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Abstract

In this paper we define a new concept of monitoring the elements of triangulation
graphs by faces. Furthermore, we analyze this, and other monitoring concepts (by
vertices and by edges), from a combinatorial point of view, on maximal outerplanar

graphs.
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1 Introduction

In Graph Theory, the notion of monitoring vertices, edges of graphs by other
vertices or edges has been widely studied. For instance, monitoring vertices
by other vertices or edges by other edges leads to well known parameters
concerned with vertex domination or edge domination, respectively. When
vertices are to monitor edges we have the well known notions of vertex covering.
Finally, when edges are to monitor vertices we obtain parameters associated
with edge covering. A dominating set is a set D ⊆ V such that every vertex
not in D is adjacent to a vertex in D. A set D ⊆ E is an edge dominating

set if each edge in E is either in D or is adjacent to an edge in D. A vertex

cover is a set C ⊆ V if each edge of the graph is incident to at least one vertex
of the C. An edge cover is a set C ⊆ E which cover every vertex in V . In
Computational Geometry, for triangulations or quadrangulations, a different
monitoring notion was established – the notion of monitoring bounded faces
(faces, for short). When the faces are monitored by vertices or edges, we obtain
the parameters associated with vertex guarding or edge guarding, respectively.
Being G = (V,E) a triangulation, a guarding set is a set L ⊆ V such that
every face has a vertex in S. The guarding number, g(G), is the number of
vertices in a smallest guarding set for G. Concerning edge guarding, an edge
e = (u, v) is said to guard a face of F of G if u or v are vertices of F . An
edge guarding set L ⊆ E is a set which guards every face in G. The edge

guarding number, ge(G), is the minimum cardinality of an edge guarding set
for G. All the previous described monitoring notions were extended to include
its distance versions on plane graphs. For example, domination was extended
to distance domination and guarding to distance guarding [2].

Regarding combinatorial bounds, there are many results about domination
and covering for graphs and for triangulations graphs (that is, the graph of a
triangulation of a set of points in the plane). In this paper we analyse these
monitoring concepts (domination, covering and guarding) from a combina-
torial point of view, for a special class of triangulation graphs, the maximal

outerplanar graphs. A maximal outerplanar graph embedded in the plane
corresponds to a triangulation of a polygon. Concerning plane graphs, it is
natural to extend the notions of monitoring by faces. So, in this paper we also
define three new concepts: face-vertex guarding, face guarding and face-edge

guarding in triangulation graphs (triangulations, for short). Furthermore, we
establish tight bounds for the usual and distance versions of monitoring by
faces on maximal outerplanar graphs. In the next section we describe some
definitions and terminology that will be used throughout this paper.
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2 Definitions

As stated above, given a triangulation T = (V,E) its elements (vertices, edges
and faces) can be monitored by other vertices, edges or faces (i.e., trian-
gles). First, we start by presenting the terminology that we use when the
elements of T are monitored by vertices, at its distance version (see [2], for
details). Let T = (V,E) be a triangulation. A kd-dominating set for T is
a subset D ⊂ V such that each vertex u ∈ V −D, distT (u, v) ≤ k for some
v ∈ D. Given n ∈ N, we define γkd(n) = max{γkd(T ) : T is triangulation T =
(V,E) with |V | = n}. We say that a triangle Ti of T is kd-guarded from
by a vertex v ∈ V , if there is a vertex x ∈ Ti such that distT (x, v) ≤ k −
1. A kd-guarding set for T is a subset L ⊆ V such that every triangle of
T is kd-guarded by an element of L. Given n ∈ N, we define gkd(n) =
max{gkd(T ) : T is triangulation T = (V,E) with |V | = n}. A kd-vertex

cover of T , is a subset C ⊆ V such that for each edge e ∈ E there is a path
of length at most k, which contains e and a vertex of C. Given n ∈ N,
we define βkd(n) = max{βkd(T ) : T is triangulation T = (V,E) with |V | =
n}. The kd-domination number γkd(T ), the kd-guarding number gkd(T ) and
the kd-covering number βkd(T ) are the number of vertices in a smallest kd-
dominating set, kd-guarding set and kd-vertex cover for T , respectively.

In the following, we introduce the terminology that we use when the moni-
toring of the elements of T , at its distance version, is done by edges. A kd-edge

cover of T , is a subset C ⊆ E such that each vertex, v ∈ V distT (v, e) ≤ k − 1,
for some e ∈ C, where distT (v, e) is the minimum distance between the end-
points of e and v (see Fig.1(a)), for a sketch). If the monitored elements are
triangles we have the notions of kd-edge guarding and gekd(T ) (see Fig.1(b)).
And if they are edges, kd-edge dominating and γ

′

kd(T ) (see Fig.1(c)). Given
n ∈ N, the values γ

′

kd(n), g
e
kd(n) and β

′

kd(n), are defined similarly to the previ-
ous case (monitoring by vertices, in their distance versions).

e

(a)

e

(b)

e

(c)

Fig. 1. The edge e: (a) 2d-edge cover the black vertices; (b) 2d-edge guard the
shadow triangles; (c) 2d-edge dominate the filled edges.

Next, we will define new monitoring concepts: monitoring the elements
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of a triangulation by its faces (the usual and the distance versions). Let
T = (V,E) be a triangulation. A face-vertex cover is a subset C of faces of T
such that each vertex v ∈ V is a vertex of some Ti ∈ C. The face-vertex cov-

ering number f v(T ) is the number of vertices in a smallest face-vertex cover
for T . Given n ∈ N, we define f v(n) = max{f v(T ) : T is triangulation T =
(V,E) with |V | = n}. We say that a triangle Tj of T is guarded by a triangle Ti

of T if they share some vertex. A face guarding set is a subset L of triangles of
T such that every triangle of T is guarded by an element of L. The face guard-
ing number, gf(T ), is the number of triangles in a smallest face guarding set
for T . Given n ∈ N, we define gf(n) = max{gf(T ) : T is triangulation T =
(V,E) with |V | = n}. Finally, a subset C of triangles of T is face-edge cover if
each edge e ∈ E has an endpoint on some Ti ∈ C. The face-edge covering num-

ber f e(T ) is the minimum cardinality of a face-edge cover for T . Given n ∈ N,
we define f e(n) = max{f e(T ) : T is triangulation T = (V,E) with |V | = n}.

The above defined concepts were extended to its distance versions, “sim-
ilarly to the monitoring by edges” (see Fig.2). Given n ∈ N, the values
f v
kd(n), g

f
kd(n) and f e

kd(n) are defined similarly to f v(n), gf(n) and f e(n), re-
spectively.

(a) (b) (c)

Fig. 2. The gray face:(a) 2d-face-vertex cover the black vertices; (b) 2d-face-face
guard the shadow triangles; (c) 2d-face-edge cover the filled edges.

Our main goal is to obtain combinatorial bounds related to the monitoring
numbers on triangulation. As stated in the introduction some of these bounds
are already known, so, as is evident, we studied the unknown ones. We start
by studying a special class of triangulations, namely the maximal outerplanar
graphs; and concerning the distance versions we begin with distance 2.

3 Monitoring maximal outerplanar graphs

In this section we establish tight bounds for the minimum number of vertices,
edges and faces that monitor the different elements (vertices, edges and faces)
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of a special class of triangulation graphs – the maximal outerplanar graphs –
which correspond, as stated above, to triangulations of polygons. We call the
edges on the exterior face exterior edges, otherwise they are interior edges. In
the following tables are summarized our, and related, results concerning the
monitoring the different elements of maximal outerplanar graphs. In Table
1 we present the results regarding usual monitoring versions (k = 1), and in
Table 2 we show the results related to distance monitoring versions (k = 2).

Monitored elements

Vertices Faces Edges

M
o
n
it
o
re
d
b
y

Vertices
Dominating

γ(n) = ⌊n+n2

4
⌋ 1 [1], [7]

Guarding

g(n) = ⌊n
3
⌋ [3]

Covering

β(n) = ⌊ 2n
3
⌋ (here)

Edges
Edge-Covering

β
′

(n) = ⌈n
2
⌉ (here)

Edge-Guarding

ge(n) = ⌊ 3n
10
⌋+ 1 [5]

Edge-Dominating

γ
′

(n) = ⌊n+1

3
⌋ [4]

Faces
Face-vertex Covering

fv(n) = ⌊n
2
⌋ (here)

Face-face Guarding

gf (n) = ⌊n
4
⌋ (here)

Face-edge Covering

fe(n) = ⌊n
3
⌋ (here)

Table 1
A summary of new and related results for usual monitoring.

Monitored elements

Vertices Faces Edges

M
o
n
it
o
re
d
b
y

Vertices
Dominating

γ2d(n) = ⌊n
5
⌋ [2]

Guarding

g2d(n) = ⌊n
5
⌋ [2]

Covering

β2d(n) = ⌊n
5
⌋ [2]

Edges
Edge-Covering

β
′

2d(n) = ⌊n
4
⌋ (here)

Edge-Guarding

ge2d(n) = ⌊n
6
⌋ (here)

Edge-Dominating

γ
′

2d(n) = ⌊n
5
⌋ (here)

Faces
Face-vertex Covering

fv
2d(n) = ⌊n

4
⌋ (here)

Face-face Guarding

g
f
2d(n) = ⌊n

6
⌋ (here)

Face-edge Covering

fe
2d(n) = ⌊n

5
⌋ (here)

Table 2
A summary of new results for monitoring at distance 2.

In the following, due to lack of space, we will present only two proofs of
the results shown in the tables. First, we will prove that gf(n) = ⌊n

4
⌋, ∀n ≥ 4.

In order to do this, and following the ideas of O’Rourke [6], we first need to
introduce some lemmas.

1 n2 is the number of vertices of degree 2.
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Lemma 3.1 Suppose that f(m) triangles are always sufficient to guard any

m-vertex outerplanar maximal graph. Let T be a m-vertex outerplanar max-

imal graph and e an exterior edge. Then with f(m− 1) triangles and an

additional “collapsed triangle” at the edge e are sufficient to guard T .

Lemma 3.2 Let T be an outerplanar maximal graph with n ≥ 2k vertices.

There is an interior edge e of T that partitions G into two pieces, one of which

contains m = k, k + 1, . . . , 2k − 1 or 2k − 2 exterior edges of T .

Theorem 3.3 Every n-vertex maximal outerplanar graph, with n ≥ 4, can be

face-guarded by ⌊n
4
⌋ triangles. And this bound is tight.

Proof.

For 4 ≤ n ≤ 7, the truth of the theorem can be easily established. Assume
that n ≥ 8 and that the theorem holds for all n′ < n. Lemma 3.2 guarantees
the existence of an interior edge e that divides T into two maximal outerplanar
graphs T1 and T2, such that T1 has m exterior edges of T with 5 ≤ m ≤ 8. The
vertices of T are labeled with 0, 1, . . . , n− 1 such that e is (0, m). Each value
of m, which is minimal is considered separately. Here, we present the cases
m = 5 and m = 8. (i) Case m = 5. T1 has m + 1 = 6 exterior edges, thus it
can be face-guarded with one triangle. T2 has n − 4 exterior edges including
e, and by induction hypothesis, it can be face-guarded with ⌊n−4

4
⌋ = ⌊n

4
⌋ − 1

guards. Thus T1 and T2 together can be face-guarded by ⌊n
4
⌋ guards. (ii)

Case m = 8. The presence of any of the internal edges (0,7), (0,6), (0,5),
(7,1), (7,2) and (7,3) would violate the minimality of m. Thus, the triangle
T

′

in T1 that is bounded by e is (0,4,8). Consider the maximal outerplanar
graph T ∗ = T2 + (0, 4, 5, 6, 7, 8) (see Fig.3(a)). T ∗ has n − 3 exterior edges,
applying lemma 3.4 it can be face-guarded with f(n − 3) triangles, that is
⌊n
4
⌋ − 1 triangles, and an additional “collapsed triangle” at the edge (0,4).

This “collapsed triangle” also face-guards the pentagon (0,1,2,3,4) regardless
of the way how it is triangulated. Thus, T is face-guarded by ⌊n

4
⌋ triangles.

To prove that this upper bound is tight we need to construct a n-vertex
maximal outerplanar graph T such that gf(n) ≥ ⌊n

4
⌋. Fig.3(b) shows a maxi-

mal outerplanar graph T for which gf(n) ≥ ⌊n
4
⌋, since two shadowed triangles

can only be face-guarded by different triangles.

✷

Next, we will show that β
′

2d(n) = ⌊n
4
⌋, for any n-vertex maximal outerpla-

nar graph, with n ≥ 4. In order to do this, we first need to introduce the next
lemma.
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(b)

Fig. 3. (a) The triangle T
′

is (0,4,8); (b) a maximal outerplanar graph T for which
gf (n) ≥ ⌊n

4
⌋.

Lemma 3.4 Suppose that f(m) edges are always sufficient to 2d-edge-cover
any outerplanar maximal graph with m vertices. Let T be a m-vertex outer-

planar maximal graph and e = (u, v) an exterior edge. Then with f(m− 1)
edges and an additional “collapsed edge” at the vertex u or v are sufficient to

2d-edge-cover T .

Theorem 3.5 Every n-vertex maximal outerplanar graph, with n ≥ 4, can be

2d-edge covered by ⌊n
4
⌋ edges. And this bound is tight.

Proof.

The proof is done by induction on n. For 4 ≤ n ≤ 9, the truth of the
theorem can be easily established. Assume that n ≥ 10, and that the theorem
holds for n′ < n. Let T be a maximal outerplanar graph with n vertices.
The vertices of T are labeled with 0, 1, 2, . . . , n − 1. Lemma 3.2 guarantees
the existence of an interior edge e (which can be labeled (0, m)) that divides
T into maximal outerplanar graphs T1 and T2, such that T1 has m exterior
edges of T with 5, 6, 7 or 8. Each value of m, which is minimal, is considered
separately. Here, we only present the case m = 7. So, if m = 7, by the
minimality of m the triangle T

′

supported by the internal edge (0,7) is (0,3,7)
or (0,4,7). Since these are equivalent cases, we suppose that T

′

is (0,3,7) as
shown in Fig.4(a). Consider T ∗ = T2 + (0, 1, 2, 3, 7). T ∗ has n − 3 exterior
edges, applying lemma 3.4 it can be 2d-edge covered with ⌊n

4
⌋ − 1 edges, and

an additional “collapsed edge” at the vertex 3 or 7. This “collapsed edge”
also 2d-edge cover the pentagon (3,4,5,6,7). Thus, T can be 2d-edge covered
by ⌊n

4
⌋ edges.

Now, we will prove that this upper bound is tight. No two black vertices of
the maximal outerplanar graph illustrated in Fig.4(b) can be 2d-edge covered
by the same edge, and therefore β

′

2d(n) ≥ ⌊n
4
⌋.

✷
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Fig. 4. (a) The triangle T
′

is (0,3,7); (b) a maximal outerplanar graph T for which
β

′

2d(n) ≥ ⌊n
4
⌋.
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