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PALAVRA-
CHAVE: 

Disfunção diastólica; intolerância ao exercício; reserva energética; alterações 
metabólicas; metabolismo; mitocôndria; stress oxidativo; apoptose; Remodelagem 
Reversa; 

  

RESUMO: A insuficiência cardíaca (IC) com fração de ejeção preservada (ICFEp) é uma 

síndrome com uma etiologia muito diversificada, cuja disfunção metabólica tem sido 

apontada como um importante mecanismo associado à sua severidade. A 

remodelagem do miocárdio, resulta de uma agressão ao coração que pode ser direta 

(isquemia, estenose aórtica, etc) ou indireta (diabetes, disfunção renal, etc). Quando 

esta agressão é atenuada, por tratamento farmacológico ou cirúrgico, o coração 

sofre uma remodelagem reversa (RR) e o miocárdio retoma à sua estrutura e função 

normais. Conhecer os mecanismos subjacentes ao padrão de remodelagem e RR do 

miocárdio irá certamente potenciar novas oportunidades de tratamento da ICFEp. 

Por ser uma síndrome multisistémica, os doentes com ICFEp apresentam 

frequentemente sinais e sintomas extra-cardíacos característicos do diagnóstico 

desta patologia, como é o caso da intolerância ao esforço. Assim este trabalho teve 

como objetivos implementar e caracterizar um modelo animal de ICFEp, bem como 

avaliar as alterações estruturais, funcionais e moleculares que ocorrem ao nível do 

músculo cardíaco e esquelético na remodelagem e RR. Os nossos resultados 

mostram que a implementação de um modelo animal que mimetiza o fenótipo de 

ICFEp foi bem-sucedida. De facto, os animais banding apresentaram uma marcada 

hipertrofia do ventrículo esquerdo (VE), disfunção diastólica com rigidez do 

miocárdio, alterações na regulação do cálcio e aumento do stress oxidativo. 

Observaram-se ainda alterações que sugerem um aumento da biogénese e da 

fissão mitocondrial bem como um aumento dos transportadores de glucose. Apesar 

do aumento da expressão da proteína desacopladora 1 (UCP-1), funcionalmente, as 

mitocôndrias apresentaram uma melhoria da sua função. A redução da performance 

física dos animais banding foi acompanhada de alterações estruturais ao nível do 

músculo-esquelético, assim como de uma alteração dos transportadores dos 

substratos metabólicos. Curiosamente, nos animais debanding, apesar da 

recuperação funcional, morfologicamente o miocárdio não normalizou totalmente. 

Adicionalmente, observou-se um aumento dos transportadores de ácidos gordos, 

acompanhado por uma diminuição do stress oxidativo e da apoptose no VE. Além 

disso, apesar da melhoria metabólica, as mitocôndrias do VE dos animais debanding 

mantém-se menores. Relativamente à capacidade aeróbica dos animais, observou-

se uma melhoria após o debanding acompanhada por uma reversão da atrofia e a 

fibrose das fibras musculares, assim como da oxidação dos ácidos gordos. Este 

trabalho mostra evidências do envolvimento mitocondrial e metabólico na progressão 

da ICFEp, ao nível dos músculo-esquelético e cardíaco.  
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ABSTRACT: Heart failure (HF) with preserved ejection fraction (HFpEF) is a complex syndrome 

with a diverse aetiology in which the metabolic dysfunction has been pointed out as 

an important mechanism that underlies the disease severity. Myocardial remodelling 

results from cardiac injury that can be direct (ischemia, aortic stenosis, etc) or 

indirect (diabetes, renal dysfunction, etc). When the deleterious stimulus is 

attenuated by pharmacological or surgical treatment, the heart enrols in a process 

called reverse remodelling (RR), and myocardial structure and function returns to 

normal. The knowledge of the molecular mechanism that underlie the RR process 

could represent an opportunity to develop novel therapeutic approaches and thus 

improve the treatment of HFpEF patients. As being a multi-systemic syndrome, 

HFpEF presents several extra-cardiac signals and symptoms typical of its 

diagnosis, such as effort intolerance. Thus, the aims of this work was to implement 

and characterize an animal model of cardiac remodelling and reverse remodelling of 

HFpEF and thus characterize structurally, functionally and molecularly the changes 

that occurs at the myocardium and at the skeletal muscle. Our results showed that 

we successfully implemented an animal model of HFpEF that presents an LV 

hypertrophic and increased stiffness. Additionally to LV diastolic dysfunction (DD) 

we also observed abnormalities on calcium and oxidative stress. In banding rats we 

denoted an increase of peroxisome proliferator-activated receptor-gamma 

coactivator alpha (PGC-1α) and downregulation of mitofusin (MNF1,2) as well as an 

augment of glucose transporters. Despite de increase of uncoupled protein 1 (UCP-

1) expression, functionally we denoted an improvement of mitochondria respiration 

and membrane potential. The physical performance of banding animals was 

impaired and accomplished by structural changes at skeletal muscle level as well as 

at metabolic substrate transporters. Curiously, after afterload relief despite the 

functionally recovery, morphologically the myocardial reverse remodelling was 

incomplete. Moreover, regardless the metabolic transporters reversion the 

mitochondria continue smaller. After overload relief the rats showed an 

improvement on aerobic capacity as well as a reversion on skeletal muscle atrophy, 

fibrosis and an upregulation of FA oxidation. The present study shows clearly the 

involvement of mitochondria and metabolism on myocardial and skeletal muscle 

remodelling and RR. 
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 Abbreviations 

 

 

ADP: Adenosine diphosphate 

AS: Aortic stenosis 

ATP: Adenosine triphosphate 

A-VO2 dif: Arteriovenous oxygen difference  

AVR: Aortic valve replacement 

CK: Creatine Kinase  

CPT1: Carnitine palmitoyltransferase I 

Cr: Creatine 

cGMP: Cyclic guanosine monophosphate  

CO: Cardiac Output 

DD: Diastolic dysfunction 

DNA: Deoxyribonucleic acid 

ECM: Extracellular matrix  

ECO: Echocardiogram  

ECT: Electron transport chain 

EF: Ejection fraction 

eNOS: Endothelial nitric oxide synthase  

FA: Fatty acid 

FAO: Fatty acid oxidation 

GLUT1: Glucose transporter 1 

GLUT4: Glucose transporter 4 

HF: Heart failure 

HFpEF: Heart failure with preserved ejection fraction 

HFrEF: Heart failure with reduced ejection fraction 

iNOS: Inducible nitric oxide synthase 

LV: Left ventricle 

LVAD: Left ventricle assist device 

LVmass: Left ventricle mass  

MMPs: Matrix Metalloproteinases  

MFN1: Mitofusin 1 

MFN2: Mitofusin 2 

mtDNA: Mitochondrial deoxyribonucleic acid 

MTPP: Mitochondrial transient permeability pore 

NO: Nitric oxide 

NPs: Natriuretic peptides 

PCr: Phosphocreatine 

PDK4: Pyruvate dehydrogenase kinase isoform 4 

PGC-1α: Peroxisome proliferator-activated receptor-gamma coactivator alpha 

PKG: Protein Kinase G 

RAAS: Renin–angiotensin–aldosterone system 

RCR: Respiratory control ratio 

RNS: Reactive nitrogen species 

ROS: Reactive oxygen species 

RR: Reverse remodelling 

SR: Sarcoplasmic reticulum  

TGF-β: Transforming growth factor-β 

TIMPs: Tissue inhibitors of metalloproteinases 

UCPs: Uncoupling proteins  

VO2 max: Maximum rate of oxygen consumption 
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A. General features 

 

The main function of the heart is to provide oxygen and metabolic substrate to all organs 

and tissues of the body. Heart failure (HF) occurs when the heart cannot pump enough blood to 

meet the body's metabolic demands, or does it at the expense of high filling pressures [1, 2]. 

Cardiovascular diseases are the leading cause of death worldwide. In fact, in developed countries, 

the prevalence of HF is continuously increasing [3]. Despite affecting up to 1-2% of the adult 

population, its prevalence is expected to increase especially among the oldest and sedentary 

population [4]. HF results from structural or functional abnormalities in right or left ventricle (LV) 

that impairs its filling (diastolic dysfunction, DD) or ejection capacity (systolic dysfunction). These 

alterations can be asymptomatic for a long time before the onset of the first HF manifestations [5]. 

Despite its clinical relevance, the presence of nonspecific symptoms of HF, hinders its correct 

diagnosis and treatment [5].  

HFpEF is a multifaceted disease with several associated comorbidities and its 

pathophysiology includes cardiac and extra-cardiac factors [6]. Despite the scarcity of knowledge 

about HFpEF pathophysiology, it is accepted that it results from a maladaptive process that, despite 

being initially compensatory to normalize ventricular wall tension, quickly becomes deleterious 

[7]. Among the pathophysiological mechanism in HFpEF the increase of oxidative stress, abnormal 

energetic metabolism and dysfunctional mitochondria are currently pointed out as crucial. 

Exercise intolerance is a typical signal of HFpEF, very useful to its diagnosis. Moreover, 

after treatment, some of these patients show improved aerobic capacity. Thus the recognition of 

skeletal muscle involvement in HFpEF, little is known about its (dys)function or its implication in 

effort intolerance. Thus, this topic need to be further explored.  

The limited knowledge about LV remodelling and RR in HFpEF is reflected on the few 

therapeutic options available to these patients. Despite the continuous efforts in the discovery of 

novel therapeutic targets, most of them do not prove efficacy in HFpEF. Moreover, some clinical 

trials have proved to be ineffective, even harmful, before reaching the phase III [8, 9], and thus, 

until now these patients remain without an adequate pharmacological therapy. 

 

 

B. HFpEF definition, epidemiology and diagnosis 

 

HF is classically divided in HF with preserved or reduced ejection fraction (EF), HFpEF or 

HFrEF, respectively. The most recent guidelines from the European Society of Cardiology 
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introduced a new subtype for the equivocal cases, when the EF is between 40-49%, named HF with 

mid-range EF [5]. This HF classification was initially controversial, however the distinct HF 

pathophysiological mechanisms and therapeutic responses allowed to reach the current consensus 

[10]. Among all HF cases, those that most concern the medical and scientific community are 

HFpEF. This syndrome represents more than 50% of all HF cases and is associated to high 

morbidity and mortality, thus imposing significant costs to the healthcare system, mostly due to 

high frequency of re-hospitalizations [11].  

In HFpEF, LV pressure overload, as arterial hypertension or aortic stenosis, activates 

several molecular and cellular pathways that triggers LV remodelling through morphological and 

functional alterations [12]. Over time LV remodelling results in LV hypertrophy and DD, with an 

augment of LV stiffness, an abnormal filling pattern, an enlargement of the left atrium, pulmonary 

congestion, etc [6]. At the myocyte level, the cardiomyocytes becomes hypertrophic and stiffer 

[10]. Although initially thought to be less threatening than HFrEF, a prospective population study 

observed that HFpEF patients present a survival rate similar to those with reduced EF [13]. Its 

increased prevalence follow other epidemiologic burdens typical of an sedentary lifestyle such as 

obesity, hypertension, diabetes and chronic kidney disease [11]. Since HFpEF is also associated 

with aging and considering the increase of life expectancy, it is presumed that, in 2020, HFpEF will 

affect more than 8% of the population over 65 years, and will represent nearly 69% of all HF cases. 

Large epidemiological studies such as the Framingham Heart Study or the Rochester Epidemiology 

Project showed that HFpEF predominates in elderly female or younger male patients [5, 14, 15]. 

 Additionally to the imperative presence of signs and symptoms characteristic of HF, 

preserved systolic LV function (LV EF> 50 % and indexed LV end-diastolic volume < 97mL/m²) 

and evidence of LV DD, the HFpEF diagnosis is also based on plasma biomarkers and imaging 

methods such as echocardiography [5] or invasive haemodynamic. Regarding DD, pulmonary 

capillary wedge pressure (PCWP)> 15mmHg, LVEDP> 12mmHg at rest or E/e’>15 provide 

sufficient evidence of DD. When E/e’ is in the range of 8–15 or NT-pro natriuretic peptide type B 

(BNP)/BNP levels are higher (NT-proBNP>220pg/mL; or BNP> 200pg/mL) is necessary at least 

one additional sign of DD, including a low E/A ratio combined with a high deceleration time, 

pulmonary venous flow patterns indicative of DD, increase left atrium, atrial fibrillation, and/or LV 

hypertrophy [16]. Additionally to the routinely use of BNP as a biomarker, other molecules such as 

procollagen, inflammatory factors such as interleukin-6 and -8, thyroid hormones, troponin T, 

proteins involved in the transport of fatty acids (FA), carbohydrate antigen 125 (CA125) are also 

used in HFpEF, however, they still await validation [17]. In the ambiguous cases, the effort 

intolerance test determined by echocardiography is performed through a diastolic stress test and 

using a dynamic exercise protocol [5]. 
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C. Metabolic myocardial changes and implications for cardiac function in 

HFpEF  

 

Compared to other cells of the organism, cardiac myocytes are those who consume more 

energy. ATP is mainly produced by mitochondrial oxidative phosphorylation and regulated by an 

efficient system of energy transfer. The concept that cardiac muscle is energetic starved was 

introduced in 1939 by Dechered [18] and demonstrated posteriorly by several authors. Actually, all 

the processes involved in production/extraction, transfer or utilization of energy are reduced in HF, 

which compromise the function and integrity of cardiac muscle (35).  The process of ATP 

regeneration is centred in a reaction catalysed by creatine kinase enzyme (CK), that transfer a 

phosphate group from phosphocreatine (PCr) to ADP. This reaction allows not only to regenerate 

ATP and creatine (Cr) but also to prevent ADP accumulation.  

In an adult heart, approximately 70% to 90% of cardiac ATP is produced by the oxidation 

of FAs [19]. However, heart is an organ extremely flexible, capable of generating energy from 

oxidation of other substrates, such as carbohydrates (lactate, glucose), ketones and amino acids 

[20]. This cardiomyocyte plasticity is essential for the myocardium to meet its high metabolic 

demands and to quickly adapt to the constant hemodynamic and/or metabolic changes [21]. 

Therefore, energetic pathways such as oxidative phosphorylation, citric acid cycle and FA 

oxidation are essential for maintaining a normal contractile function. Several authors have reported 

this myocardial metabolic flexibility, especially under pathologic conditions, such as in the 

hypertrophic heart, where a metabolic substrate shift is observed [22-26]. Unlike physiological 

hypertrophy, where an increase of FA and glucose oxidation is observed, pathological hypertrophy 

is characterized by a shift towards glucose utilization [22, 23, 26] accompanied by a 

downregulation of genes involved in FA metabolism [27]. Despite the relative consensus regarding 

the reduction of FA oxidation in the hypertrophic myocardium, some studies describe the increase 

of glycolysis accomplished by a decrease or unchanged FA oxidation [22-24]. These 

inconsistencies could probably be explained by the degree of hypertrophy, severity of HF and its 

impact on cardiac metabolic profile, as well as by the differences on the animal model. The 

underlying mechanisms that trigger decreased FA oxidation remain unknown, however, changes in 

the expression of genes involved in FA metabolism (like activation gene for FA (GOA) and PPAR-

α) [22, 26], abnormal FA absorption (despite normal CD36 expression) [22] or a carnitine 

deficiency [23] seems to be involved. The heart can fine-tune ATP consumption to its energetic 

needs [28], but the net yield of ATP production per mole of FA oxidation is greater than per mole 

of glucose, despite lower oxygen costs for the latter. So, this metabolic shift toward glucose 

compromises the energetic state of the myocardium [20].  
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In the hypertrophic heart the metabolic modifications are not restricted to oxidative 

substrate, since the uncoupling between glycolysis rate and glucose oxidation is also reported and 

seems to contribute to heart dysfunction and its subsequent progression to HF [7, 23, 29]. 

Nevertheless, it is clear that myocardial remodelling is associated to metabolic alterations, which in 

turn are accompanied by alterations in enzymes that regulate carbohydrates and FA metabolism. 

Recently it was suggested that the alterations on metabolic substrate that occurs in myocardium 

impact contractile dysfunction and contributes to progressive HFpEF myocardial remodelling [30]. 

Hence, optimization of the energy production or the metabolic substrate could represent a potential 

therapeutic target for HFpEF. 

 

 

i. Energetic deficit in HFpEF 

 

Many of the comorbidities associated to DD and HFpEF are related to cardiac metabolic 

perturbations capable of modifying the amount of adenine and creatine compounds, and thus 

affecting myocardial function [31]. Actually, a linear relationship has been described between ATP 

hydrolysis, actin-myosin interaction and contractile force [3, 32-34] as well as between ADP levels 

and tele-diastolic pressures [35]. 

In HFpEF, the evidence of a deficient energetic reserve is confirmed by the reduction of 

the PCr/ATP ratio that can be ascribed to PCr decrease [36] or, in some cases, to a drop of 30-40% 

in ATP levels in failing hearts. In pathological hypertrophy, the increase of glycolysis activity [27] 

culminates in a decrease of mitochondrial oxidative metabolism and thus a reduction in the content 

of ATP, Cr and PCr [37, 38]. In fact, the reduction of PCr levels results in a deficit of conversion of 

ADP to ATP and impairs the ratio ATP/ADP [35]. Moreover, elevated levels of ADP augment the 

filaments sensitivity to Ca2+ and increase the recruitment of cross-bridges, culminating in a slower 

myocardial relaxation [36, 39, 40] and greater cardiomyocytes stiffness [39]. Moreover, in rats, the 

reduction of the contractile reserve, the increase of LV end-diastolic pressure and mortality was 

associated to PCr reduction or a CK inhibition [35].  

In the myocardium, free energy resulting from ATP hydrolysis is used for several 

mechanisms, being 60-70% directed to contraction and relaxation and the remaining 30-40% used 

by sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA-2a) and by others ion pumps [3, 41]. A 

relevant fact for HFpEF is the finding that the diastolic consumption of ATP exceeds the one of 

systole [41]. Indeed, during relaxation, ATP hydrolysis is necessary to release ADP from myosin 

heads and decouple myosin heads form actin filaments, dissociating Ca2+ from troponin C and to 

reuptake Ca2+ to SR. Thus, additionally to ATP, calcium is also crucial to myocardial relaxation by 
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regulating ATP synthesis and consumption during cardiac cycle [41, 42]. Therefore, an abnormal 

relaxation associated to DD, as occurs in HFpEF, can also result from alterations in filaments 

sensitivity to Ca2+ and diastolic reuptake of Ca2+ [43]. Indeed, the rate at which SERCA-2a pumps 

Ca2+ to SR during diastole is ATP-dependent, so changes in SERCA-2a activity can also be 

associated to the reduction of ATP content [44]. In HFpEF, alterations on Ca2+reuptake could result 

from the reduction on SERCA-2a activity or an increase in the phosphorylation of phospholamban 

(a SERCA-2a inhibitor). Both can change myocardial Ca2+ kinetics and ventricular relaxation [41, 

45, 46]. Additionally, hyperphosphorylation of ryanodine receptors can also underlie the reduction 

of the content of Ca2+ in SR and therefore contribute to increase Ca2+ cytosolic and the worsening 

of myocardium relaxation [31, 44]. It becomes evident that a normal diastole depends on the proper 

function of metabolic processes capable of regenerating ATP. Thus, low energy reserve observed 

in HFpEF can result from mitochondrial dysfunction or metabolic substrate alteration. However it 

is not known whether these alterations are a cause or consequence of HF [3].  

 

 

D. Mitochondrial alterations in HFpEF 

 

One cannot describe alterations in energetic metabolism in HFpEF without referring to 

mitochondria, considered the “key-organelle” of the cell energetic machinery. The relationship 

between mitochondrial dysfunction and HF was suggested in 1962, when Schwartz & Lee observed 

a reduction in mitochondrial oxidative phosphorylation capacity in pigs that developed HF after 

aortic constriction [47]. Cardiomyocyte’s impressive content in mitochondria (>30% of its total 

volume) reflects the importance of oxidative phosphorylation for this organ. In fact, on adult 

individuals, under normoxia and resting conditions, about 95% of the myocardial ATP demands 

comes from mitochondria [3, 19]. Structural and functional alterations of mitochondria have been 

described in several cardiovascular diseases, namely HF. The proposed mechanisms for 

mitochondrial dysfunction are diverse and include: i) electron transport chain dysfunction; ii) 

modifications in mitochondrial complexes organization; iii) increased oxidative stress; iv) 

alteration of membrane lipid profile with decreased cardiolipin content; v) changes in the Krebs 

cycle and vi) mitochondrial uncoupling [48].  

The reduction of energetic reserve and the abnormal relaxation observed in HFpEF could 

involve mitochondrial dysfunction. This hot topic has recently attracted attention of many 

researchers, since there are several evidences that these alterations are the cause of metabolic 

remodelling, energy deficiency and increased oxidative stress (Figure 1). 
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i. Oxidative phosphorylation, biogenesis and mitochondrial coupling 

 

Mitochondrial energy production involves the coupling between electron transfer and 

oxygen uptake through the electron transport chain complexes (CI, CII, CIII, and CIV) and the 

phosphorylation of ADP (CV) [49]. The dysfunction of this process, evidenced by the decrease of 

mitochondrial respiration rate and consequent decrease of ATP content, is consistently observed in 

the HF [50]. In HF patients changes in complex I of the electron transport chain have been reported 

[17], while in rats, complexes III and IV were also shown to be dysfunctional [51]. In compensated 

hypertrophy the increase in mitochondrial respiration is sustained until systolic dysfunction begins, 

declining thereafter [19, 52]. These observations raise the question if the dysfunction in 

mitochondrial oxidative phosphorylation is responsible for the HF progression. 

The involvement of mitochondrial biogenesis in compensated hypertrophy and DD is 

controversial since changes in the expression of biogenesis proteins, like PGC-1alpha, ERRalpha 

and Tfam, are inconsistent [30, 44]. In humans with compensated hypertrophic cardiomyopathy a 

decrease of mtDNA content was associated to downregulation of mitochondrial biogenesis and 

decreased expression of proteins involved in mtDNA maintenance [53]. However, other authors 

described an overexpression of proteins involved in biogenesis. These authors state that the 

downregulation of proteins involved in biogenesis could be related to mitochondrial damage and 

mitophagy activation [54], and thus represent a mechanisms triggered by mitochondrial loss and 

injury. In dogs with aortic coarctation-induced hypertrophy, mitochondrial ultrastructure was 

normal. Moreover, mitochondria, isolated from epicardial and endocardial regions of these 

hypertrophic hearts showed normal rates of respiration, ATP phosphorylation, citrate synthase, and 

cytochrome c oxidase activity compared to control dogs [55].  

When oxidative phosphorylation occurs independently of ATP production the 

mitochondria are uncoupled. Mitochondrial uncoupling may be caused by intrinsic issues of 

respiratory chain proteins, but may also be a consequence of increased expression or activity of 

uncoupling proteins (UCPs). The UCPs are located in the inner mitochondrial membrane, and their 

function is to dissipate the electrochemical gradient, diverting the electron flow from ATP 

synthesis and subsequently increase heat production. The main purpose of UCPs is to regulate 

energetic metabolism and mitochondrial reactive oxygen species (ROS) production, however, they 

also decrease the ADP/O ratio affecting the oxidative phosphorylation efficiency [13, 56]. Changes 

in the expressions of UCP2 and UCP3 have been found in several types of HF [27, 57] and LV 

hypertrophy [22, 24]. An animal model of HF secondary to aortic regurgitation showed that the LV 

expression of UCP2 differs according to HF progression, being decreased at early stage and 

overexpressed at the final stage of HF. Interestingly, in the end-stage of HF, a concomitant increase 
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of TNF- and a decrease of PCr content was also observed. Given these results, the authors 

suggested that TNF- could be involved in the upregulation of UCP2, which, in turn, would be 

responsible for PCr decrease and, therefore, implied in the lower cardiac energy efficiency 

observed in HF [27]. Regarding the mitochondrial alterations and UCPs, their role in the HF 

pathophysiology has not been completely elucidated. It is unknown if this is an adaptive 

phenomenon that aims to reduce oxidative stress, or a deleterious phenomenon, being involved in 

mitochondrial energetic dysregulation (Figure 1). 

 

 

E. Reactive Oxygen Species 

 

In mitochondria, ROS production usually occurs during a normal mitochondrial 

metabolism. The problem arises when the increased levels of ROS are not balanced by antioxidant 

systems and becomes pathological, as recently described for HFpEF [41]. In mitochondria, the 

pathological increase of ROS is mainly a consequence of the incomplete reduction of oxygen that 

occurs in complexes I and III [41]. In mice hearts, who developed HFpEF after chronic pressure 

overload or administration of angiotensin II, an increase in mitochondrial ROS with consequent 

dysfunction of the organelle (decreased membrane potential, increased protein oxidation, as well as 

deletions in mitochondrial DNA (mtDNA)) and activation of the MAPK pathways has been 

described [54]. Similar results were obtained from another group that assumed that elevated 

oxidative stress would underlie mitochondrial damage and cardiac dysfunction [51]. Effectively, 

ROS upregulation can lead to extensive oxidative damages in a variety of molecules, such as 

proteins, DNA and lipids. Moreover, ROS can also modulate several signalling pathways involved 

in ventricular hypertrophy progression, contractile dysfunction, Ca2+ deregulation and myocardium 

stiffness, leading to increased passive tension of cardiomyocytes [29, 41, 49]. It was also reported 

that in the hypertrophic and stiffened myocardium, the primary source of ROS is the mitochondria. 

In fact, treatment with mitochondrial antioxidants improved angiotensin II-induced 

cardiomyopathy [54].  
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I. ROS and nitric oxide 

 

In the presence of ROS, nitric oxide (NO) and nitric oxide synthase (NOS) are oxidized, 

decreasing NO bioavailability [58] and consequently its beneficial effects including the control of 

mitochondrial pore opening [59]. Haemoglobin and myoglobin regulate NO, a potent vasodilator, 

and oxygen (O2) gradients in myocardium, removing NO when O2 concentrations are high and 

providing it when O2 concentrations decrease in order to properly adjust blood flow to the tissue 

metabolic needs [59]. In the presence of low O2 concentrations, NO binds reversibly to O2 binding 

site on cytochrome c oxidase, adjusting the mitochondrial O2 consumption to the tissue content. In 

HF, the dysregulation of this mechanism is associated to impaired myocardial O2 consumption 

(MVO2) and the progression of compensated to decompensated HF [60]. High amounts of NO or 

its derivatives, reactive nitrogen species (RNS), regulate oxidative phosphorylation by inhibiting 

mitochondrial respiration by two distinct mechanisms, NO inhibition of cytochrome c oxidase, in 

an acute, powerful and reversible manner through competition with O2 or by irreversible and 

generalized inhibition by RNS [61]. The latter occurs because RNS induces post-translational 

modifications in these proteins, such as nitrosylation or oxidation of thiol groups and removal of 

iron from ion-sulfur centers [62]. As a consequence, the production of ATP decreases while ROS 

and RNS increases, causing significant changes in myocardial intracellular signalling pathways and 

contributing to cell death [59]. In rats who developed hypertrophy by aortic constriction there was a 

concomitant increase in NO sensitivity in complex IV of the respiratory chain and in the production 

of inducible nitric oxide synthase (iNOS) [63]. High levels of ROS also increase the activity of the 

protein phosphatase 2a, that decrease the phospholamban phosphorylation and consequently 

diminish SERCA-2a activity, resulting in a decrease of Ca2+ reuptake by the RS [64]. Additionally, 

post-translational modifications induced by ROS and RNS can cause alterations in Krebs cycle 

enzymes (eg. aconitase) or inhibit proteins such as CK [59]. NO can also interfere with 

mitochondrial biogenesis via cGMP or by enhancing the stimulation of transcription factors, such 

as PGC-1alpha, NRF-1 or mtTFA, resulting in increased expression of respiratory chain complexes 

[59].  

In HFpEF, reduced NO bioavailability can be due to this imbalance between ROS and NO, 

which results in impaired activation of myocardial cGMP-PKG. Moreover, treatment with BH4, a 

cofactor of NO synthesis, improved diastolic dysfunction [43] and activation of NO-cGMP-PKG 

pathway reduced the sensitivity of the myofilaments to Ca2+ [65, 66]. The downregulation of NO-

cGMP-PKG pathway is also associated to deleterious structural (hypertrophic remodelling with 

increased fibrosis and cardiomyocyte hypertrophy) and functional (systolic and diastolic 

dysfunction) effects [15, 67]. In HFpEF, decreased activity of PKG reduces titin phosphorylation 
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and increase myocardial stiffness [68]. Additionally to phosphorylation degree, titin post-

translational modifications induced by oxidative alterations are important modulators of 

cardiomyocyte passive strength that can decrease its distensibility and thus contribute to increased 

passive tension [69].  

Besides NOS uncoupling, decreased NO bioavailability can result from endothelial 

dysfunction [70]. Overproduction of ROS/RNS from endothelial cells and decreased NO 

bioavailability in the myocardium have recently been shown to be important determinants of 

myocardial disease progression in both hypertensive and HFpEF patients [15, 70]. 

 

 

II. ROS and ECM 

 

Endothelial dysfunction and oxidative stress seems to be important mediators of 

inflammation, which are present in both HF subtypes [71]. In aortic valve disease, the rise of 

inflammatory mediators in endothelial cells increases oxidative stress, triggering the activation of 

the osteogenic and fibrogenic pathways, promoting valve calcification, and thus increased LV 

afterload [72]. In the 1990s, inflammation and fibrosis were shown to increase with LV 

hypertrophy. More recently, oxidative stress was proposed to trigger TGF-β activation thus 

increasing collagen synthesis and inhibiting its degradation [73, 74]. Collagen is a crucial element 

of the extracellular matrix (ECM), essential to maintain the structural composition of the 

myocardium, to assist mechanotransduction and, together with other proteins such as elastin, to 

contribute to the elastic properties of the heart [45]. In HFpEF, ECM alterations result from 

changes in collagen metabolism, mainly in type I and type III collagen, which are the most 

abundant in cardiac tissue (>90%). These changes include alterations in their deposition, degree of 

cross-bridging and relative amount, resulting in the development of myocardial interstitial fibrosis 

and subsequent ECM stiffening [75]. The activation of myofibroblasts, which are responsible for 

the fibrotic tissue remodelling, is due to the activation of several proteins and hormones, such as 

the renin-angiotensin-aldosterone system (RAAS) [76], a crucial neurohumoral axis in HFpEF 

[10]. Collagen metabolism results from the balance between metalloproteinases activity (MMPs) 

and their tissue inhibitors, TIMPs, as well as other proteins. In hypertensive patients with HFpEF, a 

downregulation of MMPs and an overexpresion of TIMPs [77] have been described, resulting in a 

decrease in ECM degradation that contributes to increased ventricular stiffness (Figure 1) [46].  

In HFpEF patients, the presence of cells with an inflammatory profile leads to the release 

of factors, such as TGF-β, responsible for inducing production of collagen and differentiation of 

fibroblasts into myofibroblasts. TGF-β by producing cytokines and chemokines stimulates the 
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recruitment and activation of more inflammatory cells. This inflammatory profile seems to arise 

early in the progression of cardiac pathology. Indeed, MCP-1 protein and TGF-β increase in 

compensatory hypertrophy and molecules such as interleukins (IL-6, IL-18 e IL-17R), TNF-α, 

anaphylatoxin C5a or ST-2 appear to be involved in DD progression. Markers of fibrosis and 

systemic inflammation such as galectin-3 and growth differentiating factor 15 (GDF15) arise as 

promising indicators of HFpEF progression [46].  

 

 

Figure 1: Alteration of energetic substrate and mitochondrial dysfunction on the basis of functional changes of the 

hypertrophic myocardium. The energetic dysfunction of the myocardium, underlying the change of oxidative substrate 

leads to mitochondrial dysfunction. Mitochondrial dysfunction culminates in increased ROS, which, by decreasing NO 

and NOS bioavailability reduce PKG and phosphorylation of titin. Increased ROS–mediated protein phosphatase 2 (PP2) 

activity inhibits phospholamban phosphorylation and decreases SERCA-2a activity, thereby altering relaxation. ROS act 

directly on titin, increasing its passive tension. Mitochondrial proteins released from the intermembrane space (Smac, 

cytochrome C, apoptosis inducing factor, etc) leads to DNA fragmentation and triggers apoptotic events. ROS may also 

contribute to extracellular matrix stiffness by promoting matrix remodelling and proinflammatory cytokines. PLB, 

phospholamban; NO, nitric oxide; NOS, nitric oxide synthase; TGF-β, transforming growth factor beta; ROS, reactive 

oxygen species; cGMP, cyclic guanosine monophosphate; MMPs, matrix metalloproteinases; TIMP, tissue inhibitors of 

matrix metalloproteinases; PP2, protein phosphatase 2a; PKG, cGMP-dependent protein kinase. 
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F. Exercise intolerance in HFpEF 

 

In addition to HFpEF-induced metabolic, structural and functional alterations in cardiac 

muscle, HFpEF also promote relevant consequences at the skeletal muscle level. The close 

relationship between these two muscles is probably due to the high metabolic requirements of the 

skeletal muscle during exercise as well as the similarities among both organs. Therefore, in some 

cases, skeletal muscle abnormalities could be an indicator of myocardium performance [37].  

Exercise intolerance is a common hallmark among HFpEF patients that often arises as an 

early symptom of the disease. The aerobic capacity, usually evaluated by the peak of oxygen 

uptake (VO2) is an important determinant of quality of life and mortality in HFpEF and is reduced 

~40% of these patients [78, 79]. Contrary to HFrEF, in HFpEF the mechanisms that underlying low 

aerobic capacity are poorly explored [80]. According to Fick equation, peak VO2 corresponds to 

the product between cardiac output (CO) and the difference in the arterial-venous oxygen content 

(A-VO2 diff). During exercise the needs of O2 rise, therefore an increase of CO, A-VO2 diff or both 

is required. Thus, a reduced peak VO2 during exercise may be the result of decreased CO and/or 

reduced utilization or delivery of O2 to muscles [80]. Furthermore, alterations on heart rate induced 

by exercise correlates more to peak VO2 than to stroke volume [78]. 

When subjected to physical exercise, HFpEF patients show an incapacity to increases CO 

adequately [81]. The compromised CO is associated to chronotropic incompetence [82], inadequate 

systolic reserve [83] and ventricular-vascular coupling [84]. Other changes, such as capillary 

rarefaction [85], endothelial dysfunction [83] and abnormal vasodilatation [82] were also reported 

as underlying exercise intolerance in HFpEF patients. Among cardiac alterations, the inadequate 

CO reserve together with elevated filling pressures are pointed out as the main reason for exercise 

intolerance [86].  

In addition to the contribution of cardiac alterations to exercise intolerance in HFpEF, it 

has been proposed that, an inadequate oxygen extraction and/or utilization as well as skeletal 

muscle alterations may also play a major role. Thus, non-cardiac factors, such as skeletal muscle 

dysfunction [79, 87] could be involved in reduced aerobic capacity. To support this idea there are 

some studies showing that, the abnormal response to maximal and submaximal exercise in HFpEF 

patients was not due to alterations in hemodynamic and cardiac reserve parameters, but to 

irregularities in extraction and/or utilization of O2 (A-VO2 diff), increased peak CVO2 (oxygen 

content in venous blood) as well as intrinsic abnormalities in skeletal muscle [79, 81]. Moreover, it 

is noteworthy that in HFpEF patients the increase of VO2 at exercise peak was due to an augment 

of A-VO2 diff, despite the absence of correlation between CO and A-VO2 diff [82]. In vastus 

lateralis muscle biopsies from HFpEF patients, the reduction in the capillary/fibre ratio and the 
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decrease of type I oxidative fibres, correlated both positively to peak VO2 and 6-min walk distance 

[87]. Moreover, diaphragm muscle from HFpEF rats show a different pattern of fibre type shift, 

from fast glycolytic fibres (type II) to slow oxidative fibres (type I), and atrophy of both muscle 

fibres types [88]. Together, these alterations may be at the origin of limited oxygen diffusion, 

decreased of mitochondrial density and its reduced oxidative capacity, observed in skeletal muscle 

biopsies from HFpEF patients. Moreover, these biopsies have a 54% reduction of mitofusin 2 

expression, which clearly evidence changes in mitochondrial biogenesis and mitochondria-SR 

coupling. Importantly, both porin and mitofusin 2 expression correlates positively with peak VO2 

and 6-min walk distance [89], which denote the functional implications of these findings. A 

reduction of proteasome activity and mitochondrial alterations at complex I level with decreased 

oxygen consumption and decreased respiratory control ratio (RCR) have been reported in 

mitochondria from skeletal muscle [88]. In addition, changes in muscle redox balance were 

detected, with an increase of antioxidant proteins (catalase) and reduction of pro-oxidant proteins 

(NADPH and xanthine oxidase), indicating an attempt to reduce oxidative stress [88].  

 

 

G. Reverse Remodelling 

 

The heart is an organ with a high capacity to adapt to the deleterious stimuli. When these 

stimuli cease or attenuate, the myocardium undergoes a process called reverse remodelling (RR), 

which usually results in an improvement of its structure and function. RR can be defined by any 

myocardial changes that can be reversed chronically through pharmacological or surgical treatment 

[90]. If the knowledge on myocardial remodelling in HFpEF is scarce, the available information 

regarding RR is even more limited and derives mainly from patients with aortic stenosis (AS) with 

DD that undergo RR after aortic valve replacement (AVR). Despite the lack of literature regarding 

the molecular and cellular mechanisms underlying RR in HFpEF, it has been described some 

functional and structural alterations on LV, such as regression of cardiac hypertrophy, 

normalization of tele-systolic and tele-diastolic volumes, as well as an improvement in the filling 

pattern [68]. Moreover the myocardial response of the patients after valve replacement can diverge, 

ranging from a total improvement to partial recovery of cardiac function, being the latter an 

indicator of poor prognosis [20]. Actually, early after AVR some AS patients showed an augment 

of LV stiffness, which was associated to increase of interstitial fibrosis that occurs independently of 

LV mass reduction. Later after AVR, myocardial stiffness decreases in parallel with the decrease in 

hypertrophy and fibrosis, albeit remaining higher than control subjects [91]. The regression of LV 

hypertrophy is often incomplete and occurs later, matching the improvement of LV performance. 
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Indeed, 6 months after AVR, the mass regression does not exceed 31% [31, 92]. HFpEF hearts are 

often hypertrophic and since LV mass regression results in a reduction of clinical events [71], the 

patients that show higher LV mass after AVR still represent a risk group to cardiovascular events. 

Villari et al., showed that the improvement on myocardial perfusion appears to be an important 

adjuvant in LV RR [76]. In a recently published retrospective study involving severe AS patients 

who underwent AVR, the baseline diastolic dysfunction score remained the most important 

echocardiographic factor associated with adverse 1-year outcomes, despite the improvement on 

diastolic function after surgery [93]. It is important to note that these clinical studies were made in 

patients with HF that underwent AVR and not in pure HFpEF patients. In rats, after ventricular 

unloading, it has recently been described a regression on LV mass, cardiomyocytes hypertrophy 

and fibrosis and an improvement of ventricular-arterial coupling and energy efficiency [94]. 

Recently, in a rat model of hypertension-induced HFpEF treated with cardiosphere-derived cells 

with anti-fibrotic and anti-inflammatory properties, the functional abnormalities of HFpEF were 

suppressed and survival rate was improved, while either blood pressure or cardiac hypertrophy 

remained unchanged [95].  

Concerning the molecular and cellular changes that occur during LV RR, the available 

knowledge derives mainly from HFrEF patients, in whom the eminent cardiac failure is delayed by 

the implantation of a LV assist device (LVAD). These devices support cardiac contractile function, 

representing a bridge for cardiac transplantation. Parameters such as EF, cardiac chambers 

dimensions and LV wall thickness are used as predictors of myocardial recovery after LVAD. In 

fact, the patients whose EF increases above 50% have a better prognosis after removal of the 

device [49]. As reported by Mital et al., the beneficial effect of LVAD occurs early after its 

implantation with a significant increase of endogenous NO, a reversal of mitochondrial uncoupling 

and an improvement of myocardial oxygen consumption (MVO2). Curiously, these beneficial 

effects were attenuated by NOS inhibition [49]. After removal of the LVAD the myocardium 

improves significantly and, apart the reduction of fibrosis and cardiomyocyte hypertrophy [45], a 

clear improvement of Ca2+ kinetics was observed (increased Ca2+ reuptake to RS, faster 

inactivation of type L Ca2+ channels and increased Na+/Ca2+ channels expression) [45]. 

Furthermore, the improvement of myocardial performance was followed by the upregulation of 

enzymes involved on Krebs cycle and on pyruvate metabolism, thus improving glucose and FA 

oxidation [96]. Such is the case of arginine glycine amidinotransferase, an enzyme involved in 

creatinine synthesis, whose levels normalize in patients displaying a good pattern of RR [45]. 

Despite the importance of energetic and mitochondrial metabolism for RR, surprisingly, not many 

studies have focused on this topic. Recently, Lee and others have reported that mitochondrial 

respiration, which is severely compromised in patients with advanced HF, improves significantly 
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after LVAD implementation [97] Moreover, an improvement of coupling between oxidative 

phosphorylation and electron transport, a decrease of ROS (through decrease of premature 

reduction of O2 to O2
- and, a better energy efficiency and myocardial performance was observed in 

these in these patients [49]. The improved mitochondrial performance after LVAD can be caused 

by the increase of cardiolipin content [29, 49, 98]. Conversely, increased oxidative stress and DNA 

damage are also reported after LVAD [99] but these findings are more frequent in patients with 

systemic inflammatory response syndrome [100]. 

In a mouse model of TAC-induced HF, mitochondrial dysfunction and oxidative 

phosphorylation were significantly affected. Most of the mitochondrial and metabolic-related 

proteins were downregulated in parallel with the decline in mitochondrial DNA copy number. After 

SS-31 peptide treatment the improvement of myocardial performance occurs in parallel to 

attenuation of mitochondrial damage suggesting that perturbed mitochondrial function may be an 

upstream signal to many of the pathway alterations in TAC [8]. It is currently recognize that 

myocardial dysfunction in patients with advanced HF could be, at least in part, reversible and 

mitochondria seems to be compromise in RR. However if mitochondria have a similar role in 

HFpEF RR still unknown [49]. 

After LVAD implementation, exercise capacity was improved [101], and the patients 

showed a better aerobic capacity. However, if cardiac muscle, skeletal muscle or both are behind 

this improvement remains unknown. Currently the clinical trial “Skeletal Muscle Perfusion With 

LVAD” is ongoing and aims to evaluate the skeletal muscle perfusion after RR. 
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The aims of this work are to: 

 

1. Implement and characterize an animal model of myocardial remodelling and 

reverse remodelling associated to HFpEF  

2. Evaluate the myocardial alterations associated to: 

a. Cardiomyocyte and extracellular matrix remodelling  

b. Calcium handling 

c. Oxidative stress 

3. Characterize the cardiac metabolism, including mitochondria structure and function 

4. Assess the changes in skeletal muscle, namely in terms of: 

a. Exercise capacity 

b. Skeletal myocyte and matrix remodelling 

c. Skeletal muscle metabolism 
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1. Experimental animal model 

 

I. Ascending Aortic Banding and Debanding 

 

Young male Wistar rats (±50g) were anaesthetized by inhalation of 8% sevoflurane in 

vented containers, orotracheally intubated and mechanically ventilated (TOPO Small Animal 

Ventilator, Kent Scientific Inc). Anaesthesia was maintained with sevoflurane (1-2.5%). Rats were 

placed in right-lateral decubitus on a heating pad, ECG was used to monitor heart rate and 

temperature was kept at 38ºC. The skin was shaved and disinfected with iodopovidone solution. 

Aortic banding was done surgically through a small incision performed between the 2nd and 3rd 

intercostal space to access and dissect the ascending aorta. A suture was placed around the aorta 

and quickly tight against a 22 gauge blunt needle (Banding group, Ba). In the sham group, the 

suture was kept loose (Sh group). After 8-9 weeks, a second surgery was made in half of the 

banding animals to remove the suture. These animals gave rise to an additional group – debanding 

group (Deb) (Figure 2). Experiments were performed according to the Portuguese law for animal 

welfare and to the Guide for the Care and Use of Laboratory Animals published by the National 

Institutes of Health (NIH Publication 85-23, Revised 2011).  

 

 
 

 
Figure 2- Design of experimental groups. 
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2. Echocardiographic evaluation 

 

All the experimental groups of rats (Sh=10, Ba=15, Deb=10) were anaesthetized by inhalation 

of 8% sevoflurane in vented containers, orotracheally intubated and mechanically ventilated 

(TOPO Small Animal Ventilator, Kent Scientific Inc). Anaesthesia was maintained with 

sevoflurane (1-2.5%) and titrated to avoid the toe pinch reflex. Rats were placed in left-lateral 

decubitus on a heating pad, the ECG was monitored and their temperature was kept at 38ºC. The 

skin was shaved and disinfected. After applying prewarmed echocardiography gel a linear 15MHz 

probe (Sequoia 15L8W) was gently positioned on the thorax. Systolic and diastolic wall thickness 

and cavity dimensions were recorded to assess M-mode at the level just above the papillary 

muscles in the parasternal short axis view. To assess EF, fractional shortening (FS), end diastolic 

(EDV) and end systolic volumes (ESV) and to calculate LV. The EF and FS were calculated using 

the formulas LVEDD2-LVESD2)/LVEDD2 and (LVEDD-LVESD)/LVEDDx100, respectively. LV 

mass was estimated using the formula previously validated in small animals and adjusted for body 

weight: [LV-mass= {(SWT+PWT+LVEDD)3-(LVEDD)3}×1.05]. Transverse aortic root diameter 

was recorded by M-mode echocardiography, in the parasternal long axis view. Aortic flow velocity 

was assessed by pulsed-wave Doppler just above the aortic valve. stroke volume (SV) was 

calculated by aortic flow as the product of the aortic area and the velocity time integral (VTI) of the 

pulsed wave Doppler (VTI). Cardiac output was calculated as the product of SV and heart rate 

(HR). Mitral flow velocity tracings were obtained with pulsed-wave Doppler just above the mitral 

leaflets, peak systolic tissue velocity and E’ were measured with tissue Doppler at the medial and 

lateral mitral annulus and lateral mitral annulus, respectively, and left atrial dimensions were 

measured, at their maximum, by 2D echocardiography in the four chamber view. Acquisitions were 

done using an echocardiograph (Siemens Acuson Sequoia C512) while transiently suspending 

mechanical ventilation. Recordings were averaged from three consecutive heartbeats  

 

 

3. Aerobic capacity and effort testing 

 

To determine the maximum oxygen consumption (VO2max), by maximum effort test, all 

experimental groups of rats were placed on a treadmill camera coupled to a gas analyzer (LE8700C 

and LE405, Panlab Harvard Apparatus ®). The gas flow was set at 700 mL/min and the treadmill 

inclined at 10°. The adaptation period were carried out at a speed of 15 cm.s-1 for 3 minutes. The 

protocol was performed at a speed of 30 cm.s-1, with increments of 5 cm.s-1 every minute until the 

animals reached its maximal aerobic capacity.  
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4. Animal sacrifice and sample collection 

 

All the experimental groups of rats (Sh=10, Ba=15, Deb=10) were anaesthetized by inhalation 

of 8% sevoflurane in vented containers, orotracheally intubated and mechanically ventilated 

(TOPO Small Animal Ventilator, Kent Scientific Inc). Anaesthesia was maintained with 

sevoflurane (1- 2.5%) and titrated to avoid the toe pinch reflex. Subsequently the animals were 

sacrificed and the tissues collected for molecular and functional studies.  

 

 

5. Mitochondrial studies 

 

I. Isolation of heart mitochondria 

 

 Cardiac mitochondria were freshly isolated using differential centrifugation methods. The 

heart was harvested and minced in an ice-cold isolation buffer containing 250 mM sucrose, 10 mM 

Hepes, 1 mM EGTA, pH 7.4 and 0.1% defatted BSA. Minced blood-free tissue was then 

mechanically homogenized with a glass Potter-Elvejhem in the presence of isolation medium (7 

g/50 mL). The homogenate was centrifuged at 800×g for 10 min at 4°C and the resulting 

supernatant was centrifuged at 10,000×g for 10 min at 4°C. Mitochondrial pellet was resuspended 

and centrifuged twice at 10,000×g for 10 min to obtain a final mitochondrial suspension. Both 

EGTA and BSA were omitted from the medium (250 mM sucrose, 10 mM Hepes pH 7.4) in the 

two last centrifugations. After isolation, mitochondrial protein was determined by the Biuret 

method [102] using BSA as standard. Aliquots of heart mitochondrial suspension were separated 

and frozen at −80°C for later analysis. The remaining fresh isolated mitochondria fraction was used 

within 3–4 h after the excision of the heart and were kept on ice (0–4°C) throughout this period. 

 

II. Mitochondrial oxygen consumption assays  

 

Oxygen consumption of isolated mitochondria was determined polarographically at 25°C 

with a Biological Oxygen Monitor System (Hansatech Instruments) and a Clark-Type oxygen 

electrode (Model DW1, Hansatech). Heart mitochondria (0.8 mg) and substrates for the different 

assays, namely glutamate-malate (5 mM and 2.5 M) and succinate (5 mM) were added into a 

reaction medium containing 130 mM sucrose, 50 mM KCl, 2.5 mM KH2PO4, 5mM HEPES, 2 mM 

MgCl2 (pH 7.4) under constant stirring. For complex II-assays, succinate was added with rotenone 

(3 M) to inhibit complex I. The respiratory parameters included: state 2 and state 3 determined 

before and after adding ADP (156 nmol/mg), respectively, and state 4 measured as the rate of 

oxygen consumption after ADP phosphorylation. The respiratory control ratio (RCR) was 
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calculated as the ratio between state 3 and state 4, while the ADP/O was calculated as the number 

of nmol ADP phosphorylated by natom O2 consumed [103]. 

 

III. Mitochondrial transmembrane electrical potential assays  

 

 Mitochondrial transmembrane electric potential (Δψ) was indirectly monitored based on 

the activity of the lipophilic cation tetraphenylphosphonium (TPP+), using a TPP+-selective 

electrode as previously described [104, 105] in combination with a silver chloride reference 

electrode (Tacussel, Model MI 402, France). The TPP+ and the reference electrode were inserted in 

an open chamber, connected to a pH meter (Jenway, Model 30505, UK). The obtained signals were 

transferred to a potentiometric recorder (Kipp & Zonen, Model BD 112, Holland). Δψ was 

estimated as indicated by Kamo et al. (1979) through the equation: Δψ= 59 log(ν/V) − 59 

log(10ΔE/59 − 1), where ν, V, and ΔE stand for mitochondrial volume, volume of the incubation 

medium, and deflection of the electrode potential from the baseline, respectively. A matrix volume 

of 1.1 µL/mg of protein was assumed and no correction was made for the “passive” binding to the 

mitochondrial membranes, since the purpose of the experiments was to show relative changes 

rather than absolute values. Heart mitochondria (0.8 mg) were incubated in a reaction medium 

containing 100 mM KCl, 100 mM sucrose, 10 μM EGTA, 2 mM KH2PO4, and 5 mM Hepes (pH 

7.4), supplemented with 3 μM TPP+.  The measurement of complex-I and complex II-linked with 

substrates energization was performed with glutamate-malate (5 mM and 2.5 mM, respectively) or 

succinate (5 mM) plus rotenone (3 M) and depolarization was achieved by adding ADP (156 

nmol/mg).  

 

 

6. Histology  

 

The LV and gastrocnemius muscle were manually processed, fixed for 24 hours in formol, 

dehydrated in solutions with increasing concentrations of ethanol, diafined for 2 hours in xylol and 

impregnated in paraffin (2 hours). After paraffin embedding, 3 μm muscle sections were sliced in a 

rotative microtome (model RM2125 RTS, Leica, Germany). Muscle sections were dewaxed, 

rehydrated and subsequently stained with HE solution to assess cardiomyocyte area. Briefly, 

sections were dewaxed in xylol, hydrated in ethanol and stained by Harris haematoxylin during 5 

minutes, placed in tap water, stained in alcoholic eosin for 5 minutes, dehydrated in ethanol, 

dewaxed in xylol and mounted with Entellan®. An optic microscope (Leitz Wetzlar – Dialux 20, 

Wetzlar, Germany), equipped with a photographic camera (Olympus XC30, Tokyo, Japan) and 
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with a 25x objective was used to visualize and photograph the histological preparations. The area 

of 60 cardiomyocytes per animal was calculated through Cell^B software (Olympus).  

Picrosirius Red staining was used to quantify myocardial fibrosis. Briefly, sections were dewaxed 

in xylol, hydrated in ethanol until running water, stained with Picrosirius Red 0.1% solution for 1.5 

hours immersed for 2 seconds in acidified water at 0.5%, dehydrated in ethanol at 100% during 5 

minutes (3 times), dewaxed in xylol and mounted with Entellan®. Eight fields per animal were 

photographed with a digital camera (Olympus XC30) coupled to an optic microscope (Leitz 

Wetzlar – Dialux 20) with a 10x objective. Latter, images were analysed with Image Pro Pus 6 

software (Media Cybernetics, Rockville, USA) to calculate the area of fibrosis. 

 

 

7. Electron Microscopy 

 

 After tissues harvest, the samples were immediately fixed in 2.5% gluteraldehyde in 

cacodylate buffer and the subsequently post-fixated was done in osmium tetroxide. The samples 

were then dehydrated in increasing ethanol solutions (95–100%) and subsequently embedded in a 

mixture of polypropylene oxide with Epon resin at room temperature. Subsequently samples were 

placed in Epon resin blocks at 60°C for 2 to 3 days. Ultrathin sections (50–60 nm) were obtained 

and collected on copper grids, stained with uranyl acetate, citrate and finally examined under a 

transmission electron microscope (JEM1400, USA) with a 10000, 20000 and 30000x 

magnification. To assess mitochondrial morphological parameters, such as number of 

mitochondria, area of mitochondria and its circularity. Images were analysed with ImageJ (Version 

1.49b).  

 

 

8.  Force measurements in isolated cardiomyocytes 

 

 Force measurements were performed in single, mechanically isolated cardiomyocytes as 

described previously [106] using a force transducer from Aurora Scientific Inc. (Model 403A) and 

a length controller (Model 315C-I). The software used for data and real time image acquisition was 

ASI 600A and VSL 900B, respectively.  

 

I. Sample preparation  

 

 Samples from the heart apex (1.5 mg wet weight) (Sh=10, Ba=15, Deb=10) were defrosted 

in 2.5 mL of Ca2+-free relaxing solution (Appendix B) at 4°C degrees and cut in small pieces. After 
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a potter-based mechanical disruption with pestle and a rotor, (3-5 seconds at 1200 rpm for 3 times, 

Plastilab Kastell 6105, Terre Haute Glas-col, GKH GT Motor Control), the resulting 

cardiomyocytes suspension was incubated with 0.5% Triton X-100 for 5 minutes at room 

temperature to permeabilize the membranes. Later, cells were washed with relax solution and 

centrifuged (1500 rpm, 1 min, 4°C). This procedure was repeated 4 to 5 times until total removal of 

the detergent.  

 

II. Force measurements  

 

Cardiomyocytes suspension was visualized under a microscopic (Olympus IX51) to choose 

the elongated cells with a uniform pattern of striation. The selected cardiomyocyte was attached 

between a force transducer and a length motor with aquarium silicone adhesive for approximately 

of 50 minutes. Cardiomyocytes were visualized with a magnification of 10-20x with a video-

camera CCD (UEye) and with VSL software (ASI, aurora Scientific Inc., Model 900B). The 

cardiomyocyte was transferred to a 60µL well filled with relaxing solution (Appendix B). The cell 

was stretched until a sarcomere length of 2.2 µm and passive tension measured during this process 

in order to construct a passive tension-length relation. With a sarcomere length (SL) at 2.2 µm, the 

cardiomyocytes were subjected to both relaxing and Ca2+ activating solutions with a pCa (-

log10[Ca2+]) ranging from 9.0 (relaxing) to 4.5 (maximal activation) to produce a force-pCa 

relation. Maximal activation at pCa 4.5 was used to calculate maximal calcium-activated isometric 

force. After transferring the cardiomyocyte from relaxing to activating solution, isometric force 

started to develop (Total tension, Tt). Once a steady-state force level was reached, the cell was 

shortened for 1 ms to 80% of its original length (slack test) to determine the baseline of the force 

transducer. The distance between the baseline and the steady force level is Tt. After 20 ms, the cell 

was re-stretched and returned to the relaxing solution, in which a second slack test of 10-second 

duration was performed to determine passive tension (Tp). The slack test at pCa=4.5 allowed to 

measure the rate of force-redevelopment (Ktr), since this manoeuvre resulted in the complete 

dissociation of cross-bridges from actin, so that the subsequent redevelopment of tension was 

related to the rate of cross-bridge reattachment. Finally the cell was activated again with the 

saturating calcium solution (pCa=4.5) to check for the cardiomyocyte functional stability at the 

integrity of the protocol. Finally the dimensions of the cell were measured and the force values 

were normalized to the cardiomyocyte cross-sectional area. Data acquisition was done by ASI 

600A program with a sampling frequency of 2 KHz. 
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9. Protein analysis by Western Blot 

 

Left ventricular tissue was homogenized in RIPA buffer and protein concentrations were 

determined according to Bradford’s method. After the addition of Laemmli buffer (1 M Tris-HCl 

pH 6.8, 10% SDS, 20% glycerol, 0.004% bromophenol blue, 20% 2-mercaptoetanol) 20 μg of 

protein were separated by SDS-PAGE (Mini-PROTEAN Tetra Cell, Bio-Rad) at 150V for an hour. 

After transferring to a nitrocellulose membrane (Bio-Rad 1620115 and 1620112) and blocking with 

5% BSA (w/v) in TBS-Tween 20 (Tris-buffered saline-Tween 20) the membranes were incubated 

with primary antibodies overnight at 4°C (eNOS (Santa Cruz, sc-376751) p-eNOS (Santa Cruz, sc-

12972), iNOS (Abcam, ab323), p-iNOS (Abcam, ab204017) MFN1 (Cell Signalling, 14739), 

MFN2 (Cell Signalling, 9482), PGC1-α (Cell Signalling, 2178), Bax (Cell Signalling, 2772), BCL-

2 (Cell Signalling, 2876) NCX (Santa Cruz ,sc-32881), p38 (Cell Signalling, 9212), p-p38 (Cell 

Signalling, 9211), AKT (Cell Signalling, 9272), p-AKT (Cell Signalling, 9271), mTOR (Cell 

Signalling, 2972), p-mTOR (Cell Signalling, 2971), GKK3β (Cell Signalling, 9315), p-GSK3β 

(Cell Signalling, 9331), SERCA-2A (Cell Signalling, 4388); PLB (Thermo-Fisher, MA3-922), p-

PLB (cell signalling, 8496). Finally, membranes were incubated for an hour at room temperature 

with secondary antibodies conjugated with a fluorescent molecule (IRDye 800CW and IRDye 

680LT) against rabbit, mouse or goat. The signal was detected by an image acquisition system 

(Odyssey Infrared Imaging System LI-COR Biosciences at 700 or 800 nm). The values were 

normalized to Ponceau-S and to the average values of sham group. 

 

 

10. Glutathione measurements/quantification 

 

Glutathione (GSSG/GSH) (ADI-900-160, ENZO) were measured in cardiac tissue according to 

manufacture instructions.  

 

 

11. Gene expression quantification – Real time quantitative Polymerase Chain 

Reaction (RT-qPCR) 

 

I. RNA extraction 

 

RNA was extracted as described with minor modifications. Briefly, 500 µL of Tripure 

(Roche) and 300 mg of Bulk Beads (Ø 1.4 mm zirconium oxide beads, Precellys) were added to 

each tissue sample. Cell disruption was achieved by performing three cycles of 6500 rpm, for 30 
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seconds, in MagNALyser (Roche). Then, 100 µL of chloroform was added and the mixture was 

centrifuged for 15 minutes at 4°C at 15000 rpm. Aqueous phase was removed to a new tube and 

RNA was precipitated with 500 μL of isopropanol, incubated at room temperature for 10 minutes. 

Following a 10 minutes centrifugation at 15000 rpm at 4°C, supernatant was discarted and RNA 

pellet was washed with 70% ethanol. RNA was ressuspended in 50 µL of milliQ water. 

Concentration and quality of extracted RNA was assessed by measuring the absorvance at 260 nm 

(A260) and 280 nm (A280) in a Nanodrop 2000c (Thermo Scientific). 

 

II. Transcriptase reverse reaction 

 

 A mixture of 500 ng Oligo (dT)12-18, 1000 ng RNA, 500 uM dNTP Mix and milli-Q water 

was heated at 65°C for 5 minutes and quickly chill on ice. After additing 4 μL of 5X First-Strand 

Buffer, 2 μL of 0.1 M DTT and 1 μL of rRNAsin (40 units/μL) the mixture was incubated at 42°C 

for 2 minutes. Transcriptase reverse reaction was carried out by adding 1μL of SuperScript™ II RT 

(200 units, Invitrogen) at 42°C for 50 minutes. Reaction was inactivated by heating at 70°C for 15 

minutes. 

 

III. Gene expression analysis 

 

Expression for the genes listed below was quantified comparatively for the three animal 

groups: Sham, banding and debanding. GAPDH was used as the house-keeping gene since its 

complementary DNA (cDNA) levels were similar in all the studied groups. Results of gene 

expression for each animal were normalized for the average of the sham group. Equal amounts of 

(cDNA (100 ng/µL)) from every sample underwent real-time qPCR (StepOne Plus, Applied 

Biosystems) experiments for each gene and reactions were prepared as described in SensiFASTTM 

SYBR Hi-ROX kit (Bioline). Briefly, reaction contains 1x SensiFAST SYBR Hi-ROX Mix, 400 

nM forward primer, 400 nM reverse primer, 5 ng template for a final volume of 20 µl. Two step 

PCR program was carried out, a first cycle of 95°C for 2 minutes, followed by 40 cycles, 

comprising a first step at 95°C for 5 seconds and a second step at 60°C for 30 seconds. Nucleotide 

sequence of the primers used are described in Table 1. 

Real-time PCR data were analyzed using the comparative CT method: 

2- ΔCt Disease / 2- ΔCt Control = 2 –(Ct gene of interest - Ct GAPDH)/ 2 –(Ct gene of interest - Ct GAPDH)
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Table 1: PCR primer pairs used for gene expression quantification.  

 

Gene Sequence 5´⤍ 3´ Tissue 

GAPDH 
Forward 

Reverse 

 

TGGCCTTCCGTGTTCCTACCC 

CCGCCTGCTTCACCACCTTCT 

CM, SM 

PDK4 
Forward 

Reverse 

 
CGAGCATCAAGAAAACCGCC 

AGCAGTGGAGTATGTGTAAC 

CM, SM 

CPT1 

Forward 

Reverse 

 

TGGGCGACAGGCATTTTTTT 

CTGGACAGGAGACGAACA 

CM, SM 

GLUT4 

Forward 

Reverse 

 

AGGCCGGGACACTATACCC 

TCCCCATCTTCAGAGCCGAT 

CM, SM 

GLUT1 

Forward 

Reverse 

 

 
GCTGGCTTCTCTAACTGGACC 

GTGATGGAGGACAGTGGTGAT 

 

CM, SM 

COL1A1 

Forward 

Reverse 

 

GCTTTAGCCTCCTGGCAGAT 

GAGATGGTGGGAGAGGGTCA 

CM 

COL3A1 
Forward 

Reverse 

 

AGGGAGAATTCAAGGCTGAAGG 

TGCCACCCTATGTGAAAAGACA 

CM 

CM, Cardiac muscle; SM, Skeletal muscle. 

 

 

12. Statistical analysis  

 

Results are expressed as mean ± SEM. Statistical analysis was performed using GraphPad 

Prism software. Comparisons were performed by One- or Two-Way ANOVA and appropriate post-

hoc test were used. The probability values <0.05 were taken as significant. 
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RESULTS 



34 

 

a) Morphometric characterization 

 

As depicted in Table 2, the morphometric data revealed a significant increase in heart 

weight and LV plus septum in banding relative to sham animals. The same variation is observed in 

right ventricle, showing that lung congestion, observed in Ba group, is already imposing a certain 

degree of RV overload. After removing the constriction, we observed a normalization of all these 

parameters in the Deb group. 

The gastrocnemius muscle weight decreased significantly in banding relative to sham 

group, revealing muscle atrophy, which partly recovered after debanding.  

The mortality rate associated to the surgical procedure of debanding was of 33%. 

 

Table 2: Morphometric data. 

 Sh (n=10) Ba (n=15) Deb (n=10) 

HW/BW (g/g) 2.937 ± 0.246 3.618 ± 0.193α 2.948 ± 0.120χ 

LV+S/BW (mg/g) 1.386 ± 0.144 2.250 ± 0.119ααα 1.464 ± 0.144χχχ 

Lungs/BW (g/g) 4.300 ± 0.117 4.821 ± 0.168α 4.316 ± 0.101χ 

RV/BW (g/g) 0.450 ± 0.012 0.541 ± 0.030αα 0.454 ± 0.013χχ 

Gastrocnemius (g) 2.302±0.193 1.765±0.066α 2.073±0.109 

HW, heart weight; BW, body weight; LV+S, left ventricle plus sept; RV, right ventricle. Values are mean ± SE, One-way 

anova; Ba/Deb vs Sh: α, p<0.05; αα, p< 0.01; ααα, p<0.001; Deb vs Ba: χ, p<0.05; χχ, p<0.01, χχχ, p< 0.001. 

 

 

b) Echocardiographic characterization 

 

In order to characterize the heart function of these animals, an echocardiography evaluation 

was performed (Table 3). This evaluation revealed that, despite the absence of differences of body 

surface area and weight among all the experimental groups (sham, banding and debanding), LV 

wall thickness increased and cavity dimensions decreased in banding compared to sham animals, 

denoting concentric hypertrophy, typical of HFpEF. As expected, after overload relief, this 

phenotype reversed partially. Indeed, the normalization of LV cavities in systole and diastole 

allowed to increase end diastolic volumes in debanded rats. In addition to concentric LV 

remodelling, diastolic dysfunction was observed in banding rats, as evidenced by the significant 

decrease of the E/A and the increased E/E´ ratios. Moreover, as a consequence of the increased 

filling pressures observed in banding rats, the velocities of A wave increased and left and right atria 

dilated. Curiously, after aortic-constriction removal, the atria area did not return to sham values. In 

RV we did not observe any increase in TAPSE in debanding despite its reduction in banding group.  

The reduction in TEI index in banding animals, denotes a worse cardiac performance in this group. 

However, this parameter normalized in the debanded rats. In addition to diastolic dysfunction, 

typical of HFpEF, the banding animals also presented systolic abnormalities, as observed by 
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decreased S’ and FS. While the former normalized after debanding the latter did not. All the 

changes observed in banding rats together with the preservation of EF, confirmed the usefulness of 

aortic banding as an animal model to study HFpEF. 

 

Table 3: Echocardiography evaluation. 

 

Sh (n=10) Ba (n=15) Deb (n=10) 

Weight (kg) 0.388±0.006 0.401±0.100 0.397±0.010 

BSA (cm2) 4.873±0.035 4.947±0.080 4.916±0.080 

AWd (cm) 0.143±0.006 0.202±0.005αααα 0.168±0.010χχ 

LVd (cm) 0.743±0.013 0.696±0.014α 0.769±0.016χχ 

PWd (cm) 0.138±0.007 0.206±0.008αααα 0.166±0.008 αχχ 

AWs (cm) 0.220±0.005 0.306±0.008αααα 0.252±0.012 αχχ 

LVs (cm) 0.448±0.025 0.383±0.013α 0.467±0.029χχ 

PWs (cm) 0.216±0.005 0.307±0.011αααα 0.263±0.010 ααχ 

LVMass (g) 0.688±0.035 1.070±0.032αααα 0.908±0.037 ααχχ 

EDVI (µL/cm2) 187.119±8.217 165.833±8.434α 205.797±13.445χχ 

ESVI (µL/cm2) 42.437±4.727 29.874±2.797α 50.469±8.388χχ 

HR (bpm) 376±13 349±9 340±12α 

E' (m/s) 0.075±0.004 0.061±0.002αα 0.074±0.004χχ 

E (m/s) 0.985±0.040 1.108±0.040 1.074±0.048 

A (m/s) 0.646±0.044 0.812±0.039α 0.691±0.086 

E/A  1.547±0.074 1.354±0.041α 1.571±0.107χ 

E/E' 13.456±0.694 18.635±0.995αα 14.667±0.702χ 

S' (m/s) 0.060±0.003 0.043±0.002αααα 0.054±0.002χχ 

TEI Index (ms) 0.518±0.017 0.396±0.016 αααα 0.509±0.026χχ 

EF (%) 78.288±2.906 73.849±4.228 74.541±3.162 

FS (%) 46.879±1.146 40.943±1.130αα 41.147±2.702χ 

LAA (cm2) 0.314±0.015 0.421±0.021ααα 0.370±0.011α 

RAA (cm2) 0.207±0.006 0.246±0.009αα 0.254±0.009αα 

TAPSE (cm) 0.306±0.009 0.230±0.013ααα 0.257±0.008α 
BSA, body surface area; AWd, anterior wall in diastole; LVd, left ventricle cavity in diastole; PWd, posterior wall in 

diastole; AWs, anterior wall in systole; LVs, left ventricle cavity in systole; PWs, posterior wall in systole; LVMass, left 

ventricle mass; EDVI, end-diastolic volume index; ESVI, end- systolic volume index; HR, heart rate; E´, wave velocity 

of tissue Doppler at the lateral mitral annulus; E, peak of pulse Doppler wave of early mitral flow velocity; A, peak of 

pulse Doppler wave of late mitral flow velocity; E/A, ratio between peak E and A waves; E/E’ ratio between E and E’ 

waves; S´, peak systolic velocity; TEI index, myocardial performance index; EF, ejection fraction; FS, fractional 

shortening; LAA, left atrium area; RAA, right atrium area; TAPSE, tricuspid annular plane systolic excursion. Values are 

mean ± SEM. One Way-Anova, Ba/Deb vs Sh: α, p<0.05; αα, p< 0.01; ααα, p<0.001; Deb vs Ba: χ, p<0.05; χχ, p<0.01, 

χχχ, p< 0.001.  
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c) Cardiomyocyte hypertrophy 

 

In cardiac muscle, aortic constriction induced as expected an increase of cardiomyocyte 

area relative to sham animals (Figures 3A and 3E) (Sh=255.1±14.1, Ba=468.3±17.7, p<0.0001), 

highlighting hypertrophy at the cardiomyocytes level in banding rats. After removal of the aortic 

constriction we observed a partial reduction of the cardiomyocyte area (Sh=255.1±14.1, 

Ba=468.3±17.7, Deb=375.8±12.7, Sh vs Ba, p=0.0012; Ba vs Deb, p<0.001). Since AKT activation 

induces cardiac hypertrophy, partly mediated by the reduction of the anti-hypertrophic action of 

GSK3-β and by increased activation of mTOR, we decided to explore this pathway in the context 

of the present work. We observed augmented AKT activation (Sh=100±4, Ba=148±11, p=0.03) 

and a tendency to increase both GSK3-β and mTOR phosphorylation in banding rats when 

compared to sham animals (Figures 3B, C and D) (GSK3-β: Sh=100±5, Ba=159±18, p=0.08; 

mTOR: Sh=100±4, Ba=125±6, p=0.07). When the constriction was relieved, we observed a 

concomitant reduction of AKT and (a tendency) of mTOR phosphorylation but not in GSK3-β. 

(AKT: sh=100±4; Ba=148±11; Deb=91±14, Sh vs Ba p=0.03; Ba vs Deb, p=0.01. mTOR: 

Sh=100±4, Ba=125±6, Deb=102±8, Sh vs Ba p=0.07; Ba vs Deb p=0.06; GSK3-β: Sh=100±5, 

Ba=159±18, Deb=157±34, Sh vs Ba p=0.08), indicating that debanding procedure did not 

significantly impact the GSK3-β anti-hypertrophic activity.  
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Figure 3- Effect of pressure overload on left ventricular hypertrophy. A) Cardiomyocytes area evaluated by 

histology; Western blot relative quantification of: B) ratio of phosphorylated to total AKT; C) ratio of phosphorylated to 

total mTOR; D) ratio of phosphorylated to total glycogen synthase kinase 3 beta; E) representative images of histological 

samples. n=5 for each group. Representative western blot lanes, phospho antibodies are in green, total antibodies are in 

red. Values are mean ± SEM, One-way anova. Ba/Deb vs Sh: α, p<0.05; αα, p< 0.01; ααα, p<0.001; Deb vs Ba: χ, 

p<0.05; χχχ, p< 0.001. 

 

 

d) Myocardial stiffness  

 

It is well accepted, and observed in our banding rats that myocardial stiffness increases in 

concentric hypertrophy and HFpEF, so we decided to evaluate the cardiomyocyte and extracellular 

matrix contribution. Our data revealed an increase of myocardial fibrosis in banding relative to 

sham group (Sh=8.79±0.66; Ba=14.6±1.0, p<0.001). Moreover, the debanding procedure did not 

reduced fibrosis (Sh=8.79±0.66; Deb=13.92±0.56, p=0.003) (Figures 4A and B). Regarding TGF-

β, this cytokine was significantly increased in banding relative to sham animals (Sh=1.0±0.3; 

Ba=2.0±0.2, p=0.04), however, after constriction relief, TGF-β expression decreased 

(Ba=02.0±0.2; Deb=1.3±0.3, p=0.13) (Figure 4C). The expression levels of procollagen type I and 

type III increased in banding relatively to the sham group (Sh=1.0±0.1; Ba=1.6±0.2, p=0.04; 

Sh=1.0±0.2; Ba=1.6±0.2, p=0.04, respectively) and normalized after constriction removal 

(Sh=1.0±0.1; Deb=0.9±0.1, p=0.90; Sh=1.0±0.2; Deb=0.7±0.1, p=0.67, respectively) (Figures 4D 

and E).  

It is well recognized that titin isoforms and its phosphorylation status contributes greatly to 

myocardial changes in passive tension. Not surprisingly, we observed an increase in titin 
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phosphorylation in banding rats compared to sham (Sh=100±14; Ba=153±10, p=0.04), particularly 

in titin’s PEVK segments (Sh=100±18; Ba=198±21, p=0.03) (Figures 4F, G and H). In the 

debanding group we observed a reduction of titin and its PEVK segment phosphorylation, but not 

to the same extent as the sham group (Ba=152.9±9.8; Deb=127.3±12.86, p=0.317; Ba=152.9±9.8; 

Deb=127.3±12.86; p=0.317, respectively) (Figures 4F, G and H). Since titin is a major 

determinant of cardiomyocyte passive tension, we compared the passive force in isolated 

cardiomyocytes in our rats at different sarcomere lengths (Figure 4I). When compared to sham, 

banding rats displayed an increased stiffness, as observed by a steeper passive tension versus SL 

relation, that partially reversed in the debanding group, only significant for higher SL 

(Ba=7.12±0.37; Deb=6.25±0.47, p=0.05) (Figure 4I).  
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Figure 4- Effect of pressure overload on ventricular stiffness. A) Cardiomyocytes passive tension; B) myocardial 

fibrosis assessed in Red-Sirius-stained sections; C) representative images of histological samples; D) ratio of 

phosphorylated to total Titin; E) ratio of S26 phosphorylation to total Titin PEVK segment; F) representative images; G) 

expression of procollagen type I; H) expression of procollagen type III. n=7 for each group. Values are mean ± SEM, Two-

way Anova for passive tension: Ba/Deb vs Sh: α, p<0.05; αα, p< 0.01; ααα, p<0.001; Deb vs Ba: χχ, p<0.01. 
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e) Cardiomyocyte force, calcium sensitivity and homeostasis  

 

Considering the role of calcium in contractility, we evaluated cardiomyocytes’ active 

tension and calcium sensitivity. Both parameters were altered in banding animals when compared 

to sham (Figures 5A and B), since active tension (Sh=15.78±1.48; Ba=24.73±2.56, p=0.04), and 

calcium sensitivity increased (Sh=5.678±0.021; Ba=5.374±0.093, p=0.0062). In debanding animals 

a partial improvement of these parameters was observed, since debanding was not significantly 

different from banding (Ba=24.73±2.56; Deb=20.52±1.91, p=0.3282) (Ba=5.374±0.093; 

Deb=5.535±0.037, p=0.3616). The cooperativity of the myofilaments (nHill) increased 

(Sh=1.528±0.201; Ba=3.378±0.273, p<0.001, Figure 5C) and the rate constant for force 

redevelopment (ktr), measuring the rate of cross-bridge entry into the force generating state, 

decreased (Sh=4.751±0.403; Ba=3.629±0.264, p=0.031) in banding rats (Figures 5D). After 

debanding, while the cooperativity of the myofilaments recovered completely (Sh=1.528±0.201; 

Ba=3.378±0.273; Deb=2.058±0.146, Sh vs Ba p=0.4307; Ba vs Deb p=0.0013, Figure 5C), Ktr 

remained lower (Sh=4.751±0.403; Deb=3.379±0.163; p=0.01, Figure 5D). To evaluate myocardial 

calcium homeostasis, we evaluated some proteins such as SERCA-2a, PLB and NCX by Western 

Blot. Regarding SERCA-2a expression, we observed its significant reduction in banding relative to 

sham animals (Sh=100±24; Ba=29±6, p=0.005, Figure 5E). The ratio of p-PLB/PLB only showed 

a trend to decrease in the banding group when compared to sham (Sh=100±12; Ba=33±56; p=0.10, 

Figure 5F). Altogether, these abnormalities denote an impaired calcium reuptake to sarcoplasmic 

reticulum. Removal of aortic constriction improved SERCA-2a content up to the level of the Sh 

group (Sh=100±15; Ba=42±10; Deb=73±22, Sh vs Deb p=0.41; Ba vs Deb p=0.37). Moreover, the 

ratio p-PLB/PLB values increased significantly in debanding animals when compared to banding 

and sham, denoting an increase of phospholamban phosphorylation and subsequently a decrease of 

SERCA inhibition. (Sh=100±12; Ba=33±6; Deb=220±61; Sh vs Deb p=0.014; Ba vs Deb 

p<0.001). NCX was significantly reduced in banding animals when compared to sham animals 

(Sh=100±4; Ba=37±9, p=0.01, Figure 5G), denoting an impaired calcium transport out of the 

cardiomyocyte. This reduction was attenuated after overload relief (Ba=37±9; Deb=72±17, 

p=0.322).  
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Figure 5- Effect of pressure overload on calcium. A) Cardiomyocytes active tension; B) myofilaments calcium 

sensitivity; C) Hill-coefficient; D) the rate of tension redevelopment; Western blot relative quantification: E) 

sarcoplasmic/endoplasmic reticulum Ca2+ATPase 2a (SERCA-2a); F) ratio of phosphorylated to total phospholamban; G) 

sodium-calcium exchanger. Representative western blot lanes, phospho antibodies are in green, total antibodies are in red. 

Values are mean ± SEM. One Way-Anova: Ba/Deb vs Sh: α, p<0.05; ααα, p<0.001; Deb vs Ba: χχ, p<0.01, χχχ, p< 

0.001. 
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f) Nitric oxide, oxidative damage and antioxidant enzymes 

 

In order to assess the status of myocardial NOS, we evaluated the phosphorylation of 

eNOS and total iNOS by Western Blot (Figures 6A and B). The ratio of phosphorylated to total 

eNOS and iNOS were changed in banding animals compared to sham, however while the former 

decreased, the latter increased (eNOS, Sh=100±3; Ba=62±10; p=0.01; iNOS, Sh=100±18; 

Ba=202±13; p=0.009). These changes normalized after the debanding procedure (eNOS, 

Ba=62±10; Deb=87±6, p=0.011; iNOS, Ba=202±13; Deb=121±15, p=0.008). Additionally, anti-

oxidant enzymes, such as catalase and glutathione were quantified to assess myocardial redox 

status. Regarding catalase we denoted a significant raise in banding relative to sham group 

(Sh=100±12; Ba=135±9, p=0.05, Figure 6C). When the aortic constriction was removed, catalase 

values partially recovered (Ba=135±9; Deb=105±1, p=0.11). The levels of glutathione showed a 

trend to be reduced in banding rats when compared to sham (Sh=131±12; Ba=103±6; p=0.07, 

Figure 6D). Moreover, the levels of reduced glutathione and the ratio of reduced to oxidize was 

significantly reduced in banding rats (GSH, Sh=121±1; Ba=93±1, p<0.0001; GSH/GSSG, 

Sh=11.6±0.3; Ba=9.5±0.3; p<0.001, Figures 6E and F). In debanding, we denoted an 

improvement of anti-oxidant enzymes as assessed by the increase of reduced glutathione 

(Sh=121±1, Deb=108±8, p<0.001) but not enough to be equal to sham animals (Ba=93±1, 

Deb=108±8, p<0.001, Figure 6E). Moreover, the ratio of reduced to oxidize glutathione increased 

(Ba=9.5±0.3, Deb=12.6±0.1, p<0.001, Figure 6F)  

In adult myocytes p38 activity can contribute to pathological hypertrophy and remodeling 

and can also phosphorylate Bax and trigger apoptosis. In banded animals we observed an increase 

of the ratio of both p-p38/p38 as well as Bax/Bcl-2 (p-p38/p38, Sh=100±10; Ba=3920±1428, 

p<0.001; Bax/Bcl-2, Sh=100±4; Ba=350±69; p=0.004). When the aortic constriction was removed 

despite the reduction of p-p38/p38 (Ba=3920±1428; Deb=131±36, p<0.001, Figure 6G) the ratio 

of Bax/Bcl-2 remained higher when compared to sham (Sh=100±4; Deb=282.3±13.1, p=0.04, 

Figure 6H).  
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Figure 6- Effect of pressure overload on nitric oxide, antioxidant enzymes, oxidative stress and apoptosis. Western 

blot relative quantification of: A) ratio of phosphorylated to total endothelial nitric oxide synthase; B) ratio of 

phosphorylated to total inducible nitric oxide synthase; C) catalase. Enzymatic determination of: D) Total glutathione; 

E) reduced glutathione (GSH); F) ratio of reduced to oxidized glutathione; G) ratio of phosphorylated to total p38; H) 

ratio of apoptotic Bax to antiapoptotic Bcl-2.  Representative western blot lanes, phospho antibodies are in green, total 

antibodies are in red. Values are mean ± SEM. One Way-Anova.  Ba/Deb vs Sh: α, p<0.05; αα, p< 0.01; ααα, p<0.001; 
αααα, p<0.0001; Deb vs Ba: χχ, p<0.01, χχχ, p< 0.001. 
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g) Metabolic enzymes 

 

In order to evaluate the myocardial energetic metabolic profile, gene expression of some 

transporters involved in FA and glucose metabolism were analysed by PCR. The improvement of 

glucose transport in banding animals was proved once PDK4 remains normal (Sh=1.00±0.08; 

Ba=1.03±0.12; p=0.99, Figure 7A) and both GLUT1 and GLUT4 increased significantly (GLUT1: 

Sh=1.00±0.01; Ba=1.73±0.18; p=0.018 and GLUT4: Sh=1.00±0.04; Ba=1.70.6±0.17; p=0.01, 

Figures 7B and C). In addition, the FA metabolism was unchanged in banding animals since 

CPT1 was unaffected (Sh=1.00±0.01; Ba=1.21±0.03 p=0.7, Figure 7D).  

In debanding animals a metabolic shift was observed since PDK4 showed a trend to be up-

regulated (Sh=1.00±0.08; Ba=1.03±0.12; Deb=1.89±0.39; Sh vs Deb p=0.10; Ba vs Deb p=0.07, 

Figure 7A). Regarding the glucose transporters, in debanding group we observed a reduction in 

GLUT1 but not in GLUT4 (GLUT1, Sh=1.00±0.01; Ba=1.73±0.19; Deb=1.35±0.17; Sh vs Deb 

p=0.20; Ba vs Deb p=0.22; GLUT4, Sh=1.00±0.04; Ba=1.70±0.17; Deb=1.67±0.04; Sh vs Deb 

p=0.02; Ba vs Deb p=0.99, Figures 7B and C). In addition, after afterload alleviation, 

CPT1expression increased when compared to sham (Sh=1.00±0.01; Ba=1.21±0.03; 

Deb=1.73±0.24; p=0.04, Figure 7D). 

 

 

 

Figure 7- Effect of pressure overload on LV metabolism. Expression of A) pyruvate dehydrogenase kinase isoform 4 

(PDK4); B) glucose transporter 1 (GLUT1); C) glucose transporter 4 (GLUT4); D) carnitine palmitoyltransferase I 

(CPT1). One Way-Anova. Ba/Deb vs Sh: α, p<0.05; αα, p< 0.01. 

 

 

h) Mitochondrial biogenesis  
 

To evaluate the mitochondrial structure and morphology in myocardium, electron 

microscopy and Western Blot were performed. Despite similar number of mitochondria among 

groups (Figure 8A), in banding rats their average area decreased significantly (Sh=49701±2897; 
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Ba=37524±608, p<0.0001, Figure 8B) and mitochondria became more flattened (Sh=0.785±0.005; 

Ba=0.763±0.005, p=0.04, Figure 8C). Concerning mitochondrial dynamics, in banding rats we 

denoted a trend for PGC-1α upregulation (Sh=100±24; Ba=199±31; p=0.08, Figure 8D) and a 

significant downregulation of MFN1 and MFN2 (MFN1, Sh=100±9; Ba=42±5, p=0.0002; MFN2, 

Sh=100±1; Ba=59±9; p=0.03, Figures 8E and F). Altogether these results suggest an increase of 

mitochondrial biogenesis and a shift in the balance of dynamics regulation, favouring fission. 

Curiously, debanding group did not revert mitochondrial alterations (mitochondrial eccentricity, 

Sh=0.785±0.005; Deb=0.760±0.005, p=0.03; PGC-1α, Sh=100±24; Deb=217±31, p=0.05; MFN1, 

Sh=100±9; Deb=55±11, p=0.006), except for MFN2, which increased to values similar to those of 

Sh group (Sh=100±1; Deb=83±1; p=0.35). Concerning the complexes of electron chain transport 

(ECT) we denoted that, when compared to sham complex I showed a trend to increase in banding 

group, however complex III and IV decreased significantly (Complex I, Sh=100±4; Ba=131±6, 

p=0.10; Complex III, Sh=100±12; Ba=63±7, p=0.03; Complex IV, Sh=100±10; Ba=61±5; 

p=0.004, Figures 8H, J and K). Regarding the debanding group we denoted that while complex I 

increased significantly, complexes III and IV reversed in the formed (Sh=100±12; Ba=63±7; 

Deb=101±8; Sh vs Deb, p= 0.99; Deb vs Ba, p= 0.03) but not in the latter. (Sh=100±10; Ba=61±5; 

Deb=70±8; Sh vs Deb, p= 0.06; Deb vs Ba, p= 0.68). Moreover, no changes were observed for 

complex II and V (Figures I and L). 
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Figure 8- Effect of pressure overload on mitochondrial morphology and biogenesis. Electron microscopy: A) 

mitochondrial number; B) mitochondrial area; C) mitochondrial eccentricity; D) peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1α); E) Mitofusin-1 (MFN1); F) Mitofusin-2 (MFN2); G) representative images. Western 

Blot relative protein quantification of mitochondrial oxidative phosphorylation complexes: H) complex I; I) complex 

II; J) complex III; K) complex IV; L) complex V; M) representative images. Values are mean ± SEM. One Way-Anova: 

Ba/Deb vs Sh: α, p<0.05; αα, p< 0.01; αααα, p<0.0001; Deb vs Ba: χ, p<0.05; χχχ, p< 0.001. 
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i) Mitochondrial function 

 

i. Mitochondrial oxygen consumption assays  

 

 Since metabolism also depends to mitochondrial function we decided to performed 

mitochondrial respiration studies by evaluating oxygen consumption in complex I and II of the 

ECT. Concerning respiratory state 2, we did not observe any difference imposed by banding in 

complex I or complex II (Figure 9A). After ADP addition we denoted a significant increase of 

respiration rate in banding relative to sham group in complex I and complex II (complex I, 

Sh=33.42±2.17; Ba=48.9±4.6, p=0.017; complex II, Sh=48.9±2.6; Ba=66.8±1.6, p<0.001, Figure 

9B). After ADP phosphorylation or state 4, in complex I the mitochondria from banding group 

continued to consume more oxygen than sham (Sh=7.18±0.31; Ba=9.48±0.49, p=0.007), however, 

these values are similar to those in state 2 complex I (Figure 9C). Despite the increase of oxygen 

consumption during ADP phosphorylation, mitochondria from banding do not spend more oxygen 

to phosphorylate the same amount of ADP (Figure 9D), denoting that these mitochondria are more 

efficient and are probably faster in state 3. In the debanding group we observed that, in complex II 

state 2, mitochondria respiration recovered (Ba=24.0±0.1; Deb=17.6±1.2, p=0.007, Figure 9A). In 

state 3 both complex I and II showed a reduction in oxygen consumption in debanding (complex I, 

Ba=48.9±4.6; Deb=35.6±4.4, p=0.05; complex II, Ba=66.8±1.6; Deb=49.9±2.0, p<0.001, Figure 

9B). In state 4 the reduction of oxygen consumption in debanding occurred in both complexes, but 

in complex I showed a total recovery (complex I, Ba=9.5±0.5; Deb=7.4±0.7, p=0.03; complex II, 

Ba=27.9±1.7; Deb=23.2±1.1, p=0.17, Figure 9C). Despite the total recovery of mitochondrial 

oxygen consumption observed in debanding group, the efficiency of ADP phosphorylation seems 

decreased, since the ratio ADP/O in complex I showed a trend to decrease in this group (Sh= 

4.3±0.1; Ba=4.5±0.3; Deb=3.4±0.3, Sh vs Deb p=0.18, Ba vs Deb p=0.058, Figure 9D). 

 Higher RCR’s, as observed in the banding group, implies that the mitochondria have a 

higher capacity for substrate oxidation, ATP turnover and a low proton leak (complex I, 

Sh=4.5±0.3 Ba=5.2±0.2, p=0.09; complex II, Sh=2.0±0.1; Ba=2.4±0.1, p=0.05, Figure 9E). 

Together these results highlight the good performance of mitochondria in the banding group. 
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Figure 9- Effect of pressure overload on mitochondrial respiration. Complex I and II respiration at A) state 2; B) 

state 3; C) state 4; D) ratio of ADP phosphorylated to oxygen consumption; E) respiratory control ratio. Values are mean 

± SEM. One Way-Anova. Ba/Deb vs Sh: α, p<0.05; αα, p< 0.01; ααα, p<0.001; Ba vs Deb: χ, p<0.05; χχ, p<0.01, χχχ, 

p< 0.001. 

 

ii. Mitochondrial transmembrane electrical potential assays and uncoupling 

 

Mitochondrial membrane potential is critical for maintaining the physiological function of 

the respiratory chain, i.e., to generate ATP. In banding animals we denoted a significant increase of 

maximum potential at both complexes (complex I, Sh=168.1±0.7; Ba=170.9±0.6, p=0.01; complex 

II, Sh=172.6±0.6; Ba=175.7±0.8, p=0.03, Figure 10A). The same pattern was observed in 

repolarization (complex I, Sh=169.2±0.7; Ba=172±0.6, p=0.03; complex II, Sh=175.6±0.6; 

Ba=178.3±0.8, p= 0.04, Figure 10C). In debanding rats we observed a normalization of maximum 

potential in both complexes (complex I, Ba=170.9±0.6; Deb=167.5±0.7, p=0.007; complex II, 

Ba=175.7±0.8; Deb=171.3±1.04, p=0.003, Figure 10A). The same pattern was observed in 

repolarization (complex I, Ba=172±0.6; Deb=168.3±0.9; p=0.008; complex II, Ba=178.3±0.7645; 

Deb=172.9±0.9, p=0.0002, Figure 10C). Curiously, in complex II the values of repolarization 

observed in debanding showed a trend to decrease beyond the sham values (Sh=175.6 ± 0.6434; 

Deb=172.9±0.9, p=0.06, Figure 10C). The mitochondrial membrane potential during 

depolarization did not show any significant difference between the groups (Figure 10B).  
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 The physiological functions of UCP include lowering mitochondrial membrane potential, 

dissipating metabolic energy in the form of heat and reducing oxidative stress. Since we observed 

an increase of oxidative stress and alterations in membrane potential in banding animals, we 

decided to evaluate UCP-1. This uncoupling protein increased in banding animals when compared 

to sham animals (Sh=100±17; Ba=178±8; p=0.04, Figure 10D), denoting an increased heat 

production. The removal of the aortic constriction reduced UCP-1 to values similar to those of 

sham values, but not sufficient to be different from banding group (Sh=100±17; Ba=178 ± 8; 

Deb=142±30; Sh vs Deb p=0.37; Ba vs Deb p=0.32, Figure 10D).  

 

 

Figure 10- Effect of pressure overload on mitochondria membrane potential. A) maximum membrane potential in 

complex I and in complex II; B); membrane potential during depolarization in complex I and in complex II; C) membrane 

potential during repolarization in complex I and in complex II; D) relative quantification of uncoupling protein 1. Values 

are mean ± SEM. One Way-Anova. Ba/Deb vs Sh: α, p<0.05; Deb vs Ba: χχ, p<0.01, χχχ, p< 0.001. 
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j) Skeletal muscle  

 

i. Aerobic capacity and effort training 

 

Exercise incapacity is a hallmark of HFpEF, so we evaluated the aerobic capacity in our 

rats. In the banding animals we observed a reduction of all the parameters evaluated, namely, 

running time (Sh=13.16±0.55; Ba=11.13±0.37, p=0.02, Figure 11A), VO2max (Sh=33.26±1.04; 

Ba=29.17±0.70, p=0.01, Figure 11B), VCO2max (Sh=28.7±0.9; Ba=25.24±0.59, p=0.02, Figure 

11C), and EE (Sh=233.3±7.1; Ba=206.1±4.9, p=0.02, Figure 11D), highlight the reduced capacity 

to exercise present in these animals. In the debanding group we showed a total recovery of running 

time denoting a better exercise performance in these animals (Ba=11.13±0.37; Deb=13.32±0.53, 

p=0.01, Figure 11A). Additionally, debanding rats partially recovered VO2max, VCO2max and EE 

(VO2max Ba=29.17±0.70; Deb=31.3±0.8, p=0.4307; VCO2max Ba=25.24±0.59; Deb=27.99±0.77, 

p=0.07; EE Ba=206.1±4.9; Deb=220.5±5.4, p=0.33, Figures 11B, C and D).  

 

 

 
Figure 11-Effect of pressure overload on aerobic capacity. A) running time; B) maximum rate of oxygen consumption 

C) maximum CO2 elimination D) energy expenditure. Values are mean ± SE, One-way anova. Ba/Deb vs Sh: α, p<0.05; 

Deb vs Ba: χ, p<0.05. 

 

ii. Myocytes atrophy and fibrosis 

 

In the skeletal muscle, we observed an atrophy of myocytes, as assessed by its area that 

decreased significantly (Sh=2448±198; Ba=1731±100, p=0.04, Figures 12A and B). Skeletal 

atrophy recovered after removing aortic constriction (Sh=2448±198; Ba=1731±100; 

Deb=2039±189, Sh vs Deb p= 0.42, Ba vs Deb p=0.31, Figures 12A and B). In the same muscle, 

the skeletal myocytes fibrosis increased in banding (Sh=2.04±0.17; Ba=2.89±0.27, p=0.03, Figures 

12C and D). The debanding procedure induced a reduction of skeletal muscle fibrosis that 

normalized in the debanded group (Sh=2.04±0.17; Ba=2.89±0.27; Deb=2.42±0.36, Sh vs Deb 

p=0.47, Deb vs Ba p=0.67, Figures 12C and D). 
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Figure 12-Effect of pressure overload on skeletal myocyte area and fibrosis. A) myocyte area, B) representative 

images of hematoxylin-eosin staining,  C) myocyte fibrosis, D) representative images of picrosirius red staining . Values 

are mean ± SEM. One-Way anova. Ba/Deb vs Sh: α, p<0.05. 

 

iii. Metabolic enzymes 

 

In order to evaluate the energetic metabolic profile in skeletal muscle, expression of some 

transporters involved in metabolism of FA and glucose were analysed by PCR. Curiously in the 

banding group we observed an increase of both glucose and FA metabolism (PDK4, Sh=1.00±0.04; 

Ba=2.27±0.13, p=0.001; GLUT1 Sh=1.00±0.07; Ba=1.83±0.28, p=0.009 and GLUT4 

Sh=1.00±0.05; Ba=1.30±0.01, p=0.011; CPT1 Sh=1.00±0.03; Ba=1.46±0.08; p=0.01, Figures 

13A, B, C and D). Upon overload relieved, the expression of PDK4 and CPT1 increased further 

compared to banding (PDK4, Ba=2.27±0.13, Deb=3.26±0.31; p=0.008; CPT1, Ba=1.46±0.08; 

Deb=1.79±0.14, p=0.05) (Figures 13A and D), while GLUT1 and GLUT4 normalized (GLUT1, 

Ba=1.83±0.28, Deb=0.73±0.02, p<0.001; GLUT4, Ba=1.30±0.01, Deb=1.09±0.09, p=0.08, 

Figures 13B and C).  
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Figure 13- Effect of pressure overload on skeletal muscle metabolism. A) pyruvate dehydrogenase kinase isoform 4, B) 

Glucose transporter 1, C) Glucose transporter 4, D) Carnitine palmitoyltransferase I. Values are mean ± SE, One-way anova.  

Ba/Deb vs Sh: α, p<0.05; αα, p< 0.01; ααα, p<0.001; αααα, p<0, 0001; Deb vs Ba:  χ, p<0.05; χχ, p<0.01, χχχ, p< 0.001. 
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DISCUSSION 
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In this study, we show that we have successfully implemented an animal model that 

mimics the phenotype of left ventricular concentric remodelling and reverse remodelling. This 

animal model presents diastolic dysfunction and evidences all signs typical of HFpEF, such as 

concentric hypertrophy, increased cardiomyocyte stiffness and alterations in myofilaments calcium 

handling. Moreover, in banding animals the structural and metabolic changes at skeletal muscle 

level could be behind to exercise intolerance. When the afterload was alleviated, we observed a 

normalization of ventricular mass but cardiomyocyte hypertrophy remained higher than sham. 

Moreover, in debanding rats we observed a better filling pattern during diastole that could be due 

to, at least in part to the partial reduction of: oxidative stress; NO bioavailability; titin 

phosphorylation; cardiomyocyte stiffness and increase of calcium reuptake to sarcoplasmic 

reticulum. However, myocardial fibrosis and apoptosis remained upper. The better cardiac 

performance in debanding group followed the improvement of myofilaments response to calcium 

but cardiac shortening and myocyte force redevelopment remained reduced.  

In the hypertrophic heart, was observed changes in mitochondrial expression that suggest 

an increase of biogenesis and fission without changes in mitochondria number however, we 

denoted an improvement of mitochondria functionality followed by the augment of glucose 

transporters, suggesting a metabolic shift. When afterload was relieved, the normalization of 

mitochondrial function but not morphology occurred and was followed by the augment of lipid 

transporters and oxidation, as well as an augment of complex I expression. 

The over-expression of uncoupling proteins and the downregulation of complexes III and 

IV could represent an attempt to reduce oxidative stress but, after debanding we only observed a 

partial recovery of UCP-1 and complex IV.  

After debanding the running time reached the control values, but the aerobic capacity and 

the skeletal muscle abnormalities only recovered partially. Metabolically, while glucose 

transporters normalized, fatty acid transporters and utilization increased. 

 

As previously described, after a pressure overload stimulus as occurs in HFpEF, LV 

hypertrophy installs, ventricular walls thicken and cavities decrease, which leads to an increase in 

LV mass [107]. Similar to what we have reported, a precious study on aortic constriction-induced 

hypertrophy described raised levels of AKT, mTOR, and GSK3β phosphorylation [108]. The 

increased phosphorylation of these proteins represent steps of a signalling pathway that culminates 

in increased hypertrophy, since AKT activation blocks the anti-hypertrophic activity of GSK3β 

while promoting mTOR activity [109]. Debanding induced ventricular RR, but only partially, as 

observed in posterior walls thickness and LV mass. Moreover, and as previously reported [31, 92] 



55 

 

the cardiomyocytes remains hypertrophic, which could contributes to GSK3β 

hyperphosphorylation.  

The presence of diastolic dysfunction was evident in banding animals by the decreased E/A 

ratio as well as the increase of E/E´ and left atrium area [107]. These filling alterations occurs 

concomitantly with the augment of cardiomyocytes’ passive tension, that could result from changes 

at myofilamentary proteins such titin or, at higher sarcomere lengths from ECM stiffness [110]. In 

the present study we observed hyperphosphorylation of titin and PEVK segment. The same results 

were reported in a similar study as contributors to the increase of passive tension [110], however, 

titin hypophosphorylation is frequently associated to myocardial stiffness in HFpEF [111]. The 

removal of constriction induced a partial reduction on titin phosphorylation and a decreased on 

cardiomyocyte passive tension. Concerning ECM alterations, we denoted an increase of fibrosis 

deposition on myocardial tissue accomplished by the augment of gene expression of TGF-β and 

procollagen I and III respectively, which are in agreement with previous studies [112]. TGF-β can 

promote collagen deposition by inducing the synthesis of collagen I and III and by inhibiting its 

degradation. Thus TGF-β promotes myocardial stiffness and dysfunction [74, 75]. After afterload 

relief, myocardial fibrosis persisted but we observed a reduction of TGF-β and a total reversion on 

procollagen I and III. Curiously, similar results were obtained in humans after LVAD implantation 

[113], translating the earlier molecular rather than the histological changes. Pulmonary congestion 

in banding animals evidenced by increased lung weight was observed. Right atrial enlargement and 

a decreased of TAPSE also reveals right dysfunction in these animals as supported by previous 

studies [114]. 

Despite a small decrease of myocardial performance in banding animals, as assessed by the 

decrease of TEI index and fractional shortening (FS), cardiac function was maintained since EF is 

preserved, thus mimicking HFpEF-phenotype [107]. The increase of intracellular calcium coupled 

to a reduction of the activity and/or expression of SERCA-2a and NCX have been documented in 

HFpEF, congestive HF, and was also observed by us in banding rats [115, 116]. As a consequence 

of calcium handling dysregulation and the resultant increase of intracellular calcium, the 

myofilaments active force, calcium sensitivity and nHill increases, while Ktr decreases, as 

previously described by our group [112]. Moreover, these alterations also impair calcium reuptake 

to SR and thus relaxation. When aortic constriction was removed we observed an improvement of 

calcium handling proteins denoting a reduction of cytoplasmic calcium and a better relaxation, 

however, we did not detect any improvement on Ktr.  

NO is an important mediator of cardiac function whose levels are downregulated in HF 

compromising its beneficial actions [117]. Additionally to NO levels, the importance of NOS 

uncoupling in hypertrophic heart disease has been previously highlighted since NOS re-coupling by 
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exogenous BH4 ameliorates pre-existing advanced cardiac hypertrophy and fibrosis [118]. In 

macrophages, iNOS expression and arginase increase concomitantly, reducing the availability of 

arginine to iNOS. With substrate limitation, iNOS may become uncoupled and produce ROS [119]. 

In cardiac tissue, AKT, mitogen-activated protein kinase p42/44 or extracellular signal-regulated 

kinase (ERK1/2) are involved in regulation of iNOS activity or expression. In agreement with our 

data, an increase of iNOS expression in cardiac hypertrophy after aortic banding has previously 

been reported. Moreover, the inhibition of iNOS not only reduced LV hypertrophy, AKT and 

mTOR activation, pulmonary congestion or LV fibrosis but also oxidative stress [120]. In HFpEF, 

increased ROS promote oxidative stress that induce mitochondrial damage and cardiac dysfunction 

[41]. In fact, in the myocardium from banding rats we denoted an upregulation of catalase and a 

reduction of glutathione, denoting an increase of oxidative stress that was attenuated after 

debanding. Similar results had been previously described after LVAD implantation [49].  

In HF, the downregulation of eNOS contributes to disease progression and when eNOS 

becomes overexpressed, an attenuation of LV remodelling induced by aortic constriction as well as 

p38 activation [121] is observed. In our work, the decrease of eNOS and the increase of p38 

activation in banding rats could be involved on cardiac remodelling. Indeed, at cardiac level, p38 

activation can promote hypertrophy, fibrosis, apoptosis and thus cardiac dysfunction. In aortic 

banding rats we observed an increase of apoptosis that was also described for spontaneously 

hypertensive rats (SHR) or isoproterenol-treated rats myocardium [122]. After aortic constriction 

relief, the reduction of iNOS and increase of eNOS occurred simultaneously to the normalization of 

antioxidant enzymes and p38, denoting a reduction of oxidative stress. These results are not 

surprising since endogenous NO increase after LVAD implantation [49]. However, after debanding 

while apoptosis markers remains higher, p38 activation reached the control values, meaning that 

other proteins than p38 underlie apoptosis activation [123, 124]. Despite the increase of apoptosis 

in banding rats, its cardiac mass is higher than in sham. This can occur if apoptosis affects 

predominantly non-myocyte cell, as described in cardiac hypertrophy [125].  

It is known that the aortic banding-induced hypertrophy is characterized by functional and 

structural mitochondrial alterations, however the scarcity of results are still contradictory. Similar 

to that was described for ischemic HF, our results evidenced structural mitochondrial alterations 

induced by banding, that suggest upregulation of mitochondrial fission [126]. Moreover, the 

reduction of proteins involved in fusion processes (MFN 1 and MFN 2) are associated with an 

augment of mitochondrial fragmentation [127]. Curiously, in debanding, the mitochondria are still 

smaller than sham, despite the augment of MFN 2. This finding could be explained by its important 

role in calcium regulation since MFN 2 is crucial to tether SR to mitochondria [128]. In banding 

rats, a reduction in SERCA-2a, NCX as well as PLB activation was observed, denoting, as 
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previously reported an increase in cytosolic Ca2+ [129] that was restored after debanding. Thus, the 

role of MFN 2 in mitochondrial Ca2+ uptake becomes futile in banding animals. However, when a 

reduction of the cytosolic Ca2+ levels occurred, an increase of MFN 2 was observed probably to re-

establish the mitochondrial levels of calcium. Despite the increase of PGC-1α and the presence of 

small mitochondria, the mitochondrial number remained unchanged in banding animals as had 

previously been described in a HF model induced by aortic constriction [48]. However, it should be 

noted that some studies performed in chronic pressure overload did not report an increased PGC-1α 

[48], but this may be due to severity of HF, since at the time of sacrifice, the systolic function of 

these animals was already deteriorated. Additionally, the increase in mitochondrial biogenesis in 

hypertrophy , could delay cardiac decompensation induced by pressure overload [130]. However, 

the unchanged number of mitochondria is not compatible with the probable mitochondrial fission 

process nor with the observed increased PGC-1α expression. A potential explanation for these 

findings could be the high apoptosis markers in these animals, evidenced by the elevated p38 

activation and Bax/Bcl-2 ratio, which seems to prevail over mitochondrial biogenesis.  

 Contrary to our results, in both aortic constriction and ischemic HF-animal models, a 

decrease in state 3 respiration rate without state 4 alteration was reported [48, 126]. Moreover, a 

decrease in the expression and activity of complex I and V without alterations in the activity of 

complexes II and IV was also observed in other HF-animals models [126, 131]. However, as 

cardiac hypertrophy impairs the relationship between ATP demand and production, mitochondrial 

bioenergetics must keep up with the cardiac mass increase [130]. Thus, the increase in respiration 

observed in banding rats could represent an attempt to overcome the energetic load imposed by 

aortic constriction. Reinforcing our data, an increase in mitochondrial respiration had previously 

been described in non-failing hypertrophic human hearts [132]. Additionally, in rabbits and rats 

submitted to aortic constriction was reported an increase of respiratory capacity of isolated 

mitochondria and an upregulation of oxidative phosphorylation rates during the early stage of 

hypertrophy followed by a decline, coinciding with the drop in contractility and EF, indicative of 

HF progression [133, 134]. Similar to us, these results suggests a compensatory increase in 

mitochondrial respiration and oxidative phosphorylation during early cardiac hypertrophy. 

Curiously, we observed that ADP/O ratio was unchanged in banding which probably denotes a 

reduction in phosphorylation time. Complex I is the largest enzyme and plays critical roles both in 

transferring electrons from reduced NADH to Coenzyme Q and in maintaining the proton 

electrochemical gradient across the inner mitochondrial membrane. In our study, we observed an 

increase of complex I in banding rats that could be a consequence of the metabolic shift towards 

glucose. The metabolic substrate in hypertrophic hearts shifts toward glucose during stress 

conditions, such as ischemia and pathological hypertrophy [135]. Indeed, the unchanged expression 
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of FAT/CD36, CPT1 or CPT2 or an increase of GLUT4 and lactate dehydrogenase is well 

documented [24]. This metabolic shift toward glucose utilization can compromise the energetic 

state of the myocardium, because the net yield of ATP production per mole of FA oxidation is 

greater than the one of glucose. However, glucose has less oxygen costs, and thus this shift could 

represent a compensatory mechanism to balance the potential reduction in oxygen availability. In 

the present work, while glucose transporters were upregulated, both the rate-limiting enzyme in β-

oxidation of FA (CPT1) and the enzyme responsible for the phosphorylation and inhibition of the 

pyruvate dehydrogenase (PDH) complex, PDK4, remain normal. This possibly means that glucose 

oxidation and glycolysis are uncoupled, as previously reported by others [136]. After overload 

relief, we observed an upregulation of PDK4 and CPT1, while GLUT1 reversed and GLUT4 

remained higher. In myocardium, overexpression of PDK4, is sufficient to cause a decrease in 

glucose catabolism and an increase in FA oxidation [137]. Indeed, our results are in agreement with 

previous work reporting an improvement of FA oxidation after LVAD implantation [96].  

Despite the increase in complex I, complex III and IV did not follow this trend and were 

downregulated in banding rats. Since complex I, III, and IV are the main ROS producers, the 

downregulation of both complexes III and IV could represent an attempt to control ROS. However, 

other possible explanation can be the reversible inhibition of cytochrome c oxidase by NO as an 

attempt to regulate tissue oxygen gradients [138]. Despite the reported inhibition of mitochondrial 

respiration by NO, in hypertrophied hearts submitted to aortic constriction, 52% complex IV 

inhibition was required to inhibit mitochondrial respiration half maximally [63]. Thus, the increase 

in mitochondrial respiration can occur simultaneously to complex IV inhibition. The decrease 

levels of complexes III and IV as well as UCP upregulation could decrease the proton gradient 

across the membrane and could represent a mechanism to stabilize membrane potential that was 

higher in banding rats. The mitochondrial proton circuit is essential to the multiple physiological 

functions of mitochondria [139],[140], and is largely completed by the proton leak, which may 

serve an important purpose in limiting proton-motive force (pmf), to prevent dielectric breakdown 

of the membrane and restrict leakage of single electrons from the electron transport chain to form 

superoxide [139]. Thus, elevated levels of mitochondrial membrane potential (ΔΨm) can stimulate 

mitochondrial ROS production [141]. In cardiomyocyte hypertrophy induced by norepinephrine the 

reduction on ATP levels was associated to the reduction on mitochondrial membrane potential (Ψm) 

[142], however, in right ventricle hypertrophy, phenylephrine caused a significant increase in 

mitochondrial membrane potential [143]. In aortic banding rats, the increase of UCP-1 seems to 

delay the progression to HF [144]. After aortic debanding the functional alterations observed in 

mitochondria were restored, however concerned mitochondrial morphology, the same was not true 

since the biogenesis and fission mechanism remained augmented. In banding rats, and according 
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with previous studies, a metabolic shift favouring glucose oxidation was observed [24]. However, 

after pressure unloading the lipid oxidation also increased, which is in agreement previous studies 

in rats and in humans that showed an improvement of energetic metabolism in myocardium after 

debanding or LVAD implantation [94, 96]. Interestingly these alterations in myocardial 

metabolism did not result in the reduction of complex I or increase in complex IV expression, 

despite the normalization of mitochondrial respiration and membrane potential, which probably 

could denote some functional changes at the complexes levels. 

Exercise intolerance is a hallmark of HFpEF that usually correspond to the peak of 

consumed O2 during the maximal effort [79, 80]. Not surprisingly, we observed a reduction of 

aerobic capacity in our banding rats that was completed reversed after afterload alleviation. Both 

cardiac and peripheral factors are pointed out to the main contributors to exercise incapacity in 

HFpEF patients. Among these factors, an inadequate extraction/utilization of O2 or intrinsic 

skeletal muscle dysfunction characterized by the reduction of the ratio capillary/fibre and fibre 

atrophy seems to be more prevalent. Indeed, we observed that the animals that presented a 

reduction on aerobic capacity showed myocyte atrophy and fibrosis which is in accordance with 

previous reported outcomes in skeletal biopsies from HFpEF patients [87]. Some evidence 

concerning the imbalance between protein synthesis and degradation or even the involvement of 

alterations in the ubiquitin-proteasome system and the activation of apoptosis pathway could be 

responsible for the myocyte atrophy observed in skeletal muscle [145]. In our banding rats we 

denoted an overexpression of glucose transporters however, glucose oxidation did not increase 

since the pyruvate dehydrogenase complex was strongly inhibited by PDK4. This could result from 

lower oxygen bioavailability that promotes the mobilization of pyruvate to other metabolic 

pathways, or even mitochondrial dysfunction that compromises glucose and FA oxidation. In fact, 

a reduction of mitochondrial content, oxygen consumption and lower RCR were reported in 

skeletal muscle biopsies from HFpEF patients [90, 92], as well as an increase of diacylglycerol and 

ceramide content [94]. However, our animals with chronic pressure overload showed an increase of 

CPT1, but this increase could only represent a compensatory mechanism. When afterload was 

alleviated the reduction on glucose transporters was accomplished by the increase of PDK4 and 

CPT1, denoting a metabolic shift that promotes FA oxidation. Indeed, the aerobic intolerance in 

banding animals could be, at least in part, a consequence of metabolic shift and therefore the 

myocyte alteration and stiffness observed in skeletal muscle.  
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This work show that the banding/debanding in Wistar Rats is a good animal model to study 

the mechanism behind the cardiac remodelling and reverse remodelling in HFpEF.  

Beyond concentric hypertrophy, diastolic dysfunction and calcium dysregulation, we 

founded that mitochondria and oxidative stress are also involved in the compensatory adaptation of 

myocardium to afterload. Moreover, during cardiac adaptation metabolic flexibility occurred, 

probably as a compensatory mechanism, since glucose oxidation can save more oxygen than FA.  

After debanding, the normalization of cardiac function was not followed by the reversion 

of cardiac structure, myocardial fibrosis and apoptosis. Additionally, mitochondria are still smaller 

than sham, and was observed an augment of FA transporters and inhibition of glucose oxidation. 

Additionally to cardiac abnormalities, the alterations founded in skeletal muscle could be 

behind the exercise intolerance observed in HFpEF, reinforcing the idea this syndrome is more than 

a heart disease. 
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