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ABSTRACT 1 

 2 

The main objective of this work is to present a modular platform to manage traffic information for 3 

smart mobility. The management and collection of dynamic data is a challenging process 4 

especially in the context of low penetration of floating car data (FCD) and limited availability of 5 

traffic monitoring stations. In this work, three different road segments of a European 6 

medium-sized city were selected to collect vehicle dynamic data over multiple scenarios of traffic 7 

demand. Simultaneously, traffic volumes were recorded in real time. The main objective of this 8 

pilot experiment was to assess how it would be possible to read and predict traffic congestion and 9 

emissions levels with limited information and how data from multiple sources should be managed 10 

in order to correlate and deal with this information in real time. It was possible to correlate 11 

simultaneously multiple data set such as congestion values, specific vehicle power (VSP) mode 12 

distribution, Google traffic data and emission. Preliminary findings suggest that in urban arterials 13 

travel time and congestion levels can be reliable indicators for estimating emissions in real time. In 14 

sections of rural arterials, the estimation of real-time traffic performance is more complex. Key 15 

issues towards the implementation of a prototyping platform in an urban context are also 16 

discussed. 17 

 18 

 19 

Keywords: ATMS, Traffic congestion, ITS, Database, FCD 20 

 21 

 22 
23 
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 3 

1. INTRODUCTION AND OBJECTIVES 4 

 5 

Road transport will remain a key sector regarding impacts on climate change, air pollution and 6 

noise. Efficient use of existing infrastructures has been identified by the European Union as a key 7 

strategy to reduce transport externalities (1-4). A big challenge to traffic management systems is 8 

the coordination of the data collected and the implementation of effective solutions (5). 9 

To improve operations, Intelligent Transportations systems (ITS), vehicle to vehicle (V2V) 10 

and vehicule to infrastructure (V2I) communications have to be set and optimized while 11 

considering the coexistence and cooperation between them (6). 12 

The main objective of this work is to assess key issues regarding interoperability between 13 

traffic models and new sources of data, including FCD and traffic monitoring sensors. The 14 

ultimate objective is to develop a dynamic structure based on geographic information systems 15 

containing information related to real-time traffic performance and associated environmental 16 

externalities. Therefore, the main research questions addressed in this paper are: 17 

 Could we predict accurately dioxide carbon (CO2) emissions and local pollutant 18 

emissions with limited FCD? 19 

 How can traffic data obtained from different sources be used in differnet links?  20 

 Can we trust in Google traffic data as a primary qualitative indicator to predict the 21 

environmental performance in a given link? 22 

 23 

2. LITERATURE REVIEW 24 

ITS are faced with difficulties in data sharing and cooperation among them. It is also referenced 25 

the importance of creating a modular platform in order to assess different impacts related to 26 

transport (7-8). 27 

The implementation of advanced traffic management systems (ATMS) must consider 28 

different topic including the human factor as well as institutional and legal problems which are 29 

considered the most difficult areas to overcome (9-10). 30 

Researchers have tested the integration of V2V and V2I communications, demonstrating 31 

improvements in the performance of road networks operation (10-14). A communication 32 

architecture integrating V2V and V2I communications based on mobile networks was evaluated 33 

being the innovative part of this project the implementation of the communication architecture on 34 

the developed system Juxtapose (JXTA) for P2P communication, which allows the propagation of 35 

messages between vehicles and between vehicles and infrastructures (JXTA allows 36 

communication between devices regardless of their physical location and network technology in 37 

which they are installed) (15). 38 

Regarding traffic flows monitoring, vision systems are one of the various ITS proposals, 39 

offering advantages such as easy maintenance and great flexibility (16). Some author’s explored 40 

data mining methods and mathematical functions to estimate traffic volumes and networks’ 41 

performance based on a limited subpopulation of FCD. This new knowledge opens new research 42 

challenges to also ascertain the environmental performance of road network in real-time (17-19). 43 

FCD, appears as a complementary method of large-scale data collection to define the traffic flow 44 

speed, managing to assimilate information (location, speed, direction and time). However, given 45 

the variability in the dimensions of the database itself, and the complexity of traffic dynamics, 46 



Teixeira, Fernandes, Bandeira, Coelho   4 

 

there are considerable challenges to characterize traffic flows. To overcome this issue, researchers 1 

have presented a multidimensional analysis method based on the 'data cube’ in which the 2 

processing of data occurs through aggregations of different levels/dimensions (20). 3 

Although there are several technologies in transmitting data (as Bluetooth, Wifi, Zigbee, 4 

usb etc), there are some limitations that need to be overcome as distance, slow transfer rates, high 5 

power consumption, scalability as acuracy (being, specially accuracy very difficult and costly to 6 

produce and compile). There is alsoissies related with synchronization among different types of 7 

computing elements, due to the large adoption of many-cores accelerators (21-25). 8 

 A network of any kind with processing capacity can establish communication between 9 

multiple devices, enabling exchange of data between programs and systems. Over the years, there 10 

has been developed a variety of protocols to optimize the requirements of each network. The WiFi 11 

protocol has been used in location scenarios and simultaneous mappings, as well as for the 12 

interconnection of robotic vehicles, in which the signal strength received by a router is used to 13 

estimate the vehicle position (26-32). 14 

What has arisen from literature review is that although there has been a strong 15 

technological development, institutional and legal problems may delay the full implementation of 16 

these aplications. Some studies demonstrated optimal ways of how to collect data or suggest the 17 

application of mathematical models for describing traffic conflicts, usually at intersections. 18 

However, there is a lack of research regarding the implementation of modular systems, namely 19 

with the possibility of imposition of rules, allowing reading massive amounts of processed data. 20 

There is also a lack of flexible systems to support this dynamic information and mathematical 21 

models able to set as close as possible what is happening on a route with or without traffic volume 22 

information and with the final goal of determining traffic environmental performance (CO2 and 23 

local pollutants) in real time.(33)  24 
 25 

3.METHODOLOGY 26 

 27 

3.1 Overall methodology  28 

Figure 1 presents the overall methodology of the work. The objective of the second task was to 29 

obtain a preliminary set of results and correlations to include into a database that will feed in turn 30 

the prototyping platform. To assess whether information provided by Google Trafic can be used as 31 

a complementar and reliable indicator for predicting traffic performance and carbon dioxide (CO2) 32 

emissions, a print screen of Google maps traffic information has been recorded with a periodicity 33 

of 1 minute during field work.  34 

 35 



Teixeira, Fernandes, Bandeira, Coelho   5 

 

 1 
 2 

FIGURE 1 Methodology Overview. 3 

 4 

 5 

3.2 Selection of Road segments  6 

To conduct this pilot test, three road segments with distinct features located in a European 7 

medium-sized city (Aveiro, Portugal) were chosen.  8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 
 9 

 10 

TABLE 1 Routes characteristics (Q – traffic volume per hour) and number of trips 11 

performed  12 

 13 
Route 

nam/type

e 

Route 

code 

Length 

(m) - 

yd 

Lanes Intersec

tions 

Qmax 

(vph) 

Av Q 

(vph) 

Google 

traffic 

data 

Nº 

trips 

Built 

environment 

Av. 25 

Abril, 

Aveiro 

(Urban 

Street) 

R1 850

m 

930 

yd 

2 1 

roundabount, 

2 

intersections, 

2 traffic 

lights, 

1582 1068 No 70 2 high schools, 

2 traffic 

lights,4 bus 

stops, 6 

crosswalks 

N109, 

Aveiro 

(arterial 

ring road) 

R2 900

m 

985 

yd 

4 2 roundabout 

3 

intersections 

2880 1218 Yes 45 2 gas stations 

Av. Uni- 

versidade 

Aveiro 

Urban 

Avenua) 

R3 140

0m 

153

1 yd 

4 1 roundabout, 

3 

intersections 

779 577 Yes 34 1 University, 1 

Hospital, 2 gas 

stations, 1 

traffic light 

           

One videocameras was installed in key points of each route to get traffic data information. In R1, 14 

the location of the camera was near a traffic light intersection, in R2 the location of the camera was 15 

near the main roundabout and on R3 was near the traffic lights. Qmax represents the max volume 16 

obtained in each Route in all tests, and Average Q represents the average volume of all tests. 17 

 18 

3.3.Pilot study – Empirical Work  19 

 20 

For vehicle dynamic monitoring different light duty vehicles were equipped with GNSS data 21 

loggers to collect second-by-second trajectory data required for microscopic analysis.  For traffic 22 

flow monitoring, a static video camera was used. In order to obtain higher diversity and 23 

heterogeneity of driving patterns, two vehicles and three drivers were used.The probe vehicle 24 

moved according to the driver’s perception of the average speed of the traffic stream (34). 25 

Wherever possible, GNSS measurements were recorded by two vehicles at the same time.  26 

 27 

3.4.Data processing 28 

 29 
 30 

3.4.1.Calculation of emissions 31 
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The VSP model reflects the comparison of driving behavioral effects in fuel consumption and 1 

vehicle emissions (CO2, carbon (CO), nitrogen oxide (NOx) and hydrocarbon (HC)). It is a model 2 

that has proven to be very effective in estimating emissions from petrol cars and diesel cars. The 3 

VSP (typically ranging from -2 to over 39 kW/ton) represents the power required to the engine 4 

based on the road gradient, aerodynamics, kinetic energy and friction to the movement (35)(36). 5 

 6 

    3000302.0132.0arctansin81.91.1 vgradeav =VSP                                               (1) 7 

 8 

 9 

VSP = specific vehicle power (kW/ton); 10 

v = instantaneous speed (m/s); 11 

-a = instantaneous acceleration (m/s2); 12 

-grade = instantaneous road gradient (± %); 13 

   14 

In a second step, VSP values were categorized in 14 modes with a specific emission factor for CO2, 15 

CO, NOX and Hydrocarbon (HC) emissions.  Then, the number of seconds spent in each VSP 16 

mode (was multiplied by the respective modal emission rate and summed over all modes, to obtain 17 

total emissions of each run (eq. 2). Emissions rates (LDGV and LDGV) for each VSP mode can be 18 

found in Coelho et al., (2009). 19 

 
14

1

tijEFijREi                                                                                (2) 20 

                                                                                                                21 

REi = Total emissions of the pollutant i generated on each run (g); 22 
EFij = Emission factor for the source of pollutant i (NOX, CO2, CO, HC) for the VSP mode j (1, 23 

2, 3…14) (g/s); 24 
Tij = Time spent on VSP mode j in each run (s). 25 

 26 

It should be noted that negative VSP values (Mode 1 and 2) are typical  releted to 27 

decelerations or paths downhill. Mode 3 include emissions during idling  or constant speed, while 28 

modes 4 to 14 show linearly increasing VSP values. The VSP methodology fits the values recorded 29 

in 14 modes. To apply VSP, it is needed to record each second, the slope of the road and the speed 30 

profile.  In the case of CO2, Nox and HC, the VSP1 and VSP2 modes present together values 31 

higher than VSP3 mode. Generally values for VSP4 and higher modes tend to indicate linearly 32 

increasing values VSP (35-38). 33 

Taking into account some performed analyzes, for VSP modes, and observations made 34 

during the tests, it was decided to group the VSP modes into 3 types: VSP1-VSP3; VSP4-VSP6; 35 

VSP7-VSP14. 36 

  - VSP1-VSP3 represents slowdown situations, accelerations and STOP&GO 37 

situations in traffic singularities, such as intersections, roundabouts, traffic jams etc; 38 

  - VSP4-VSP6 represente driving situations which the vehicle takes to reach 39 

cruising speed, including smooth accelerations or soft decelerations (such as dropping the 40 

accelerator instead of breaking); 41 

  -VSP7-VSP14 may correspond to larger and stronger accelerations usually at 42 
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speeds above 7 m/s. 1 

 There are two main reasons for the aggregation of VSP modes, these being the reduction 2 

of data to be processed without jeopardizing the information obtained after processing it, and 3 

through this methodology. 4 

 5 

 6 

3.4.2. Congestion equation 7 

 8 

In this pilot experiment, an equation to define the existing traffic flow conditions was explored 9 

(Eq. 2).  The purpose of this equation is to allow a comparison to the results presented by Google 10 

traffic and also to serve as an additional object to explore possible relationshipts to VSP 11 

distributions (gathered from FCD) with emissions under multiple congestion levels.  12 

 13 








 













Vav

VV

Tr

T
 = X

minmax
ln                                                                                      (3) 14 

 15 

o X: is dimensionless and quantifies the traffic conditions level. In case of values 16 

between 0 and -0.7, the flow is not much slower than expected. For values equal to 17 

-1.5 the travel time can be 2 times the travel under free flow conditions. Positive 18 

values ideally will be disregarded, because they represent speeding; 19 

o 












Tr

T
ln : This part of the function gives the positive or negative sign to it. is 20 

the time a vehicle takes to cover a particular section in free flow conditions  is 21 

the actual time that the vehicle takes to cover the road segment. In case the latter is 22 

higher than the first (the vehicle takes longer), a negative value for the function 23 

result will be assigned. This log also serves to limit the function values between 0 24 

and 1.5 (positive or negative) and to determine values higher than 1.5 - extreme 25 

cases of traffic congestion; 26 

 27 

o 







 

Vav

VV minmax : This relates the maximum speed (Vmax) reached in a route with the 28 

minimum speed (Vmin) and average speed (Vav). This relationship serves to set a 29 

range of values, to set the traffic conditions. In this case, the values range typically 30 

from 0 to 12, hence the need to have to limit the range to assign meaning to values. 31 

Minimum and maximum speed refers to the maximum and minimum speed 32 

recorded in the road segment or to a defined time interval. Vav is the average speed 33 

on that time period/route. The ratio between 0 and 12 (mathematically speaking, 34 

the max ratio is infinite, but in the tipical case scenario, 12 is a really big ratio, like 35 

(40 (m/s) – 0(m/s))/4(m/s), which is 10. It is possible to give results above 12, but 36 

they will be extraordinary situations, and the ln will always reduce this time 37 

interval) is obtained by (vmax-vmin)/(vavg). 0 is only obtained by vmax=vmin. 38 

Because this algorithm is being applied to data from each test (alongside the route) 39 

this never happens, vmax always different from vmin. The equation was planned 40 

also to consider the cases where it is not data alongside the route but data from time 41 

intervals in the segmentations of some route that are being studied. The case where 42 
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data from time intervals is being studied was not addressed in this paper, however 1 

the equation is prepared if needed to conduct this type of analysis.  2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

3.5.Ongoing work – Database and prototyple platform integration 10 

 11 

The database under development is based on the ‘data cube’ concept (15). The database must 12 

contain a set of statistical data and link based performance based to enable an easy integration with 13 

optimization algorithms and decision support tools connected to the prototyping platform. The 14 

system under development is modular, meaning that if one part goes down or needs an update, all 15 

the system still works, being just one node down. 16 

 Accurate and scalable simulation has been an enabling factor for systems research. There 17 

is a lack of a systems whose architecture is as modular as possible and to allow to deal with 18 

different limitations. Reasons to the lack of accuracy, especially on Geographic Information 19 

Systems, may result from mistakes of many sort (such as lack of signal, bad weather, etc). To 20 

prevent this kind of situations, a modular system should be developed containing functions that 21 

should be activated when the informatic system fail (as the congestion equation), or should be 22 

created and studied in a way that they could be implemented and also predict traffic performance 23 

parameters based on historic data or other kind of scenarios/information. 24 

In figure 2a a scheme of the database operations is shown. Essentially, the database must 25 

be prepared and configurated to be used by researchers and transport infrastructure managers. In 26 

figure 2b, the circles referenced by the numbers are traffic signals locations that will be monitored 27 

in real time (based on FCD and/or video data) - links with a continuous line. Where the platform is 28 

not available, the link performance evaluation will be based on historic/statistical information and 29 

intelligent algorithms (links with dash lines). The objective is that the system could still operate if 30 

some element (eg. 2 or 5) is not operational.  Figure 2c shows a scheme of how the relation 31 

between platform and database should work. In 1 satellite sends GNSS position to the platform 32 

instaled in a vehicle. The platform located inside the vheicle sends the data to the static platform 33 

(2) whenever is in range. This platform sends the data to the servers (3). If a video camera is 34 

installed, this platform may send video live transmission to the server, where the vision system will 35 

be used to estimate traffic flow in real time. The final platform will be also able to interact to road 36 

infrastructure and drivers. 37 

The system will be integrated in a electronic prototyping system denominated by ”Dech” 38 

which  stands for “decomplicate hardware”. The main advantage is that every module is an 39 

element in a flexible network. The protocol will be an open source meaning that modules can be 40 

developed by anyone with acess to the plataform.   41 
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 1 
 2 

 3 

FIGURE 2 Decision Making Support Information A) Database functioning B) geographic 4 

data collected with platform C) platform functioning(39). 5 

 6 

4.RESULTS 7 

The main objective of this pilot experiment is to identify key variables towards the development of 8 

advanced link based performance functions for characterizing the environmental and traffic 9 

performance of the road network.  10 

 11 

4.1.Emission and VSP Mode Distribution 12 

The graphic presented in Figure 3 relates CO2 emissions for diesel and gasoline vehicles with VSP 13 

Mode Distribution. The values presented represent the mean of each variable for each test. 14 

 15 

 16 
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 1 
FIGURE 3 Comparison between total CO2 emissions in each route and time spent on VSP 2 

intervals 3 

 4 

CO2 emissions are the mean of all CO2 emissions (g/s) in all tests made in each part of the 5 

day for each route. 6 

As expected higher time spent VSP1-VSP3 will lead to higher CO2 emissions, as a result 7 

of more time spent on stop and go situations (leading to an increase of VSP 3). However in route 1 8 

D1LP had higher CO2 emissions than D1AM. Although the slower traffic flow in D1AM, during 9 

the morning period, the driver showed a smoother driving behaviour, when compared with D1LP 10 

which presented a more aggressive driving stytle (higher VSP7+). Comparing D2PM and D3PM, 11 

which drove at the same period, there is no significant statistic difference. Outside the urban road 12 

environment, CO2 emissions tend to be lower as a result of less congestion and inexistence of 13 

traffic lights.  It must be emphasized that in route 3 the number of tests was lower because of the 14 

occurrence road works.  15 

 16 

4.2.Estimation of traffic and emissions performance through alternative traffic data services 17 

The qualitative information on traffic levels offered by Google traffic has been compared with 18 

empirical data on travel time and estimated emissions (Figure 4).  19 
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 1 
FIGURE 4. Comparison of observed travel time (top) travel CO2 emissions (bottom) 2 

according to different levels of online traffic information (Google traffic) for Route 2 (left) 3 

and Route 3 (right) 4 

 5 

While for R2 (rural arterial) is not possible to establish an evident relationship between the 6 

qualitative Google data (given for a 4 color code green – yellow – orange red) and the actual travel 7 

time, in the case of Route 3 it can be seen that the tests performed during the ocorrece of traffic 8 

showed as orange color in Google maps, the travel time is considerably higher than the tests 9 

performed when traffic information in this link was showed as yellow and green. The same pattern 10 

is also true for emissions. It can be seen that CO2 emissions are also considerably higher during 11 

traffic information with an orange color.  However, in R2 it is not possible to establish a clear 12 

pattern between emissions and Google traffic info. 13 

14 
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4.2. Comparison between two drivers  1 

 2 
FIGURE 5 Comparison between two drivers (R1) 3 

 4 

Regarding the relationship between VSP mode distribution Vs traffic congestion level it is noticed 5 

that  runs where more time is spent in VSP1-VSP3, the traffic congestion levels are higher (higher, 6 

meaning the negative values more distant to zero). Driver 2 had cases where he spent less time 7 

between VSP1-VSP3, and more on VSP4-VSP6 generating higher CO2 emissions, as in test run 6. 8 

Some runs present almost the same time spent in VSP1-VSP3 as VSP4-VSP6 but with this 9 

information, it is only possible to observe that the driver spent more time having strong 10 

decelerations and smooth accelerations or decelerations. However, if congestion value is above 1.5 11 

(as in test run 3 of driver 1) it means that the traffic flow was slower and the driver was forced to 12 

follow the traffic stream. Another interesting case is if in similar conditions, the driver spends 13 

more time on VSP7-VSP14, having decreased or not his time on VSP4-VSP6 (as in driver 1 test 14 

run 2, 7 or driver 2 test run 5). In these situations, it is possible to predict the ocorrence of 15 

congestion in a restricted zone and free flow situation in the remaining part of the route.  16 

 17 

4.3 Exploring descriptive variables to estimate vehicle emissions 18 

Figure 6 and 7 explores linear relationships between traffic congestion, travel time, traffic flow 19 

and CO2 and NOx emissions respectively. 20 
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 1 

 2 
FIGURE 6 Linear correlations between emissions and Travel 3 

time/Volume/congestion/Difference between Max velocity and Min velocity in route 2 and 3 4 
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 1 
 2 

FIGURE 7 Linear correlations between Traffic congestion/Difference between Max velocity 3 

and Min velocity in route 2 and 3 4 

 5 

 6 

Comparing directly R2 and R3 it is noticed that in R2 the travel time is the most important 7 

factor and can explain more than 88% of the variability in CO2 emissions.   However, in R3 this 8 

factor can just explain less than 43 % in CO2, meaning that in R3 the driving behaviour assumes a 9 

higher relevance (see graph 1 and 2 in figure 6).  10 

CO2 emissions are higher when the time spent from VSP1-VSP3 is higher. If the 11 

difference between the maximum speed and the minimum speed in each test is lower, and the 12 

minimum speed of that test is higher than 1m/s CO2 emissions will decrease. The traffic congestion 13 

equation gives a reasonable perception of what happens to CO2 (on urban road), but it fails when it 14 

comes to CO2 emissions on arterial roads (figure 6, 3, 4). However, based on this relationships and 15 

associating VSP Mode Distribution with traffic congestion level algorithm, it is expected to reach 16 

a better understanding about higher CO2 emissions behiaviour, namely anticipating if emissions 17 

are mainly generated during stop&go situations or mainly caused by aggressive driving behaviour 18 

during non congested situations.   19 

Traffic volume seems to present a different behavior on the rural arterial and urban road 20 

(figure 7 and 8). Intuitively, higher traffic volumes should lead to an increase of emissions, but this 21 

may not be the case if a more compact flow implies a more stable speed profile or the green time of 22 

traffic lights is adapted to meet an increased demand. It was found that this variable cannot explain 23 

properly the variability in emissions. However, the knowledge of the volume is still important to 24 

extrapolate the impacts of the whole fleet circulating in the link. 25 

Regarding local pollutants, it has been found a higher variability in emission output when 26 

compared to CO2 emission which is associated with a higher dependence of the driving style. The 27 



Teixeira, Fernandes, Bandeira, Coelho   16 

 

Difference between Max and Min speed was shown to be the best analysed variable to explain the 1 

variability in NOX emissions.  2 

As shown in figure 6, link based performance functions, especially in the rural context 3 

may should not be based in simple linear correlations. In fact, for each network segment will be 4 

needed to establish ad hoc functions having into consideration the most relevant factors and the 5 

available information. 6 

 7 

5. FINAL REMARKS  8 

The main goal of this work was to assess how it would be possible to read and predict traffic 9 

congestion and environmental performance with limited FCD and taking advantage of traffic data 10 

from multiple sources. In the urban links, the knowledge on travel time has shown to help in 11 

anticipating vehicle’ emissions levels. However, in other links this information has to be 12 

supplemented with other parameters related the individual driver behaviour. Regarding the use of 13 

Google traffic as complementary indicator to predict traffic performance, it has been found that in 14 

the urban link the qualitative data tend to be a reliable indicator regarding the observed travel time 15 

and also the estimation of emissions. However, in the rural artery there is a great variability in 16 

emissions which hinders the use of this source of information. In future, more tests must be done 17 

especially on links with a greater variability of demand and additional data sources. 18 

The correct correlation of VSP, with congestion algorithms and with CO2 emissions can 19 

be obtained, enabling a better understanding of the driving style and its impacts on emissions. 20 

Moreover it is expected that after a longer period of data acquisition it will be possible to develop 21 

ad-hoc functions for each link in addition to apply automatic learning machine algorithms to relate 22 

traffic volumes/FCD and associated environmental impacts.  23 

Given that commercial solutions do not respond to the growing needs in the medium/long 24 

term, a prototyping platform is being designed and developed as an alternative solution; this 25 

solution has nothing to do with the data collected so far but will have everything to do with the 26 

future data collected in real time. 27 

A next step will be the development of the database and the respective incorporation into 28 

the modular platform, and test it in real time. The development of a GNSS platform that works 29 

directly with the created platform will be required. Another key issue to address is related to data 30 

privacy. Namely, if the FCD to be used in the platform must be associated to the vehicle or to an 31 

individual/independent device (e.g. smartphone) and to assess the impacts of this choice in terms 32 

of data encryption requirements.  33 

 34 
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