 12 months old). Data are presented as Mean ± SD. B) Western blot for the comparison 

of SNAP-25 protein levels between ages (6, 9 and 12-months old) in WT and Ins2Akita mice. Data are presented 

as Mean ± SD.  

 

SNAP-25 protein levels are similar between WT and Ins2Akita samples of 6, 9 and 12-months old 

(Fig. 3.20 A). Considering ageing and disease progression, there are no differences between ages 

for both WT and Ins2Akita samples (Fig. 3.24 B). 

Rab3a is a synaptic vesicle-associated protein thought to play a crucial role in delivering synaptic 

vesicles to Ca²⁺-dependent release sites (82,146). It not only indirectly collaborates with aSyn in 

order to facilitate neurotransmitter release but it also rescues aSyn toxicity by dissociating aSyn from 

the plasma membrane upon Rab3a GTPase activation allowing the normal functioning of synapse 

release (147). Rab3a levels were assessed by western blot (Fig. 3.25). 
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Fig. 3.25. Assessment of Rab3a levels in 6, 9 and 12-months old WT and Ins2Akita protein extracts from 

whole retina. A) Western blot for the comparison of Rab3a protein levels between WT and Ins2Akita mice of 

different ages (6, 9, and 12 months old). Data are presented as Mean ± SD. B) Western blot for the comparison 

of Rab3a protein levels between ages (6, 9 and 12-months old) in WT and Ins2Akita mice. Data are presented as 

Mean ± SD.  

 

Rab3a levels appear to be similar between WT and Ins2Akita samples in all three ages (6, 9 and 

12-months old). Interestingly, once again there seem to be two distinct groups of samples both in 6 

months old WT and Ins2Akita samples and the same for 9 and 12-months old Ins2Akita samples (Fig. 

3.25 A). With ageing, there are also no differences between ages for both WT and Ins2Akita samples 

(Fig. 3.25 B).  

The misfolding of aSyn into aggregates, resulting in toxic fibrils deposits, is thought to lead to 

neuroinflammation, neurodegeneration and cell death (79,80). In the retina, it is proposed that 

neurodegeneration occurs prior to the microvascular complication onset in DR, possibly due to aSyn 

toxicity. Caspases are proteolytic enzymes that are closely involved in the induction and execution 

phases of apoptosis. One of its members is Caspase 3, which is thought to act as an executioner of 

apoptosis after a longer duration of diabetes. In order to evaluate the level of cell death by apoptosis 

in healthy and diabetic animals, Caspase 3 levels were assessed (Fig. 3.26). 

 



Qual o papel das sinucleínas na neurodegeneração da retina? 

48 
 

 

Fig. 3.26. Assessment of Caspase 3 levels in 6, 9 and 12-months old WT and Ins2Akita protein extracts 

from whole retina. A) Western blot for the comparison of Caspase 3 protein levels between 6 months old WT 

and Ins2Akita mice. Data are presented as Mean ± SD. **p<0.005 Ins2Akita compared with WT; T-test. B) Western 

blot for the comparison of Caspase 3 protein levels between 9 months old WT and Ins2Akita mice. Data are 

presented as Mean ± SD. C) Western blot for the comparison of 1) total Caspase protein levels 3, 2) Cleaved 

Caspase 3 protein levels and 3) the ratio cleaved/non-cleaved form of Caspase 3 protein levels, between 12 

months old WT and Ins2Akita mice. Data are presented as Mean ± SD. D) Western blot for the comparison of 

Caspase 3 protein levels between ages (6 and 9 and 12-months old) in WT and Ins2Akita mice. Data are 

presented as Mean ± SD.  

 

The assessment of Caspase 3 protein levels by western blot revealed that the non-cleaved form 

of this protein (31 kDa) is significantly higher in 6 months old Ins2Akita samples (1.85 ± 0.36 vs 1 ± 

0.51), showing a tendency to be similar between 9 and 12-months old WT and Ins2Akita samples (Fig. 

3.26 B and C). Moreover it is only by 12 months old that the cleaved and therefore active form of 

Caspase 3 is revealed (19kDa) showing no differences between WT and Ins2Akita samples (Fig. 3.26 

C). Further analysis was performed in order to understand the extension of the activation of Caspase 

3 but no differences between WT and Ins2Akita were seen (Fig. 3.26 C). Once again, 6 and 9-months 

old Ins2Akita mice present two distinct groups with no explanation (Fig. 3.26 A and B). With ageing 

there seem to be no significant differences between WT samples and Ins2Akita mice (Fig. 3.6 D). 

Overall, these results revealed that diabetes and ageing do not affect SNAP-25 and Rab3a levels 

but that diabetes increases the levels of non-cleaved Caspase 3 by 6 months old animals Ins2Akita 

mice and to be cleaved by 12 months old although not showing differences between WT and Ins2Akita 

animals.  
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4. Discussion and concluding remarks 

Synucleins, and in particular aSyn, play a major pathological role in PD due to the formation of 

aggregates in brain tissues and consequent relation with neurodegeneration (148). Besides the 

brain, they are highly expressed in the retina (118) and play a role in vision since the triple knock out 

mice of the synucleins lead to age-dependent blindness (119). Furthermore, aSyn aggregation was 

found to occur in the retina in other neurodegenerative disease such as AD (120) and in aged retinas 

(121,123). However, the pathophysiological role of synucleins in the retina and its neurodegeneration 

is unexplored.  

DR is the most common complication of diabetes and a leading cause of vision loss in working-

age adults. Neurodegeneration is now recognized to precede vascular alterations and to occur in the 

early stages of DR (REF).  

Several works point to a shared mechanism of neurodegeneration in PD and DR: diabetes is a 

risk factor for PD (149–151); aSyn is a target of glycation, a PTM potentiated by the increased levels 

of AGEs in diabetes which promotes aSyn toxicity and aggregation (152); a restoring dopamine drug 

used in PD, L-DOPA,  was observed to rescue visual impairment in a DR mouse model (115); and 

the antidiabetic drug rosiglitazone was shown to have a neuroprotective effect on retinal and 

nigrostriatal neurons in a PD mouse model (116). Moreover, the environment of the diabetic eye - 

where it is known to occur oxidative stress, inflammation, increased levels of AGE and mitochondrial 

impairment - has remarkable similarities with the features that are known to be involved in aSyn 

aggregation in the brain of PD patients (73).  

Accordingly, here we hypothesized if aSyn, bSyn and gSyn are involved in the pathological 

changes observed in neurodegeneration in the diabetic retina. To test our hypothesis we have 

performed a characterization of the distribution pattern of synucleins in a diabetic mouse model, the 

Ins2Akita. 

The Ins2Akita is a relatively recent mouse model for studying type 1 diabetic complications such as 

DR, that comprises signs of non-proliferative and early features of proliferative DR (126,129–131). 

These mice are characterized by significant hypoinsulinemia and hyperglycaemia after only 4 weeks 

of age as well as significantly less weight than controls (126), which was also observed in our mouse 

colony (Fig. 3.1 and 3.2, respectively). Furthermore these mice are described as developing diabetic 

neuropathy (126–128), showing an increase in cleaved Caspase 3 at an early age (126,132) and a 

significant thinning of the inner layers of the retina, namely the INL and IPL (133,134). Regarding the 

disadvantages of this model, the most critical one is the fact that the Ins2Akita mice do not completely 

mimic the outcomes of proliferative DR, limiting its usefulness to studies of initial stages of DR (126). 

Nevertheless, considering that neurodegeneration occurs at the very beginning of the disease, the 

Ins2Akita is a suitable model for evaluating the synucleins role in neurodegeneration in DR. 

Regarding the results obtained, aSyn and bSyn were both localized in cell bodies of the GCL and 

INL but also in the IPL of 6, 9 and 12-months old WT and Ins2Akita retinas (Fig. 3.4 and 3.5).  
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Amacrine cells, the interneurons of the proximal retina that are divided in more than 30 subsets 

that communicate with different neurons using different neurotransmitters (53), are located in INL 

but also in cell bodies of the GCL, projecting their synapses in the IPL. Syntaxin 1A, a specific marker 

for amacrine cells and an important protein for neurotransmitter release considering its part in the 

SNARE complex (153–155), colocalized with aSyn and bSyn (Fig. 3.13 A and 3.14). Colocalization 

occurred in the IPL, in amacrine cell synapses, but also in the amacrine cell bodies of the INL, for 6, 

9 and 12-months old WT and Ins2Akita, and in cell bodies of the GCL for 9 and 12-months old Ins2Akita 

retinas (Fig. 3.13 A and 3.14).  

In the IPL, aSyn colocalization with Syntaxin 1A shows an age-associated effect, namely the 

increased percentage of Syntaxin 1A that colocalizes with aSyn at 9 months old animals, decreasing 

by 12 months old WT and Ins2Akita mice (Fig. 3.13 B), which could reflect the existence of 

compensatory mechanisms. More interesting is the disease-associated alteration observed, namely 

the percentage of Syntaxin 1A that colocalizes with aSyn is increased in 9 months old Ins2Akita mice 

when compared to controls. Overall, these results could indicate that in the 9 months old Ins2Akita 

mice there are alterations in the synapses, which is compensated at 12 months of age. To better 

understand these results, further analysis will be needed, such as the evaluation of Syntaxin 1A and 

aSyn levels specifically in the IPL. 

Interestingly, aSyn total levels are increased in the 12 months old Ins2Akita mice (Fig. 3.9), while 

Syntaxin 1A levels are decreased in 6 and 9-month-old Ins2Akita mice, as revealed by WB (Fig. 3.13 

C). These results might suggest a compensatory mechanism that can be occurring in DR mice 

through ageing. In fact, a study using STZ model (156) as well as a study developed by Baptista and 

co-workers with Ins2Akita mice (157), suggest that diabetes differentially affects the content of 

exocytotic proteins in hippocampal and retinal nerve terminals, showing that Syntaxin 1A is 

decreased in early stages of diabetes but tends to recover with ageing (156), as seen in our model.  

Considering bSyn localization in amacrine cells, no quantifications were performed even though 

it would be important to do it in the future. Although less studied than aSyn, bSyn has already been 

reported to be involved in pathological roles, such as DLB. In DLB, mutations in the SNCB gene 

were found in DLB patients, raising the possibility that these alterations in the SNCB gene contribute 

to Lewy Body disorders (158). In yeast, bSyn was found to be toxic and to form cytosolic inclusions 

that are similar to those formed by aSyn, further sharing some of aSyn toxicity mechanisms, including 

vesicular trafficking impairment and induction of oxidative stress (104). In the brain, bSyn is not as 

prone to aggregate as aSyn due to the lack of a part of the Non-B-amyloid component (NAC) region 

(159) but studies suggest that, when exposed to toxins such as metal ions and pesticides, associated 

with increased ROS bioavailability, bSyn tends to fibrillate (103). In fact, increased rate of ROS 

generation and decline in cellular repair mechanisms will increase the oxidative stress, resulting in 

increased oxidized proteins that become more prone to aggregate and form fibrils (160). In the 

diabetic and aged retinas there seems to be iron overload that relates to increased ROS since iron 

can be reduced/oxidized (161). All of this considered, it is a possibility that in hostile conditions, 
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namely in diabetic or aged retinas, bSyn may become toxic and negatively affect these cells, leading 

to their impairment or even death.  

Another interesting result is the colocalization of these two proteins in the IPL but also in cell 

bodies of both the GCL, where ganglion and amacrine cells are found, and in proximal INL, where 

mainly amacrine cells are found (Fig. 3.15 A). In fact, the colocalization between aSyn and bSyn 

might be very interesting considering two main outcomes: exacerbation or protection of aSyn toxicity 

by bSyn. In Tenreiro et al, when trying to investigate the cellular effects of aSyn and bSyn in yeast 

cells, the authors demonstrated that the cellular pathways that were affected by bSyn are similar to 

the ones that were affected by aSyn and demonstrated that increased expression of aSyn and bSyn 

followed by co-expression exacerbated cytotoxicity (104); moreover, heterodimers of aSyn and bSyn 

were observed to be formed in yeast and in mammalian cells (104); On the other hand, several 

studies suggested that increased bSyn expression has a protective effect against aSyn fibril toxicity. 

bSyn is thought to either compete with aSyn for binding sites at the surfaces of lipid vesicles and 

fibrils that otherwise would trigger the process of fibril formation, strongly supressing aSyn 

aggregation (162) or to directly bind aSyn creating stable nonpropagating heterodimers, similar to 

nonpropagating aSyn homodimers (163,164). 

In the IPL, the percentage of aSyn that colocalizes with bSyn shows no significant differences 

between WT and Ins2Akita mice nor with ageing between animals (Fig. 3.15 B). On the other hand, in 

the GCL, it is significantly lower in aged retinas for both WT and Ins2Akita retinas (Fig. 3.15 C). In the 

INL, it significantly decreases in 6 months old Ins2Akita retinas, when compared to age-matched 

controls but to be significantly higher by 9 months old, being similar between WT and Ins2Akita by 12 

months old (Fig. 3.15 D). By 12 months old, we might again be looking both at compensatory 

mechanisms but most likely at an effect of ageing itself rather than just diabetes.  

Moreover, in the IPL, both aSyn and bSyn further colocalized with Synaptophysin, a presynaptic 

marker (Fig.3.11 A and 3.12). Our results are in agreement with published findings that placed these 

two synucleins in synapse-rich IPL of the retina (76,109,110). In the brain, aSyn and bSyn are located 

predominantly in the presynaptic terminals of neurons of the CNS and aSyn has been speculated to 

be involved in synaptic signaling and membrane trafficking (74), that might also be one of its roles in 

the retina, in healthy retinas. However, neither diabetes nor ageing seem to lead to changes in these 

proteins colocalization with synaptophysin. 

Our findings in placing aSyn in amacrine cells are consistent with the ones reported by Martinez-

Navarrete et al, that claim that aSyn was localized in the somata and dendrites of both GABAergic 

and glycinergic amacrine cells (110). A new and fascinating result is the localization of aSyn in the 

dopaminergic amacrine cells of 6, 9 and 12-months old mice (Fig. 3.17 A). As previously described, 

there are at least 30 known types of amacrine cells (56) of which the dopaminergic amacrine cells 

are of major importance. These cells produce and release dopamine cyclically, affecting all the major 

cell types of the outer and inner retinal layers (53,165). In our study, when comparing the number of 

dopaminergic amacrine cells between WT and Ins2Akita retinas of different ages, it is possible to infer 

that ageing by itself plays a greater role in the loss of dopaminergic cells than DR, considering that 
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the amount of these cells is significantly decreased in 12 months-old WT mice when comparing to 

younger control animals (Fig. 3.17 B). Also in 12 months old Ins2Akita mice aSyn levels are 

significantly increased. In PD, toxic forms of aSyn are believed to bind to the inner mitochondrial 

membrane, where it associates with mitochondrial complex I, culminating in increased ROS 

production, Ca2+ levels, release of cytochrome c and activation of Caspase 3, leading to cell death 

(60–62,90,91). In diabetic as well as in aged retinas, several pathways are affected resulting in an 

excessive bioavailability of ROS (20), increased oxidative stress, damaging the mitochondria and 

releasing the apoptosis machinery (23,166). All of this considered, it is possible that aSyn might be 

playing a similar role in the retina with ageing, leading to dopaminergic amacrine cell death, if aSyn 

aggregation can be proved.  

gSyn is so far localized by other authors in cultured bovine RPE cells and in rodent and human 

ganglion cells and has even been viewed as a marker of ganglion cells (112). A study further 

suggested that gSyn was essential for the viability of ganglion cells since the absence of gSyn leads 

to a decrease in ganglion cell survival (167). In the INL, gSyn was localized it in the horizontal cells 

(Fig. 3.23), interneurons between photoreceptor and bipolar cells (47,50), by colocalization with 

Calbindin, a marker for horizontal cells. Quantification analysis will be important to be performed in 

future studies. Nevertheless, no striking differences occur between WT and Ins2Akita retinas nor with 

ageing. Also, gSyn protein levels were not possible to analyse due to technical difficulties associated 

with malfunctioning antibodies. If gSyn levels were proved to decrease with diabetes or with ageing, 

it would be possible that gSyn plays a similar effect on horizontal and ganglion cells as previously 

mentioned in the study developed by Surgucheva et al. (167), where gSyn was reported to be 

essential ganglion cell survival. 

The colocalization between the synucleins was observed for both aSyn and bSyn and for aSyn 

and gSyn. aSyn and gSyn were found to colocalize in the GCL (Fig. 3.16). Although we have not 

quantified the amount of cell bodies that contain both proteins, it would be interesting to do so, in 

order to see if there are any differences between WT and Ins2Akita retinas. 

Altogether, these results suggest that specially aSyn and bSyn seem to be affected by DR and 

that DR leads to increased colocalization between these two synucleins in amacrine presynaptic 

terminals. 

With neurodegeneration being one of our focus, apoptosis was evaluated by assessing the levels 

of Caspase 3, an effector of apoptosis. Our results showed that the non-cleaved and, therefore, non-

activated form Caspase 3 was significantly increased in 6 months old Ins2Akita mice being similar in 

between 9 and 12 months-old WT and Ins2Akita mice. It was only by 12 months old animals that this 

protein was activated showing, however, not to be effected by DR (Fig. 3.26). These results do not 

reproduce what has been described in other studies performed in the Ins2Akita mice and other models, 

such as the STZ, where DR led to increased Caspase 3 activation in early stages of the disease 

(31,126,168). There might be variations in the model itself, due to several aspects, namely 

differences in the conditions of the animal room related to temperature, illumination, number of 

animals per cage, microbiota, among others.  
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However, neurodegeneration is occurring in the retina of our DR mouse model, as the 

measurement of the thickness of the INL suggest that this layer, containing horizontal, bipolar and 

amacrine cells, is thinner in diabetic animals, when compared to controls (Fig. 3.3), as it was 

previously described (133,134).  

The results obtained lead us to new questions regarding the usefulness of this model for DR 

studies. The main disadvantages when using these animals relied in the time needed to obtain aged 

diabetic animals (12 months old Ins2Akita mice) and the high variability between animals. Furthermore, 

the inconsistency between what is described to happen in this model and the actual outcomes 

obtained is a challenge. Still, taking in account the advantages and disadvantages that this model 

presents over other diabetes mice models such as the STZ mice, we still think that Ins2Akita might be 

a suitable model for this study. However, it would be interesting to see if the effects observed in these 

animals, also happen in other DR models as well as to evaluate further effects of DR in the retina, 

namely in the synucleins and their pathologic role. 

Overall, the results here obtained provide a more accurate description of the synucleins 

distribution in the retina. aSyn and bSyn are in fact presynaptic proteins in the cells whose synapses 

compose the IPL of the retina. These two proteins are further localized in cell bodies of the GCL and 

in amacrine cells of the INL. DR seems to be increasing the colocalization of aSyn and bSyn. To 

understand if this reflects a functional or pathological role further studies will be needed.  

Interestingly, aSyn is localized in a particular subset of amacrine cells, namely the dopaminergic 

amacrine cells, where, with ageing, this synuclein could be leading to dopaminergic amacrine cell 

death considering the significant decrease in these cells amount in aged retinas and the increased 

levels of aSyn in aged Ins2Akita mice.  

Neurodegeneration, which is strongly suggested to occur by evaluation of the thickness of the 

INL and observation of a significant thinning of this layer in Ins2Akita mice of all ages, can be involving 

more neuronal populations rather than just amacrine cells. bSyn was observed in the IPL but also in 

the OPL of retinas and in bipolar cells by colocalization with PKC-α, a marker for bipolar cells. Lastly, 

gSyn was found mainly in cell bodies of the GCL but also in the INL and, more specifically, in 

horizontal cells. The detailed neuronal damage occurring in retinal neurodegeneration associated 

with diabetes remains ill-defined. Nevertheless, degeneration of retinal neurons was reported in 

amacrine and ganglion cells (33,34), and abnormalities reported in horizontal and bipolar synaptic 

terminals in rodent models (36,37). Even though the pathophysiological role of the synucleins in the 

retina and DR is almost unexplored, they seem to be somehow involved in several important 

processes in the retina. Interestingly, each synuclein is localized in a neuronal population previously 

described as being affected in DR.  

Several of the results obtained are worth of further studies. One of the most promising results is 

the eventual degeneration of dopaminergic amacrine cells with ageing, in which aSyn could be 

involved. However, in order to prove so, aSyn aggregation and toxicity would have to be evaluated. 

The use of specific antibodies for aggregated aSyn, such as the 5G4 antibody, combined with 

Syntaxin 1A and the use of a positive control, namely a model for induced aggregated-aSyn such as 
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the Thy-1 mice (169) for testing the same antibody, could be a valuable analyses for this study. This 

strategy could also be used to evaluate aSyn aggregation in other neuronal populations. Evaluating 

the localization of bSyn and gSyn in dopaminergic amacrine cells would also be a valuable step. 

Moreover, other neuronal populations might be affected by DR or ageing, being of great interest 

understanding which cells are experiencing impairment or even decreased survival as well as 

understanding the role of the synucleins in such pathways. By evaluating the profile of apoptosis-

related markers, such as pro-apoptotic protein Caspase 3 (170), anti-apoptotic proteins such as 

prohibitin (171), Bcl-2 and Bcl-xl (172,173) or even evaluating cell proliferation/cease by using 

markers such as ki-67 (174), are an idea.  

aSyn and bSyn colocalization and localization in amacrine cells should also be dissected due to 

a possible negative synergy between both proteins. Both aSyn and bSyn represent a possible risk 

in DR considering their broad location on the retina and their aptitude to aggregate and become toxic 

in pathological conditions. 

Also, considering the disease-associated effects on synapses observed for amacrine cells when 

there is an increased interaction with aSyn, a deeper evaluation of the changes occurring at these 

levels should be performed by synaptossomes. Moreover, it would be interesting to look for similar 

results in other rodent models, such as the STZ and Zucker mice. Other models, such as the 

Zebrafish, might also be a strategy. After diabetes induction by incubation with glucose, Zebrafish 

displayed defected retinal vessels as well as increased levels of VEGF but also signs of 

neurodegeneration by a significant thinning of the inner retinal layers (175–177). These animals are 

cheap to maintain, produce hundreds of offspring at weekly intervals, develop diabetes after only two 

days after induction and are transparent, which makes it possible to easily visualize any alterations 

in its interior, namely alterations in the blood vasculature (178). 

Although the exact role of the synucleins in vision and in DR pathophysiology remains unclear, 

this work contributed to furthering the knowledge about the synucleins in the retina, by elucidating 

their special distribution in normal and diabetic retina. Additionally, we here provided insights on their 

potential contribution in ageing and DR.  
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