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resumo 

 

 

O cancro do pulmão (CP) é um dos cancros mais diagnosticados a 

nível mundial e também um dos mais mortíferos. Atualmente, as terapias 

administradas a nível clínico para o tratamento do CP são ainda 

extremamente ineficazes e limitadas no que diz respeito ao aumento da taxa 

de sobrevivência dos pacientes oncológicos. Esta realidade demonstra a 

necessidade de investigar ativamente novas terapias para o tratamento 

desta neoplasia. 

No entanto a validação pré-clínica de terapias inovadoras para o CP 

tem-se revelado extremamente difícil devido à inexistência de plataformas 

que sejam adequadas para testes a nível laboratorial, uma vez que as 

culturas celulares in vitro bidimensionais (2D), recomendadas pelas 

agências regulatórias são incapazes de mimetizar as caraterísticas 

principais dos tumores humanos. Estas limitações têm originado uma fraca 

correlação entre a performance das terapias nos estudos in vitro e a obtida 

em ensaios clínicos controlados. 

Neste contexto, os modelos de tumores tridimensionais (3D) in vitro 

têm vindo a ser reconhecidos como uma solução para este problema, pois 

podem recapitular várias componentes do microambiente tumoral. Das 

várias plataformas 3D in vitro de CP investigadas atualmente muito poucas 

avaliaram o papel da inclusão de células estaminais mesenquimais (MSCs). 

Para colmatar esta lacuna, o trabalho de investigação desenvolvido no 

âmbito desta dissertação descreve a produção e otimização de novos 

modelos hétero-celulares 3D in vitro. Estas plataformas são compostas por 

células tumorais do CP (A549) e do seu estroma, nomeadamente 

fibroblastos da pele e células estaminais mesenquimais derivadas da 

medula óssea (BM-MSCs). Estes três tipos de células foram co-cultivadas 

em micropartículas poliméricas de policaprolactona revestidas por ácido 

hialurónico, com o objetivo de incluir este componente da matriz extracelular 

que se encontra presente no microambiente do CP. Esta abordagem 

permitiu formar a nível laboratorial microtecidos multicelulares 3D híbridos 

que melhor mimetizam a heterogeneidade celular das neoplasias 

pulmonares. Os resultados obtidos demonstraram que os microtumores 

formados através da técnica de sobreposição-líquida são reprodutíveis em 

termos de morfologia e tamanho, apresentaram núcleos necróticos, 

organização celular 3D e produziram proteínas do microambiente tumoral. 

Além destas caraterísticas, os dados obtidos através de microscopia de 

fluorescência revelaram que as BM-MSCs migram para o interior dos 

microtumores ao longo do tempo. A avaliação da citotoxicidade da 

Doxorubicina, um fármaco anti-tumoral rotineiramente utilizado a nível 

clínico, demonstrou que a inclusão de micropartículas aumenta a resistência 

das células tumorais em modelos homotípicos. Nos modelos tri-cultura 

heterotípicos a citotoxicidade foi comparável à obtida em microtumores sem 

micropartículas. Estes resultados evidenciam assim o papel importante dos 

fibroblastos e das BM-MSCs na resposta dos microtumores. Numa visão 

global, os modelos 3D formados recapitulam com mais exatidão o 

microambiente do cancro do pulmão e poderão servir no futuro como 

plataformas de teste para descobrir ou aperfeiçoar novas terapias, ou 

combinações de terapêuticas, para este tipo de neoplasia. 
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abstract 

 

Lung cancer (LC) is one the most commonly diagnosed cancers 

worldwide, being also one of the deadliest. Currently, clinically 

administered therapies for treatment of LC are still extremely ineffective 

and limited in increasing oncologic patients survival rates. This reality 

evidences the necessity of actively investigating novel therapies for the 

treatment of LC. However, preclinical validation of novel therapies as 

revealed itself as an extremely arduous process, due to the lack of 

suitable laboratory testing platforms since the recommend in vitro bi-

dimensional (2D) cell cultures are unable to fully mimic the main 

hallmarks of human tumors.  

In this context, in vitro tridimensional (3D) tumor models are being 

increasingly recognized as a solution due to their ability to correctly 

recapitulate several characteristics of the tumor microenvironment 

(TME). Amongst currently developed 3D in vitro platforms for the study of 

LC, few have included or studied the role of mesenchymal stem cells 

(MSCs). To provide further insights into this hypothesis, the research 

work developed in this thesis describes the production and optimization 

of novel heterotypic in vitro 3D models, comprised by non-small-cell lung 

cancer cells (A549) and stromal cells, namely skin fibroblasts (HFs), and 

bone-marrow derived mesenchymal stem cells (BM-MSCs). These three 

diverse cell populations were co-cultured in hyaluronic acid coated 

polymeric polycaprolactone microparticles (LbL-MPs) as to include this 

key extracellular matrix component of LC TME. This approach allowed 

the formation of 3D multicellular heterotypic microtissues (3D-MCTS) that 

better recapitulate the cellular heterogeneity of LC TME in the laboratory. 

The obtained findings demonstrate that these models formed via the 

liquid-overlay technique were reproducible in terms of morphology and 

size, presented necrotic core formation, 3D cellular organization, and 

deposited matrix proteins in a similar manner as in the TME. Besides this, 

fluorescence microscopy data revealed that BM-MSCs migrated overtime 

into the microtumors core . Performed doxorubicin in vitro cytotoxicity 

assays revealed that the inclusion of LbL-MPs lead to an increased 

resistance of homotypic A549 monoculture models against this anti-

cancer drug commonly used in clinical treatments. Alongside, the 

cytotoxicity obtained in triculture heterotypic models was comparable to 

that of microtumors without LbL-MPs inclusion, showcasing the role of 

HFs and BM-MSCs in microtumors response to therapy. Globally, the 

herein bioengineered 3D models were able to recapitulate with an 

increased precision the TME of LC, making them suitable test platforms 

for development or improvement of standalone or combinatorial therapies 

for this type of neoplasia. 
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1.1. The Reality of Lung Cancer Incidence and Current 

Therapies 

Malignant Neoplasia derived conditions represent the second leading cause of dead 

in developed countries, being only surpassed by heart disease related mortality[2]. Cancer 

mortality accounts for 13% of global deaths [3], with lung cancer representing the leading 

cause of cancer related mortality worldwide [2,4,5]. Lung cancer related disorders present 

themselves in two major forms: (i) non-small-cell lung cancer (NSCLC), the most prevalent, 

and (ii) small-cell lung cancer (SCLC), extremely rare in non-smokers  [6]. NSCLC 

represents more than 80% of lung cancer cases, having a predicted 5-years survival rate of 

15.9%, that has seen minimal improvements over the last decades [7]. 

 Lung cancer and NSCLC compose a heterogenous group of conditions which are 

still poorly understood from both a molecular and cellular point of view [8], with most cases 

of NSCLC being diagnosed in advanced stages. Even if caught up early, a poor long-term 

prognosis can be expected [2] due to a lack of effective targeted therapies for each 

presentation, resulting from differences both at an: (i) histological level (e.g. 

adenocarcinoma, squamous cell carcinoma, and large-cell lung cancer), (ii) genetic level 

(e.g. squamous-cell carcinoma and adenocarcinoma exhibit diverse frequencies in EGFR 

amplification, KRAS mutation, BRAF mutation), (iii) epigenetic level (e.g. methylation of 

p16 and FHIT genes in premalignant squamous-cell carcinoma, which rarely occurs in 

adenocarcinoma), and at the (iv) tumor microenvironment level (e.g. presence of supporting 

stroma cells and ECM ) [8–10]. 

Discovery and approval of new therapeutics for lung and other cancers is a 

challenging task  with research costs surpassing the 1 billion dollar mark per drug  [11,12], 

and taking approximately 10-12 years per compound for approval to be reached by 

regulatory agencies (e.g., FDA and EMA). A part from this, during pre-clinical drug 

validation stages patients are also exposed to treatments for which effectiveness and severity 

of side effects are yet to be determined  [3,13]. Targeted therapies for lung cancer, such as 

monoclonal antibodies, evidence the highest success rate for achieving approval from the 

regulatory agencies with 14 % of candidate therapies attaining marketing approval and 

clinical use [14].Furthermore, novel therapy combination targeting both cancer cells and 

TME signaling provides new improved treatment option. Examples of such therapies include 
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the combination of MET inhibitors (e.g. tivantinib) with tyrosine kinase inhibitors (e.g. 

erlotinib a EGFR receptor inhibitor), or with anti-angiogenesis compounds (e.g. 

ramucirumab a VEGF receptor inhibitors) [15]. Although presenting a chance for improved 

therapy, these combinations also come with increased potential risk of adverse side-effects. 

Increasing the chances of therapy rejection and limiting therapy success  

The efficiency and safety of chemotherapeutics for lung cancer treatment is 

undermined mainly by the appearance of multidrug-resistant cancer populations, by the 

establishment of distant metastasis, or by the onset of severe therapy associated side effects, 

which ultimately lead to a halt in treatment [16]. Resistance to therapy can only be solved 

through combinatorial chemotherapy or radiotherapy regiments, which although more 

effective in cancer ablation, present an increased risk to patients general health status  [17]. 

The acquisition of cancer resistance can occur through mutations in single cancer cells  [16], 

or in as a by-product of complex micro-evolutive process and communications established 

between cancer cells and the unique tumor microenvironment  [18]. In the following section 

the general components of the tumor microenvironment and their influence in disease 

progression will be discussed in the context of general  

1.2. Tumor Microenvironment – Hallmarks and 

Heterogenic Components 

The transformation of a normal human cell to that bearing a malignant phenotype is 

generally beset by several hallmarks that cells acquire through accumulation of consecutive 

genetic alterations, alongside with an active crosstalk with the microenvironment, during a 

micro-evolutionary process known as Tumorigenesis [19]. These hallmarks are mainly the: 

(i) capability of providing sustained proliferative signaling cues; (ii) evading growth 

suppression; (iii) resistance to apoptosis and cell cycle arrest, for example via p53 silencing 

through MDM2 and MDMX action [20], or loss of function due to mutation [21]; (iv) 

enabling replicative immortality, for example through overexpression of telomerase; (v) 

induction of angiogenesis; and eventually (vi) acquisition of invasive and metastatic 

potential through the process of epithelial to mesenchymal transition (EMT) [19] and have 

been extensively discussed in the literature in the last years [22].  Tumor hallmarks 

acquisition can be both hampered or aided through interactions between cancer cells and the 

adjacent tumor microenvironment, constituted by the extracellular matrix (ECM), and the 
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cellular stromal components (e.g., tissue resident cells, recruited cells from the blood) 

[23,24]. 

The different tumors identified to date can be grouped in two major categories, 

namely solid and hematological tumors [25]. Approximately, 90% of all human cancers arise 

from mutations of epithelial cells, resulting in a tumor mass that is denser than the 

surrounding tissue and are classified as solid cancers [25,26]. The evolution of these solid 

cancers is considered to be the end-result of genetic dysregulation in combination with the 

establishment of a complex set of interactions that take place between heterogeneous cancer 

cell populations (i.e., cancer cells and cancer stem cells [27]) and the surrounding stromal 

cellular components of the tumor microenvironment as well as their unique ECM [18,28]. 

The latter plays a crucial role in disease progression and metastatic processes and a deeper 

knowledge of its constituents is crucial for the development of more effective cancer 

treatments. 

 

Figure 1. Example of the TME transition from healthy tissue to TME, demonstrating diverse populations present 

in the process of cancer evolution. 
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 In normal tissues, the extracellular matrix (ECM) is mainly comprised by 

fibronectin, collagens (e.g., fibrillar and non-fibrilar collagens with types I-V being the most 

common), elastins, fibrilins, fibulins, vitronectin, laminins and other glycoproteins [29]. The 

ECM is a spatially well defined 3D mesh of structural and signaling macromolecules that 

interact with cells via specific matrix imbedded signaling ligands such  integrin-binding 

RGD motifs and heparin-binding domains [30,31]. These ligands regulate critical cellular 

functions such as growth, migration and differentiation [31]. However, this communication 

is bidirectional, with cells often modifying  physical and biomechanical properties of the 

ECM through matrix deposition or degradation through the enzymatic action of matrix 

metalloproteinases (MMPs) [32]. In cancer these and other matrix remodeling enzymes, such 

as lysyl oxydases [33] responsible for collagen cross-linking or hyaluronidases [34] 

responsible for the degradation of hyaluronic acid, are often found to be upregulated and are 

produced both by cancer and cancer-associated stromal cells [32]. Examples of these 

effectors are MMP-9, MMP-2 and a wide range of integrins (e.g. α6β4 and αvβ3 [35,36]) 

for which overexpression is considered as an hallmark of increased cancer motility [36]. 

ECM degradation can originate the release of latent bound growth factors and cytokines, 

such as epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) and 

tumor necrosis factor alpha (TNF-α), all of which influence cancer cells proliferation and 

survival within the tumor microenvironment via either paracrine, or juxtracrine signaling 

[37]. It is important to underline that such biomolecules also induce persistent inflammation, 

an important aspect since inflammation supports cancer progression for example in the 

regards of angiogenesis [38]. In fact, due to underlying tissue inflammation, cancer 

associated fibroblasts (CAF) and stromal associated fibroblasts (SAF) produce copious 

amounts of collagen type I, III and IV in ovarian cancer, as well as different growth factors 

that promote tumor growth (e.g. TGF-β, PDGF). Alongside, in the TME there is a clear 

overexpression of lysyl oxidase (LOX) , an enzyme that induces collagen crosslinking thus 

contributing for an increase in ECM stiffness [39]. 

Besides its integral role in cancer progression, the ECM also plays a crucial part in 

modulating cancer cells response to commonly administered cancer chemotherapeutics (e.g., 

paclitaxel, doxorubicin, cisplatin), acting firstly as a physical barrier hindering drugs 

diffusion into the tumor, and secondly as a promoter of multidrug resistance phenotypes in 

cancer cells [18]. This is evident when cancer cells come in contact with hyaluran rich ECM 
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regions, for which the main receptors are CD44 and RAMM both overexpress in cancer 

cells, promoting immune system evasion through CD44 upregulation  in cancer cells 

accompanied resulting metabolic changes [40]. 

Another major hallmark of the TME is its diversity in cellular components and 

cellular crosstalk. These surrounding populations play a significant role in tumor progression 

and metastasis including: (i) vascular endothelial cells, (ii) pericytes, (iii) adipocytes, (iv) 

fibroblasts, (v) immune cells, (vi) cancer associated fibroblasts (CAF), and (vii) 

mesenchymal stem cells (MSCs), also known as tumor associated mesenchymal stem cells 

(TA-MSCs). All these cells play significant roles in sustaining cancer cells proliferation and 

resistance to treatment. The exact interactions of each stromal cell type with cancer cells, 

their crosstalk via soluble and insoluble mediators has been recently reviewed elsewhere  

[39,41–44] . Yet, it is important to emphasize that despite the general knowledge of the TME, 

each tumor type is comprised by its unique microenvironment according to tissue specific 

characteristics.  

1.3. Non-small Cell Lung Cancer Tumor 

Microenvironment Cellular Landscape 

Lung cancer tumor microenvironment exact constitution is not yet fully 

characterized. Akin to other cancers, the lung TME is characterized at a cellular level by the 

presence of: (i) immune cells such as tumor associated macrophages (TAMs), natural killer 

cells (NK), cytotoxic and regulatory T lymphocytes, tumor associated neutrophils, myeloid-

derived suppressor cells (MDSC) [45,46,1]; (ii) stromal associated cells such as fibroblast 

and cancer associated fibroblasts (CAFs) which are some of the main contributors to ECM 

dynamic modification via protein deposition and degradation [47–49]; (iii) stem like cells 

such as bone-marrow derived mesenchymal stem cells (BM-MSCs) [50], or adipose tissue 

derived stem cells (AD-MSCs) [51], which play a paramount role in cancer progression, 

invasion, metastasis and resistance acquisition [50]; and (iv) vascular cells such as 

endothelial cells, and pericytes, both of them paramount in the process of angiogenesis [52]. 

All together these diverse cellular populations establish, as previously discussed an intricate 

network of interactions, such as depicted in figure X, that can either bolster or hinder cancer 

progression. 



 

 

INTRODUCTION 

 

7 

 

 

Figure 2. Schematic representation of lung tumor microenvironment. The onset of tumor progression can lead to 

the recruitment of several diverse cellular populations such as MSCs or cells of the immune system for example through 

the action of CXCL chemokines, recognized by CXCR2 receptors on the surface of both cell types [53,54]. Upon 

establishing themselves in the TME the various cells initiate a process of communication, forming a complex weave of 

interactions that can lead for example to immune suppression either directly through interaction of T cells with PDL1 

overexpressed ligands on tumor cells surface, or indirectly through the release of PDGF and VEGF by either Macrophages 

or associated MSCs and CAFs. In all, diverse populations can either act favoring specific processes of cancer progression 

such as CAFs and Macrophages interactions with endothelial and other vasculature related cells, or hinder them [55,56]. 

depending on the type of cells and respective interactions that are established [57]. Image adapted from Chen and coworkers 

2015 [9]. 

1.3.1. The role of immune system cells in Lung Tumor Microenvironment 

At initial stages of tumor development the TME recruits several immune cells, 

through the release of several factors namely chemokines, cytokines, pro-inflammatory 

factors, (figure 2) recruiting for example neutrophils through the release of compounds of 

the CXCL family, particularly CXCR2, during the process of angiogenesis [9]. The tumor 

immune microenvironment initially acts as an anti-tumoral force, cells of the immune system 

acting to detect and destroy tumors, namely through the actions of effector T cells, mature 

dendritic cells or natural killer cells [1], leading to processes of inflammation and delaying 

cancer proliferation. However, due to the nature of the communications established between 

immune cells, cancer cells and other cells of the TME, this role can ultimately be thwarted 

[1]. 

The ability to manipulate surrounding cells provides to tumors one of their greatest 

advantages, allowing the disease to adapt to treatment and evade host endogenous immune 

system defenses [18,58]. While currently non-small cell lung cancer therapies mainly focus 
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on the central driver mutations suffered by cancer cells, such as BRAF [59], KRAS [60], 

EGFR [61], HER2 [62] and MET [62] mutations, novel therapies targeting the lung TME 

are emerging. Among these therapies, those based on the administration of anti-angiogenic 

compounds such as Bevacizumab® [63], a monoclonal antibody that targets VEGF, or 

therapies based in cellular targeting to the TME. Regarding this methodology, MSCs due to 

their natural tropism for the TME, hold great promise, being transduced for example with 

interleukin-24 (IL-24) [64] or genetically modified with oncolytic adenoviruses [65], which 

respectively have been shown to exert anti-angiogenic, and inhibitory effects on the growth 

of lung tumors both in vitro and in vivo. The combination of TME targeting therapies with 

conventional anti-tumoral compounds is already started to be implemented [15], providing 

treatment regiments that might benefit the majority of populations suffering from NSCLC, 

for which the survivability rate is currently 15 % at 5 years [66,67]. Contributions by the 

TME towards the progression or inhibition of cancer tumorigenesis and metastasis processes 

are thus a theme of increasing debate and recognition, with recent findings promising to 

uncover novel therapeutic targets [9,1]. 

Depending on cancer development stage, the type of cancer, the origin of cancer cells 

(e.g., breast, prostate, colon, pancreas, lung), the immune populations found on the TME 

will vary, with for example tumor associated macrophages (TAM) exhibiting two functional 

phenotypes, a pro-tumorigenic M2 (TAM-M2), and another normally considered anti-

tumorigenic M1 (TAM-M1) (Figure 3) This heterogeneity in tumor infiltrated immune cells 

is crucial for disease progression/metastasis and for the final treatment outcome. A recent 

study by Almatroodi and coworkers has further characterized TAMs M1 and M2 populations 

in patients with NSCLC of diverse histological classifications, adenocarcinoma (ADC), 

squamous cell carcinoma (SCC), and large cell carcinoma (LCC). The findings indicate an 

increase in M2 populations in all NSCLC classes, however the expression of inducible 

isoform of nitric oxide synthase iNOS (a biomarker for M1 TAMs), was heterogenous and 

dependent on the type of cancer, being decreased in patients with ADC or SCC, but not in 

patients with LCC NSCLC [68]. From the available studies it is clear that tumors with 

distinct genetic mutations present diversity in immune infiltrates, with regard to cell type 

and phenotype [9]. Apart from immune cells other cellular stromal components play a 

significant role in disease progression and treatment resistance.  
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Figure 3. Diversity of responses obtained from the immune microenvironment of Lung cancer can lead to 

enhancement of drug efficiency in NSCLC through the actions of specific cells such as NK cells, T effective cells and M1 

macrophages releasing proinflammatory cytokines such as IL-2, IL12, IL-23A and others. Conversely the immune 

microenvironment can also hinder  treatment leading to promoting of lung cancer progression and invasion, has happens 

through the interactions of Treg-cells, M2 macrophages and associated anti-inflammatory cytokines and signaling factors 

such as IL-10 and TGF-β. Image adapted from Wang, and coworkers, 2017 [1] 

 

1.3.2. The role of Cancer Associated Fibroblasts (CAFs) 

Cancer associated fibroblasts (CAFs) are one the main cellular components of 

NSCLC stroma. The mechanism involved in their establishment is still to be fully uncovered 

however they are known to arise from normal two main precursors: (i) fibroblasts or (ii) 

MSCs either from bone or adipose tissue [42,69]. The latter migrate from the bone-marrow 

differentiating firstly to myofibroblasts and afterwards to CAFs within the tumor 

environment. TA-MSCs establish an intricate communication with malignant cells and their 

pivotal will be further discussed in the following chapters  [70–72]. Adding to this, various 

reports demonstrate that normal fibroblasts alter their phenotype during NSCLC disease 

progression to become CAFs.  [70] 
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CAFs assume a central role in malignant disease as they are known to promote tumor 

growth, fuel invasion and support metastasis, being actively involved in ECM deposition 

and degradation by secreting high levels of proteases (e.g., MMP-2 and MMP-9), that 

degrade the matrix and release entrapped soluble mediators [9]. They are also known to 

secret an elevated number of pro-metastatic factors such as TGF-β, HGF, SDF-1 amongst 

others. In the lung TME CAFs are at the forefront of cancer-stromal cell interactions, often 

altering protein expression patterns in lung cancer cells increasing the expression of several 

integrins, and anti-apoptotic proteins (e.g., Bcl-2) by means of TGF-β secretion [72]. 

Another end-result from such intricate crosstalk is the establishment of a collagen and keratin 

enriched ECM, a major hallmark of lung squamous cell carcinomas, and of fibronectin fibers 

deposition in desmoplastic lung adenocarcinomas [9]. From a biological perspective CAFs 

are characterized by the overexpression of alpha smooth-muscle actin (α-SMA) and 

fibroblast activation protein (FAP) [73], and the down-regulation of cell cycle arrest and 

tumor suppressor genes such as p53, the so termed guardian of the genome [70,74], making 

them readily identifiable and aiding in disease prognosis. 

1.3.3. The role of Vascular Cells 

The pulmonary tissues in which non-small cell lung cancers develop are generally 

well irrigated by an intricate and all-encompassing vascular network. As such, not all cases 

of NSCLC demonstrate pro-angiogenic features, with tumors taking advantage of the pre-

existing vasculature and presenting a more invasive phenotype [75]. However, as previously 

referred, as a consequence of uncontrolled cancer cells proliferation, conditions for hypoxia 

are soon established at the tumor core [76]. Hypoxia in conjunction with the actions by other 

cells, such as degradation of ECM and release of pro-angiogenic factors by immune cells 

[77], promote the formation of new vasculature, for which two of the main structural 

contributors in the TME are endothelial cells and pericytes [52]. The presence of these cells 

has been correlated with angiogenesis and metastasis [52]. In various animal studies, it has 

been demonstrated that lung cancer TME’s uncappable of recruiting pericytes to aid in 

angiogenesis on the latter stages of hypoxic core development, develop unbalanced pericyte-

endothelial communication that resulted in deficient perivascular ECM deposition patterns 

and leakier vasculature formation, enhancing hypoxic conditions and promoting an increase 

in lung metastasis [78,79]. However, pericyte depletion in non-hypoxic tumors was found to 

suppress angiogenesis diminishing tumor growth and preventing metastasis [78]. In NSCLC 
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the level of angiogenesis is considered as an unfavorable prognostic [80]. This pathological 

angiogenesis results from the enrichment of the TME with growth and transcription factors 

such as Hypoxia-inducible factor 1-alpha (HIF-1α), released in low oxygen conditions, and 

known to up-regulate angiogenesis process’s and of glycolysis in involving cells [76]. These 

factors are released by several cells of the TME besides cancer cells, such as myeloid cells 

known for secreting VEGF, bFGF, and PDGF which contribute for vasculature remodeling 

[77]. This recruitment of endothelial cells and pericytes leads to the formation of novel 

vasculature that supports tumor growth and metastasis [77]. 

In addition to the above mentioned stromal elements, MSCs are receiving an 

increased attention due to their diverse influence in the TME. In fact, as it will be discussed 

MSCs are involved and responsible for numerous aspects of malignant disease spanning 

from: (i) TME-associated immune system cells regulation; (ii) ECM modification; (iii) 

establishment of CAFs and (iv) sustainment of epithelial to mesenchymal transition in cancer 

cells. Such diverse effects in cancer add on to the motivation of further exploring the role of 

MSCs in cancer. In the following chapter the role of MSCs in cancer will be discussed in 

light of recent reports regarding MSCs interactions with cancer and stromal cells in the TME. 
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Abstract 

In vitro 3D tumor microenvironment mimicking models are gathering momentum as 

alternatives to traditional 2D flat monolayer cultures due to their potential for recapitulating 

major cancer hallmarks. To fulfill such potential, it is crucial that 3D tumor testing platforms 

completely emulate in vitro the complex in vivo tumor niche and its cellular constituents. 

Mesenchymal stem cells (MSCs) are recognized to play a pivotal multi-modulatory role in 

cancer, generating interest as biological targets and as key tumor suppressing, or tumor 

promoting effectors. This review discusses the biological influence of different types of 

MSCs in the tumor microenvironment and showcases recent studies that engineer 3D MSCs-

cancer cells co-cultures as advanced in vitro therapy testing platforms. A special focus is 

given to MSCs-Cancer 3D co-culture set-up parameters, challenges, and future 

opportunities. Understanding cancer-MSCs crosstalk and their underlying effects is 

envisioned to support the development of advanced 3D in vitro disease models for discovery 

of forefront cancer treatments  
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1 Introduction 

In vitro pre-clinical cancer models are mainly based on the use of 2D cancer cell 

monolayers and laboratory animal models [1,2]. Historically, both methodologies have been 

recommended by regulatory agencies to aid in the discovery and validation of anti-cancer 

therapies that are to be administered in human clinical trials [1,3]. However, while these 

platforms have contributed immensely to explore cancer development and biomarkers 

discovery, they are still inadequate approximations of human tumors [4,5].  

Particularly, in 2D in vitro flat and monotypic cell culture models, cancer cells 

experience highly artificial environments often comprised of plastic or glass cell-adhesive 

surfaces, forcing cells to grow in an environment which lacks major extracellular matrix 

(ECM) and stromal cell components [6]. As a consequence, cultured cancer cells are exposed 

to an unnatural 2D spatial organization and non-physiological conditions, presenting a 

higher area of exchange with cell culture media in comparison to what naturally occurs in 

3D tissues in vivo [6]. Such results in an abnormal morphology, loss of structural 

organization and cell polarization, with lower cell adhesion occurring for example due to 

loss of integrin-ECM interactions [7]. Therefore, cells phenotype and their response to 

different treatments is not representative of complex human tumors, thus creating a gap 

between in vitro/in vivo data correlation. 

On the other hand, despite animal models constitute a more laborious and 

economically demanding alternative, they are more representative of the in vivo scenario 

than conventional 2D in vitro cell cultures [8]. A significant number of early stage preclinical 

in vivo drug screening studies are performed in small animal murine models. However, these 

often lack a correct representation of the tumor stroma and present expression variances in 

the structural homology of molecular targets, which can result in highly variable therapeutic 

responses [8–11]. Such variability is somewhat detrimental for the validation of candidate 

anti-cancer therapeutics and particularly limiting in the case of combinatorial cancer 

therapies high-throughput screening. Such treatment modality demands a higher level of 

reproducibility and predictability of safety/efficacy parameters as the cocktails of bioactive 

molecules could trigger a wide range of biological responses (e.g., additive toxicity, 

antagonism). The use of in vivo models in the context of combinatorial anti-cancer therapies 

entails significant ethical concerns due to the large number of test groups, not easily allowing 

high-throughput screening of different combinations. In addition, the correlation between in 
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vivo animal studies and human clinical trials is very limited, thus evidencing the necessity 

of developing more realistic testing platforms that can provide robust preclinical data 

[8,9,12]. 

Hence, the development of in vivo-mimicking, and reproducible preclinical in vitro 

validation models to efficiently predict the biological performance of anti-cancer therapies 

may contribute to increase the translation speed of novel therapies from the bench-to-

bedside. The bioengineering of such models must be based on similarities to human biology 

and disease specific features, so as to ensure higher predictability of preclinical research and 

exclude non-adequate anti-cancer therapeutic candidates prior to human clinical trials [3,13]. 

The demand for understanding cancer development and develop more advanced 

treatments has resulted on a growing number of studies exploring the potential of advanced 

three-dimensional (3D) tumor models as more viable testing platforms. 3D multicellular 

tumor models are generally self-assembled compact cellular agglomerates that may be 

cultured in vitro during relatively short or prolonged periods of time using different 

techniques that include hanging drop, bioreactors or organ-on-a-chip platforms [14,15]. 

Such platforms try to incorporate the spatial complexity, cellular heterogeneity, nutrient/pH 

characteristic of the in vivo tumor microenvironment [14]. In this context various types of 

malignant cells were shown to possess gene expression patterns and phenotypes similar to 

those encountered in vivo when cultured in 3D [16]. Such evidence is an added-value to 

these models, since on one hand they provide the desired spatial distribution and on the other 

they ensure several biological functions found in human cancers [17].  

This review summarizes the recent advances made in the field of 3D in vitro 

multicellular tumor models that more closely recapitulate the tumor microenvironment and 

its diverse components by including co-cultured cancer-stromal cells, including 

mesenchymal stem cells (MSCs). MSCs are now well-recognized to take multi-modal roles 

in oncological disease progression and metastasis, for which depending on MSCs tissue of 

origin and the type of tumor, they either play a beneficial or detrimental role [18]. This 

interesting duality is discussed considering the most recent literature reports and a critical 

perspective is given towards the development of MSCs-Cancer 3D in vitro co-culture tumor 

models. 
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2 The Dual Role of Mesenchymal Stem Cells in the Heterogeneous 3D 

Tumor Microenvironment  

Mesenchymal stem cells (MSC) otherwise also known as multipotent mesenchymal 

stromal cells, were first described as fibroblast-like cells, about 50 years ago [19]. They are 

a subset of multipotent precursor stromal cells, with fibroblast-like morphology. MSCs 

represent a cell sub-population that can be found residing in the mesenchyme of a wide 

variety of tissues, including: (i) umbilical cord Wharton jelly, (ii) placenta, (iii) peripheral 

and fetal blood, (iv) adipose tissues (generally defined as adipose-derived stem cells (AT-

MSCs)), (v) skeletal muscle, (vi) heart, (vii) liver, (viii) lung tissues and(iv) bone marrow 

[20]. Constituting a heterogeneous cellular population, MSCs have diverse morphologies, 

and are commonly identified through specific cell surface markers. Under the guidelines 

issued by the International Society of Cellular Therapy, MSCs in in vitro cultures must be 

able to adhere to plastic treated surfaces in standard tissue culture conditions; with more than 

95% of the population expressing CD105, CD90, CD73, and with less than 2% presenting 

positive CD45, CD14, CD34 or CD11b, CD79a or CD19 and major histocompatibility 

complex II (MHC-II) markers. Besides this, in vitro cultured MSCs must also show 

multilineage differentiation capacity. MSCs traditionally differentiate into chondrocytes, 

adipocytes and osteoblastic lineages under controlled in vitro differentiating conditions [21]. 

A small sub-population of bone-marrow derived MSCs may still be negative for CD44, 

CD45, MHC I, MHC II and c-kit, displaying the capacity to differentiate as well into nerve, 

pancreas and lung cells under certain culture conditions [22]. 

MSCs are reported to exhibit immunosuppressive and immunomodulatory properties 

[23], as well as being able to migrate and induce modifications in damaged or inflamed 

tissues [24].These abilities are normally explored under the context of cell-based therapies 

for tissue repair and regeneration, either via direct cell-cell contact or by means of paracrine 

signaling [24]. MSCs are also described to have high tumor tropism, a process that is 

generally mediated by chemokines and growth factors [25]. Upon migrating into the tumor 

microenvironment (TME) and establishing contact with this complex, MSCs can be hijacked 

by cancer cells, either through cell-cell or paracrine interactions, leading to either beneficial 

or detrimental roles in the evolution of cancer [26]. For instance, MSCs recruited to the TME 

of breast cancers have shown to possess increased secretion of neovascularization and 

epithelial-mesenchymal transition (EMT) promoting factors, such as Notch1 and TGF-β1, 
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thus promoting tumor growth and metastasis [27–29]. Positive interactions between cancer 

cells and MSCs are not restricted to a specific phenotype of MSCs. For example, umbilical 

cord derived MSCs have shown to greatly increase cholangiocarcinoma proliferation, 

migration and resistance (Figure 1) [30]. MSCs can also indirectly aid the evolution of cancer 

by regulating the activity of other TME cells [25]. For example, breast cancer-associated 

bone-marrow MSCs (BM-MSCs) are known to increase the frequency of regulatory T cells, 

and decreasing the lysis activity of natural killer cells and cytotoxic T lymphocytes by the 

secretion of TGF-β1, resulting in a poorer prognosis due to unchecked tumor progression 

[30,31]. 

 

 

Figure 1.. Human umbilical cord-derived mesenchymal stem cells interactions with human cholangiocarcinoma 

cell lines using a xenograft model and invasion assays. (A) MSCs capacity to migrate to the tumor site in vivo; (B) Increased 

growth of QBC939 cell line derived tumors; (C-E) increased resistance both in vitro and in vivo to the effects of the anti-

cancer drug compound K, translated into higher rates of cell migration and cancer cell survival. Adapted from [119], with 

permission from Oncotarget under creative commons 3.0 license. 

Contrariwise, MSCs have also been reported to exert anti-tumor effects [32], with 

several studies having demonstrated the role of MSCs in increasing the growth and 

metastasis of tumors [18,33]. In an elegant a study performed by Quiao and co-workers, 

2008, MSCs derived from fetal dermal tissue where shown to inhibit the proliferation of two 

human hepatocarcinoma cell lines (H7402, HepG2), when co-cultured [34]. Such resulted 

in an increased apoptosis for H7402 cells via the down regulation of the Wnt/β-catenin 

pathway as proposed by these researchers [34]. 

Interestingly, it is important to emphasize that this effect is closely correlated with 

MSCs tissue of origin (Figure 2). As reported by Attar-Schneider et al, 2015, BM-MSCs can 
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reduce both cellular proliferation, viability and migration of non-small lung cancer cells as 

a result of the down regulation of translation initiation factors and mitogen-activated protein 

kinases (MAPK) signaling [35]. However, the same is not true for Wharton jelly-derived 

MSCs which show antagonistic effects to those portrayed by BM-MSCs in lung cancer stem 

cells (L-CSCs), acting in a pro-tumorigenic manner [32]. Conversely, conditioned media 

derived from human fetal MSCs showed high levels of insulin growth factor binding proteins 

(IGFBP), which when used in hepatocellular carcinoma cell culture, ends up sequestering 

free IGF, inhibiting cancer cell proliferation [36]. Due to this anti-proliferative potential, 

MSCs have been proposed to be used as Trojan-horse like vehicles for anti-cancer therapy 

by taking advantage of their tropism towards cancer cells [37]. By exploiting this feature, 

TREAT-ME1, the first worldwide clinical trial exploring the use of Herpes simplex virus 

genetically engineered MSCs for treatment of gastrointestinal tumors via RANTES/CCL5-

ganciclovir prodrug therapy combination [25]. However, the lack of knowledge on how 

MSCs behave within the TME means that patients undergoing these treatments must be 

carefully monitored. Thus, understanding how MSCs from different tissue origins affect, 

and are affected, by tumors is of paramount importance for future therapeutic applications 

(Figure 2). 

 

Figure 2. MSCs-cancer cell interaction is dependent on tissue of origin. MSCs can release several factors which 

can hinder or promote tumor progression at several levels. (red dots – tumor inhibition; blue arrows – tumor progression). 
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2.1. MSCs Tropism towards the Tumor Microenvironment 

Mesenchymal stromal cells interactions with cancer cells and the tumor 

microenvironment result in part from the similarities existent between the TME and those of 

a regenerating wound [18]. Generally, the TME continuously produces and releases various 

cytokines and other signaling mediators, that act as chemoattractants for several immune 

cells such as monocytes, T lymphocytes and mast cells. This establishes the grounds for a 

perpetual state of inflammation in the surrounding tissues [38,39]. Such signals derived from 

the tumor microenvironment, include: VEGF, TGF-β1, EGF, HGF, bFGF, PDGF, IL-8, 

neurotrophin-3, IL-1β, TNF-α, monocyte chemoattractant protein-1 (MCP-1 or CCL2), and 

C-X-C motif chemokine ligand 12 (CXCL12) also known as stromal cell-derived factor 1 

(SDF-1) which act as homing beacons on various cells including MSCs which exhibit the 

capacity to accurately migrate via chemotaxis [33]. This tumor tropism towards primary and 

metastatic tumor sites by MSCs has been extensively observed both in vivo and in vitro in 

numerous cancers, such as those of breast, brain, colon, pancreas, skin, ovarian, and lung, 

and is characterized by MSCs infiltration [26,33]. The extent of MSCs migration appears to 

be directly influenced by the extent of chemoattractant signals released by the TME. Recent 

reports emphasize that factors such as increased inflammation, hypoxia and cell dead (related 

or not to tumor treatment), increase MSCs migration to tumor tissues [30]. Such event is for 

example observed in radiotherapy treated breast cancer, which results in an increased release 

of release of TGF-β1 and platelet-derived growth factor BB (PDGF-BB) by tumor cells [40]. 

The underlying mechanism responsible for the tumor-directed migratory capacity of MSCs 

remains however to be fully uncovered. This is a crucial piece of information that must be 

explored in the future, before MSCs-based treatments can be translated into clinical practice. 

[26].  

2.2. MSCs conversion to Tumor-associated MSCs – Role in Progression and Metastasis 

Upon infiltrating on the TME, MSCs are converted into tumor-associated 

mesenchymal stem cells (TA-MSCs) (Figure 3). Depending on their original tissue, and on 

the type of cancer, TA-MSCs are known to acquire gene-expression profiles that exhibit 

increased secretion of tumor promoting factors [41]. TA-MSCs populations have been 

reported to increase the population of cancer stem cells (CSCs), and induce malignant cells 

to enter EMT, thereby promoting enhanced motility, invasiveness and survival [41]. In turn, 

this can induce a refractory profile in the tumor, a factor that can lead to the establishment 
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of metastasis [42]. TA-MSCs have been found to engage in multiple interactions with cancer 

cells [41]; besides paracrine signaling, communication has also been achieved through the 

exchange of exosome cell-derived vesicles [43], mitochondria [44] and also cell membrane 

components [45]. Interestingly, these interactions have been reported to occur in a 

bidirectional mode. It is important to emphasize that the effects of the exchanged molecules 

vary with the type of cancer and MSCs population [25]. As previously stated, EMT requires 

the formation of a reactive stroma, capable of secreting specific EMT-inducing factors and 

rearranging the surrounding tumor-specific ECM. Various factors that promote the 

appearance of this reactive stroma such as fibroblast growth factor (FGF), hepatocyte growth 

factor (HGF), epidermal growth factor (EGF) are produced by MSCs upon impregnation 

into the tumor niche [33,46]. Some studies point out that this conversion from regular MSCs 

to TA-MSCs can also be performed in vitro through 2D co-culture of TA-MSCs with MSCs, 

indicating that naive MSC conversion can be augmented once in vicinity of the TME [41]. 

 

Figure 3. MSC migrate towards the tumor, with different mechanism playing major roles in diverse cancers 

(Glioblastoma -CCL2 and CCL25) (Hepatocarcinoma - CCL15 and CCL20). Migrated MSCs suffer a conversion process, 

releasing a myriad of factors that aid the tumor by rearranging the surrounding ECM, promoting tumor angiogenesis, 

proliferation, immune suppression and ultimately EMT and metastasis. 101,102,109,117,123. 

Besides directly increasing cancer cells EMT, MSCs also increase vasculogenesis or 

increase the secretion of growth factors, creating a suitable environment to support disease 

progression [47,33]. Moreover, as aforementioned, MSCs are capable of modulating the 

metabolism of cancer cells through the excretion of exosomes generally loaded with 
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proteins, DNA, and non-coding RNA (ncRNA) [43]. This effect can be particularly seen in 

the interactions that occur when cancer cells metastasize into the bone-marrow, a process in 

which MSCs secrete chemoattractant factors recognized by cancer cells [41]. In this fatal 

alliance between metastatic cancer cells and MSCs, factors such as MCP-1 (CCL2) and 

SDF-1 (CXCL12) appear to play a key role [26,33]. Once metastasis are established in the 

marrow, MSCs are hijacked into helping in the creation of a niche that protects the tumor 

against chemotherapeutic agents [18,25,48]. 

In summary, several factors affect MSCs-cancer cells interactions and MSCs TME 

interactions, including: (i) the type and source of MSCs including their different cytokines 

expression (ii) the interactions with other elements of the TME; and (iv) the in vitro and in 

vivo conditions in which MSCs are cultured [49,50]. The nature of these interactions and 

how they take place, either by direct or indirect interference with cancer cells and 

surrounding stroma, requires further exploration in the future. With such knowledge holding 

great promise in the context of new therapies discovery, both at the development level by 

facilitating the discovery of key therapeutic targets, and at the drug-screening stage by 

allowing the development of more realistic in vitro 3D tumors.  

 

3. In vitro 3D Tumor models to test candidate anti-cancer therapies  

3D cell cultures of cancer cells take aim to recapitulate in vitro the complexity of 

human cancer allowing for better preclinical analysis of new pharmaceuticals, with the goals 

of permitting the evaluation of possible side effects, and the collection of meaningful 

compound behavior data before proceeding to human clinical trials [51]. When successfully 

engineered, 3D in vitro tumor models provide a more robust correlation with the in vivo 

biological performance of candidate compounds [52]. In order to fully mimic human tumors, 

the ideal in vitro 3D cancer culture model should reproduce in vitro all the interactions and 

selective pressures that occur in the human body. Unfortunately, the complexity of this task 

is tremendous and as such, a balance must be found between the model’s capacity to 

faithfully recreate the TME, while assuring ease of analysis and lowering production costs 

to efficiently allow high-throughput screening methodologies.  

3D models production methodologies extend over a gamut of techniques which can 

be grouped into: (i) scaffold-free, (ii) scaffold-based and (iii) combinatorial methodologies. 

Regardless of the production methodology, all these platforms have as a unifying element: 
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the establishment of 3D multicellular structures, or microtissues, comprised of one or more 

cell types, either derived from immortalized cancer cells cultures or from patient’s primary 

cells [4,52–54]. 3D cell culture methods, range from monotypic cell line cellular spheroids 

(single cell type), for instance cultured in non-adherent substrates or through hanging-drop 

techniques [55], up to complex co-culture systems comprising heterotypic cell lines (e.g., 

tumor stroma cells including fibroblasts) in a complex tumor ECM-like supporting matrix, 

or even associated with microfluidic systems for dynamic nutrient perfusion [56]. 

3D Multicellular tumor spheroids (3D-MCTS) are seen as gold standard 

bioengineered microtissues for drug screening [57]. 3D-MCTS are generally comprised by 

an actively proliferating outer cell layer and a necrotic core [58,59]. Moreover, upon 

aggregation into spherical structures3D-MCTSacquire nutrient, pH, and oxygen gradients 

ranging from spheroids periphery to their core [59]. These characteristics are in accordance 

with those of solid tumors with more than 400-600 µm [60] [61]. In these models, the lack 

of vasculature, similar to that of avascular solid tumors, and the establishment of a compact 

cell aggregate, hinders the mass transport of nutrients, metabolites and oxygen [59]. 

Additionally, their 3D nature confers them the ability to portray cell-cell biochemical 

interactions, tumor gene expression patterns, and even growth kinetics similar to those 

observed in vivo [59]. It has also been reported that 3D-MCTS models promote cancer cells 

genetic/epigenetic modifications towards a more aggressive, tumorigenic and multi-drug 

resistant phenotype [62,63]. Apart from these parameters, heterotypic 3D-MCTS (resulting 

from co-culture of cancer-stromal cells), are able to mimic the deposition of ECM-

components similar to those found in solid tumors [57,59,64]. An important parameter, since 

the ECM-based barrier that hinders O2 and nutrients mass transfer also restricts the 

penetration of therapeutic agents in the tumor. The existence of ECM creates a suitable in 

vitro environment for testing and studying new pharmacological therapies and mimics in 

vivo conditions [65]. This correlation, resulting from the incorporation of diverse cell lines, 

is also observed in scaffold-based models that provide an ECM-mimicking environment 

without requiring previous cell mediated ECM deposition [64]. The advantages and 

disadvantages of various 3D models production methodologies have been extensively 

discussed in several reviews [51,54,56,59,66–71]. These different formulation technologies 

are addressed herein mainly in the context of heterotypic cancer-MSCs 3D in vitro models 

establishment. 
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4 Cancer-MSCs Co-culture Relevance in 3D In vitro tumor models  

Irrespectively of 3D disease models production methodology, heterotypic cell co-

cultures comprising cancer-stromal cells provide a better reproduction of the complex tumor 

microenvironment when compared to monotypic 3D models (comprised by cancer cells 

alone) [72]. Different bi- or tri- co-culture systems combining cancer cells and stromal cells 

have thus far been employed for the study of cancer-TME specific interactions and drug 

screenings [51,54,59].  

Recent findings regarding 3D co-culture of cancer-adipose cells, cancer-immune 

cells, cancer-fibroblasts, cancer-endothelial cells and their physiologically relevant 

interactions have been reviewed in detail [54]. Stemming from this dual and multiple- cell 

culture concept, MSCs addition in in vitro 3D cancer disease models is still far from being 

fully explored, particularly when considering their important role in both cancer proliferation 

and metastasis [73]. In fact, having been found to play such an important role in cancer 

progression and therapy resistance, MSCs must be considered as key elements in the tumor 

milieu [41]. As such, their inclusion in in vitro 3D tumor models is a necessary step to 

achieve a more predictive model that closely mimics native in vivo conditions. So far, few 

articles have been published concerning MSCs interactions with cancer cells in in vitro 3D 

co-culture tumor models (Table 1), and their main findings will be addressed in the following 

sections. 

 



 

 

INTRODUCTION 

 

25 

 

Type 
of 

MSC 
 

Cancer Cell 
Line used 

In vitro Model 
Tested 

Therapeutics 
Ref. 

BM-
MSC 

 
Human Pancreatic 

Cancer - MIA-Pa-Ca2 

Spheroids (Formed by 
MIA-PaCa-2 cells, 

primary fibroblasts, 
and HUVEC) 

Forced Floating 
96 multiwell plates 
with nonadherent 

round bottom 

None 243 

BM-
MSC 

 
Human Breast 

cancer MCF7 - MDA-
MB-231 

Spheroids 

Forced Floating 
Wells Coated with 2% 
GTG agarose without 

matrix proteins 

None 244 

BM-
MSC 

 
Human Breast 

Cancer - MDA-ICB-3 
- MCF-7 - SUM149 

Spheroids 
Forced Floating 

Ultra-low attachment 
Plates 

None 245 

BM-
MSC 

 
Human Breast 

Cancer - MCF-7 - 
MDA-MB-231 

Spheroids 

Forced Floating 
Wells Coated with 2% 
GTG agarose without 

matrix proteins 

Kinase inhibitors 
(TKI258, RAD001 

and RAF265) 

83 

AM-
MSC 

 
Human Ovarian 

Cancer - OVCAR 3 - 
SKOV 3 

Spheroids / Scaffold 

Forced Floating 
Ultralow attachment 

48 well plate and 
posteriorly cultured in 

Amniochorionic 
Membrane containing 

MSC 

None 246 

BM-
MSC 

 
Human Colon 

Cancer - HT29 -  
HCT-116 

Scaffold 
Cell Culture 3D Scaffold 

from 3D Biotek LLC 
None 247 

AT-
MSC 

 

Human Head and 
Neck Squamous Cell 

Cancer (HNSCC) - 
HLaC78 

Spheroids 
Forced Floating 

96-multiwell plates 
coated with 0.1% agar 

None 118 

BM-
MSC 

 

Human Ovarian 
Cancer - SKOV3 

(HTB-77) - OVCAR3 
(HTB-161) | Human 
Breast Cancer MDA-

MB231 - MCF7 

Spheroids 
Forced floating 

Ultralow attachment 
24 well plate 

Doxorubicin 248 

BM-
MSC 

 
Human Breast 

Cancer - MDA-MB-
231 

Spheroids 

Forced floating 
Wells coated with 2% 
SeaKem® GTG agarose 

without MP 

None 249 

BM-
MSC 

 
Human Prostate 

Cancer - LNCaP - C4-
2 - PC3 

Agitation Based 
Rotating Wall Vessel 

(RWV)  
None 250 

BM-
MSC 

 

Human Breast 
Cancer - MDA-MB-

231 | Human 
Osteosarcoma - MG-

63 

Scaffold 
Silk protein fibroin 

scaffold 
Paclitaxel 192 

BM-
MSC 

 
Human Leukaemia - 
HL-60 - Kasumi-1 - 

MV411 
Scaffold 

PGA/PLLA 90/10 
copolymer discs 

Doxorubicin or 
Cytarabine 

251 

PG-
MSC 

 
Human Prostate 
Cancer -LNCaP 

Spheroids 
Formed either in direct 
contact or on laminin-

coated coverslips 
None 252 

Table 1. Literature reports of co-culture human mesenchymal stem cells with 

cancer cells in a 3D co-culture environment. 
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BM-
MSC 

 
Human Prostate 
Cancer - Du145 

Spheroids 
Forced Floating 

96 well plate coated 
with PHOM 

None 253 

BM-MSC 
Human Breast 

Cancer - MDA-MB-
231 - MCF7 

Scaffold 
Polystyrene particles 
added to collagen I to 

form a Gel 
None 103 

BM-MSC 
Human Breast 

Cancer - MDA-MB-
231 - MCF7 

Scaffold 

Porous Scaffold 
composed 

nanocrystalline 
Hydroxyapatite (nHA) 

and Chitosan 

None 254 

WJ-MSC 
Human Hepatic 

Cancer - HCCLM3 
Contained Spheroids Alginate Beads Cisplatin 255 

BM-MSC 

Human Colorectal 
Cancer - HCT8 - 

DLD1 - Colo320DM - 
HT29 - HCT116 - T84 

Spheroids 

Forced Floating 
96-well-plates coated 
with 0.7% SeaKem® 

GTG Agarose 

None 256 

WJ-MSC 

Human Lung Cancer 
- AC-LCSC-229 and 
223 - SCC-LCSC-136 

and 36 

Spheroids 

Forced Floating 
Unspecified non-

treated flasks to reduce 
cell adherence 

None 107 

BM-MSC 
Human Lung Cancer 

- A549 
Spheroids 

Hanging drop 
25000 per well in a tri 
culture method (ratios 

of 5:3:2 - A549 - 
Endothelial Lung Cells - 

Mesenchymal stem 
cells) 

Paclitaxel and 
Gemcitabine 

257 

MM 
Marrow 
Derived 

MSCs 

Human Multiple 
Myeloma (MM) 

Aspirates 
Scaffold 

Hydrogel composed by 
0.5% PuraMatrix 

IMiDs, 
Bortezomib, 
Carfilzomib, 
Doxorubicin, 

Dexamethasone, 
Melphalan 

258 

BM-MSC 
Human Glioma - U-

87 - U373 
Spheroids embedded 

into a Scaffold 

Spheroids embedded in 
Collagen I, Laminin or 

Matrigel 
None 259 

 

4.1. MSCs Influence in Cancer - Dual Co-Culture 3D Models 

Regarding the available studies, in most circumstances MSCs exert a positive 

influence in cancer progression, either by increasing malignant cells proliferation, migration, 

invasion, drug resistance and/or cancer stem cell proliferation. Alternatively, only few 

studies report MSCs as having negative effects in cancer cells [74–77]. The report by Dittmer 

and co-workers, [74] demonstrated that BM-MSCs can invade MCF-7 and MDA-MB-231 

breast cancer 3D aggregates, originating disorganized structures by disrupting cell-cell 

adhesion, mainly through E-cadherin cleavage and nuclear translocation, without however 

increasing EMT and ERK1/2 activity. These researchers used a lower ratio of MSCs to 

cancer cells (1:500, and 1:1000) when compared to other studies performed by Mcandrews 
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and colleagues (MSCs:Cancer cells, 1:1 ratio [27]), or Zhu and co-workers (MSCs:Cancer 

cells, 1:2 and 1:5 ratio [78]), in which different ratios were employed to establish the co-

culture of MSCs and breast cancer cells in hydrogel-based scaffolds. The data collected by 

Dittmer, suggests that low numbers of MSCs are capable of increasing breast cancer cell 

migration [74]. On another report, Klopp and colleagues, 2010, obtained a more organized 

and spherical 3D model upon inclusion of BM-MSCs when using the same cell lines as 

models [79]. The authors attributed these differences to the incorporation of MSCs prior to 

the formation of the aggregates and to the lack of serum-containing media. In a different 

approach Dittmer also evaluated if the presence of MSCs in MCF-7 and MDA-MB-231 

spheroids affected their susceptibility to 4 tyrosine kinase inhibitors. The interesting results 

that were obtained indicate that in both spheroids (MCF-7:MSCs and MDA-MB-

231:MSCs), the effect of the administered therapeutic anti-cancer drugs was augmented, 

pinpointing the decreased resistance to alterations in ERK1/2 phosphorylation and PKCα 

[75].  

Several subsequent studies [27,78,80,81], using scaffold-based technologies for 3D 

models assembly provide evidence that BM-MSCs exert a positive effect in cancer 

cell survival and migratory capacity. In fact, cells co-cultured in tissue mimetic 

scaffolds including those based on: (i) collagen hydrogels [27]; (ii) silk-fibroin 

scaffolds [81], or (iii) porous chitosan scaffolds containing hydroxyapatite 

organotypic as bone mimetics [78] laden with undifferentiated or differentiated 

MSCs, evidence their capability to up-regulate the expression of EMT-related genes 

in cancer cells, to induce higher migratory capacity (Figure 4), and to enhance 

proliferation through different signaling factors. For example through the release of 

cyclic AMP [78], and TGF-β phosphorylation [27].  
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Figure 4. Scaffold-based bone metastasis model. (A, B) Schematics of 3D in vitro platforms development and 

analysis; (C) SEM images of bone-mimetic scaffolds of chitosan and hydroxyapatite with or without previous MSCs culture 

derived modifications (D) MSCs co-culture with breast cancer cells (MCF-7 and MDA-MB-231) in bone-mimetic scaffold; 

(E) breast cancer cells evidenced a higher migratory capacity, with MDA-MB-231 evidencing the highest migration 

distance when co-cultured. This enhanced migratory capacity correlated with a higher expression of MTDH gene, which 

accompanied almost linearly increased co-culture ratios of MSCs and breast cancer cells. Adapted from 254, with permission 

from Elsevier®. 

Moreover, MSCs are also able to increase cancer stem cell populations [80] and 

cancer cells resistance to therapeutics. In a study by Jakubikova and colleagues, the 

interactions between BM-MSCs and multiple myeloma (MM) where analyzed using a co-

culture model derived from cellular populations extracted from patients in different stages 

of MM [82]. The results obtained by the authors demonstrated that in comparison to MM 

cells alone, the co-cultured cells exhibited resistance to an extensive panel of 

pharmacological agents, both novel and conventional, replicating clinical observations 

(Figure 5).  
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Figure 5. Establishment of a hydrogel-based 3D multiple myeloma (MM) model. (A) Collection of aspirates from 

multiple myeloma (MM) patients in several disease stage; (B) MSCs populations characterization by flow-cytometry and 

classified as smoldering MM (SMM), newly diagnosed MM (ND), relapsed MM (REL) and relapsed/refractory MM (REF) 

patients; (C and D) After extensive characterization of retrieved MSCs and MM cells, co-cultures where established both 

in 2D and 3D; (E) 3D to 2D comparison of co-cultured models showed significantly distinct cellular profiles, with 3D 

model presenting amongst other findings increased matrix deposition; Increased resistance of MM 2D and 3D models to 

(F) standard treatments, (G) immunomodulatory drugs and (H) proteasome inhibitors. Adapted from 258, with permission 

from Oncotarget under creative commons 3.0 license. 

More recently, the development of an interesting MSCs-cancer cells scaffold-based 

3D in vitro model for drug screening was also described by Han and co-workers. In this 

model MSCs and human non-small cell lung carcinoma cells A549 cells where co-cultured 

in wells coated with a multi-layer film of chitosan and hyaluronan (Figure 6) [83]. In this 

layer-by-layer structured biomaterial, cancer cells and MSCs efficiently self-organized into 

spheroids, presenting a core–shell structure wherein A549 cells exhibited enriched 2-fold 

upregulation of EMT-related genes, in comparison with 2D cultures. This remarkable 

enrichment was also observed in conditioned medium experiments with 2D cultures 

exhibiting lower EMT and tumorigenicity associated factors than those of direct co-culture 

[83]. Interestingly, in vivo assays demonstrated that co-culture derived implants presented 



 

 

INTRODUCTION 

 

30 

 

higher malignancy, therefore highlighting the importance of MSCs cancer cell direct contact 

in tumor progression.  

 

Figure 6. A549 and BM-MSCs 3D models co-culture performed in chitosan-hyaluronic acid coated wells. (A) 

Schematics of the biomaterial-based scaffold and workflow for assembly of 3D models; (B) Morphology of spheroids with 

diverse seeding ratios; (C) Fluorescence based analyzes of spheroid structure, 200 μm scale bar in panel; (D) Average 

diameter, total cell number of tumor spheroids, and cell ratio at 48h of co-culture. Adapted from 260 with permission from 

Elsevier®. 

On the other hand, the establishment of negative interactions between BM-MSCs and 

cancer cells has been reported in human colon cancer cell lines HT29 and HCT-116, which 

presented decreased proliferation when co-cultured in vitro in a three-dimensional scaffold 

(of unmentioned composition) with BM-MSCs [76]. In this study BM-MSCs where found 

to secret PAI-1, a factor closely associated with aggressive colon cancer [84], and showed 

to have a direct effect in cancer cell proliferation. In the case of HCT-116 cancer cells BM-

MSCs excreted PAI-1 was shown to yielded a negative influence in cellular proliferation, 



 

 

INTRODUCTION 

 

31 

 

while with HT29 this interaction lead to a positive outcome, in which high concentrations of 

PAI-1 increased cell proliferation [76]. However, when taking into account all factors 

secreted by MSCs, these exerted a negative effect resulting in a decrease in cancer cell 

proliferation in the order of 50% [84]. This fact becomes extremely relevant when one 

considers that MSCs of different origins are known to express different levels of cytokines 

and signaling factors in the same context [85,86], emphasizing once again the necessity of 

further studying the influence of MSCs from diverse sources. Still regarding human colon 

cancer Widder and co-workers, 2016, have demonstrated that BM-MSCs were able to 

increase HCT8 E-cadherin deficient cell line capacity to assemble into 3D spheroids, whilst 

increasing HCT8 cell proliferation [87]. This elegant study showcased a close relation 

between HCT8 and MSCs-specific secretoma, in comparison to that of fibroblasts 

(CCD18Co). Furthermore, differential MSCs and fibroblasts spatial distribution was 

observed amongst 3D spheroids, with external deposition in colorectal cancer cell line DLD1 

spheroids and with homogeneous internal deposition in colorectal cancer cell line HCT8 

spheroids [87]. The remarkable increase in spheroid adhesion provided by MSCs co-culture 

for HCT8 is proposed by the authors to be correlated with a b1-integrin dependent 

mechanism, and aided through ECM deposition specifically via the production of collagen 

I, which also highlights the importance of 3D in vitro disease models in the context of cancer 

cell-stromal cell interaction studies.  

 

4.2. MSCs role in Complex Heterotypic Co-cultures and Organotypic 

Bone-Metastasis Models 

Regarding the development of more complex heterotypic co-culture models, the 

study by Beckermen and colleagues, established a triculture spheroid system comprised by 

MIA-PaCa-2 cells, primary fibroblasts, and HUVEC cells [88]. These spheroids were then 

immersed in a methylcellulose/collagen solution and transferred to a fibronectin-coated plate 

previously cultivated with BM-MSCs in order to simulate and analyze MSCs migration 

towards tumor-associated blood vessels. The authors observed a positive effect on MSCs 

migration towards the triculture spheroids, in which VEGF appeared to be the prevalent 

factor with PDGF and EGF also displaying significant chemoattractant properties [88]. In 

vivo studies in mice demonstrated the capacity of ectopically injected BM-MSCs of 

migrating towards xenografts of human pancreatic cancer, in which BM-MSCs lead to an 
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increase in the number of CD31+ early vascular structures, an event that directly correlates 

with the density of tumor vascularization, as was observed, with tumors with twice the 

vascularization of those in obtained in controls [88]. Another triculture was performed by 

Lamichane and co-workers, 2016, in which A549 cells were co-cultured with human 

pulmonary microvascular endothelial cells and BM-MSC [89]. The tracking of the different 

cellular populations was accomplished through transfection with lentiviral particles 

encoding red fluorescent (RFP) and green fluorescent (GFP) transgene reporters, and 

followed for 15 days. The results showed a decline in the endothelial population, and an 

accentuated increase both in MSCs, which primarily formed the core of the spheroid, and 

cancer cells. From the endothelial cells co-cultured in these spheroids only a small 

population remained viable, being hypothesized by the authors to have survived by close 

association with MSCs within the hypoxic regions of the necrotic core. The spheroids 

exhibited increased multidrug resistance markers expression (ABC-B1 mRNA and ROS). 

However, no increased drug resistance in the 3D models was obtained when compared to 

standard 2D co-cultures. In fact, only some concentrations showed a prevailing difference 

between models, with the 3D model presenting always an increased cellular viability in 

comparison to the 2D model [89].  

The importance of the 3D organization in cancer cell-mesenchymal communication 

was sophisticatedly addressed in a study performed by Pasquier and co-workers [90]. This 

report employed both ovarian and breast cancer cell lines and the authors demonstrated the 

existence of a ubiquitous mechanism of cytoplasmic material transference through the usage 

of tunneling nanotubules in spatially adjacent cells, using 3D spheroid triculture systems 

[90]. The results indicated that mitochondrial transference between cancer cells and stromal 

cells took place, preferably, between endothelial cells (EC) and cancer cells, also occurring 

in the same mode between explant tissue and co-cultured EC cells. This exchange endowed 

cancer cells with a proliferative advantage by rescuing them from erratic aerobic respiration 

dysfunctions and endowed them with a significant resistance to chemotherapeutic agents 

[90]. This report further demonstrates the necessity for analyzing cancer cells-MSCs 

interactions in a tumor stroma context.  

In addition to being used for the establishment of 3D drug testing platforms or in the 

study of the complex interactions with cancer MSCs have also been employed for 

establishment of organotypic 3D in vitro bone metastasis models. Such approach takes 
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advantage of the multilineage differentiation potential of BM-MSCs, namely their capacity 

to differentiate into osteoblasts. In this context, Jeon and colleagues, have developed a 

collagen I hydrogel laden with BM-MSCs differentiated into osteoblasts co-cultured with 

vascular endothelial cells (HUVECs) and enclosed it in a microfluidic device (Figure 7) [91].  

 

Figure 7. Breast-to-bone metastasis microfluidic chip-based model. (A) Schematics of the vascular heterotypic 

model with two channels for culture medium addition and injection of breast cancer cells and biochemical signals exchange 

with the collagen I hydrogel in the center channel EC – Endothelial cells (HUVECs), MSCs, OB – Obsteoblast 

differentiated cells (from MSCs lineage), CC- Cancer cells. All these cells were seeded in the hydrogel; (B) Microvascular 

network formed in the hydrogel (HUVECs-green); (C to G) Evaluation of the established organotypic bone 

microenvironment, with Osteocalcin (red), Alkaline phosphatase (red), VE-Cadherin (red), ZO-1 (red) and α-smooth (red) 

biomarkers evaluation. Adapted from 264 with permission from Proceedings of the the National Academy of Sciences of 

the United States of America (PNAS). 

The co-culture of osteo-differentiated MSCs and HUVECs promoted the formation 

of endothelium around the microfluidic channels and the deposition of bone-marrow specific 

biomolecules and matrix. This highly organotypic model was then used to evaluate the 

behavior of breast cancer cells that were injected in the channels of the hydrogel-containing 

chip. The obtained results demonstrate that cancer cells in the triculture microfluidic model 

have a higher pro-metastatic potential, with higher rates of extravasation, migration and 

invasion. Such increased aggressiveness was evidenced by the breast cancer micro-

metastatic pockets containing 4-60 cells that formed at 5 days of co-culture [91]. However, 

it is important to point out that due to the lack of MSCs population tracking during 

differentiation into osteoblasts it impossible to establish a direct connection between cells 

invasiveness and their interactions with possibly present non-osteogenic differentiated 

MSCs. This evidences the requirement for long-term cell tracking in these in vitro models, 

a parameter that will be further discussed. 

 



 

 

INTRODUCTION 

 

34 

 

4.3. Importance of MSCs Tissue of Origin and Cancer Heterogeneity 

It is relevant to highlight that the origin of MSCs may also play an important role in 

cancer and consequently on the development of more advanced 3D in vitro disease models. 

In fact, a comparison between the effects of co-culturing Wharton Jelly-derived MSCs (WJ-

MSCs) or BM-MSCs with lung cancer stem cells, either in 3D using multicellular spheroids 

or in 2D demonstrated contrasting effects between WJ-MSCs and BM-MSCs towards lung 

cancer stem cells (LCSC), with different subtypes of LCSC presenting different responses 

to WJ-MSC, especially when co-cultured in 3D [32]. Tumor heterogeneity may also play a 

role in cancer-MSCs interactions and hence influence the conclusions extrapolated from in 

vitro models. A recent study by Breznik and co-workers, 2017, demonstrated how 

phenotypically different cell lines used as models for glyoblastoma can lead to different 

MSC-cancer cells interactions and outcomes, with U87 cells showing decreased invasive 

potential, and U373 cells displaying the opposite, both in vivo and in vitro [92]. The 

researchers attributed this difference to alternatively favored metabolic pathways resulting 

from TGF-β release by MSCs. Thus underlining the importance of accounting for the 

heterogeneity and phenotypic variations present in actively proliferating tumors [92]. These 

results emphasize the necessity of considering the use of MSCs from several tissue origins, 

as well as different types of malignant cells to account for intrinsic in vivo tumor cellular 

heterogeneity. 

 

5 Key Technical Parameters for Establishment of Cancer Cells-MSCs 3D 

In vitro Co-Culture Models 

The number of variables that can affect the interaction and co-culture of such diverse 

cell populations makes achieving a valid co-culture model containing MSCs extremely 

difficult. In this context, it is important to emphasize that the relative lack of knowledge 

about the exact composition of both non-cellular and cellular components of the TME 

drastically reduces the ability to implement in vivo similar co-culture ratios. In addition, 

different cancer types are expected to possess diversified cell populations and thus, different 

ratios, such as those characteristic of brain and NSLC [93,94]. Moreover, variability may 

derive from different stages of the same cancer as verified in MM by [82]. The creation of 

in vivo mimicking in vitro 3D models for the study of cancer cells-MSC interactions have 

thus far relied in the usage of basic approaches. In a study by Zhu and colleagues, 3 diverse 
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ratios (1:1, 1:2 and 1:5) where used for the co-culture of BM-MSC with breast cancer cells, 

the authors evaluated MTDH, an oncogene that promotes proliferation and enhances 

chemoresistance [95], to be up-regulated in co-cultures containing higher ratios of MSC to 

cancer cells, when compared to lower MSC ratios [78]. In a study by Oerlecke and 

colleagues, 2013, as few as 1 MSC per 300 breast cancer cell was enough to obtain a 

significant increase in both Smad3 and CREB phosphorylation in BCC [80]. These findings 

showcase the necessity of correctly representing the diverse cellular populations of the TME 

in 3D laboratory models that aim to recapitulate the reality found in vivo, since different 

concentration of MSCs release dissimilar factors and cytokines that can lead to antagonistic 

responses [25]. 

In terms of cell culture specifications, MSCs are known to present diverse media 

requirements, as well as growth, proliferation, matrix deposition and differentiation 

capabilities [22] when compared with other cellular components of the TME. With all these 

processes being affected by the previously referred factors, and by others such as the pre-

existing scaffolds morphology and composition, which depending on the cell type might 

induce diversified phenotypes for example amongst cancer cells [96,97]. This complicates 

the establishment of a heterotypic co-culture model that suits all the necessities of the various 

cellular populations [98]; especially when modified mediums for the co-culture of cells are 

still rather underdeveloped [99]. Another problem that arises from these models is how co-

culture populations can proliferate/change over extended periods of time, altering the initial 

experimental parameters as the trial progresses [72]. Such cell modifications can occur, for 

example, simply through the deposition of extracellular matrix, alteration/degradation of 

pre-existing scaffolds for 3D culture [54], or in a more complex facet, through the 

differentiation of the multipotent cells into diverse cellular populations otherwise not 

accounted for in the model [100]. When accounting for model alterations concerning the co-

culture of MSCs and cancer cells, another variance that must be considered is how cancer 

cell cannibalism towards MSCs may affect the model progression [101]. This phenomenon, 

was recently addressed by using hanging drop-assembled 3D tumor spheroids which 

successfully replicated the relatively unstudied process of cellular cannibalism by MDA-

MB-231 breast cancer cells (MDA-BCC) directed at MSCs surrounding populations in 

which cancer cells internalized and consequently degraded MSCs (Figure 8). Such resulted 

in the acquisition of unique molecular signature profiles by cannibal MDA-BCC cells, 
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presenting an enriched molecular profile for pro-survival factors and tumor suppressor 

agents, as well as inflammatory mediators which marked these cells as detaining a 

senescence-associated secretory phenotype [101]. The authors were, thus, able to replicate 

in vitro a process of paramount importance in cancer cell metastasis and therapy survival, 

where MSCs once again are shown to have a vital role. 

 

Figure 8.- Evaluation of cancer cell cannibalism towards MSCs. Upon cannibalism MDA-MB cells acquired an 

enriched molecular profile for pro-survival factors and tumor suppressor agents, as well as inflammatory mediators before 

entering a state of dormancy. (A) Scheme of co-culture method; (B) MSCs population decline visible in phase-contrast 

microscopy and flow cytometry; (C) MSCs cannibalism by MDA breast cancer cells; (D) MDA-MSCs in small aggregates 

as visualized through immunofluorescence imaging, prior to MSCs decline. Adapted from 272 with permission from 

Proceedings of the the National Academy of Sciences of the United States of America (PNAS). 

Apart from this, the various alterations that cellular populations ratios can suffer 

during culture must be carefully monitored, creating a necessity of tracking and analyzing 

each diversified cellular population in direct contact on 3D co-culture models. To this end, 

immunostaining techniques can be of use to a certain point, for example when identifying 

non-stem cell populations or analyzing matrix deposition [102]. Unfortunately, for the 

differentiation of both cancer stem cells and MSC populations, difficulties might arise due 

to expression of overlapping receptors or other markers [21,103,104]. The use of cell 

tracking techniques, such as transfection with non-integrative GFP transgenes via viral or 

non-viral vectors has been employed as an alternative. However, these methodologies are 

highly expensive and still present some technical constraints such as transient expression or 

influence in cells behavior [73,88,105]. Overall, the difficulty of tracking cellular 

populations hinders the ability to use more complex models for the analysis of specific 

cellular interactions. Such is the case with explant derived organoids, in which events such 
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as the differentiation of MSCs lineages into osteo-differentiated MSCs must be prevented or 

dully tagged [106,107].  

In summary, the establishment of a 3D MSC-cancer co-culture testing platform 

encompasses several challenges, namely: (i) different initial seeding ratios can lead to 

distinct results; (ii) the spatiotemporal manner in which cells are introduced to the model can 

lead to diverse morphological organizations [79]; with (iii) diverse cells presenting diverse 

proliferative rates [108]; (iv) in vitro cellular division limits (Hayflick limit); (v) and 

requirement of different types of medium; with all this diversity resulting in the need of (vi) 

differentially tracking each cell population over time and space.  

 6. Conclusions 

Upon analysis of different literature reports with 3D cultured MSCs, so far, they 

mainly focus on the use of co-cultured MSCs-tumor cells 3D spheroids. Only few articles 

take advantage of scaffold-based approaches and microfluidic chips, but mainly in the study 

of breast cancer metastasis into bone [78,81,109,110]. Developments in complex scaffold 

design for tissue engineering could be valuable in producing structures that could provide 

mechanical/biochemical cues and 3D spatial organization of MSCs and cancer cells [111]. 

Although the use of simple MSCs-cancer cells 3D co-cultures provides in vitro models 

compatible with high-throughput screening, (one of the main requirements for developing 

models for pharmaceutics testing and discovery), several important TME associated factors 

are disregarded, including tumor-specific ECM, and other stromal cells-cancer cells 

bidirectional interactions, spatiotemporal mechanical and biochemical cues. Clearly, this 

lack of ECM and stromal cells representation must be overcome if a representative model is 

to be achieved, possibly through the usage of complex functionalized scaffolds [112]. These 

scaffolds can be arranged in various forms in combination with microfluidic chips capable 

of providing a transport system in which mechanical cues obtained at different perfusion 

rates, combined with controllable biochemical signals, resembling those of an in vivo 

organism, allowing to increase the complexity of the designed 3D models [98]. It is also 

important to highlight that the widespread use of BM-MSCs populations in MSCs-cancer 

cell interactions can result in a bias towards the influence of this particular subset of cells 

[25,85,86].  

In conclusion, further improvements to the currently available 3D in vitro tumor 

models will allow to develop valid platforms that permit the inclusion of MSCs in a way that 
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more closely mimics in vivo conditions. While the analysis of individual interactions 

between these and other cells of the TME can provide a glimpse into the complex weave of 

communication and mutual regulation that takes place across the intricate setting present in 

malignant pathologies, ultimately the goal shall be to achieve a model that can be composed 

of both cancer cells, MSCs and other related stromal cells and immune system cells, in tissue 

specific ECM-like scaffolds [113]. This will require a combinatorial approach of current 

technologies, both in the fields of biomaterials and bioengineering [99], in an effort to 

provide laboratory models that can be used for widespread screening of anti-cancer 

therapeutics in a number of different cancer types. 
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Abstract 

Three-dimensional Multicellular tumor models (3D-MCTS) are receiving an ever-

growing focus as drug testing platforms due to their potential to recapitulate major 

physiological features of human tumors in controlled in vitro conditions. In line with this 

momentum, the techniques for assembly of 3D in vitro models are rapidly evolving towards 

an all-round inclusion of tumor microenvironment (TME) components in such microtissues. 

However, few methodologies have been able to provide such elements. Customized globe-

like platforms such as microparticles and microcapsules provide a reproducible and cost-

effective technology to imprint unique microenvironment hallmarks into 3D spheroids. 

Herein, a comprehensive overview of novel advances on the integration of tumor-ECM 

components and biomechanical cues into in vitro 3D-MCTS assembled in microparticle or 

microcapsule-based platforms is provided. Future improvements regarding spatiotemporal 

adaptability during microtumors in vitro culture are also critically discussed in light of the 

realistic potential of these platforms to mimic the dynamic TME. From a critical perspective 

it is clear that a cost-effective production of such 3D TME-MCTS globe-like models will 

unlock their potential to be used in high-throughput screening of therapeutic compounds. It 

is also envisioned that their ease of handling will contribute for their combination with other 

advanced technologies that can mimic the fluidics of human tumors. 

 

Keywords: 3D Models, Spheroids, Drug Testing, In vitro Tumors, Microparticles, 

Microencapsulation 
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1. Introduction 

Although conventionally recommended by regulatory agencies as pre-clinical 

validation models, 2D cell cultures fail in providing in vivo similar conditions for cell growth 

[1–3]. These models lack the ability to correctly mimic tumor heterogeneity, extracellular 

matrix (ECM) components and architecture, as well as multidrug-resistance (MDR) 

mechanisms observed in vivo [3]. Addressing the shortcomings of conventional 2D cultures 

through engineering of more predictable models, capable of simulating in vivo solid tumors, 

could improve anti-cancer drug discovery and drug performance analysis [1]. Such will 

contribute to reduce the number of false positive results obtained during preclinical 

validation of novel compounds. 

Three-dimensional in vitro models have been gaining increased momentum in the 

field of drug-screening and cancer research do to their ability for better capturing the 

complexity of the tumor microenvironment (TME) [4,5]. 3D culture models are capable of 

recapitulating tumors cellular heterogeneity, ECM interactions and tridimensional 

architecture. In fact, the reproduction of such characteristics in 3D promotes the 

establishment of nutrient, oxygen and signaling factors gradients, as well as the 

establishment of unique gene expression patterns, that are similar to those observed in vivo 

[6].  

From the currently available in vitro tumor models, 3D-MCTS remain one of the most 

commonly explored [7,8]. Their relative ease of assembly, general reproducibility and the 

ability to capture cellular heterogeneity renders them suitable tumor surrogates for 

preclinical validation of novel therapeutic compounds [9]. Up to date various 3D MCTS 

models have been used to modulate the cellular components of the TME of different tumors 

including those of breast [10], colon [11], pancreas [12], lung [13]. However, the majority 

of these models still lack the correct representation of tumor-specific ECM. A critical 

component that is known to extensively influence cancer evolution through critical 

biochemical and biomechanical cues [14]. 

To overcome this limitation, various studies have attempted the inclusion of ECM 

mimetic matrices in the form of globle-like scaffolds, namely, microparticles (MPs) or 

microcapsules. Both technologies, are extensively used in the field of tissue engineering and 

stem cell research [15,16] and offer further opportunities to mimic the TME. These 

composite models allow the study of singular biochemical and mechanical characteristics of 
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the TME ECM through inclusion of modular matrix mimetic scaffolds [17]. Such unlocks 

the opportunity to model cell-ECM interactions and to evaluate the inclusion of ECM 

components in the response to anti-cancer therapeutics.  

This review showcases recent advances in the field of complex 3D MCTS assembly 

through inclusion of globe-like scaffolds. We begin by summarizing current scaffold-free 

and scaffold-based 3D microtumor production technologies and present up-to-date examples 

in the use of microparticles and microspheres to assembly advanced 3D MCTS. These 

interesting 3D platforms are discussed in light of the recent literature reports. A critical 

perspective regarding future developments of new models that fully recapitulate the cellular 

and acellular components of the TME in vitro is also provided. 

2. 3D Models Production Methods 

Ideally 3D tumor models must be able to recapitulate the diverse cellular crosstalk 

established during cancer cells contact with surrounding stromal cells and tumor-specific 

ECM. This crosstalk is well recognized to contribute to disease progression [18] depending 

on the type of cells and ECM configurations involved, for example with increased stiffening 

of the matrix or increased deposition of some of its components having been linked with 

tumor invasion promotion or arrest [19–21]. At a cellular level, such dichotomy is well 

portrayed by the communications established between immune cells and mesenchymal stem 

cells present in the TME, which can lead to promotion of angiogenesis through the release 

of pro-inflammatory cytokines [22,23]. To assure in vivo similarity, 3D models must be 

capable of mimicking the mechanical proprieties, spatial arrangement and biochemical 

composition of the tumor-ECM. In fact, the development of novel 3D tumor models should 

always try to recapitulate specific conditions and stages of specific tumors under highly 

reproducible conditions, so as to assure a direct correlation between in vitro and in vivo 

performance [14]. 

The production methodologies for 3D multicellular tumor models can be divided 

mainly in three categories: (i) scaffold-based models which take advantage of diverse natural 

or synthetic scaffolds for the culture of cells in a 3D surrogate of in vivo tumor-ECM 

[5,17,24], (ii) scaffold-free based models, which take advantage of cells suspension or 

hanging-drop based techniques for the formation of 3D MCTS [25–27], and (iii) 

combinatorial hybrid approaches. The following sections will discuss the differences and 
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advantages/disadvantages of these specific manufacturing technologies so as to provide a 

broad overview of the 3D MCTS production field. 

2.2.1. Scaffold-free 3D Models Production 

Scaffold-free methods are based on implementation of non-adherent conditions for 

cell culture, taking advantage for instance microgravity settings to force cultured cells to 

interact and adhere to one another [28]. The main aim is to promote the formation of 

spherical (spheroids) or more loosely aggregated microtissues (cellular aggregates) [29,30]. 

Scaffold-free assembled models can be divided into three categories: (i) multicellular tumor 

spheroid models (3D MCTS), initially implement in 1970s by Sutherland and coworkers 

[31], these spheroids are created through culture of cancer cell lines or isolated primary cells 

under non-adherent conditions that force cell adhesion leading to compact cellular 

aggregates formation; (ii) tissue-derived tumor spheres and (iv) organotypic multicellular 

spheroids, both obtained by disruption of tumor tissues through mechanical and enzymatical 

dissociation, with posterior culture of obtained fragments in non-adherent conditions [30]. 

The most commonly studied and used are the 3D-MCTS, being easier to assemble and 

maintain than tissue-derived tumor spheres or organotypic multicellular spheroids, these 

spheroids have been extensively used in the field of 3D tumor modelling.  

Static-based scaffold-free methods such as Forced-floating or Hanging-drop 

techniques allow the assembly of highly reproducible 3D MCTS in terms of size and 

morphology [29]. These techniques make use for example of poly-2-hydroxyethyl 

methacrylate (poly-HEMA) [32], agarose coated multiwell plates [25], or of super-

hydrophobic surfaces [33], in order to prevent adhesion between cultured cells and culture-

plate surfaces, promoting instead cell-cell interactions and consequently cell-cell adhesion 

and aggregation [34]. These 3D MCTS can be formed either by monotypic or heterotypic 

co-cultures [29,35]. Overtime, most of the newly formed 3D MCTS start to secret their own 

ECM. Such increases their solidity and diminishes their size as a bystander effect of 

contraction, further approaching these models to the in vivo reality [29].  

Stirring-based techniques can be grouped into two classes: (i) spinner-flask 

bioreactors in which the culture media is internally impelled by spinning blades, and (ii) 

rotational bioreactors [36]. Such methods take advantage of mechanical forces that maintain 

cells in continuous suspension during culture [29]. By comparison to stirred tank bioreactors, 

rotational bioreactors have the advantage that the internal flow is generated by rotation of 
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the container and not through blade mechanisms, this imparting a lower shear-stress to the 

cultivated cells [29].  

In comparison to stationary methods, stirring based methodologies are able to 

effectively produce high amounts of 3D MCTS, having the advantage of allowing easy 

medium exchange and modifications to cell culture conditions in situ [37]. However, 

regarding reproducibility of formed spheroids, stirring based techniques lack the level of 

control over the morphology and size of spheroids present in stationary methodologies [38]. 

Consequently, 3D spheroids and cellular aggregates obtained in bioreactors frequently 

exhibit variable shapes, density and other morphological parameters, leading to inconsistent 

responses to chemotherapeutic agents [14,39]. Since cellular concentration is dictated for the 

entire batch, different internal dynamic flows can also result in diversified cellular adhesion 

patterns or effective initial concentrations [36].  

The combination of both stirring and forced adhesion methods could overcome such 

limitations, for example by firstly using hanging-drop or liquid-overlay techniques to obtain 

highly uniform spheroids and then translocating them into bioreactors for modulating the 

influence of fluid dynamics in chemotherapeutics penetration into compact 3D models [40]. 

Overall, the main advantages of scaffold-free stirring-based methods are (i) the ease of 

manufacturing multiple microtissue spheroids per batch, (ii) the ability to maintain 

prolonged culture times, (iii) the ability to modify the culture media and growth conditions 

to better simulate the changes occurring in vivo, and (iv) the ability examine the evolution 

of the cultures through time either by direct analysis in situ [41], or with for example 384 

hanging-drop arrays as described by Hisao and Tung [42]. 

2.2. Scaffold-Based 3D Models Production 

Tumor evolution in vivo is intimately correlated with the interactions between cells 

of TME and their supporting ECM which serves both structural and signaling functions [43]. 

Being composed mainly of fibronectin, collagen (types I-V), elastin, entactin, fibrilin, 

fibulin, vitronectin, laminin and other glycoproteins such as hyaluronic acid [44]. During the 

process of tumorigenesis alterations in ECM composition and structure can occur due to 

cancer cells and stromal associated degradation and deposition of ECM leading to  events 

such as collagen stiffening in breast cancer [45], increased hyaluronic acid deposition and 

degradation in several cancers [46–48], or increased matrix degradation through 

metalloproteinase enzymatic digestion (e.g., MMP9, MMP2) [49] in breast [50] and lung 
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cancer [51], cumulatively leading to increased invasion and epithelial-to-mesenchymal-

transition (EMT), and consequently metastasis. 

It is the nature of these interactions that scaffold-based tumor models aim to 

recapitulate, leading to the activation of for example cell-matrix signaling mechanisms 

through the inclusion of small signaling molecules, tethered protein signaling domains, or 

through variation of mechanical properties of the scaffold such as matrix stiffening through 

fibrillar alignment of collagen [52,53]. This promotes different metabolic profiles that more 

closely resemble in vivo tumor dynamics [54]. Such models have to be engineered taking 

into account ECM tissue and patient specificity, with diverse compositions and arrangements 

seen for the same tumor class resulting in diverse response rates to therapy [14]. Scaffold 

based 3D culture methods take advantage of natural, synthetic or hybrid biomaterials to 

culture cells in three-dimensions [17,29], with each class presenting its own advantages or 

disadvantages for portraying in vivo tissues (Table 1). ´ 

Table 2. advantages and disadvantages of the various scaffold materials used in scaffold based 

approaches. 

Class Origin Examples Advantages Disadvantages ref 

Natural 

Mammalian 

Collagen • Contain in vivo 

similar domains  

(e.g laminin, 

elastin, 

fibronectin) 
• Cellular 

adhesive 

proprieties 
• Recapitulate 

interactions 

present in vivo 
• Enzymatically 

degradable 

• Exact Composition is 

unknown 
• Batch-to-batch 

variability 
• For some materials 

limited level of 

control over  matrix 

stiffness 

 [55] 

Matrigel  [56] 

Hyaluronic Acid  [57] 

Decellularized 

Matrix  [58] 

Non-

mammalian 

Alginate 
• Present 

decreased 

immunogenicity 
• Elevated 

biocompatibility 

More affordable 

• May require further 

alteration to simulate 

in vivo tissues 
• Fabrication methods 

can be cytotoxic 

 [59] 

Chitosan  [60] 

Silk-fibroin  [61] 

Synthetic 

Polyethylene glycol (PEG) 

• Structurally 

complex and 

well defined 
• Highly tunable 

mechanical 

proprieties 

• Lack ECM similar 

domains 
• Require further 

modification for 

increased bioadhesion 

and biocompatibility 
• Degradation can 

result in cytotoxic 

byproducts 

 [62] 

Polylactic acid (PLA)  [63] 

Polycaprolactone (PCL)  [64] 

Poly(lactic-co-

glycolic acid) 

PLGA 
 [63] 
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Hybrid 

Alginate-RGD • Combine the 

ease of 

modification of 

synthetic and in 

vivo similar 

domains of 

natural 

materials 

• Fabrication methods 

can be cytotoxic 
• Proprieties of natural 

materials could be 

affected 

 [65] 

PEG-RGD  [66] 

PEG-fibrinogen  [67] 

 

These ECM mimetic scaffolds can be manufactured into diverse structures such as: 

(i) fibrillar porous meshes, (ii) porous and non-porous microstructures (microparticles or 

microcapsules), and (iii) micro-patterned surfaces, via 3D bioprinting technologies 

[24,29,68,69]. Materials and production methodologies of scaffold-based methodologies 

have been extensively reviewed elsewhere [17,70–72]. The different materials are selected 

by their specific characteristics, such as rate of biodegradation, biocompatibility, elasticity, 

ease of manipulation and resemblance to tumor-specific ECM. In the following sections the 

most commonly used materials for these models is given, starting with natural-derived 

scaffolds and moving to synthetic and innovative semi-synthetic approaches.  

2.2.1. Natural-materials based Scaffolds  

From natural material-based scaffolds the most commonly used hydrogel scaffold for 

in vitro production of 3D MCTS [24] is Matrigel®, an hydrogel matrix comprised by 

basement membrane proteins derived from Engelbreth–Holm–Swarm mouse tumor cells 

[73]. These hydrogels can be formed prior to cell culture or assembled under standard culture 

conditions [74,75]. Often such hydrogels require laborious preparation involving ice thawing 

to prevent premature polymerization, since the material is liquid at 4º C and quickly gells 

into an hydrogel at physiological temperature (37 ºC) [75]. When gelled, Matrigel® forms a 

randomly weaved mesh of fibers that withholds a large amount of excess fluid, which can 

hinder the control of matrix stiffness [76]. Due to their natural origin these scaffolds 

introduce ECM specific signaling molecules and binding domains, such as laminin, collagen, 

elastin, entactin, fibronectin, fibrinogen, different growth factors (e.g., EGF, bFGF, PDGF), 

amongst others [77]. Such bioactive components provide for example integrin and MMP 

binding sites, both of them imperative in tissue organization and cancer metastasis [44]. As 

a result of their origin, natural-based scaffolds exhibit similar structural interactions to those 

found in humans providing a suitable in vivo-like matrix where different cell lines can 

proliferate and differentiate for example into cancer stem cells [77,78]. However, due to 
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Matrigel animal origin, these models also exhibit significant “batch-to-batch” variations 

[77], which results in low reproducibility and inaccurate analysis of candidate therapeutics 

[14]. Furthermore, the complex protein domains present and the mechanic properties of the 

natural-based scaffolds are not easily tuned, which results in some difficulty in providing 

reproducible tissue specific ECM like environments [14]. For example, Matrigel does not 

contain proper ratios of collagen type I or hyaluronic acid as those found in the matrix of in 

vivo tumors [52].  

Other examples of natural based scaffolds commonly used for the assembly of 3D 

tumor models are collagen, hyaluronic acid, alginate, chitosan and silk fibroin hydrogels, as 

well as decellularized extracellular matrices. Most of them present low immunogenicity, 

tunable mechanical proprieties, high biocompatibility and cell adhesive proprieties [79]. The 

advantages and disadvantages of these alternative materials for assembly of 3D tumor 

models are summarized in (Table 1). These materials have recently received increased focus 

as scaffolds for assembly of 3D tumor models in several reviews available elsewhere [70–

72,79–82]. 

2.2.2. Synthetic materials-based scaffolds 

Alternatives to nature derived scaffolds include the synthetic polymer-based 

scaffolds, which although lacking correct representation of several biomolecular aspects of 

the TME (i.e., the presence of specific growth factors, or protein domains responsible for 

cellular adhesion), strive to effectively mimic ECM mechanical and structural proprieties 

[71]. To this end several biocompatible, biodegradable polymers have been synthesized and 

reported in the literature in the recent decades, with some of the most commonly used being 

polyethyleneglycol (PEG), polylactic acid (PLA), polyglycoslide or poly(glycolic acid) 

(PGA), and their derivatives poly(lactic-co-glycolic acid) (PLGA) and poly(d,l-lactide-co-

glycolide) (PLG), and polycaprolactone (PCL) [5,83]. Such hybrid materials will be 

discussed in the following chapters. Overall, although the variability of “batch to batch” 

formulations and the lack of a precise control over scaffolds mechanical characteristics is 

eliminated with synthetic polymers [84], these lack the before mentioned protein-specific 

cell adhesion domains, impregnated growth factors or cytokines that are important for 

tumors cellular organization. Moreover, the cells cultured in thee platforms are devoid of 

tumor-like gene expression patterns, unable to metastasize or to display multi-drug 

resistance phenotypes [24,85]. Expectedly, such issues affect the production of robust tumor-
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mimicking 3D in vitro MCTS models. To overcome such drawbacks synthetic materials are 

often combined with other polymers such as polyvinyl alcohol (PVA), or with natural 

derived biopolymers such as chitosan, hyaluronic acid or polydopamine, in order to attain 

more in vivo-like growth conditions [63,86,87]. 

2.2.3. Hybrid Scaffold Based Models 

The development of hybrid-based scaffolds for assembly of 3D MCTS allows the 

incorporation of natural bioactive sites, and bioadhesive properties into the highly tunable 

matrix of synthetic scaffolds [79,83]. These act as a white-canvas to be conjugated with 

natural polymers such as fibrin [88] hyaluronic acid [57], or specific bioactive molecules 

(e.g., BMP-2, RGD peptides). PEG and its derivatives (PEG-diacrylate) is the foremost 

common example in terms of conjugation with bioactive molecules or scaffolds, U.V. light 

polymerization, or through chemical coupling. In fact, as demonstrated by Weiss and co-

workers, PEG hydrogels were successfully functionalized through crosslinking with peptide 

containing RGD domains [89], increasing its cellular adhesive proprieties. In addition, MMP 

or plasmin-sensitive sequences have also been chemically imprinted into PEG-hydrogels 

[81,84]. Inclusion of these bioactive moieties increased cellular interactions (e.g., cell-ECM 

and cell-cell), and mimicked tumor-ECM specific degradability [90]. Providing both highly 

characterized and controllable scaffolds, that at the same time can mimic tumor-ECM, 

through inclusion of necessary matrix domains for correct cellular 3D organization and 

proliferation [29,76,77]. 

Compared to conventional scaffold-base and scaffold-free approaches, advanced 

hybrid scaffold base models provide novel and interesting platforms in which to modulate, 

with relative ease, several aspects of tumor progression. Hybrid scaffolds could allow the 

modular study of the role of specific matrixial components in events such as metastasis [91] 

or angiogenesis [92]. However, one of the main drawback all scaffold models suffer when 

compared to scaffold-free systems is relative low-through-put and laborious analysis 

procedures required [14]. Advanced hybrid scaffolds provide novel and interesting platforms 

in which to modulate with relative ease several aspects of tumor progression, such as 

metastasis or angiogenesis, while permitting the evaluation of specific ECM components 

influence. Combinations of both scaffold-based and scaffold-free methods have been 

reported in the literature [93,94]. A recent work by Hirt and coworkers in 2015, demonstrated 

the combination of bioreactor-based methodologies to developed a drug-screening model of 
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colon cancer with HT-29 cells cultured in porous scaffolds under perfusion flow [95]. The 

model showed a high correlation with tumor xenografts regarding the testing of a cytotoxic 

compound (5-Fluorouracil), and a clinically effective compound (BCL-2 inhibitor ABT-

199), with 2D cultures evidencing antagonistic responses [95]. Other promising models have 

combined bioreactors with microfluidic platforms [96]. Microfluidic systems entail the use 

of micrometer sized channels that open the possibility to produce 3D MCTS under flow 

perfusion conditions [97]. Ultimately, scaffold-microfluidic combinations allow for a more 

precise control over cancer cells growth by dynamically controlling cell culture media 

composition and manipulating drugs mass transfer via modification of liquid flow rate [98]. 

These characteristics make microfluidic systems ideal to perform angiogenesis, migration, 

or flow perfusion studies in the context of tumor perfusion and tumor invasion, EMT, cells 

dissemination and metastasis [24,99,100]. Several recent studies using microfluidic systems 

in combination with scaffold and even spheroid technologies, have tried to establish an ideal 

organ-on-a-chip model that allows the study therapeutic compounds interactions with lung, 

intestine, liver and other tissues of the body, whilst also studying its effects on diseased cells. 

Such developments have been recently reviewed elsewhere [94,101–105], and derive out of 

the scope of this review. 

Considering the specificities of the drug-screening process, namely the necessity of 

high-throughput, ease of analysis, reliability and predictability of the PCVMs, an ideal 

approach could require [106,107] the combination scaffold-based models and their ability to 

represent ECM biochemical and mechanical complexity, with the ease of analysis obtained 

from simple scaffold-free based models. Following the example of stem cells research in 

tissue e*ngineering [16], such a combination could be achieve using for example the 

inclusion of MPs containing specific ECM mimetic components. Such a combination would 

allow inclusion of both cellular and matrixial components of the TME into a 

spherical\globular scaffold, leading to the formation of composite spheroids compatible with 

current analysis methodologies. An alternative methodology, more explored in literature, 

would be the encapsulation of cancer cells inside hydrogel microcapsules [15]. 

Microencapsulation techniques have shown the capacity of confining and standardizing 

spheroid growth while providing a matrixial component otherwise lacking [15]. Several 

spherical in vitro tumor mimicking cancer models have been achieved, providing innovative 

platforms for the study of tumor biology and drug-screening assays. Herein, 
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microencapsulation and microparticle scaffold will be reviewed under the light of recent 

reports. 

3. Composite Heterogenic Spheroids - Novel Complex Globular 

Alternatives 

As previously stated, 3D-MCTS are currently the  in vitro golden standard for 

performing drug-screening assays [28], due to their ability to correctly recapitulate several 

features of the tumor microenvironment, such as: (i) cell-cell interactions; (ii) matrix 

deposition; (iii) cell-ECM interactions; (iv) internal structure organization, resulting in 

hypoxic and consequently necrotic core establishment; (v) drug-resistance stemming both 

from drug resistant population phenotype stimulation, and penetration limitations [26]. This 

approach provides a platform that can be easily assembled and facilitates HTP studies [108] 

in comparison with more complex scaffold or microfluidic based models. However, as 

previously discussed, spheroid-based methodologies are not without disadvantages [14].  

By comparison to scaffold based models, 3D-MCTS main limitation is the lack of 

previously existing ECM support structure. As a result, contrarily to what happens in vivo¸ 

the ECM will not be able to guide or influence the model evolution from the onset, ultimately 

failing to provide the necessary initial cues for certain cancer phenotypes to arise [14]. 

Consequently, the acquisition of phenotypes less capable of resembling those found in vivo 

can be observed in certain culture settings. For instance, Brancato and coworkers, 2017 

[109], reported that for spheroids of either CAF or normal fibroblasts, different cell 

metabolism, cell growth, matrix deposition rates and mechanical properties were observed 

when culturing cells with or without support of porous gelatin MPs [109]. Through the 

utilization of such MPs the authors were able to better replicate the functional and 

metabolical differences found in vivo between healthy and neoplasic tissues containing 

CAF’s [109]. This work serves to exemplify how introduction of MPs into spheroids-based 

tumor model allows to surpass such limitations. 

3.1. Microparticles for 3D models Assembly 

MPs have been previously and more extensively applied in the field of tissue 

engineering mainly in four areas of application: (i) delivery of incorporated or surface-

attached molecular cues or tethered protein into tissues or cell aggregates; (ii) reporting 

changes in culture conditions; (iii) serving as scaffolds for cell attachment and providing 
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necessary cues for cell differentiation or phenotype stimulation, and (iv) introduction or 

preservation of local targeted heterogeneity or homogeneity [16]. Regarding their role in 

tumor model development most studies have made use of MPs mainly has a structural and 

molecular cue providing tools, with few works exploring MPs potential so far. Studies 

involving MPs-based scaffolds for the production of in vitro tumor models are still few 

[63,67,110–114], with most studies found to date employing either non-modified synthetic 

polymers, or combined natural-synthetic scaffolds such as the previously discussed PEG-

Fibrinogen model, later developed by Pradhan and coworkers into the format of MPs [67]. 

Emerging works have described the utilization of MPs scaffolds as a means of 

introducing previously lacking ECM components into 3D-MCTS, promoting stem-like or 

multidrug resistance profiles [109,110] [112]. Production methodologies mainly involved 

the application of modified double emulsion protocols and sieving, with the combination of 

both techniques allowing a high yield of MPs in the desired size ranges [67,109–111,113]. 

Sahoo and co-workers, 2005, [63] produced porous MPs based scaffolds which allowed cells 

to interact with a semi-rigid or rigid ECM-like structure. The obtained PLGA/PLA MPs 

presented elevated diameters (~100-260 µm) and consequently grand surface areas. After a 

period of 5 days MPs found themselves completely covered in cell layers, attaining a 

spherical aggregate morphology overtime, and thus being able to retain the ability to promote 

compact cell-cell adhesion characteristics found in 3D scaffold-free techniques. This 

approach allows the formation of 3D-MCTS when coupled with forced-floating, hanging 

drop or stirring-based methodologies [63].  

In the context of particle porosity, the work of Bae and coworkers [113] established 

a cryopreservable tumor model of MCF-7 using PLGA microspheres with an average 

particle diameter of 393±5 μm, an exterior pore size ranging from 10-70μm with 

innterwinded porosity (Figure 1). The particles were used for cancer cell culture in stirred 

suspension bioreactors, achieving an elevated growth rate (2.8-fold cell expansion over 

seven days), increased resistance to doxorubicin when compared to 2D counterparts, as well 

as maintaining viability and metabolic profiles after the process of cryopreservation. 

Moreover, the model exhibited increased effectiveness in establishing tumors on athymic 

female mice, with MCF-7 cells cultured on microspheres presenting a 4-fold increase in 

tumor formation [113]. 
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Figure 3. PLGA microspheres produced by Bae and coworkers as a cryopreservable model, as seen in SEM, 

presenting pores of extreme sizes capable of permitting interiorization of cells (A,B). Hematoxylin-Eosin staining of MCF-

7 cells cultured on the microspheres in spinner flasks at the 5th day of culture. White and Black bars represent 100µm. 

Image adapted from the work of Bae and coworkers [113]. 

So far, the majority of studies produced polymeric MPs as supporting scaffolds for 

assembling breast cancer cell spheroids, but mostly restricted to the MCF-7 lineage [67,109–

111,113,115]. Several studies made use of MPs scaffolds as a mean of culturing breast 

cancer cells for measuring cytotoxic effect of diverse pharmacological compounds such as 

doxorubicin, paclitaxel and tamoxifen [110,111,113]. In this context, Horning and 

coworkers, 2008, used a combination of PLA and CH to create MPs with diameters of 160-

182 µm for culturing MCF-7 cells and evaluating its cytotoxicity profile against doxorubicin, 

paclitaxel and tamoxifen [111]. The authors performed a comparison analysis between 2D 

and 3D models, and observed that drug internalization was significantly delayed in the 3D 

model. (Figure 2). I fact, while in the 3D models containing MPs doxorubicin only reached 

the spheroid core region after 8 h of incubation, in 2D models such observations were visible 

within the first hour.  
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Figure 4. Doxorubicin penetration over time in both 2-D monolayer cultures and 3-D of MCF-7 cells, following 

incubation with 2.500 ng/ml of therapeutic compound. B and D columns are enlarged sections of the images in the right, 

demonstrating the slower penetration of doxorubicin in spheroids over periods of 24h. Image adapted from Horning and 

coworkers [111]. 

The ability to recapitulate in vivo arrangements and expression patterns may pave the 

future for screening novel therapeutics targeting specific TME hallmarks. Another study by 

Brancato and coworkers, improved on the previous porous gelatin microparticle based model 

of stroma through the addition of MCF-7 cancer cells. This breast cancer coculture model 

containing porous gelatin MPs, was used to test a targeted nanoparticle drug delivery system 

[110]. Comparative analysis confirmed elevated expression of MMP-2 and other 

metalloproteinases in the 3D model versus 2D cultures, hence better mimicking in vivo 

overexpression by breast cancer cells in the TME. Strikingly, this enzymatic overexpression 

was effectively exploited via an enzyme-responsive targeted delivery system, comprised by 

PLGA-PEG nanoparticles and a tumor targeting pro-drug activated by MMP2 degradation. 

Results evidenced increased specificity of targeting system in MPs based models, with the 

efficacy of the nanoparticles being confirmed through increased cytotoxicity in the 3D model 

[110].  
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Figure 5. Fluorescence microscopy analysis of Doxorubicin distribution (green). Spheroids containing both CAF, 

MCF-7 cells and gelatin MPs (A,B) exhibited higher retention of Doxorubicin than spheroids treated with PLGA-PEG dox 

carrying non-targeting nanoparticles. Furthermore in spheroids formed by normal fibroblasts and gelatin microparticles 

alone, almost no release of doxorubicin seems to have taken place. Demonstrating the models potential for mimicking in 

vivo overexpression of metalloproteinases, and the delivery systems capacity for targeting the TME. Image adapted from 

Brancato and coworkers, 2017b [110]. 

Despite extensive implementation of microparticle-based scaffolds in tissue 

engineering applications, there is still a tremendous untapped potential for exploring these 

assemblies in the field of in vitro tumor modelling. In fact, most models containing MPs 

merely focus their utilization cell culture vehicles and facile retrieval from bioreactors. 

Production of finely tuned microparticle structures using advanced 3D printing and 

micropatterning technologies [116], or through the utilization of flow-focusing microfluidic 

devices [117], could allow to study the role of specific signaling cues. These novel 

approaches may shed light upon their specific roles and enhance our capacity to modulate 

the TME.  
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3.2. Microencapsulated 3D Tumor models  

Microencapsulation (ME) of cancer cells or spheroids is a promising strategy for 

tumor modelling that has received considerable attention in recent years [5]. ME can serve 

as a mean of representing spatially defined ECM-like scaffolds. This strategy allows cancer 

and stromal cells, in mono or cocultures, to grow and establish both cell-cell and cell-ECM 

interactions in a limited, yet, not fully isolated environment. Furthermore, the encapsulation 

of cancer cells, particularly in spherical-shaped, size-controlled microcapsules with semi-

permeable membranes, allows bidirectional diffusion of nutrients, oxygen, therapeutic 

compounds and low to medium molecular weight signaling molecules (e.g., growth factors 

and cytokines). In addition, ME can serve as a mean of preventing the penetration of high 

molecular weight objects such as antibodies and immune cells [118], having been originally 

employed as a tool for cell transplantation and immune isolation. In the field of tumor 

modelling, ME has been employed in a diverse set of ways that will be discussed in the 

following examples [15].  

The ability to restrain direct cellular contact makes microencapsulated 3D-MCTS an 

ideal model to study the diverse paracrine interactions occurring in the TME between the 

different cellular populations. This capacity was exploited by Yeung and coworkers in 2015 

[119], for the study of non-direct communication between neuroblastoma and bone-marrow 

derived mesenchymal stem cells. By using a collagen microsphere system, the authors 

demonstrated mesenchymal stem cells ability to promote neuroblastoma growth [119]. A 

study by Cui and coworkers [120], demonstrated the feasibility of easy cell recovery through 

thermal-dissociation of microcapsules incorporating HeLa cells which were readily 

recovered as aggregates under specific temperature conditions. Another study, by Huang and 

coworkers [121], reported a microcapsule model formed by gelation of a newly discovered 

peptide for encapsulation of MCF-7 cells. The methodology employed for microcapsule 

formation allowed cells to be encapsulated at physiological pH and temperature, in minimum 

essential medium (MEM), decreasing cytotoxic effects sometimes associated with 

microencapsulation processes [15,122]. Through shear stress, caused by pipetting, the gel 

was easily converted back to its liquid form allowing recovery of breast cancer cells [121]. 

Furthermore, cytotoxicity assays with cisplatin revealed that the models were suitable for 

drug-screening assays, by allowing free penetration of the drug. Such ability to isolate 
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specific cells further increases the capacity of studying genetic and phenotypic alterations in 

specific sub-sets of the cultured cells.  

Similarly to MPs, microcapsules can also serve as a technology for inclusion of tumor 

ECM components. Several studies demonstrated that for neuroblastoma [119], lung [123] 

and breast [118,119,124,125] cancer microencapsulated spheroids establish cell-cell 

signaling interactions similar to those observed in vivo. Moreover internal ECM matrix 

components deposition occurs inside the microcapsules, leading to increased resistance 

when compared to conventional 2D models. Such makes these 3D microencapsulated 

models possibly suitable for drug-screening assays and research in tumor drug resistance. 

Interestingly ME 3D-MCTS models can mimic for example both solid tumor density [125], 

cell-matrix interactions, and the mechanical and physical pressures resultant from 

uncontrolled expansion of tumor masses, which can promote cancer metastasis and lead to 

profile alterations in cancer cells [122]. In fact, as demonstrated by Guzman and coworkers 

[126], depending on the elasticity of the chosen microcapsule, these can allow the study of 

the invasive processes carried out for example by invasive breast cancer [126] and other 

epithelial tumors [127], recreating the breaching of the involving basement membrane layer 

that surrounds the primary tumor site. Furthermore, as elegantly demonstrated by Alessandri 

and coworkers, 2013 [122], microcapsules can be used to study the buildup of intra-tumoral 

pressure, decurrent from the increasing of tumor mass generating increasing pressure on 

adjacent tissues and conversely compressing the tumor [128]. 

Microcapsule-encompassed spheroids are assembled through several methodologies, 

the most common of which being generation of liquid-core structures through utilization of 

microfluidic devices and hydrogel reticulation methods [118,122,125,129–131]. Frequently 

assembled microcapsules present diameters in the order of a few 100 µm to 500 µm, an 

exception being the study produced by Pradhan and coworkers, 2014 [115]. The authors 

assembled Poly(ethylene glycol) diacrylate (PEGDA) milibeads through the usage of a 

single droplet emulsion technique in which the PEGDA droplets were crosslinked in oil 

solutions through a dual-photoinitiator system. The authors consistently created 

monodisperse milibeads with geometric diameters that ranged from 1671.24 ± 34.91 μm to 

3089.07 ± 55.58 μm (Figure 3) for encapsulating MCF-7 cells [115]. Moreover, the 

developed modelachieved good cell-cell and cell-matrix adhesion, proliferation and 
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establishment of extensive necrotic chore regions at day 5 of culture, accompanied by 

proliferative outer rims, akin to those characteristic of in vivo tumors (figure 4) [115]. 

 

Figure 6. Tumor mili-sized particles capable of recapitulating tumor conditions lead to the establishment of 

necrotic cores around the 5 day of culture. Live cells are stained with a green fluorescent marker, while dead ones appear 

in red. Difference between day 0 (A,B,C) and day 5 of culture (E,F,G). Ultrastructure of tumor mili-sized beads without 

(H) and with (D) encapsulated tumor cells, as observed through SEM. Image adapted from Pradhan and coworkers [115]. 

Microfluidic-based approaches use flow-focusing, T-junction chips or more complex 

channel designs [15,28] to generate droplets of cell suspensions mixed with pre-selected 

biocompatible polymers or hydrogels. In these strategies, spherification into globe-like 

structures is achieved by exposure to a crosslinking agent, such as calcium bath solutions or 

UV light, which triggers gelation and produces microcapsules containing the desired cells. 

Encapsulated cells assemble overtime to form matrix-encapsulated spheroids capable of 

establishing both cell-cell and cell-matrix interactions [132]. An excellent example of such 

application is the former mentioned study by Alessandri and coworkers, 2013 [122]. In this 

study, a model of colon carcinoma based on murine CT26 colon cancer cell line was 

assembled through a simple and highly reproducible method, based in a microfluidic co-

extrusion chip assembled by co-centering three glass capillaries extruding sequentially cell 

solution, calcium free solution and alginate solution into a calcium bath [122]. The authors 

were able to assemble highly elastic spherical microcapsules that acted as quantitative 

mechanical sensors to measure the internal pressure resultant from the expanding tumor 

cells. Moreover, the researchers found that peripheral cells inserted in the encapsulated 

model readily escaped the spheroid environment, while the spheroid invasive profile was not 

present in non-confinement 3D models (figure 5) [122]. 
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Figure 7. Schematic of the microfluidic chip for production of globe-like microcapsules. (A,B) Schematic of the 

process used to produce alginate microcapsules, and confocal micrographs after staining with dextran (B). CT26 cultured 

in alginate matrix (E,F) and in free-spheroid form (C,D) 3D models were cryosectioned and analyzed through 

immunolabeling DAPI (blue), KI67 (magenta), and fibronectin (red). Magnification confocal microscopy image of the 

surface of a fixed spheroid after staining with phalloidin-Alexa 488 (Hot LUT, cyan) (H). After reaching confluence both 

confined and control spheroids (G) were inserted into a collagen based scaffold to access invasion capacity, after 48 h 

cultured cells in confined models started to invade collagen matrix while freely formed spheroids retained their spherical 

shape (I). Scale bars: B=50 μm; C, D, E, and F=100 μm; G=50 μm; H=10 μm; I=100 μm. Adapted from Alessandri and 

coworkers [122] with permission from Proceedings of the the National Academy of Sciences of the United States of 

America (PNAS). 

Additional approaches to microcapsule production consist in the utilization of coaxial 

electrospraying based encapsulation, or alternatively aerosol based microencapsulation 

[131]. Leong and coworkers [131], demonstrated the feasibility of microencapsulating 

keratocytes (HaCaT) and cancer cells of oral squamous cell carcinoma (ORL-48) inside 

alginate microcapsules polymerized in a calcium bath. Produced microtissues were capable 

of self-arranging into spheroids inside the alginate microcapsules, remaining viable until 

after 16 days of culture. Other commonly employed techniques for microcapsule production 

involve simple procedures such as emulsion technique-based microencapsulation, or syringe 

pump extrusion and micromolding [15]. The work developed by Lee and coworkers, 2011 

[130], is an excellent example of the latter technique. In this study, the authors used 

diffusion-mediated encapsulation, performed in PDMS-micromolds where hepatocarcinoma 

spheroids were previously assembled. Such spheroids were subjected to posterior deposition 
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of encapsulating alginate hydrogel through nano-porous membranes that allowed control 

over deposition rates of crosslinking agents [130]. Lastly, 3D bio-printing has also been used 

by Xu and coworkers, 2011 [133], to produce HTP automated encapsulation of ovarian 

cancer cells and fibroblast coculture droplets in Matrigel™. This approach allows the study 

of coculture interactions in diverse settings due to high control over initial cell density and 

spatial arrangement of patterned structure of the model.  

Identically MPs, microcapsules can be used as a means of incorporating specific 

ECM mimetic components allowing the establishment of in vivo like interactions between 

internalized cells and exterior membrane as was shown by Xu and coworkers, 2010 [123]. 

In this study, the authors encapsulated A549 cells in a gelatin and glycosaminoglycans 

matrix modified with the addition VEGF, bFGF and a laminin peptide to improve cell 

adhesion, in an attempt to substitute commonly used Matrigel™ and establishing an 

improved xenograft model using enriched 3D encapsulated lung cancer cells in vivo. Results 

showed that the obtained model was comparable to Matrigel based 3D-MCTS xerographs 

while allowing complete control over initial matrix composition [123]. 

4. Conclusions 

The need for expediting drug research both at the preclinical validation level and 

discovery of novel targets is crucial for the management of currently incurable diseases such 

as cancer. Research regarding development of novel 3D in vitro models is increasingly 

contributing to this goal by providing innovative platforms capable of efficiently, 

predictively, and robustly mimicking the complex in vivo reality of the TME in what regards 

its cellular and ECM components. Among the vast array of 3D cell culture methodologies 

that have been developed to date for in vitro tumor modeling, 3D spheroid based models are 

the most promising regarding production of high throughput-affordable tumor mimetics. 

Microencapsulation and microparticle-based production technologies are capable of 

recreating complex cell-cell, mechanical and physiological characteristics that characterize 

in vivo solid tumors. Such are highly valuable characteristics since standard 3D spheroid 

models lack correct ECM representation and confinement of soluble mediators (e.g., growth 

factors, cytokines) in controlled environments such as those found in human tumors niche.  

Overall, there is a tremendous potential for improving 3D spheroid-based drug 

screening platforms by combining the knowledge acquired in scaffold-based methodologies 

with microencapsulation or microparticle inclusion techniques to form globe-like 
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microtumor constructs [15,16]. Such cell-in-globe approaches have the potential to mimic a 

plethora of features such as mechanical cues upon cancer cells proliferation into 

microcapsules walls, as well as specific ECM configurations. Moreover, microencapsulation 

provides the means of studying in detail both direct and indirect cell-cell and cell-matrix 

interactions found in the TME. A deeper knowledge about such crosstalk and events will 

open the opportunity to develop more advanced therapies that inhibit the process of tissue 

invasion and metastasis. From a therapeutic perspective metastasis inhibition will open a 

new window of opportunity to increase patients survival rates past 5 years. 

 In a future perspective, the nature of 3D spheroid models and the unique features 

provided by microencapsulation and microparticle technologies could also be combined with 

dynamic bioreactor-based culturing technologies so as to provide an added layer of in vivo-

like conditions. Moreover, further improvements to cell-in-globe like 3D models are 

expected with their combination with advanced organ-on-a-chip platforms. 
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2. Aims  

The aim of this thesis was the development of an in vitro 3D heterogenic model of 

lung cancer capable of correctly reproducing complex populational interactions present in 

vivo. In the hope of engineering a model that would allow to further diminish the gap 

between results obtain in in vitro and those obtained in the clinical setting. Thus, speeding 

up therapeutic compounds screening and possible novel therapies discovery. Thus, the 

specific aims of this master thesis were the following: 

 

• Synthesis and characterization of a PCL MP-based scaffold in a size range of 60-100 

µm; 

• Biofunctionalization of produced MPs surface by layer-by-layer adsorption of 

cationic Poly-L-Lysine and anionic Hyaluronic Acid polyelectrolytes; 

• Characterization of coated layer-by-layer modified microparticles (LbL-MPs); 

• Inclusion of functionalized LbL-MPs into 3D-MCTS spheroid models containing 

combinations of A549, HF and BM-MSC populations for production of in vivo 

similar MCTS; 

• Analysis of LbL-MPs cytotoxic potential in diverse co-culture settings; 

• Characterization of 3D-MCTS size, circularity, morphology and ability to 

recapitulate key tumor features formation over a culture period of 7 to 14th days; 

• Analysis of 3D-MCTS internal organization and collagen deposition via histological 

staining and fluorescence microscopy; 

• Evaluation of BM-MSC organization inside the 3D-MCTS, and of their capacity to 

remain in culture over 14 days; 

• Analysis of co-culture and microparticle influence in overall chemotherapeutic 

resistance of 3D-MCTS to Doxorubicin. 
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3. Materials and Methods 

3.1. Materials 

Polycaprolactone (PCL; Mn: 80 000), Polyvinyl Alcohol (PVA; MW: 30 – 70 KDa) 

and Poly-L-lysine hydrobromide (PLL; MW: 30 000-70 000 Da) were acquired from 

Laborspirit (Loures, Portugal) produced by Sigma Aldrich. Chitosan chloride (MW: 50-150 

KDa) was acquired from Novamatrix (Sandvika, Norway). Hyaluronic acid sodium salt 

polymer (MW: 80 – 100 KDa) was obtained from Carbosynth Limited (Berkshire, United 

Kingdom).  

Cell culture materials including T-75 and T-175 cell culture treated T-flasks (CN 

83.3911.002 and 83.3912.002); 96-wells flat-bottom sterile polystyrene suspension plates 

were obtained from (Starstedt, S.A., (Nümbrecht, Germany). D- Phosphate buffered saline 

(CN: 55-031-PCR) was obtained from Corning (Diagnostica Longwood; Spain); All the 

following reagents cell culture media and supplements, were purchased from Thermo Fisher 

Scientific Europe, namely: Ultra-Low-Adhesion (ULA) round-bottom 96-wells plates (CN: 

10023683); Trypan Blue (CN: 15250061), Fetal Bovine Serum (FBS; E.U. approved, South 

America origin), Dulbecco's Modified Eagle Medium-High Glucose (DMEM-

HG),(CN:11995065 Ham's F-12K Kaighn's Medium (HAMs-F12), Alpha Modified Eagle’s 

Medium (α-MEM), (CN: 12561056); TrypLE™ Express (CN: 12605010); 

Antibiotic/antimitotic (ATB) solution (CN: 15140122). containing Penicillin-Streptomycin 

(10000 units/mL of penicillin and 10000 µg/mL of streptomycin.). For in vitro models 

characterization,Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488 (CN: 

A-11029); Collagen I Antibody (5D8-G9) (CN: MA1-141); E-cadherin antibody (67A4), 

Calcein-AM, (CN: C3099); Propidium Iodide (PI) (CN: P1304MP) were all purchased from 

Thermofisher Scientific Inc (Alfagene, Portugal). Anti-human CD44-FITC (CN: 338804) 

was purchased from Taper (Grupo Taper S.A., Lisboa Portugal). All other reagents and salts 

were of analytical grade and used without further purification. 

3.2. Microparticles Production  

Few works have so far reported the use of microparticles for the assembly of 3D-

MCTS. In this thesis polycaprolactone microparticles with sizes ranging from 63 µm to 100 

µm were explored, with the rationale that they provide a sufficiently large surface area to 
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promote cells adhesion. Moreover, it was hypothesized that hyaluronan (HyA) coated MPs 

would improve cell attachment via HyA interaction with key cell surface receptors such as 

CD44 and RHAMM that are generally overexpressed in cancer cells[81]. This size was also 

selected to prevent microparticles cellular internalization and allow reproducible and 

cohesive 3D spheroids assembly. Polycaprolactone (PCL) microparticles were selected due 

to their extensive use as microparticle-based scaffolds for precisely engineered cellular 

aggregates [82,83]. Moreover, PCL has been extensively used as a biomaterial for 

biomedical applications due to its biocompatibility, low cost, and slow biodegradation rate 

[84].  

Electrospraying and microfluidic based techniques were initially used by adapting 

experimental conditions previously reported in literature [81–84], to attempt the production 

of polycaprolactone monodisperse particles in the desired size. Compared with emulsion-

based methods, electrospraying allows the manufacture of highly monodisperse micro and 

nano particles[88]. Being somewhat a more complex technique, optimization of the diverse 

parameters associated with microparticle production through electrospraying methodologies 

was attempted. Variations in: (i) PCL (w/v) %, (ii) tip-to-collector distance (TTC), (iii) 

droplet forming needle gauge, (iv) flow-rate of PCL solution, (v) applied voltage, (vi) 

recovery method were performed (supplementary table 2). The variation of either electric 

field charge, TTC or dispersing needle gauge resulted in the production of smaller particles. 

On the contrary a higher flow rate, polymer concentration and consequently viscosity of 

solutions resulted in particles with higher sizes. However, independently of parameters 

applied for particles manufacture particles recovery was challenging. Herein, aluminum foil 

or PVA solutions of varying concentrations and volumes with or without stirring were used 

to collect PCL particles. However, the recovery from aluminum foil was difficult, with low 

yields being obtained. The use of PVA solved this limitation by the produced microparticles 

did not evidenced the desired size or spherical shapes. Particles size dispersion were in the 

order of nanometers to 10 µm, with the maximum diameter obtained having been of 81 µm 

(supplementary table 3). Overall the produced MPs exhibited surfaces with rough irregular 

patterns and varying shapes (Figure 4). Consequently, electrospraying was disregarded in 

favor of microfluidics and emulsion production methodologies, which allowed higher rates 

of productions and manufacture of particles closer to the desired specifications. 
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Figure 4. SEM analysis of MPs produced through electrospraying techniques during optimization steps of MPs 

productions, respectively formulation A13, A12, A9, A17 (A, B, C, D). Flattened morphology might result from collision 

with recovery aqueous phase while the droplet still contained high amounts of solvent. 

Microfluidic based techniques allow the production of more monodisperse 

formulations through the use of extremely controlled flow-focusing chips. Microfluidics 

versatility has been explored in the context of cell encapsulation, establishment of dynamic 

3D in vitro models[89], and also for the manufacture of nano- and microparticles for drug 

delivery and tissue engineering applications having been recently reviewed by several 

authors[90–92]. A variety of channel designs can be imprinted into microfluidic chips. 

Control over channel dimensions and chip materials (e.g., polydimethylsiloxane or quartz) 

can dictate particle production speed, reproducibility and yield[93,94]. Microparticles 

produced through microfluidics were assembled by channeling oil (Dichlomethane – DCM) 

and aqueous phase (PVA) into a flow-focusing quartz microfluidic chip (Figure 5 (B)), under 

a specific flow rate that resulted in a dripping regime of the oil phase into monodisperse 

droplets. Such pure PCL-DCM oil droplets were then dried under reduced pressure what 

resulted in the fabrication of MPs with relatively low size dispersity (figure 5) and also 

spherical shapes. 
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Figure 5. PCL MPs produced with hydrophobic microfluidic 3D flow focusing quartz chip (B) presented an 

average size of 20-40 µm, with formulation M3 presenting the closest approximation to the desired size. Formulations M1 

(C) and M2 (D), serve as examples to demonstrate the elevated monodispersity obtained using microfluidic chips. Contrary 

to emulsion obtained MPs, microfluidic obtained MPs presented an elevated degree of similarity, with the maximum 

perceptual variation coefficient being of 22.91% for formulation M3 being relatively closer to monodispersity. 

This promising preliminary data rendered microfluidics ideal to produce the desired 

microparticles. However, difficulty in stabilizing fluxes when testing new formulations 

resulted in channel clogging due to PVA-PCL interaction in the channels when, making the 

optimization of new formulations a laborious process. Although microfluidic based 

approaches proved efficient regarding size and shape of MPs the time-consuming 

optimization required to produce relatively small quantities of MPs and the fact that punctual 

destabilization of the microchip could either lead to blocking and consequently a stop in 

production, led to the choice of emulsion based techniques for microparticles production and 

for the manufacture of particle based 3D tumor models.  

Ultimately PCL microparticles where produced by using the oil-in-water (O1/W1) 

emulsion-solvent evaporation technique. Diverse parameters of the(O1/W1) emulsion where 

varied, namely: (i) PCL concentration in the organic solvent-based oil phase (O1); (ii) PVA 

surfactant concentration in aqueous phase (W1); (iii) volume ratio of aqueous to organic 



 

 

MATERIALS AND METHODS 

 

80 

 

phase; (iv) magnetic stirring speed, (v) distance of oil phase dispersing needle to the surface 

of the aqueous phase in the beaker. A summary of the parameters modified for the 

formulation of different microparticles is provided in Supplementary Table 1.  

For laboratorial scale production of different microparticles, the oil phase (O1) was 

comprised by a 5 % (w/v) PCL (MW: 80,000 g.mol-1) solution, dissolved in DCM. The 

aqueous phase (w) consisted of a 0.5 % (w/v) PVA solution (MW: 30,000-70,000), that was 

prepared from a stock solution of PVA 5 % (w/v) previously prepared by dissolving 50 g of 

PVA in 1 L of distilled water under stirring (700 rpm) at 80 ºC, for at least 4-5 h until 

complete dissolution of the polymer. 

To form the water-oil emulsion 8 mL of the PCL 5 % (w/v) solution (O1 phase) were 

dispersed into 150 mL of PVA 0.5 % (w/v) solution (aqueous phase) stirred (800 rpm) in a 

beaker with a maximum capacity of 300 mL. To decrease microparticles size polydispersity 

and batch-to-batch variability a compressed air, piezoelectric-based, pumping system (OB1 

MK3 – Elveflow ® Microfluidic Flow Control System) was used to disperse the oil phase 

from a 22-gauge blunt tip needle, by using an air pressure of 5 bar. The PCL solution was 

ejected directly into the center of the stirring aqueous phase from a fixed height of 12 cm 

(measured from the needle tip to the base of the stirring plate), Figure 6. To facilitate solvent 

evaporation the excess volume of W1 phase was carefully removed to a volume of 50 mL. 

The microparticle-containing solution (reduced to 50 mL) was then placed under horizontal 

stirring at 170 rpm during at least 8 h at room temperature (RT) inside a fume-hood to 

promote solvent evaporation and PCL microparticles assembly. Following solvent 

evaporation, any residual PVA on the PCL microparticles solution was washed 3 times by 

using vortex-centrifugation steps (1000 rpm, 5 min, RT).  

 

Figure 6. Schematic of microparticle production and sieving process. A needle with a 21 gauge was used. 
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The particles were then sieved through stainless steel sieves (VWR Portugal, CN: 

510-0715 and 510-0710) with decreasing sizes: (i) 100 µm, and (ii) 63 µm mesh. After 

sieving, PCL microparticles were recovered by centrifugation (1500 rpm for 5 min, RT), and 

frozen at -80 ºC overnight. The samples where then freeze dried at (-86 ºC, 0.076 bar) for a 

minimum period of 48 h. All particles were stored in a moisture free environment until use. 

3.3. Bioinstructive microparticles production via Layer-by-Layer 

Sieved microparticles in the size range of 63-100 μm were then subjected to plasma 

treatment, with the objective of modifying particle surfaces making them more hydrophilic 

due to plasma species adsorption. Thus, facilitating electrostatic self-assembly of the initial 

Poly-L-Lysine layer during the initial layer-by-layer procedure. For this purpose, 200 mg of 

previously sieved microparticles where placed in a sterile beaker covered with aluminum 

foil. The samples were then inserted in the vacuum chamber of a plasma generating 

equipment (ATTO, Barcelona, Spain). Plasma treatment was performed by using 

atmospheric air as the operating gas. The compartment was then sealed with vacuum created 

by an air pump, being then subjected to plasma treatment in air, charged at 30 V at a pressure 

of 0.4-0.6 mbar for 5 min. To guarantee that the entire surface of the particles was subjected 

to plasma treatment the compartment was slowly re-pressurized and the container with the 

particles was stirred, repositioned inside the cylinder and subjected to plasma treatment. This 

procedure was performed 3 times. 

A layer-by-layer (LbL) supramolecular electrostatically driven surface 

functionalization with positive and negatively charged polymers treatment was performed 

to functionalize microparticles surface through self-assembling of electrostatic bilayers of 

positively charged PLL (MW: 30 000-70 000 Da) and negatively charged hyaluronic acid 

(HyA) (MW: 80 000 – 100 000 Da) as reported in the literature with minor modifications  

[86]. This technique has been extensively used by our research group to functionalize 

surfaces and assemble free standing multi-layered films for tissue engineering and 

regenerative medicine applications [87]. In this thesis the technique was used to increase 

cellular adhesion to the microparticles as well as providing an ECM similar environment 

capable of stimulating possible the establishment of drug resistant phenotypes in cancer cells 

due to the interactions with low-medium molecular weight HyA which as previously shown 

stimulates CD44 and RHAMM receptors having leading to MDR appearance in several 

cancers [34,88]. For the LbL-based surface functionalization a maximum of 250 mg of 
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plasma treated PCL MPs (LbL-MPs) with a negative surface charge were immersed in 20 

mL of an aqueous solution of PLL (1 mg/mL) for 10 min, then recovered and washed in 

distilled water for 5 min. 

 

Figure 7. Plasma treatment and Layer-by-layer treatment scheme of PLL-HyA layer deposition onto Plasma 

treated microparticles. 

Afterwards before being submersed in an aqueous solution of HyA (1 mg/mL) for 10 

min, and re-washed for 5 min. This process was repeated 3 times to allow the formation of 

3 PLL-HyA bilayers. Washing and layer deposition in polymer containing solutions were 

performed under stirring in a horizontal shaker (320 rpm, RT) to assure homogenous 

distribution of immersing solution. All solutions were sterilized by filtration prior to LbL 

(Sterile cellulose acetate syringe Filter 0.2 µm, Ø = 25 mm, VWR CN: 514-0061).  

3.4. Zeta Potential Analysis of Polyelectrolyte Polymers Deposition 

Zeta potential measurements were used to verify the efficacy of LbL polyelectrolyte 

layers deposition in MPs surface. This analysis was performed in pristine PCL MPs and at 

each consecutive LbL deposition step. All measurements where performed in a Zetasizer 

Nano ZS (Malvern, Worcestershire, UK), An extension of the Henry Equation  applying the 

approximation of Smoluchowski was used for performing the measurement as described 

elsewhere (ISO 13099-1:2012 [89]). Duration of the equilibration of the sample in Nano ZS 

was set at 100s. Three measurements were achieved consecutively on the same sample with 

no delay between measurements. The number of runs performed per measurement was set 
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to a minimum of 10, maximum of 100, while selection of applied voltage and the selection 

of attenuation were set to automatic. Zeta potential analysis was performed before layer-by-

layer in simple MPs, and at each consecutive layer-by-layer deposition step in LbL-MPs. 

Measurements were performed at 25 ºC. The ZetaSizer software was used to record and 

process the electrophoretic mobility data (v. 7.04). 

3.5. Microparticles characterization 

Microparticles morphology and particle size and was evaluated by optical contrast 

light microscopy (Primostar, Carl Zeiss, Germany). Particle size analysis was performed 

after PVA washing, after sieving and after layer-by-layer procedures. Acquired images 

where analyzed using open-source software ImageJ [90]. the size distribution of each 

microparticle formulation through area analysis by using a supervised algorithm that 

analyzed a minimum of 300 particles.  

Scanning Electron microscopy (SEM) imaging was used to analyze microparticle 

morphology and surface topography. For SEM analysis particle samples were dispersed in 

deionized water and drop-wise added to an aluminum stub containing a glued tissue culture 

treated polystyrene insert. The samples were then dried at 37 ºC overnight, sputter coated 

with gold/palladium and observed in a Hitachi S-4100 scanning electron microscope 

(Hitachi, Japan) operated at a voltage in the range of 15-25 kV and at various magnifications.   

3.6. Cell Culture 

All cells were manipulated in aseptic conditions and cultured at 5 % CO2, 95 % 

atmospheric oxygen, in humidified, temperature controlled incubators at 37 ºC. Cells where 

maintained in T-75 and T-175 cm2 cell culture flasks (Sarstedt, S.A. 83.3911.002 and 

83.3912.002), with cell culture media exchanges every 3-5 days. The non-small cell lung 

carcinoma cell line A549 (ATCC CRM-CCL-185™) was cultured in HAMs-F12 medium 

supplemented with 10 % (v/v) FBS and 1 % (v/v) ATB. The human primary dermal 

fibroblasts cell line (HF) (ATCC®-PCS-201-012™) were cultured in DMEM-HG 

supplemented with 10 % (v/v) FBS and 1 % (v/v) ATB. Adult Bone Marrow-Derived 

Mesenchymal Stem Cells (BM-MSCs) (ATCC®-PCS-500-012™) were maintained in α-

MEM supplemented with 10 % (v/v) FBS and 1 % (v/v) ATB. All cells where detached from 

culture flasks upon attaining approximately 80-85 % confluency by using TrypLE™ Express 
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Enzyme (1X) detaching reagent. Throughout all studies performed in this thesis BM-MSCs 

were used from passages 3 to 7 to assure stemness properties maintenance.  

3.7. 3D In vitro lung tumor models assembly via Liquid-Overlay Technique 

Homotypic monoculture 3D MCTS with A549 cells, heterotypic co-culture 

spheroids: A549-HF and A549-MSCs cells, or tricultures: A549-HF-MSCs cells, were self-

aggregated at different cell ratios (Table 1, section 4.1), by using the liquid-overlay 

technique, also known as forced-floating methodology. To form 3D MCTS cells were 

initially cultured in ULA round bottom 96-wells plates. Prior to each assay, LbL-MPs were 

sterilized under UV light for a minimum of 30 min, with particles being resuspended in 

HAMs-F12 cell culture medium supplemented with 10 % FBS and 1 % ATB. Cells were 

trypsinized using TrypLE™ Express after which cells were resuspended in the respective 

culture media, stained with trypan blue 0.4 % (w/v) (Thermo Fisher Scientific, CN: 

15250061) and counted using an hematocytometer. Multiple or single-cell suspensions 

composed by the different cell populations to culture were then created. Each cell suspension 

was prepared to guarantee a maximum volume of 150 μL of culture medium per well. 

Afterwards cells were left in culture or incubated with LbL-MPs in the respective wells. 

Prior to each assay, LbL-MPs were sterilized under UV light (30 min) and resuspended in 

complete HAMs-F12 cell culture medium. To produce different 3D in vitro models that 

would better recapitulate the tumor microenvironment cellular heterogeneity different 

parameters were manipulated, namely: (i) the cellular concentrations per well, (ii) the cell-

to-cell ratios between malignant and mesenchymal/endothelial cells and (iii) the cell-to-

particle ratios. The specific ratios used for each condition are summarized in (Table 1, 

section 4.1).  

3.8. - 3D tumor microtissues characterization 

3D in vitro lung tumor models morphology, growth and circularity was analyzed 

overtime via optical contrast microscopy by using an inverted microscope (Primovert, Carl 

Zeiss, Germany). Images of 3D-MCTS were acquired on specific timepoints (days 1, 7 and 

14). A minimum of 6 spheroids were analyzed per condition per time point. Image analysis 

was carried out by using the open-source software ImageJ (Fiji package) and a supervised 

algorithm based on the code developed by Ivanov and coworkers.  
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For SEM analysis spheroids were processed as reported in the literature [47,91,92]. 

In brief, 3D MCTS with and without LbL-MPs were removed from culture media and 

washed with D-PBS, fixed in formaldehyde 4% (v/v) solution in D-PBS, at 37 ºC for 2 h. 

The samples were then subjected to dehydration with graded ethanol concentrations (25 %, 

50 %, 75 %, 90% (v/v)), for 20 min. All samples were then carefully mounted in aluminum 

stubs by using double sided adhesive carbon tape (Agar Scientific, Essex, United Kingdom) 

and sputter coated with gold/palladium. All spheroids were being imaged in a Hitachi S-

4100 scanning electron microscope (Hitachi) operated at a voltage in the range of 15-25 kV 

and at various magnifications. 

3.9. - Cell viability assays 

The cell viability and necrotic core formation of different homotypic and heterotypic 

3D in vitro lung tumor microtumors (3D MCTSs and 3D MCTs LbL-MPs), were analyzed 

at specific timepoints (7th and 14th days) through different methodologies, through different 

methodologies, namely: (i) Non-radioactive Alamar Blue® Cell Viability Assay, (ii) 

CellTiter 96® Aqueous One Solution Cell Proliferation Assay (MTS), and (iii) Live/Dead 

assay 

Alamar blue was used to access 3D tumor models viability during the initial steps of 

homotypic and heterotypic mono-, bi- and triple co-cultures optimization. Both assays were 

performed in accordance with manufacturers guidelines. The only exception was Alamar 

Blue incubation time, which was performed overnight instead of the standard 2-4 h period. 

Alamar Blue resazurin reduction to resorufin was determined by fluorescence measurements 

(λex: 540 nm, λem: 600 nm). All measurements where performed in a Synergy HTX 

microplate reader by using a 96-well black-clear bottom plate (VWR, CN: CORN3915). 

To evaluate 3D MCTS necrotic core formation, spheroids were labelled with Calcein-

AM (Cal-AM) (4 μg/mL) and Propidium Iodide (PI) (10 μg/mL) for 30 min at 37 ºC, 

according to literature reports for 3D models [47]. Following incubation, the different 3D 

tumor models (spheroids and 3D microparticle-assembled microtissues) were washed 3 

times with D-PBS and either imaged immediately by fluorescence microscopy, or fixed in 4 

% formaldehyde (v/v) for posterior observation.  

3.10. 3D-MCTS Characterization by Widefield and Confocal Laser 

Scanning Fluorescence Microscopy 
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Collagen I and E-cadherin expression were analyzed at specific timepoints (7 and 14 

days) through immunocytochemistry. This analysis was performed to better understand 

phenotypical and morphological changes observed over culture in the diverse 3D-MCTS, 

resulting from the inclusion of microparticles in the 3D in vitro tumor models and from 

diverse coculture conditions. For immunocytochemistry analysis spheroids were fixated in 

formaldehyde 4 % (v/v) in D-PBS at 37 ºC for 4 h or overnight, carefully passaged for a new 

plate using a sterile Pasteur pipette, washed and incubated for 1 h with blockage solution 1 

% BSA in D-PBS at 4 ºC, washed and incubated with the primary antibody overnight at 4 

ºC, washed and if necessary incubated with secondary antibody for 1 h at room temperature 

otherwise immediately visualized in a fluorescence or confocal microscope. All washes were 

performed in D-PBS and repeated 3 times before each step. Image acquisition was performed 

in. Analysis of acquired images was performed in Zeiss Zen Black software (2017) and in 

Zeiss Zen Blue software (2017). 

3.11. Histological analysis 

Histological analysis of dual co-culture (A549-HF) and triculture (A549-HF-MSCs) 

of 3D MCTS and 3D MCTS cultured in LbL-MPs was performed in order to analyze 

microtumors internal organization and collagen deposition. In brief, 3D-MCTS with and 

without LbL-MPs were removed from culture media and washed with D-PBS, fixed in 

formaldehyde 4 % (v/v) solution in D-PBS, at 37 ºC for 2 h. The samples were then subjected 

to dehydration with growing concentrations of ethanol (25 %, 50 %, 75 %, (v/v)), for 20 

min, per condition. Afterwards, 3D microtumors were stored at 4 ºC in ULA plates. For 

histological analysis the different spheroid samples were imbedded into HistoGelTM 

(previously heated to 70 ºC in a water bath for 2 h), and then rapidly cooled into hardening, 

and then processed for standard paraffin fixation. Paraffin blocks containing 3D MCTS were 

sliced into 5 μm thick samples and stained with: (i) Hematoxylin and Eosin (H&E) for 

internal structures morphological analysis, and (ii) Masson’s Trichrome for possible 

evaluation of collagen deposition. Histology slides were then analyzed by using an inverted 

optical contrast light microscope (Primovert, Carl Zeiss, Germany). 

3.12. Flow cytometry analysis 

The effect of hyaluronan bioinstructive LbL-MPs in 3D MCTS CD44 expression was 

analyzed by flow cytometry. For this analysis, 3D MCTS and 3D MCTS LbL-MPs with 7 
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days of culture were dissociated by incubation in a 1:1 mixture of Accumax® and TrypLE™ 

Express for 30 min, at 37 ºC. After this incubation, spheroids were disrupted by gentle 

pipetting and incubated in HAMs-F12/10 % FBS/1 % ATB for 30 min. The resulting single 

cells suspensions were then recovered by centrifugation (300 g, 5 min, 37 ºC). The different 

samples were incubated with anti-human CD44-FITC conjugate antibody (5 µl/ml in PBS) 

for 30 min, at 37 ºC. Single cells were then recovered by centrifugation and washed with D-

PBS for 3 times. In addition, 2D monocultures of A549, HF and MSCs were also analyzed 

for their CD44 expression. Prior to FCM analysis all sampled were sieved through 40 µm 

cell strainers. Flow cytometry analysis was carried out in a BD Accuri C6 flow cytometer 

(BD Bioscience, San Diego, CA, USA) were a total of 5x103 events per sample were 

acquired in cells assigned ROI and recorded in the FL-1 channel (FITC). Flow cytometry 

data was processed and analyzed in FCS Express software (v. 6, trial license).  

3.13. Chemotherapeutic drug cytotoxicity screening in 3D MCTS 

platforms 

3D-MCTS containing or not LbL-MPs or non-treated MPs (NT-MPs) were cultured 

for 7 to 14 days on HAMs-F12 medium. Upon achieving the desired culture time, 3D-MCTS 

were incubated with Doxorubicin, (also known as Adriamycin), a pharmacological 

compound commonly used in the clinical setting for combinatorial chemotherapy of solid 

tumors, used in the context of NSCLC in combination with other pharmacological 

compounds such as paclitaxel, docetaxel, irinotecan, topotecan, and gemcitabine [93,94]. 

Doxorubicin is a member of the family of anti- biotic anthracyclines, acting as an DNA 

intercalating agent that impedes topo isomerase II action. This therapeutic compound is beset 

by severe dose-limiting toxicity, poor target selectivity susceptibility to MDR mechanism 

development being a substrate for multidrug-resistant proteins [94]. Having been chosen by 

its susceptibility to the action of MDR P-glycoprotein efflux pumps, doxorubicin was 

incubated in spheroids at growing concentration 0; 0.7; 7; and 17 µM, over period of 72 h to 

120 h. Cellular viability in 3D assays was measured using a luminescent based assay that 

quantifies present ATP (Cell Titer Glo™). CellTiter-Glo ® reagent was added, in accordance 

with stipulated protocol, to each well in a 1:1 reagent to medium ratio. The luminescence 

signal was read after a total of 30 min incubation, of which 5 min incubation were under 

vigorous agitation on a horizontal shaker at 400 rpm, and 25 min, at RT under no agitation. 

Luminescence was read in opaque white plates (Pierce 96-Well Polystyrene Plates, White 
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Opaque - Thermo Fisher Scientific). In addition, cell viability was also measured through 

MTS used for IC50 analysis in 2D in vitro monotypic and heterotypic co-culture. MTS data 

was acquired through absorbance readouts of the formed soluble tetrazolium salt (λ=490 and 

λ=650 nm). 

 

3.14. Statistical Analysis 

All statistical analysis was performed using Graphpad Prism 6 Software (Prism 6™). 

One-way analysis of variance (One-ANOVA) and Two-way analysis of variance (Two-

ANOVA) with Holm-Sidak’s post-hoc test. A minimum of 6 replicates was used for 

statistical analysis. Unless otherwise indicated, p < 0.05 was considered statistically 

significant 



 

 

RESULTS AND DISCUSSION 

89 

 

 

 

 

 

 

4. Results and Discussion 

 

 

  



 

 

RESULTS AND DISCUSSION 

 

90 

 

 

 

 

 

 

 

 

4.1. Bioinstructive Microparticles for Self-Assembly of Mesenchymal Stem 

Cell 3D Tumor Spheroid Hybrids 

 

 

 

 

 

 

 

 

 

 

 

 

Subchapter 4.1. 

 

This subchapter is based on the article entitled 

“Bioinstructive Microparticles for Self-Assembly of Mesenchymal Stem Cell 3D 

Tumor Spheroid Hybrids” 

Manuscript in preparation 
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Abstract 

3D multicellular tumor spheroids (3D-MCTS) that mimic the tumor 

microenvironment in vitro are gaining increased interest as platforms for screening 

innovative anti-cancer therapeutics. However, to date few models have explored the 

combination of cancer-ECM components with tumor-modulatory mesenchymal stem cells 

(MSCs). Herein we engineered 3D lung 3D-MCTS that mimic the existence of tumor 

stromal and ECM components by combining heterotypic Fibroblasts/MSCs/A549 cancer 

cells triple co-cultures with bioinstructive hyaluronan-functionalized microparticles (HyA-

MPS) for the first time. Microparticles inclusion provided anchoring hotspots that driven 

cells self-assembly into 3D-MCTS when cultured in non-adherent substrates. This approach 

increased the expression of CD44 in 3D models and recapitulated the effect of native tumor-

ECM. The obtained results demonstrated that the size and morphology of hybrid 3D 

spheroids was reproducible and that triculture microtumors have a characteristic necrotic 

core. Interestingly, cell tracking assays demonstrated that MSCs spontaneously migrate 

within different microtumor regions along time, suggesting a dynamic crosstalk with cancer 

cells and stromal fibroblasts. Furthermore, bi-culture A549-MSCs cell-particle hybrid 3D 

spheroids have shown a higher resistance to Doxorubicin (Dox) than their 3D control 

spheroids. On the other hand, triculture 3D hybrid and standard triculture spheroids 

demonstrated a similar resistance to the drug. Overall, such findings evidence the importance 

of fibroblasts and MSCs combination with cancer cells and should be considered in 

chemotherapeutics performance evaluation. In addition, the developed bioinstructive 

microparticle testing platforms showed potential to be used as an enabling technology to 

include different tumor ECM components in 3D in vitro models in the future. 

 

Keywords: 3D Tumor Models, Drug screening, Lung Cancer, Mesenchymal Stem Cells, 

Bioinstructive Microparticles 
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1. Introduction 

Presently, the in vitro pre-clinical validation models recommended by regulatory 

agencies to screen for candidate anti-cancer therapeutics are mainly based on the use of 2D 

cancer cell monolayers and in vivo animal models [1,2]. Both of these are increasingly seen 

as inadequate approximations of human tumors and or their complex microenvironment 

[3,4]. 2D monocultures lack the ability of correctly recapitulating spatial organization, cell-

cell and cell-matrix interactions, biochemical cues and TME heterogeneity found in patients 

[5]. While animal models are recognizably expensive, laborious and ethically controversial 

alternatives, often lacking correct representation of the human tumor stroma [6,7]. Improved 

representation of the TME in PCVMs is thus necessary step for improving basic cancer 

biology research and drug-screening procedures. 

Three-dimensional (3D) multicellular tumor spheroid (3D-MCTS) currently receive 

an increased attention in the field of anti-cancer drug discovery due to their ability to robustly 

recapitulate specific features of in vivo tumors [8]. Moreover, such models allow a 

straightforward combination of several malignant and non-malignant cell populations in a 

3D environment that promotes cell-cell contacts and communication [9]. Cells cultured in 

3D-MCTS are self-aggregated to form in vitro microtissues capable of mimicking 

oxygen/nutrient and pH gradients of human solid tumors [10]. Such provides an in vivo 

similar environment in which cancer cell phenotypical, genetical and metabolical 

heterogeneity can be easily recapitulated. However, despite better portraying the diverse 

cellular components of tumor microenvironment (TME) than 2D models, in general 3D-

MCTS lack pre-existing ECM components, with matrix being deposited by cells during 

culture [11]. Inclusion of ECM-mimetics (e.g., Hyaluronic Acid [12], Collagen [13], 

Fibrinoge [14]), may therefore improve 3D-MCTS ability to correctly mimic the tissue 

specific-ECM that is present during tumorigenesis. This component is known to influence 

the process of metastasis, invasion, and acquisition of multi-drug resistance [15].  

Regarding lung cancer ECM, one key component that has been associated with poor 

patient outcome when present in elevated concentrations is Hyaluronic acid (HyA) [16–18]. 

This natural polymer composed by disaccharides of D-glucuronic acid and D-N-

acetylglucosamine [19] is found ubiquitously in human tissues, being commonly associated 

with several tumors ECM [19,20]. Several studies observed that cancer cells associated to a 

HyA-rich ECM environment demonstrated increased expression of two key HyA receptors: 
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(i) CD44, a marker associated with multidrug resistance (MDR) [21,22]; and (ii) RHAMM 

(receptor for hyaluronan-mediated motility, also known as cluster of differentiation 168 – 

CD168), is a receptor associated with invasion and metastasis through changes in motility, 

polarity and directed migration, as well as  involved in matrix remodeling proteins 

production (e.g., MMP-9 or PAI-1)[20]. Yet, it is important to mention in the context that in 

the context of the development of bioinstruted 3D-MCTS, other TME components must also 

be taken into consideration. Such is particularly important concerning the cellular diversity 

and heterogeneity found in the TME. From the different cellular elements of the TME (e.g., 

cancer cells, cancer stem cells, cancer associated fibroblasts (CAFs), (please see introductory 

section 1.1, figures 1 and 2), some have yet to be included in 3D-MCTS in vitro models. 

In this context, MSCs are becoming increasingly recognized as cellular constituents 

of the TME, playing paramount roles in multiple cancers [23–26]. MSCs have been involved 

in the regulation of the immune response in the TME [27,28], alteration of the surrounding 

tumor-ECM [29,30], conversion of fibroblasts to CAFs [31], initiation of epithelial-to-

mesenchymal transition (EMT) by cancer cells [32], as well as metastasis [27]. Despite these 

contributions to cancer progression, reports of MSCs inhibiting and suppressing tumor 

proliferation, invasion and metastasis also exist [33]. The diverse roles of MSCs in lung 

cancer have been recently extensively revised elsewhere [30]. Given their polyvalent role, 

the representation of MSCs in 3D models is critical for the correct recapitulation of human 

tumors in an in vitro setting. However, few works have performed such inclusion in a 3D 

environment, and even fewer in a heterotypic system capable of representing the two main 

populations of the TME cancer cells and fibroblasts. 

From this standpoint, herein we manufactured a novel 3D-MCTS lung tumor model 

capable of recapitulating cell-cell and cell-HyA specific interactions that mimic cell-ECM 

crosstalk. The latter was accomplished by incorporation of bioinstructive microparticles 

(MPs) produced with the layer-by-layer deposition technique. Moreover, MSCs were also 

co-cultured with cancer cells and fibroblasts for the first time in 3D in vitro3D-MCTSto 

evaluate their influence in the obtained results demonstrate that bioinstructive MPs promote 

the assembly of robust and reproducible 3D-MCTS and that the inclusion of HyA influences 

the expression of CD44 receptor, as well as response to therapy. 
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2. Materials and Methods 

2.1. Materials 

Polycaprolactone (PCL; Mn: 80 000), Polyvinyl Alcohol (PVA; MW: 30 000 – 70 

000 Da) and Poly-L-lysine hydrobromide (PLL; MW: 30 000-70 000 Da) were acquired 

from Laborspirit (Loures, Portugal). Chitosan chloride (MW: 50-150 KDa) was acquired 

from Novamatrix (Sandvika, Norway). Hyaluronic acid sodium salt polymer (MW: 80 000 

– 100 000 ) was obtained from Carbosynth Limited (Berkshire, United Kingdom). Ultra-

Low-Adhesion (ULA) round-bottom 96-wells plates, Fetal Bovine Serum (FBS; E.U. 

approved, South America origin), Dulbecco's Modified Eagle Medium-High Glucose 

(DMEM-HG), Ham's F-12K Kaighn's Medium (HAMs-F12), Alpha Modified Eagle’s 

Medium (α-MEM), TrypLE™ Express, Goat anti-Mouse IgG (H+L) Secondary Antibody, 

Alexa Fluor 488, Collagen I Antibody (5D8-G9); E-cadherin-PE antibody, Calcein-AM, 

Propidium Iodide (PI) were all purchased from Thermofisher Scientific Inc (Alfagene, 

Portugal). Anti-human CD44-FITC was purchased from Taper (Grupo Taper S.A., Lisboa 

Portugal). All other reagents and salts were of analytical grade and used without further 

purification. 

2.2. Methods 

2.2.1. PCL microparticles production  

PCL microparticles where produced by using the oil-in-water (O1/W1) emulsion-

solvent evaporation technique. The oil phase (O1) was comprised by a 5 % (w/v) PCL 

dichloromethane (DCM) solution . The aqueous phase (w) consisted of a 0.5 % (w/v) PVA 

aqueous solution that was prepared from a stock solution of PVA (5 % (w/v)). To form the 

water-oil emulsion 8 mL of PCL (O1 phase) were dispersed into 150 mL of PVA by using 

a high precision piezoelectric-based air pumping system (OB1 MK3 – Elveflow® 

Microfluidic Flow Control System) operated at an air pressure of 5 bar. The microparticle-

containing solution (reduced to 50 mL) was then placed under horizontal stirring at 170 rpm 

during at least 8 h, at room temperature (RT), inside a fume-hood to promote solvent 

evaporation and PCL microparticles hardening. Following this, PCL microparticles were 

washed 3 times by using vortex-centrifugation cycles (1000 rpm, 5 min). The particles were 

then sieved through stainless steel sieves to obtain particle size ranges from 63 µm to 100 
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µm. All particles were freeze dried for 48 h and stored in a moisture free environment until 

further use. 

 

2.2.3. Bioinstructive microparticles production via Layer-by-Layer 

Prior to surface functionalization microparticles were subjected to plasma treatment. 

For this purpose, 200 mg of previously sieved microparticles where placed in a sterile beaker 

covered with aluminum foil. Plasma treatment was performed by using atmospheric air 

charged at 30 V, for 5 min. To guarantee that the entire surface of the particle was subjected 

to plasma treatment the compartment was slowly re-pressurized and the beaker containing 

the particles was stirred, repositioned inside the cylinder and subjected to plasma treatment 

for 3 times.  

For Layer-by-layer (LbL) surface functionalization 250 mg of plasma treated PCL 

MPs (LbL-MPs) with a negative surface charge were immersed in 20 mL of PLL (1 mg/mL, 

filtered 0.22 µm) for 10 min and washed in distilled water for 5 min. For the buildup of the 

negative layer, PLL-MPs were transferred into an HyA solution (1 mg/mL, filtered 0.22 µm) 

for 10 min, and re-washed for 5 min. This process was repeated 3 times to allow the 

formation of 3 PLL-HyA bilayers.  

2.2.4. Zeta Potential analysis of polyelectrolyte polymers deposition 

Zeta potential measurements were used to verify the efficacy of LbL polyelectrolyte 

layers deposition in MPs surface. This analysis was performed in pristine PCL MPs and at 

each consecutive LbL deposition step. All measurements where performed in a Zetasizer 

Nano ZS (Malvern,Worcestershire, UK), at 25 ºC by using the automatic mode and 

disposable zeta potential cell. The ZetaSizer software was used to record and process the 

electrophoretic mobility data (v. 7.04).  

 

2.2.5. Microparticles characterization 

Microparticles morphology and particle size and was evaluated by optical contrast 

light microscopy (Primostar, Carl Zeiss, Germany). Acquired images where analyzed using 

open-source software ImageJ [34]. the size distribution of each microparticle formulation 

through area analysis by using a supervised algorithm that analyzed a minimum of 300 

particles. 
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Scanning Electron microscopy (SEM) imaging was used to analyze microparticle 

morphology and surface topography. For SEM analysis particle samples were dispersed in 

deionized water and drop-wise added to an aluminum stub containing a glued tissue culture 

treated polystyrene insert. The samples were then dried at 37 ºC overnight, sputter coated 

with gold/palladium and observed in a Hitachi S-4100 scanning electron microscope 

(Hitachi, Japan) operated at a voltage in the range of 15-25 kV and at various magnifications. 

2.2.6. Cell Culture 

All cells were manipulated in aseptic conditions and cultured at 5 % CO2, 95 % 

atmospheric oxygen, in humidified, temperature controlled incubators at 37 ºC. The non-

small cell lung carcinoma cell line A549 (ATCC CRM-CCL-185™) was cultured in HAMs-

F12 medium supplemented with 10 % (v/v) FBS and 1 % (v/v) ATB. The human primary 

dermal fibroblasts cell line (HF) (ATCC®-PCS-201-012™) were cultured in DMEM-HG 

supplemented with 10 % (v/v) FBS and 1 % (v/v) ATB. Adult Bone Marrow-Derived 

Mesenchymal Stem Cells (BM-MSCs) (ATCC®-PCS-500-012™) were maintained in α-

MEM supplemented with 10 % (v/v) FBS and 1 % (v/v) ATB. All cells where detached from 

culture flasks upon attaining approximately 80-85 % confluency by using TrypLE™ Express 

Enzyme (1X) detaching reagent. Throughout all studies performed in this thesis BM-MSCs 

were used from passages 3 to 7 to assure stemness properties maintenance.  

2.2.7. 3D In vitro lung tumor models assembly via Liquid-Overlay 

Technique 

Homotypic monoculture 3D-MCTS with A549 cells, heterotypic co-culture 

spheroids: A549-HF and A549-MSCs cells, or tricultures: A549-HF-MSCs cells, were self-

aggregated at different cell ratios (Section 4.1 table 1), by using the liquid-overlay technique, 

also known as forced-floating methodology. To form 3D-MCTS cells were initially cultured 

in ULA round bottom 96-wells plates.  Multiple or single-cell suspensions composed by the 

different cell populations to were seeded in the wells. Afterwards cells were left in culture 

or incubated with LbL-MPs in the respective wells. Prior to each assay, LbL-MPs were 

sterilized under UV light (30 min) and resuspended in complete HAMs-F12 cell culture 

medium. To produce different 3D in vitro models that would better recapitulate the tumor 

microenvironment cellular heterogeneity different parameters were manipulated, namely: (i) 

the cell number per well, (ii) the cell-to-cell ratios between malignant and 
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mesenchymal/endothelial cells and (iii) the cell-to-particle ratios. The specific ratios used 

for each condition are summarized in (Section 4.1 table 1).  

2.2.8. 3D tumor microtissues characterization 

3D in vitro lung tumor models morphology, growth and circularity was analyzed 

overtime via optical contrast microscopy by using an inverted microscope (Primovert, Carl 

Zeiss, Germany). Images of 3D-MCTS were acquired on specific timepoints (days 1, 7 and 

14). A minimum of 6 spheroids were analyzed per condition per time point. Image analysis 

was carried out by using the open-source software ImageJ (Fiji package) and a supervised 

algorithm based on the code developed by Ivanov and coworker [35].  

For SEM analysis spheroids were processed as reported in the literature [36–38]. In 

brief, 3D-MCTS with and without LbL-MPs were removed from culture media and washed 

with D-PBS, fixed in formaldehyde 4% (v/v) solution in D-PBS, at 37 ºC for 2 h. The 

samples were then subjected to dehydration with graded ethanol concentrations (25 %, 50 

%, 75 %, 90% (v/v)), for 20 min. All samples were then carefully mounted in aluminum 

stubs by using double sided adhesive carbon tape (Agar Scientific, Essex, United Kingdom) 

and sputter coated with gold/palladium. All spheroids were being imaged in a Hitachi S-

4100 scanning electron microscope (Hitachi) operated at a voltage in the range of 15-25 kV 

and at various magnifications. 

2.2.9. Cell viability assays 

The cell viability and necrotic core formation of different homotypic and heterotypic 

3D in vitro lung tumor microtumors (3D-MCTSs and 3D-MCTS LbL-MPs), were analyzed 

at specific timepoints (7 and 14 days) through different methodologies, namely: (i) Non-

radioactive Alamar Blue® Cell Viability Assay, (ii) CellTiter 96® Aqueous One Solution 

Cell Proliferation Assay (MTS), and (iii) Live/Dead assay.  

Alamar blue was used to access 3D tumor models viability during the initial steps of 

homotypic and heterotypic mono-, bi- and triple co-cultures optimization. Both assays were 

performed in accordance with manufacturers guidelines. The only exception was Alamar 

Blue incubation time, which was performed overnight instead of the standard 2-4 h period. 

Alamar Blue resazurin reduction to resorufin was determined by fluorescence measurements 

(λex: 540 nm, λem: 600 nm). All measurements where performed in a Synergy HTX 

microplate reader by using a 96-well black-clear bottom plate. 
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2.2.10. 3D-MCTS characterization by Widefield and Confocal Laser 

Scanning Fluorescence Microscopy  

Collagen I and E-cadherin expression were analyzed at specific timepoints (7 and 14 

days) through immunocytochemistry. This analysis was performed to better understand 

phenotypical and morphological changes observed over culture in the different 3D-MCTS, 

For immunocytochemistry analysis 3D-MCTS were fixed in formaldehyde 4% (v/v) in D-

PBS, at 37 ºC, for 4 h or overnight, at RT. The spheroids were then carefully transferred to 

a new 96 well ULA plate, washed and incubated for 1 h with blocking solution 1% BSA in 

D-PBS at 4 ºC followed by a washing step. Then 3D-MCTS were incubated with the primary 

antibody overnight at 4 ºC (E-cadherin 5 µL/mL; Collagen I: 2.5 µL/mL), washed (D-PBS, 

3 times), and if necessary incubated with secondary antibody for 1 h, RT. Acquisition of 

fluorescence micrographs was performed in a widefield microscope (Axio Imager M2, Carl 

Zeiss, Germany), or in laser scanning confocal microscopes (LSM 510 Meta, and LSM 880 

Aryscan, Carl Zeiss, Germany). Analysis of acquired images was performed in Zeiss Zen 

Black software (2017) and in Zeiss Zen Blue software (2017).  

To evaluate 3D-MCTS necrotic core formation, the spheroids were labelled with 

Calcein-AM (Cal-AM) (4 μg/mL) and Propidium Iodide (PI) (10 μg/mL) for 30 min at 37 

ºC, according to literature reports for 3D models [38]. Following incubation, the different 

3D tumor models (3D-MCTS and 3D-MCTS LbL-MPs) were washed 3 times with D-PBS 

and were either imaged immediately by fluorescence microscopy, or fixed in 4% 

formaldehyde (v/v) for posterior observation.  

2.2.11. Histological analysis 

Histological analysis of dual co-culture (A549-HF) and triculture (A549-HF-MSCs) 

of 3D-MCTS and 3D-MCTS cultured in LbL MPs was performed in order to analyze 

microtumors internal organization and collagen deposition. In brief, 3D-MCTS with and 

without LbL-MPs were removed from culture media and washed with D-PBS, fixed in 

formaldehyde 4% (v/v) solution in D-PBS, at 37 ºC for 2 h. The samples were then subjected 

to dehydration with growing concentrations of ethanol (25 %, 50 %, 75 %, (v/v)), for 20 

min, per condition. Afterwards, 3D microtumors were stored at 4 ºC in ULA plates. For 

histological analysis the different spheroid samples were imbedded into HistoGelTM 

(previously heated to 70ºC in a water bath for 2 h), and then rapidly cooled into hardening, 

and then processed for standard paraffin fixation. Paraffin blocks containing 3D-MCTS were 
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sliced into 5 μm thick samples and stained with: (i) Hematoxylin and Eosin (H&E) for 

internal structures morphological analysis, and (ii) Masson’s Trichrome for possible 

evaluation of collagen deposition. Histology slides were then analyzed by using an inverted 

optical contrast light microscope (Primovert, Carl Zeiss, Germany). 

 

 

2.2.12. Flow cytometry analysis 

The effect of hyaluronan bioinstructive LbL-MPs in 3D-MCTS CD44 expression was 

analyzed by flow cytometry . For this analysis, 3D-MCTS and 3D-MCTS LbL MPs with 7 

days of culture were dissociated by incubation in a 1:1 mixture of Accumax® and TrypLE™ 

Express for 30 min, at 37 ºC. After this incubation, spheroids were disrupted by gentle 

pipetting and incubated in HAMs-F12/10% FBS/1% ATB for 30 min. The resulting single 

cells suspensions were then recovered by centrifugation (300 g, 5 min, 37 ºC). The different 

samples were incubated with anti-human CD44-FITC conjugate antibody (5 µl/ml in PBS) 

for 30 min, at 37 ºC. Single cells were then recovered by centrifugation and washed with D-

PBS for 3 times. In addition 2D monocultures of A549, HF and MSCs were also analyzed 

for their CD44 expression. Prior to FCM analysis all sampled were sieved through 40 µm 

cell strainers. Flow cytometry analysis was carried out in a BD Accuri C6 flow cytometer 

(BD Bioscience, San Diego, CA, USA) were a total of 5x103 events per sample were 

acquired in cells assigned ROI and recorded in the FL-1 channel (FITC). Flow cytometry 

data was processed and analyzed in FCS Express software (v. 6, trial license).  

2.2.13. Chemotherapeutic drug cytotoxicity screening in 3D-MCTS 

platforms 

The produced 3D-MCTS were cultured for 7 to 14 days on HAMs-F12 medium to be 

used as testing platforms for Doxorubicin cytotoxicity evaluation in monotypic 

monocultures (A549 cells), heterotypic bi co-cultures (HF/A549), and triple co-cultures 

(HF/A549/MSCs). Upon achieving the desired culture time, 3D-MCTS were incubated with 

Doxorubicin (Dox) chemotherapeutic at different concentrations ranging from 0.7 to 17 µM, 

over a period of 72 h or 120 h. Cellular viability of 3D-MCTS was then evaluated by using 

a luminescence-based assay specifically designed to quantify cellular ATP in in vitro 3D 

cellular aggregates assembled either via scaffold-based or scaffold free methods (Cell Titer 
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Glo™ Luminescent cell viability assay, Promega, Madisson, WI, USA ). CellTiter-Glo® 

assays were performed accordance with the manufacturer instructions. In brief, following 

incubation with Dox the medium was removed and 3D-MCTS were incubated with a mixture 

of HAMs-F12/10%FBS/1% ATB medium and CellTiter-Glo® reagent at a 1:1 ratio. The 

samples were stirred in a plate stirrer for 5 min at RT, and incubated for 25 min, at RT. 

Luminescence was then measured in 96-well opaque flat-bottom white plates by using a 

Synergy HTX microplate reader programmed with an integration time of 1 sec. Non-treated 

3D-MCTS were used as controls. In addition, MTS cell viability assays were also used to 

investigate Dox IC50 in 2D in vitro monotypic and heterotypic co-cultures. MTS data was 

acquired through absorbance readouts of the formed soluble tetrazolium salt (λ=490 and 

λ=650 nm). MTS data was obtained by using a Synergy HTX microplate reader equipped 

with a monochromator and photodiode detector that allowed absorbance measurements. 

 

2.15. Statistical Analysis 

All statistical analysis was performed using Graphpad Prism 6 Software (Prism 6™). 

One-way analysis of variance (One-ANOVA) and Two-way analysis of variance (Two-

ANOVA) with Holm-Sidak’s post-hoc test. A minimum of 6 replicates was used for 

statistical analysis. Unless otherwise indicated, p < 0.05 was considered statistically 

significant. 

3 – Results and Discussion 

The establishment of in vitro 3D microtumor models that are relevant for drug 

screening in the pre-clinical discovery pipeline require should correctly represent tumor 

heterogeneity and unique microenvironment components so as to provide a better in vitro/in 

vivo correlation [39]. Currently, the great majority of 3D tumor models employed in drug-

screening are based on the utilization of scaffold-free 3D-MCTS models. These models are 

easy to assemble, capable of representing in detail dimensional cell-cell interactions found 

in vivo and relatively easy to analyze being suitable for high-throughput drug screening 

approaches [39–41]. However, by definition spheroid models lack pre-existent matrix 

components, with ECM deposition occurring only through activity of cultured cells [8]. The 

representation of key aspects of TME in a reproducible and significant way, such as in co-

cultures capable of simulating the phenotypes and genetic profiles of cultured cells found in 

in vivo, contribute for the establishment of important pre-clinical models bestowed with a 
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predictive power higher than that of conventionally used 2D or even 3D monoculture models 

[3,42,43]. One approach to overcome limitations regarding the presence of pre-existent ECM 

in 3D-MCTS is through the addition of ECM-like scaffolds in the format of bioinstructive 

microparticles. The incorporation of microparticle technology (extensively used in the field 

of tissue engineering for delivery of cellular aggregates), adapted into the process of co-

culture tumor spheroids 3D aggregation is a valuable technology to combine hyaluronan, a 

key ECM component, with the study of how diverse cell lineage combinations, of A549, HF 

and BM-MSCs interact and respond to chemotherapeutics, namely doxorubicin. 

This integrative approach aims to bridge the gap between in vivo and in vitro models through 

both representation of cellular heterogeneity, and correct representation of two TME 

associated key populations namely HF and BM-MSCs.  

To assemble bioinstructive, MPs-based 3D-MCTS, PCL microparticles were initially 

produced through the emulsion/solvent evaporation technique. The manufactured particles 

demonstrated size polydispersity as expected. To narrow size dispersity to the desired range 

diverse formulations were tested. The obtained size distributions respective to each tested 

formulation are presented in figure (1 B). Respective distribution of particles within the 

desired size range for each formulation are shown in figure (1 A). 

 
Figure 1. PCL microparticles size characterization. (A) –  Percentage of PCL MPs within the desired size range 

of 60-100 µm for each tested emulsion formulation. Although formulation F10 presented the finest results 

regarding size, formulation F14 making use of double the PCL solution allowed to duplicate the time efficiency 

of the production process while allowing the recovery of an identical percentage of particles. (B) – Box 

Whiskers graphic demonstrating size dispersion, and minimum and maximum sizes obtained in tested 

formulations. Particle size was analyzed through optical microscopy, acquired images were processed using 

ImageJ software. 

 



 

 

RESULTS AND DISCUSSION 

 

103 

 

The parameters involved in the production of MPs, (, were optimized for the efficient 

manufacture of particles within the desired size range of 60-100 μm. During optimization 

stages it was clear that higher PCL concentration in the oil phase, while maintaining PVA 

concentration constant, lead to a markedly increase in the average diameter and 

polydispersity of MPs. Contrarily, lower PCL concentrations resulted in a size shift towards 

smaller-sized particles. Tested formulations using 7.5 % (w/v) PCL resulted in highly 

polydisperse microparticle populations, with diameters ranging from 10 to ~500 μm 

(Formulations F11, F12 - figure 1), while formulations of 2.25 % (w/v) PCL resulted in 

particles with diameters of 4 to ~24 μm. Increasing PVA concentration on the aqueous phase 

up to 2 % (w/v), while maintaining PCL concentration in 5 % (w/v), in the oil phase, reduced 

size polydispersity of produced MPs (as can be seen by comparing formulations F13 to F11 

and F12). An increase in the stirring velocity of the aqueous solution most often resulted in 

the production of smaller particles and changes in morphology, such as the acquisition of 

elliptical morphology and rougher surfaces were observed (Figure 2). 

 
Figure 2. Scanning electron microscopy analysis of PCL microparticles produced by O/W emulsion. Owing 

to an increase in the stirring speed of the aqueous phase formulation F4 (S14) (B and C) and F7 (s19) (C) 

present rough/porous surfaces, with F4 presenting various shapes and F7 elliptical morphology when compared 

to F10 (A).  

 



 

 

RESULTS AND DISCUSSION 

 

104 

 

Formulations F14 was found to be optimal for the recovery of MPs in the desired size 

range. In comparison to F10, F14 allowed to efficiently double the production of MPs due 

to the increased volume of PCL solution used, while presenting similar morphology and size 

distribution to F10 (figure 3). Sieving of formulation F14 increased the percentage of 

particles in the desired size from 49.5 % to 95.2 %, with the final population of sieved 

particles presenting a coefficient of variation (CV) of 14.86%, thus being closer to that of a 

monodisperse formulation (Figure 3). 

 
 
Figure 3. Characterization of PCL MPs formulation F14. (A) – Size distribution of formulations F14 and F14 

post-sieving demonstrate the effectiveness of the sieving procedure. (B,C) – SEM and light microscopy 

characterization of Formulation F14 MPs morphology and surface features. 

 

3.2. Layer-by-Layer functionalization of microspheres surface 

Following the optimization of MPs synthesis and recovery, the particles were 

subjected to plasma treatment to allow an easier and more efficient Layer-by-layer 

deposition of either Chitosan or Poly-l-lysine (PLL) polyelectrolyte polymers onto particles 
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surface. HyA was chosen to manufacture bioinstructive MPs due to its role as a key 

component in tumor-ECM interactions, being also associated to poor disease prognosis in 

patients with lung cancer [17,44]. Furthermore, HyA excessive production and aberrant 

splicing, derived of the overexpression of hyaluronic acid synthase 1 and 2 [45], has been 

connected to the onset of MDR in different tumor [46,47]. Chitosan was also investigated 

for LbL MPs functionalization due to its cell adhesive properties, biocompatibility and 

positive charge that could be used to complex HyA via electrostatic interactions. 

To study the surface deposition of polyelectrolyte polymer nanolayers and 

consequential surface charge reversal, zeta potential measurements where performed. The 

obtained values of zeta potential changed accordingly to the electrostatic charge of the 

specific layer deposited onto MPs (figure 4). The results obtained from CH-HA showed a 

higher variance than those obtained from PLL-HA modified MPs, with the final layer in the 

CH-HA MPs evidencing a smaller negative charge than in the PLL-HA 6th layer. As such, 

PLL/HyA layered polyelectrolyte MPs were selected for further studies. Different reports in 

the literature support the use of PLL-HyA LbL layers for supporting embryonic stem cells 

growth in 3D culture [47], and for breast tumor microenvironment modellin [48]. 

  

Figure 4.  Zeta potential measurements on MPs after plasma treatment and sequential polyelectrolyte polymers deposition. 

PLL (A) or CH (B), and HyA. Layer 6 of PLL-HA has an average Zeta potential of -11 mV, concordant with Hyaluronic 
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Acid deposition. Schematic of the  LbL process used to coat plasma treated PCL microparticles (C). Data is represented as 

mean ± s.d, (n=3). 

 

Depending on parameters such as deposition time, concentration of polymers in 

dipping solution, temperature, and number of layers deposited LbL treatments can lead to 

alteration of both MPs surface texture and morpholog [49]. To analyze if any change 

occurred to either morphology, size or texture of the particles these were subjected to optical 

and SEM microscopy analysis. The obtained micrographs showed that no change occurred 

due to either of established parameters. LbL-PCL particles maintained both their size 

distribution, and morphology (figure 5 A,B,C), with only minor changes occurring to the 

surface, namely with a minor increase on roughness (Figure 5 D, E, F).  

 

 
Figure 5. Optical contrast microscopy and SEM analysis of LbL PCL particles. Microparticles prior to plasma treatment 

(A,D), after plasma treatment (B,E) and post LbL treatment (C,F). Close-up image on LbL treated particles demonstrates 

a slight modification of surface texture red. Images acquired using optical microscopy (A,B,C). Images acquired through 

SEM microscopy (D,E,F). 

 

After optimizing and producing LbL bioinstructive microparticles surface 

functionalized with HyA assays were undertaken to access the how the inclusion of the LbL 

treated MPs (LbL-MPs) could affect overall 3D-MCTS assembly and viability during culture 

along time. 

 

3.3. 3D-MCTS assembly and morphological characterization 
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Culturing cells in a 3D setting allows the integration of a multitude of interactions 

absent in 2D models [5,50]. Such models provide an environment in which cells contact 

directly with involving neighboring cell in a three-dimensional space, expanding, 

contracting, and assembling into microtissues with morphological, phenotypical and genetic 

characteristics similar to solid human tumors [51]. The representation of key hallmarks such 

as necrotic core formation, correct recapitulation of cellular interactions between different 

populations, is crucial to manufacture predictive models that are suitable for drug-screening 

[39,52–54]. With the objective of recapitulating such characteristics composite microparticle 

encompassing 3D-MCTS triculture models containing non-small cell lung cancer cells 

(A549), human dermal fibroblasts (HF), and bone-marrow derived mesenchymal stem cells 

(BM-MSC), were established using relevant ratios based on previous literature reports 

[30,38,55–58]. The inclusion of this diverse cellular landscape allowed the development of 

an in vitro model that better represents the tumor TME and its heterogenic cellular 

components [59,60].  

To access ideal cell and particle density, for cultured 3D-MCTS to develop in vivo 

tumor-like characteristics, preliminary tests were performed using A549 monoculture and 

A549-HF dual coculture 3D-MCTS. Several literature reports use different ratios of cancer- 

to-stroma cells, such as fibroblasts or mesenchymal stem cells, with no consensus having 

been established so far [38,57,61–63]. Previous works by Amann and coworkers reported 

prolific effects of coculture of A549 and Colo699 cancer cells lines with SV80 lung 

fibroblasts in a 1:2 ratio [62]. These testing platforms showed an increased proliferation and 

α-SMA expression, associated with CAF like phenotypes, when fibroblasts were cocultured 

with A549[62]. Such populations have been recognized to increase cancer cells survival and 

worsen prognostic in the clinical setting. For example tumors of the breast, colon [62,64], 

with higher stroma content have a higher chance of relapse and development of MDR during 

treatment.  

Various cell seeding and microparticle combinations were attempted (Table 1), with 

the objective of creating 3D-MCTS with diameters >500 µm, thus being capable of 

exhibiting the nutrient, metabolite and hypoxic gradients associated with in vivo solid tumors 

[65]. Establishing a necrotic core in the interior of the spheroid, while maintaining solidity 

and shape uniformity over extended periods of culture is important to reduce assay-to-assay 

variability. The balance between the complexity/physiological relevance LbL-MPs 3D-
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MCTS and their ability to be used in the future for high throughput analysis was also sought 

after. 

Table 3. Culture conditions tested for optimal spheroid formation.  

Culture Type Cell Lines 
Population 

Ratios* 

Seeding 
Densities 

(Cell/well) 

MPs 
Concentration 

(mg/well) 
Ref** 

Monoculture A549 1 
5000 

10000 
15000 
30000 
45000 

0.0 
0.025 
0.050 

[55] 

Biculture 
A549 

HF 
1:2 [38,57,58,62] 

Biculture 
A549  

BM-MSCs 
10:1 

 
15000 
30000 
45000 

 

0.0 
0.025 

[30,56] 

Triculture 
A549  

HF  
BM-MSCs 

10:20:1 
[30,38,55–

58] 

* ratios are respective of the cell populations referred on column to the left. **references are referent to the implementation of populations 

ratios. After preforming initial assays with monoculture and dual coculture 3D-MCTS an optimized number of conditions was tested in 

dual and triculture models making usage of BM-MSCs. 

 

Preliminary optimization of spheroid cultures was performed using mono and dual 

coculture spheroids of A549 and HF, formed by 5, 10, 15, 30 and 45 thousand cells and with 

varying quantities of LbL-MPs (0; 0.050 or 0.025 mg/spheroid). Image analysis over time 

allowed to access 3D-MCTS growth and contraction profiles in the diverse populations 

tested. Analysis of size variations in mono and dual coculture 3D-MCTS of A549 and HF 

revealed distinct patterns of growth and contraction resultant from the inclusion TME 

associated populations (Figure 6 and 7).  

Monoculture spheroids of A549 presented the largest areas and slowest contraction 

ratios of the four tested coculture conditions, (monoculture of A549, dual coculture of HF or 

MSCs, Triculture of HF-A549-MSCs) resulting in relatively uncondensed spheroids. Over 

the period of 14 days these spheroids formed more compact microtissues, with the biggest 

spheroids composed of an initial cell density of 45 000 cells presenting diameters at day 1 

that well exceeded 1 mm, and at day 14 of 600-800 µm (Figure 6). The size reduction 

observed in A549 monoculture spheroids, was not observed in spheroids containing other 

TME associated populations such as HF, for which at day one 3D-MCTS (initial cell seeding 

density =45 000 cells) presented diameters of only approximately 500 µm without LbL-MPs 

and of ~750 µm when containing 0.050 mg of LbL-MPs (Figure 7). 
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Figure 6. Size Variation of A549 monoculture spheroids over the course of preliminary assays. Spheroids area (A) and 

circularity (B) measurements were performed for each at 1, 7 and 14th days of culture (C) Optical contrast micrographs 

processed in ImageJ software. Scale bar represents 500 µm. 

The addition of dermal fibroblasts to monoculture spheroids in a A549-HF 1:2 ratio 

lead to the formation of significantly different 3D spheroids in what concerns size and 

circularity (Figure 7).  The addition of particles at either 0.025 and 0.050 mg per LbL-MPs 

3D-MCTS resulted in slightly higher spheroid areas at initial time points (figure 6 and 7), in 

comparison to control 3D-MCTS. From day 1 to day 7 a significant reduction in spheroids 

area was obtained as a result of cells aggregation into compact spheroids, these results are 

in accordance with other literature examples for 3D-MCTS without microparticles [38] . 

It is important to emphasize that spheroids containing 0.050 mg of microparticles 

were in some cases unable to form cohesive spherical microtissues, this observation was 

particularly prevalent in A549 monoculture spheroids (Figure 6). Smaller spheroids of 5000 

or 10 000 cells and those containing 0.050 mg of LbL-MPs were also very difficult to handle 

and lacked necrotic core in monocultures of A549 at 14 days (supplementary Figure 4) These 

findings evidenced that 0.025 mg of LbL-MPs per spheroid provided the most promising 

results for the subsequent studies involving the additional inclusion of HFs and MSCs, to 

ultimately assemble triculture A549-HF-MSCS LbL-MPs 3D-MCTS. 
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Figure 7. Size Variation of A549-HF spheroids over the course of preliminary assays. Spheroids area (A) and circularity 

(B) measurements were performed for each condition at 1, 7 and 14 days of culture (C) Optical contrast micrographs 

processed in ImageJ software. Scale bar represents 500 µm. 

After performing the preliminary assays and establishing optimal culturing 

conditions for A549 and A549-HF spheroids, the area and circularity of coculture spheroids 

of A549-MSCs in a ratio 10:1 (A549-MSCs), and triculture spheroids in a ratio 10:20:1 

(A549-HF-MSCs) was also analyzed. The ratio of cancer cells to MSCs was chosen in 

accordance to previously established observations, by Liu and coworkers, that smaller ratios 

of BM-MSCs to A549 cells seem to favor pro-tumorigenic interactions in vitr [30].  

Spheroids contraction and area variations when A549 cells were combined with 

MSCs in dual coculture or tricultures revealed that dual A549-MSCs and Triculture 3D-

MCTS presented similar size and contraction profiles to those of A549-HF. Interestingly 

triculture spheroids had the smallest sizes and formed the most densely packed microtissues 

of all conditions, regardless of LbL-MPs inclusion or not (Figure 8).  
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Figure 8. - Size Variation of Triculture spheroids over the course of preliminary assays. Spheroids area (A) and 

circularity (B) measurements were performed for each condition at 1, 7 and 14 days of culture (C) Optical contrast 

micrographs processed in ImageJ software. Scale bar represents 500 µm. 

In comparison to monocultured models, dual cocultures and triculture 3D-MCTS 

with LbL-MPs and 3D-MCTS without MPs presented increased contraction (figure 8 and 

14). This observation could be related to ECM components secretion mediated by HF and 

MSCs, since these two cell types are recognized to contribute immensely to ECM deposition 

in human TME [66]. 
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3.4. 3D-MCTS cellular density and necrotic core formation 

Analysis of mono, dual and triculture 3D tumor microtissues, with and without LbL-

MPs, demonstrated that sizes bigger than 400 µm were easily obtained under the studied 

conditions. In this size range, cells are subjected to nutrient/oxygen/pH gradients and 

generally start to form a characteristic necrotic core similar to that obtained in human solid 

tumors [67]. To analyze if a dense mass of necrotic cells was formed Live/Dead assays based 

in fluorescent microscopy imaging of spheroids stained with Calcein-AM (Cal-AM)/PI. This 

assay is based on a cell-permeant dye which is converted to a green-fluorescent form after 

intracellular esterase hydrolysis, and propidium iodide (PI) a fluorochrome capable of 

staining nuclear material in necrotic cells. Live/Dead assays further corroborated previous 

observations made through optical microscopy analysis regarding size and density of 

cultured spheroids.  

As evidenced by fluorescence microscopy, A549 LbL-MPs 3D-MCTS necrotic core 

was readily visible after 14 days of culture (figure 9 A). Interestingly, in A549-HF LbL-MPs 

3D-MCTS the necrotic core was already visible at 7 days of culture, thus evidencing the that 

the inclusion of HF stromal cells leads to the formation of a denser/more compact spheroid. 

This increased core density has a significant influence in the penetration of nutrients/oxygen 

into deep microtumors regions which in turn promotes the establishment of necrotic regions 

[68,69].  

 

A
A 
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 Figure 9. Fluorescence microscopy micrographs of 3D-MCTS Live/Dead staining. A549 3D-MCTS (A) and 

dual co-culture spheroids (A549-HF) (B) both with LbL-MPs (0.025 mg). Comparison of both conditions revealed that 

while in monoculture spheroids the necrotic core was only established at 14 days of culture, in the dual coculture conditions 

(and further conditions tested) it was visible from day 7 onward. Scale bars = 200 µm.  

Live/Dead analysis of more complex A549-HF-MSCs triculture 3D-MCTS, with and 

without LbL-MPs, revealed the establishment of well-defined necrotic regions at 7 days of 

culture (Figure 10, A), for all cellular conditions (15 000 to 45 000 cells, Figure 10). These 

spheroids presented necrotic core formation around 7 days, in contrast to A549 3D-MCTS 

models (15 000 cells, Figure 9). Interestingly, contrary to literature reports regarding breast 

cancer 3D spheroids disruption and loss of stability upon MSCs addition [70], in the lung 

cancer 3D models produced with LbL MPs nothing was observed during culture for 14 days. 

Instead an increase in A549-HF-MSCs 3D spheroids density and compaction was observed 

(Figures 8 and 10). 
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Figure 10. Live/Dead assays were carried out in cultured Spheroids being incubated with CA AM (green) and PI (red) and 

analyzed in fluorescence microscope, over the course of culture (B). Analysis was performed at 7 and 14 days post seeding. 

Scale bars =500 µm. 

 

The obtained results regarding the establishment of the necrotic core, as well as the 

characteristic proliferative rim (Figure 10, Cal-AM green channel) indicated that the 

produced 3D-MCTS recapitulate two major aspects of in vivo solid tumors. Mimicking the 

growth kinetics with cultured cells in an environment with nutrient and oxygen restrictions, 

as well as pH gradients results in the establishment of diversified metabolical and 

phenotypical cell traits as seen in solid human tumors [54,71,72].  

Adding to this, the accumulation of catabolites and growth factors such as VEGF or 

HIF-1α, decurrent from increased hypoxic conditions and associated cellular dead can lead 
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to phenotypic alteration in cancer cells and associated MSCs [73]. Such could give rise to 

pro-tumoral interactions between MSCs and cancer cells as shown by Chaturvedi and 

coworkers, for breast cancer and BM-MSCs co-cultures, in which hypoxia induced 

interactions promoted metastasis [74]. Interestingly, accumulation of hypoxic and pro-

inflammatory factors can also lead to an increased propensity for metastasis and MDR, from 

a therapeutic perspective these are critical aspects that should be considered [10,54]. 

 

3.5. 3D-MCTS cellular viability 

To complement Live/Dead assays and to study whether the insertion of MPs into 

cultures elicited a cytotoxic effect cultured cells viability assays were performed in 

microtumor models by using Alamar blue (Figures 11, 12, and 13). Viability assays 

performed in the tested culture conditions showed that inclusion of bioinstructive 

(PLL/HyA)3 LbL microcarriers for assembly of A549 microtumors and A549-HF 3D-MCTS 

had no effect in cells metabolic activity. In particular, the obtained results demonstrated that 

independently of LbL-MPs concentration no statistically significant variation in viability 

was observable when comparing LbL-MPs spheroids to standard 3D-MCTS, both at 7 and 

14 days of culture (Figure 11).  

 

Figure 11. Cell viability assays performed in LbL-MPs 3D microtumors using different concentrations 

of bioinstructive microparticles. A549 LbL-MPs 3D-MCTS (A,C) and dual coculture A549-HF LbL-MPs 3D-

MCTS at a ratio of 1:2 (B,D). Data is presented as mean ± s.d., (n=6). N.s. – represents non-significant 

differences. **p<0.05, ***p<0.01. 
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In addition, cell viability analysis of A549-MSCs cocultured microtumors in 0.025 

mg LbL-MPS indicated that 15 000 and 30 000 cells have a significant decrease in metabolic 

activity. Inversely, for 45 000 cells 3D spheroids display a significant increase in cell 

viability was observed in both cultures using LbL-MPs and pristine PCL microparticles. At 

14 days of culture no statistically significant differences where observed in 3D microtumors 

containing (PLL/HyA)3 LbL bioinstructive (LbL-MPs) or pristine PCL MPs (non-treated 

MP represented as NT-MPS).  

 

 
Figure 12. Cell viability assays performed in coculture spheroids of A549-MSCs in a 10:1 ratio, using 

spheroids with LbL-MPs (A,C), and pristine PCL particles (NT-MPs) (B,D). Data is presented as mean ± s.d., 

(n=6). N.s. – represents non-significant differences. **p<0.05, ***p<0.01. 

 

For A549-HF-MCS 3D spheroids with LbL-MPs a significant increase of almost two-

fold was observed (figure 13, A), indicating that this combination could possibly increase 

the metabolic profiles of cells 7 days of culture. The remaining culture conditions and time 

points exhibited neither increase nor decrease in metabolical activity due to the inclusion of 

microparticles (either LbL functionalized or pristine PCL MPs). 
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Figure 13. Viability Assays performed in Triculture spheroids of A549, HF and MSCs in a 10:20:1 ratio, 

respectively using spheroids with treated (A,C), and non-treated particles (B,D). Triculture spheroids of 7 days containing 

treat MPs showed a two-fold in metabolic activity when compared to non-containing MP controls. 

 

As for LbL-MPs concentration 0.025 mg of MPs per spheroid demonstrated the best 

results regarding spherical shape and monodispersity\similarity of spheroids cultured with 

LbL-MPs.  

Taking into consideration the former results regarding area, circularity, compactness,  

necrotic core formation and metabolic activity over time, spheroids with 30 000 cells, with 

or without LbL-MPs, in a concentration of 0.025 mg per spheroid, were used from herein 

onwards. Such selection was performed because this condition was highly reproducible in 

for all the tested cell combinations (A549, A549-HF and A549-HF-MSCs). The area and 

morphology of spheroids with 30 000 cells spheroids was extensively characterized for all 

culture conditions, as portrayed below, through the analysis of n=30 spheroids for each 

condition so as to assure a confidence level for further drug screening studies.  
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Figure 14. Size variation of spheroids of diverse co-culture conditions assemble with a initial cell density of 30,000 and 

with or without 0,025 mg of LbL treated MPs per spheroid (A). 3D-MCTS were analyzed through inverted microscopy 

over the course of culture, with pictures having been taken at days 2,7 and 14 post seeding (A).  

 

3.6. 3D-MCTS histological analysis  

H&E and Masson’s Trichrome (MT) staining were performed on A549-HF 

cocultures and A549-HF-MSCs 3D spheroids with and without LbL-MPs so as to access 

internal cellular organization and if ECM components deposition was occurring. Analysis of 

obtained histological cuts revealed a compact internal cellular organization (figure X). 

Compared to other reports with A549 spheroids this result seems to be expected for the 

established culture times [75]. A closer analysis of spheroids with LbL-MPs revealed that 

cells adhering to MPs were spread and extended over their surface, thus establishing contact 

on one side with the included HyA matrix and on the other with involving cells while 

retaining a three-dimensional non-flat structure (figure 15 – A, B). Furthermore, regions with 

high amount of LbL-MPs seem to had no nuclear staining using H&E stains, concordant 

with microparticles presence. 

 

Figure 15. Optical constrast micrographs of histological staining of A549-HF spheroids at 7 days of culture. Samples were 

stained with H&E (A) and MT (B).  

Regarding triculture spheroids Masson’s Trichrome (MT) staining demonstrated that 

at day 7, collagen deposition occurred in both microtumors containing LbL-MPs or only 

cells (Figure 16. blue circles). evidencing more visibly blue stained regions (figure 16 C and 

D). This result is accordance with the observation of increased contraction rates observed in 

both triculture and dual coculture spheroids. Demonstrating the ability of the spheroids to 

build their own ECM. 
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Figure 16. Histological analysis of A549-HF-MSCs triculture spheroids. Spheroids with (A,B,) and without LbL-MPs 

(C,D),. Internal organization of cells around MPs in image A, with cells clearly adhering to the surface of the LbL-MPs 

and acquiring an elongated shape (A – red arrows), furthermore a possible necrotic region is observed (red cicle) (A,B – 

red circle) in a spheroid section surrounded by MPs (A) and in the inner most section of the spheroids without LbL-MPs 

(B). At day 7 ECM deposition is already visible in both spheroids occurring however predominantly in triculture spheroids 

with MPs (C and D-blue arrows and circles). Scale bar = 50 µm. 

3.5. Cell Tracking and migration over time 

Previous reports demonstrated MSCs ability to migrate and penetrate deep into tumor 

masses [76,77]. As such cell tracking assays were performed with the aim of better 

understanding the internal organization of triculture spheroids and to observe if MCS 

populations either remained static over the course of culture or migrated. To do so, cells 

were stained with cell tracking lipophilic dyes [78], DiO (green) for A549, DiL (Yellow) for 

HF and DiD (red) for MSCs (Figures 17 and 18). These staining agents were passed down 

through cellular generations, being present in the spheroids with no considerable loss up to 

and beyond 14 days of culture, after which the intensity of the staining started to fade. Such 

approach allowed a qualitative assessment of the localization and migration of different cell 

populations in the spheroid structure over time. Results indicated that over the course of 7 

days cultured MSCs are not entirely confined to the necrotic core region of the spheroid, and 

also demonstrated a tendency to migrate to and colocalize in deep internal regions of 

triculture spheroids. Furthermore, fluorescence microscopy data also confirmed that cultured 
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cells seem to adapt to the morphology of the microparticles extending themselves over the 

exposed surfaces as observed in histological analysis. 

 

 
Figure 17. CLSM confocal imaging of cellular organization in triculture LbL-MPs spheroids at day 7. Composite 

micrograph with merged channels (A). Zoomed section containing cells attached to LbL-MPs (B). Stained A549 cells 

cancer cells (C) and fibroblasts (D) are arranged over the spheroid volume with no particular pattern contrasting with the 

cluster-like arrangement of BM-MSCs (E). Scale bar = 50 µm (B). 

Furthermore, over the course of 14 days, the fluorescence signal emitted by DiD (the 

cell marker associated MSCs), remained inside cultured spheroids, denoting the presence of 

MSCs. Obtained images demonstrate an internal organization of pockets of mesenchymal 

stem cells inside triculture spheroids, surrounded by numerous A549 cancer cells and dermal 

fibroblasts with no apparent organization (Figure 18, 14 days). Interestingly, a tendency was 

seen for the loss of DiL signal, with an apparent superposition of the DiO signal, perhaps 

associated with a change in the populations ratios. 

 



 

 

RESULTS AND DISCUSSION 

 

124 

 

 

     
 
Figure 18. Widefield fluorescence micrographs of triculture 3D spheroids of 30 000 cells stained with cell tracking dyes 

demonstrated a tendency in spheroids without MPs (A), and with LbL-MPs (B) for MSCs to colocalize in the interior of 

the spheroid. MSCs formed visible cell clusters over time 7 and 14 days in both conditions. Scale bar = 500 µm.  

3.6. Immunocytochemistry analysis of 3D-MCTS ECM and cell-cell 

Adhesion 

Immunocytochemistry analysis was performed in A549-HF-MCSs 3D-MCTS 

spheroid models containing or not LbL-MPs to analyze if the increased cohesion observed 

over the extent of culture time in triple coculture spheroids could be derived from matrix 

deposition, and if the cell-cell adhesion molecule E-cadherin expression was in some way 

altered by the inclusion of MSCs. Collagen an abundant structural component of human 
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ECM, is constituted by several diverse types of which collage type I is the predominant form 

in most tissues [79]. During tumor progression established interactions between CAFs and 

cancer cells can lead for example to increased matrix deposition and collagen cross-linking, 

resulting in ECM architectural changes [79] characterized in part by increase collagen 

degradation, re-deposition and crosslinking, thus resulting in stiffening and contributing for 

the establishment of yet another barrier to therapeutic compounds penetration [80]. While 

collagen role in the TME has not yet been fully elucidated [79], increase collagen and ECM 

deposition in spheroids has been linked with increased interstitial pressure. More so, 

increased collagen deposition has also been connected in a paradoxical fashion to both 

increased metastasis in breast cancer due to referred matrix stiffening [81], and in 

fibroblast/A549 cell spheroids to increase integrin α11β1 expression due to collagen type I 

receptor stimulation, contributing to increase spheroid cohesion and decrease invasio [82]. 

The results obtained by immunocytochemistry analysis revealed that as soon as the 7th day 

of culture, as previously evidenced in histological data collagen deposition took place in 

triculture spheroids both containing or not LbL-MPs (figure 19). Revealing the ability of the 

produced spheroids to produce a collagenous matrix, similar to what is observed in in vivo 

tumors. Such leads to the formation of a network of collagen fibrils over the hole spheroid 

that can overtime contribute not only to cell adhesion and spheroid cohesion but also to 

necrotic core establishment. 

 

 

Figure 19. CLSM micrographs of triculture spheroids of 30 000 cells with (A – I,II,III)  and without particles (A-IV,V,VI) 

at the 7th day of culture, stained with anti-collagen type I antibody conjugated with secondary fluorochrome FITC (green 
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channel), and with DAPI (blue channel). A green mesh of collagen can be seen deposited around and inside the 3D-MCTS, 

conferring it a higher degree of solidity and rigidity. This de novo produced collagenous matrix can act both as a structural 

component and as a store house of cellular signaling factors (e.g., growth factors )[83].  Scale bars represent 100 µm. 

Regarding the expression of cell-cell adhesion domains it is important to understand 

a unique event that commonly occurs in tumors, the Epithelial to Mesenchymal Transition 

(EMT). Cancer cells EMT is one of the key hallmarks of cancer progression, being 

responsible for the majority of cancer related mortality. As previously discussed in the 

introductory section, EMT occurs through the modification and loss of specific cell-cell 

adhesion domains in the surface of cancer cells combined with changes in cell morphology 

and ability to translocate through the ECM until reaching vascular walls which they then 

transverse in a manner believed to be similar to that of diapedesis performed by immune cell 

[32,84]. Cadherins, transmembrane proteins that are responsible for cell-cell adhesion by 

homophilic interactions are abundantly expressed in epithelial tissues. In spheroids E-

cadherins are also known to generate strong cell-cell cohesive forces during 3D spheroids 

formation process. Such has been observed for monoculture 3D spheroids of different cancer 

types such as breast, prostate and renal carcinoma [84,85]. Several reports have 

demonstrated MSCs ability to down-regulate E-cadherin expression in diverse cancers, in a 

manner dependent of their origin and even concentration [70,85,86]. In 3D spheroids both 

increased matrix deposition and consequent integrin [87] and cadherin [88] expression can 

lead to the formation of tightly compacted microtumors in vitro [89–91]. One of the key 

markers of EMT is the loss of E-cadherin expression, a type-1 transmembrane glycoprotein 

also known as epithelial cadherin, responsible the formation of cell-cell adhesion [70]. This 

protein has been found to be down regulated in several studies combining the cultures of 

cancer cells with either HF and MSCs in a population dependent manner [57,70,86]. As such 

immunocytochemistry was performed in triculture spheroids so as to analyze if any loss of 

E-cadherin was occurring over the culture period of 7 to 14 days. The obtained results 

presented in Figure 20 demonstrated no visible loss of E-cadherin in either dual coculture or 

triculture suggesting that EMT promotion was not occurring in cocultured populations. In 

contrary to previous observations by Dittmer and coworkers, 2009 for breast cancer, in the 

herein produced lung cancer 3D-MCTS models inclusion of BM-MSCs does not result in 

loss of E-cadherin expression. 
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Figure 20. Widefield micrographs of E-cadherin stained A549-HF-MPs triculture spheroids of 30000 cells 

with LbL MPs (A,C) and without (B,D) at the 7th (A,B) and 14th (C,D) day of culture. Scale bars represent 100 

µm. 

Overall these findings first demonstrate 3D spheroids ability to closely mimic key 

aspects of an in vivo tumor through de novo collagenous matrix deposition. And also provide 

important insights into the effect of MCS addition in cell-cell contacts. 

 

3.7. Flow cytometry analysis of CD44 expression 

Previous studies demonstrated that the association of either CAFs, or MSCs with lung 

cancer cells in vitro resulted in higher expression of cell marker such as CD133, CD90 or 

CD44 by cancer cells [77,92], denoting a pro-tumoral influence of both populations in the 

tested conditions. Moreover, several studies also reported that in contact with hyaluronic 

acid-rich substrates, cancer cells increase their expression of CD44[93,94]. Increased CD44 

expression has been connected with multi-drug resistance (MDR) and the development of 

cancer stem cell like phenotypes (ALDH/CD133+ cells) [95,96]. As such, the effect 

bioinstructive HyA functionalized LbL-MPs on cultured populations was investigated by 
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flow cytometry analysis of CD44 surface marker in different 3D-MCTS with 7 days of 

culture (figure 21). 

 

 
Figure 21.  Flow cytometry analysis of CD44 surface marker analysis at the 7th day of culture in various 3D-MCTS with 

and without LbL-MPs. Data revealed that HyA LbL-MPs inclusion significantly increased the levels of CD44 in all culture 

settings. 

The obtained results demonstrate a clear increase in CD44 expression seen in all 

coculture and monoculture conditions upon the inclusion of LbL-MPs. With diverse 

populations exhibiting CD44 expression, both monoculture, dual coculture using HF and 

triculture exhibited a ~2 fold increase in the percentage of CD44 positive cells when cultured 

with LbL-MPs. While dual cocultures of A549-MSCs displayed only a slight increase in the 

percentage of cells expressing CD44. 3D-MCTS of this culture condition express by 
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themselves high levels of CD44+ cells. Having on account the ratio of 1 MSC per every 10 

A549 cells, this high expression of CD44 cannot be simply justified by the inclusion of CD44 

expressing BM-MSCs [31], and can thus also be attributed to the interactions established 

between cultured populations as seen in previous work [94,97,98]. A similar increase can 

also be seen by the inclusion of MSCs in dual coculture model of A549-HF compared to the 

triculture model, were a similar ratio of MSCs to cancer cells is used. Overall increased 

CD44+ in cancer cells has been connected with the development of cancer stem cell profiles 

in several diverse types of cancers namely NSCLC [96]. At the same time, other studies have 

found that CD44 expression by itself is of inconclusive value for the analysis of cancer stem 

cell populations. However, clear connections have been established between CD44 

expression by cancer cells and increased MDR mechanisms correlated with P-Glycoprotein 

efflux pump expression [99]. As such the increased expression evidenced by the diverse 

coculture models when containing LbL-MPs can be indicative of the establishment of 

possible resistance mechanism also found in the clinical setting [17]. Such important results 

also corroborate the bioinstructive role of LbL-MPs in 3D-MCTS. 

 

3.8. Chemotherapeutics drug screening assays in bioinstructed 3D-

MCTS 

Interactions between diverse populations present in the TME are known to be of 

paramount importance for the performance of chemotherapeutics. In fact the close 

interactions established between stromal and cancer cells through direct contact or indirect 

biomolecular cues such as cytokines, chemokines and growth factors that allow bidirectional 

communication ultimately lead to altered metabolic profiles, signaling pathways, and 

invasive behavio [100]. Moreover, this communication incites drug resistance through 

several cancer cells defense mechanisms that include: (i) decreased uptake of water soluble 

chemotherapeutic compounds such as Cisplatin, (ii) the modification of cancer cells 

metabolic regulation either through ‘self-genetic’ mutation or interaction with cellular 

components of the TME (e.g., fibroblasts, immune system cells and MSCs). Such unique 

crosstalk between cancer cells and their TME originates (iii) a decreased cell cycle arrest, 

increased repair of DNA damage, reduced apoptosis and alteration of the metabolism of 

drugs; (iv) lastly an increased in energy-dependent efflux of hydrophobic chemotherapeutics 

such as Doxorubicin is also often obtained [101,102]. The latter can occur through the 
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acquisition of MDR mechanisms such as the widely studied overexpression of ATP-binding 

cassettes (ABC) transporter proteins, to which multidrug resistance-associated protein 1 

(MRP1), breast cancer resistance protein (BCRP), and P-glycoprotein efflux pumps are 

internally associated. Collectively all of these are responsible for higher excretion of 

internalized chemotherapeutic compounds [103,104].  Not only is coculture of cancer cells 

with HF and MSCs associated with increase expression of MDR mechanism, but also the 

presentation of cells in a three-dimensional environment by itself provides another barrier 

lacking in 2D cultures [50]. Existence of a necrotic core signalizes the lack of proper nutrient 

and medium penetration into the spheroid, leading to the accumulation of metabolites and 

byproducts of cells activity, such as reactive oxygen species (ROS) known to promote the 

upregulation of ABC-B1[105]. The end result is an area were therapeutic agents will have a 

greater difficulty penetrating both due to physical and biological barriers. From a 

bioengineering point of view modeling all of these hallmarks of in vivo tumors with 3D in 

vitro tumor models is highly desirable 

Conventional in vitro preclinical validation models are mainly based in 

monocultures, lacking TME stromal cells representation [39,50]. Key populations such as 

HF and BM-MSCs are well known to affect, either positively or negatively, several cancers 

[66] leading to acquisition of resistance to therapeutic agents by metabolical alteration of 

cancer cell [106], apoptosis reductio [107], MDR associated protein overexpressio [108] or 

mitochondrial exchang [109]. By establishing a 3D coculture model capable of representing 

in vitro A549 cancer cells in vivo like interactions with HF and BM-MSCs, we aimed to 

represent the reality of tumor cellular heterogeneity [58,62,76,110]. Furthermore, the 

inclusion of hyaluronic acid aimed not only to increase cellular adhesion to the 

microparticles, but also to possibly increase the overall resistance of cancer cells towards 

doxorubicin through stimulation of CD44 and RAHMM receptors as it occurs in vivo. Being 

a huge component of lung cancer TME, HyA is associated with poor tumor cell 

differentiation and higher recurrence rate when present in elevated quantities [17]. More so, 

interactions of HyA stromal cells such as HF or MSCs, have also been connected as possible 

roots towards establishment a higher resistant profile by all cells of the TME [20]. 

To access if this theorized increase in resistance was present, resultant either from the 

inclusion of microparticles coated with PLL-HyA bilayers or coculture with key 

representative populations of lung cancer TME, drug screening assays were performed in 
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previously optimized mono, dual and triculture spheroids containing or not LbL-MPs. 

Doxorubicin (Dox) a commonly used chemotherapeutical agent in the clinics for cancer 

treatment was selected for these studies.  

The lack of data directly comparing 2D and 3D culture conditions is a common pitfall 

in the development of novel 3D models [11]. Preliminary drug screening assays of mono 

and dual co-cultures were performed in 2D, using the same population ratios of those used 

for 3D spheroids assembly. Cell viability was accessed through MTS assay after a period of 

72 h of Dox incubation. 2D monolayer cultures of A549 cells alone exhibited sensitivity 

profiles similar to those observed in previous studies [111,112]. 2D cultures of HF 

demonstrated a slightly similar sensitivity to Dox as that observed by A549 cultures, in 

acordance to other reports [113]. However, cocultures of A549 and HF in a 1:2 ratio 

demonstrated increased sensitivity for the cytotoxic compound, an unexpected finding when 

compared with previous literature reports regarding the interactions of A549 and lung 

fibroblasts [58,63,114]. Such could be explained from the dermal origin of the fibroblasts 

used herein. 

 
Figure 22. Doxorybicin cytotoxicity screening in performed in 2D monolayer cultures of A549, HF and cocultured A549-

HF cells. Data is presented as mean ± s.d., (n=5). 

Drug screening assays were performed in 3D spheroids cultivated over a period of 7 

days to allow the establishment of cell-matrix and cell-cell contacts. The Inclusion of LbL-

MPs into 3D-MCTS lead to the observation of significant differences regarding resistance 

profiles when compared to control 3D-MCTS. These were observable in all coculture 

conditions except triculture 3D-MCTS (figure 22). The lack of a significant increase in 

resistance due to the inclusion of LbL-MPs in triculture 3D-MCTS could result from the 
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complex set of interactions taking place due to the inclusion of so many diverse cellular 

populations. When compared to triculture 3D-MCTS with pristine PCL-MPs the latter 

evidenced a higher susceptibility to Dox, indicating that the LbL treatment to which MPs 

were subjected does in fact increase or at least equalize the spheroids ability to resist Dox 

cytotoxic effects (Figure 23).  

 

Figure 23. Drug cytotoxicity screening assay performed in spheroids with 7 days of culture with different culture 

conditions that included 3D-MCTS (control. blue bars), 3D-MCTS with pristine PCL-MPs (grey bars) and 3D-MCTS with 

LbL-MPS (green bars). A549 monoculture spheroids (A), dual coculture spheroids A549-HF (B), Biculture spheroids of 

A549-MSCs (C) and triculture spheroids of A549-HF-MSCs (D). Data is presented as mean ± s.d. (n= 5). * p<0.05, 

**p<0.01 and ***p<0.001. ns – represents non-significant differences. 

The differences observed in cytotoxicity assays of control spheroids without MPs and 

in spheroids with LbL-MPs were clear in dual co-culture 3D-MCTS formed by HF-A549 

and in monoculture A549 spheroids. In both conditions 3D-MCTS with LbL-MPs exhibited 

statistically significant (CI=95%, *p<0.05) increases in relative cellular viability, presenting 

~0.20 to ~0.60-fold increase in cellular viability at the highest Dox concentrations (17 µM), 

when compared to controls of the same conditions (figure 23). The obtained results clearly 
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indicate that the inclusion of LbL-MPs containing HyA increased cultured cells ability to 

resist to high Dox chemotherapeutic concentrations. 

The acquisition of higher resistance to Dox could be related to several factors, 

including the formation of more compact spheroids possibly through means of increased 

matrix deposition or via increased expression of CD44 markers as demonstrated by FCM 

analysis. Previous works by Han and coworkers, 2016, demonstrated that A549 spheroids 

cells assembly was mediated through a CD44-dependent mechanism [77]. With culture of 

A549 cells in HyA-rich substrates leading to an increased resistance of lung cells [115]. 

Consequently an increase in cell-cell interactions between HF and A549 cells could be 

directly correlated with the acquisition of resistance, thus increasing the ability of A549 to 

resist Dox, closely mimicking events in in vivo tumors [92].  

Moreover, inclusion of pristine PCL-MPs resulted in a decrease of cell viability upon 

Dox administration, which could be associated to a lack of tighter cellular adhesion to NT-

MPs since these only present a plasma treated PCL surface. These findings emphasize the 

positive role being played by the inclusion of the PLL-HyA bilayers. In fact, statistically 

significant decreases in cell viability were obtained in both triculture, and dual coculture 

spheroids of A549-MSCs and A549-HF, when compared to LbL-MPs and control 3D-

MCTS. The difference between NT-MPS and LbL-MPs 3D-MCTS, indicates that the 

inclusion of (PLL-HyA)3 bilayers improves 3D models resistance to Dox-mediated 

cytotoxicity, thus approaching these testing platforms to the reality of in vivo tumors 

containing HyA. In an overall analysis 3D-MCTS and LbL-MPs 3D-MCTS cultured in dual 

an triculture presented higher resistance (17 µM Dox), than their monoculture counterparts. 

Interestingly, MSCs dual coculture LbL 3D-MCTS and control 3D-MCTS exhibited 

higher resistance when compared to all other conditions tested. This increased resistance 

could be correlated with the formation of tighter spheroids with MSCs having been observed 

to increase spheroids cohesion (figure 14), possibly through means of increased matrix 

deposition [86,108]. It is important to emphasize that these results are obtained with bone 

marrow derived MSCs and that MSCs of different origins may respond differently to 

therapy. Furthermore, such findings could also be correlated with the establishment of pro-

tumoral interactions with cancer cells, or from the natural resistance exhibited by MSCs to 

Dox.  
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 To test this hypothesis an unrealistic ratio of 1:1 MSCs A549 cells was subjected to 

the same culture conditions and Dox concentrations. The obtained results evidence a positive 

role of MSCs in A549 lung cancer cells resistance when cultured in low ratios, favoring 

A549 cells and a possible anti-tumoral effect when cultured in 1:1 ratio (Figure 24). Such 

findings demonstrate, the highly remarkable dual role of MSC [30,56] of which the study 

and correct representation is of paramount importance for the development of more robust 

and in vivo-like preclinical validation models.  

 

 

Figure 24. Drug cytotoxicity assays of dual cocultured A549-MSCs 3D-MCTS in a 1:10 (A) and 1:1 ratio (B), 

respectively. Data is presented as mean ± s.d. (n= 5). 

 

Interestingly, the behavior of diverse populations was not constant with the increase 

of test concentrations for all conditions. While at intermediate concentrations of doxorubicin 

(7 µM) dual coculture spheroids of HF without LbL-MPs, present decreased resistance 

compared to other conditions, at the highest concentration (17 µM) both HF-A549 3D-

MCTS and Triculture spheroids exhibited increased resistance when compared to A549 

monoculture spheroids. Has previously mentioned addition of HyA LbL-MPs resulted in 

increased 3D-MCTS resistance.  

Finally, triculture models exhibited an unexpected pattern of resistance, showing a 

similar behavior as dual coculture spheroids of A549 and HF and a trend of increased 

resistance (statistically significant) when compared to monoculture spheroids of A549 at the 

highest concentration (17 µM). The different data obtained just through the combination of 

A549, with HF and BM-MSCs elucidate the necessity of further analyzing the cooperation 
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of TME stromal cells with cancer cells. It is important to mention that this was the first time 

a 3D model comprising lung cancer cells, stromal fibroblasts, MSCs and HyA matrix was 

developed and used as a testing platform for evaluation of chemotherapeutics anti-cancer 

performance in TME relevant conditions. 

 

4 - Conclusions  

Through the utilization of a combination of coculture conditions, based on previous 

literature reports, an easy to assemble composite 3D-MCTS triculture model containing key 

TME populations such as HF and BM-MSCs was established by using microparticles as 

bioinstructive anchoring substrates. Inclusion of HF and MSCs stromal cells facilitated the 

formation of a characteristic necrotic core, the appearance of which is known to promote 

resistance to therapy in vivo. Moreover, the inclusion of bioinstructive microparticles 

allowed the addition of HyA, a main component of several tumor ECMs.  

Overall the inclusion of a small percentage of bone marrow derived MSCs seemed to 

had a positive outcome for tumor resistance, improving the ability of A549 to form compact 

spheroids resist to doxorubicin in specific cell-cell ratios. Considering the diverse origins 

and niches of MSCs inside the human body it will be interesting in the future to analyze 

other types of MSCs and their influence in anti-cancer drugs resistance/susceptibility of 

these testing platforms. 

In conclusion, the in vitro generated bioinstructed 3D-MCTS exhibit characteristics 

associated with in vivo tumors such as development of highly dense cell masses decurrent of 

both cell-cell and cell-ECM adhesion, matrix deposition. With composite 3D-MCTS with 

LbL-MPs serving effectively as tool for tackling one of the main flaws of spheroids-based 

models, i.e, the implementation of pre-existing ECM derived components, The produced in 

vitro models can be used to screen novel therapeutic compounds for lung cancer in more in 

vivo-like conditions. Due to its versatility, this enabling technology can also be used to study 

different combinations of cell populations and more complex ECM domains can be easily 

included, thus allowing the study of their specific functions and effects in cancer cells 

survival during treatment. 

The current model can also be improved in the future in what regards the inclusion 

of dynamic testing conditions such as those provided by organ-on-a-chip testing platforms. 
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Such could provide an added layer of information and allow the opportunity to study other 

complex processes such as metastization and innovative compounds for its ablation. 
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5. Conclusions and Future Perspectives 

No doubt remains about the capacity of the TME for modulating cancer progression. 

Stromal cellular and tumor-ECM components act as key factors on most aspects of tumor 

evolution, either promoting or not a pro-tumoral microenvironment. Nevertheless, the exact 

nature of these complex interactions remains to be fully understood. Development of novel 

innovative models that allow the study of such interactions is thus of chief importance. 

Based on literature reports, an easy to assemble composite 3D-MCTS triculture 

model containing both key stromal cell populations of the TME (HF and BM-MSCs) and 

ECM mimetic microparticles was established. The inclusion of each one of the diverse 

components, cellular (HF and MSC) and ECM components (HyA), led to further 

approximation of these 3D-MCTS models to the reality of in vivo tumors. The addition of 

HF and MSCs population to A549 3D-MCTS resulted in different variations in spheroid 

morphology, size, circularity, internal organization, matrix deposition and behavior to 

treatment. Globally, such approach resulted in denser spheroids that evidenced necrotic core 

formation at an earlier time than monoculture 3D-MCTS of A549. More so, inclusion of a 

small percentage of BM-MSCs acted as one of the most significant factors in increasing 

overall resistance to Doxorubicin. Once present in the spheroid, MSCs migrated into its 

interior region over a period of 14 days, perhaps mimicking their role in vivo when present 

in the lung TME. Moreover, the inclusion of bioinstructive microparticles allowed the 

addition of HyA, a main component of several tumor ECMs. In accordance with previous 

studies, HyA inclusion resulted by itself in an overall increased resistance of LbL-MPs 

containing spheroids to Doxorubicin, denoting a positive influence of HyA in the activation 

of MDR mechanisms in 3D-MCTS models. 

In conclusion, the in vitro generated bioinstructed 3D-MCTS exhibited 

characteristics associated with in vivo tumors such as development of highly dense cell 

masses decurrent of both cell-cell and cell-ECM adhesion and matrix deposition. Composite 

3D-MCTS with LbL-MPs served effectively as a tool for tackling one of the main flaws of 

spheroids based models, by allowing the implementation of pre-existing ECM derived 

components, while still providing the same ease of analysis found in these models. Offering 

as such a malleable platform capable of recapitulating TME interactions and communication, 
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that not only could act as platforms for expediting compound-screening processes, but in 

which further studies with the intuit of characterizing the TME could be performed. 

In the future, the design of the system could be improved to not only recapitulate the 

interactions derived of current populations, but as well include novel populations such as 

immune cells or endothelial cells. Such developments to the model complexity are not out 

of reach, with combinations of already implemented technologies such as combination of 

composite spheroid culture and microfluidic devices, or bioreactor technology. If coupled 

with microencapsulation methodologies, these models would allow the study of paracrine 

factors associated with immune suppression or angiogenesis. In fact, a large number of 

designs could be used for the study of specific interactions and communications that drive 

tumor progression. That would undoubtedly improve research of novel therapies and as such 

enhance the ability to improve cancer therapy a foreseeable future 
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7.1 Annex I 

 

Supplementary Table 1. - Here are presented the diverse tested emulsion parameters 

Formulation PCL w/v % 
Oil Phase 

Volume (ml) 
PVA w/v 

Aqueous 

Phase 

Volume (ml) 

Agitation 

(x1000 

rpm) 

TTC 

(cm) 

F1 5.00 4 0.5 150 0.5 12 

F2 5.00 2 0.5 150 0.8 12 

F3 5.00 4 0.5 150 0.8 7 

F4 5.00 4 0.5 150 1.2 12 

F5 5.00 4 0.5 150 0.8 16 

F6 5.00 4 0.5 150 1.2 16 

F7 5.00 8 0.5 150 1.2 12 

F8 4.00 8 0.5 150 0.8 12 

F9 4.00 4 0.5 150 0.8 12 

F10 5.00 4 0.5 150 0.8 12 

F11 7.50 4 0.5 150 0.8 12 

F12 7.50 8 0.5 150 0.8 12 

F13 7.50 8 2 150 0.8 12 

F14 5.00 8 0.5 150 0.8 12 

F14 Sieved 5.00 8 0.5 150 0.8 12 

F15 4.75 10 0.5 150 0.8 12 

F16 5.00 10 0.5 150 0.8 12 

F17 4.00 10 0.5 150 0.8 12 

F18 5.00 10 0.5 150 1.2 12 

F19 4.00 10 0.5 150 1.2 12 

F20 2.25 10 0.5 150 0.8 12 

F21 2.25 10 0.5 150 1.2 12 
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Supplementary Table 2.  Formulations tested using electrospraying technique. Average sizes and morphologies 

of all produced formulations didn’t match the specifications. TTC refers to tip to collector distance. 

Formulation PCL 
(w/v) 

% 

TTC 
(cm) 

Gaug
e (G) 

Flow 
Rate 

(ml/H) 

Volt 
(Kv) 

Collection 
Method 

Monodis-
persity 

Average 
Size 

A1 5 (170_0) 22 4  10 Collected in - 20 
ml PVA 2% not 

stirred 

no <20 µm 

A2 5 (170_0) 22 4  10 Collected in - 60 
ml PVA 2% not 

stirred (400 
rpm) 

no <20 µm 

A7 5 (07_0) 22 4  10 Collected in - 40 
ml PVA 2% 
stirred (400 

rpm) 

no <20 µm 

A8 5 (08_0) 22 4 10 Collected in - 40 
ml PVA 2% 
stirred (400 

rpm) 

no <20 µm 

A9 5 (08_0) 22 3  10 Collected in - 40 
ml PVA 2% 
stirred (400 

rpm) 

no <20 µm 

A10 5 (08_0) 22 0.8 10 Collected in - 40 
ml PVA 2% 
stirred (400 

rpm) 

no <20 µm 

A12 9 (08_0) 22 0.8 10 Collected in - 40 
ml PVA 2% 
stirred (400 

rpm) 

no <20 µm 

A13 9 (08_0) 22 1 10 Collected in 
goble - 40 ml 

PVA 2% stirred 
(400 rpm) 

no <20 µm 

A14 9 (08_0) 22 2 10 Collected in - 40 
ml PVA 2% 
stirred (400 

rpm) 

no <20 µm 

A16 5 (08_0) 22 3 10 Collected in 
goble - 40 ml 
Water stirred 

(400 rpm) 

no <20 µm 
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A17 5 (08_0) 22 3 10 Collected in - 40 
ml Water stirred 

(750 rpm) 

no <40 µm 

A18 5 (08_0) 22 3 5 Collected in - 40 
ml Water stirred 

(400 rpm) 

no <20 µm 

A19 5 (08_0) 22 3 5 Collected in - 40 
ml PVA 2% 
stirred (400 

rpm) 

no <20 µm 

A20 5 (08_0) 22 3 15 Collected in - 40 
ml Water stirred 

(400 rpm) 

no <20 µm 

A21 5 (08_0) 22 3 15 Collected in - 40 
ml PVA 2% 
stirred (400 

rpm) 

no <10 µm 

A22 5 (08_0) 22 3 10 Collected in - 60 
ml PVA 0.5% 
stirred (400 

rpm) 

no <10 µm 

A23 5 (08_0) 22 3 15 Collected in - 40 
ml PVA 0.5% 

stirred 400 rpm) 

no <10 µm 

A25 5 (100_0) 22 3) 8.8 Collected in - 40 
ml PVA 0.5% 

stirred 400 rpm) 

no <10 µm 

A26 5 (03.7_0) 22 36 10 Collected in - 60 
ml PVA 0.5% 

stirred 600 rpm) 

no <10 µm 

A27 5 (08_0) 22 3 10 Collected in - 60 
ml PVA 0.5% 

stirred 600 rpm) 

no <10 µm 

A28 5 (08_0) 22 3 10 Collected in - 40 
ml PVA 0.5% 
stirred (400 

rpm) 

no <10 µm 

A29 5 (08_0) 22 3 7.5 Collected in - 40 
ml PVA 2% 
stirred (400 

rpm) 

no <10 µm 

A30 5 (00_0) 22 3 10 Collected in - 40 
ml PVA 0.5% 
stirred (400 

rpm) 

no <10 µm 
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Supplementary Table 4. Tested microfluidic formulations. 

Formulation PCL 
(w/v) % 

Pressure Central 
Channel (mbar) 

PVA (w/v) 
% 

Pressure Side 
Channels (mbar) 

M1 0.05 270 0.02 300 

M2 0.05 270 0.005 300 

M3 0.075 540 0.02 300 

 

 

Supplementary Figure 1. Variation of Size (A) and circularity (B) of dual-coculture spheroids of A549 and MSCs 
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Supplementary Figure 2. Variation of Size (A) and circularity (B) of Triculture spheroids of A549 , HF and 

MSCs 
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Supplementary Figure 3.8  CD44 surface markers expression in 2D monocultures of A549 (A), HF (B), MSCs 

(C). 



 

 

ANNEXES 

154 

 

 

Supplementary Figure 4. Live dead imaging of A549 monoculture spheroids at day 14. No necrotic core was 

visible in both LbL-MPs containing and non-LbL-MPs containing spheroids. 

 

Supplementary Figure 5. Drug screening assay of HF monoculture compared to previously doxorubicin 

cytotoxicity assay of A549-HF dual coculture. As can be seen HF alone present a higher susceptibility to 

doxorubicin action than dual coculture spheroids. 
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