
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2016

Pedro Manuel

Reverendo Cirne

Gestão segura de rotas numa VANET

Secure management of routes in a VANET

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2016

Pedro Manuel

Reverendo Cirne

Gestão segura de rotas numa VANET

Secure management of routes in a VANET

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-

quisitos necessários à obtenção do grau de Mestre em Engenharia de Compu-

tadores e Telemática, realizada sob a orientação científica do Doutor André

Zúquete, Professor Auxiliar, e coorientação da Doutora Susana Sargento,

Professora Associada com Agregação, ambos do Departamento de Eletró-

nica, Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor Rui Luís Andrade Aguiar
Professor Catedrático da Universidade de Aveiro

vogais / examiners committee Professor Doutor Pedro Miguel Alves Brandão
Professor Auxiliar da Universidade do Porto - Faculdade de CIências

Professor Doutor André Ventura da Cruz Marnoto Zúquete
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e In-

formática de Aveiro (Orientador)

agradecimentos A todos os que me deram amor, tempo, coragem, exemplos, reconhe-
cimento, apoio... Sozinho estaria muito longe e bem diferente!

Resumo
As redes veiculares (VANETs) são um caso específico de redes ad hoc
onde os nós são veículos. VANETs têm vindo a surgir nos últimos anos
e é expectável que venham a desempenhar um papel importante no fu-
turo para um grande número de aplicações. O roteamento é essencial
para qualquer rede ad hoc, consequentemente, as estratégias de segu-
rança para proteger o roteamento das VANETs devem ser consideradas
essenciais. Nesta tese apresentamos: (1) TROPHY (Trustworthy VA-
NET ROuting with grouP autHentication keYs), um conjunto de proto-
colos para autenticar mensagens de roteamento numa VANET, capaz
de proteger as informações de roteamento distribuídas em condições
de tempo altamente restritas; (2) loop (loop over orderly phases), um
simulador interativo para testar e validar TROPHY juntamente com
um protótipo de um KDC (Key Distribution Center). Os nós auto-
rizados recebem recursivamente novas mensagens que lhes permitem
atualizar o seu material criptográfico e manter as chaves de autenti-
cação atualizadas na rede. Essas mensagens são construídas da forma
a que qualquer nó que seja identificado como perdido ou fisicamente
comprometido não seja capaz de executar a atualização, ficando assim
excluído do processo de roteamento. Devido ao uso do KDC, uma
entidade central, onde todo o material criptográfico é armazenado, in-
cluímos um mecanismo para recuperar de qualquer acesso físico não
autorizado e divulgação de todo esse material de uma só vez, sem exigir
a intervenção humana na configuração dos dispositivos.

Abstract Vehicular ad hoc networks (VANETs) are a specific case of ad hoc net-
works where nodes are vehicles. VANETs have being emerging in the
last few years and are likely to play a major role in the future for a wide
number of applications. Routing is essential for any ad hoc network,
thus security strategies for protecting VANETs’ routing must be con-
sidered essential. In this thesis we present: (1) TROPHY (Trustworthy
VANET ROuting with grouP autHentication keYs), a set of protocols
to authenticate routing messages in a VANET, under highly restrictive
time conditions, capable of protecting the distributed routing informa-
tion; (2) loop (loop over orderly phases), an interactive simulator for
testing and validating TROPHY along with a prototype of KDC (Key
Distribution Center). Authorized nodes recursively receive new mes-
sages that allow them to refresh their cryptographic material and keep
the authentication keys updated across the network. These messages
are built in a way that any node pinpointed as lost or physically com-
promised will not be able to perform the refreshment using them, and
so, is excluded from the routing process. Due to the use of a KDC,
a central entity, where all the cryptographic material is stored, we in-
cluded a mechanism to recover from any unauthorised physical access
and disclosure of all that material at once, without requiring the need
of human intervention on devices’ re-setup.

Contents

Contents i

List of Figures v

List of Tables ix

Acronyms xi

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 3
1.3 Document Structure . 4

2 Context 5
2.1 Vehicular Ad Hoc Network (VANET) . 5
2.2 On Board Units (OBUs) and Road Side Units (RSUs) (VUs) 6
2.3 Wireless Access in Vehicular Environment (WAVE) 7

2.3.1 WAVE standards and protocols . 7
2.3.2 WAVE application-services . 9

2.4 Service-Based Layer-2 Routing Protocol (SB2RP) 10

3 Related Work 13
3.1 Security on VANETs . 13
3.2 Group keys . 15
3.3 Simulation tools for VANETs . 19

4 Architecture 21
4.1 Interaction between entities . 22

i

4.1.1 Epidemic propagation of key refreshments 23
4.1.2 Historical cache . 24

4.1.2.1 Out of order reception of refreshment messages 25
4.1.3 Fallback after a period of isolation 26
4.1.4 Human operator and VANET . 27

4.2 Cryptographic material . 28
4.2.1 Setup . 30
4.2.2 Manipulation and synchronization 34

4.2.2.1 Recovering from the disclosure of all the distribution keys 36
4.2.3 Dealing with an arbitrary number of OBU and RSUs (VUs) 37

4.2.3.1 Optimum distribution of VUs in the tree 37
4.3 Secure routing . 38

4.3.1 Refreshment messages . 40
4.3.1.1 Selection of the distribution keys 40
4.3.1.2 Epidemic propagation of refreshment messages 45

4.3.2 Sync messages . 47

5 Implementation 49
5.1 Definition of parameters . 50

5.1.1 Size of the messages . 52
5.2 Simulator . 53

5.2.1 Phases of the simulation . 54
5.2.1.1 Apply the effect of time 56
5.2.1.2 Transmit information . 57
5.2.1.3 Receive information . 58

5.2.2 Input data . 59
5.2.3 Configuration and interaction . 61
5.2.4 Visualization . 63

5.3 Key Distribution Center (KDC) . 66
5.3.1 Database . 68
5.3.2 Interactions with the simulator . 71

6 Analysis of results 73
6.1 Input data . 73
6.2 Refreshment messages: number and occurrence 79

ii

6.3 Test scenarios . 82
6.3.1 Fixed periods of refreshment . 84

6.3.1.1 Adverse communication conditions 86
6.3.2 Successive exclusions of a single VU 89
6.3.3 Single exclusion of multiple VUs . 91
6.3.4 Reset of all the keys on the KDC 93
6.3.5 Global considerations . 95

7 Conclusions 97
7.1 Future work . 98

Bibliography 101

iii

iv

List of Figures

2.1 Stack of Wireless Access in Vehicular Environment (WAVE) standards . . 8
2.2 Protocol stack of the WAVE and inter-relation among the standards 8

3.1 Graph based and tree based hierarchy . 16

4.1 Epidemic propagation of the refreshment messages 24
4.2 Recovering from isolation period . 26
4.3 Organization of the distribution keys S by the KDC on a binary tree for a

maximum of 4 VUs . 31
4.4 Main tree (blue and green) and inner trees (orange and red) supporting

up to 16 VUs. Branch nodes are represented as circles and tree nodes as
triangles. Each of the main leafs (green triangles) have a complete inner tree. 32

4.5 Unused nodes flagged in a non-optimal distribution with 4 members in a
VANET with a maximum of V = 16 . 38

4.6 Unused nodes flagged with the dispersion of 4 members on a maximum of
V = 16 possibilities. The minimum distance between consecutive VUs is
maximized (m = 4). 39

4.7 Wrapping of the refreshment update r(t+ 1) 40
4.8 Selection of the distribution keys during the exclusion of 1 VU (leftmost).

The compromised keys are on black with a red circle around. The selected
distribution keys are with a blue circle around. 42

4.9 Selection of the distribution keys during the exclusion of 2 VUs (leftmost
and rightmost, one of the worst cases). The nodes with a dashed blue circle
around were candidates if excluding just 1 VU. When excluding 2 VUs the
nodes with a dashed blue circle are also compromised and not used. 43

4.10 Detailed analysis when excluding 2 VUs and its relation with Equation 4.18 43
4.11 Messages created to exclude VUs in a VANET with 16 VUs (worst case) . 44

v

4.12 Example of the parameters x and y for generalization of the worst case when
flagging the unused nodes (Equation 4.20), with a = 7. Since the unused
nodes are flagged neither x nor y is dependent of V 45

4.13 Constant time search of refreshment messages using references from the main
leafs to the correspondent refreshment messages. 47

5.1 Maximum number of messages produced by KDC to exclude VUs at once . 51

5.2 Messages produced by the KDC to exclude up to 256 VUs at once 51

5.3 Points of execution of loop (with "%" representing the modulo operation
and "==" and "!=" boolean tests). The unused point of execution is shown
in light gray. The macro period is 2000 milliseconds and the inner period
100 milliseconds. 55

5.4 Pseudo code of loop . 56

5.5 Influence of phases among each others . 57

5.6 Sample of data collected from VANET . 59

5.7 Sample of data used in loop . 60

5.8 Sample of a file with commands for loop 62

5.9 Base image used for the visualizations . 63

5.10 Loading the data for the simulation . 64

5.11 Parameters plotted during the simulation 64

5.12 Map showing the big brother view . 65

5.13 Map showing the naive view . 67

5.14 Database model of the KDC . 68

5.15 Relation between entries of the multiple tables 69

6.1 Cumulative percentage of received beacons by distance 74

6.2 Number of active OBUs in the data-sets. 75

6.3 Isolation time of active OBUs when communicating up to 1 kilometer . . . 75

6.4 Characteristics of the connections in the VANET 76

6.5 Time since the last direct connection with an RSU 77

6.6 Area of the VANET . 78

6.7 Relative density of OBUs . 78

6.8 Relative density of received beacons . 79

6.9 Number of messages to exclude VUs (Experimental results) 80

vi

6.10 Number of refreshment messages produced to exclude 1 VU for different
n-ary tree structures. 82

6.11 Results for fixed periods of refreshment . 85
6.12 Results for adverse communication conditions 88
6.13 Results for successive exclusions of a single VU 90
6.14 Results for single exclusion of multiple VUs 92
6.15 Results for reset of all the keys on the KDC 94
6.16 Representative results for a data-set with 350 VUs and time granularity of

5 seconds. The orange line is most of the time under the other lines. It is
visible around 11h:00m in a). 96

vii

viii

List of Tables

2.1 Performance of cryptographic algorithms in VUs 7
2.2 Number of Elliptic Curve Digital Signature Algorithm (ECDSA) verificati-

ons per 100 milliseconds and CPU usage 11

4.1 The elements on the index of all the subsets P in a VANET with a maximum
of 4 VUs . 31

4.2 Variable length code for distribution keys 33

6.1 Occurrence of the worst case when generating refreshment messages 81

ix

x

Acronyms

AP Access Point

CRL Certificate Revocation List

DoS Denial of Service

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

GPS Global Positioning System

IP Internet Protocol

KDC Key Distribution Center

LLC Logical Link Control

MAC Message Authentication Code

MANET Mobile Ad Hoc Network

OBU On Board Unit

OSI Open Systems Interconnection

PSID Provider Service Identifier

RSSI Received Signal Strength Indication

RSU Road Side Unit

SB2RP Service-Based Layer-2 Routing Protocol

xi

TCP Transmission Control Protocol

UDP User Datagram Protocol

V2D Vehicle to Device

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

VANET Vehicular Ad Hoc Network

VU OBU and RSU

WAVE Wireless Access in Vehicular Environment

WSM WAVE Short Message

WSMP WAVE Short Message Protocol

WSN Wireless Sensor Network

XOR bitwise exclusive-or

xii

Chapter 1

Introduction

For the things we have to learn before we can do them,
we learn by doing them.

— Aristotle

Vehicular Ad Hoc Networks (VANETs) are a class of ad hoc networks that inherit
most of the characteristics of Mobile Ad Hoc Networks (MANETs), but still, with enough
differences to define a new category by itself [18, 41].

VANETs may have hundreds or thousands of nodes equipped with wireless communica-
tion capabilities. Most of the nodes are devices carried by vehicles, On Board Units (OBUs),
and a relatively small part of the nodes are devices statically placed near roads, with added
equipment for wired communication capabilities, Road Side Units (RSUs).

By their very singular nature and requirements, when compared with MANETs [6] [5],
academic research community have given an increasingly amount of attention to the topic.
Those characteristics have also lead to the creation of VANETs’ specific solutions, such as
the Wireless Access in Vehicular Environment (WAVE) architecture [1].

VANETs have being emerging in the last few years and are likely to play a major role in
the future for a wide number of applications, ranging from hard real-time to delay tolerant
applications [18].

Routing is essential for any ad hoc network, thus security strategies for protecting
VANETs’ routing must be considered essential. However, in the VANETs’ routing con-
text, it is not possible to apply classical techniques, such handshake-based authentication
protocols [18], and so, some common security problems, such as availability, secrecy and
integrity, do not have a widely accepted approach for a solution.

1

The widely accepted WAVE architecture defines a set of complementary and inter-
dependent protocols to operate in a VANET environment [1, 29]. The IEEE 1609.2 [3]
standard defines methods and formats of secure messages. For routing services, the IEEE
1609.2 standard may lead to service deficiencies [49], mainly due to message validation
delays caused by asymmetric cryptography; therefore, we considered that such standard
does not fit the requirements to authenticate routing messages in a VANET.

1.1 Objectives

The main objective of this work was to extend an existent VANET routing proto-
col where security aspects were not considered, Service-Based Layer-2 Routing Proto-
col (SB2RP), protecting the routing strategy from external attackers with the aim to
modify or destroy it. During the development of this work, the routing protocol was being
used on a real VANET, in Porto, with more than 600 OBU and RSUs (VUs). Since it was
developed to operate under strict limitations related with time, it was our primary goal to
avoid time consuming operations and delayed decisions.

The devices in operation are relatively limited, when compared with an average personal
computer. Such devices do not have specialized co-processors for cryptographic operations,
and the impact of asymmetric cryptographic operations is not negligible. It was part of
our objective to explore the use of symmetric cryptographic primitives for the common
and critical operations, avoiding, if possible, the use of asymmetric ones.

Although the connectivity of a VANET, specially OBUs’ connectivity, can be comple-
mented with other technologies, such as cellular networks, we focus on making our solution
only dependent of the ad hoc network.

We assumed that there are 2 types of candidates for participating in the routing process,
authorized and non-authorized ones. Within the non-authorized we have all the external
devices, as well any device previously authorized but after some date pinpointed as lost or
physically compromised. Non-authorized devices shall not interfere on the routing process.
Authorized are all these that were initially prepared to operate in the VANET. It was
assumed that all the authorized devices work properly. Furthermore, we did not pretend
to detect any faulty behaviour on authorized devices. Moreover we included in our list
of goals a mechanism to exclude any authorized device once pinpointed as lost, physically
compromised, or otherwise improper for operation by any other reason.

We seek to authenticate all routing messages and defeat any adversary with the aim to

2

modify or destroy the routing process and full capabilities to eavesdrop, store, modify and
transmit an arbitrary number of valid messages. Moreover, we seek to provide mechanisms
to recover from attackers with the power to get physically access to one or more devices
and all the cryptographic material stored on it, as well as mechanisms to recover from the
disclosure of all cryptographic material stored on a central server.

It was out of the scope of this work to study alternative routing algorithms or mecha-
nisms to detect faulty behaviors on authorized devices, as well all the topics related with
the secrecy of the messages and attacks on the physical layer (e.g. jamming).

It was also out of the scope of this work to study updates of the long-term public keys
used to authenticate messages sent from a central server to the VUs.

1.2 Contributions

The main contribution of this work is the specification and validation of TROPHY
(Trustworthy VANET ROuting with grouP autHentication keYs), a set of protocols to
authenticate routing messages in a VANET, under highly restrictive time conditions, ca-
pable of protecting the distributed routing information. Furthermore, the solution is able
to recover, with minimal human interaction, from attacks to the physical infrastructure of
the central key server that may lead to the disclosure of all the cryptographic material in
use.

The demand for such a novel solution was originated due to a real scenario, present in
a VANET in Porto city, operated by Veniam. The VANET has currently more than 600
devices, with well defined characteristics, and its routing protocol was built to be fast and
reliable in this very specific scenario. We present a solution that honors the real and well-
defined requirements of the VANET, and does not destroy the original routing strategy by
excessively consuming time or resources.

As part of our solution for routing authentication, we included a mechanism to exclude
any node at any time. This is specially important due to the non-controlled environment
where the devices are operating, and the real possibility of any of the nodes to get stolen,
lost, damaged or becoming suspicious. Due to the use of a central entity, where all the
cryptographic material is stored, we also included a mechanism to recover from any unau-
thorised physical access and disclosure of all that material at once, without requiring the
need of human intervention on devices’ re-setup.

A secondary contribution is the development of loop (loop over orderly phases), an

3

interactive simulator for testing and validating TROPHY along with a prototype of Key
Distribution Center (KDC). The simulator, interacting with the KDC, makes use of real
data collected from the VANET to validate the set of protocols under a realistic scenario
of high mobility. With the simulator and that real data it was possible to measure the
impact of different options and strategies in a controlled environment, before the field
implementation.

1.3 Document Structure

The rest of the document will unfold as follows:

Chapter 2 contains information to give to the reader the context needed to proceed along
the document.

Chapter 3 has a description of different works related with this thesis.

Chapter 4 describes the architecture of our solution.

Chapter 5 presents the implementation details.

Chapter 6 aggregates the results of the performed tests.

Chapter 7 summarizes our work.

4

Chapter 2

Context

...packets will arrive before they are sent.

— Robert M. Hinden, RFC 6921

From the vast range of topics related with secure management of routes we focused on
the authentication of the routing messages exchanged among a group of users. Moreover,
we focused on the authentication of messages of an existent and validated routing protocol.

Generically, the authentication of messages can be obtained based on the inclusion of
auxiliary information computed with two different cryptographic primitives: symmetric or
asymmetric ones. When using symmetric primitives the auxiliary information is known as
Message Authentication Code (MAC) while in case of asymmetric ones is known as digital
signature.

The authentication methods inherit from the used primitives some important charac-
teristics, namely: the demand of computational power and the use of a single key or a pair
of distinct keys to create and validate it.

2.1 VANET

VANETs are a class of ad hoc networks made out of vehicles equipped with devices with
wireless communication capabilities, OBUs. Besides OBUs, VANETs also have a relatively
small part of stationary nodes with extra wired connectivity, RSUs. Due to the mobile
nature of vehicles that carry the OBUs, VANETs are considered a subclass of MANETs,
with some distinct characteristics, namely: high node speed, highly volatile topology, high
fragmentation probability and potentially large scale.

5

Our work is based on Veniam’s VANET and its characteristics, currently deployed
in Porto city, Portugal. In our scenario, both OBUs and RSUs are devices with the
same hardware and exactly the same computational power. Alternative scenarios, with
computationally powerful RSUs, were not considered.

Besides the ad hoc network, the devices (VUs) in a VANET may have access to other
types of wireless communication infrastructures, such as cellular networks and WiFi net-
works. In our work, we did not make use of wireless communication capabilities other than
the ones provided by the ad hoc network. Nevertheless, the VANET is not isolated from
the outside world, due to the existence of the wired connections in the RSUs. The RSUs
can directly use any service placed in the internet and the OBUs may have indirect access
to the same services based on the ad hoc infrastructure.

The decision of avoiding the use of cellular networks was an additional challenge. The
reason was exclusively the operational costs associated to a solution that, for hundreds,
possibly thousands of devices, would rely on cellular networks to exchange information,
even if sporadically.

Regarding the use of WiFi networks, such as 802.11g, it was not considered due to the
current absence of configured Access Points (APs) available to serve OBUs.

2.2 OBUs and RSUs (VUs)

The VUs in operation are embedded linux systems with limited resources, when com-
pared with an average computer. The VUs have an ARMv7 single-core processor at 800MHz
and 256Mb of memory. Those characteristics, specially the ones related with the processor,
are important for the cryptographic operations.

To evaluate the performance of the VUs, regarding different cryptographic algorithms,
we used the facilities provided by the OpenSSL project1. Since the OpenSSL components
were available in VUs, we used openssl speed2, a tool specially designed to test the
performance of different cryptographic algorithms on the hosts. The tests were done under
low load and the representative results are shown in Table 2.1.

1https://www.openssl.org/
2https://wiki.openssl.org/index.php/Manual:Speed(1)

6

Algorithm Operation Time

RSA 2048
Sign 53.3ms

Verify 15.1ms

ECDSA 224
Sign 1.4ms

Verify 5.7ms

DSA 2048
Sign 15.0ms

Verify 18.1ms

AES-128-CBC

1024Bytes
Encrypt 54.2μs

HMAC(MD5)

1024Bytes
Digest 9.9μs

Table 2.1: Performance of cryptographic algorithms in VUs

2.3 Wireless Access in Vehicular Environment (WAVE)

The WAVE architecure has as goal to support low-latency communications among
vehicles, Vehicle to Vehicle (V2V), between vehicles and the stationary infrastructure,
Vehicle to Infrastructure (V2I), and between vehicles and hand-held devices, Vehicle to
Device (V2D) [1].

2.3.1 WAVE standards and protocols

The WAVE architecure is built based on a stack of standards. A device is considered
a WAVE device if it is at least conformant with the core WAVE architecure standards,
namely: IEEE 802.11p, IEEE 1609.4 and IEEE 1609.3 (shown together with IEEE 1609.2,
in Figure 2.1). Although the WAVE architecure defines more standards, all of them are
out of the context of this work, so, they will not be considered. Each standard defines the
interaction between multiple protocols which individually perform their operations.

IEEE 802.11p: Specifies the medium access control related with the wireless connectivity
among vehicles, infrastructure and devices. It is an amendment to IEEE 802.11 with
extensions to add support for vehicular environment.

IEEE 1609.4: Specifies extensions to the IEEE 802.11p, useful to the vehicular environ-
ment but not included on IEEE 802.11, such as physical channel coordination and
MAC-layer readdressing for supporting pseudonyms.

IEEE 1609.3: Specifies networking and transport services essential for the operation of
a WAVE system.

7

IEEE 1609.3 Network Services

Lower Layers
IEEE 1609.4

IEEE 802.11p

WAVE Service
Security IEEE 1609.2

WAVE Device

MEDIUM
Figure 2.1: Stack of WAVE standards

IEEE 1609.2: Specifies transversal security mechanisms accessible to the other WAVE
standards.

The aggregation of the different protocols, associated to the correspondent standard
is shown in Figure 2.2. The IEEE 1609.3 includes the well known Logical Link Control
(LLC), Internet Protocol (IP), User Datagram Protocol (UDP), and Transmission Control
Protocol (TCP) protocols. Side by side with the TCP/IP and TCP/UDP stacks, sharing
the lower layer, is placed the specific WAVE Short Message Protocol (WSMP).

IEEE 1609.3

IEEE 1609.4
IEEE 802.11p

IEEE 1609.2

TCP/UDP/Others

IP
WSMP

LLC

PHY

WAVE MAC

Figure 2.2: Protocol stack of the WAVE and inter-relation among the standards

The WSMP is an optimized protocol to send messages, WAVE Short Messages (WSMs),
in a wireless vehicular environment. This optimized protocol is interchangeable and dis-

8

tinguishable from the IP-based on the LLC protocol. The WSMs have a variable length,
dependent on the physical layer [2]. Using the IEEE 802.11p the length value is defined
between 1 and 2302 bytes, with a default of 1400 bytes, shared by the variable length
WSMP header and the WSM data.

According to the WAVE architecure, the WSM data can be sent as plain data with-
out taking in consideration security aspects, or can be sent encrypted or signed based
on security services defined on IEEE 1609.2 standard [3]. The IEEE 1609.2 standard
relies on asymmetric algorithms based on elliptic curves, such as Elliptic Curve Digital
Signature Algorithm (ECDSA) [20] for signing and Elliptic Curve Integrated Encryption
Scheme (ECIES) [28] for encrypting. Along with the algorithms are defined all the auxil-
iary mechanisms needed for the distribution and management of the keys, the certificates
and the Certificate Revocation Lists (CRLs).

When compared with the Open Systems Interconnection (OSI) model, the topmost 3
layers have no correspondents on the WAVE architecure while the lowest 4 layers have
following correspondents:

Physical Layer Directly maps to the WAVE physical layer;

Data Link Layer Includes both LLC and WAVE medium access control;

Transport and Network Layer Merged by the WSMP.

2.3.2 WAVE application-services

WSMs are composed by WAVE application-services, hereafter known as WAVE appli-
cations, contextualized with the wireless vehicular environment. The WAVE applications
are allowed by the WSMP to directly control physical parameters such as selecting the
channel and the transmitter power.

The WAVE architecure defines a WAVE application independently and completely
decoupled from the application layer of the OSI model as well as from the concept of
application associated to a computer program. According to the IEEE Guide for WAVE
[1]: "An application-service is a service involving an exchange of data, generally provided
by a higher layer entity (e.g., an application) on one WAVE device to a similar entity on
another WAVE device, using WAVE communications.".

The WAVE applications, along with the data messages to be sent, need to provide
a Provider Service Identifier (PSID) associated to the message and the address of the

9

destination. The destination is the MAC (Medium Access Control) address of a neighboring
device or the broadcast address (all bits at 1).

On the reception of both unicast and broadcast WSMs, the WSMP delivers them to
the applications that registered interest on such message, based on the PSID. If the PSID
associated to the received WSM is not claimed by any WAVE application, the message can
be discarded.

2.4 Service-Based Layer-2 Routing Protocol (SB2RP)

From the point of view of an ad hoc network, the routing strategy in VANETs has to
deal with some new challenges, even when compared with MANETs [56, 25]. The routing
strategy in use was developed to face all the new challenges found during the deployment.
The routing algorithm is used with the aim to connect the OBUs to the RSUs and vice-versa
(RSUs have IP-based communication with an infrastructure).

SB2RP [12] is a WAVE application associated to the OSI data link layer (layer 2)
that implements a periodic (distance-vector) routing algorithm to route between the in-
frastructure and the VANET (communication to and from the infrastructure). Besides the
operation on the OSI layer 2, SB2RP has direct access to the routing tables of IP, associ-
ated to the OSI Layer 3. The routing service is identified by a PSID and the messages are
broadcast according to the WSMP in periods of 100 milliseconds. The relevant information
for this work exchanged by each VU is: the Global Positioning System (GPS) information,
the local time, and the routing information.

Each VU stores the information received on the SB2RP messages for each of the neigh-
bors in a auxiliary table. Each time a new SB2RP message is received any older information
related with the same origin is replaced. All the entries on the auxiliary table are removed
if older than 1.5 seconds.

The IP routing tables are updated, conditionally to the neighbors in a range of 3 hops,
in periods of 1 second, based on the information stored on the auxiliary table. This is
possible due to a direct relation between the identification of the VU and the IP address
of that VU.

SB2RP does not have into consideration any security aspects. After the validation of
the routing messages, SB2RP may use the authenticated information to filter them based
on the contained time, GPS position or any other parameter, and update the routing
tables.

10

Ops % CPU
17 100

8 50

4 25

Table 2.2: Number of ECDSA verifications per 100 milliseconds and CPU usage

The algorithms proposed on the IEEE 1609.2 standard are not compatible with the
operation mode of SB2RP. This incompatibility can be deduced by taking as reference
the time needed for the relevant cryptographic operations in VUs (Section 2.2) and the
100 milliseconds period to exchange routing information. Due to the time related con-
straints, this incompatibility is extended to all the strategies based on similar asymmetric
cryptographic primitives.

The ECDSA is the algorithm with faster verifications and takes 5.7 milliseconds for
each one. During all the time taken by verification of a signature, the CPU is near if not
at 100%. In these conditions, the number of verifications per 100 milliseconds, is shown in
Table 2.2.

The use of 100% of the CPU, even 50%, to validate routing messages is not acceptable,
and still it would just be possible to validate 17 or 8 messages per 100 milliseconds. If
the use of 25% of the CPU is acceptable or not is irrelevant, since 4 validations per 100
milliseconds are not enough to have a functional routing algorithm. Moreover, due to the
difference of time that an ECDSA takes to be validated and the generation of a bogus
message, the SB2RP would be highly susceptible to Denial of Service (DoS) attacks.

11

12

Chapter 3

Related Work

Curiouser and curiouser!

— Alice

During the development of this thesis we looked for other works that faced similar
problems. Since we are on a very specific context, VANETs, this content was the start-
ing point. Based on some similar characteristics that VANETs have with MANETs and
Wireless Sensor Networks (WSNs), we also looked for ideas on these fields.

We end up investigating solutions, from the late 90s, initially proposed for a quite
distinct problem, multicast over wired connections. Although in a different context, they
have in common some similarities regarding the management of cryptographic material in
a large group of users.

We analysed all the different contexts where each of the proposed solutions were applied,
and identified the ideas possible to be considered and the ones that according to our
scenario, expectations and goals would have no benefit.

3.1 Security on VANETs

The WAVE architecture [1] allows the transmission of secure messages based on the
1609.2 standard [3], which for signing relies on asymmetric signatures according to the
ECDSA. Under the highly restricted time conditions of communications and of the avail-
able hardware, the time needed to produce and validate the asymmetric signatures is
relatively high when compared with the period for the transmission of beacons (see Chap-
ter 2). We did not follow the 1609.2 standard since the use of ECDSA to sign each of the

13

routing message would be a serious limitation to the number of processed messages: the
signature of a percentage of them would end up on a non-deterministic behavior and the
production of one signature for groups of more than one routing messages would create
critical time and contextual dependencies between the mobile nodes. Nevertheless, we use
the ECDSA to authenticate, in the VUs, some messages produced by a central server. In
this case, the time needed to produce the signature is not critical, since it is done spo-
radically by a distinct and powerful machine, neither it is the time needed to validate the
signature in VUs, due to the sparse periods of time this occurs.

With focus on broadcast authentication, Perrig et al. [37] [36] proposed a solution
where asymmetry is obtained based on time synchronization and successive disclosure of
keys in well determined periods of time. In short, the sender first sends a message with a
MAC, and later discloses the key and starts using a new one. With the message, the MAC
and later the key, any receiver can validate the MAC. Assuming time synchronization
between the participants, with the use of one-way functions, it is possible to ensure that a
disclosed key is not a valid key to create new MACs. Some variations were created for more
specific scenarios, such as WSNs [39] and VANETs [49], but none in the routing context.
The variation proposed by Studer et al. [49] has in common with our solution the goal to
avoid the digital asymmetric signatures associated to the WAVE architecture due to time
related constrains. However, this solution needs a large number of keys being stored in
each device, the same number of keys as the number of devices in the VANET. Moreover,
due to the use of a pre-computed chain of values resultant from a one-way function, all
the devices need to be loaded periodically with a new chain and a public starting point of
the chain of all the other devices. In our case, we have a small number of keys stored in
each device, and there is no need for periodic, global and synchronized re-setups in all the
devices.

Ahmed et al. [4] and Wagan et al. [51] presented two distinct solutions based on the
geographical division of the region accessible by the OBUs into smaller areas. The division
can be recursive, so, the smaller areas can be, by their own, divided into even smaller
areas. Both proposals, also due to time related constrains, have as goal to avoid the digital
asymmetric signatures associated to the WAVE architecture. In each area there is one
or more RSUs or a group leader elected among OBUs, responsible for the registration
and the delivery of the correspondent keys and certificates to the new OBUs entering
the area. Both solutions make use of symmetric cryptography to speed up the message
authentication for high priority emergency messages [4] or for communications inside a

14

small area [51]. Besides the use of symmetric cryptography, in an abstract way, there is
another common idea between these two proposed architectures and our own: the use of a
hierarchy to facilitate the management of the VANET, regarding the distribution of new
cryptographic material. However, instead of groups associated to a geographical area, we
have groups based on a virtual geographical independent hierarchy where OBUs are free
to be dispersed among the available region and use a common symmetric key for all the
region. Instead of a dependence on the geographical area we have a dependence on time,
so, the key associated to the authentication of routing messages is different from time to
time and not from local to local.

3.2 Group keys

A group key is a cryptographic key shared among a group of users. All users with access
to the group key can use it to encrypt or authenticate (and perform the respectively reverse
operation) all the transmitted messages among them via an insecure channel, following an
one-to-many or a many-to-many paradigm. The topic of group keys started to receive
attention from network researchers in the late 1990s, due to the envision of future needs
related with multicast services based on group communications model [19, 48, 52, 54], e.g.
teleconference and information services.

According to the architecture in use, group key management is currently classified
according to 3 main approaches [42, 55, 16, 43, 23, 46]:

Centralized: There is a single entity responsible for the management of the group.

Decentralized: There are multiple entities responsible for the management of subgroups
of the main group.

Distributed or contributory: There is no central nor decentralized entity. The mem-
bers of a group are responsible for the management. They can contribute to the
computations or elect (be elected by) any of the peers to perform such task.

Considering our well defined scenario, the centralized approach is the one that best fits
our requirements. We will focus our analysis on the different approaches on the centralized
category.

Under a centralized architecture, the creation and revocation of keys are under a single
entity, a KDC. A group key distribution protocol is used to secretly make available to all
the members of a group the needed key, or keys.

15

U1 U2 U3 U4

K4K3K2K1

K12

K1234

K34

U1 U2 U3 U4

K4K3K2K1

K12

K1234

K234

Graph
Nodes

Tree
Nodes

Figure 3.1: Graph based and tree based hierarchy

Relatively to the centralized category we do not focus on schemes based on pairwise
keys, where the KDC and each of the V members of the group share an individual secret
and the distribution of a new key relies on the V rekeying messages [19].

Excluding pairwise key schemes, all the rest of the centralized approaches fall into a
hierarchical organization, based on graphs, and trees as a specific case (See Figure 3.1).
On this type of organization, group members, at the lowest level, have a collection of keys:
all the keys from the path from the lowest node until the root node. In Figure 3.1 the
group key is k1234. The other keys are used to distribute the new keys. For example, if
ciphered with k1234, a new key is available for all the members, but when ciphered with k12
it is just available to u1 and u2.

Graphs in which two vertices are connected by more than one path are rarely used in
literature, and when they are, the authors end up removing some paths, ending up with
best results based on the resultant trees [54].

We started with a tree hierarchy and, at an early stage of our work, we explored non-tree
graphs and concluded that, for our requirements, tree-based hierarchies have also clearly
advantages to graphs in terms of management due to the homogeneous and simplified
structure.

Tree-based hierarchies were independently proposed by Wong et al. [54] and Wallner et
al. [52]. Before these proposals, according to Wong et al. [54], "no one has addressed the
need for frequent key changes and the associated scalability problem for a very large group"
with a globally shared group key. These initial works have been proposed with wired

16

connections, multicast and a one-to-many communication paradigm in mind. This is a
crucial difference, since the characteristics of ad hoc networks, VANETs in special, create
additional challenges [16, 13]. Moreover, since we are using the group key to authenticate
messages between members and not to guarantee the secrecy of any data, we can relax our
needs on the so-called backward secrecy [44, 24].

Wong et al. [54] formalizes 3 types of strategies to update the keys on members:

User-Oriented: Where each member receives a specific single message with the new keys,
ciphered with a key held by the members.

Key-Oriented: where each of the new keys are ciphered individually, and so, members
may need more than one message.

Group-Oriented: where all the messages are concatenated in a single message, sent to
all members, that will later select the needed keys.

Key-Oriented and Group-Oriented imply that all members need to receive more than one
message or a relatively big message, respectively, thus they are not suitable for our scenario.
We followed a hybrid model, using an User-Oriented strategy in a minor number of cases,
and an approach that takes the best of the User-Oriented and the Key-Oriented strategies.
The majority of the key updates are performed by building a relatively small number
of ciphered messages, where all members will find one that can deciphered, and use the
content to update (refresh) all keys. An update method, based on a refreshment, called
synchro-difference, was firstly proposed by Zhu [57], where instead of distributing all new
keys, a single key update is distributed and used by the members to produce all the new
keys. The distributed key update contains a common difference between the old key and
the new one to be produced.

Taking the tree in the right hand size of Figure 3.1 as example, if u4 gets compromised,
in a User-Oriented strategy, u1 and u2 would receive the same message with the new k1234

ciphered with the k12, and u3 receives a distinct message with both k1234 and k34 ciphered
with k3. In a Key-Oriented strategy, u1 and u2 would receive the same message, but
u3 needs 2 messages: one with the new k34 ciphered with k3 and another with the new
k1234 ciphered with the new k34. With a synchro-difference, u1 and u2 would receive some
random value ciphered with k12, and u3 would receive the same random value ciphered
with k3. Each of the new keys is produced based on a bitwise exclusive-or (XOR) of the
old key and the received random value.

17

Canetti et al. [11] presented a different way to reduce the overhead of messages in the
network. Instead of a key update used to generate all new keys, an one-way function is used,
H(x), to give to the different members the results of different number of chained iterations
over the one-way function. Each of the members can then compute all the keys and only
the keys it is entitled to have. Using the tree on Figure 3.1 as example, to exclude u1 it is
created a random value for k1 (that can be used to re-include u1), u2 receives k12 = H (k1)

ciphered with k2 and both u3 and u4 receive k1234 = H (H (k1)) ciphered with k34. The
authors give only as example the exclusion of only one member, although it is possible to
generalize the strategy and conclude that the exclusion of multiple members at once can
only be endured by the successive exclusion of one at a time. Based on a synchro-difference
we can exclude multiple members at once.

Sherman et al. [45] extended the idea of Canetti et al. [11] from an one-way function
to one-way trees, also know as Merkle trees [30]. A solution based on one-way trees allows
multiple exclusions at a time, but needs the management (and distribution) of an extra
value associated to each of the nodes, a so-called blind key. The blind key is built upon the
secret key of the sibling of each node. By sibling we mean the node that shares the same
ascendant. This enables each node to calculate the common ascendant, without breaking
the secrecy of its sibling’s secret key.

Perrig et al. [38] presented a work focused on "secure media broadcast over the internet"
where the KDC and all members have synchronized time and where both can, in some
occasions, independently update the keys in well-defined periods of time. This can be
seen as a virtual distribution protocol of the new keys, where no messages need to be sent
between entities. In common with this idea we have the notion of periodic updates, but in
our case, with explicitly distribution of new messages. The idea of synchronization with
no messages was initially attractive and considered, but we concluded that an epidemic
propagation of the key updates would be a better way to fit our requirements, since with
it we are not dependent on scheduled events that may occur in a different context in the
future.

Dini et al. [17] proposed the use of one-way functions to provide self-authenticated
key-oriented updates for efficient key revocation, avoiding the use of digital signatures in
update messages. A key k can be obtained by k = H (knxt), where H(x) is an one-way
function and knxt is the next key received on a ciphered message. With this approach each
member can test the newly received key, that was delivery ciphered but without any type
of signature. However, to the best of our knowledge, this cannot be applied along with

18

our method where we send a difference to all keys of the next generation. Thus, using
Key-Oriented updates to benefit from this strategy was not considered worthy.

Perrig et al. [38], Ng et al. [31] and Park et al. [35] proposed different hierarchical
schemes based on unbalanced and dynamic balanced trees, with the aim to constantly
optimize the structure according to the volatile number of members. In contrast, we use a
static and permanently balanced tree, prepared to accommodate a pre-defined large number
of members. Instead of rearranging the tree structure each time new members join or leave
the group we use a strategy, with negligible effect in both storage and processing needs, to
identify the impact of these actions on the pre-accommodated nodes and considered only
their existence on a needed basis. Thus, we end up with the same benefits as if the tree
was being constantly re-balanced.

3.3 Simulation tools for VANETs

Under the VANETs context there are two distinct categories of simulators to be con-
sidered: microscopic traffic simulators and network simulators. The microscopic traffic
simulators [26, 15, 34, 10, 14, 32, 21] generate traces of vehicles and possible other entities
while the network simulators [22, 50, 9, 33] use those traces to simulate the communications
between entities.

With a few exceptions [53, 27] that implement both types of simulators side by side, the
two types are decoupled and independently developed from each other. Other simulators
that integrate one network simulator and one microscopic traffic simulator [47, 40], pro-
vide a bridge between them and give some extra facilitates to deal with VANETs specific
scenarios.

Since we had the possibility to use data-sets of real behavior (including the position
and the listened neighbors with the correspondent signal’s strength) of almost 500 devices,
with 24 hours of information, all the tools for modelling artificial positions and states of
mobile entities or communications among them were not considered interesting.

Since both real mobility and network characteristics are embedded in the data-sets, we
implemented a simple simulator to take the best out of these 2 different sets of available
information.

19

20

Chapter 4

Architecture

Give me six hours to chop down a tree and I will spend
the first four sharpening the axe.

— Anonymous

Our architecture has 4 entities: a KDC, its human operator, the OBUs and the RSUs.
We may indistinctly mention both OBUs and RSUs as a single entity, the VUs.

We designed our architecture to operate on a private VANET with a number of VUs
ranging from a few to some thousands units.

Our solution is based on a central entity, a KDC, under the same control of the VANET,
responsible for creating, updating, and periodically initiating the distribution of messages
needed to maintain the routing authentication process valid across the network.

The KDC was prepared to interact with a human operator, to setup the network as
well as to update some parameters based on decisions taken during its operation.

All the orders produced by the KDC are initially sent in messages to one or more RSUs
and then disseminated by all of them to all the others, following a best effort, epidemic
approach.

Symmetric cryptography is used to authenticate messages exchanged between VUs.
Asymmetric cryptography is used to sign contents produced by the KDC.

Along with the authentication mechanism conceived for routing messages, we designed
a strategy to exclude any node (or set of nodes) from the routing process at any time.

In the upcoming sections we describe in detail TROPHY (Trustworthy VANET ROut-
ing with grouP autHentication keYs), a set of protocols based on group authentication keys
capable of protecting the routing strategy of a VANET from external attackers with the

21

aim to modify or destroy it.

4.1 Interaction between entities

The human operator can at any time include or exclude new VUs, as well as to re-
configure some network-wide parameters on the KDC. After the initial setup of VUs by a
human operator, the routing processed is initiated on those VUs.

The routing messages exchanged between VUs, hereafter referred as beacons, are au-
thenticated with a MAC created with the routing key, ρ, a symmetric key shared by all
VUs.

The routing key is periodically refreshed by the KDC, to anticipate its potential crypt-
analysis, given the high number of MACs that may be created with the same key during the
VANET operation. Furthermore, if one or more VUs get pinpointed as lost or physically
compromised, the human operator can immediately launch a key refreshment to prevent
the exploitation of a possible leaked routing key. The refreshment process is also used to
exclude the compromised VUs thereafter from the VANET’s routing (the VUs to exclude
are not involved in the key refreshment process).

When we mention ρ, we mention the routing key without taking in consideration a
specific refreshment associated to a time interval. The multiples refreshments of ρ create
a sequence of values identifiable as ρ(1), ρ(2), ρ(3), . . . , ρ(t− 1), ρ(t), ρ(t+ 1).

The time for the key updates in the VANET is controlled by the KDC, under the form
of time intervals with subsequent indexes. The time intervals are associated to the real
time of the KDC and each of the intervals may have a different duration. Each VU uses
the most recent index to compare itself with the rest of the VANET, e.g. if a VU with ρ(t)
receives an update message associated to t + 2, it can deduce that exists in the VANET
one or more messages associated to t + 1. If otherwise we had updates with absolute
time-stamps, the VUs could not deduce if there would be any other intermediate updates
between them unless there was a well defined period for the KDC to release new updates.
However, strictly periodic updates would not allow arbitrary update decisions, and so, are
not desirable. For this reason, even with the absolute time present in beacons and available
for routing decisions based on minimum clock synchronization between VUs, the update
of ρ in the VANET is not dependent on it.

The VUs may have different versions of ρ as their most recent routing key. Each VU
will always use the most recent version of ρ to create and validate MACs. Beacons are only

22

used to update the routing information if they have a valid MAC computed with the most
recent version of ρ present on the receiver. Beacons with valid MACs computed with older
versions of ρ are only used to trigger the update process in already updated neighbors.

4.1.1 Epidemic propagation of key refreshments

The refreshment of ρ is performed based on a refreshment update, r(t), sent by the
KDC to the VANET. Such updates are signed by the KDC with its private, asymmetric
key and all the VUs can validate the signature with the correspondent public key that
was initially preloaded. The signed refreshment update, together with some auxiliary
information, forms a refreshment message. The signature of refreshment messages by
the KDC is the only part of the process requiring asymmetric cryptography.

Refreshment messages are associated to a specific time interval, t, and always have as
first destination the RSUs. For the same time interval t, it may exist one or more distinct
refreshment messages and each message carry this distinct number on it. RSUs periodically
contact KDC, and receive the new messages, if any. From RSUs, the refreshment messages
are redistributed to all OBUs within beacons.

After receiving a refreshment message, OBUs can redistribute it to all neighbor OBUs,
in the exactly same way the RSUs initially did. This way, we have an epidemic propagation
of the refreshment messages where VUs do not have to trust on each other to receive and
validate contents created by KDC. Moreover, we have a process completely controlled by
KDC (which decides when updates need to occur) whereas most of the work is delegated
to VUs, following a best effort approach.

In Figure 4.1 we have a basic scenario to illustrate the epidemic propagation of the
refreshment messages, associated to r(1), and its use to update ρ(0) to ρ(1) in RSUs and
OBUs.

The epidemic key refreshment is a chained process where VUs can only update its
cryptographic material to the last state t, based on the previous state t− 1.

The use of a chained process, instead of a direct replacement, has one main vantage:
the same refreshment message can be used to refresh different keys at the same time on
different VUs without breaking the secrecy of such keys. This is specially useful since the
routing key ρ is not the only symmetric key used in the VANET.

In groups of VUs that were not isolated from the VANET, each VU has the required
routing key to create MACs for its own beacons and to validate the ones received from
neighbors. After an isolation period, a VU may be required to engage on a specific key

23

Figure 4.1: Epidemic propagation of the refreshment messages

update before being able to participate again on the routing process with its neighbors.
Such key update is supported by updated neighboring VUs, based on an historical cache
of the last refreshment messages stored on such neighbors. The size of the cache, h, is
measured in time intervals and is controlled by the KDC. Any updated VU can contribute
to the update of a peer, by sending cached information previously received.

If none of the neighbors has the needed refreshment messages on the historical cache,
the isolated VU remains unable to participate on the routing process. This calls for an
alternative method to deal with this extreme situation.

4.1.2 Historical cache

Since ρ has multiple versions, along with the beacon and the correspondent MAC, is
sent the time interval, t, associated to ρ, for enabling the receiver to identify which version
of ρ was used in the MAC.

The receiver of a beacon can get the difference between the time interval on the beacon
and its own state (time interval of its last cryptographic material). When receiving a
beacon from an outdated neighbor and the difference is in the range of the historical cache,
the MAC is verified with the old version of ρ associated to the candidate historical cache
entry (without this verification, the VUs could be fooled with bogus beacons). If the
outdated beacon is valid according the outdated state of the neighbor, the VU will search
in its historical cache for the needed refreshment message to update the neighbor. If the
message is found, it will append such message to its next beacon. If a VU detects more
than one outdated neighbor that need different refreshment messages, it will randomly
select only one.

24

To update the entire VANET from t−1 to t, the KDC can create one or more messages.
If there is only one refreshment message for a specific time interval t, any VU on state t
can update any other from state t− 1 to t, sending the message that was used to perform
its own update from t− 1 to t.

With more than one refreshment message, a VU on state t may not be able to update
some neighbor on state t − 1, unless it has all the messages created by the KDC for that
update. Each refreshment message has the information of the number of distinct messages
created for the same time interval. Due to the broadcast nature of communications, when
refreshment messages are attached to beacons to update some specific neighbor, they will
be received by all the neighbors of the transmitter. This way, any VU can verify if any
of the refreshment messages are missing on its cache, and load them in such case. With
more cached entries, VUs have a higher chance to contribute, in the future, to the global
key update of the VANET.

To improve the propagation of all the distinct messages across VANET, each VU in-
cludes in its beacons the state, either complete or not, of its historical cache. If all the
VUs are updated, but some have their historical cache incomplete, neighbors can detect
the situation and append to its next beacon a refreshment message from its cache, selected
randomly. Based on the incompleteness of the neighbors, VUs can append refreshment
messages to a limited percentage of the transmitted beacons, instead of doing it for all of
them. This percentage, the basal refreshment rate, brr, is defined by the KDC and is
the same for all VUs. Along with a new refreshment, the KDC can redefine brr.

The refreshment messages are only included in the historical cache after the validation
of the signature produced by the KDC.

4.1.2.1 Out of order reception of refreshment messages

As a complementary mechanism (useful only for OBUs) to the historical cache, we
include an out-of-order buffer for the reception of the refreshments messages. This allows
the OBUs to validate and save some refreshment messages, that are not useful at the
moment but are expected to be in a near future. For instance, an OBU in state t− 2 may
first receive a refreshment message to update from t− 1 to t before the message to update
from t− 2 to t− 1.

Based on the updates that occur in the cryptographic material of each OBU, the mes-
sages in the out-of-order buffer are directly sent to the historical cache. The messages are
not distributed back to VANET directly from the out-of-order buffer because OBUs can

25

Figure 4.2: Recovering from isolation period

not validate the MAC on the messages coming from neighbors in some future state (the
ones that could use such messages).

4.1.3 Fallback after a period of isolation

If one VU gets isolated or powered off, it may loose one or more refreshment messages.
Furthermore, the VU can be explicitly isolated by the KDC. Mainly because of the first
case, a fallback method is necessary, since it is desirable that the VU reengages on the
routing process. On the second case, the isolation must be honored, and the fallback must
only work after some explicit decision that cancels the previous state of isolation.

The RSUs can directly exchange messages with the KDC at any time, so, if allowed,
an RSU can easily recover the last state of the cryptographic material of the VANET. The
OBUs, on the other hand, do not have such possibility.

If an OBU cannot be updated by the content on the historical cache of its neighbors,
it can use an RSU as proxy to request a specific message to synchronize its subset P with
the values present in KDC. The requests, sync message requests, contain the last time
interval known by the OBU, and 2 MACs, one created with ρ and the another one created
with a key, ε, shared only by the KDC and the OBU. The first MAC can be used to filter
requests on RSUs. The second is used to authenticate the OBU on the KDC. The replies,
sync message replies, contain all the keys for the VU, encrypted with a ε and signed by
the KDC.

In Figure 4.2 we illustrate this protocol, where neither the OBU nor the KDC have to
trust on the intermediate RSU. After a period of isolation, and upon detecting an RSU,
an OBU ν appends to its beacon a sync request, Rν , that will be sent to the KDC by an

26

RSU. After receiving a sync reply, Uν(t), the RSU will append it to its next beacon. The
sync reply will be available to all the neighbors of the RSU, but can only be decrypted by
the OBU ν. All the neighbors of the RSU can resend Uν(t), appending it to a beacon. If
ν gets out of range of the RSU during the time to process the reply on the KDC, it may
still be able to receive Uν(t) by an intermediate OBU. The resending process only occurs
when Uν(t) cames from an RSU and not when it comes from an OBU.

In the case of RSUs, the process is similar, but simpler, since there is no need of any
intermediate entity. RSUs can do their own update requests and this is not visible on the
neighbors, there is no impact on transmitted beacons.

When receiving a beacon with a sync request appended and a MAC created with an
older ρ, the RSU may or may not have ρ. The verification of the MAC by the RSU is not
mandatory, it may be only performed if when instructed by the KDC (in case of it starts
receiving invalid sync requests). In this case, if the old ρ is not present in the RSU, it may
be sent back to it.

4.1.4 Human operator and VANET

The human operator can control the VANET through the KDC. Some operational
parameters can be redefined to better fit new requirements:

default refreshment period: Although refreshments can be sent to VANET at any
time, we enforce a minimum period if no action is taken by the operator.

historical cache size: h, the limit for the old refreshments stored on VUs (see Sec-
tion 4.1.2). This value is always sent along with all the new refreshment messages.

basal refreshment rate: brr, the percentage of beacons that can carry a refreshment
message for updating neighbors with an incomplete cache (see Section 4.1.2). This
value is always sent along with all the new refreshment messages.

And some actions can be taken to manage the VANET:

Include new VUs: The cryptographic material is loaded from the KDC to the device.
This is transparent to the rest of the VANET and will not trigger any new refresh-
ment.

Exclude compromised VUs: The exclusion of VUs immediately triggers a new refresh-
ment of the VANET keys (see Section 4.2.2).

27

Resurrect compromised VUs: In the KDC a new exclusive key ε is generated and
stored, and then loaded into the device (see Section 4.2.2).

Reset all keys on VANET: In case of all the VANET distribution keys in the KDC got
disclosed (a major disaster!) new ones will be generated. Moreover, a reset message
is immediately sent to VANET that will allow all the VUs to recover without any
need of human intervention on its hardware (see Section 4.2.2.1). This recover is only
possible if the private key of the KDC has not being compromised.

4.2 Cryptographic material

With the exception of an asymmetric key pair belonging to the KDC, all the other keys
used in the VANET are symmetric keys. The private key of the KDC is used to sign all
the contents sent to the VANET. The public key is preloaded on all its VUs.

On Section 4.1 we mentioned a key, the routing key ρ, known by all VUs, used to
create and validate MACs of routing beacons. We also mentioned a key, the exclusive key
ε, shared by each of the VUs and KDC, used to secretly exchange messages between the
KDC and each VU.

The exclusive keys of all VUs form the set of exclusive keys E. The components of
E are initialised with random values (seeds) and keep the same value in all the different
time intervals:

E(t+ 1) = E(t) (4.1)

To securely distribute the refreshment messages across the VANET, we use n auxiliary
group keys, which form the set of group keys G.

The components of G are associated to a time interval t:

G(t) =
n−1⋃
i=0

g(t)i (4.2)

For t = 0, all the components of G are initialised with random values (seeds). The
refreshment of all components of G from t to t+1 is based on a chaining process dependent
of the refreshment update r(t+ 1):

G(t+ 1) =
n−1⋃
i=0

g(t)i ⊕ r(t+ 1) (4.3)

28

The two previously mentioned sets, E and G, are both made out of symmetric keys
randomly initialised (with seeds). Between the two sets, the only difference is the fact
they are different or the same in distinct time intervals (see Equation 4.1 and Equation
4.3). The components of the 2 sets of symmetric keys are together know as the set of
distribution keys S.

S = E ∪G (4.4)

The components of the set S may be used indistinctly but always have its origin well
identified. The origin is specially important to maintain the constraint related with the
transition between time intervals:

S(t+ 1) = E(t) ∪
n−1⋃
i=0

g(t)i ⊕ r(t+ 1) (4.5)

Each VU ν has an ordered subset of S, the subset Pν , with d distribution keys. Each
subset Pν is distinct from any other. The subset Pν is built based on p(ν) (detailed in the
upcoming Section 4.2.1), that selects the elements of S associated to ν.

P (t)ν =
⋃

∀j∈{p(ν)}

s(t)j (4.6)

Since the components of S have an identifiable origin, the same happen with the com-
ponents of P (t)ν . Moreover, it is assured by p(ν) that in each subset P (t)ν :

1. There is one, and only one, component with origin in E;

2. There is one, and only one, common component in all the different subsets.

By (1.) we honor the need for the existence of one symmetric key shared only between a VU
and the KDC, the exclusive key εν . By (2.) we associate the routing key ρ(t) to the set G
and consequentially S. The previously introduced routing key ρ(t) is a special component
of the group keys. Although the routing key has a distinct purpose from the group keys
(routing authentication and distribution of key updates, respectively), the same key can
interchangeably be used for the two purposes.

Similarly to Equation 4.5, all subsets are independently refreshed:

P (t+ 1)ν = εν ∪
⋃

∀p∈P (t)ν\εν

p⊕ r(t+ 1) (4.7)

29

On each VU, the ordered subset Pν can be represent as an array of e elements. The
index 0 contains the routing key, which is the same in all VUs, ρ(t). The index e − 1

contains a distinct key in all the subsets, εν . All the group keys on Pν (indexes from 0 to
e− 2) are always associated to the same time interval.

Besides all the keys of S, KDC stores an ordered set of images I of a non-stored set
of auxiliary values A. The set I has the same size as E, there is one and only one value
associated to each VU. Based on randomly generated auxiliary values, αν for each VU ν,
using a cryptographically secure one-way function, H(x), I is computed as:

I =
⋃
∀α∈A

H(α) (4.8)

Each VU ν has access to one and only one value of A associated, αν . After the creation
of I each of the auxiliary values on A is loaded into the correspondent VU, and discarded
from the KDC, that only stores I.

4.2.1 Setup

The distribution keys S are arranged in a complete binary tree structure, where the
number of leafs, V , is the maximum number of VUs supported by the KDC. Hereafter, we
will assume that the number of VUs is equal to V = 2v, for any v ∈ N+, unless otherwise
stated.

Each component of S is associated to a node of the binary tree. On the root node we
have the routing key ρ, on each leaf we have a different exclusive key ε (all the elements of
E are in the leaf level).

The binary tree defines successive binary partitions of the VANET. For each partition
is given a new and distinct key. Figure 4.3 illustrates a scenario for a VANET with a
maximum of 4 VUs.

All the VUs in the VANET are associated to s0 = ρ (partition P0). Then, the VUs are
successively divided in 2 partitions with the same size, until each of the partitions having
just one VU.

In our illustrative case (see Figure 4.3), we obtain 1 partition with 4 VUs (P0), 2
partition with 2 VUs (P1 and P2) and 4 partitions with 1 VU (P3, P4, P5 and P6).

Starting on the leafs of the tree, that represent a partition with only one VU, e.g. , we
give to that VU the key associated to its leaf (s3 = ε0) and all the keys associated to all
the ascendant nodes, namely s1 (or s2) and s0 = ρ.

30

VU0 VU VU VU31 2

P1 P2

P0

P3 P4 P5 P6

VU0 VU VU VU31 2

P1 P2

P0

P3 P4 P5 P6

Figure 4.3: Organization of the distribution keys S by the KDC on a binary tree for a
maximum of 4 VUs

Index in P VU0 VU1 VU2 VU3

0 s0=g0=ρ

1 s1=g1 s2=g2

2 s3=ϵ0 s4=ϵ1 s5=ϵ2 s6=ϵ3

Table 4.1: The elements on the index of all the subsets P in a VANET with a maximum
of 4 VUs

Since the binary tree is a complete binary tree, with V leafs, allowing up to V VUs in
the VANET, the number of elements of S, t, is:

t = n+ V = V − 1 + V = 2 · V − 1 (4.9)

The number of distribution keys stored in each VU is:

e = log2(V) + 1 (4.10)

With 4 VUs, the set of distribution keys contains t = 7 keys (3 group keys and 4
exclusive keys), and each of the 4 subsets contains e = 3 elements. The 4 subsets are
shown on Table 4.1.

Instead of a tree with V leafs, we represent our tree as a main tree where on each of
the leafs, main leafs, we have an inner tree with the same size. Moreover, the main tree

31

 0

 1 2

 1 2

0

1

2

 0 1 2 3

VU
4

VU
5

VU
6

VU
7

0

1

2

 0 1 2 3

VU
8

VU
9

VU
10

VU
11

0

0

1

2

 0 1 2 3

VU
0

VU
1

VU
2

VU
3

 3

0

1

2

 0 1 2 3

VU
12

VU
13

VU
14

VU
15

Figure 4.4: Main tree (blue and green) and inner trees (orange and red) supporting up to
16 VUs. Branch nodes are represented as circles and tree nodes as triangles. Each of the
main leafs (green triangles) have a complete inner tree.

and the inner tree have the same number of leafs, l.

l =
√
V (4.11)

We use the same indexes for both branch nodes and leafs of the trees. By branch nodes
we mean all the nodes that are not leafs. In a complete binary tree with l leafs, there are
l − 1 branch nodes. Figure 4.4 illustrates such division for V = 16 and l = 4: the main
tree is composed by 3 branch nodes in blue and 4 leafs in green; each of the leafs of the
main tree contains an inner tree composed by 3 branch nodes in orange and 4 leafs in red;
the 16 VUs are assigned to the 4 leafs of the 4 inner trees.

It is possible to distinguish all the branch nodes with indexes from 0 up to l − 2.
Similarly it is possible to distinguish all the leafs with indexes from 0 up to l − 1. Based
on this, for each tree we can use a variable length code for indexes of both branch nodes
and leafs, with indexes of branch nodes taking half of the size of indexes of leaf nodes. If
the first part is between 0 and l − 2 (different from l − 1), the index refers to a branch
node, and there is not a second part. If the first part is equal to l− 1 (an invalid index for
branch nodes), indicates that there is a second part, with the index of the leaf.

32

Addressed Node

Index

Main Inner

Branch Leaf Branch Leaf

Main Branch Node 0..2

Inner Branch Node 3 0..3 0..2

Inner Leaf Node 3 0..3 3 0..3

Table 4.2: Variable length code for distribution keys

To distinguish between branch nodes and leafs of a single tree we have a code with 1
or 2 parts. Since we have a main tree and multiple inner trees, to distinguish all the nodes
(all the components of S), we have a left-to-right variable code with 1 (branch nodes of
main tree), 3 (branch nodes of the inner tree) and 4 (leaf nodes of the inner tree) parts.
We do not use the leaf nodes of the main tree alone by their own, so there are no code
with 2 parts. For the example presented in Figure 4.4, the variable length codes of the
distribution keys are shown in Table 4.2.

Under all the circumstances, the distribution keys associated to the branch nodes of
main tree are the most used, and the less used are the ones associated to leaf nodes of inner
trees, thus, we have a shorter identification for the most used indexes (see Section 4.3.1.1).
Another benefit of the use of a tree of trees is is the possibility to explore solutions based
on tables of l =

√
V entries instead of V entries (see Section 4.3.1.2).

Although the indexes of the distribution keys associated to VUs (the set E) are com-
posed by 4 parts, to distinguish among VUs, only 2 of those parts contain meaningful
information: the indexes of both leafs. Thus, to strictly identify VUs we use an index
made out of the concatenation of leaf’s indexes. To all the V VUs, this is coincident with
a linear indexing from 0 to V − 1 on all inner leafs.

For a VU ν, its index is composed by b = log2(V) bits, where the most significative
half, νh, is the index of the main tree leaf and the lowest significative part, νl, the
index of inner tree leaf.

The ascendant of any binary tree node, x, excluding the root node, is given by:

a(x) = bx− 1

2
c (4.12)

With A(x) defined as a function that returns the set of all ascendants of node x,
B = l − 1, "|" representing concatenation, all the indexes of the subset Pν , the path from

33

ν up to the root node, is given by:

p(ν) = B | νh | B | νl ∪ A
(
νh +B

)
∪

⋃
∀x∈A(νl+B)

(
B | νh | x

)
(4.13)

In Figure 4.4, from left to right, VUs take the indexes 0, 1, 2, 3, 4, . . . , 11, 12, 13, 14, 15, all
expressed with 4 bits, coincident with the concatenation of the 2 bits of the correspondent
main leaf (orange triangle) and inner leaf (red rectangle).

Again in Figure 4.4, for the leftmost VU ν = 0, p(0) returns the set composed by
index of VU, the indexes of main branch nodes and the indexes of inner branch nodes,
respectively:

B | νh | B | νl = 3|0|3|0 (4.14)

A
(
νh +B

)
= A(0 + 3) = A(3) = {0, 1} (4.15)

⋃
∀x∈A(νl+B)

(
B | νh | x

)
=

⋃
∀x∈A(0+3)

(B | 0 | x) = {3|0|0, 3|0|1} (4.16)

All the VUs are loaded with the correspondent subset of distribution keys, P , associated
to the most recent time interval present in the VANET. The KDC can at any time, send
messages to VANET with orders to refresh, reset or freeze P . Based on such orders, it is
possible exclude, re-include and possible add new VUs.

4.2.2 Manipulation and synchronization

The KDC performs 2 types of operations on distribution keys, S, refreshments on the
set of group keys G and replacements of all S (E and G) and I.

The refreshment of G from t to t + 1 is based on a random value, the refreshment
update r(t + 1). All the components of G in the state t are refreshed with r(t + 1) (see
Equation 4.5). With the refreshment update r(t + 1), each of the VUs can perform the
same operation in the correspondent subset Pν , (see Equation 4.7), and keep itself updated
with the KDC.

To secretly distribute r(t), the KDC uses one or more distribution keys (either a group
key or a exclusive key) from S(t−1) to encrypt it and produce the correspondent refresh-
ment message. Each of the refreshment messages sent to the VANET have an encrypted

34

value of r(t), thus each VU with the correct distribution key on the respective subset Pν
is able to decrypt it.

To refresh all the VANET from t to t + 1, the KDC only needs to send one message,
with r(t+ 1) encrypted with ρ(t). As ρ is known by all VUs, the refreshment update can
be obtained by all.

Multiple messages, encrypted with different distribution keys, are used to exclude one
or more VUs. If one or more VUs got pinpointed as compromised or lost, part of the
distribution keys is considered compromised. One of the compromised keys is always ρ,
since it is known by all VUs. In this scenario, neither ρ nor any of the distribution keys
present in the subsets Pν of the compromised VUs can be used to encrypt r(t+ 1).

With the exception of all the distribution keys associated to the compromised VUs, all
the others can be safely used as key to encrypt r(t+1) and produce refreshment messages.
Some of those distribution keys are used to produce the minimal number of refreshment
messages, which are enough to update all but the VUs to exclude. The process of selecting
the distribution keys is described in Section 4.3.1.1. On the KDC, once the excluded
VUs are marked as compromised all future requests based on the fallback method (see
Section 4.1.3) are ignored.

The other type of operation performed by the KDC is the replacement of the exclusive
keys on E and images on I, used to re-include any of the compromised VUs. To re-include
a VU ν that was compromised at the time interval tc, the exclusive key εν is replaced
by a new random value (seed) associated to the most recent time interval, tr. Besides
that, a new αν is randomly generated and the image, ιν , in the set I is replaced by a new
value ιν = H (αν). After this, the same device, or a different one, can safely take the
identification of ν and be loaded with the new value of εν , associated to tr, along with the
αν (αν is discarded from KDC). The existence of a seed with a time interval tr greater
than tc indicates that the VU is resurrected.

Since the compromised version of VU was explicitly excluded from the refreshment
process, the newly resurrected VU, with the new ε associated to tr, inherits the old con-
text and needs to use the fallback method (see Section 4.1.3) to synchronize its subset
of distribution keys P . Since the exclusive key εν was replaced, the KDC can recognize
the messages produced by the resurrected instance of ν, encrypted with the new εν , and
provide the needed data.

35

4.2.2.1 Recovering from the disclosure of all the distribution keys

If the KDC is compromised, all the distribution keys S (including ρ and all the exclusive
keys ε) are available to an attacker. This means that the use of the distribution keys does
not guarantee the secrecy of any new data distributed with them. By compromising the
KDC an attacker also have access to the set of images, I, but this is not relevant.

To reset all the keys in all the VUs, the KDC sends a reset message, a special
refreshment message (without refreshment key and with the number of distinct messages
defined as 0), associated to state t + 1. At the same time, the KDC replaces all the
distribution keys S (both E and G) by new ones associated to t+ 2.

On state t+1 all the VUs are excluded from the chained process (none of them can use
the refreshment message), but allowed (informed!) to reset the subset Pν to t+2. The reset
is performed based on the fallback method (see Section 4.1.3), with an extra step, that
will guarantee the secrecy of the new values being distributed. All the VUs will secretly
receive their correspondent subset Pν with the new keys, previously created on state t+2.

The extra step relies on the set of images I and the correspondent set of auxiliary
values A. The set I is stored in the KDC, so also compromised, but the auxiliary values
are distributed along the VUs. For each VU ν, the KDC can receive each αν , encrypted
with its asymmetric public key, compute H (αν) and compare it with the correspondent ιν
of I.

Assuming the secrecy of the private key of the KDC, a compromised KDC can recover
from the disclosure of all the distribution keys stored on it, because it is possible to distin-
guish a sync request made by a VU and a sync request made by the attacker that holds
E but not the distributed A. The reply from the KDC to each VU ν, instead of being
encrypted with the disclosed key εν is in this case, encrypted with the now compromised
αν .

The inclusion of αν encrypted with the KDC public key creates an overhead on the
fallback method. Although this step is essential to recover from the disclosure of all the
distribution keys, it does not need to be present on the majority of the requests, that
will be made by VUs to recover from a period of isolation. Since the case of recovering
from the disclosure of all the distribution keys is easily distinguishable from the case of
synchronization after a period of isolation, (the first is triggered by a reset message), the
inclusion of the encrypted value of α on sync requests, as well as the use of α instead of ε
to decrypt the sync replies, is only part of the protocol when recovering from the disclosure
of all the distribution keys, and never when synchronizing after a period of isolation.

36

In case of the KDC being compromised along with some of the VUs, the recovering
must be done in two steps: first recover from the disclosure of all the distribution keys and
them the exclusion of the compromised VUs.

4.2.3 Dealing with an arbitrary number of VUs

We assumed until now that the number of VUs is V = 2n for some positive n. This is a
strong assumption and cannot be guarantied on a real scenario. When handling a smaller
number of VUs, assuming that the VANET is always composed by the maximum number
would imply that some refreshment messages would be created and sent to VANET but
not used by any of the VUs. This would have a negative impact since VUs would have to
process and store useless messages as well as consume bandwidth to exchange them.

In order to have V as a real maximum and not necessarily the effective number of VUs,
without suffering from the overhead of a big number V when handling a small number of
VUs, the KDC flags all the nodes as used or not used. Based on that, it is possible to send
messages only to the nodes that are effectively in the VANET, without maintaining a tree
with an arbitrary and mutable number of leafs. Using a big tree and flagging its unused
nodes, when compared with the use of a tree with the minimum number of nodes, has in
fact an overhead. This is explained in detail in the upcoming Section 4.3.1.1. Nevertheless
this overhead is extremely small and the alternative, always keep the balanced, would be
much heavier.

Figure 4.5 illustrates the case of only 4 VUs assigned on our toy example introduced
before, a VANET with 16 VUs. This is one of the many possible arrangements. Any
different arrangement will result on different nodes flagged as unused. From the point of
view of messages sent to the VANET, we will always have the same number. However,
since the nodes in the main tree have a shorter identification that the one in inner trees (see
Section 4.2.1) we can enforce the use of the main tree nodes to obtain shorter messages.

4.2.3.1 Optimum distribution of VUs in the tree

For an arbitrary number of VUs, a, the best distribution is obtained by any arrangement
that maximizes the minimum distance, m, between any two consecutive VUs.

m =
V

2dlog2(a)e
(4.17)

In the example presented in Figure 4.5 the maximal minimum distance between con-

37

 0

 1 2

 1 2

0

1

2

 0 1 2 3

0

1

2

 0 1 2 3

0

0

1

2

 0 1 2 3

VU
0

VU
1

VU
2

VU
3

 3

0

1

2

 0 1 2 3

Figure 4.5: Unused nodes flagged in a non-optimal distribution with 4 members in a
VANET with a maximum of V = 16

secutive VUs is 1, and not the maximum possible to obtain, 4 = 16
4
.

One of the distributions that maximizes m for case of 4 VUs is shown in Figure 4.6. In
this case each VU is virtually attached to the an upper point of the tree.

During the inclusion or exclusion of VUs, the flagged nodes may change. If the number
of VUs is reduced by half or more, it is not guaranteed that the distribution keeps optimal.
In the case of a big reduction of VUs, it may be advised to reindex the active ones. We
did not consider the need for reindex the VUs, since on our real scenario such variation is
not present neither expected.

4.3 Secure routing

To enforce the security of the routing protocol all the previous routing messages (bea-
cons) are replaced with a secure version, which ensures its integrity. The routing informa-
tion is the same of the base protocol.

Instead of a message solely with the routing information, VUs sends a message with:

• routing information;

• time interval, t, of the most recent routing key ρ;

38

 0

 1 2

 1 2

0

1

2

 0 1 2 3

0

1

2

 0 1 2 3

0

0

1

2

 0 1 2 3

VU
0

 3

0

1

2

 0 1 2 3

VU
4

VU
8

VU
12

Figure 4.6: Unused nodes flagged with the dispersion of 4 members on a maximum of V =
16 possibilities. The minimum distance between consecutive VUs is maximized (m = 4).

• extra payload;

• state of the historical cache (see Section 4.1.2);

• MAC computed with ρ(t).

Assuming the secrecy of ρ(t) across VUs, the routing process is protected against ex-
ternal attackers, due to the MAC. Since this assumption is not strong enough for a long
period of operation, we included a mechanism to modify ρ, and implicitly, if needed, ex-
clude any of the VUs in operation. To support the key modification, beacons can carry an
extra payload, either refreshment messages or sync messages.

Both type of messages are associated to a well defined time interval, and both carry
some auxiliary control information, for this specific time interval: the number of distinct
refreshment messages produced by KDC (see Section 4.3.1.1), the size of the historical
cache and the basal refreshment rate, respectively, h (see Section 4.1.1) and brr (see Sec-
tion 4.1.2).

39

R|t+1|x|CTRL(t+1)R=r(t+1)

R

Symmetric
cipher

Asymmetric
signature

Concatenate
t+1|x|CTRL(t+1)

R|t+1|x|CTRL(t+1)

KDC
-s(t)x

R

R

Figure 4.7: Wrapping of the refreshment update r(t+ 1)

4.3.1 Refreshment messages

The refreshment messages are built by the KDC, according to Figure 4.7, with the goal
of secretly distributing a refreshment update r(t+ 1) to all or part of the VUs.

The refreshment messages are made out of:

• r(t+ 1) encrypted with an element of S(t);

• identification of the element of S(t) used to encrypt r(t+ 1);

• value of t;

• control information (number of distinct refreshment messages, brr, h);

• KDC signature.

4.3.1.1 Selection of the distribution keys

To distribute r(t+1) to the entire VANET, is produced only one refreshment message,
with r(t + 1) encrypted with ρ. Since ρ is a common entry in all the subsets P , this key
is the best candidate to encrypt r(t + 1). This is enough to protect the VANET against
external attackers, unless such attackers had access to ρ.

To exclude one or more VUs, the KDC uses the binary tree structure to select a min-
imum set of safe distribution keys. All the distribution keys present on the subset of any
of the VUs to exclude are considered compromised keys. The minimum set of safe keys is

40

built based on all the siblings, not flagged as unused (see Section 4.2.3), of nodes repre-
senting the compromised keys. If there is more than one VU to exclude, from the previous
group of selected siblings are excluded the ones that are compromised.

After generating multiple refreshment messages for t+1, the KDC can start again using
ρ as the only distribution key, for t+2. This happen because all of the excluded VUs were
unable to receive r(t+ 1) and update their state to t+ 1, thus, are unable to decrypt any
future refreshment messages, and more important, unable to create MACs with the most
recent ρ(t+ 1) present in VANET.

With V VUs, the number of distribution keys used to create the refreshment messages
(sent to VANET) to exclude c > 0 VUs at once, in the worst case, is give by:

mw = bc · (log2(V)− log2(c))c = bc · log2
(
V

c

)
c , ∀ 0 < c ≤ V (4.18)

Max (mw) =
V

2
(4.19)

On our toy example introduced before, a VANET with 16 VUs, the exclusion of one VU
is illustrated in Figure 4.8 and the exclusion of 2 VUs in Figure 4.9, both identified with a
red cross. On black with a red circle around we have the compromised elements of S, with
a dashed blue circle (only Figure 4.9) we have the sibling nodes that are also compromised
and with a continuous blue circle the sibling nodes that represent the minimum set of
distribution keys needed to refresh all the VANET but the VUs to exclude. In both cases,
half of the remaining elements are updated with the same number of messages equal to the
number of elements to exclude, 1 and 2, respectively.

The worst case, when excluding c VUs, occurs when all the tree nodes at level dlc =
log2(c)e (assuming the root node as level l = 0) have at least 1 compromised VU in the
descendant leafs (see Figure 4.10). If c > 0 and one or more levels at lc (or higher)
just have non-compromised VUs, it means that the keys at theses levels can be used to
produce refreshment messages (with a high number of VUs served by those messages).
With at least 1 VU associated to all the nodes at lc, all the nodes from level 0 to lc are
compromised (no refreshment messages need to be considered from them). The needed
refreshment messages are associated to the bottommost lb = log2(V)− log2(c) levels. The
nodes on the lb bottommost levels can be seen as c pseudo-detached trees (each one with
the pseuso-root node at level lc). When c = 2b ≤ V for any b ∈ N+ each pseudo-detached
tree has associated 1 and only one compromised node, and Equation 4.18 can be simplified

41

0

0

1

2

 0 1 2 3

VU
0

VU
1

VU
2

VU
3

 0

 1 2

 1 2

0

1

2

 0 1 2 3

VU
4

VU
5

VU
6

VU
7

0

1

2

 0 1 2 3

VU
8

VU
9

VU
10

VU
11

 3

0

1

2

 0 1 2 3

VU
12

VU
13

VU
14

VU
15

Figure 4.8: Selection of the distribution keys during the exclusion of 1 VU (leftmost). The
compromised keys are on black with a red circle around. The selected distribution keys
are with a blue circle around.

removing the floor operator (bc). With the floor operator (bc) we have a generalization for
any c ∈ N+.

From the mw messages created when excluding c elements, in the worst case, to update
half of the remaining elements are used c of those messages (the ones associated to the
level lc + 1).

In Figure 4.11 is shown the number of messages created to exclude a different number
of VUs, according to Equation 4.18, with V = 16. The maximum number is obtain for
c = 8, where all the non-compromised VUs will receive a different message. The worst case
occurs when the minimal distance between two consecutive VUs to exclude is maximized,
all the even (or odd) indexes. On the other hand, if the 8 VUs to exclude are placed on
the 8 leftmost (or rightmost) positions, the best case occurs and only one message will be
needed.

With a tree structure capable of handling up to V = 2v VUs, for any v ∈ N+, for an
arbitrary number a ≤ V of VUs, with the optimal distribution described in Section 4.2.3.1

42

0

0

1

2

 0 1 2 3

VU
0

VU
1

VU
2

VU
3

 0

 1 2

 1 2

0

1

2

 0 1 2 3

VU
4

VU
5

VU
6

VU
7

0

1

2

 0 1 2 3

VU
8

VU
9

VU
10

VU
11

 3

0

1

2

 0 1 2 3

VU
12

VU
13

VU
14

VU
15

Figure 4.9: Selection of the distribution keys during the exclusion of 2 VUs (leftmost and
rightmost, one of the worst cases). The nodes with a dashed blue circle around were
candidates if excluding just 1 VU. When excluding 2 VUs the nodes with a dashed blue
circle are also compromised and not used.

0

0

1

2

 0 1 2 3

VU
0

VU
1

VU
2

VU
3

 0

 1 2

 1 2

0

1

2

 0 1 2 3

VU
4

VU
5

VU
6

VU
7

0

1

2

 0 1 2 3

VU
8

VU
9

VU
10

VU
11

 3

0

1

2

 0 1 2 3

VU
12

VU
13

VU
14

VU
15

0

1

2

3

4

ALL
COMPROMISED

2 PSEUDO-ROOTS

2 PSEUDO-DETACHED TREES

Tree Levels

REFRESHMENT MESSAGES
PER

PSEUDO-DETACHED TREE

ALL
COMPROMISED

c

l =log (16)-log (2)
2 2b

=l

Figure 4.10: Detailed analysis when excluding 2 VUs and its relation with Equation 4.18

43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

VUs

Compromised

2

4

6

8

Distinct

Messages

Figure 4.11: Messages created to exclude VUs in a VANET with 16 VUs (worst case)

and the existence of flagged nodes, the Equation 4.18 has a different, but similar formula:

mw = bc · (blog2(a)c − log2(c))c+min (c · log2(x), y) , ∀ 0 < c ≤ a ≤ V (4.20)

x = d2
dlog2(a)e

a
e (4.21)

y = a− 2blog2(a)c (4.22)

With x as the maximum number of VUs associated to the tree nodes on level la = blog2(a)c
of the tree structure in use (assuming the root node as level l = 0) and y as the number of
the tree nodes that have this maximum number (see Figure 4.12). The x value is always
1 when a = 2b for any b ∈ N+ or 2, otherwise. Due to this fact, log2(x) is always 0 or 1
and has a small impact on mw.

When a = 2b ≤ V , for any b ∈ N+, we get x = 1 and y = 0 so the Equation 4.20 falls
into the Equation 4.18, with a taken the place of V (the number of refreshment messages
depends on the number of VUs in use a and not on the maximum V).

In the example shown in Figure 4.12, when excluding 3 VUs, the worst case occurs in
any of the following associations:

(VU0 ⊕ VU2)
∧

(VU4 ⊕ VU6)
∧

(VU8 ⊕ VU10) (4.23)

44

 0

 1 2

 1 2

0

1

2

 0 1 2 3

0

1

2

 0 1 2 3

0

0

1

2

 0 1 2 3

VU
0

 3

0

1

2

 0 1 2 3

VU
4

VU
8

VU
12

VU
2

VU
10

x1 = 2 VUs associated x3 = 2 VUs associatedx2 = 2 VUs associated x4 = 1 VUs associated

x = MAX(x1,x2,x3,x4) = 2

y = 3 (x1,x2,x4)

VU
6

Figure 4.12: Example of the parameters x and y for generalization of the worst case when
flagging the unused nodes (Equation 4.20), with a = 7. Since the unused nodes are flagged
neither x nor y is dependent of V .

These associations yield 4 refreshment messages (the Equation 4.20 with c = 3, a = 7,
x = 2 and y = 3), 1 for VU12 and 3 others for each of the non-compromised VU of each
"XOR pair". Any other possibility yields a smaller number of messages.

The only impact of the strategy of flagging the unused nodes (see Section 4.2.3) instead
of balancing the tree is given by the difference between Equation 4.18 (assuming a balanced
tree with V leafs for V VUs) and Equation 4.20 (assuming a tree with arbitrary number of
leafs, possibly flagged to fit a VUs): 1 extra refreshment message per excluded VU (limited
to the difference given by y) in the worst case (that is not the most probable). Since the
tree balancing is not a trivial nor an overhead-free task (the new relations among VUs
created in the KDC must be reflected in the VUs themselves), we considered the use of
flagged nodes the best approach.

4.3.1.2 Epidemic propagation of refreshment messages

The refreshment messages are initially sent to the RSUs and then disseminated by all
of them to all the others, following a best effort, epidemic approach. The success of such
dissemination depends on a fast and efficient detection of the neighbors and the selection
of the right refreshment message, by all VUs.

The VUs are associated to the leafs of the binary tree and the refreshment messages to
all the branch nodes as well as to the inner leafs. Thus, the association between VUs and

45

the useful messages can be obtained using A(x) defined as a function that returns the set
of all ascendants of leaf x (based on successive iterations on Equation 4.12).

The refreshment messages associated to the topmost branch nodes are the most com-
monly used in the VANET. To keep all the previous VUs on VANET, only one refreshment
message is sent, associated to the root of the main tree, while when excluding one or more
VUs, the refreshing messages associated to the topmost nodes of the trees have a higher
coverage of VUs, so will be often needed and transmitted. Thus, with a list of all the as-
cendant branch nodes associated to a neighbor, starting a search from the topmost branch
nodes is the best strategy to find any useful refreshment message for a neighbor.

With the division of a binary tree into the main tree and the inner trees (see Sec-
tion 4.2.1) the indexes of the VUs are composed by the indexes of both main and inner
leafs. The ascendant branch nodes of the main tree are the topmost ones, so they should be
searched first. Due, with the division into main and inner tree, its possible to first search
a smaller group of ascendants (the main branch nodes) and then, when needed, a second
group of ascendants (the inner branch nodes).

In a VANET with V VUs, instead of single group with h = log2(V) ascendants, that
has to be calculated or stored for each possible neighbor, we have 2 groups of h

2
ascendants.

Due to the fact that it is more probable to find an useful refreshment message associated
to the first group of h

2
ascendants in the main tree, the h

2
ascendants in the inner tree do

not always need to be calculated or accessed. This strategy gives us advantages either if
the indexes of ascendant branch nodes are calculated each time a neighbor is detected or
if the indexes are precalculated and stored.

When using precalculated data, since the indexes are the same for the main tree and
each of the inner trees (see Figure 4.4), according to Equation 4.11 we only store the ascen-
dants for a tree with l =

√
V instead of V leafs. As the indexes of the VUs are composed

by the indexes of both main and inner leafs (see Section 4.2.1), the same information for
the indexes of the ascendants is used for the main and the inner branch nodes, which
drastically reduces the information being stored.

The selection of the refreshment messages to update a neighbor can be accelerated if
each of the refreshment messages associated to branch nodes become referenced by the
respective descendant leafs nodes. This makes the time of a search for a refreshment
message constant, at the price of an increase in memory. The division into main and inner
trees can also be explored to reduce the size needed to have a constant search time, or to
only apply the constant search to the main tree (which has a higher probability to contain

46

0

0

1

2

 0 1 2 3

VU
0

VU
1

VU
2

VU
3

 0

 1 2

 1 2

0

1

2

 0 1 2 3

VU
4

VU
5

VU
6

VU
7

0

1

2

 0 1 2 3

VU
8

VU
9

VU
10

VU
11

 3

0

1

2

 0 1 2 3

VU
12

VU
13

VU
14

VU
15

REFERENCE
MADE BY

MAIN LEAF 1

REFERENCE
MADE BY

MAIN LEAF 2

REFERENCE
MADE BY

MAIN LEAF 3

Figure 4.13: Constant time search of refreshment messages using references from the main
leafs to the correspondent refreshment messages.

an useful refreshment message).
Figure 4.13 shows how the use of such division allows, with 3 references, to have a

constant search that covers 12 VUs, the rightmost ones that in groups of 4, share the same
νh (most significative bits). The shared νh is the index of the main leaf with the reference
to the needed refreshment messages, so, 2 out of 4 messages are immediately available to
12 possible neighbors just by directly accessing to 3 out of 4 well-defined positions. For
the 3 leftmost leafs, it can be used the same strategy, or the previously described search
across all the nodes of the inner tree (not the main tree!).

4.3.2 Sync messages

The sync messages are exchanged in 2 different directions, from VUs to KDC and
vice-versa, as requests and replies, respectively.

From VUs to KDC, request messages are made out of:

• VU identification, ν;

• last time interval, t, know by the VU (the current state of Pν);

47

• auxiliary key, αν , encrypted with the public key of the KDC (this is only present
after the reception of a reset message, see Section 4.2.2.1);

• MAC of the previous content computed with the last exclusive key, εν ;

• MAC of the previous content computed with the last routing key, ρ(t).

While the replies, are made out of:

• the ordered subset Pν encrypted with εν or αν (see Section 4.2.2.1);

• time interval of the encrypted Pν ;

• control information;

• KDC signature.

48

Chapter 5

Implementation

I would find it harder if I had to spend all my time
learning how to use somebody else’s routines.

— Donald Knuth, Coders at Work

We built loop (loop over orderly phases) an interactive simulator for both OBUs and
RSUs, with a graphically visualization, that communicates with a KDC, according to a
realistic model of a VANET. We also built a prototype of the KDC and prepared it to
accommodate up to 216 (65536) VUs.

The simulator was fed with 24 hours of real data samples, collected from Veniam’s
VANET on Porto city, containing 396 OBUs and 50 RSUs. All VUs send periodic routing
messages (beacons) in intervals of 100 milliseconds, informing all the neighbors about their
current state. The data samples have the logged state of all nodes in periods of 2 seconds,
including their geographic position and a list of the neighbors listened during the 2 seconds,
along with the correspondent beacon signal strength. The area used by OBUs was about
21.1 by 18.5 kilometers.

Based on the lists of the neighbors per VU, we simulated the transmission and reception
of beacons in periods of 100 milliseconds and enforced their authentication. Furthermore,
we simulated the connections made by the RSUs to the KDC and appended to the beacons,
on a needed basis, the refreshment messages produced by the KDC as well as the requests
for sync messages produced by OBUs and the respective replies produced by KDC.

49

5.1 Definition of parameters

To accommodate up to 216 VUs we have the same number of leafs in the KDC, and
both main and inner trees have l = 256 leafs (see Equation 4.11). The set of distribution
keys S has n = 131071 elements (see Equation 4.9) and each VU stores e = 17 of those
elements on the correspondent subset Pν (see Equation 4.10).

With l = 256 the index (identification) of each VU has 2 bytes and the index of the
distribution keys has from 1 to 4 bytes (see Equation 4.13): 1 byte to the branch nodes of
the main tree; 3 bytes to the branch nodes of the inner trees; 4 bytes to the leafs of the
inner trees (where VUs are associated).

For the maximum number of VUs, in the worst case, the number of messages produced
to exclude multiple VUs at once is shown in Figure 5.1. Although the need for exclusion of
thousands VUs at once is theoretically possible, it is not expected in our scenario, so, for
a reasonable number of compromised VUs, up to 256 out of 216 at once, a more detailed
information is shown in Figure 5.2. The best case occurs when all the VUs to exclude have
successive indexes.

The exclusion of 256 VUs in the best case, with l = 256, is the exclusion of all VUs on
the same inner tree, and so, to update the remaining ones are needed 8 messages associated
to the 8 branch nodes of the main tree; for the worst case, is the exclusion of 1 VU on
each of the 256 inner trees, and so, to update the remaining ones are needed 8 messages
associated to the 8 branch nodes on each of the 256 inner trees; to update half of the
VANET, when 1 VU is compromised on each of the 256 inner trees, 1 message will update
half of the remaining VUs on each of the inner trees, and so, 256 messages will update half
of the VANET.

With a KDC able to handle up to 216 VUs, on our practical case, with 446 VUs, we
have m = 128 (see Equation 4.17), which means that each inner trees (with l = 256 leafs)
has associated a maximum of 2 VUs, more precisely, 190 inners trees have 2 VUs and 66
have 1 VU (190 · 2 + 66 = 446).

The RSUs check for new information in the KDC in periods of 1 minute. The OBUs,
when not able to update their cryptographic material to the last state of the VANET
based on their neighbors, wait up to 5 minutes to start using the fallback method based
on the RSUs (see Section 4.1.3). The replies from KDC take between 400 milliseconds and
4 seconds to be sent back to RSUs.

The size of the historical cache (see Section 4.1.2) is dynamically defined by the KDC
on each new refreshment message, in the simulator we defined the limits between 1 and

50

10000 20000 30000 40000 50000 60000

VUs

Compromised

5000

10000

15000

20000

25000

30000

35000

Distinct

Messages

Figure 5.1: Maximum number of messages produced by KDC to exclude VUs at once

Worst Case

Best Case

Worst Case (Update Half VANET)

1 2 4 8 16 32 64 128 256

VUs

Compromised

1

2

4

8

16

32

64

128

256

512

1024

2048

Distinct

Messages

Figure 5.2: Messages produced by the KDC to exclude up to 256 VUs at once

51

32. The size of the out of order buffer for the refreshment messages listen by VUs is 8.
For the symmetric cipher we chose the AES128, so the symmetric keys have 16 bytes.

We assumed the use of HMAC-MD5 as the MAC function, with an output of 16 bytes,
and the use of ECDSA, as the asymmetric signature algorithm, more precisely ECDSA-
224 with a signature of 56 bytes and a public key with 28 bytes. These technologies were
chosen based on the security currently provided, ≥ 112 bits of security strength [8], and
the current recommendations for the near future [7], up to 2030.

With the best expectations being to use the protocol without any update up to 2030,
we use 3 bytes to define the time intervals (the number of minutes up to 2030 is less than
224).

5.1.1 Size of the messages

Based on the previously defined values, the routing beacons (see Section 4.3) will have
extra 20 bytes, plus the size of the optional refreshment or sync messages:

• size of the previous routing information;

• 3 bytes for the time interval;

• 1 byte to advertise the state of the historical cache (7 bits left);

• 16 bytes for the MAC.

The refreshment messages (see Section 4.3.1) have from 80 to 83 bytes:

• 16 bytes for the encrypted value of r;

• 1 to 4 bytes to the identification of the key (see Section 4.2.1);

• 3 bytes for the time interval;

• 4 bytes for the control information: 2 for the number of distinct messages, 1 for the
historical cache, 1 for the basal refreshment rate;

• 56 for the KDC signature.

The requests for sync messages sent by the OBUs (see Section 4.3.2) have 37 or 293 bytes:

• 2 bytes for the identification of the VU;

52

• 3 bytes for the time interval;

• 256 bytes for the encrypted α (only when recovering from the disclosure of all keys
in the KDC);

• 16 bytes for the MAC computed with ε;

• 16 bytes for the MAC computed with ρ.

While the replies of sync messages sent by the KDC have 338 bytes:

• 272 (16 · 17) for the encrypted subset of Pν ;

• 3 bytes for the time interval of Pν ;

• 4 bytes for the control information: 2 for the number of distinct messages, 1 for the
historical cache, 1 for the basal refreshment rate;

• 56 for the KDC signature.

5.2 Simulator

We built loop (loop over orderly phases1), a simulator using C++112 and OpenCV3 to
support a visualization of the simulation.

We implemented all the cryptographic operations related with the distribution keys
(see Section 4.2): the VUs can receive beacons (see Section 4.3) in periods of 100 millisec-
onds, and react according to the content of such beacons. Since we were not interested in
modeling the impact of fake information in the VANET, we did not implement the asym-
metric operations related with the signature of the KDC neither did we included MACs
on the transmitted beacons (we only verify the information of time, and assume that a
valid MAC exists according to this information). Nevertheless, we considered the time that
asymmetric operations need and limited them in time, according to a realistic scenario. At
the end of each simulation all the symmetric keys stored in each VU are validated against
the values stored in KDC.

The simulator has 3 different threads of execution: 1 for the visualization; 1 for the
interaction with a user (see Section 4.1.4); and 1 for the simulation itself. The visualization

1The name nicely describes what it does!
2https://isocpp.org/wiki/faq/cpp11
3http://opencv.org/

53

and the interaction only offer extra output and input features, and may not be needed for
all the use cases. Thus, they can be activated and deactivated as needed. The only thread
that is always running is the simulation thread.

The kernel of the simulation is a loop over different phases, repetitively over the time,
where each of the phases is responsible for a well defined task, and according to this,
contact with the KDC (see Section 5.3.2). The granularity on the time being simulated is
1 millisecond and the total time of the simulation (in this case, 24 hours) is divided into 2
types of periods: macro periods and inner periods.

The macro period is associated to the periodicity of the input data. On each macro
period we have different information (such as position and number of neighbors) for the
VUs. The inner period is associated to the period of the transmission and reception of
beacons in the routing protocol. We worked with macro periods of 2 seconds and inner
periods of 100 milliseconds.

Along with each simulation is produced a log file, that contains the important param-
eters used for its configuration, so that the experience can be identified and easily repro-
duced, and the important results collected during the simulation for additional analysis
with external tools.

5.2.1 Phases of the simulation

On the simulation, we keep a distinct separation between the state of the simulator
and the state of the VUs. By state of simulator we mean all the non-realistic state that
only exists for convenience of the simulation e.g. the graphical interface. On the other
hand, the state of the VUs represents the model of the real operations found in VANET
e.g. transmission and reception of routing beacons.

Generically, each phase can have 4 different temporal points of execution, that can be
used to better modeling a specific task:

1. once on macro period start

2. once on inner period start (never used!)

3. on macro period

4. on inner period

The first 2 points of execution are associated to the state of the simulator, thus, the
state of the VUs is only accessible for reading operations and not allowed to be modified.

54

once on macro period start

on macro period

on inner period

once on inner period start

MS%100!=0
AND

MS%2000!=0

MS+=1

MS%2000==0

MS%100==0

FOR ALL VUs

FOR EACH VU ASSOCIATED
TO THE SPECIFIC MS

END OF SIMULATION

Figure 5.3: Points of execution of loop (with "%" representing the modulo operation and
"==" and "!=" boolean tests). The unused point of execution is shown in light gray. The
macro period is 2000 milliseconds and the inner period 100 milliseconds.

The last 2 points of execution are VU’s specific and executed for each VU with permission
to modify its state (as well as permission to read all the other VUs’ public state).

VUs are randomly distributed to one specific millisecond of the inner period (between 0
and 99) and keep that same position in time until the end of the simulation. The simulator
jumps from millisecond in millisecond and for each phase, on a needed basis, it executes
the code associated to the start of the periods as well as the code for VUs associated to
that millisecond. The different points of execution are shown in Figure 5.3.

To guaranty the determinism of the execution of the phases, if two or more VUs are
associated to the same millisecond of the simulation, running each of the phases on that
millisecond should yield the same result independently of the order that operations are
applied to each VU.

The generic phase is implemented on the simulator under a C++ class. Phases with
a well defined task are classes with a relation of inheritance to the generic phase. After
the initial setup, where VUs are associated to a millisecond of the inner period and a list
of phases is created, the simulation runs based on successive calls to the members of the

55

Figure 5.4: Pseudo code of loop

classes that represent the points of execution (see Figure 5.4).
To properly model and simulate the important characteristics of the VANET, we iden-

tified 3 distinct tasks and implemented the correspondent C++ classes to be executed in
loop during the simulation time. Those tasks are, in order:

1. Apply the effect of time (Proc)

2. Transmit information (Tx)

3. Receive information (Rx)

The different tasks have influence among each others, as described in Figure 5.5. In the
figure, an arrow between tasks A → B, represents a relation of influence of A on B. The
labels are used to identify the cases in the following explanations. Left to right arrows (→)
represent an immediate influence visible for the next phase, right to left ones (←) represent
delayed influence, only visible 1 or more inner periods later. Black arrows represent internal
influence along the same VU, red ones represent influence across multiple VUs, and green
ones represent the optional interaction (IN) and the optional visualization (OUT).

5.2.1.1 Apply the effect of time

The first phase has 2 points of execution, both associated to the macro periods, one
to update the state of the VUs and another one to update the state of the simulator.

56

PROC TX RXA A A

OUT

IN

VUA

PROC TX RXB B B

OUT

IN

VUB

(1)

(1)

(1)

(2)

(3)

(4)

(4)

(5)

Figure 5.5: Influence of phases among each others

Updating the state of VUs consists on set them as online or offline (1). When the VUs are
online, the position and the list of neighbors is also updated on a needed basis. Updating
the state of the simulation consists on handling all the counters in use for logging purposes
as well as to prepare a new visualization for the specific macro period. The visualization
is dependent of the previous messages received (4).

5.2.1.2 Transmit information

The second phase has 2 points of execution for VUs, for both macro and inner period.
In the inner periods of 100 milliseconds we model the transmission of routing beacons by all
VUs. The other type of transmissions, the much less frequent requests for new information
made by RSUs to KDC, are modeled on a needed basis in the macro periods.

The transmission of beacons is modeled making information available to all the other
VUs, so, when needed, such information can be read (5). All the transmissions of a VU
are influenced by the previous receptions (3). When the requests made by RSUs to KDC
have a reply, such reply is received and stored, and all the effect of the received data on
the simulation are handled by Rx (2).

57

5.2.1.3 Receive information

The third phase has 1 point of execution for VUs, in the inner period. At this point
we model the reception of routing beacons and also, in case of RSUs, the reception of the
data from the KDC (2). The reception of beacons is modeled by reading the messages on
the correspondent neighbors at that time (5). The beacons read from neighbors represent
the beacons received in the last 100 milliseconds, on a fifo order.

The received information handled on Rx, beacons from others (5) and KDC replies in
the case of RSUs (2), may or may not contain signed refreshment or sync messages, that
need to be validated with the KDC public key before being used. Since such validation
is a time consuming operation, we limited its number in the inner periods (corresponding
to 100 milliseconds) and delayed to the next inner period the missed validations. Based
on the initial tests done on VUs’ hardware, where each validation of an ECDSA signature
takes approximately 6 milliseconds, we limited the number of validations (to a number
randomly selected) between 4 and 7 per inner period.

The refreshment and the sync messages are used at this point by VUs to update the
subset of distribution keys P (and the routing key ρ). After being validated, the received
refreshment messages are cached (see Section 4.1.2) and will influence the future transmis-
sions (3). The update on the subset of distribution keys P on VUs will influence the next
visualizations (4).

Based on the received beacons we build, update and compare two routing tables ac-
cording to SB2RP (see Section 2.4): one based on all the beacons and another one based
only on the authenticated beacons.

In Figure 5.5, both VUA and VUB can be seen as associated to the same millisec-
ond. The influence across multiple VUs needs to take in account the transmission time
of the packet, so, if they are transmitting at the same time, this mutual influence is not
instantaneous, as the red (left to right) diagonals arrows are suggesting.

Taking as reference that the transmission of 2KB needs approximately 1 millisecond
when the physical channel (of 16Mb) is otherwise idle, we assume that the beacons will
be transmitted within 1 inner period (100 milliseconds) under any circumstances, and so,
in our simulation the instantaneous transmission of information have the same effect as
a delayed transmission (with a delay smaller that 100 milliseconds) because the beacon
will only be processed after the other beacons produced sooner (up to 100 milliseconds
sooner). Delays greater than 100 milliseconds will be analyzed as communications over a
lossy channel.

58

Figure 5.6: Sample of data collected from VANET

5.2.2 Input data

The simulator uses as input different data-sets with 24 hours built based on real data
collected for the different VUs. The collected data is made out of multiple text files for
each VU (1 file for each continuous period of activity). Each file has a single line separated
by commas (see Figure 5.6 for a sample), containing multiple groups of the following
information:

• An unique identification of the VU;

• A global time stamp in seconds (linux epoch);

• A value representing latitude;

• A value representing longitude;

• 6 other values not used by the simulator, e.g. heading;

• The number of neighbors listened;

• A list of pairs of listened neighbors: identification, strength of the signal.

Without any known reason, some data entries where inconsistent with the rest of the
data-set, either by having multiple times the same time stamp, by having successive posi-
tions of latitude and longitude that represent a movement above normal speed limits, or
by having in the list of neighbors either an offline VU or one that is too far way.

We wrote a perl script to convert the raw data, excluding any inconsistent entry, limiting
it to one distinct time stamp per VU, with a maximum speed of 180 kilometers per hour
(based on two consecutive time stamps and respective positions) and a maximum distance

59

Figure 5.7: Sample of data used in loop

for the wireless communications. We built 2 data-sets with communication limited to 1
kilometer and 100 meters.

When the filtering of the data let us without any data at all for a specific time, we
assumed that the VU was offline. A continuous offline period of arbitrary length is identified
by a line with a single asterisk. All the used values were transformed and normalized:
the VUs get continuous identification numbers starting at 0; latitude and longitude are
transformed into cartesian coordinates. At the end, we have a single text file for each VU
(see Figure 5.7 for a sample), with a header in the first line and a different line for each
time stamp. The header only has a field to distinguish between RSUs from OBUs, the
next lines can be an asterisk that represent an offline period or a bundle of information for
each time stamp. The information contained in the bundle is:

• A normalized time stamp;

• cartesian coordinates;

• The number of neighbors listened;

• The number of neighbors that listen to the VU;

• A list of pairs of listened neighbors: identification, strength of the signal;

• A list of identifications of neighbors that listen the VU.

Besides being filtered, the produced data-set has the advantage of being perfectly
human-readable. Envisioning that the simulation would result in complex interaction be-
tween VUs, we considered that an human-readable data-set would be an advantage to
better understand what was happening and easily discard (or discover!) errors associated
to the simulation process.

60

5.2.3 Configuration and interaction

We used two types of configuration: statically in the code and by command line argu-
ments. All the values that have any type of control over the simulator and are possible to
be modified were initially defined as C++ constants in a source file, config.hpp, inside a
distinct namespace, config. During the development and evaluation all the constants that
were being modify, implying the recompilation of the code, were converted into command
line arguments, with default values equal to the previously defined constants values.

We ended up with 33 values statically defined in config.hpp and 12 possible command
line arguments. On config.hpp we have parameters like the size of the symmetric keys
and the dimensions of the visualization windows. The command line arguments are:

-b The base directory where multiple data-sets may be placed.

-c The file with identifications of the VUs (camouflage). The file contains a list of identi-
fications, unique numbers between 0 and 216− 1, as many as the number of the VUs
in the simulation. This allows the distribution of the VUs to different leafs of the
different inner trees (see Section 4.2.3).

-d The name of the data-set to use.

-G A flag to disable the graphical visualization.

-h The size of historical cache (see Section 4.1.2).

-I A file with commands to run in simulator (disables the interactive mode with the user).

-k The address and optionally the port of the KDC.

-l The name of the output log file.

-m The percentage of beacons to mute on the receptions’ phase of all VUs (to simulate a
lossy environment).

-r The period for the release of a new refreshments message. This period is not considered
when exclusions are performed as an order to exclude 1 or more VUs will immediately
release to the VANET the correspondent refreshment messages.

-s A seed to the C++ pseuso-random number generator. This allow us to test the same
configurations with all the (pseudo-)randomly selected parameters modified, e.g. the

61

Figure 5.8: Sample of a file with commands for loop

distribution of the VUs across the inner period, the selection of the refreshment
messages by the VUs and the number of asymmetric signature validations that can
be done by inner periods.

-u An early stop to the simulation which will run up to the given number of milliseconds
and not for all the time entries contained in the data-set.

More than an initial configuration, we allow the interaction with the simulation by one
of two options: an interactive mode or a file with a predefined list of commands. In the
interactive mode the commands are given to the simulator in a terminal-like interface,
while in a file the commands are available, one per line, with the time (milliseconds) to be
executed pre-appended (see Figure 5.8 for a sample). The commands available for any of
the cases are:

brr to indicate to the KDC a new basal refreshment to be sent along the refreshment and
sync messages. Takes a number (permillage) between 0 and 1000 (see Section 4.1.2).

compromise to indicate to the KDC that one of more VUs are compromised and need to
be excluded. Takes a list of identifications (according to the -c option).

info to print the state of the simulation. Prints the current millisecond, the time of the
simulation and the time spent, both in dd:hh:mm:ss format, and the speedup of the
simulation.

map to change the map view (see Section 5.2.4). Takes the name of the view (bigbrother
or naive) to shown up.

pause to pause and re-initiate the simulation.

q to print a random quote related with computer science and technology (useful while
waiting for the last seconds of the simulation).

62

Figure 5.9: Base image used for the visualizations

reset-keys to simulate the disclosure of all the distribution keys in the KDC and initiate
the recovering process (see Section 4.2.2.1).

resurrect to indicate to the KDC that any of the previously compromised VUs are not
compromised anymore (see Section 4.2.2). Takes a list of identifications (according
to the -c option).

5.2.4 Visualization

The visualization let us follow the simulation and easily understand what is happening
at which moment. There are 2 different windows: 1 with a map showing the state of VUs
and another one with some temporal parameters plotted.

The visualization is associated to the area that VUs use during the simulation. A base
image to the visualization area can be initially loaded, to help the identification of the
map. In our case, since the area of the simulation is the Porto city, we load a map with
the atlantic ocean, the Douro river and Leixões harbor shown in blue, Figure 5.9.

At the beginning of the simulation, the data of all VUs is loaded into the simulator.
During this process, the base image is populated with the cartesian coordinates that VUs
have along the time. These coordinates will end up showing all the paths used by the VUs
(see Figure 5.10).

63

Figure 5.10: Loading the data for the simulation

Figure 5.11: Parameters plotted during the simulation

After the loading of the data, the simulation starts, and a second window appear. This
window shows the time of the simulation, and the current state regarding to 2 different
variables: the percentage of active VUs with the last routing key and the percentage of
routes not affected at all by the secure routing when compared with the insecure one.

Those two variables are shown as in Figure 5.11. The reddest parts are closer to 0 while
the green ones are closest 100. The smaller gray bars represent 1 minute of the simulation
time while the bigger ones represent 10 minutes.

During the simulation the map has 2 different views available, possible to selected with
the map command (see Section 5.2.3). In both, the RSUs are shown in violet. The OBUs
may change the color in which they are shown, according their state and the selected view.
The map views are:

64

Figure 5.12: Map showing the big brother view

65

The big brother view: Selected with map bigbrother, shows the active OBUs in 3 pos-
sible colors, green, orange and red, according to the state of their cryptographic ma-
terial when compared with the last refreshment message sent to the VANET (see
Figure 5.12). In this view it is possible to analyze the epidemic propagation of the
refreshment messages and the impact that RSUs have to the closest OBUs. The
OBUs that have received the last refreshment message are shown in green. The
other OBUs are shown in orange if their cryptographic material is within the limit of
the historical cache (so they can be updated by some neighbor) or red if they are out
of the range of the historical cache of the updated (green) OBUs and may need to
use the RSUs to request an update message from the KDC or may possible receive
a refreshment message from an orange one. The OBUs without the last refreshment
message are highlighted: they are bigger and present their identification. This helps
to diagnose why a particular OBU is not updated.

The naive view: Selected with map naive, shows the active OBUs in 4 possible colors,
black, green, orange and red, according to the state of their cryptographic material
when compared with their neighbors (see Figure 5.13). In this view it possible to
analyze the evolution of the relations created between neighbors. The isolated OBUs,
the ones that are not listened nor listen any other, are shown in black. The OBUs that
listen one or more neighbors all with the cryptographic material in the same state (so
they can produce and validate beacons among each other) are shown in green. The
OBUs that are listening neighbors with cryptographic material in a different state are
shown in orange or red, if they are the more or the less updated ones, respectively.
Along with the red OBUs, is shown a red line connecting them to any neighbor that
has a more updated cryptographic material. When listening or listened by neighbors
with cryptographic material in a different state, the OBUs are bigger and showing
their identification. This map highlights the situation where routing beacons may be
discarded due to discrepancies on the keys being used by neighbor OBUs.

5.3 KDC

We built a prototype of the KDC using Python34 and SQLite35 to persistently store all
the data in use. The implementation is based on a TCP/IP server, following the threaded

4https://www.python.org/
5https://sqlite.org/

66

Figure 5.13: Map showing the naive view

67

Figure 5.14: Database model of the KDC

model, that receives and handles the requests made by the simulator as they were made
by the real RSUs. Since the KDC has to interact with the simulator, some facilities were
included for the start and the end of each simulation.

We mention the KDC as a prototype because the development was from the beginning
focused on testing and evaluating the different new ideas proposed. We did not try to
achieve any kind of performance that would be possible with the use of a non-interpreted
language or a database with support for a higher level of concurrency.

5.3.1 Database

Although being a prototype, we did not relax the approach related with the data
manipulation, so, the running process of the KDC holds no context of the simulation, and
all the mutable state is stored and retrieved as needed from the database.

With built a data model that falls into the star scheme, shown in Figure 5.14. On
the center of the model we have the TreeNode table that is referenced by all the other
tables. We focus on speed up and simplification of the read operations, at the cost of some
redundancy and denormalization, e.g. the Refreshment table may have multiple entries,
one per refreshment, with the same stored value of Creation_Time, Time_Interval and
Refreshment_Key.

The database has 5 tables:

TreeNode stores all the nodes of the trees, for the leafs of the inner trees, the identification
of the associated VU is also stored. All the nodes are created during the initialization
of the database and the only mutable column is the one used to mark the node as
used or not used.

68

xxx

xxx

TIME
INTERVALS

0

5

10

xxx

SEED

REFRESHMENT

COMPROMISED

AUXILIAR
COMPUTATION
(XOR)

EXCLUSIVE KEYSGROUP KEYS

255|0|255|0 255|0|255|1 ... 255|255|255|255...... 255|1|00 1 2

Figure 5.15: Relation between entries of the multiple tables

Ascendant has the information about all ascendants for all the VUs. This table is created
during the initialization of the database and not modified anymore.

Refreshment stores the information used to built each of the refreshments messages sent
to VANET. For each time interval, are inserted the same number of entries as the
number of refreshments sent to VANET.

Compromised stores the compromised VUs in a time interval. A VU, in TreeNode, is
considered compromised if there is an entry in this table, and there is no entry on
Seed with a greater time interval.

Seed contains the initial distribution key for each of the nodes of the trees. During the
initialization of the database (t = 0) is created one entry for each of the nodes
presented in TreeNode. New entries can be added (for t 6= 0) to re-include any of the
VUs previously compromised. All the seeds need to be explicit loaded in the VUs.

An example of the relation between entries of the multiple tables is shown in Figure 5.15,
where each box represent a stored entry in the correspondent table. At the bottom of the
image we have all the initial seeds for the n = 131071 elements of the distribution keys.
The identification of the nodes follows the division in the main and the inner trees (see
Section 4.2.1).

The transition to t = 1, t = 2 and t = 3 is done with a single refreshment message
at the time. Each refreshment message contains the correspondent refreshment key r(t)
(random value), the encrypted value (with the previous distribution key) that is sent to

69

the VANET, and the newly resultant distribution key (the previous distribution key XOR
with r(t)).

During the interval t = 3, the VU0 is pinpointed as compromised and this immedi-
ately triggers the production of refreshment messages to update all the VANET but VU0.
Assuming that all the 216 VUs are active, according to Figure 5.2 are generated 16 re-
freshment messages. These 16 messages contain the same refreshment key r(4), encrypted
with different distribution keys. To obtain the needed distribution keys, some auxiliary
computations (XORs) are done, based on the stored refreshment keys r(1), r(2) and r(3)
and the stored seeds for t = 0. With all the 16 values of the distribution keys for t = 3, 16
refreshment messages are produced, stored and sent to VANET.

In the time interval t = 4, VU0 is out of the chained refreshment process, with no
possession of ρ4, and so, is safe to use a single refreshment message again at t = 5.
Although, since ρ4 is not stored in the database, it has to be computed from the stored
values of ρ3 and r(4). After the computation of ρ4 the needed refreshment message is
produced and the chained process follows with a single refreshment message per transition
until t = 8, inclusive.

During the interval t = 7 a new seed is stored for VU0, meaning that it was re-included
and allowed to participate again in the routing process. This has no impact on the chained
refreshment process neither on the creation of refreshment messages, but since the newly
created seed was also loaded in the VU0, this resurrected VU can now use the fallback
method to get an update version of subset P0 (see Section 4.1.3).

During the interval t = 8, the VU1 is pinpointed as compromised and the consequences
are similar to the exclusion of VU0 at t = 3, with the difference of being used the last seed
available for VU0, and not the initial (compromised). The VU1 is marked as compromised
until a possible new seed being created.

The use of the auxiliary computations appears as a consequence of the lack of infor-
mation immediately available in the database. To avoid such computations it would be
needed to write the result of the refreshment of all the n = 131071 distribution keys in the
database. Apply the refreshments only to the compromised keys, and not to all, would
reduce the number of insertions in the database, but would imply an increase of complexity
on storage and manipulation.

Since the auxiliary computations are the same performed to create the replies to the
fallback method (see Section 4.1.3), after a long period of service, any iteration over all
the missed values to create the complete chain could lead to a significant number of com-

70

putations. This can be efficiently solved by periodically calculating and storing all the
distribution keys, associated to the same time interval, as seeds for this time interval.

5.3.2 Interactions with the simulator

The KDC reacts according to the requests made by the simulator. There are two
requests specific from the simulator, and not existent in a realistic environment: a signal
to start the simulation, and an option to validate the data at the end of the simulation. At
the start of the simulation all the values from the previous simulation, if any, are flushed.
To validate the data at the end of the simulation the KDC returns the values of the subset
of the distribution keys, Pν , in the same time interval that the VUs reach the end of the
simulation.

The other interactions are divided into two groups; the ones performed by the human
operator are the following:

initialSetup: takes the identification of the VU marks all the ascendants nodes of the
VU as used and returns the correspondent subset Pν ;

setBasalRateRefreshment: receives and stores the new basal refreshment rate;

reportCompromised: receives a list of VUs to mark as compromised;

resurrect: receives a list of compromised VUs and re-includes them;

resetKeysOnKDC: creates new entries on table seeds and forces all the VUs to request the
new subset Pν . Initiates the part of the protocol described in Section 4.2.2.1.

The other group of interactions is formed by the ones available to RSUs:

getRefreshment: checks the existence of new refreshment and send all if they existent;

directCommunication receives a request according to the fallback method and sends a
proper reply (see Section 4.1.3).

71

72

Chapter 6

Analysis of results

The purpose of computing is insight, not numbers.

— Richard Hamming

To validate the proposed solution as well as the implementation of the needed compo-
nents, we simulated different scenarios and analyzed the results.

The tests related with the performance of VUs were already mentioned in Section 2.2.
Theses results were taken as intrinsic characteristics and highly influenced our work from
the very beginning.

The analysis of the simulation results is preceded by the analysis of the data-sets and a
theoretical evaluation of the maximum number of messages, their occurrence and impact,
under the conditions of a fully populated VANET (according to the KDC limit of 216 VUs).

6.1 Input data

Based on the collected data we built 2 data-sets (see Section 5.2.2). We built a collection
of scripts to mine the data and extract meaningful information from the data-sets.

The difference between the 2 data-sets is only the distance for which the VUs can receive
and send beacons. The data-set where communications are limited to 100 meters have
about 23% less received beacons when compared with the data-set with communications
up to 1 kilometer. The cumulative percentage of received beacons by distance is shown in
Figure 6.1.

The number of active OBUs is variable along the day, with a maximum of 396, as shown
in Figure 6.2. Since the collection of the base data started at 18h:00m and the behavior

73

200 400 600 800 1000

Distance

from sender

(meters)

20

40

60

80

100

%

Figure 6.1: Cumulative percentage of received beacons by distance

of the OBUs is different depending on the time of the day, for convenience, we labeled the
x-axis according to the real time of the day.

The 396 OBUs, along with the 50 RSUs, were organized in the KDC according to the
best distribution, i.e. equally dispersed along the 216 positions available. In the KDC, the
nodes of the tree unused and not associated to any VU are automatically marked as unused
(see Section 4.2.3).

We implemented an extra behavior in the KDC, uniquely for the test scenarios: the
unused (216 − 396 − 50) positions for the non-existent VUs were used as ghosted devices
with impact in the VANET if excluded. In a real scenario, if a VU does not exist it cannot
be excluded. Allowing this in the test scenarios was a benefit, since we do need to lose the
contribution of one or more of the 446 VUs to simulate the exclusion of compromised VUs.

While active, the OBUs may be isolated from the VANET. We measured the average
time that OBUs are isolated, in minutes per hour. This time is dependent of the data-set
in use, for communications limited to 1 kilometer it is shown in Figure 6.3. For commu-
nications limited to 100 meters the results followed the same pattern, with the values of
isolation time increasing from 0 to 10 minutes.

When active, the VUs are exchanging beacons with the neighbors. Since the communi-
cations are based on broadcasted messages, without any mechanism to ensure the reception
of the messages, the communication created among VUs may not be bidirectional: a VU,
ν1, may be able to listen a neighbor, ν2, while ν2 cannot listen ν1. Since our solution relies
on a epidemic propagation of messages according to the needs of the neighbors, the bidirec-
tional communications are important and the presence of unidirectional communications
may have a negative impact.

74

Maximum

Minimum

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

50

100

150

200

250

300

Number

of OBUs

Figure 6.2: Number of active OBUs in the data-sets.

Mean

1st Quartile

Median

3rd Quartile

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Hour

10

20

30

40

50

Min

Figure 6.3: Isolation time of active OBUs when communicating up to 1 kilometer

75

OBUs Bidirectional

RSUs Bidirectional

RSUs Unidirectional

(RSUs do not send)

RSUs Unidirectional

(RSUs do not receive)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

20

40

60

80

100

%

Figure 6.4: Characteristics of the connections in the VANET

The percentage of bidirectional connections created by OBUs and RSUs as well as the
discriminated unidirectional connections for RSUs (can listen but cannot be listened or the
opposite) are shown in Figure 6.4. It is important to notice that the OBUs can exchange
beacons with RSUs and other OBUs while the RSUs only exchange beacons with OBUs.
The percentage of unidirectional communications found in the OBUs is between 5% and
10%. In the case of RSUs there is some variation, between 0 and 30%.

The time since the last direct connection with an RSU made by the OBUs is shown in
Figure 6.5.

The analysis of Figure 6.2, Figure 6.3 and Figure 6.4 suggests that approximately from
23h:00m to 6h:00m the VANET may be susceptible to communication problems. The
problems may be caused by 3 different reasons, that individually occur for a relatively
small period of time, but all in continuous time window, namely:

• A small number of active OBUs, specially from 4h:00m to 5h:00m (see Figure 6.2);

• A high number of OBUs isolated for a large period of time, around 5h:00m. More
than 75% of the active OBUs are isolated more than 30 (non-continuous) minutes
during 1 hour (see Figure 6.3);

• A high percentage of unidirectional communicating between RSUs and OBUs, from
1h:00m to 2h:30m and around 23h:00m and 6h:00m (see Figure 6.4).

76

1st Quartile

Median

3rd Quartile

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

2

4

6

8

Hours

disconnected

Figure 6.5: Time since the last direct connection with an RSU

The area covered by the VANET is shown in Figure 6.6. The routes followed by OBUs
are in gray, while the position of the 50 RSUs available is a violet square.

A more detailed view of the routes used by OBUs is shown in Figure 6.7. In this figure it
is possible to see the average number of seconds that each position is occupied by an OBU.
The impact of the same OBU stopped in the same area during 2 seconds is the same as 2
different OBUs crossing the area. We took as reference the number of seconds (max) on the
position more occupied by OBUs during the 24 hours and compared it with all the others
positions. To highlight the relative difference between position we used log(x)

log(max)
instead of

x
max

, otherwise the map would be mostly red and would offer little visual information.
Another detailed view is shown in Figure 6.8. In this figure it is possible to see the

positions where more and less beacons are received, for the data-set with communications
limited to 1 kilometer. We measured the position of the OBU for each of the received
beacon, during the 24 hours, in periods of 100 milliseconds. We took as reference the
positions with more beacons received, max, and compared it with all the others positions
using log(x)

log(max)
, where at least 1 beacon was received (x > 0). In this view, some of the

routes disappeared, which means that no beacons were received during the 24 hours.
Based on Figure 6.8 it is evident that in the center of the map, the number of beacons

received is much higher than in the periphery. This was expected since the center of the
map is the area with RSUs and the area with an higher occupation of OBUs (see Figure
6.7). The bad communication in the periphery, completely absent in some routes, is a

77

Figure 6.6: Area of the VANET

Figure 6.7: Relative density of OBUs

78

Figure 6.8: Relative density of received beacons

relevant fact, since we are dependent on the communication among OBUs to exchange the
refreshment messages. Comparing with the the usage of the peripheral routes in Figure
6.7, it is expected that the OBUs using those routes will need more time to update than
the ones closer to the center.

Figure 6.7 and Figure 6.8 have both 2 dark violet areas near center. Those small areas
are the 2 places where the maximum of both maps are found, and represent 2 stop points
where OBUs stay when not moving around the city.

6.2 Refreshment messages: number and occurrence

In Equation 4.18 we defined the number of distribution keys, in the worst case, used
to create the refreshment messages needed to exclude c elements. We also mentioned that,
when excluding c elements, in the worst case, to update half of the remaining ones, are
used c refreshment messages. In Figure 5.2 is shown the behavior of our solution, regarding
the number of messages sent to VANET, to update all and half of the remaining nodes.

To test and validate this definitions we implemented the process related with the ex-
clusion of elements and selection of the respective nodes of the tree. This was done with

79

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

━

2 4 8 16 32 64 128 256

VUs

Compromised

(c)

2

4

8

16

32

64

128

256

512

1024

2048

Distinct

Messages

Equation 4.18

━ 100% VANET (maximum)

━ 100% VANET (average)

━ 95% VANET (maximum)

━ 95% VANET (average)

━ 75% VANET (maximum)

━ 75% VANET (average)

c

━ 50% VANET (maximum)

━ 50% VANET (average)

Figure 6.9: Number of messages to exclude VUs (Experimental results)

a perl script, that randomly compromises c VUs out of 216, and strictly follows the rules
defined in Section 4.3.1.1:

1. Select the siblings of all the compromised tree nodes;

2. Exclude any sibling that is already compromised.

After this, we calculate the number of refreshment messages and the number of VUs that
use each of the refreshment messages associated to each of the tree nodes.

We selected different numbers of VUs to compromised, c ∈ {2, 4, 8, 16, 32, 64, 128, 256}.
For each of the numbers to analyze, we run 100000 tests: each test consists in randomly
compromise c VUs and measure the respective impact. For each group of 100000 tests we
computed the maximum and the average number of messages to update 100%, 95%, 75%
and 50% of the remaining VUs.

We repeated the process to obtain the maximum and the average values 100 times and
computed the 95% confidence interval (less than 1 for all the cases). The total number of
executions was 8 · 100000 · 100 = 80 · 106.

The results are shown in Figure 6.9, among with the 2 theoretical values (dashed lines)
to update all and half the VUs, in the worst case.

Figure 6.9 reveals that the defined values to the worst cases start to slightly diverge
from the experimental results, specially for c ≥ 16. This indicates that the predicated

80

c P(mw)
2 0.500008

4 0.0937586

8 0.00240429

16 1.13631 × 10-6

32 1.81409 × 10-13

64 3.32095 × 10-27

128 8.26383 × 10-55

256 4.37064 × 10-110

Table 6.1: Occurrence of the worst case when generating refreshment messages

worst case is highly unlikely to happen. A more careful analysis, based on the probability
of the worst case, is coincident with such results.

Since the worst case happens when each of the compromised VUs is uniquely associated
to different tree nodes in the higher possible level1, when randomly compromising c VUs
out of 216 the probability of the worst case is given by:

P (mw) =
c∏
i=1

216

c
· (c− i+ 1)

216 − i+ 1
(6.1)

The result of P (mw) for the different values of c is shown in Table 6.1, where it is
possible to see the different magnitude of the occurrence of the worst case before and after
c = 16, coincident with the experimental results in Figure 6.9.

In a VANET with 216 VUs, the exclusion of 256 VUs will mostly result on ∼= 1900

messages to update all the remaining VUs and ∼= 143 messages to update half, rather than
the previously predicated worst case of 2048 and 256 messages, respectively.

Figure 6.9 also reveals the relation between the number of messages to update 95% and
the entire VANET, that is always, at least, twice smaller. This indicates that even when
excluding an high number of VUs, even without all the refreshment messages cached, an
updated OBU can with high probability contribute to the update of an high number of
neighbors.

The number of refreshment messages is heavily dependent on the binary tree used in
the KDC. We analysed others n-ary trees at an early stage of this work. Without loss of
generality, we consider now the case of 1 exclusion in a VANET with a high number of

1When c=2, the worst case happen when there is 1 compromised VU in the first half (0 - 32767)
and another in the second half (32768 - 65535). It means that for c=2 the total space is divided in c=2
continuous partitions with the same size and there is only one compromised VU in each partition. The
same happen for c>2, c partitions with the same size and only 1 compromised VU per partition.

81

log2(x)⋅(2-1)

log3(x)⋅(3-1)

log4(x)⋅(4-1)

log5(x)⋅(5-1)

1 10 100 1000 104 105

VUs

Compromised

5

10

15

20

25

30

Distinct

Messages

Figure 6.10: Number of refreshment messages produced to exclude 1 VU for different n-ary
tree structures.

VUs where the KDC has as base a complete n-ary tree (n ≥ 2) with V leafs.
Using a complete n-ary tree, the number of nodes with the same ascendant is n, while

the depth of the tree is logn(V). When excluding 1 V U there is 1 path with compromised
nodes from the leafs level up to the root node and the number of non-compromised siblings
for each of the compromised node in each level of the path is n− 1.

The exclusion of 1 VU consists on creating 1 refreshment message for each of the non-
compromised sibling of all the compromised nodes, so, the number of refreshment messages
is: mw = logn(V) · (n− 1).

For a binary tree (n = 2) and c = 1, this is coincident with Equation 4.18. For
the general case, the binary tree is the best structure and yields the best results since it
minimizes the expression: logn(V) · (n− 1).

The results for n = 2 up to n = 5 are shown in Figure 6.10. Although not shown,
higher values of n will follow the growing pattern, on the limit we have n = V (and a
refreshment message per VU!).

6.3 Test scenarios

We created multiple scenarios to analyze and validate the implemented solution. Since
we have the intention to test the solution, we looked for the lower bounds of use, and the
respective parameters. This goal led to some stressful configurations that are not expected

82

to find equivalent in a real context, but still, are useful for the evaluation.

On each scenario we tested different parameters and in same cases, based on the results,
we fixed and carried on with the best parameters to some other test scenarios. We ran
each of the individual configuration 50 times, with different values of seed (1 to 50) to the
pseuso-random number generator of the simulator (see Section 5.2.3). The shown results
are the average of the 50 executions.

We evaluated the variation of 8 distinct parameters, namely:

1. Percentage of beacons received with a valid MAC;

2. Percentage of lost routes due to security (assuming routes between OBUs and RSUs
with a maximum of 3 hops, according to Section 2.4);

3. Percentage of equivalent routes (same route to same destination, with or without
security);

4. Percentage of secure routes with more hops;

5. Percentage of secure routes with same number of hops but using a path with lower
quality (based on Received Signal Strength Indication (RSSI));

6. Total number of refreshments messages cached in the active VUs (not normalized);

7. Percentage of beacons transmitted with the overhead of a refreshment message;

8. Percentage of beacons transmitted with the overhead of a sync message.

We started by evaluating the parameters on different time intervals to refresh the rout-
ing key, first with normal communication conditions and after with some adverse commu-
nication conditions. Then we tested the impact of the exclusion of VUs, first excluding 1
VU periodically and after excluding 16 VUs at once. Finally, we analyzed the behavior of
our solution recovering from the disclosure of all the the symmetric key stored on KDC.

All the presented results were obtained with simulation running in less than 15 minutes
on a personal computer with a CPU2 with 4 cores, 8GB of ram and a HDD.

2Intel(R) Core(TM) i5-3317U CPU @ 1.70GHz

83

6.3.1 Fixed periods of refreshment

In this scenario we tested different periods to distribute a single refreshment message
with the aim to simply update the routing key, ρ. Using the data-set with communications
up to 1 kilometer, we tested periods of 10 minutes, 1 hour and 2 hours. All the tests
were initially done allowing the OBUs to cache the refreshment messages to the last 8
time intervals (see Section 4.1.2). Based on the results with the period of 10 minutes, we
inspected the impact of the variation on the historical cache, setting it to 32. The results
of the 4 configurations are shown in Figure 6.11.

Globally, we see that the overhead of the messages associated to the secure routing
(see Section 4.3) is only present in a small percentage of the transmitted beacons (2.5%
maximum in g) and 0.27% in h)). Moreover, there a relation of approximately 1

10
for the

two types of transmitted messages, with the bigger ones (the sync messages) being the less
frequent.

The number of refreshment messages cached in the VANET (see Figure 6.11 f)) is
mostly independent of the period of refreshment, converging after an initial period where
the caches are not fully populated. As expected, the strong dependency is associated to
the number of active VUs (see Figure 6.2) clearly visible on the minimum around 5h:00m
when less OBUs are active.

The higher percentage of lost routes in all the tests are coincident with the time window
where it was expectable to have communication problems (see Section 6.1), so from 1h:00m
to 6h:00m the VANET is clearly more susceptible to the chosen parameters.

Regarding the percentage of valid beacons, the period of 2 hours has the best results,
with values close to 100%. Consequently, the routes created, based on the received beacons,
have minor changes: the percentage of routes lost is residual, always lower than 0.25%; most
of the routes are the same, always greater than 97.5%; the routes that are not equivalent,
are replaced by alternatives with more hops or lower quality.

The percentage of valid beacons associated to the other periods of refreshments (10
minutes and 1 hour) is highly affected by the limit imposed on the historical cache. For the
period of 1 hour caching the last 8 messages corresponds to 8 hours while for the period
of 10 minutes corresponds to 1h:20m (8 time intervals) and 5h:20m (32 time intervals).
After filling the cache, all these cases have associated a variation on the percentage of valid
beacons, meaning that VUs do not keep the refreshment messages needed to update the
neighbors. For the 2 hours period, after the filling of the historical (16 hours) there is no
observable variation.

84

Key Refresh. Hist. Cache

10 minutes

81 hour

2 hours

10 minutes 32

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

70

75

80

85

90

95

100

%
% beacons received with a valid MAC

a)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

2

4

6

8

10

12

14

%
% lost routes due to security

b)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

85

90

95

100

%
% equivalent routes

c)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

1

2

3

4

5

6

%
% secure routes w/ more hops

d)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.5

1.0

1.5

2.0

2.5

3.0

3.5

%
% secure routes w/ same hops but lower qual.

e)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

2000

4000

6000

8000

10000

#
refreshments cached in active VUs

f)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.5

1.0

1.5

2.0

2.5

%
% tx w/ refreshment msg

g)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.05

0.10

0.15

0.20

0.25

%
% tx w/ sync msg

h)

Figure 6.11: Results for fixed periods of refreshment

85

A period of 10 minutes combined with a limit of 8 time intervals for the historical
cache yields the worsts results. With a period of 10 minutes, the higher percentage of valid
beacons obtained with a limit of 32 time intervals in the historical cache, is coincident with
a higher percentage of overhead caused by refreshment messages and a lower percentage
of overhead related with the transmission of sync messages. This is coincident with the
activation of a high number of OBUs, at 5h:10m (see Figure 6.2) with bidirectional connec-
tions with RSUs (see Figure 6.5). Although OBUs have contact with RSUs, the epidemic
propagation of cached messages reduces the number of sync messages (see Figure 6.11 g)

and h)).
The results associated to a period of 10 minutes and a limit of 8 time intervals for the

historical are expected since any OBU offline during more than 1 hour and 20 minutes
will be out of the routing process until direct contacting the KDC. Besides that, the
OBUs using the periphery of the map for more than 1h:20m are tendentially in risk of
being isolated and out of the routing process, due to the paths with few or no reception of
beacons on it (see Figure 6.7 and Figure 6.8).

6.3.1.1 Adverse communication conditions

In this scenario we tested the behavior of our solution under adverse communication
conditions, limiting the propagation of the refreshment and the sync messages in space and
time. The limitation in space is done using the data-set with communications up to 100
meters, instead of 1 kilometer, with about 23% less of received beacons (see Section 6.1).
The limitation in time is done by explicitly discarding 90% of the received beacons in all
the VUs.

Both conditions are artificial and not likely to be found in real environments, at least not
continuously for a wide area during a long period of time, as we are testing. Nevertheless,
the behavior is indicative for less aggressive and unexpected conditions.

We discarded 90% of the received beacons with the aim to disassociate our solution
from a possible deviation of the real conditions caused by the period of collection of the
input data. The input data was collected in period of 2 seconds but the beacons are sent in
periods of 100 milliseconds. This means that during the 2 seconds a VU may have listened
from each neighbor between 20 to 1 beacons. Although it is not likely to happen the case
of only 1 beacon be listened nor only just a few of them, we can not guaranty the same for
the case of 19 or other numbers close to 20.

In the simulation we are always assuming that during the 2 seconds there are 20 listened

86

beacons per neighbor. By discarding 90% of them we are disassociating our requisites
for the propagation of refreshment messages from any possible deviation from the real
conditions. Moreover, discarding 90% of beacons let us analyze the behavior of our solution
under the conditions of a lossy channel, were the delivery of messages to maintain the secure
routing may be delayed.

We took as reference the period of refreshment of 2 hours without any limitation. We
tested the limitation in space, in time and both together. Although the case without any
limitation is already present in the previous scenario, for easy comparisons, we re-include
it among the 3 tested configurations shown in Figure 6.12.

Globally, we see that all the analyzed parameters suffer little impact.

Inspecting the results in more detail, we see that the applied limitations on communi-
cation led to a higher, although small, percentage of lost routes, specially in the moment of
releasing a new refreshment message to VANET. This is not surprising since the delayed
transmission of refreshment messages will cause a delayed update on some OBUs than can
not be used in the multi-hop routes by the updated ones and vice-versa.

The periodic spikes on the percentage of overhead associated to the refreshment mes-
sages are caused by the demand of the newly released refreshment messages. The coinci-
dent periodic spike on the percentage of overhead associated to the sync messages is not
caused by a higher demand, but rather by repetitions of the requests and consequent re-
transmission of replies: since the beacons can only carry one type of message at once, the
transmission of more refreshment messages (near the RSUs) will imply that same of the
sync messages are discarded (and new requests need to be done).

Before 6h:00m, not coincident with the releasing of a new refreshment message, there is
a negative spike on the percentage of the equivalent routes, when the communications are
only limited to 100 meters. Although this specific situation have not been predicated, the
behavior is not unexpected, since when the range of communication is smaller, the OBUs
are more dependent of the neighbors to reach the distant destinations, so more likely to be
affected by the state of more neighbors. Moreover it is coincident with a higher percentage
of unidirectional communications (see Figure 6.4). The alternative routes found in the
VANET led to an higher increase of the percentage of routes with more hops rather than
the ones with the some number of hops but lower quality, by the same reason.

With the obtained results we can conclude that our solution, namely the epidemic
propagation of the refreshment messages, can still operate normally with a less frequent
exchange of key management information among VUs.

87

Key Refresh. Hist. Cache Reception Dist. % Lost Beacons

2 hours 8

1km
0

100m

1km
90

100m

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

98.5

99.0

99.5

100.0

%
% beacons received with a valid MAC

a)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

0.2

0.4

0.6

0.8

1.0

1.2

1.4

%
% lost routes due to security

b)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

96

97

98

99

100

%
% equivalent routes

c)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

0.5

1.0

1.5

2.0

2.5

3.0

%
% secure routes w/ more hops

d)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.5

1.0

1.5

%
% secure routes w/ same hops but lower qual.

e)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

500

1000

1500

2000

2500

#
refreshments cached in active VUs

f)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.05

0.10

0.15

0.20

0.25

0.30

0.35

%
% tx w/ refreshment msg

g)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.1

0.2

0.3

%
% tx w/ sync msg

h)

Figure 6.12: Results for adverse communication conditions

88

6.3.2 Successive exclusions of a single VU

In this scenario we tested the impact of successive exclusions of a single VU. Based
on the results presented in Section 6.3.1, we used the period of 2 hours and all the same
parameters, data-set and size of the historical cache, to successively exclude 1 VU. In did
the first exclusion at the 2 hours of simulation time, so in the 24 hours of the data-set we
did 11 exclusions. From the 11 exclusions we forced the worst case in 10 of them and used
the other 1 to compare the difference. As mentioned in Section 6.1, we used non-occupied
places in the KDC and did not exclude VUs for which we have data.

Each 2 hours we forced the update of the routing key, but now with an explicitly
exclusion of one VU at the time. The instructions to the exclusion of the VUs were given
to the simulator by file with commands (see Section 5.2.3).

Since we are excluding VUs, more than one refreshment message will be generated.
With multiple refreshment messages, a VU may be updated but not in condition of update
its neighbors. This case was predicated and led to the definition of the basal refreshment
rate, brr, (see Section 4.1.2).

We defined the basal refreshment rate to 10% and ran two more tests. In one we only
changed the basal refreshment rate. In the other one, besides the basal refreshment rate
we followed the configurations tested in Section 6.3.1.1 and changed the communication
parameters limiting them in space up to 100 meters and discarding 90% of the received
beacons. The results of the 3 tests are shown in Figure 6.13.

In all the results measuring percentages is evident the presence of periodic spikes, asso-
ciated to the 2 hours period. The worst results are obtained under adverse communication
conditions, although, even in this case, the impact of the exclusions tend to disappear after
1 hour and are not present at the time of the next exclusion.

Without the basal refreshment rate, brr, the performance is not good. First there is an
evident inability to authenticate all the beacons. Second the beacons with the overhead of
the refreshment message is extremely high, near 40% in some cases. This happens because
the OBUs are instructed to update themselves and do nothing more regarding the other
refreshment messages. Later, when the selfish OBUs find outdated neighbors, they do
not have the messages needed by them. When listening an outdated neighbor and not in
possession of the need refreshment messages, the OBUs still send a randomly refreshment
message (this makes it possible to any of the neighbors, independently of their state, to
validate the KDC signature and to discover that they are outdated). Although the OBUs
are choosing randomly, they just own a few of the messages and will end up choosing

89

Key Refresh. Hist. Cache Reception Dist. % Lost Beacons Exclude each 2h:00m % brr

2 hours 8
1km 0

1

0

10
100m 90

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

80

85

90

95

100

%
% beacons received with a valid MAC

a)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

2

4

6

8

10

12

14

%
% lost routes due to security

b)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

85

90

95

100

%
% equivalent routes

c)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

0.5

1.0

1.5

2.0

2.5

%
% secure routes w/ more hops

d)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.5

1.0

1.5

%
% secure routes w/ same hops but lower qual.

e)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

5000

10000

15000

20000

#
refreshments cached in active VUs

f)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

10

20

30

40

%
% tx w/ refreshment msg

g)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.2

0.4

0.6

0.8

%
% tx w/ sync msg

h)

Figure 6.13: Results for successive exclusions of a single VU

90

randomly from an incomplete set of possibilities3.

The case with the basal refreshment rate set (without limitations on communication)
has clearly a good performance, with almost no impact on the percentage of valid bea-
cons. The solution to improve the performance is associated a better dispersion of all the
refreshment messages. This is visible in the number of total refreshment messages found
in the VANET. Although the basal refreshment rate led to a blind distribution of refresh-
ment messages without an explicit detection for its need, the percentage of overhead in the
beacons is reduced.

At the end of the tests, the KDC produced 109 refreshment messages for the 11 exclu-
sions. In detail, 10 exclusions generated 10 refreshment messages (the worst case according
Equation 4.20) and 1 exclusion generated 9 refreshment messages.

6.3.3 Single exclusion of multiple VUs

In this scenario we tested the impact of a single exclusion of multiple VUs. Again, as
in Section 6.3.2, based on the results presented in Section 6.3.1, we used the period of 2
hours and all the same parameters, data-set and size of the historical cache, to apply the
exclusions.

We chose 16 out of the 446 as the number of VUs to exclude simultaneously. The 16
ghosted elements (see Section 6.1) were chosen in order to produce the maximum number
of refreshment messages possible. The time for the exclusions was defined at the limit
of the historical cache, after 16 hours of simulation. This time was chosen based on the
evidence given by the smaller periods tested on Section 6.3.1 that after the limit of the
historical cache the percentage of valid beacons may start to oscillate.

The logic of tests followed the one applied in Section 6.3.2, an initial test without a
basal refreshment rate, another one with a basal refreshment rate of 5%, and a third with
adverse communication conditions. The results of the 3 tests are shown in Figure 6.14.

In all the results measuring percentages there is a spike associated to the exclusion of
the 16 elements. Based on the results of the previous 2 scenarios, this was expected.

The relation with the total number of refreshment messages cached in the VANET
was, in the same way as in Section 6.3.2, positively influenced by the basal refreshment
rate defined to 5%. The same happened for the percentage of overhead related with the
refreshment messages.

3http://dilbert.com/strip/2001-10-25

91

Key Refresh. Hist. Cache Reception Dist. % Lost Beacons Exclude at 10h:00m % brr

2 hours 8
1km 0

16

0

5
100m 90

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

75

80

85

90

95

100

%
% beacons received with a valid MAC

a)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

5

10

15

%
% lost routes due to security

b)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

80

85

90

95

100

%
% equivalent routes

c)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

0.5

1.0

1.5

2.0

%
% secure routes w/ more hops

d)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.5

1.0

1.5

2.0

%
% secure routes w/ same hops but lower qual.

e)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

5000

10000

15000

20000

25000

30000

35000

#
refreshments cached in active VUs

f)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

5

10

15

20

%
% tx w/ refreshment msg

g)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

0.2

0.4

0.6

0.8

1.0

1.2

1.4

%
% tx w/ sync msg

h)

Figure 6.14: Results for single exclusion of multiple VUs

92

Without adverse communication conditions, the minimum percentage of valid messages
in the VANET is 93% and in 10 minutes the network recovers as if no exclusion had been
made. In the case of adverse communication conditions, these values are, respectively, 73%
and 3 hours (and 2 small variations in the following releases of refreshment message).

At the final of the tests, the KDC produced 106 refreshment messages for the 11 exclu-
sions. In detail, 96 refreshment messages to exclude the 16 VUs, the worst case according
Equation 4.20 and 1 refreshment message for each of the other periodic releasing happening
before and after, without exclusions.

6.3.4 Reset of all the keys on the KDC

In this scenario we tested the behavior of our solution recovering from the disclosure
on all the key in the KDC (see Section 4.2.2.1).

We used the period of 2 hours to release refreshment messages and gave an order to
reset all the keys in 2 different times: at the begin of the simulation and after 16 hours.
We used 2 different reset instants aiming to differentiate the impact caused to the VANET.

As in the previous scenarios, we tested the same configurations with adverse commu-
nication conditions. The results of the 4 tests are shown in Figure 6.15.

Since all the OBUs are informed, by the reset message, to request new keys, using the
sync messages (see Section 4.2.2.1), for all the tested scenarios, this is the one where the
percentage of overhead related with the sync message is higher.

With the exception of the case with adverse condition of communication and the reset
order at 10h:00m, all the others ended up recovering at the end of the simulation.

Whit adverse communication conditions the impact on the percentage of valid beacons
is amplified, but still the percentage of routes lost is most of the time smaller than 5%.

With normal communication conditions, the line of the percentage of the valid beacons
related with the reset at the middle of the simulation (10h:00m) closely follows the line
of the order at the begin of simulation (18h:00m). Moreover, with normal communication
conditions, the percentage of overhead related with the sync messages, essential for the
OBUs to get the new keys, has little variation (with exception of the moment of the reset).
This is a strong indication that the topology of the VANET influenced the process, and
the OBUs are slowly, but constantly, contacting with the KDC. This is also according to
the little and constant spikes present in the cases with adverse communications. These
almost constant spikes happen due to the discarded messages that will force the repetition
of the requests.

93

Key Refresh. Hist. Cache Reception Dist. % Lost Beacons Reset Time

2 hours 8

1km 0
18:00

10:00

100m 90
18:00

10:00

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

60

70

80

90

100

%
% beacons received with a valid MAC

a)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

5

10

15

20

25

30

35

%
% lost routes due to security

b)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

60

70

80

90

100

%
% equivalent routes

c)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

1

2

3

4

%
% secure routes w/ more hops

d)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

1

2

3

4

5

6

%
% secure routes w/ same hops but lower qual.

e)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

500

1000

1500

2000

2500

#
refreshments cached in active VUs

f)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

5

10

15

20

25

%
% tx w/ refreshment msg

g)

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

1

2

3

4

5

%
% tx w/ sync msg

h)

Figure 6.15: Results for reset of all the keys on the KDC

94

The number of refreshment messages in the last 8 hours of the simulation, tend to form
2 pairs with a small gap between them. The bottommost line of each pair represent the
reset at the middle of the simulation (10h:00m) while the topmost one represent the reset
at the beginning (18h:00m). At the end of the simulation, the cases for which the reset
happened at the middle of the simulation still have the time interval related with the reset
in their historical cache window: since the reset message is only cached by RSUs, the total
occupation of the historical cache in the OBUs is smaller.

6.3.5 Global considerations

The previous scenarios with the correspondent variation of parameters gave important
insights about the behavior of our solution under the different conditions found along the
24 hours of the data-set. It is evident that the different characteristics of the VANET
found at different times have a strong impact on the evaluated parameters.

For the available data, we found the functional lower limits of the parameters, although,
in different situations, those values are not guarantee to have the same impact. So, we
do not have the goal to provide global best parameters, but rather indicative parameters
among with a tool, guide lines and expected behavior to analyze new situations.

The analysis of other situations, is dependent on the collection of different data to
(automatically) build new data-sets. The time for each simulation (15 minutes in the
worst case in a computer with limited characteristics) is relatively small so a wide number
of tests are possible in a short period of time.

We had available a different set of 24 hours of data collected from the same VANET
(the same geographical area). However, the number of VUs available in this data-set is
smaller, only 350 (instead of 446), and the time granularity of the collection is 5 seconds
(instead of 2). We did not considered this second data-set on the detailed tests, since it has
worst characteristics. Nevertheless we used it to confronting the results of some association
of parameters with different conditions.

We built another data-set for loop (see Section 6.1) and analysed the percentage of
valid beacons received and the percentage of lost routes. The results of 4 associations are
presented in Figure 6.16. When compared with the correspondent ones of the previous
scenarios, it is visible a small difference. Although limited to 2 days to analyse, we saw
that the patterns and the relations are similar, but different, when operating in similar
conditions.

95

Key Refresh. Hist. Cache Exclude each 2h:00m Exclude at 10h:00m Reception Dist. % Lost Beacons

10 minutes

8

0 0

1km 0
2 hours 1 1

0 16

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hour

70

80

90

100

%
% beacons received with a valid MAC

a)
18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hour

5

10

15

20

%
% lost routes due to security

b)

Figure 6.16: Representative results for a data-set with 350 VUs and time granularity of
5 seconds. The orange line is most of the time under the other lines. It is visible around
11h:00m in a).

96

Chapter 7

Conclusions

(he) must always keep in mind this concept of change
and progression.

— Emil Zátopek

We presented TROPHY (Trustworthy VANET ROuting with grouP autHentication
keYs), a set of protocols capable of maintaining the authenticity of routing messages in a
VANET, loop (loop over orderly phases), an interactive simulator for testing and validating
TROPHY along with a prototype of KDC. The solutions presented were designed in order
to deal with restricted and well defined conditions found in a specific VANET, namely the
Veniam’s VANET, in Porto. To validate the architecture and the protocols we developed
a simulator where we implemented the protocols and analyzed their behavior and impact
taking advantage of real data collected from our target VANET.

We realised, at an early stage of our work, that traditional solutions using digital sig-
natures that are usually applied in similar problems, but different contexts, are unsustain-
able in our case, mainly because we were dealing with a scenario were time and processing
power were both restricted. Those exactly same restrictions led to the developed of a new,
security-agnostic routing algorithm, the one we used as starting point, since none of the
existent ones published in the literature were able to scale during the deployment of a real
VANET. The development of the routing strategy was new and challenging by itself, so
security aspects where postponed for future improvement stages.

Security mechanisms are intrinsically associated to an extra layer of overhead. We
were aware of the emergence of such layer as well as the thin red lines that would make it
sustainable in our context.

97

Although focused on ad hoc based technologies, we initially tackled our problem with
the possibility of using different technologies and policies, even if more costly (such as
cellular network connectivity or recalls of vehicles for some physical intervention). However,
since the very beginning that none of those possibilities were considered elegant, practical
of cost-effective. The initial effort for avoiding those alternative strategies, is now, at the
end of the work, considered the main cause for the extremely satisfactory final results. Not
only we ended up building a functional solution using solely the ad hoc infrastructure, and
mainly its existing routing control plane, but we also achieved better results than the ones
initially envisioned, specially the ones related with:

• The lower bounds of the key refreshment periods;

• The re-engagement of VUs that were offline for long periods of time;

• The exclusion of compromised VUs;

• The recovering from a major disaster that would be the disclosure of all the distri-
bution keys held by the KDC.

7.1 Future work

Based on the developed work and all the interiorised experience, new ideas and im-
provements have been considered, but not implemented since they are largely beyond the
scope of this thesis.

A logical following step is the implementation of the proposed protocol on the real de-
vices. Along with the implementation and the first tests in real environment, the collection
of periodically data (such as the routes available) along with the one already existent in
the data-set, would be a tremendous advantage, since it would be possible to confront the
real data and the simulation results and detect (and solve!) any possible mismatch.

Assuming the continuation of the developed work, both simulator and KDC have topics
for improvements. The KDC prototype is more susceptible from being affected by the new
ideas, so any modification or improvement, must consider such ideas.

The simulator was developed specially for the specific case presented in this thesis,
although with modularity (for different scenarios) in mind. Currently, during the simula-
tion, the information exchanged between VUs is generic (but focused on the scenario of this
thesis), so new fields could be easily included, implementing new and different protocols.

98

However, although possible, this would lead to heavy dependencies and to an agglomera-
tion of different information in the same place. In our opinion, a better approach implies
the decoupling of each different situations (and respective data) among each other. This
was not implemented, but the refactoring needed to achieve this level of modularity is
expected to be minor.

Regarding the new ideas and improvements, those are related with 5 main topics:

Distribution of asymmetric keys: The distribution of asymmetric keys was not con-
sidered during this work. Based on the results obtained, the proposed solutions for
the distribution of symmetric keys can be explored and extended to implement this
improvement.

Possibility of cooperation between different KDCs: The possibility of temporally
cooperation, without compromising any of the companies in the future time is a
logical improvement. With this ability, OBUs of different companies could help each
other upon some specific order from the respective KDC. Also, static nodes, such as
sensors, could have the benefit of receiving cryptographic material when some OBU
is crossing the area.

The use of alternative technologies: The current OBUs can connect to WiFi net-
works, such as 802.11g. The ability to use such extra technology can increase the
number of places where OBUs can receive information. With this, the task of RSUs
can be replaced by APs in remote areas. Alternatively, it is interesting the idea of
using long-range, low throughput radio communication technologies, such as LoRA1,
to perform massive key updates in a VANET.

A mechanism for periodical collection: The decisions in the VANET may be im-
proved based on the analysis of the previous conditions. Along with the imple-
mentation on the field, a mechanism to collect and analyze the impact of different
orders may be considered essential.

A mechanism for intrusion detection: We built all the mechanisms to exclude com-
promised nodes after being pinpointed by any reason. According to the conditions
faced by VUs, the detection of misbehaving VUs in the VANET may significantly
improve the overall functionality of the network by allowing a fast exclusion of com-
promised VUs.

1https://www.lora-alliance.org

99

100

Bibliography

[1] IEEE guide for wireless access in vehicular environments (WAVE) - architecture. pages
1–78.

[2] IEEE standard for wireless access in vehicular environments (WAVE) – networking
services. pages 1–160.

[3] IEEE standard for wireless access in vehicular environments (WAVE) – security ser-
vices for applications and management messages. pages 1–240.

[4] K. J. Ahmed, M. J. Lee, and J. Li. Layered scalable WAVE security for VANET. In
MILCOM 2015 - 2015 IEEE Military Communications Conference, pages 1566–1571.

[5] Neeraj Kumar Amit Dua. A systematic review on routing protocols for vehicular ad
hoc networks. 1(1):33–52.

[6] Rasmeet S Bali, Neeraj Kumar, and Joel J. P. C. Rodrigues. Clustering in vehicular
ad hoc networks: Taxonomy, challenges and solutions. 1(3):134–152.

[7] Elaine Barker. Recommendation for key management part 1: General.

[8] Elaine B. Barker and Allen L. Roginsky. Transitions: Recommendation for transition-
ing the use of cryptographic algorithms and key lengths.

[9] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. JiST: An efficient approach
to simulation using virtual machines: Research articles. 35(6):539–576.

[10] G. Cameron, B. J. N. Wylie, and D. McArthur. PARAMICS-moving vehicles on the
connection machine. In Proceedings of Supercomputing ’94, pages 291–300.

[11] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast secu-
rity: a taxonomy and some efficient constructions. In IEEE INFOCOM ’99. Eighteenth

101

Annual Joint Conference of the IEEE Computer and Communications Societies. Pro-
ceedings, volume 2, pages 708–716 vol.2.

[12] Carlos Ameixieira and Filipe Neves. Service-based layer-2 routing protocol, veniam.

[13] Tzu-Chiang Chiang and Yueh-Min Huang. Group keys and the multicast security in
ad hoc networks. In 2003 International Conference on Parallel Processing Workshops,
2003. Proceedings, pages 385–390.

[14] David R. Choffnes and Fabián E. Bustamante. An integrated mobility and traffic
model for vehicular wireless networks. In Proceedings of the 2Nd ACM International
Workshop on Vehicular Ad Hoc Networks, VANET ’05, pages 69–78. ACM.

[15] Hugo Conceição, Luís Damas, Michel Ferreira, and João Barros. Large-scale simula-
tion of v2v environments. In Proceedings of the 2008 ACM Symposium on Applied
Computing, SAC ’08, pages 28–33. ACM.

[16] Babak Daghighi, Miss Laiha Mat Kiah, Shahaboddin Shamshirband, Salman Iqbal,
and Parvaneh Asghari. Key management paradigm for mobile secure group commu-
nications: Issues, solutions, and challenges. 72:1–16.

[17] Gianluca Dini and Ida Maria Savino. An efficient key revocation protocol for wireless
sensor networks. In Proceedings of the 2006 International Symposium on on World
of Wireless, Mobile and Multimedia Networks, WOWMOM ’06, pages 450–452. IEEE
Computer Society.

[18] Richard Gilles Engoulou, Martine Bellaïche, Samuel Pierre, and Alejandro Quintero.
VANET security surveys. 44:1–13.

[19] H. Harney and C. Muckenhirn. Group key management protocol (GKMP) specifica-
tion.

[20] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An Introduction to Mathe-
matical Cryptography. Undergraduate Texts in Mathematics. Springer New York.

[21] J. Härri, F. Filali, C. Bonnet, and Marco Fiore. VanetMobiSim: Generating realistic
mobility patterns for VANETs. In Proceedings of the 3rd International Workshop on
Vehicular Ad Hoc Networks, VANET ’06, pages 96–97. ACM.

102

[22] M. Ikeda, E. Kulla, L. Barolli, and M. Takizawa. Wireless ad-hoc networks perfor-
mance evaluation using NS-2 and NS-3 network simulators. In 2011 International
Conference on Complex, Intelligent, and Software Intensive Systems, pages 40–45.

[23] B. Jiang and X. Hu. A survey of group key management. In 2008 International
Conference on Computer Science and Software Engineering, volume 3, pages 994–
1002.

[24] Paul Judge and Mostafa Ammar. Security issues and solutions in multicast content
distribution: A survey. 17:30–36.

[25] Pabitra Mohan Khilar and Sourav Kumar Bhoi. Vehicular communication: a survey.
3(3):204–217.

[26] Daniel Krajzewicz. Traffic simulation with SUMO – simulation of urban mobility.
pages 269–293.

[27] Rahul Mangharam, Daniel Weller, Raj Rajkumar, Priyantha Mudalige, and Fan Bai.
GrooveNet: A hybrid simulator for vehicle-to-vehicle networks. pages 1–8. IEEE.

[28] V. Gayoso Martínez, L. Hernández Encinas, and C. Sánchez Ávila. A survey of the
elliptic curve integrated encryption scheme. 2(2):7–13.

[29] Mohamed Nidhal Mejri, Jalel Ben-Othman, and Mohamed Hamdi. Survey on VANET
security challenges and possible cryptographic solutions. 1(2):53–66.

[30] Ralph Charles Merkle. Secrecy, authentication, and public key systems. AAI8001972.

[31] Wee Hock Desmond Ng, Michael Howarth, Zhili Sun, and Haitham Cruickshank. Dy-
namic balanced key tree management for secure multicast communications. 56(5):590–
605.

[32] L. E. Owen, Yunlong Zhang, Lei Rao, and G. McHale. Traffic flow simulation using
CORSIM. In 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165),
volume 2, pages 1143–1147 vol.2.

[33] Debajyoti Pal. A comparative analysis of modern day network simulators. In David C.
Wyld, Jan Zizka, and Dhinaharan Nagamalai, editors, Advances in Computer Science,
Engineering & Applications, volume 167, pages 489–498. Springer Berlin Heidelberg.

103

[34] Byungkyu Park and Hongtu Qi. Microscopic simulation model calibration and valida-
tion for freeway work zone network - a case study of VISSIM. In 2006 IEEE Intelligent
Transportation Systems Conference, pages 1471–1476.

[35] Young-Hoon Park, Dong-Hyun Je, Min-Ho Park, and Seung-Woo Seo. Efficient
rekeying framework for secure multicast with diverse-subscription-period mobile users.
13(4):783–796.

[36] Adrian Perrig, Ran Canetti, Dawn Song, and J. D. Tygar. Efficient and secure source
authentication for multicast. In In Network and Distributed System Security Sympo-
sium, NDSS ’01, pages 35–46.

[37] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Song. The TESLA Broadcast
Authentication Protocol.

[38] Adrian Perrig, Dawn Song, and J. D. Tygar. ELK, a new protocol for efficient large-
group key distribution. In Proceedings of the 2001 IEEE Symposium on Security and
Privacy, SP ’01, pages 247–. IEEE Computer Society.

[39] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar. SPINS:
Security protocols for sensor networks. In Wireless Networks, pages 189–199.

[40] M. Piórkowski, M. Raya, A. Lezama Lugo, P. Papadimitratos, M. Grossglauser, and J.-
P. Hubaux. TraNS: Realistic joint traffic and network simulator for VANETs. 12(1):31–
33.

[41] F. Qu, Z. Wu, F. Y. Wang, and W. Cho. A security and privacy review of VANETs.
16(6):2985–2996.

[42] Sandro Rafaeli and David Hutchison. A survey of key management for secure group
communication. 35(3):309–329.

[43] N. Renugadevi, G. Swaminathan, and A. S. Kumar. Key management schemes for
secure group communication in wireless networks - a survey. In 2014 International
Conference on Contemporary Computing and Informatics (IC3I), pages 446–450.

[44] P. Sakarindr and N. Ansari. Survey of security services on group communications.
4(4):258–272.

104

[45] Alan T. Sherman and David A. McGrew. Key establishment in large dynamic groups
using one-way function trees. 29(5):444–458.

[46] Neha Singh, Saurabh Singh, Naveen Kumar, and Rakesh Kumar. Key management
techniques for securing MANET. In Proceedings of the ACM Symposium on Women
in Research 2016, WIR ’16, pages 77–80. ACM.

[47] Christoph Sommer, Zheng Yao, Reinhard German, and Falko Dressler. On the need
for bidirectional coupling of road traffic microsimulation and network simulation. In
Proceedings of the 1st ACM SIGMOBILE Workshop on Mobility Models, Mobility-
Models ’08, pages 41–48. ACM.

[48] M. Steiner, G. Tsudik, M. Waidner, Michael Steiner, Gene Tsudik, and Michael Waid-
ner. CLIQUES: A New Approach to Group Key Agreement.

[49] Ahren Studer, Fan Bai, Bhargav Bellur, and Adrian Perrig. Flexible, Extensible, and
Efficient VANET Authentication.

[50] András Varga and Rudolf Hornig. An overview of the OMNeT++ simulation en-
vironment. In Proceedings of the 1st International Conference on Simulation Tools
and Techniques for Communications, Networks and Systems & Workshops, Simutools
’08, pages 60:1–60:10. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[51] A. A. Wagan and L. T. Jung. Security framework for low latency vanet applications.
In 2014 International Conference on Computer and Information Sciences (ICCOINS),
pages 1–6.

[52] D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and
architectures.

[53] S.Y. Wang, C.L. Chou, and C.C. Lin. The design and implementation of the NCTUns
network simulation engine. 15(1):57–81.

[54] Chung K Wong, Mohamed G. Gouda, and Simon S. Lam. Secure group communica-
tions using key graphs.

[55] Manisha Yadav, Karan Singh, and Ajay Shekhar Pandey. Key management in efficient
and secure group communication. pages 196–203. IEEE.

105

[56] Yuh-Shyan Chen Yun-Wei Lin. Routing protocols in vehicular ad hoc networks: A
survey and future perspectives. 26(3):913–932.

[57] Wen Tao Zhu. Optimizing the tree structure in secure multicast key management.
9(5):477–479.

[58] André Zúquete. Segurança em Redes Informáticas. FCA - Editora de Informática,
Lda., 4a edição aumentada edition.

106

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Objectives
	Contributions
	Document Structure

	Context
	VANET
	OBUs and RSUs (VUs)
	Wireless Access in Vehicular Environment (WAVE)
	WAVE standards and protocols
	WAVE application-services

	Service-Based Layer-2 Routing Protocol (SB2RP)

	Related Work
	Security on VANETs
	Group keys
	Simulation tools for VANETs

	Architecture
	Interaction between entities
	Epidemic propagation of key refreshments
	Historical cache
	Out of order reception of refreshment messages

	Fallback after a period of isolation
	Human operator and VANET

	Cryptographic material
	Setup
	Manipulation and synchronization
	Recovering from the disclosure of all the distribution keys

	Dealing with an arbitrary number of VUs
	Optimum distribution of VUs in the tree

	Secure routing
	Refreshment messages
	Selection of the distribution keys
	Epidemic propagation of refreshment messages

	Sync messages

	Implementation
	Definition of parameters
	Size of the messages

	Simulator
	Phases of the simulation
	Apply the effect of time
	Transmit information
	Receive information

	Input data
	Configuration and interaction
	Visualization

	KDC
	Database
	Interactions with the simulator

	Analysis of results
	Input data
	Refreshment messages: number and occurrence
	Test scenarios
	Fixed periods of refreshment
	Adverse communication conditions

	Successive exclusions of a single VU
	Single exclusion of multiple VUs
	Reset of all the keys on the KDC
	Global considerations

	Conclusions
	Future work

	Bibliography

