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resumo 
 

 

Nas últimas décadas, os fluidos supercríticos têm ganho maior destaque no 
âmbito dos paradigmas de biorrefinaria e sustentabilidade de processos 
químicos, surgindo como alternativa verde a muitos solventes orgânicos. Em 
particular, sendo o dióxido de carbono supercrítico (SC-CO2) o solvente 
preferido, são necessários valores experimentais e modelos preditivos de 
difusividades de solutos tanto em SC-CO2 puro como modificado com 
cossolvente. Esta tese surge como resposta à falta de dados e modelos 
nesta área, tendo como principal objetivo a medição e posterior modelação 
dos coeficientes de difusão de eucaliptol em SC-CO2 modificado com 8 % 
(m/m) de etanol e ainda etanol líquido puro.  
 
Recorrendo ao método cromatográfico de abertura de pico (CPB), procedeu-
se à medição de difusividades do eucaliptol a diluição infinita (D12), numa 
gama de temperaturas entre 303.15 K e 333.15 K. Para a mistura SC-CO2 
com etanol, a pressões de 150 a 275 bar, obtiveram-se valores 
compreendidos entre 0.547×10-4 a 1.042×10-4 cm2 s-1. Já em etanol puro, 
variando a pressão entre 1 e 100 bar, obtiveram-se difusividades entre 
0.912×10-5 e 1.578×10-5 cm2 s-1. Os resultados de D12 foram analisados em 
função da temperatura, pressão, densidade e em coordenadas de Stokes-
Einstein. 
 
Testou-se também uma série de modelos baseados nas teorias 
hidrodinâmica e de volume livre, bem como equações empíricas. Os valores 
calculados e experimentais foram comparados com base no desvio relativo 
absoluto médio (AARD). Para ambos os sistemas, destacam-se o modelo de 
dois parâmetros de Dymond-Hildebrand-Batschinski (DHB), o modelo Tracer 
Liu-Silva-Macedo com um parâmetro (TLSMd), um modelo modificado 
Stokes-Einstein-1, e as relações empíricas de Magalhães et al. (AARD entre 
1.2 e 7.0 %). Em relação ao sistema ternário (eucaliptol na mistura SC-CO2 
com etanol) os modelos de Wilke-Chang, Lai-Tan e Vaz et al. (AARD de 
8.00, 8.36 e 1.29 %, respetivamente) foram os melhores. Quanto ao sistema 
binário (eucaliptol em etanol líquido) destaca-se ainda o modelo de Tracer 
Liu-Silva-Macedo (TLSM) (AARD de 6.75 %). Sugerem-se ainda correções a 
dois modelos, nomeadamente, à extensão do modelo de Liu-Silva-Macedo 
para intradifusividades em mixturas Lennard-Jones multicomponente, 
usando as regras de mistura propostas por Merzliak e Pfenning (LSM-MP) 
para o sistema ternário, e ao modelo DHB para o sistema binário, tendo-se 
obtido AARDs de 1.55 % e 3.70 %, respetivamente. 
 
Finalmente, procedeu-se à modelação de uma base de dados contendo 
1453 pontos experimentais de difusividades correspondentes a 132 
sistemas ternários distintos. Esta modelação foi realizada utilizando o 
modelo LSM-MP, ao qual foi proposta uma correção com base na divisão 
dos dados em 2 grupos: sistemas líquidos e supercríticos (AARDs de 9.39 % 
e 9.11 %, respectivamente). 

  



 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 
Diffusion coefficient, Eucalyptol, Supercritical Carbon Dioxide, Cosolvent, 
Modelling 
 

abstract 

 
Supercritical fluids have gained great importance within the concepts of 
biorefinery and sustainability of chemical processes. They are considered a 
“greener” alternatives to a vast group of conventional organic solvents with 
supercritical carbon dioxide (SC-CO2) being the most preferred. Currently, 
experimental data and predictive models for diffusivity in SC-CO2 systems 
are scarce especially regarding SC-CO2 systems modified with a cosolvent. 
The main objective of this thesis was the experimental determination and 
modelling of tracer diffusion coefficients (D12) of eucalyptol in SC-CO2 
expanded with 8 wt.% ethanol (ternary system) and in pure ethanol (binary 
system). Furthermore improve the D12 modelling in multicomponent mixtures. 
 
Eucalyptol diffusivities were measured by the chromatographic peak 
broadening technique (CPB) in the temperature range 303.15 to 333.15 K. 

For the ternary system the values ranged from 0.547×10-4 to 1.042×10-4 

cm2·s-1 for pressures between 150–275 bar. For the binary system the values 

ranged from 0.912×10-5 to 1.578×10-5 cm2·s-1 for pressures between 1-100 

bar. The dependency of D12 in terms of temperature, pressure, solvent 
density, and Strokes-Einstein coordinates were also examined.  
 
A series of models based on hydrodynamic and free volume theory and on 
empirical correlations were tested and compared using the average absolute 
relative error (AARD) for calculated and experimental values. For both 
systems, the best results were obtained with the two parameter Dymon-
Hildebrand-Batschinski (DHB) model, with the one parameter Tracer Liu-
Silva-Macedo (TLSMd) model, with the modified Stokes-Einstein-1 model, 
and with the Magalhães et al correlations (AARD between 1.2 and 7.0 %). 
For the ternary system the Wilke-Chang, Lai-Tan, and Vaz et al. models can 
also be highlighted (achieving AARD of 8.00, 8.36 and 1.29 % respectively). 
For the binary system the TLSM model achieves an error of 6.75 %. In 
addition, two corrections are presented to improve model fitting, namely for 
the extension of Liu-Silva-Macedo model to multicomponent LJ 
intradiffusivities using mixing rules of Merzliak and Pfenning (LSM-MP) 
applied to the ternary system and for the DHB model applied to the binary 
system (AARD of 1.55 % and 3.70 %, respectively). 
 
Finally a database containing 132 ternary systems with a total of 1453 
experimental diffusivity values was utilized for modeling D12 values, on the 
basis of the LSM-MP model. The AARD results obtained by splitting the 
database into two groups, namely liquid and supercritical systems, were 9.39 
and 9.11 % respectively. 
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1. Introduction 

Increasing attention has been given over past decades to the biorefinery and 

sustainability concept leading to the substitution of organic solvent by green alternatives, 

like supercritical fluids (SCF) [1]. These fluids offer a clean and environmentally friendly 

alternative to some of the organic solvents used in extraction, purification and reactional 

processes [2–6]. SCFs are characterized by having densities similar to liquids, values of 

viscosity close to gas and diffusivities between those of gas and liquids. These 

characteristics combined with their great capacity of changing their solvent power with 

small variations of temperature and/or pressure, in the vicinity of the critical point, give 

them a tremendous potential for being used as solvents in the previously mentioned 

processes. Presently the SCF have found several advances in various distinct areas such as 

food and pharmaceutical industry, environmental and material applications and also in 

chromatography as mobile phase [5–7]. Through the last one it is possible to analyze and 

to separate thermally instable and low volatile compounds, it is also possible to determine 

physico-chemical properties of fluid systems like diffusivities [8] . Some more practical 

applications of the SCF are of example the triterpenoids extraction and purification [9], 

extraction of vegetable matrices [10], spent coffee grounds [11], coffee and tea 

decaffeination [12]. 

Carbon dioxide is the most preferable solvent to be used as SCF due to its 

characteristics, it is nontoxic, nonflammable, cheap and has near-ambient critical 

temperature, 304.1 K, and a low critical pressure, 73,8 bar [12]. It is globally a nonpolar 

molecule but possesses a quadrupole moment. Hence, nonpolar and weakly polar 

molecules easily dissolve in supercritical CO2 (SC-CO2), in contrast polar and heavy 

molecules have very low solubilities. The polarity of the SC-CO2 can be improved by 

adding an entrainer such as acetone, methanol, or the one used in this study ethanol [8,12]. 

This resulted in an increasing interest upon SC-CO2 to substitute organic solvents, leading 

to a need of knowing its transport properties in order to be possible to carry out accurate 

process simulations and equipment design [8,13]. Some of the most important properties in 

question are the viscosity, thermal conductivity and finally the one studied in this work, the 

diffusion coefficient of a solute 2 though solvent 1 (D12). 
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Diffusion is one of the two main existing mass transfer mechanisms being the other one 

by convection. The latest is described as the macroscopic motion of molecules while the 

first is defined as the random and spontaneous microscopic movement that results from the 

thermal movement of the molecules [14]. 

The molecular motion by diffusion is described by the Fick’s law, which has as base 

three observations quantified by Fick in 1855 [14]: 

 Mass transfer phenomenon occurs due to a concentration gradient, which mean, in 

the case of a binary mixture, the molecular species diffuses to the lower 

concentration medium; 

 The mass transfer rate is proportional to the area normal to the mass transfer 

direction. Thus, it can be expressed as a flux; 

 Net transfer stops once uniformity is reached. 

Fick suggested an analogy to the first law of heat conduction, thus the Fick law was 

defined as Eq.1. This equation shows proportionality between a flux and a gradient where 

J2,z defines the total unidimensional flux per area unit, Ct represents the total 

concentration, x2 the fraction of species 2 fraction, z the distance and D12 the diffusion 

coefficient of component 2 thought 1 [15]. 

 J2,z = −D12Ct
dx2

dz
 (Eq.1) 

It is important to mention that accurate the driving force of Fick’s law is the gradient of 

chemical potential; the concentration gradient is frequently used as an approximation [16]. 

Currently it is verified a lack of D12 data specially supercritical mixtures (eg: SC-CO2 

modified with ethanol) [17], or in the case of known systems, the existence of accurate 

models for D12 prediction [18]. This work comes in response to this lack of data having 

been performed D12 measurements of eucalyptol in SC-CO2 modified with ethanol and in 

liquid ethanol. Then it was performed to the data modelling using several models ranging 

from classical and more recent models based on hydrodynamic and free volume theories. 

The solute in study, eucalyptol, is a monocyclic monoterpene, also known as 1,8-cineol, 

with molecular form C10H18O. This compound is liquid under atmospheric conditions; and 

presents odor but no color. The compound can be found in natural oils, being viable from 

Eucalyptus essential oils since it is present in high concentrations (up to 90 %). Isolation 

from the other terpenes can be accomplished by various processes including conventional 

solvent extraction, cold treatment with a strong acid (e.g. H2SO4) [19], and a two-step 
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distillation process in the presence of phenols [20]. In the past eucalyptol was used as 

antiseptic and expectorant, currently it founds applications in the pharmaceutical industry, 

due to his bioactive properties, being presented in medicinal drugs used as a remedy for 

symptoms of the common cold and other respiratory infections [21]. It possesses 

substantial antibacterial activity [22], it is used as perfume and fragrance [19], and presents 

potential to replace certain petroleum-based solvents used as industrial degreasers [23]. 

The present thesis is divided into six chapters. In Chapter 2 “Fundaments of D12 

experimental determination”, it will be discussed the experimental fundaments for D12 

measurement; In Chapter 3 “Tracer diffusion coefficients models” the models used for 

modelling the data obtained are presented and discussed; In Chapter 4 “Experimental 

section” a description of the equipment, experimental procedure and conditions, chemicals 

and the correlations used to calculate density and viscosity of the solvent are presented. In 

Chapter 5 it is discussed the data measured and calculated regarding both ternary 

(eucalyptol/SC-CO2/ethanol) and binary (eucalyptol/ethanol) systems, together with 

modeling results of a compiled D12 ternary systems database. Finally in Chapter 6 the main 

conclusions of this work are compiled as well as future work suggestions. 

The current dissertation produced an international publication, and a second manuscript 

is under preparation. 
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2. Fundaments of D12 experimental determination 

The experimental determination of the binary diffusion coefficient, D12, of organic 

compounds in supercritical fluids and liquid solvents can be done by five different 

methods: solid dissolution technique (SD), photon correlation spectroscopy (PCS), nuclear 

magnetic resonance (NMR), radioactive tracer response (RTR) and the one used in this 

study, the chromatographic peak broadening technique (CPB) [24]. 

 

2.1. Chromatographic peak broadening technique (CPB) 

The CPB technique is a chromatographic method based on the work of Taylor [25–27] 

later continued by Aris [28]. Taylor showed that when a pulse of solute is injected in a 

laminar solvent stream thought a capillary strait tube of circular cross section, the pulse 

will broaden due to the combined action of convection, along the axis of the tube, and 

molecular diffusion in radial direction [24]. Although the original work conducted by 

Taylor and Aris was uniquely devoted to describe a solute pulse dispersion in straight tubes 

under laminar flow, only then the method was specifically applied for the measurement of 

diffusion coefficients of solutes in gases [29], dense gases [30], liquid [31] and later in 

SCF [32]. Based on this technique it is possible to obtain results in a short time period, 

however the D12 values obtained correspond to coefficients at infinite dilution, due to the 

small quantity of solute utilized (e.g. 0.2 – 1.0 μL [33,34]), being impossible to determine 

the relation between D12 and the solute concentration [24]. The typical response resulting 

from this method is represented in Figure 1 [35]. As can be observed when a pulse of a 

diluted solute in introduced in an organic solvent stream, the peak of both compounds will 

come out of the column together if no adsorbent phase existing in the column. This limits 

the method to solutes not diluted in organic solvents, since the peak obtained would be of 

the mixture of solute and solvent. 
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Figure 1 – Typical response of Taylor-Aris (CPB) method to an impulse input signal [35]. 

If the pulse is introduced in a laminar flow solvent stream in a cylindrical column, and 

the assumption that the physical properties are constant during each measurement can be 

made, the tracer concentration, C2, can be expressed as function of time, t, and the axial 

and radial coordinates z and r. The concentration profile is given by [36]: 

 
∂C2

∂t
= D12 [

1

r

∂

∂r
(r

∂C2

∂r
) +

1

r2

∂
2
C2

∂𝑧2
] − 2u̅ (1 −

r2

R2)
∂C2

∂z
 (Eq.2) 

where R is the column inner radius and u̅ the mean velocity of the solvent stream. 

The time required in order to observe concentration effects due to axial convection is 

very long compared to the effect of radial variations. If the condition given by Eq.3 is 

respected, the axial dispersion component, 
1

r2

∂
2
C2

∂z2
, can be neglected in comparison to radial 

dispersion component, 
1

r

∂

∂r
(r

∂C2

∂r
) [25]. 

 
L

u̅
≫

R2

3×82D12

 (Eq.3) 

where L is the column length. 

Taking this approximation into account, Eq.2 can be written as Eq.4: 

 
∂C2

∂t
= D12 [

1

r

∂

∂r
(r

∂C2

∂r
)] − 2u̅ (1 −

r2

R2)
∂C2

∂z
 (Eq.4) 

The initial and boundary conditions imposed to Eq.4 are: 

t = 0, C2 =
m

πR2 δ(z)  (Eq.5) 

t ≥ 0, 
∂C2

∂r
= 0 for r =  0 and r =  R (Eq.6) 

 C2 = 0 for z = ±∞ (Eq.7) 

where m it is the quantity of injected solute and δ(z) the Dirac’s function. 



7 
 

In most experiments, average concentration over the cross-sectional area of tubing, C
app

, 

is measured by the UV detector calculated by: 

 C
app =

2

R2 ∫ C2 (r,z,t) dr
R

0
 (Eq.8) 

Combining Eq.4 to Eq.7 it is obtained: 

 
∂C

app

∂t
=  D

∂
2
C

app

∂z2
− u̅

∂C
app

∂z
 (Eq.9) 

where C
app

 it is the mean concentration, D the dispersion coefficient described by Taylor 

and given by Eq.10 which combines both effects of radial and axial dispersion [28]. 

 D =  D12 +
R2u̅2

48D12
 (Eq.10) 

The initial and boundary conditions of Eq.9 are: 

 C
app =

m

πR2 δ(z) for t = 0 (Eq.11) 

 C
app =  0 for z = ±∞ (Eq.12) 

By combining Eqs.9-12 it is obtained the solute average concentration, C
app

, of the 

solute inside the column: 

 C
app =

m

πR2

1

√4πDt
exp [−

(z-u̅t)
2

4Dt
] (Eq.13) 

The peak concentration profile can also be described mathematically in terms of the 

variance of the peak in unity of square meter, 𝜎2, by Eq.14. 

 σ2 =
2DL

u̅
=

2D12L

u̅
+

R2u̅L

24D12
= HL (Eq.14) 

which in terms of the theoretical plate height, H, can be written as: 

 H =
σ2

L
 (Eq.15) 

Equations 14 and 15 were derived for straight tubes, however to be possible to measure 

diffusivities accurately the tube must be at constant temperature. Since the tubes may have 

considerable length they must be coiled in order to be placed in a constant temperature 

bath or oven. This configuration has two main implications, as reported by Nunge et al. 

[37]: first, the velocity profile is elongated, leading to a greater dispersion of the peak 

creating a situation where lower apparent diffusivity values are obtained; second, it is 

present a centrifugal effect that sets up secondary flow perpendicular to the flow direction 

leading to an incensement of the mixing results in narrower peaks that generates higher 

apparent diffusivity values [38]. Once the fluid is thrown out, since mass accumulation 

cannot occur there is a formation of a secondary-flow in the opposite direction that 
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compensates the outward flow, causing a circular movement from the interior to the 

exterior of the column (Figure 2) [39].  

 

Figure 2 – Schematic representation of laminar flow velocity profile in a coiled tube [39]. 

The previous description leads to a deviation to the Taylor-Aris assumptions that can be 

expressed as function of the Reynolds (Re, Eq.16) and Schmidt (Sc, Eq.17) numbers, and 

by the geometric factor ζ. The curvature of the coil is characterized by ζ calculated by the 

ratio between the tube coil radius, RC, and the inner column radius, R. Under certain 

conditions Re and ζ are not independent, in fact the relation between centrifugal and inertia 

forces is described by the Dean number (De), (Eq.18) [38,39]. 

 Re =
u̅ ρ1 R 

μ1

 (Eq.16) 

 Sc =
μ1

ρ1 D12
 (Eq.17) 

 De =  Reζ
-0.5

 (Eq.18) 

These dimensionless numbers can also describe the peak’s behavior. The peak 

broadening effect is due to a proportional term to Re2Scζ
-2

, which dominates at lower Re if 

ζ < 10. On the other hand the narrowed peak effect is proportional to (De2Sc)
2
 which is 

dominant at higher Re values [37,38]. 

In order to neglect temperature and pressure perturbations, then may occur outside the 

oven, van der Laan [40] defined that the following condition must be respected [33]: 

 
u̅L

D
> 1000 (Eq.19) 

The secondary flow effects in the column can be neglected if the flowing condition is 

met: 
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 DeSc
0.5 < 10 (Eq.20) 

This criterion was proposed by Moulijin et al.[41], Alizadeth et al.[42] and Springston 

and Novotny [43]: to guaranty an error lower than 1 %, Funazukuri [35,44] recommends 

that DeSc0.5 should be lower than 8. 

Finally in order to the solute concentration profile approximate a gaussian form, 

according to Levenspiel and Smith [45], the following condition should be met: 

 
D

u̅L
< 0.01 (Eq.21) 

If the previous mentioned conditions are respected, the D12 value can be determined by 

[33]: 

 D12 =
u̅

4
[H ± (H2 −

R2

3
)

0.5

] (Eq.22) 

The theoretical plate height, H, can be calculated by different methods. One of the most 

simple and precise methods consists in measuring the half width of the peak at a 60.7 %, 

height, W0.607, and then use [24]: 

 H =
LW0,607

2

tr
2 =

u̅2W0,607
2

L
 (Eq.23)  

where tr is the retention time and W0.607 is expressed in time units. 

It should be noted that Eq.22 is a quadratic equation meaning that two possible solutions 

may appear. Giddings and Seager [46] have shown that the best way to determine them is 

by calculating H using various values of speed and an arbitrary value of D12 in Eq.14 and 

15. Then by calculating D12 using Eq.22 two solutions are obtained. For velocities up to 

the optimum velocity, uopt, the positive root should be taken, for values higher than uopt, 

the negative root is taken. The optimum velocity, uopt, which minimizes the value of H, is 

calculated using Eq.24. When working with liquids and dense fluids, the negative root 

should be chosen since the optimum velocity is very low and easily overcome by the 

solvent [24]. 

 uopt =  √48
D12

R
 (Eq.24) 

The chromatographic peak broadening (CPB) method it is a very precise and fast 

method to determine diffusion coefficients. Unfortunately, this method suffers from 

constrains, most of them discussed previously. The method is not appropriate for 

measuring diffusion coefficients in the vicinity of the critical point due to the reduced 

solvent power of the supercritical fluid. The mixture solute/SC-CO2 does not attain the 
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supercritical state in most of axial positions of the column leading to abnormal peaks when 

large amount of solute is injected [8,35]. The method is also very sensible to pressure 

drops, initial solute dispersion and secondary flow discussed previously. Finally the 

method also neglects adsorption of the solute onto column wall [47], but if adsorption is 

present asymmetry and tailing should be notice in the outlet chromatogram [24,48]. Special 

attention should be given to the columns material in order to neglect solute adsorption. 

Diffusion coefficients polar compounds or high molecular weight compounds cannot be 

determined using this method since peak tailing caused by adsorption leads to a significant 

degree of error [8,35]. 

To calculate the D12 values from the response curves obtained, three methods can be 

applied: the previously described (Eqs.22-23) graphical method. [26,49], the moments 

method, and the fitting method. 

The moments method consists in determining D12 thought the zeroth, first and second 

moments of the peak signal. 

If D12t ̅ 𝑅2⁄ > 10 and combining Eq.10 and 25 (Eq.25 describes the variance of the error 

function) Eq.26 is obtained, having maximum error of ± 1 % associated. 

 σ2 =
2Dt ̅

u̅2  (Eq.25) 

 D12 =
R2t ̅

24σ2
 (Eq.26) 

where t ̅ is the average retention time and σ2 is the variance. Both can be obtained by the 

zeroth, first and second moments [49]: 

 𝑆 = ∫ C(t)
∞

0
 dt (Eq.27) 

 t ̅ =
1

S
∫ C(t)

∞

0
 dt (Eq.28) 

 σ2 =
1

S
∫ (t - t)̅

2
C(t)

∞

0
 dt (Eq.29) 

By using the fitting method t ̅ e σ2 are calculated by nonlinear fitting of the peak, 

minimizing the root mean square error, ε, given by Eq.30 [50]. 

 𝜀 = (
∫ (C

exp(t)−(C
app

(L,t))
2
dt

t2

t1

∫ (C
exp(t))

2t2

t1
dt

)

1/2

 (Eq.30) 

where C
exp

 is the concentration experimentally determined. The variables t1 and t2 are time 

values selected at 10 % of peak height, being t1 < t2 [17,36]. Taking into account the 

values of ε, the fitting can be considered good if the value of ε is less than 1 %, the fitting 
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is acceptable if the value is situated between 1 % and 3 %, and for values higher than 3 % 

it is rejected [35,50]. Another parameter used to quantify the chromatographic peak is the 

asymmetry factor; if this value is higher than 1.1-1.3, the peak should be rejected 

[17,24,51]. 

Between the last two method presented the fitting method is considered more precise 

than the moment method [35]. According to Wako and Kaguei [52] the moment method 

overestimates the errors related to the frontal and tailing portions of the response curve, 

and such limitations can be overcome by the fitting method [36].  

 

2.2. Chromatographic impulse response technique (CIR) 

The chromatographic impulse response (CIR) technique is also utilized to measure 

diffusion coefficients at infinite dilution of gases, liquids and supercritical fluids. The 

greatest difference from the previous method (CPB) is the usage of a column with a 

polymeric coating, which causes the chromatographic separation of the solute from the 

solvent due to different retention times, if a solution is inject instead of a pulse of a pure 

liquid solute. This technique makes also possible to determine retention factors and 

solubilities of the compounds. The typical response from this method is presented in Figure 

3 [35,44]. 

 

Figure 3 – Typical response of the CIR method to an impulse input signal [35]. 

Similarly to the CPB method, when a straight pulse is introduced into a laminar solvent 

stream the solute concentration profile is described by the Eq.2. However the boundary 

conditions are [42,53]: 

 k
∂C2

∂t
= −

2D12

R

∂C2

∂r
 for r = R (Eq.31) 

 
∂C2

∂r
= 0 for r = 0 (Eq.32) 

 C2 = 0 for z = ±∞ (Eq.33) 
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where k is the retention factor in the column, which is not influenced by the axial and 

radial dispersion, but by temperature and pressure. It is also considered that the equilibrium 

of the solute, between the solvent and the polymer is instantaneous. The retention factor 

can be determined by one of two ways: by the retention time using Eq.34 or by moment 

analysis by applying the first and second moments and using the solvent velocity [35]. 

 k =
ttr-t0

t0
 (Eq.34) 

here, ttr is the retention time of the solute and t0 the retention time of inert species. The 

initial condition for the current case is: 

 C2 =
m

πR2

δ(z)

1+k
 at t =  0 (Eq.35) 

The approximated differential equation of Golay for the average concentration of solute 

is given by [36,44]: 

 
∂C

app

∂t
= a

∂
2
C

app

∂z'2
− b

∂
2
C

app

∂z'∂t
 (Eq.36) 

where a, b, z and U are defined by: 

 a =
D12

1+k
+

1+6k+11k
2

(1+k)
3

R2U2

48D12
 (Eq.37) 

 b =
R2U2

24D12

k(1+4k)

1+k
 (Eq.38) 

 z' = z −  Ut (Eq.39) 

 U =
u̅

1+k
 (Eq.40) 

Assuming that b = 0, Eq.36 becomes [36]: 

 
∂C

app

∂t
= a

∂
2
C

app

∂z'2
 (Eq.41) 

with initial and boundary condition: 

 C
app =

m

πR2

δ(z')

1+k
 at t = 0 (Eq.42) 

 C
app = 0 at z' = ±∞ (Eq.43) 

By solving the previous equation, one obtains the Gaussian like solution given by [36]: 

 C
app(z,t) =

m

πR2

1

(1+k)√4πat
exp {−

(𝑧 − 𝑈𝑡)2

4at
} for z,t > 0 (Eq.44) 

Adopting the fitting method, k and D12 are determined by minimizing ε calculated by 

Eq.30 where Capp(L,t) is the radial average concentration at z = L. Regarding the analysis of 

the chromatographic peak, the same criteria discussed earlier for the case of CPB method 
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(Chapter 2.1) should be adopted [35]. The value of D12 is determined by Eq.45, being this 

valid under the same conditions as Eq.22 [36]. 

 𝐷12 = [
1+6k+11k

2

1+k
] [

(R2(
u̅

1+k
)

2
)

24a
] (1 + √1 − [

1+6𝑘+11𝑘2

(1+𝑘)2

𝑅2(
𝑢̅

1+𝑘
)

2

12𝑎2 ])⁄   (Eq.45) 

When applying the moment method σ2 and t ̅are determined by the Eq.46 and 47 [36]. 

 t ̅ =
∫ tC

app
(L,t)

∞

0
dt

∫ C
app

(L,t)dt
∞

0

=
L

U
(1 + 2

a

LU
)  (Eq.46) 

 σ2 =
∫ (t-t)̅

2
C

app
(L,t)

∞

0
dt

∫ C
app

(L,t)dt
∞

0

= 2 (
L

U
)

2 a

LU
(1 + 4

a

LU
) (Eq.47) 

The retention factor, k, can be calculated by [36]: 

  𝑘 =
2(1-

σ2

t
2̅ )

3+√1+4
σ2

t
2̅

tu̅̅

L
− 1 (Eq.48) 

Finally the diffusion coefficient is estimated by [36]: 

 D12 =
2α

β+√β
2−4α

Lu̅ (Eq.49) 

where 

 𝛼 =
1+6k+11k

2

(1+k)2

R2

48L2 (Eq.50) 

 𝛽 =

2
σ2

t
2̅ -1+√1+4

σ2

t
2̅

4(2-
σ2

t
2̅

)
 (Eq.51) 

 

2.3. Modified Taylor-Aris technique 

The modified Taylor-Aris technique results from a combination of the two previous 

described methods. Experimentally it uses two columns, one with a polymeric coaingt (as 

in the CIR method) followed by an open column (as in CPB method). This combination 

results in a separation of the solute and solvent before entering in the open column. The 

typical chromatographic response of this method is shown in Figure 4 [35]. 
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Figure 4 – Typical response for the modified Taylor-Aris method to an impulse input signal [35]. 

D12 is determined by the difference between the variance values at the inlet and the exit 

of the second column. As in the Taylor-Aris method the concentration profile is described 

by Eqs.9 and 10, regarding the restrictions to these equation they are [35]: 

 C
app =  0 for t =  0 (Eq.52) 

 C
app = C 

I, exp(t) for z =  0 (Eq.53) 

Combining Eqs.9, 10, 52 and 53 with the Eq.12, Eq.55 is obtained: 

 C 
II, app(t) = ∫ C 

I,exp(ξ)f(t − ξ) dξ
t

0
 (Eq.54) 

F(s) is a function defined by the ratio between the Laplace transform of the exit signal 

C 
II, app(t) and the entry signal C 

I, app(t), it is given the Eq.55. By applying the inverse of the 

Laplace transform to 𝐹(s) function, 𝑓(t) given by the Eq.56 is obtained [35]. 

 𝐹(s) =
∫ C 

II, app
(t)e−stdt

∞

0

∫ C 
I, app

(t)e−stdt
∞

0

= exp [
Lu̅(1−√1+4Ds/u̅2)

2K
]  (Eq.55) 

 𝑓(t) =
L

√4πDt3
exp (

−(L−u̅t)
2

4Dt
) (Eq.56) 

The present method is suitable to measure binary diffusion coefficient of volatile 

components as showed by Funazukuri et al. [54].  
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3. Tracer diffusion coefficients models 

Several approaches were used to correlate or estimate the tracer diffusivities measured in 

this work, namely: the Dymond–Hildebrand–Batschinski (DHB) free volume equation 

[13,55,56]; the predictive tracer diffusion coefficient model of Liu-Silva-Macedo (TLSM) 

[13,57,58]; the one-parameter correlation of Liu-Silva-Macedo (TLSMd) [13,57,58]; the 

extension of Liu-Silva-Macedo model to multicomponent systems, using the mixing rules 

of Merzliak and Pfenning for Lennard-Jones intradiffusivities (LSM-MP) [13,59]; the 

predictive Wilke-Chang equation [60,61]; a predictive modified Stokes-Einstein equation 

(mSE1) [62]; the predictive model of Vaz et al. [63]; and four predictive empirical/semi-

empirical correlations of Magalhães et al. [64]. These models will be briefly described in 

the next paragraphs.  

Model performance was assessed by the average absolute relative deviation, AARD, 

defined as: 

 AARD(%) =
100

NDP
∑ |

𝐷12
exp

−𝐷12
calc

𝐷12
exp |

i

NDP
i=1  (Eq.57) 

where NDP represents the number of points, and D12
exp

 and D12
calc are the experimental 

and calculated values of tracer diffusivities, respectively.  

 

3.1. Dymond–Hildebrand–Batschinski (DHB) correlation 

One theory to treat transport properties, (e.g. diffusivities), of dense fluids is that of free 

volume where the coefficients depend on the relative expansion from an intrinsic molar 

volume, Vi. The importance of these models rely on: Simple equations and reduced number 

of parameters; Most of the parameters have physical meaning; They are applicable in a 

vast range of temperature and pressures; The main approaches are based on statistical 

mechanics giving them a solid background; They can be extended to multicomponent 

systems [13]. 

The Dymond–Hildebrand–Batschinski (DHB) it is a free volume model frequently 

adopted to describe non-polar substances with negligible attractive forces at moderated 

densities. This model has for based on the work developed by Batschinski for real liquids 

and later carried over to self-diffusivities by Hildebrand, suggesting a dependency of the 

diffusion coefficients with the free molar volume. In 1974, the results obtained by Dymond 
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for hard sphere systems suggested that the equation to be used is Eq.58. In this equation is 

introduced the dependency on the square root of the temperature [13,55,56]: 

 D12 = BDHB√T(Vm − VD) (Eq.58) 

where Vm (cm3 mol-1) is the molar volume of the solvent, and VD (cm3 mol-1) and B
DHB

 

(cm-1 mol s-1 K-1/2) are adjustable parameters of the model. VD is the maximum packing 

volume, meaning it is the minimum molar volume at which diffusivity ceases. Finally B
DHB

 

is characteristic of solute-solvent pair [13,55,56]. In some systems the value of VD may 

depend on the temperature, and simple relations VD = VD(𝑇) may be proposed to 

represent such trend [13,56]. In this work a linear dependency was considered in Chapter 

5.4 (𝑉D = 𝑚VD𝑇 + 𝑏VD). 

Lito et al. [65] tested this model in a database with 8293 experimental points from 487 

systems (supercritical, liquids and gaseous systems) and was obtained an AARD of 5.22 % 

[65]. 

 

3.2.  Predictive model of Tracer-Lui-Silva-Macedo (TLSM)  

The Tracer Liu-Silva-Macedo, (TLSM), it is a predictive model (zero parameters). This 

model has as origin the Liu-Silva-Macedo (LSM) model for self-diffusion coefficients. The 

reliable results accomplished by this model induced Liu et al. [13,57,58] to propose an 

empirical extension to calculate tracer diffusion, Eq.59.  

 D12 =
21.16

ρn,1σeff,12
2 (

1000RgT

M12
)

1/2

exp (−
0.75ρ1

*

1.2588-ρ
1
* −

0.27862

T12
* )  (Eq.59) 

where M12 is the reduced molar mass of the system (g·mol-1) given by Eq.60, T12
*

 is the 

reduced temperature of the system given by Eq.61, σeff,12
  (cm) is the effective hard sphere 

diameter of the hard sphere given by Eq.62, ρ
n,1

 (cm-3) is the number density of the solvent 

given by Eq.64 and 𝜌1
* is the reduced density of the solvent given by Eq.63: 

 M12 = 2
M1M2

M1+M2
  (Eq.60) 

 T12
* =

T

(
εLJ,12

kB
)
 (Eq.61) 

 σeff,i
 = σLJ,i

 ×2
1/6 (1 + √1.3229Ti

*)

-1/6

, i = 1, 12 (Eq.62) 

 ρ
1
* = ρ

n,1
σeff,1

3  (Eq.63) 
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 ρ
n,1

= ρ
1

Nav

M1
 (Eq.64) 

where i = 1, 2 or 12 being the last the solute/solvent pair, Nav is the Avogadro’s number 

and ρ
1
 (g cm-3) is the solvent density. Finally, the two interaction parameters of LJ (energy, 

εLJ,12 kB ⁄ (K), and diameter, 𝜎LJ,12
  (cm)), are estimated by the following combining rules: 

 σLJ,12
 =

σLJ,1
 +σLJ,2

 

2
  (Eq.65) 

 
εLJ,12

kB
=

√
εLJ,1

kb
σLJ,1

3 ×
εLJ,2

kb
σLJ,2

3

σLJ,12
 3  (Eq.66) 

Finally if the LJ energy and diameter of the pure component i is unknown, Eq.67 to 69 

should be used to estimate them [58]: 

 
εLJ,i

kB
= 0.774Tc,i , i = 1,2 (Eq.67) 

 σLJ,i
3 (Å) = 0.17791+11.779

Tc,i

Pc,i
-0.049029 (

Tc,i

Pc,i
)

2

, 
Tc,i

Pc,i
≤ 100 (Eq.68) 

 σLJ,i
3 (Å) = 0.809Vc,i

1/3, 
Tc,i

Pc,i
> 100 (Eq.69) 

where the subscript c identifies a critical property. 

Magalhães et al. [58] tested this model in a database containing 5279 experimental 

points (supercritical, liquids and gaseous systems) from 296 binary systems and worth an 

AARD of 15.71 % was obtained. 

It is worth noting that the present model cannot be applied to hydrogen bonding solvents 

like alcohols and water. The TLSM model is based on Lennard-Jones potential which 

accounts for van der Waals forces, which are much weaker than those that prevail in 

solvents with hydrogen bond and dipole-dipole interactions [13,57,66]. 

 

3.3. 1-parameter correlation of Tracer-Liu-Silva-Macedo (TLSMd) 

The TLSMd is a one parameter model generated from the TLSM model by inserting the 

interactions constant k12,d into the diameter combining rule. This constant is an adjustable 

parameter of the model. Hence, the binary LJ parameters, diameter and energy, are 

[13,57,58]: 

 σLJ,12
 = (1 − k12,d)

σLJ,1
 +σLJ,2

 

2
  (Eq.70) 

  
εLJ,12

kb
= 8

√
εLJ,1

kb
σLJ,1

3 ×
εLJ,2

kb
σLJ,2

3

(σLJ,1
 +σLJ,2

 )
3  (Eq.71) 



18 
 

Similarly to the previous models this was also tested by Magalhães et al. [58] with the 

same database obtaining an AARD of 3.89 %, a smaller error when compared with TLSM. 

TLSM and TLSMd models were both designed for the calculation of D12 in binary 

systems at infinite dilution. Therefore, their application to a ternary system (e.g. 

eucalyptol/SC-CO2/ethanol) may be accomplished after defining a pseudo-component 

representative of the solvent mixture. The following methodology has been adopted to 

calculate D12: (i) The critical properties of the solvent mixture were estimated using the 

correlations of Chueh and Prausnitz, Schick and Prausnitz, and Kreglewski and Kay [61] 

(the values of the critical properties can be consulted in Table 3 of Chapter 5.5 and the 

correlations in Appendix B); (ii) the LJ energy and diameter parameters were estimated by 

Eqs.67 to 69 considering the solvent mixture as a pseudo-component; (iii) D12 values were 

evaluated as usually using TLSM and TLSMd models.  

 

3.4. Extension of Liu-Silva-Macedo model to multicomponent LJ 

intradiffusivities using mixing rules of Merzliak and Pfenning (LSM-

MP) 

The extension of the Liu-Silva-Macedo model to multicomponent systems was firstly 

accomplished by Merzliak and Pfenning [13,59], who studied intradiffusivities of Lennard-

Jones mixtures, Di,LJ. The model embodies five constants (that were optimized using 

molecular dynamics data) and includes six mixing rules. The final expressions are: 

 Di,LJ =
21.16

ρnσmix,i
2 (

1000RgT

Meff,i
)

1/2

exp (−
θ4ρeff,i

*

θ2-ρ
eff,i
* −

θ3

Tmix,i
* )  (Eq.72) 

 ρ
eff,i
* = ρσmix,i

a σmix,i
b  (Eq.73) 

 σmix,i
a = ∑ xjσeff,i,j

 1−θ1N
j=1  (Eq.74) 

 σmix,i
b = ∑ ∑ xixj

σeff,i,j
 θ1N

j=1
N
i=1  (Eq.75) 

 σmix,i
2 = ∑ xjσeff,i,j

 2N
j=1  (Eq.76) 

 σeff,i,j
 = σLJ,i,j

 × 2
1/6 (1 + √

Teff,i,j
*

θ5
)

-1/6

   (Eq.77) 

 Teff,i,j
* =

T

(
εLJ,i,j

kb
)
 (Eq.78) 

 Tmix,i
* = ∑ xjTeff,i,j

*N
j=1  (Eq.79) 
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 meff,i

-1/2
=

1

2
∑ xj(mi

-1/2 + mj
-1/2)N

j=1  (Eq.80) 

 Meff,i
 = Navmeff,i

  (Eq.81)  

where the subscripts i, j = 1,..,N span all components of the mixture (𝑁), mi is the mass of 

molecule i, σLJ,i,i and 𝜀𝐿𝐽,𝑖,𝑖 kB⁄  are the LJ parameters of pure component i, σLJ,i,j and 

𝜀LJ,i,j kB⁄  are the cross LJ parameters, xi is the molar fraction of i, ρ
n
 is the number density 

of the mixture, ρ
eff,i
*  is the effective reduced density based on component i, Teff,i,j

*  is the 

effective reduced temperature based on pair ij, meff,i
  is an effective mass of component i in 

the mixture, and finally θj (j=1 to 5) are model constants (θ1 = 2.159807; θ2 = 1.156846; θ3 

= 0.414496; θ4 = 0.610344; θ5 = 0.564022) [13,59].  

 

3.5. Wilke-Chang equation 

The Wilke-Chang method is based on the Stokes-Einstein relation that establishes that: 

 D12 =
RgT

6πμ1r2
 (Eq.82) 

where r2 it is the radius of the spherical solute and μ1 the solvent viscosity. Eq.82 is strictly 

applied to macroscopic systems [61]. 

The Wilke-Chang is an empirical modification of the Stokes-Einstein relation. Although 

it is an old predictive model it is still widely used. For binary systems the model is given 

by [60,61]: 

 D12 = 7.4 × 10
-8 (ΦM1)1/2T

μ1VTC,bp,2
0.6  (Eq.83) 

 VTC,bp,i = 0.285 × Vc,i
1,048

 (Eq.84) 

where Φ is the association factor of the solvent (e.g., 2.6 for water, 1.9 for methanol, 1.5 

for ethanol, and 1.0 for non-associating solvents), and VTC,bp,2 is the solute molar volume at 

its normal boiling point, here estimated by the method of Tyn and Calus (Eq.84) [61]. In 

the case of solvent mixtures, the Wilke-Chang equation can also be applied if μ
1
 is 

substituted by the viscosity of the mixture, and parameter Φ Μ1 is estimated by: 

 

 Φ M1 = ∑ xi
N
i=1 ΦiMi (Eq.85) 

This model was tested by Lito et al. using the same data base as in Chapter 3.5 and 

AARD = 20.74 % was achived [65]. 



20 
 

3.6. Lai-Tan equation foe SC-CO2 systems 

The Wilke-Chang equation was modified by Lai-Tan [48] to account for the nonlinear 

dependency of D12 on 1/μ
1
. The final expression is: 

 D12 = 2.50×10
-7 (M1)1/2T

(10×μ1
)

0.688
Vc,2

1/3
 (Eq.86) 

where Vc,2
  is the critical volume of the solute. It is important to mention that this equation 

was devised for supercritical carbon dioxide systems [63]. 

 

3.7. Modified Stokes-Einstein-1 (mSE1) equation of Magalhães et al. [62] 

The Modified Stokes-Einstein-1, mSE1, is a hydrodynamic model for diffusion 

coefficients in SC-CO2, developed by Magalhães et al. [62] and based on the Stokes-

Einstein expression. The model equation in CGS units with viscosity in cP is: 

 D12 = 1.1335 × 10
-6 (

T

μ1

)
0.8468

1

(M2Vbp,2
exp

)
0.2634 (Eq.87) 

 Vbp,2
exp

= 1.459(VTC,bp,2
 )

0.894
 (Eq.88) 

where VTC,bp,i, is the molar volume of component i at its normal boiling point estimated by 

the method of Tyn and Calus (see Eq.84). 

 

3.8. Predictive model of Vaz et al. [63] for D12 SC-CO2 

The present model was developed by Vaz et al. [63] to estimate tracer diffusion 

coefficients in SC-CO2. The model combines two terms, background (D12
b ) and singular 

(D12
s ), with the objective to represent D12 accurately not only far but also near the critical 

point. The model is: 

 D12 = D12
b + D12

s = A (
T

μ1

)
α

1

(M2Vbp,2
 )

β +  
𝑘BT

6πμ1σ12
[

1

1+θ(1−
1

2
Γ12

∞ )
1/2] (Eq.89) 

where α=0.8140, β=0.2530, A=3.247×10-7 and θ=8.570, kB is the Boltzmann’s constant 

(1.38065x10-16 erg K-1), and Γ12
∞  is a thermodynamic factor at infinite dilution calculated 

on the basis of Peng-Robinson equation of state (further details in [63]). 
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3.9. Simple empirical and semi-empirical correlations Magalhães et al. [64] 

Magalhães et al. [64] developed several empirical and semi-empirical correlations that 

relate the diffusion coefficient with temperature, T (K), solvent viscosity, 𝜇1 (cP) and 

solvent density, 𝜌1 (g·cm-3). These equations are very simple and possess two adjustable 

parameters, ai and bi.They can be divided in four groups: Group 1 relates the D12 with 

temperature and solvent viscosity; Group 2 shows that the D12 depends only on the 

viscosity of the solvent; Group 3 shows the dependency of the D12 with the temperature 

and density on the solvent; Group 4 combined the influence of temperature with density 

and solvent viscosity. For this work one equation from each group was selected: 

 ln
D12

T
= a1 ln μ

1
+ b1 (Eq.90) 

 D12 = a2
1

μ1

+ b2  (Eq.91) 

 
D12

T
= a3ρ

1
+ b3 (Eq.92) 

 
D12

T
= a4ρ

1
+

b4

μ1

 (Eq.93) 
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4. Experimental Section 

This chapter includes the chemical compounds used in this work, equipment description, 

experimental procedure and conditions for D12 determination. Moreover, the models for 

the solvent estimation properties (density and viscosity), later required for data 

interpretation and modelling. 

 

4.1. Chemicals 

Eucalyptol (CAS number 470-82-6) with purity 100 % was provided by José M. Vaz 

Pereira Ltd., carbon dioxide (CAS number 124-38-9) with purity 99.999 % (v/v) was 

purchased from Praxair, and absolute ethanol (CAS number 64-17-5) was supplied by 

Fisher Chemical. All chemicals were used without further purification.  

 

4.2. Equipment and experimental procedure 

A scheme of the experimental apparatus used to measure the diffusion coefficients by 

the CPB technique is presented in Figure 5. The solvents were pumped from the reservoirs 

(1) and (5) at constant flow rate using the syringe pumps (2) and (4), namely a Teledyne 

ISCO model 260D with 266.06 cm3 capacity for CO2 and a Teledyne ISCO model 100 DM 

102.97 cm3 capacity for liquid ethanol. The CO2 pump (2) was coupled with a Julabo F12 

thermostatic bath (3) set to 21.0 °C, to avoid temperature oscillations that would cause 

flow rate fluctuations during experiments. The solvents were pre-heated in a stainless-steel 

column (7) placed inside a LSIS-B2V/IC 22 oven (Venticell, MMM Group) and fed to an 

open capillary column (8) (PEEK tubing, with R = 0.261 mm, L = 10.243 m and Rc = 0.150 

m) connected to a UV-vis detector (10) (UV Detector 2500, Knauer) set at a system-

specific wavelength (see Chapter 5.1). After reaching steady-state conditions (constant 

pressure, temperature and baseline during 1-2 h after start-up) a small volume of solute 

(0.1 μL) was injected in a short period (pulse input) using a C74H-1674 injector (6) from 

Valco Instruments Co. Inc.. The outlet pressure was controlled by a Jasco BP-2080 back 

pressure regulator (12) and the volumetric flow rate was measured with a soap-bubble flow 

meter (13).  
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Figure 5 – Scheme of the experimental apparatus used to measure tracer diffusion coefficients in 

liquid or supercritical fluids: (1) CO2 cylinder, (2) CO2 syringe pump, (3) thermostatic bath, (4) 

ethanol syringe pump, (5) ethanol reservoir, (6) injector, (7) pre-heating column, (8) diffusion 

column, (9) oven, (10) UV-vis detector, (11) data acquisition software, (12) back pressure regulator 

– BPR, (13) soap-bubble flow meter, (I) on/off valves, and (II) check valves. 

 

4.3. Experimental conditions of D12 measurement 

The diffusion coefficient of eucalyptol was measured in SC-CO2 modified with 8 wt.% 

ethanol (eucalyptol/SC-CO2/ethanol) and in pure liquid ethanol (eucalyptol/ethanol). The 

experimental conditions in the case of eucalyptol/SC-CO2/ethanol were 303.15, 313.15, 

323.15 and 333.15 K, and pressures of 150, 175, 200, 225, 250 and 275 bar, at a 

wavelength of 220 nm (see Chapter 5.1). For the binary system eucalyptol/ethanol, the 

assays were carried out at 303.15, 313.15, 323.15 and 333.15 K, and pressures of 1, 50 and 

100 bar, at a wavelength of 200 nm (see Chapter 5.1). More information about the solvents 

can be found in Appendix A.  

 

4.4. Solvent properties 

In order to analyze the measured diffusion coefficients it was necessary to estimate the 

solvent properties, in this particular case density and viscosity. The methods/models used 
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are described in the following; all of them were previously validated in a previous work 

carried out under similar conditions [67]. 

 Density of liquid ethanol 

The pure liquid ethanol density was calculated using the Tait [68] equation: 

  
ρ−ρ0

ρ
=  0.2000×log (

B+P

B+P0
) (Eq.93) 

 𝐵 =  520.23-1240×
T

TC
+827× (

T

TC
)

2

−  F (Eq.94) 

where ρ and ρ
0
 are densities at the corresponding pressures P and P0, and F for ethanol is 

0.72, (calculated by Eq.95, where Cn is the number of carbons of the molecule). The 

density at atmospheric pressure (ρ0) is calculated according to the Eykman method as 

suggested by Cano-Gómez et al. [69]. 

 𝐹 = 0.015×Cn×(1+11.5×Cn) (Eq.95) 

 ρ
0

=
nD

2 −1

nD+0.4

1

K
 (Eq.96) 

where nD and K are the refractive index and a characteristic constant, respectively, given 

by: 

 K = 0.72719 − 0.39294exp(𝐶n
-0.89255 × 0.47272) (Eq.97) 

 nD = a0+a1Cn
a2+a3Cn+

a4

Cn
a5

+(a6+a7Cn
0.5

+a8Cn
0.75) × T(°C)  (Eq.98) 

where a0=1.87961; a1=0.55029; a2=−0.11935; a3=−0.00161; a4=0.01344; a5=13.54426; 

a6=−0.00043235; a7=0.00000954; a8=0.0000022. 

 Viscosity of liquid ethanol 

Cano-Gómez et al. [70] suggested using the Mamedov equation (Eq.99) for determining 

ethanol viscosity at high pressures: 

 
μ

μ0

= (
ρ

ρ0

)
Α

 (Eq.99) 

where Α is given by: 

 Α = 10.4+0.0006Cn
3.5 −

5

Cn
  (Eq.100) 

and μ
0
 is given by Eq.101 [71]: 

  log μ
0

= A +
B

T
+ C × T + D × T2  (Eq.101) 

where A=0.72719; 𝐵=−0.39294; C=−0.89255; D=0.47272. 
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 Density of the SC-CO2/ethanol mixtures 

The density of the mixture SC-CO2/ethanol was calculated using the Soave-Redlich-

Kwong equation of state (Eq.102-109) as suggested by Kariznovi et al. [72]. 

  P =
𝑅gT

Vm-b
-

a(T)

Vm
2 +Vmb

  (Eq.102) 

  𝑎(T) = α(T) [
Rg

2T𝑐
2

Pc
×0.42747]  (Eq.103) 

  b =
Rg

 T𝑐
 

Pc
×0.08664  (Eq.104) 

 𝛼(T) = (1 + k [1 − (
T

Tc
)

1/2

])
2

  (Eq.105) 

 k = 0.480 + 1.574ω − 0,176ω2  (Eq.106) 

  am = ∑ xiDii   (Eq.107) 

  bm = ∑ xibii  (Eq.108) 

 Di = √ai ∑ xj(1-δij)√ajj   (Eq.109) 

where ω is the acentric factor and δij is the binary interaction parameter. For the mixture 

ethanol/CO2 δij = 0.0789 [72]. 

 Viscosity of SC-CO2/ethanol mixtures. 

The viscosity of the mixture SC-CO2/ethanol can be calculated by the mixing relation 

described by Kendall and Monroe [73]: 

  μ
mix

= (xethanol × μ
ethanol

1/3 + xCO2
× μ

CO2

1/3)
3 

  (Eq.110) 

where the viscosity of the CO2, for this work, was calculated using the Altunin and 

Sakhabetdinov empirical expression [74].  
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5. Results and discussion 

This Chapter presents the optimization of experimental procedures (Chapter 5.1), the 

experimental results for tracer diffusion coefficients of eucalyptol in SC-CO2 modified 

with ethanol 8 wt.% (Chapter 5.2) and in pure ethanol (Chapter 5.3), the analysis of the 

measured data by several models (Chapter 5.4) and finally the results of the modeling of a 

ternary systems database in Chapter 5.5. 

 

5.1. Optimization of the experimental conditions  

The tracer injection response curves were registered at the end of the diffusion capillary 

column using a UV-vis detector set at a precise wavelength () optimized for eucalyptol 

detection with minimum experimental noise and error. For this purpose, a sample of 

eucalyptol was analyzed in a UV-vis spectrophotometer, revealing a large peak with 

maximum absorbance at 220 nm. Thereafter, several eucalyptol diffusion assays were 

performed under similar conditions (SC-CO2 modified with 8 wt.% ethanol, 150 bar and 

323.15 K) and recording the response curves at different wavelengths (in the range 200 - 

225 nm). The preliminary results of D12 (calculated with Eqs.10, 13 and 30) and the 

corresponding root mean square errors, ε, are plotted against wavelength in Figure 6. It can 

be concluded that =220 nm ensures: lower fitting errors (𝜀 =1.09 % average of three 

replicates); small D12 variations upon wavelength perturbation (i.e., stable region); and 

very reproducible results. Similar tests performed for the binary system (eucalyptol in pure 

liquid ethanol) disclosed an optimum at =200 nm (results shown in Figure 7). 
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Figure 6 – Identification of the best wavelength (, nm) to record the response curves of eucalyptol 

in SC-CO2 modified with 8 wt.% ethanol, at 150 bar and 323.15 K; (a) Root mean square error 

versus ; (b) Ratio of maximum absorbance to peak area (Absmax/Apeak) versus ; and (c) 

preliminary D12 results versus . Then final wavelength selected was 220 nm. 
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Figure 7 – Identification of the best wavelength (, nm) to record the response curves of eucalyptol 

in pure liquid ethanol, at 1 bar and 323.15 K; (a) Root mean square error versus ; (b) Ratio of 

maximum absorbance to peak area (Absmax/Apeak) versus ; and (c) preliminary D12 results versus 

. Then final wavelength selected was 200 nm. 

The concentration of the injected solute is another important aspect of the experimental 

procedure, and it has been also considered in this work. In fact, small amounts of solute 

should be injected in order to get concentration-independent diffusivities and to satisfy the 

underlying principle of CPB method, i.e. approximately infinite dilution of the solute 

inside the column. The preliminary experiments performed with ethanol solutions of 

eucalyptol (23 and 54 %, w/w) delivered unsatisfactory responses, with small peaks easily 

mistaken with experimental noise. When pure eucalyptol was injected, the response curves 

were reliable and the D12 measurements consistent. In this work, only 0.1 L of eucalyptol 

was always injected. 

A typical response curve for the ternary system eucalyptol/SC-CO2/ethanol, at 200 bar 

and 333.15 K, is illustrated in Figure 8. Similar response curves were obtained throughout 

the work, with almost no peak tailing effects, reason why the diffusivities obtained by the 

fitting method (Eqs.10, 13 and 30) were very similar to those calculated by the peak 

variance method (Eqs.22 and 23). 
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Finally, the applicability of the CPB method was confirmed for both systems with the 

constraints previously listed in Section 2.1 being observed, namely: (i) the solvent flow 

was laminar with Re in the range 46-129 for SC-CO2/ethanol, and 6-13 for pure ethanol; 

(ii) the peaks were approximately Gaussian (D u̅L⁄ < 0.000361 for SC-CO2/ethanol and 

D u̅L⁄ < 0.00177 for pure ethanol); (iii) secondary flow effects associated to coiled columns 

were negligible (DeSc
0.5

 always inferior to 10 in both systems); (iv) the root mean square 

errors, ε, were small (0.41-1.10 % for SC-CO2/ethanol and 0.54-0.80 % for pure ethanol); 

(vi) the asymmetric factors, S10, were close to one (1.01-1.16 for SC-CO2/ethanol and 

1.05-1.19 for pure ethanol). 

 
Figure 8 – Typical experimental (*) and calculated (-) response curve (=220 nm) for the ternary 

system eucalyptol/SC-CO2/ethanol (8 wt.%) at 333.15 K and 200 bar. 

 

5.2. Tracer diffusivity of eucalyptol in SC-CO2/ethanol  

The measured tracer diffusivities of eucalyptol in SC-CO2 modified with ethanol (8 

wt.%) are presented in Table 1, along with necessary solvent properties, namely: density, 

ρ
mix

 (estimated with Soave-Redlich-Kwong equation of state [72]), and viscosity, 

μ
mix

 (computed with the Kendall and Monroe equation [73], and the Altunin and 

Sakhabetdinov empirical expression [74] for the viscosity of SC-CO2). The experimental 

diffusivity results varied between 0.547×10-4 and 1.042×10-4 cm2 s-1, for temperatures in 

the range 303.15-333.15 K and pressure between 150 and 275 bar. The D12 values are in 

the same order of magnitude of others reported for compounds under similar conditions 
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such as, for example: L-menthone and L-carvone in SC-CO2 with and without ethanol (5 

and 10 mol.%) [75]; L-carvone and geraniol in pure SC-CO2 and SC-CO2 modified with 

alcohols (like methanol and isopropanol, 10 mol.%) [76]; α-pinene and β-pinene in SC-

CO2 [51]; chromium(III) acetylacetonate in SC-CO2 [17]. 

Table 1 – Experimental D12 values of eucalyptol in SC-CO2 modified with ethanol (8 wt.%), and 

calculated density and viscosity of the solvent mixture. 

T P D12 ± ΔD12 ρ
mix

 μ
mix

 

(K) (bar) (10-4 cm2 s-1) (g cm-3) (cP) 

303.15 150 0.621±0.017 0.794 0.114 

 
175 0.593 ± 0.010 0.811 0.120 

 
200 0.571 ± 0.003 0.827 0.126 

 
225 0.557 ± 0.006 0.841 0.131 

 
250 0.552 ± 0.009 0.854 0.136 

 
275 0.547 ± 0.005 0.866 0.140 

313.15 150 0.743 ± 0.014 0.746 0.097 

 
175 0.696 ± 0.014 0.767 0.104 

 
200 0.642 ± 0.013 0.786 0.110 

 
225 0.629 ± 0.004 0.803 0.115 

 
250 0.611± 0.010 0.818 0.121 

 
275 0.597 ± 0.003 0.832 0.125 

323.15 150 0.859 ± 0.013 0.692 0.081 

 
175 0.815 ± 0.004 0.719 0.089 

 
200 0.765 ± 0.016 0.743 0.096 

 
225 0.730 ± 0.019 0.762 0.102 

 
250 0.703 ± 0.011 0.780 0.107 

 
275 0.689 ± 0.009 0.796 0.112 

333.15 150 1.042 ± 0.024 0.632 0.066 

 
175 0.935 ± 0.017 0.668 0.076 

 
200 0.871 ± 0.011 0.696 0.084 

 
225 0.828 ± 0.020 0.720 0.090 

 
250 0.772 ± 0.010 0.741 0.095 

 
275 0.747 ± 0.015 0.759 0.100 

Data presented in Table 1 and Figure 9 illustrates the pressure dependence of D12 at 

constant temperature. For each isotherm, the diffusion coefficient decreases with 

increasing pressure and this is explained by the increment of solvent density, which 

reduces the free volume available for solute movement. Furthermore, since the solvent 

molecules are more tightly packed the solute needs more energy to escape from the force 
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field generated by them (i.e., it is increasingly more difficult for the solute molecules to 

diffuse across the solvent) [66,77,78]. From these results, it is explicit that the pressure 

dependency is influenced by temperature with changes in D12 being more noticeable at 

higher temperatures. This behavior is related to pronounced changes in viscosity and 

density in the high temperature region. Regarding the influence of temperature on the 

diffusion coefficient of the solute under isobaric conditions, it has a positive effect due to 

the increase of internal energy (notably kinetic energy) and free volume of the system [78]. 

Both trends observed under isothermal and isobaric conditions are totally consistent with 

results reported by other researchers [75,79–83]. 

The dependence of D12 on solvent density is illustrated in Figure 10. The negative effect 

of density is evident and can be explained by the increasing number of collisions between 

solute and solvent molecules (owing to the shorter average intermolecular distances), 

which determines a more erratic diffusion path of the solute through the solvent [13,17,51]. 

In terms of the free volume theory, when density increases the free volume available for 

solute movement is reduced; besides, the solute needs more energy to overcome the 

activation energy barrier for diffusion as has been explained above.  

The hydrodynamic behavior of our system was also evaluated by representing diffusivity 

values using Stokes-Einstein coordinates, T/𝜇1. The results (Figure 11) exhibit a linear 

relationship but the non-zero intercept (0.146×10-4 cm2 s-1) indicates a small deviation from 

hydrodynamic behavior. Similar results have been consistently reported in other studies 

[33,51,75]. 

 

Figure 9 – Tracer diffusion coefficients of eucalyptol in SC-CO2 modified with ethanol (8 wt.%) as 

function of pressure at different temperatures. 
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Figure 10 – Tracer diffusion coefficients of eucalyptol in SC-CO2 modified with ethanol (8 wt.%) 

as function of solvent density at different temperatures. 

 

Figure 11 – Tracer diffusion coefficients of eucalyptol in SC-CO2 modified with ethanol (8 wt.%) 

plotted in Stokes-Einstein coordinates at different temperatures. 

 

5.3. Tracer diffusivity of eucalyptol in pure liquid ethanol 

The experimental results for eucalyptol diffusivity in pure liquid ethanol are presented in 

Table 2 along with the density and viscosity of ethanol calculated with the Tait equation 

[68] and the Mamedov equation, respectively [70]. The D12 values for eucalyptol in pure 

ethanol, at temperatures between 303.15 and 333.15 K and pressures between 1 and 100 

bar, ranged between 0.912×10-5 and 1.578×10-5 cm2 s-1.  
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Table 2 – Experimental D12 values for eucalyptol in pure liquid ethanol, and calculated density and 

viscosity of the solvent. 

T P D12 ± ΔD12 ρ
1
 μ

1
 

(K) (bar) (10-5 cm2 s-1) (g cm-3) (cP) 

303.15 1 0.981 ± 0.005 0.782 0.965 

 
50 0.950 ± 0.004 0.791 1.064 

 
100 0.912 ± 0.003 0.801 1.168 

313.15 1 1.162 ± 0.008 0.773 0.810 

 
50 1.126 ± 0.004 0.783 0.899 

 
100 1.082 ± 0.002 0.793 0.993 

323.15 1 1.349 ± 0.010 0.764 0.687 

 
50 1.295 ± 0.002 0.775 0.767 

 
100 1.266 ± 0.003 0.785 0.852 

333.15 1 1.578 ± 0.022 0.756 0.587 

 
50 1.528 ± 0.001 0.767 0.660 

 
100 1.469 ± 0.005 0.778 0.736 

The tracer diffusivities of eucalyptol in liquid ethanol decrease with pressure and 

increase with temperature (Figure 12) as previously observed for the ternary system 

eucalyptol/SC-CO2/ethanol (Figure 9). Nonetheless, these dependencies are not so 

remarkable owing to the lower compressibility of liquid ethanol and to the considerable 

volume expansion experienced by the SC-CO2/ethanol mixture. Regarding the influence of 

density and the hydrodynamic effect on D12 values, for eucalyptol in ethanol (Figures 13 

and 14) the trends are similar to those registered for the ternary system (Figures 10 and 

11). Again, small deviations from hydrodynamic behavior can be inferred from the non-

zero intercept (0.3067×10-5 cm2 s-1) of the linear relationship observed in the D12 versus 

T/μ
1
 plot (Figure 14). It is important to emphasize the correlation found between data at the 

same temperature, which gives rise to sets of three points in Figures 13 and 14.  

Finally, the much lower diffusivities of eucalyptol in ethanol than in SC-CO2/ethanol 

mixtures are consistent with the results reported by Dong et al [75] for L-menthone and L-

carvone in mixtures of carbon dioxide and ethanol. A possible explanation for this 

behavior is the formation of hydrogen bonds between ethanol and the solute molecules, 

leading to the clustering of solvent molecules around the later, which penalizes the 

diffusion [84].  
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Figure 12 – Tracer diffusion coefficients of eucalyptol in pure liquid ethanol as function of 

pressure at different temperatures. 

 

 
Figure 13 – Tracer diffusion coefficients of eucalyptol in pure liquid ethanol as function of solvent 

density at different temperatures. 
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Figure 14 – Tracer diffusion coefficient of eucalyptol in pure liquid ethanol plotted in Stokes-

Einstein fashion. 

 

5.4. Modelling eucalyptol tracer diffusion coefficients 

Various prediction and correlation models were assessed for modelling the experimental 

tracer diffusion coefficients of eucalyptol in ethanol and in SC-CO2/ethanol. Table 3 lists 

the required physical properties of eucalyptol, CO2, ethanol and SC-CO2/ethanol 

mixture, namely: molecular weight (Mi), acentric factor (ω), critical properties (TC, PC 

and VC), molar liquid volume (V*) at reduced temperature (Tr = 0.6), molar volume at 

normal boiling point estimated by Tyn-Calus method (VTC,bp), and the Lennard-Jones 

diameter (σLJ) and energy (εLJ ⁄kB). The modeling results are summarized in Table 4 and 

compared to the experimental results in Figure 15. 
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Table 3 – Physical properties of the pure compounds and SC-CO2/ethanol mixture studied in this work. 

Compound  

or mixture 

M𝑖  ω TC PC VC V* VTC,bp σLJ εLJ kb ⁄  

g mol-1 
 

K bar cm3 mol-1 cm3 mol-1 cm3 mol-1 Å K 

CO2 44.01 0.239 a 304.1 a 73.8 a 93.9 a 33.87 c - 3.26192 f 500.71 f 

ethanol 46.069 0.644 a 513.9 a 61.4 a 167.1 a 59.36 c - 4.23738 f 1291.41 f 

eucalyptol 154.253 - 695.5 b 31.4 b 509.5 b - 195.8 d 6.18749 g 538.32 g 

CO2/ethanol h 44.174 - 342.28 e 89.1 e 97.3 e - - 3.54907 g 264.92 g 

a Taken from Reid et al. [61]; b Estimated by the Joback method [61]; c Taken from A. Kreglewski [85]; d Estimated by the Tyn 

and Calus method Eq.84 [61]; e TC estimated by Chueh and Prausnitz [61]; VC estimated by Chueh and Prausnitz technique later 

modified by Schick and Prausnitz [61]; PC estimated by the technique suggested by Kreglewski and Kay [61]; f Taken from Liu 

and Silva [13]; g Estimated by Eqs.67-69 [58]; h mixture of SC-CO2 with 8 wt.% ethanol. 

Table 4 – Modelling results for D12 in ternary and binary systems. 

   Eucalyptol/SC-CO2/ethanol Eucalyptol/ethanol 

Model 
Number of 

Parameters 
Eq. Parameters 

AARD  

(%) 
Parameters 

AARD 

(%) 

DHB 2 58 
VD = 29.58 cm3 mol-1; 

BDHB = 1.415×10-7 cm-1 mol s-1 K-1/2 
1.60 

VD = 52.15 cm3·mol-1; 

BDHB = 9.794×10-8 cm-1 mol s-1 K-1/2 
7.00 

DHB & VD(T) 3 111 (*) - 

BDHB = 2.886×10-8 cm-1 mol s-1 K-1/2 

mVD = −0.2413 cm3 mol-1 K 

bVD = 112.41 cm3 mol-1 

3.70 

TLSM 0 59 – 66 - 20.49 - 6.75 

TLSMd
 1 

59 – 64, 70 

– 71 
k12,d = −1.088×10-1 2.58 k12,d = −3.588×10-2 4.76 

LSM-MP 0 72 – 81 - 20.48 - - 

LSM-MP-1 1 72 – 81 𝜃1 = 2.5697 1.55 - - 
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Table 4 (continued) 

   Eucalyptol/SC-CO2/ethanol Eucalyptol/ethanol 

Model 
Number of 

Parameters 
Eq. Parameters 

AARD  

(%) 
Parameters 

AARD 

(%) 

Wilke-Chang 0 83 – 85 - 8.00 - 17.67 

Lai-Tan 0 86 - 8.36 - - 

mSE1
 0 87 and 88 - 1.34 - 3.84 

Vaz et al. 0 89 - 1.29   

Magalhães et 

al. 

2 90 
a1 = −0.7763 

b1 = −17.08 
1.20 

a1 = − 0.7052 

b1 = −17.22 
2.98 

2 91 
a2 = 6.693×10-6 cm3 cP s-1 

b2 = 5.866×10-6 cm2 s-1 
2.21 

a2 = 8.539×10-6 cm3 cP s-1 

b2 = 1.790×10-6 cm2 s-1 
4.22 

2 92 
a3 = −5.648×10-7 cm5 g-1 K-1 s-1 

b3 = 6.577×10-7 cm2 K-1 s-1 
1.69 

a3 = −3.778×10-7 cm5 g-1 K-1 s-1 

b3 = −3.326×10-7 cm2 K-1 s-1 
6.01 

2 93 
a4 = 4.807×10-8 cm5 g-1 K-1 s-1 

b4 = 1.905×10-8 cm5 cP-1 K-1 s-1 
1.30 

a4 = 1.399×10-8 cm5 g-1 K-1 s-1 

b4 = 2.239×10-8 cm5 cP-1 K-1 s-1 
3.00 

(*)The results for the original DHB model are very accurate, with AARD = 1.60 %. Hence, VD is taken as constant. 
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In general, very good results were achieved, especially for the ternary system, when 

using the models of DHB, TLSMd, mSE1, Vaz et al., and Magalhães et al. (AARD = 1.60, 

2.58, 1.34, 1.29 and 1.20-2.21 %, respectively). Moreover, for the binary system the 

modelling results although satisfactory were not so good as for the ternary system. The 

best results were obtained with the equations of TLSMd, mSE1, and Magalhães et al. 

(AARD = 4.76, 3.84 and 2.98-6.01 %, respectively). These results can be seen more 

explicitly in Figure 15, which presents the calculated versus experimental D12 values for 

both systems. 

 
Figure 15 – Experimental versus calculated D12 values for: (a) & (b) eucalyptol/SC-CO2/ethanol (8 

wt.%), and (c) & (d) eucalyptol/ethanol. 

Regarding the hydrodynamic theory based models (Lai-Tan, mSE1, and Vaz et al.) 

envisaged for the estimation of D12 in SC-CO2, they provided surprisingly good results for 

the ternary system (eucalyptol/SC-CO2/ethanol) with AARD as low as 1.29 % (Vaz et al.) 

or 1.34 % (mSE1). In particular, for the Vaz et al. model it is worth mentioning that the 

input solvent properties were, in this work, the density of pure SC-CO2 and the viscosity of 

the SC-CO2/ethanol mixture. The good results for the predicted diffusion coefficients 
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(AARD = 1.29 % and maximum error of 4.48 %) clearly show that solvent density is not 

as crucial as viscosity, mainly for the low ethanol content of this work (8 wt.%). In fact, if 

the density and viscosity of pure SC-CO2 were used instead, the AARD would jump to 

24.36 %. 

The TLSM prediction model estimates the D12 values reasonably well for the binary 

system (AARD = 6.75 %) and not so well (AARD = 20.48 %) for the ternary system (see 

Figure 15 and Table 4). The overestimation is related to the nature of the model, which was 

developed for LJ fluids where attractive forces are much weaker than the hydrogen bonds 

present in both systems. The introduction of one adjustable interaction parameter to the 

diameter combining rule (k12,d in Eq.70) configures the so-called TLSMd model, which 

performed much better (AARDs drop to 4.76 % and 2.58 % for the binary and ternary 

systems, respectively). 

The extension of the TLSM model to multicomponent intradiffusivities of LJ mixtures 

(LSM-MP) was studied by Merzliak and Pfennig [13,59]. Notwithstanding the final 

equations (Eqs.72-81) are only applicable to LJ model fluids, this method was tested here 

for the estimation of D12 in the ternary system using two approaches. (i) The LSM-MP 

model with original published constants (θ1 = 2.159807, θ2 = 1.156846, θ3 = 0.414496, θ4 

= 0.610344, and θ5 = 0.564022 [13,59]). (ii) The LSM-MP model with distinct constants, 

hereafter denoted by LSM-MP-1, taking into account the following reasoning. During 

calculations it was observed that the LSM-MP model is very sensitive to θ1 which is 

associated to the LJ diameter (Eqs.74 and 75). Hence, θ1 was optimized (minimizing 

AARD) while fixing the remaining four constants equal to those of the Liu-Silva-Macedo 

model, namely: θ2 = 1.2588, θ3 = 0.75 and  θ4 = 0.27862 from Eq.59, and θ5 = 1/1.3229 = 

0.7559 from Eq.62. The newly optimized constant (θ1 = 2.5697) provides an excellent 

fitting to the eucalyptol diffusion data (AARD = 1.55 %), as the calculated versus 

experimental D12 plot shown in Figure 15.a also demonstrates. 

The DHB expression and the four correlations of Magalhães et al. achieve good results 

for both systems, requiring only the knowledge of temperature and the density and 

viscosity of the solvent. However, for the binary system there is an apparent grouping of 

the D12 values according to the system’s temperature (see Figure 15.b) suggesting that the 

models do not translate well the pressure/temperature effect in this case. Due to its 
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simplicity, the DHB model will be used to present and discuss a model correction that overcomes 

this problem. 

The minimum molar volume required for diffusion (VD in Eq.59) exhibits temperature 

dependent values for a given system (see Figure 16.a) emphasizing the need to express VD 

as function of temperature. The same observation was found before in the case of viscosity, 

i.e. VD = VD(𝑇) [13,56]. Assuming a linear dependence for 𝑉D (i. e. , 𝑉D = 𝑚VD𝑇 + 𝑏VD), 

the improved DHB model becomes: 

 
D12

√T
=BDHB[V

m
− (mVDT + bVD)]  (Eq.111) 

where BDHB, mVD and bVD are adjustable parameters obtained by fitting Eq.111 to the 

experimental (see Figure 16). The optimized parameters were BDHB= 2.886x10-8 cm-1 mol 

s-1 K-1/2,  mVD= −0.2413 cm3 mol-1 K and bVD= 112.41 cm3 mol-1. The graphical 

representation of D12 values calculated with Eq.111 versus experimental points is plotted 

in Figure 16.b, and clearly confirms the elimination of the abovementioned grouping 

effect. The computed error was very small (AARD = 3.70 %) in contrast to the original 

7.00 % found for classical DHB (see Table 4). 

 

Figure 16 – Experimental and calculated tracer diffusion coefficients of eucalyptol/ethanol system 

using the modified DHB model given by Eq.111. (a) D12/T𝟎.𝟓 values against solvent molar 

volume; (b) Graphical representation of calculated versus experimental D12 values. Symbols are 

data points, full lines are model results. 
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5.5. Ternary systems database modelling 

With the objective to develop accurate D12 models for ternary systems (i.e., one solute at 

infinite dilution in binary solvents), it is necessary to have a large database of experimental 

data for the validation of the models. During last years, researchers of EgiChem group 

have been performing this task, collecting 132 ternary liquid and supercritical systems with 

1453 data points totally. This database was utilized to test and compare the original LSM-

MP model (Eqs. 72-81) and the pseudo-component approach of TLSM model (Eqs. 65-

66), which achieved AARDs of 36.08 and 33.45 %, respectively, and demonstrated the 

poor performance of both predictions. It is worth noting to emphasise that the LSM-MP 

equations were devised for the intradiffusivities of LJ model mixtures, and that TLSM 

equations were developed for binary nonpolar or weakly polar systems. Hence, the poor 

results obtained are not surprising.  

In Figures 17 and 18 are plotted the calculated versus experimental D12 values for both 

models, where the results for liquid and supercritical systems were plotted using distinct 

colours (blue-liquid and red-supercritical). One easily confirms that the calculated LSM-

MP diffusivities are split into two distinct groups (Figure 18), according to the already 

mentioned physical state of the solvent. This fact led to the idea of dividing the database 

into two categories, liquid systems (blue dots) and supercritical systems (red dots), and 

than re-optimizing the parameters of the model (θ𝑖) using each part of database. The first 

group is constituted by 91 systems with 586 experimental points, while the second contains 

41 systems with 867 points.  

The results obtained for the group of liquid systems attained AARD = 9.39 %, being 

validated over 0.3937<T∗<1.2458 and 0.7376<ρ*<0.9630, while the group of supercritical 

systems offered AARD = 9.11 % over 0.5224<T∗<0.7638 and 0.2654<ρ*<0.7185. In 

comparison to the original errors (36.02 and 34.33 %, respectively) the improvement was 

extremely significant.  

Notwithstanding the low AARDs found in both cases, the group of supercritical points 

exhibits a large variation of individual AARDs, namely from 2.34 to 40.05 %. This 

happens since the number of experimental data per system is not uniformly distributed, 

which means the optimized parameters tend to privilege the largest systems. With respect 

to the liquids systems, the dispersion was lower, with AARD ranging from 0.30 to 33.95 
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%. This is clearly shown in Figure 19, which shows the data is unbiasedly distributed along 

diagonal in both cases, but are more scattered in Figure 19.b for supercritical systems.  

The new θi values are listed in Table 5, and the properties of the pure components 

required for the calculations are compiled in Appendix D (Table D.1). The individual 

results per system that were achieved by the re-optimized TLSM-MP model are compiled 

in Tables D.2 and D.3. 

 

 

Figure 17 – D12 calculated by the TLSM model versus experimental D12. Blue dots are liquid systems; red 

dots are supercritical systems. 

 
Figure 18 – D12 calculated by the LSM-MP model versus experimental D12. Blue dots are liquid systems; red 

dots are supercritical systems. 
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Table 5 – Optimized constants of the LSM-MP model for liquid and SCF systems. 

 Liquid systems SCF systems 

θ1 3.082 4.32 

θ2 1.198 1.00 

θ3 0.185 0.58 

θ4 0.964 2.39 

θ5 0.380 0.0126 

 

 

 

Figure 19 – D12 calculated by the corrected LSM-MP model versus experimental D12. Results obtained for: 

(a) liquid ternary systems database; (b) supercritical ternary systems database.  
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6. Conclusion and suggestions of future work 

In this thesis, the measurement of tracer diffusion coefficients, D12, of eucalyptol in SC-

CO2 modified with ethanol and in liquid ethanol was performed using the CPB method. A 

wavelength study was carried in order to determine the best conditions to perform the 

measurements (220 nm for the ternary eucalyptol/ SC-CO2/ethanol system, and 200 nm for 

the binary eucalyptol/ethanol system, respectively). 

The tracer diffusivities of eucalyptol in SC-CO2 modified with 8 % (w/w) of ethanol, 

assessed at temperatures ranging from 303.15 to 333.15 K and pressure between 150 and 

275 bar, ranged between 0.547×10-4 and 1.042×10-4 cm2 s-1. The diffusion coefficients of 

eucalyptol in pure liquid ethanol at temperatures ranging between 303.15 and 333.15 K 

and pressures from 1 to 100 bar were in the range between 0.912×10-5 and 1.578×10-5 cm2 

s-1. The D12 results presented the same trend for both systems and were analyzed in terms 

of dependency on temperature, pressure, density and Einstein-Stokes coordinates. 

A series of models based on free volume and hydrodynamic theories and empirical and 

semi-empirical correlations were tested and compared to the data experimentally obtained. 

The Dymon-Hildebrand-Batschinski (DHB) model, the 1-parameter Tracer Liu-Silva-

Macedo (TLSMd) model, the modified Stokes-Einstein-1 model, and the Magalhães et al. 

correlations are the ones that present the best results for both systems (AARD = 1.60-7.00, 

2.58-4.76, 1.34-3.84 and 1.20-6.01 %, respectively). For the ternary system, it should also 

be noticed the Wilke-Chang equation (8.00 %), Lai-Tan (8.36 %) and the Vaz et al. (1.29 

%) predictive models. Regarding the binary system, it should also be highlighted the 

TLSM model (AARD = 6.75 %) even though it is not theoretically appropriate for the 

system. Two corrections were suggested, one for the extension of Liu-Silva-Macedo model 

to multicomponent LJ intradiffusivities using mixing rules of Merzliak and Pfenning 

(LSM-MP) applied to the ternary system, and one for the DHB model applied to the binary 

system. In the first case the value of θ1 was optimized keeping the TLSM values of θ2 to θ5 

achieving an AARD of 1.55 % (LSM-MP-θ1). Regarding the DHB model it was suggested 

that the minimum volume required for diffusion, V𝐷 , should be expressed as a linear 

function of temperature providing a better performance (AARD = 3.70 %). 

Finally the TLSM and LSM-MP models were tested in a D12 database constituted by 

132 ternary systems with a total of 1453 experimental. The LSM-MP model was the one 

that showed more promising results therefore a re-optimization of their constants was 
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proposed. By splitting the database into two categories, namely liquid and supercritical 

systems, new θ values were determined for each group. The AARD obtained for liquid was 

9.39 % and for supercritical 9.11 %. It should be noted that for supercritical systems the 

range of AARD for individual systems is very large thus the model is not reliable. 

 

Suggestions of future work 

Regarding future work, considering there is still a great lack of experimental data for D12 

in SC-CO2, especially when it is modified with a cosolvent, it would be of great 

importance to: measure D12 values of other bioactive compounds at various conditions; 

continue the development of accurate predictive model to estimate D12 in multicomponent 

systems; evaluate the reliability of the changes presently suggested for the LSM-MP 

model. 
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Appendix A – Compounds and properties 

In this section the chemical compounds used in this work are presented along side with the 

corresponding properties.  

Ethanol 

 
Figure A. 1 – Ethanol molecular structure 

CAS: 64-17-5  

Chemical formula: C2H5OH  

Supplier: Fisher Chemical  

Molecular weight: 46.069 g∙mol−1  

Carbon dioxide 

 
Figure A. 2 – Carbon dioxide molecular structure 

CAS: 124-38-9  

Chemical formula: CO2  

Supplier: Praxair  

Purity: 99.999% (v/v)  

Molecular weight: 44.010 g∙mol−1  

Eucalyptol 

 
Figure A. 3 – Eucalyptol molecular structure 

CAS: 470-82-6 

Chemical formula: C10H18O 

Supplier: José M. Vaz Pereira, LTD 

Purity: 100 %  

Molecular weight: 154.253 g∙mol−1 

Appendix B – Critical properties estimation. 

For estimation of the critical temperature of the mixture SC-CO2/ethanol, TcT the method 

of Chueh Prausnitz was used. The method it is described as follows: 

 TcT = ∑ θjTcjj + ∑ ∑ θjθiτijji  (Eq.D.1) 

where θj is the surface fraction calculated by: 

 θj =
yjVcj

2/3

∑ yiVci
2/3

i

 (Eq.D.2) 

and τij is an interaction parameter calculated by the following set of equations: 

 ψ
Τ

= A+BδT+CδT
2
+DδT

3
+EδT

4
 (Eq.D.3) 

 ψ
Τ

=
2τij

Tci+Tcj
 (Eq.D.4) 
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 δT = |
Ti−Tcj

Tci+Tcj
| (Eq.D.5) 

where A=-0.0953; B =2.185; C =-33.985; D =179.068; E =-264.522. 

For the estimation of the mixture’s critical volume, VCT, the method proposed by Chueh 

and Prausnitz later modified by Schick and Prausnitz was used. The method is described as 

follows: 

 VcT = ∑ θjVCjj + ∑ ∑ θjθiυijji  (Eq.D.6) 

𝜃j is calculated by Eq.D.2 and υij is calculated by the following equations: 

 ψ
υ

= A+Bδυ+Cδυ
2
+Dδυ

3
+Eδυ

4
 (Eq.D.7) 

 ψ
υ

=
2υij

Vcj+Vcι
 (Eq.D.8) 

 δυ = |
Vci

2/3−Vcj
2/3

Vci
2/3

+Vcj
2/3 | (Eq.D.9) 

where 𝐴 = -0.4957; 𝐵 = 17.1185; 𝐶 = -168.56; 𝐷 = 587.05; 𝐸 = -698.89. 

Finally for the estimation of the critical pressure,PCT , of the mixture the Kreglewski and 

Kay method was used: 

 V12
*1/3 =

[V1
*1/3

+V2
*1/3]

3

8
 (Eq.D.10) 

 V 
* = V1

*y
1
+V2

*y
2
+(2V12

*1/3 − V1
* − V2

*)y
1
y

2
 (Eq.D.11) 

 θ1 =
y1VC1

*1/3

y1VC1
*1/3

+y2VC2
*1/3 (Eq.D.12) 

 θ2 = 1 − θ1 (Eq.D.13) 

 T12
* =

2V12
*1/3

V1
*1/3

/TC1+V2
*1/3

/TC2

 (Eq.D.14) 

 T* = V 
*1/3 [

TC1θ1

V 1
*1/3 +

TC2θ2

V2
*1/3 + (

2T12
*

V12
*1/3 −

TC1

V1
*1/3 −

TC2

V2
*1/3) θ1θ2] (Eq.D.15) 

 ω12 =
2

1/ω1+1/ω2
 (Eq.D.16) 

 ω = ω1θ1+ω2θ2+(2ω12 − ω1 − ω2)θ1θ2 (Eq.D.17) 

 P* =
T*

V 
*1/3

Pc1θ1+Pc2θ2

Tc1θ1

V1
*1/3

+
Tc2θ2

V2
*1/3

 (Eq.D.18) 

 PcT = P* [1+(5.808+4.93ω) (
TcT

T* − 1)] (Eq.D.19) 

It is recommended that 𝑇C𝑇 should be calculated by: 

 TcT = ∑
yjVcj

 

∑ yiVci
 

i
Tcjj  (Eq.D.20) 
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Appendix C – Eucalyptol spectrum  

In Figure C.1 can be observed the eucalyptol spectrum from 190 to 390 nm. 

 

Figure C. 1 – Eucalyptol spectrum ranging from 190 to 390 nm. 

 

 

0,0

0,5

1,0

1,5

2,0

2,5

190 240 290 340 390

A
b

so
rb

an
ce

 

λ (nm)



58 
 

Appendix D – Ternary systems database results and compound properties 

Table D. 1 – Compounds properties used in the TLSM and TLSM-MP models 

Compound name Cas Number Formula Mi ω Tc Pc Vc V* σLJ εLJ kb ⁄  

 
  g mol-1 

 
K bar cm3 mol-1 cm3 mol-1 Å K 

1,2-dichlorobenzene 135-01-3 C6H4Cl2 147.004 0.272 a 729.00 b 41.00 b 360.00 b - 5.79009 b 564.25 b 

1,3-dichlorobenzene 541-73-1 C6H4Cl2 147.004 0.272 a 693.14 a 39.86 a 361.5 a - 5.75091 i 564.48 i 

1,4-dioxane 123-91-1 C4H8O2 88.106 0.278 g 587.00 a 51.70 a 238.00 a 91.20 f 5.03437 b 454.34 b 

2-nitroanisole 91-23-6 C7H7NO3 153.14 0.559 g 782.00 b 37.60 b 422.00 b - 6.07271 b 605.27 b 

2-phenylethyl acetate 103-45-5 C10H12O2 164.2 0.777 l 712.23 b 30.12 b 524.15 b - 6.31046 b 551.27 b 

3-fluorophenol 372-20-3 FC6H4OH 112.1 0.581 l 663.74 h 53.61 h 250.00 h - 5.17387 i 513.73 i 

3-phenylpropyl acetate 122-72-5 C11H14O2 178.231 0.599 l 718.70 a 27.23 a 580.37 a - 6.51801 b 556.27 b 

acetone 666-52-4 C3H6O 58.08 0.307 a 508.10 b 47.00 b 209.00 b 74.71 f 4.67012 b 332.97 b 

acetonitrile 75-05-8 C2H3N 41.05 0.331 g 545.50 b 48.30 b 173.00 b 55.00 f 4.02424 b 652.53 b 

acridine 260-94-6 C13H9N 179.22 0.439 g 905.00 h 36.40 h 619.15 h - 6.40475 b 700.47 b 

benzene 71-43-2 C6H6 78.11 0.210 a 562.20 b 48.90 b 259.00 b 93.97 f 5.19165 b 308.43 b 

benzoic acid 65-85-0 C7H6O2 122.124 0.620 a 752.00 a 45.60 a 341.00 a - 5.65763 b 582.05 b 

benzonitrile 100-47-0 C6H5CN 103.124 0.342 g 699.40 h 42.20 h 345.50 h - 5.66632 i 541.34 i 

benzyl acetate 140-11-4 C9H10O2 150.17 0.474 g 699.00 a 31.80 a 449.00 a - 6.17454 b 541.03 b 

carbon dioxide 124-38-9 CO2 44.01 0.225 a 304.10 a 73.80 a 93.90 a 33.87 f 3.26192 b 500.71 b 

carbon tetrachloride 56-23-5 CCl4 153.82 0.191g 556.40 b 45.60 b 275.90 b 101.60 f 5.29240 b 418.84 b 

chlorobenzene 108-90-7 C6H5Cl 112.56 0.325 a 632.40 b 45.20 b 308.00 b - 5.56838 b 207.50 b 

cyclohexane 110-82-7 C6H12 84.162 0.211 a 553.50 a 40.73 a 308.00 a 113.50f 5.73075b 224.87 b 

dibenzyl ether 103-50-4 C14H14O 198.27 0.583 g 777.00 b 25.60 b 608.00 b - 6.78621 b 601.40 b 

dye (malvidin 3,5-diglucoside) 16727-30-3 C29H35O17Cl 674 d - 645.68 h 71.82 h 1542.50 h - 4.67406 i 499.76 i 

http://www.sigmaaldrich.com/catalog/search?term=541-73-1&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
http://www.sigmaaldrich.com/catalog/search?term=123-91-1&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
http://www.sigmaaldrich.com/catalog/search?term=372-20-3&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
http://www.sigmaaldrich.com/catalog/search?term=100-47-0&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
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Table D.1 (continued) 

Compound name Cas Number Formula Mi ω Tc Pc Vc V* σLJ εLJ kb ⁄  

   g mol-1  K bar cm3 mol-1 cm3 mol-1 Å K 

ethanol 64-17-5 C2H6O 46.069 0.649 a 513.90 a 61.40 a 167.10 a 59.36 f 4.23738 b 1291.41 b 

ethylbenzene 100-41-4 C8H10 106.17 0.302 g 617.20 b 36.00 b 374.00 b - 5.72572 b 477.71 b 

eucalyptol 470-82-6 C10H18O 154.253 0.312 a 695.50 b 31.42 b 509.50 b - 6.18749 i 538.32 i 

geraniol 106-24-1 C10H18O 300.26 0.762 l 739.33 h 15.93 h 820.00 h - 7.61300 i 572.24 i 

indole 120-72-9 C8H7N 117.15 0.489 j 790.00 b 43.40 b 431.00 b - 5.84837 b 611.46 b 

iodine 7553-56-2 N2 253.809 0.107 a 819.00 a 62.79 h 155.00 a - 5.25936 i 633.91 i 

isopropanol 67-63-0 C3H8O 60.096 0.665 a 508.30 a 47.62 a 220.00 a 77.55 f 4.93749 b 393.42 b 

L-carvone 6485-40-1 C10H14O 150.22 0.456 l 709.44 c 26.04 c 504.65 c - 6.55942 b 549.08 b 

linoleic acid methyl ester 112-63-0 C19H34O2 294.47 0.465 j 870.78 b 12.54 b 1070.95 b - 8.34769 b 673.98 b 

L-menthone 14073-97-3 C10H18O 154.25 0.502 j 699.44 c 25.05 c 525.24 c - 6.60650 b 541.37 b 

methanol 67-56-1 CH4O 32.042 0.565 a 512.60 a 80.97 a 118.00 a 41.20 f 3.79957 b 685.96 b 

naphthalene 91-20-3 C10H8 128.17 0.301 g 748.40 b 40.50 b 413.00 b - 5.85874 b 579.26 b 

n-decane 124-18-5 C10H22 142.286 0.490 a 617.70 a 21.20 a 603.00 a 212.30 f 6.71395 b 434.86 b 

n-heptane 142-82-5 C7H16 100.204 0.350 a 540.30 a 27.40 a 432.00 a 152.40 f 5.94356 b 404.05 b 

n-hexane 110-54-3 C6H14 86.18 0.300 a 507.50 a 30.10 a 370.00 a 132.80 f 5.61841 b 434.76 b 

n-tetradecane 629-59-4 C14H30 198.394 0.581 a 693.00 a 14.40 a 830.00 a 293.81 m 7.68286 b 536.38 b 

octane 111-65-9 C8H18 114.23 0.399 a 568.80 a 24.90 a 492.00 a 172.30 f 6.17328 b 478.32 b 

p-chloronitrobenzene 100-00-5 ClC9H4NO2 157.55 0.311 g 817.38 h 43.83 h 390.00 h - 5.87516 i 632.65 i 

p-chlorotoluene 106-43-4 C7H7Cl 126.58 0.311 g 615.90 h 38.15 h 370.00 h - 5.62063 i 476.71 i 

perylene 198-55-0 C20H12 252.31 0.770 l 1030.60 h 25.83 h 770.00 h - 7.31956 i 797.68 i 

phenanthrene 85-01-8 C14H10 178.234 0.479 a 869.00 a 28.70 a 554.00 a - 6.77034 b 675.70 b 

pyrene 129-00-0 C16H10 202.26 0.510 g 936.00 b 26.10 b 630.00 b - 7.11077 b 724.46 b 

http://www.sigmaaldrich.com/catalog/search?term=470-82-6&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
http://www.sigmaaldrich.com/catalog/search?term=106-24-1&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
http://www.sigmaaldrich.com/catalog/search?term=67-63-0&interface=CAS%20No.&lang=en&region=US&focus=product
http://www.sigmaaldrich.com/catalog/search?term=6485-40-1&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
http://www.sigmaaldrich.com/catalog/search?term=14073-97-3&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
http://www.sigmaaldrich.com/catalog/search?term=100-00-5&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
http://www.sigmaaldrich.com/catalog/search?term=106-43-4&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
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Table D.1 (continued) 

Compound name Cas Number Formula Mi ω Tc Pc Vc V* σLJ εLJ kb ⁄  

   g mol-1  K bar cm3 mol-1 cm3 mol-1 Å K 

tert-butylbenzene 98-06-6 C10H14 134.22 0.269 g 660.00 a 29.60 a 492.00 a - 6.20099 b 510.84 b 

tetrahydrofuran 109-99-9 C4H8O 72.11 0.224 g 540.10 a 51.90 a 224.00 a 70.17 m 4.89719 b 418.04 b 

toluene 108-88-3 C7H8 92.141 0.263 a 591.80 a 41.0 a 316.00 a 113.90 f 5.45450 b 350.74 b 

vitamin K3 58-27-5 C11H8O2 172.18 0.619 a 893.85 b 31.96 b 537.20 b - 6.62868 b 691.84 b 
a Taken from Reid et al.[61]; b Taken from Magalhães et al.[86]; c Taken from Dong et al. [75]; d Taken from Mantell et al. [87]; e Calculated by the Edmister method 

(from [88]); f Taken from Kreglewski [85];g Average between the values estimated by the DEFINITI and LEE-KESL methods. Estimated using Aspen Plus [89]; h 

Estimated by the Joback method [86]; i Estimated by the Eqs.68-70; j Calculated by the original definition proposed by Pitzer (from Raid et al. [61]); l Calculated by 

the Edmister method (from [88]); m Taken from Aspen plus database [89]. 
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Table D. 2 – Ternary liquid systems database, number of points of each system (NDP) and AARD obtained 

from the corrected TLSM-MP model. 

Solute Solvent 1 Solvent 2 NDP 
AARD 

% 

hexane cyclohexane benzene 3 30.91 

cyclohexane benzene hexane 3 4.87 

benzene cyclohexane hexane 3 11.48 

acetone cyclohexane benzene 3 20.24 

benzene cyclohexane acetone 3 20.39 

cyclohexane benzene acetone 3 2.84 

hexane carbon tetrachloride acetone 3 10.52 

acetone carbon tetrachloride hexane 3 10.52 

carbon tetrachloride hexane acetone 3 12.90 

iodine tetrahydrofuran cyclohexane 3 27.08 

iodine 1,4-dioxane cyclohexane 3 13.15 

iodine benzene ethanol 4 33.95 

iodine toluene ethanol 3 31.94 

iodine carbon tetrachloride ethanol 3 22.79 

iodine n-hexane ethanol 4 7.49 

iodine cyclohexane ethanol 4 26.19 

toluene n-tetradecane n-hexane 6 24.83 

toluene cyclohexane n-hexane 3 19.79 

toluene n-hexane cyclohexane 3 3.130 

benzene n-heptane n-hexane 9 2.030 

chlorobenzene n-heptane n-hexane 9 0.30 

ethylbenzene n-heptane n-hexane 9 4.23 

toluene n-heptane n-hexane 9 0.89 

p-chlorotoluene n-heptane n-hexane 9 6.16 

naphthalene n-heptane n-hexane 9 5.72 

pyrene n-heptane n-hexane 9 6.65 

perylene n-heptane n-hexane 9 3.03 

benzene ethanol n-hexane 8 7.70 

benzene ethanol acetone 8 23.43 

benzene octane n-hexane 9 1.84 

chlorobenzene octane n-hexane 9 8.74 

ethylbenzene octane n-hexane 9 7.85 

toluene octane n-hexane 9 9.78 

p-chlorotoluene octane n-hexane 9 6.14 

naphthalene octane n-hexane 9 5.87 

pyrene octane n-hexane 9 6.43 

perylene octane n-hexane 9 8.71 

benzene n-decane n-hexane 5 10.72 
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Table D.2 (continued) 

Solute Solvent 1 Solvent 2 NDP 
AARD 

% 

chlorobenzene n-decane n-hexane 5 11.87 

ethylbenzene n-decane n-hexane 5 8.78 

toluene n-decane n-hexane 5 12.75 

p-chlorotoluene n-decane n-hexane 5 5.93 

naphthalene n-decane n-hexane 5 5.92 

pyrene n-decane n-hexane 5 7.29 

perylene n-decane n-hexane 5 11.02 

benzene n-octane n-heptane 9 3.58 

chlorobenzene n-octane n-heptane 9 3.11 

ethylbenzene n-octane n-heptane 9 16.60 

toluene n-octane n-heptane 9 21.01 

p-chlorotoluene n-octane n-heptane 9 13.57 

naphthalene n-octane n-heptane 9 15.54 

pyrene n-octane n-heptane 9 14.37 

benzene n-octane n-decane 8 15.35 

chlorobenzene n-octane n-decane 8 17.43 

ethylbenzene n-octane n-decane 8 16.81 

toluene n-octane n-decane 8 17.59 

p-chlorotoluene n-octane n-decane 8 17.53 

naphthalene n-octane n-decane 8 16.69 

pyrene n-octane n-decane 8 17.03 

perylene n-octane n-decane 8 16.88 

benzene n-hexane cyclohexane 7 11.08 

chlorobenzene n-hexane cyclohexane 7 4.61 

ethylbenzene n-hexane cyclohexane 7 2.26 

toluene n-hexane cyclohexane 7 6.93 

p-chlorotoluene n-hexane cyclohexane 7 1.35 

naphthalene n-hexane cyclohexane 7 4.24 

pyrene n-hexane cyclohexane 7 5.41 

perylene n-hexane cyclohexane 7 3.52 

benzene n-heptane cyclohexane 7 8.10 

chlorobenzene n-heptane cyclohexane 7 5.24 

ethylbenzene n-heptane cyclohexane 7 4.06 

toluene n-heptane cyclohexane 7 5.55 

p-chlorotoluene n-heptane cyclohexane 7 3.63 

naphthalene n-heptane cyclohexane 7 1.52 

pyrene n-heptane cyclohexane 7 3.76 

perylene n-heptane cyclohexane 7 3.80 

benzene n-octane cyclohexane 6 7.72 
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Table D.2 (continued) 

Solute Solvent 1 Solvent 2 NDP 
AARD 

% 

chlorobenzene n-octane cyclohexane 6 7.08 

ethylbenzene n-octane cyclohexane 6 1.85 

toluene n-octane cyclohexane 6 3.71 

p-chlorotoluene n-octane cyclohexane 6 1.17 

naphthalene n-octane cyclohexane 6 3.12 

pyrene n-octane cyclohexane 6 1.50 

perylene n-octane cyclohexane 6 6.85 

benzene n-decane cyclohexane 5 5.26 

chlorobenzene n-decane cyclohexane 5 16.53 

ethylbenzene n-decane cyclohexane 5 7.68 

toluene n-decane cyclohexane 5 6.85 

p-chlorotoluene n-decane cyclohexane 5 7.97 

naphthalene n-decane cyclohexane 5 11.15 

pyrene n-decane cyclohexane 5 9.33 

perylene n-decane cyclohexane 5 18.38 

 

Table D. 3 – Ternary SCF systems database, number of points of each system (NDP) and AARD obtained 

from the corrected TLSM-MP model. 

Solute Solvent 1 Solvent 2 NDP 
AARD 

% 

benzoic acid carbon dioxide methanol 9 23.16 

phenanthrene carbon dioxide methanol 9 15.19 

acridine carbon dioxide methanol 9 6.10 

linoleic acid methyl ester carbon dioxide n-hexane 13 20.98 

vitamin K3 carbon dioxide n-hexane 29 8.63 

indole carbon dioxide n-hexane 13 6.65 

benzyl acetate carbon dioxide ethanol 90 2.88 

2-phenylethyl acetate carbon dioxide ethanol 90 2.37 

3-phenylpropyl acetate carbon dioxide ethanol 90 2.84 

dibenzyl ether carbon dioxide ethanol 90 3.97 

vitamin K3 methanol carbon dioxide 53 12.20 

L-carvone carbon dioxide ethanol 46 7.10 

L-menthone carbon dioxide ethanol 46 4.79 

2-nitroanisole carbon dioxide methanol 30 5.06 

2-nitroanisole carbon dioxide n-hexane 15 17.55 

1,2-dichlorobenzene carbon dioxide methanol 30 6.85 

1,2-dichlorobenzene carbon dioxide n-hexane 15 20.65 

tert-butylbenzene carbon dioxide methanol 30 4.08 

tert-butylbenzene carbon dioxide n-hexane 15 9.57 
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Table D.3 (continued) 

Solute Solvent 1 Solvent 2 NDP 
AARD 

% 

3-fluorophenol carbon dioxide n-hexane 6 3.96 

3-fluorophenol carbon dioxide tetrahydrofuran 6 29.37 

3-fluorophenol carbon dioxide methanol 6 40.66 

3-fluorophenol carbon dioxide acetonitrile 4 22.89 

3-fluorophenol carbon dioxide isopropanol 6 33.87 

1,3-dichlorobenzene carbon dioxide n-hexane 6 9.04 

1,3-dichlorobenzene carbon dioxide tetrahydrofuran 6 4.13 

1,3-dichlorobenzene carbon dioxide methanol 6 3.64 

1,3-dichlorobenzene carbon dioxide acetonitrile 4 2.98 

1,3-dichlorobenzene carbon dioxide isopropanol 6 14.95 

L-carvone carbon dioxide n-hexane 6 2.39 

L-carvone carbon dioxide tetrahydrofuran 6 5.57 

L-carvone carbon dioxide methanol 6 7.93 

L-carvone carbon dioxide acetonitrile 4 2.77 

L-carvone carbon dioxide isopropanol 6 6.50 

geraniol carbon dioxide n-hexane 6 6.02 

geraniol carbon dioxide tetrahydrofuran 6 6.03 

geraniol carbon dioxide methanol 6 13.01 

geraniol carbon dioxide acetonitrile 4 4.54 

geraniol carbon dioxide isopropanol 6 9.15 

gallic acid carbon dioxide ethanol 9 24.36 

eucalyptol carbon dioxide ethanol 24 11.41 

 


