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resumo 
 

 

A água doce é um dos recursos mais preciosos para a humanidade. No 
entanto, para além de serem alvo de significativas pressões antropogénicas, 
os sistemas dulçaquícolas enfrentam diversas transformações impostas pelas 
alterações climáticas. Em particular, as alterações climáticas são, hoje em dia, 
reconhecidas como uma ameaça séria para os ecossistemas dulçaquícolas, 
sendo que, à escala global, a biodiversidade de água doce está em rápido 
declínio.  
 
Nos últimos anos, a epigenética tem ganho importância em diversos campos 
científicos, como a saúde humana e a biologia do desenvolvimento. De facto, 
os mecanismos epigenéticos regulam o aparecimento de novos fenótipos, 
estando comprovado que os fenótipos determinados epigeneticamente podem 
ser transmitidos ao longo de sucessivas gerações. Assim, a epigenética é um 
tema promissor mas largamente inexplorado num grande número de áreas 
científicas.  
 
Procurando avaliar a resiliência das espécies dulçaquícolas para lidar com as 
transformações ambientais impostas pelas alterações climáticas, este trabalho 
teve como principais objetivos: i) rever os impactos das alterações climáticas 
nos ecossistemas dulçaquícolas, explorando a relação entre os mecanismos 
epigenéticos e a adaptação de diversos grupos de organismos a este 
fenómeno; ii) avaliar a potencial importância dos mecanismos epigenéticos na 
adaptação de Daphnia magna a um aumento na salinidade das águas.  
 
Uma extensa revisão da literatura foi efetuada, tendo sido concluído que as 
alterações climáticas estão a alterar a composição, biodiversidade e 
funcionamento dos ecossistemas dulçaquícolas. Adicionalmente, este trabalho 
evidenciou que, no contexto das alterações climáticas, o aumento da 
temperatura e/ou salinidade da água são as principais ameaças para a 
biodiversidade dulçaquícola, sendo que os mecanismos epigenéticos podem 
contribuir decisivamente para a adaptação de diferentes grupos taxonómicos, 
tanto a curto como a longo prazo, às flutuações e transformações ambientais 
provocadas pelas alterações climáticas.  
 
Na abordagem do segundo objetivo desta dissertação, a exposição de uma 
geração de Daphnia magna a um aumento de salinidade na água induziu uma 
adaptação molecular, ao nível epigenético, ao ambiente hipertónico. Para 
alguns genes, esta adaptação epigenética foi transferida ao longo de três 
sucessivas gerações, nenhuma das quais expostas ao agente de stress a que 
esteve exposta a geração parental.  
 
Globalmente, este trabalho suporta a ideia de que os mecanismos 
epigenéticos são um tema promissor nas áreas da ecotoxicologia aquática e 
biologia evolutiva, bem como na interface entre estas duas áreas de 
investigação.  
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abstract 

 
Freshwater is a precious resource for humankind. Nevertheless, freshwater 
systems face not only significant anthropogenic pressure but also numerous 
transformations induced by climate change. Nowadays, climate change is 
recognized as a serious threat to freshwater ecosystems and, on a global 
scale, freshwater biodiversity is in rapid decline.  
 
In the last few years, epigenetics has been gaining importance in several 
scientific fields, such as human health and developmental biology. In fact, 
epigenetic mechanisms can influence phenotype determination and 
epigenetically acquired phenotypes are known to be inherited across several 
generations. Therefore, epigenetics is a promising but unexplored topic in a 
significant number of scientific fields.  
 
Taking into account that the global aim of this work was to explore the 
resilience of freshwater species to cope with the environmental transformations 
induced by climate change, its main specific objectives were: i) to review the 
impacts of climate change on freshwater ecosystems, and explore the link 
between epigenetic mechanisms and the adaptation of different species to the 
associated phenomena; ii) to assess the relevance of epigenetic mechanisms 
in the adaptation of Daphnia magna to an increase in water salinity.  
 
An extensive review was made leading to the conclusion that climate change is 
transforming the composition, biodiversity and functioning of numerous 
freshwater ecosystems. Additionally, this study highlighted that, in the context 
of climate change, the rise in water temperature and/or salinity are the major 
threats to freshwater biodiversity, while epigenetic mechanisms can have a 
decisive role in constraining both short- and long-term adaptation of different 
taxonomic groups to the environmental transformations induced by climate 
change.  
 
As the second objective was tackled, the exposure of one generation of 
Daphnia magna to increased salinity showed that there is a molecular 
adaptation to the hyperosmotic environment at the epigenetic level. For some 
genes, this epigenetic adaptation was transferred across three successive 
generations, none of which exposed to the stressor challenging the parental 
generation.  
 
Generally, this work supports the idea that epigenetic mechanisms are a 
promising topic in the fields of aquatic toxicology and evolutionary biology, as 
well as in research undertaken in their intersection.  

 

 

 



1 
 

INDEX 
 
Chapter 1 - General introduction and objectives …………………………….…...3 
 

1.1. Status of the World’s Freshwater Systems …………………...………….3   
 

1.2. Climate Change …………………………………………………………..…6 
 

1.3. Impacts of Climate Change on Freshwater Ecosystems…………….….9 

1.3.1. Salinity Rising Due to Climate Change and its Implications for 
Society .……………………………………………………………………….....10 

1.3.2. Effects of Salinity Rising on Freshwater Ecosystems ……....12 

1.4. Physiology of Daphnia .……………………………………………………16 

1.4.1. Osmotic and Ionic Regulation ……………….…………………16 

1.4.2. The role of Na+/K+-ATPase in Osmoregulation …..................18 
 

1.5. Epigenetics …………………………………………………………………22 
 

1.5.1. Epigenetic Mechanisms …….…………….…………………….22 
 
1.5.2. Daphnia Epigenetics ……………………………………………23 
 
1.5.3. Transgenerational Epigenetic Inheritance ……………………25  
 

1.7. Objectives and Structure of the Dissertation………………..…….….…27 
 

1.8. References……………………………………………………………….…29 
 

Chapter 2 - The role of epigenetics in the response and adaptation of 
species to climate change in freshwater ecosystems: a review 
…………………………………………………………………………………………….41 

 2.1. Abstract …………………………………………………………….……….41 
  
 2.2. Introduction ………………………………………………………………...41 
 
 2.3. Condition of World’s Freshwater: Drivers of Transformation ….……...42 
 
 2.4. Impacts of Climate Change on Freshwater Ecosystems ………….…..43  
 
 2.5. Epigenetic Mechanisms and their Evolutionary Role …………….……48 
 
 2.6. Epigenetic Adaptation to Climate Change ………………………….......52  
 



2 
 

 2.7. Conclusions and Perspectives for Future Research ……………..……55  
 
 2.8. References ………………………………………………………….……...58 
 
Chapter 3 - Transgenerational effects of salinity stress in Daphnia magna: 
the role of epigenetic mechanisms ………………………………………………..67 
 
 3.1. Abstract ……………………………………………………………………..67 
 
 3.2. Introduction …………………………………………………………………67 
 
 3.3. Material and Methods ………………………………………………….….71 
  
  3.3.1. Daphnia culturing …………………………………………….….71 
 
  3.3.2. Exposure and sampling ………………………………….……..72 
 
  3.3.3. Reduced representation bisulfite sequencing ……………..…73  
 
  3.3.4. Bioinformatic analysis ………………………………….……….74 
 
  3.3.5. Statistical analysis ………………………………………………74 
 
 3.4. Results ……………………………………………………………….……..75 
 
 3.5. Discussion …………………………………………………………….……77 
 
 3.6. References …………………………………………………………….…...82 
 
Chapter 4 - General discussion and final remarks ……………………………...91



3 
 

Chapter 1 - General Introduction and Objectives  

1.1. Status of the World’s Freshwater Systems   

Hydrosphere is composed by all the available water (liquid, soil and gas) in the 

atmosphere, on the surface of the Earth and in the Earth’s crust. Its volume 

corresponds approximately to 1.386 x 106 Km3 but freshwater comprises only 

2.5% of it. In terms of freshwater distribution, 68.7% is perennially frozen and 

29.9% is groundwater. Moreover, only 0.26% of the Earth’s freshwater can be 

found in lakes, reservoirs and rivers (Carpenter, Stanley, & Vander Zanden, 2011). 

Thus, freshwater is the most precious resource for humankind. Besides 

humans’ basic consumption needs, freshwater plays a key role in industrial 

processes, particularly in food, energy and fibre production, and it is vital as a 

recipient to the dilution and degradation of pollutants (Carpenter et al., 2011; 

Drechsel, Qadir, & Wichelns, 2015; Rockström, Gordon, Folke, Falkenmark, & 

Engwall, 1999; WWAP, 2014). Consequently, freshwater scarcity has been set 

forward has one of the most dangerous threats for human societies (Carpenter et 

al., 2011; Mekonnen & Hoekstra, 2016; Millennium Ecosystem Assessment, 

2005).  

Nowadays, there are still 748 million people who cannot have access to a 

convenient source of water and an estimated 2.4 billion people live in water-

stressed environments. Moreover, as Mekonnen & Hoekstra (2016) unveiled, two 

thirds of the world’s population live in regions that face water scarcity at least for 

one month a year (Figure 1). Worldwide, human demand for freshwater currently 

approaches or exceeds its supply, and the provision of freshwater to populations is 

only achieved following disruptive exploitation in numerous terrestrial and aquatic 

ecosystems (Carpenter et al., 2011; Jackson et al., 2001; Guy Woodward, 

Perkins, & Brown, 2010). 
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Figure 1 - Number of months per year in which usable freshwater scarcity exceeds 1.0 – which is 
the ratio between the footprint (volume of fresh surface water and groundwater withdrawn, and not 
returned due to evaporation or human use) and the total freshwater availability - at 30 × 30 arc min 
resolution (1996-2005). Source: Mekonnen & Hoekstra (2016). 

  

The agricultural sector is currently responsible for 70% of all freshwater 

consumption in the world (Rosegrant, Ringler, & Zhu, 2009; WWAP, 2017), as 

shown in Figure 2. In the future, significant increases in freshwater consumption 

are expected for industry and energy production, as several energy sources such 

as nuclear, hydroelectric and thermal require water for production, safety and 

transport (WWAP, 2014, 2017). These trends on freshwater consumption are 

closely related to the projections of Earth’s population growth. For example, the 

population of the Asia-Pacific region is currently rising and it is expected to reach 5 

billion in 2050 (WWAP, 2017). Consequently, the higher demand for freshwater 

will result in some freshwater systems which will be further explored up to their 

limits (Dudgeon, 2000; WWAP, 2017). 

 

 

Figure 2 - Global consumption and wastewater production by major water use sector. Data refers 
to 2010. Source: WWAP (2017). 
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In addition to direct exploitation, freshwater systems face various other 

anthropogenic pressures. For instance, several authors highlighted the impacts of 

land use in these systems (Delgado, Rosegrant, Steinfeld, Ehui, & Courbois, 1999; 

Foley, 2005; Ramankutty, Evan, Monfreda, & Foley, 2008). Besides, the drainage 

of chemicals from agricultural and urban areas and the discharge of contaminated 

waters from e.g. mining, medical and industrial activities lead to an increase in the 

quantity of exogenous chemicals such as organic compounds, heavy metals, acids 

and alkalis which are released and spread throughout freshwater ecosystems 

(Carpenter et al., 2011; Durance & Ormerod, 2009; Guy Woodward, Perkins, et 

al., 2010). Several of these contaminants are reportedly toxic to aquatic organisms 

and humans (Corcoran, Nellemann, Baker, Bos, & Osborn, 2010; Drechsel et al., 

2015; WWAP, 2017). Furthermore, wastewaters are also another important source 

of freshwater contamination (Figure 3). An estimated 80% of the world’s 

wastewaters (values can reach 95% in some developing countries) are discharged 

into the environment without treatment (WWAP, 2017). Remarkably, the rise in 

water scarcity in some parts of the world has led to a generalized, although still 

limited recognition of the importance of wastewater collection, treatment and reuse 

(Corcoran et al., 2010; WWAP, 2017).  

 

Figure 3 - Wastewater components and their effects. Source: WWAP (2017). 



6 
 

Besides several anthropogenic impacts, climate change has been pointed 

out as another important driver of freshwater transformation (Carpenter et al., 

2011; Michener, Blood, Bildstein, Brinson, & Gardner, 1997; Guy Woodward, 

Perkins, et al., 2010). It is a serious issue that has risen as a consequence of 

human activities (IPCC, 2007; Schewe et al., 2014), and projections suggest that 

climate change will further cause profound alterations in freshwater systems within 

a few years (Cañedo-Argüelles et al., 2013; Carpenter et al., 2011; Guy 

Woodward, Perkins, et al., 2010). In fact, climate change impacts can already be 

seen worldwide and their magnitude made them a noteworthy subject and a major 

topic within political agendas (IPCC, 2007, 2014).  

Freshwater systems are among the most altered systems on Earth, 

although their protection and conservation is critical to the well-being of future 

generations and the preservation of biodiversity (Carpenter et al., 2011; Dudgeon 

et al., 2006). In order to contextualise the urgent need for an improved freshwater 

ecosystems management, part of the United Nations World Water Development 

Report (2017) can be quoted: “In a world where demands for freshwater are ever 

growing, and where limited water resources are increasingly stressed by over-

abstraction, pollution and climate change, neglecting the opportunities arising from 

improved wastewater management is nothing less than unthinkable”. 

 

1.2. Climate Change  

The climate of Earth has been constantly changing throughout time. As scientific 

data shows, there have been 7 cycles of glacial advance and retreat in the last 

650,000 years. The last ice age occurred 7,000 years ago and since then the 

planet has entered in the so-called modern climate era. While these climatic 

fluctuations were determined by small variations in the orbit of the Earth (which 

changed the quantity of solar energy that the planet receives), human activities are 

responsible for the recent alteration of the Earth’s climate (NASA, 2008).  

Humans have been drastically changing their way of living and, since the 

industrial revolution in particular, there has been a huge rise in the quantity of 

greenhouse gases released to the atmosphere. This increase has been 

particularly evident from the mid-20th century onwards (IPCC, 2007). Despite the 
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contribution of some natural processes to the release of these gases, the four 

principal ones - carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and 

halocarbons (a group of gases containing fluorine, chlorine and bromine) - have 

significantly risen their concentration in the atmosphere as a consequence of 

human activities (IPCC, 2007; National Research Council, 2006; Vitousek et al., 

1997). Specifically, methane levels increased as a result of agriculture practices 

and natural gas distribution while nitrous oxide levels risen mostly due to the use 

of fertilizers and fossil fuel burning (Milich, 1999; Vitousek et al., 1997). On the 

other hand, halocarbon gas increased following its use as a refrigeration agent 

and in other industrial processes (NASA, 2008; Ramanathan, Cicerone, Singh, & 

Kiehl, 1985). Carbon dioxide atmospheric concentrations are those experiencing 

the most dramatic increase (Figure 4) and this increase was mainly determined by 

the burning of fossil fuels for e.g. transportation, building refrigeration and in the 

manufacture of goods (Crowley, 2001; IPCC, 2007; Ramanathan et al., 1985; 

Sabine, 2004).  

 

 

Figure 4 - Atmospheric carbon dioxide levels (parts per million) over time. The graph is based on 
the comparison of atmospheric samples taken from ice cores and more recent direct 
measurements. Adapted from NASA (2008). Link: https://climate.nasa.gov/evidence/. 

 

The Earth holds a complex energy balance. In fact, part of the radiation 

emitted from the sun is reflected back to the space by clouds, atmospheric 

particles and bright surfaces, such as ice and snow on the ground. In addition, a 

percentage of the incoming solar radiation is absorbed in the atmosphere by dust, 

https://climate.nasa.gov/evidence/
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atmospheric gases (including greenhouse gases) and other particles (Allen, 2009; 

Budyko, 1969; Trenberth, 2009). Therefore, as the concentration of greenhouse 

gases in the atmosphere rises, higher retention of incoming solar radiation occurs. 

As greenhouse gases have a heat-trapping nature, the increasing atmospheric 

concentrations of these gases results in higher temperatures on the Earth’s 

surface (Allen, 2009; IPCC, 2007, 2014; Kunkel et al., 2013; National Research 

Council, 2006). The scientific evidences revealing that Earth’s climate responds to 

changes in greenhouse gas levels are many, impressed in e.g. ice cores (Figure 

5) from Greenland, Antarctica and tropical mountain glaciers (Alley, 2000; Derksen 

& Brown, 2012), as well as ocean sediments, coral reefs, sedimentary rocks and 

tree rings. These palaeoclimate evidences indicate that the pace of warming that 

the Earth experiences today is roughly ten times faster than it was in previous 

normal warming periods related to the ice-age-recovery (Alley, 2000; Mengel et 

al., 2016; NASA, 2008; National Research Council, 2006).  

 

 

Figure 5 - Experimental drilling on the Greenland Ice Cap, summer of 2005. Source: NASA (2008). 
Link: https://earthobservatory.nasa.gov/Features/Paleoclimatology_IceCores/.  

 

The consequences of climate change can already be seen worldwide. 

Among these, some remarkable ones are the rise in the global surface 

temperature, the rise of sea level, the shrinking of ice sheets, the decline of Arctic 

sea ice, the retreat of glaciers, the acidification of oceans and the higher frequency 

of extreme events, such as droughts and floods (Alley, 2000; Derksen & Brown, 

2012; IPCC, 2007, 2014; Mengel et al., 2016; Michener et al., 1997; NASA, 2008). 

https://earthobservatory.nasa.gov/Features/Paleoclimatology_IceCores/
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All these are frighteningly affecting human existence and significantly pressuring 

entire ecosystems.  

 

1.3. Impacts of Climate Change on Freshwater Ecosystems  

Climate change has provoked significant alterations in several climate trends 

(IPCC, 2007; Michener et al., 1997; Rahmstorf, 2007), at an unprecedented speed 

(Guy Woodward, Dybkjær, et al., 2010). Therefore, climate change has been 

touted as the greatest emerging threat to global biodiversity and to the functioning 

of ecosystems (Bastawrous & Hennig, 2014; Dudgeon et al., 2006; Guy 

Woodward, Perkins, et al., 2010).  

Freshwater ecosystems present several features that make them 

particularly vulnerable to climate change. For example, freshwater ecosystems are 

relatively isolated and physically fragmented within large terrestrial landscapes 

(Dudgeon et al., 2006; Guy Woodward, Perkins, et al., 2010). Thus, freshwater 

species cannot easily disperse while the environment is changing (Dudgeon et al., 

2006; Guy Woodward, Perkins, et al., 2010). Moreover, freshwater ecosystems 

face a myriad of anthropogenic pressures while they are heavily explored for 

goods and services (Carpenter et al., 2011; Foley, 2005; Malmqvist et al., 2008), 

and despite a small percentage of the Earth surface is covered by freshwater 

ecosystems (approximately 0.8%), they have been estimated to support almost 

6% of all described species (Dudgeon et al., 2006). Consequently, Woodward, 

Perkins, & Brown, (2010) have claimed that “freshwater biodiversity is 

disproportionately at risk on a global scale”. 

The impacts of climate change have already been recorded in freshwater 

systems standing in higher latitudes and altitudes, since these regions have been 

experiencing higher rates of warming (IPCC, 2007; Guy Woodward, Perkins, et al., 

2010). These particular systems have been considered ‘sentinel systems’, as they 

can provide early warning evidences on the impacts of climate change in 

freshwater systems (Layer, Hildrew, Monteith, & Woodward, 2010; Guy 

Woodward, Dybkjær, et al., 2010). In fact, several Arctic lakes and ponds have 

been recording regime shifts in their biological communities (Smol et al., 2005), 

which has been linked to long-term warming. Warmer temperatures affect 
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freshwater systems by decreasing the duration of the ice season, as they influence 

the melting of glaciers, permafrost and other ice sheets. Moreover, a warmer 

climate also contributes to changes in evaporation and precipitation ratios 

(Carpenter et al., 2011; Oechel et al., 2000; Smol et al., 2005). All these factors 

constitute important causes of limnological changes, provided they provoke 

transformations in the seasonality and magnitude of hydrologic flows (Carpenter et 

al., 2011; Smol et al., 2005).  

Another climate change-related driver of freshwater transformation is the 

rise in salinity (Chen & Zong, 1999; Mengel et al., 2016; Michener et al., 1997; 

Mimura, 2013; Rahmstorf, 2010). Mainly provoked by sea level rising, the rise in 

salinity in freshwater ecosystems has severe impacts on freshwater biodiversity, 

as salinity affects the survival and reproduction of freshwater species (Carpenter 

et al., 2011; Martínez-Jerónimo & Martínez-Jerónimo, 2007; Mimura, 2013; 

Nielsen, Brock, Rees, & Baldwin, 2003; Guy Woodward, Perkins, et al., 2010).  

In summary, climate change is transforming the composition, biodiversity 

and functioning of freshwater ecosystems (Cañedo-Argüelles et al., 2013; 

Carpenter et al., 2011; Durance & Ormerod, 2009; Williams, 1987; Guy 

Woodward, Perkins, et al., 2010). A deep understanding on the capacity of 

freshwater organisms to cope with environmental changes is critical to better 

picture the resilience of freshwater ecosystems under related environmental 

pressure and hence to a conscientious development of effective 

protection/management actions towards the conservation of these valuable 

resources (Bastawrous & Hennig, 2014; Dudgeon et al., 2006; Guy Woodward, 

Perkins, et al., 2010).  

 

1.3.1. Salinity Rising Due to Climate Change and its Implications for Society  

Numerous studies have tried to understand and predict the implications of climate 

change for human societies and ecosystems (Bastawrous & Hennig, 2014; IPCC, 

2007; Vineis, Chan, & Khan, 2011; Vörösmarty, 2000; Guy Woodward, Perkins, et 

al., 2010). Amongst them, several highlighted the problems related to the rising of 

salinity in freshwaters (Cañedo-Argüelles et al., 2013; Carpenter et al., 2011; 

Schallenberg, Hall, & Burns, 2003; Vineis et al., 2011; Guy Woodward, Perkins, et 
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al., 2010). This salinity increase is mostly driven by two phenomena: sea level rise 

and evaporation (Schallenberg et al., 2003; Sumner & Belaineh, 2005). Higher 

evaporation rates lead to a reduction in the total volume of the watersheds, 

therefore rising waterborne salt concentration. In parallel, sea level rise (Figure 6) 

intensifies the intrusion of sea water into freshwaters, provoking a rise in salinity in 

these latter ecosystems (Mengel et al., 2016; Mimura, 2013). 

Sea level is influenced by a great number of factors. The most important 

ones leading to increased sea levels are the added water from land-based ice 

melting and the thermal expansion of the oceans (water expands as it warms) 

(Mimura, 2013). As provoked by climate change, sea level started to rise during 

the 19th century and rose around 20 centimetres in the last century (IPCC, 2007; 

Mimura, 2013). Despite several efforts to predict future sea level trends, there is a 

clear lack of scientific agreement about the projections already made. For 

example, the Intergovernmental Panel on Climate Change (IPCC) projected global 

sea level to rise 18 to 59 centimetres from 1990 to the 2090s (IPCC, 2007). 

However, several authors have been showing that physical models used by IPCC 

have several limitations (Mimura, 2013; Rahmstorf, 2007, 2010),  and predicted 

much higher sea level values in the future. As Rahmstorf (2010) summed-up, “A 

number of recent studies taking the semi-empirical approach have predicted much 

higher sea level rise for the twenty-first century than the IPCC, exceeding one 

metre if greenhouse gas emissions continue to escalate”.  

 

 

Figure 6 - Changes in sea level since 1993 (satellite observations). Source: NASA (2008). Link: 
https://climate.nasa.gov/vital-signs/sea-level/. 

 

https://climate.nasa.gov/vital-signs/sea-level/
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Considering the projections for sea level rise, humans and freshwater 

ecosystems will face additional pressure, particularly in low-land coastal zones 

(continuous areas along the coast recording altitudes lower than 10 meters above 

sea level) (McGranahan, Balk, & Anderson, 2007; Mimura, 2013). Despite 

covering only 2% of the Earth’s surface, they hold 10% of the world population 

(McGranahan et al., 2007). In addition, the impacts of sea level rise will be felt in 

other flooding-vulnerable areas, such as delta regions and small islands 

(McGranahan et al., 2007; Mimura, 2009), which are heavily populated and prone 

to coastal erosion, respectively. Furthermore, sea water intrusion will contaminate 

coastal aquifers, tidal waterways and freshwaters, such as lakes and other 

reservoirs (Carpenter et al., 2011; Chen & Zong, 1999; Michener et al., 1997; 

Vineis et al., 2011; Guy Woodward, Perkins, et al., 2010). 

In summary, the increase of salinity levels in freshwater systems has 

significant and complex impacts on the natural environment and society. Actually, 

salinity promotes the alteration of the physical, chemical and biological features of 

aquatic systems (Cañedo-Argüelles et al., 2013; Carpenter, Kitchell, & Hodgson, 

1985; Carpenter et al., 2011; Nielsen et al., 2003; Guy Woodward, Perkins, et al., 

2010).  

 

1.3.2. Effects of Salinity Rising on Freshwater Ecosystems 

Salinity is a property of all natural waters and it refers to the total concentration of 

dissolved inorganic ions (Williams & Sherwood, 1994). Still, salinity is mostly 

determined by the dilution of Na+, Ca2+, Mg2+, K+, Cl−, SO4
2−, CO3

2− and HCO3
− 

(Williams, 1987).  

Salinity influences the distribution of aquatic biota and species are 

commonly aggregated according to their salinity preferences into three major 

groups collecting freshwater fauna, brackish water fauna and marine fauna (Aladin 

& Potts, 1995; Williams, 1987). The salinization of freshwaters constitutes an 

acute form of environmental perturbation (Millennium Ecosystem Assessment, 

2005; Schallenberg et al., 2003; Williams, 1987). In fact, once the salt 

concentration increases in a freshwater ecosystem, organisms can only survive 

and reproduce if they adapt themselves to the new environment or if they 
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behaviourally can avoid the stressor (Berg et al., 2010; Nielsen et al., 2003). Since 

freshwater ecosystems are physically fragmented within large terrestrial 

landscapes, species with limited dispersal abilities must adapt or they will perish 

(Dudgeon et al., 2006; Eros & Campbell Grant, 2015; Guy Woodward, Perkins, et 

al., 2010). Therefore, even relatively small changes in salinity can have an impact 

on freshwater and brackish ecosystems by depleting biodiversity and by changing 

their dynamics and functioning (Nielsen et al., 2003; Schallenberg et al., 2003). 

Freshwater ecosystems have a typical trophic structure which is constituted 

by four main functional groups: phytoplankton, zooplankton, vertebrate and 

invertebrate planktivores and top predators (piscivorous fishes) (Leibold, Chase, 

Shurin, & Downing, 1997). Zooplankton is composed by three essential groups of 

organisms: rotifers, copepods and cladocerans, these latter being pointed out as 

the most relevant for freshwater ecosystems (Lampert, 2006; Leibold et al., 1997; 

Wetzel, 1993). Among cladocerans (order Cladocera), those belonging the genus 

Daphnia have been highlighted because of their larger size. In fact, this 

characteristic allows them a higher capacity of suppressing phytoplankton (Gliwicz 

& Guisande, 1992) and makes them the preferential (and/or easier) food source 

for visual predators, such as fish (Hall et al., 1976). By playing this central role 

(Figure 7), daphnids are major zooplankter actors in the recycling of nutrients, 

therefore markedly influencing the primary productivity of freshwater ecosystems 

(Carpenter et al., 1985; Hall et al., 1976). Indeed, Daphnia species are major 

contributors to the decisive ecological role of zooplankton supporting the structure 

and function of freshwater ecosystems (Carpenter et al., 1985; Nielsen et al., 

2003). 
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Figure 7 - Trophic interactions and food web structure in a pelagic, freshwater ecosystem. Adapted 

from Pereira (2008). 

 

Zooplankters can be severely affected by salinity stress, through the 

impairment of their growth, reproduction and survival (Bailey et al., 2004; Hall & 

Burns, 2003; Jeppesen et al., 1994; Schallenberg et al., 2003). Once their survival 

and life-history are affected, population structure and dynamics changes and 

higher trophic levels can consequently be severely harmed along with the capacity 

of the system to control primary productivity, ultimately putting the entire 

ecosystem at risk (Brucet et al., 2010; Cañedo-Argüelles et al., 2013; Hall & 

Burns, 2003; Lampert, 2006). Although their common sensitivity to higher salt 

concentrations, different groups of organisms within zooplankton present distinct 

physiological tolerances to several ionic components of the medium (Boronat, 

Miracle, & Armengol, 2001; Bos, Cumming, Watters, & Smol, 1996). For instance, 

the animals of the Cladocera order have been considered extremely good 

indicators of salinity changes (Boronat et al., 2001) and it has been proved that 

they present differential halotolerance, ranging from fresh to brackish water levels 

(Aladin & Potts, 1995; Boronat et al., 2001; Bos et al., 1996; Lockwood, 1962).  

 Daphnia magna is a species of cladocerans whose specific patterns of 

tolerance to salinity are remarkably different compared to other Daphnia species. 

D. magna has an original holarctic distribution but it is also able to occupy arid 

climatic regions (e.g. Africa countries), tolerating a broad range of environmental 
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conditions (Alonso, 1996; Benzie, 2005). As far as salinity tolerance is concerned, 

D. magna is deemed euryhaline and it is able to live not only in fresh and brackish 

waters, but also in athalassohaline waters, surviving to salt ranges of 3.8 to 38  

g.L-1 (Alonso, 1996; Boronat et al., 2001). Therefore, they are able to live in 

temporary pools and ponds where fluctuations of salinity are commonly higher 

than in permanent larger ponds and lakes. In fact, D. magna is one of the most 

halotolerant organisms from the Daphnia genus. For example, Gonçalves et al. 

(2007) addressed the tolerance of Daphnia magna and Daphnia longispina to 

salinity in terms of immobilisation (acute toxicity) and life history (chronic toxicity), 

finding that NaCl acute and chronic toxicity to D. magna (EC50 values of 5.9 g.L-1 

and 5.0 g.L-1, respectively) was about two-fold lower compared to D. longispina 

(EC50 values of 2.9 g.L-1 and 2.2 g.L-1, respectively). Another conclusion of the 

study was that D. magna reproduces and lives well at salinity concentrations up to 

4.55 g.L-1, a reference similar to the one obtained by Schuytema, Nebeker, and 

Stutzman (1997), who found that D. magna reproduces and survives normally at 

salinity concentrations up to 4 g.L-1. Consistently, other authors pointed out that as 

salinity increases, freshwater communities experience a quick composition shift 

into the prevalence of species more tolerant to salt, including D. magna, while the 

least tolerant ones tend to suffer deleterious effects (Brucet et al., 2010; Horrigan, 

Choy, Marshall, & Recknagel, 2005; Nielsen et al., 2003).   

 Interestingly, D. magna populations show remarkable clonal variation 

regarding salt tolerance, with some clones being able to live only in freshwater and 

others tolerating in brackish waters (Martínez-Jerónimo & Martínez-Jerónimo, 

2007; Teschner, 1995; Weider & Hebert, 1987). However, salinity sensitivity is not 

restricted to freshwater clones: both freshwater and brackish clones of D. magna 

showed the same negative effects on development and reproduction when grown 

at 5‰ (Teschner, 1995). So, despite the ability of D. magna to survive in a broad 

range of salt concentrations, higher concentrations usually have deleterious 

effects on its reproduction and consequently on the population growth of this 

species (Arnér & Koivisto, 1993; Cowgill & Milazzo, 1991; Ghazy, Habashy, 

Kossa, & Mohammady, 2009; Martínez-Jerónimo & Martínez-Jerónimo, 2007). 

Therefore, it may take a long period of time until daphnids fully adapt to higher 
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salinity conditions (Ghazy et al., 2009; Martínez-Jerónimo & Martínez-Jerónimo, 

2007).  

By the key role of Daphnia species in freshwater ecosystems, they are 

widely seen as valuable indicators of the ecosystem responses to environmental 

change (e.g. Colbourne et al., 2011). Moreover, Daphnia organisms are easy to 

handle with and it is simple to maintain them under laboratory conditions, profiting 

from their rapid and highly productive life cycle (Baudo, 1987; Lampert, 2006). Due 

to all these factors, Daphnia species have been established as model organisms 

in several fields of science, such as ecology, ecotoxicology and evolutionary 

biology (Baudo, 1987; Deng & Lynch, 1996; Hebert, 1987; Lampert, 2006). 

 

1.4. Physiology of Daphnia 

1.4.1. Osmotic and Ionic Regulation  

Freshwater species are hyperosmotic regulators, meaning that they keep their 

body fluids at higher salt concentrations than those prevailing in the external 

medium (Aladin & Potts, 1995; Lockwood, 1962). Osmoregulation is a key process 

for daphnids, as they need to counteract the natural, continuous ion loss to the 

water (Aladin & Potts, 1995; Lockwood, 1962; Lucu & Towle, 2003).  

Daphnia have numerous osmoregulatory traits, some of these facing 

ontogenic changes during the reproduction cycle and development of daphnids. 

Under favourable conditions, Daphnia reproduce asexually by parthenogenesis for 

one to several generations. Under a parthenogenetic cycle, the offspring are 

genetically identical to the progenitors and the population consists of only females 

(Gabriel, 1982; Lynch & Gabriel, 1983). The parthenogenetic eggs are incubated 

in brood chambers which are located between the thorax and the dorsal carapace 

(Ebert, 2005) (Figure 8). The brood chamber is in direct contact with the external 

medium and the egg membrane is impermeable until the development of 

osmoregulatory organs in the emerging embryos (Aladin & Potts, 1995). In order 

to protect the developing embryo from salinity fluctuations, the “osmolality of the 

embryonic fluid is isosmotic to the osmolality of the brood chamber fluid, which in 

turn is very similar to the osmolality of the haemolymph of the progenitor” 

(Bianchini & Wood, 2008). When unfavourable environmental conditions arise, 
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Daphnia switches to sexual reproduction (Hobæk & Larsson, 1990; Innes & 

Singleton, 2000). In fact, the production of sexual eggs promotes genetic variation 

in the offspring (Hobæk & Larsson, 1990). These eggs are involved in a set of 

protective membranes (ephippium) and they are genetically and biochemically 

different from parthenogenetic eggs (Hebert, 1987; Pauwels, Stoks, Verbiest, & De 

Meester, 2007). Przylecki (1921a, 1921b) examined eggs from D. magna and 

found that over-wintering eggs bear higher salt content (4.2 g/L NaCl) than 

developing eggs (2.5 g/L NaCl). Therefore, over-wintering eggs are more resistant 

to environmental salinity fluctuations.  

Osmoregulatory organs in embryos include the neck organ, whose function 

is largely assumed in later stages by epipodite cells (Aladin & Potts, 1995). The 

neck organ (also known as nuchal organ) contains mitochondria-rich cells to 

support salt uptake and the maxillary gland for water excretion (Aladin & Plotnikov 

I.S., 1985; Aladin & Potts, 1995; Lucu & Towle, 2003).  

 

 

Figure 8 - Adult female of Daphnia magna with a clutch of freshly laid parthenogenetic eggs in its 
brood chamber. Source: Ebert (2005). 
 

As powerful osmoregulators, daphnids actively uptake NaCl , which is 

essential to counteract the continuous ion loss (Bianchini & Wood, 2008; 

Lockwood, 1962; Lucu & Towle, 2003). Moreover, Daphnia clones have 

quantitatively differential sodium uptake kinetics (Havas, Hutchinson, & Likens, 

1984; Potts & Fryer, 1979) and it has been proposed that these differences 
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represent physiological adaptations to different environments (Aladin & Potts, 

1995).   

The osmoregulatory mechanisms in D. magna are significantly different for 

adults and neonates. The mechanisms of whole-body Na+ uptake and the 

concentration-dependent kinetics differ according to the life stage considered 

(Bianchini & Wood, 2008; Glover & Wood, 2005). Bianchini & Wood (2008) 

showed that adult daphnids have a lower maximum capacity of Na+ transport on a 

mass-specific basis but a higher affinity for Na+ compared to neonates. In addition, 

these authors highlighted that at the basolateral membrane of the salt-transporting 

epithelia of neonates, Na+ ions are pumped from the cells to the extracellular fluid 

by a Na+/K+-ATPase and a Na+/Cl- exchanger. In adults, the mechanisms are 

similar but a Na+/K+/2Cl- cotransporter replaces the Na+/Cl- exchanger (Bianchini & 

Wood, 2008).  

Actually, the sodium uptake rate influences the sensitivity of freshwater 

animals to ionoregulatory toxicants such as metals (Bianchini & Wood, 2002, 

2003; Grosell, Nielsen, & Bianchini, 2002). These findings are particularly relevant 

to the study of osmoregulation in D. magna, since this species has been pointed 

out as the most sensitive aquatic species to waterborne copper and silver 

following either acute or chronic exposures (Bianchini & Wood, 2008; Grosell et 

al., 2002; Ratte, 1999). Furthermore, “the mechanisms of acute and chronic 

toxicity of these metals are associated with an alteration of the whole-body Na+ 

concentration as a consequence of a metal-induced inhibition of the whole-body 

Na+,K+-ATPase activity” (Bianchini & Wood, 2008). The inhibition of sodium uptake 

through the blockage of Na+/K+-ATPase resembles the mechanism of metal 

toxicity described for freshwater fishes (Bianchini & Wood, 2003).  

 

1.4.2. The role of Na+/K+-ATPase in Osmoregulation 

The sodium pump, Na+/K+-ATPase is a membrane-bound protein that uses the 

hydrolysis of ATP to transport three sodium (Na+) ions from the cytosol to the 

extracellular medium and two potassium (K+) ions in the opposite direction. The 

electrochemical gradient that Na+/K+-ATPase generates is crucial to maintain the 

osmotic balance of the cell, the resting membrane potential of most tissues and 
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the excitable properties of muscle and nerve cells (Kaplan, 2002; Therien & 

Blostein, 2000). Moreover, this electrochemical gradient is also essential for the 

transport of nutrients and amino acids into the cell (Cereijido, 2004; Kaplan, 2002; 

Kühlbrandt, 2004; Therien & Blostein, 2000). 

The Na+/K+-ATPase is a heteromeric protein that is composed by a catalytic 

α-subunit and an accompanying β-subunit (Blanco & Mercer, 1998; Lingrel & 

Kuntzweiler, 1994) (Figure 9). The α-subunit is the largest, the most functional and 

it is also that responsible for ion transport (Shull, Lane, & Lingrel, 1986; Shull, 

Schwartz, & Lingrel, 1985). The β-subunit is responsible for the proper trafficking 

of the protein complex to the plasma membrane (Kaplan, 2002). An optional third 

subunit, the γ-subunit, may also be present (Geering, 2006) (Figure 9). It is the 

smallest subunit of the complex and its function is to modulate the kinetic 

characteristics of the pump, in a tissue-specific way (Crambert & Geering, 2003; 

Garty & Karlish, 2006; Geering, 2006). These three subunits have several 

isoforms, which are specific of different tissues and organisms (Blanco & Mercer, 

1998; Garty & Karlish, 2006; Henriksen et al., 2013; Kaplan, 2002). Encoded by 

different genes, four isoforms of the α-subunit and three isoforms of β-subunit  

have been identified (Blanco, 2005; Henriksen et al., 2013; Sweadner, 1989).  

Still, it has been demonstrated that there are minor differences in the amino 

acid sequences of the different subunit isoforms (Henriksen et al., 2013; Lucu & 

Towle, 2003; Suhail, 2010; Therien & Blostein, 2000). From an evolutionary point 

of view, highly conserved sequences indicate that Natural Selection continuously 

eliminated mutations in those sequences and the underlying reason for this high 

similarity appears to be the decisive role that the sodium pump plays in 

osmoregulation (Lucu & Towle, 2003; Masui, Furriel, Mantelatto, McNamara, & 

Leone, 2003; Sáez, Lozano, & Zaldívar-Riverón, 2009). As osmoregulation is an 

important process to all the forms of life on Earth, the sodium pump has suffered 

minor changes in its sequence in order to maintain its function (Sáez et al., 2009).  
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Figure 9 - Diagrammatic representation of Na+/K+-ATPase and its subunits (2α, 2β and 2γ-
subunits) within a biomembrane. Source: Suhail (2010). 

 

Several studies demonstrated that the Na+/K+-ATPase is the key molecule 

also for the osmoregulation of crustaceans in general (Henry, Lucu, Onken, & 

Weihrauch, 2012; Ituarte, López Mañanes, Spivak, & Anger, 2008; Leone et al., 

2015; Lucu & Towle, 2003) and daphnids in particular (Bianchini & Wood, 2003, 

2008; Latta, Weider, Colbourne, & Pfrender, 2012; Sáez et al., 2009). In other 

groups of animals, several works have also pointed out the biological importance 

of the sodium pump. For example, it has been established that the Na+/K+-ATPase 

plays a major role in the response of some fish species to salinity changes and in 

the acclimation of several species to freshwater environments (Lin, Tsai, and Lee 

2004; Bystriansky and Schulte 2011).  

As far as Daphnia species are concerned, several studies demonstrated 

that the sodium pump is also important to cope with different chemical substances 

(Bianchini & Wood, 2003, 2008; Latta et al., 2012). In terms of salinity stress, the 

Na+/K+-ATPase has been identified as the principal molecular feature involved in 

Daphnia responses though other molecular mechanisms may also play important 

roles (Bianchini & Wood, 2003, 2008; Henry et al., 2012). Sáez et al. (2009) 

studied the evolutionary history of Na+/K+-ATPases and pointed out that the major 

evidence on the relevance of a protein in osmoregulation is when its expression or 

activity is changed in the presence of different salt concentrations. Latta et al. 

(2012) investigated the effect of salinity in two genotypes of D. pulex that lived in 

environments with different salinity ranges, i.e. one of the genotypes lived in ponds 
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with salinity ranges of 0.11 to 0.58 g.L-1 while the other inhabited ponds ranging 

from 0.60 to 9.95 g.L-1. These authors were able to identify two copies of the 

Na+/K+-ATPase alpha subunit that were up-regulated in both genotypes as a 

response to increasing salinity. In addition, Sáez et al. (2009) performed a 

phylogenetic analysis with the available protein sequences (over 200) of the α-

subunit of the sodium pump in different organisms. The authors found several 

genetic variations in the α-subunit of the Na+/K+-ATPase of D. pulex, which is 

consistent with an actual process of  adaptation of D. pulex to different water 

salinities (Weider & Hebert, 1987). Actually, their idea is supported by other 

studies showing that the physiological response to environmental stressors can be 

constrained by the spatial and temporal regulation of the different isoforms of the 

Na+/K+-ATPase subunits (Escalante, Garcia-Saez, & Sastre, 1995; Jorgensen, 

Håkansson, & Karlish, 2003; Li & Langhans, 2015).  

Surprisingly, the specific mechanism that regulates the expression of 

Na+/K+-ATPase genes under different salt conditions wasn’t identified yet. The 

spatial and temporal control of the sodium pump occurs at the transcriptional, 

post-transcriptional, translational and post-translational level (Capasso, Rivard, & 

Berl, 2005; Li & Langhans, 2015; Suhail, 2010). Moreover, the expression of 

Na+/K+-ATPase is transcriptionally regulated by hormones, growth factors, lipid 

mediators and other extracellular stimuli (Bajpai & Chaudhury, 1999; Billecocq et 

al., 1997; Cochrane et al., 2012). All these agents influence the binding of 

transcription factors to the promoter regions of the genes of the Na+/K+-ATPase 

subunits (Li & Langhans, 2015). In addition, several authors highlighted the 

potential importance of non-genetic factors in the gene regulation of Na+/K+-

ATPase (Henriksen et al., 2013; Larsen et al., 2012; Li & Langhans, 2015; 

Selvakumar et al., 2014; Wang et al., 2013). Amongst these, early development 

acclimation, maternal factors and epigenetic factors have been pointed out as the 

best candidates for future research (Goetz & MacKenzie, 2008; Larsen et al., 

2012; Vandegehuchte & Janssen, 2011). Remarkably, Selvakumar et al. (2014) 

recently showed that epigenetic modifications seem indeed to regulate the gene 

expression of the Na+/K+-ATPase in kidney cancer cells.  
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1.5. Epigenetics 

1.5.1. Epigenetic Mechanisms  

Epigenetics consists of changes in gene activity and expression without altering 

the underlying DNA sequence (Bernstein, Meissner, & Lander, 2007; Bird, 2007; 

Goldberg, Allis, & Bernstein, 2007). Epigenetic modifications are affected by 

environmental changes and are considered crucial for interpreting the genomes 

under the influence of physiological factors (Bernstein et al., 2007; Vandegehuchte 

& Janssen, 2011). Epigenetic mechanisms include the chemical modification of 

the cytosine residues of DNA (DNA methylation) and the modification of histones 

associated with DNA (protein modifications), and their response to environmental 

changes is achieved through the alteration of DNA accessibility and of chromatin 

structure (Bird, 2002, 2007; Goldberg et al., 2007; Kouzarides, 2007). In this way, 

these mechanisms can regulate gene expression and so they contribute to the 

determination of phenotypes. In addition, non-coding RNAs are included among 

epigenetic mechanisms. These RNAs are also capable of controlling gene 

expression, forming complex RNA regulatory networks of the genome (Long, 

Brady, & Benfey, 2009; Mattick & Makunin, 2006; Rinn & Chang, 2012). 

DNA methylation is perhaps the most studied epigenetic mechanism. It 

consists of the addition of a methyl group (CH3) to the 5' position of a cytosine ring, 

creating a 5-methylcytosine (m5C) (Figure 10). DNA methylation is catalysed by 

specific enzymes, namely methyltransferases (DNMTs). Some DNMTs are 

responsible for the maintenance of established patterns of DNA methylation while 

others catalyse de novo DNA methylation. Furthermore, DNA demethylation can 

also occur through the action of specific enzymes that are capable of demethylate 

m5Cs (Bird, 2002, 2007; Jaenisch & Bird, 2003; Zhong, Agha, & Baccarelli, 2016).  

Epigenetics is considered one of the fastest-growing areas of Science and 

has been gaining importance in several fields mainly due to studies revealing the 

link between DNA methylation and several key molecular and cellular processes, 

such as transcriptional silencing, chromosome inactivation, transposable element 

regulation, development and tumorigenesis (Kingston, Tamkun, Baulcombe, & 

Dean, 2014; Morey & Avner, 2010; Sadikovic, Al-Romaih, Squire, & Zielenska, 

2008; Sharma, Kelly, & Jones, 2009; Slotkin & Martienssen, 2007). 



23 
 

 

Figure 10 - DNA methylation and its role in the regulation of gene expression. Upper panel: 
Cytosine is methylated to 5-methylcytosine by DNA methyltransferase (DNMT); SAM (S-
adenosylmethionine); SAH (S-adenosylhomocysteine). Lower panel: Binding of a methyl CpG-
binding protein to methylated sequences prevents access to this sequence by transcription factors; 
MBP (methyl CpG-binding protein); TF (transcription factor). Source: Zhong et al. (2016). 

 

1.5.2. Daphnia Epigenetics   

Vandegehuchte et al. (2009) were the first studying Daphnia epigenetics. The 

authors found sequences homologous to human DNA methyltransferases 

(DNMT1, DNMT2 and DNMT3A) in the genome of D. magna. Furthermore, the 

analysis of two genomic fragments revealed low levels of methylation in D. magna 

(from 0.22% to 0.44% methylated CpG sites) (Vandegehuchte et al., 2009). These 

values are similar to methylation levels found in the Drosophila melanogaster 

genome (0.1% to 0.4%) (Lyko, Ramsahoye, & Jaenisch, 2003), but they are very 

low when compared to other species, as the percentage of methylated cytosines in 

the DNA of mammals and birds is 5%, 10% in fish and amphibians, up to 3% in 

insects and occasionally more than 30% in some plants (Field, Lyko, Mandrioli, & 

Prantera, 2004). Despite the relatively low levels of methylation found in the 

genome of D. magna, its potential importance in the regulation of growth and 

fertility of Daphnia species has been pointed out (Harris, Bartlett, & Lloyd, 2012; 

Robichaud, Sassine, Beaton, & Lloyd, 2012). Furthermore, it has also been shown 

that epigenetic modifications are present in the genome of D. pulex and that they 

are most likely involved in the regulation of gene expression (Strepetkaitė et al., 

2015).  

In an ecological and ecotoxicological context, the response of mammals to 

changes in the environment has been well characterized while studies inspecting 
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other animal groups are still scarce (Bernstein et al., 2007; Vandegehuchte & 

Janssen, 2014). Despite this scenario, Daphnia has already been set forward as 

an epigenetic model (Harris et al., 2012). The underlying reason for this touting is 

the reproductive strategy of these animals, which allows the establishment of 

parthenogenetical clones with the consequent possibility of eliminating genetic 

variability in experimental trials (Harris et al., 2012; Hebert, 1987). In addition, the 

draft genome sequence of D. magna is now available and there is a large quantity 

of ecological, ecotoxicological and evolutionary literature on Daphnia species that 

can facilitate the understanding of gene-environment interactions (Baudo, 1987; 

Harris et al., 2012; Lampert, 2006).  

Few studies explored the epigenetic modifications in Daphnia following 

environmental challenge. Asselman et al. (2015) studied global cytosine 

methylation patterns following exposure of two different D. magna genotypes to 15 

stressor gradients comprising metal burden, food quality, predation pressure, 

parasitism and water quality variation, including salinity increase. These authors 

proved that global cytosine methylation reflects genotype effects, environmental 

effects, and genotype × environment effects. In addition, and also important in the 

context of the present dissertation, salinity was the single abiotic factor that 

significantly affected global DNA methylation levels in both clones tested. This 

study thus illustrates that changes in global DNA methylation are the result of 

complex interactions between genotype and environment, and that epigenetic 

effects may play a decisive role in constraining the response of populations to 

several changing environmental conditions, such as salinity.  

In order to gain a better understanding of the relationship between DNA 

methylation and the response of Daphnia to different salinity conditions, it is 

important to specifically target the genes that are experiencing changes in their 

methylation status under different salinity levels. Na+/K+-ATPase is the major 

molecular actor for proper osmoregulation in Daphnia, thus this is an interesting 

candidate gene group to look at in this context. Actually, it has been demonstrated 

that the expression of the genes of the Na+/K+-ATPase subunits can be regulated 

at a transcriptional level through epigenetic mechanisms (Henriksen et al., 2013; 

Selvakumar et al., 2014; L. Wang et al., 2013). For instance, by studying kidney 
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carcinoma in humans, Selvakumar et al. (2014) were able to correlate reduced 

levels of the β-subunit protein (both in culture and in patients' tumour samples) to 

the hypermethylation in the promoter region for the human β-subunit gene. 

Furthermore, higher cytosine-guanine dinucleotides (CpGs) methylation was found 

in the first exon of the Atp1a3 (one of the isoforms of the α-subunit) of pig liver 

cells and this was correlated to lower expression of this gene (Henriksen et al., 

2013). Wang et al. (2013) consistently showed that the exposure of mice to 

manganese led to the hypermethylation of the Atp1a3 promoter and that this 

methylation status provoked the downregulation of its transcript.  

Despite notable efforts have been made, the role of epigenetic mechanisms 

in the regulation of Daphnia responses to environmental stimuli is still largely 

unexplored. However, as a different history of environmental exposure can entail 

different gene methylation patterns, it is undeniable that epigenetics opens 

interesting perspectives to the aquatic toxicology field (Asselman et al., 2017; 

Vandegehuchte & Janssen, 2011, 2014; Vandegehuchte, Lemière, & Janssen, 

2009).  

 

1.5.3. Transgenerational Epigenetic Inheritance  

In general, epigenetic alterations are cleared and re-established at each 

generation, but some of them can be transferred through successive generations, 

even when the initial stress has disappeared (Bird, 2007; Daxinger & Whitelaw, 

2010; Skinner, 2008; Vandegehuchte & Janssen, 2011) (Figure 11).  
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Transgenerational epigenetic inheritance was already found in several species, 

such as humans, mice, Arabidopsis and Drosophila (Cropley, Suter, Beckman, & 

Martin, 2006; Johannes et al., 2009; Morgan & Whitelaw, 2008; Pembrey, Saffery, 

& Bygren, 2014; Sen et al., 2015; Xing et al., 2007). In Daphnia species, 

transgenerational inheritance has been postulated but not confirmed so far 

(Agrawal, Laforsch, & Tollrian, 1999). In fact, several studies followed the effects 

of a range of environmentally relevant compounds for several generations of non-

exposed Daphnia offspring (Vandegehuchte, Kyndt, et al., 2009; Vandegehuchte, 

De Coninck, Vandenbrouck, De Coen, & Janssen, 2010; Vandegehuchte, 

Lemière, et al., 2009; Vandegehuchte, Lemière, Vanhaecke, Berghe, & Janssen, 

2010). The results of these works provided valuable insights as follows. DNA 

methylation levels in D. magna seem not to be affected by cadmium 

(Vandegehuchte, Kyndt, et al., 2009). The exposure of one generation to a sub-

lethal Zn concentration caused a reduction in the global DNA methylation levels of 

the offspring (F1), but this effect did not prevail in the second generation (F2) 

(Vandegehuchte, De Coninck, et al., 2010; Vandegehuchte, Lemière, et al., 2009). 

Following daphnids’ exposure to chemical substances known to affect DNA 

methylation in mammals (vinclozolin, 5-azacytidine, 2'-deoxy-5-azacytidine, 

Figure 11 - Persistence of 
epigenetic marks. Alterations that 
last less than one cell cycle (green 
asterisk, a) do not qualify as 
epigenetic changes under the 
definition that strictly requires 
heritability, whereas non-mutational 
changes that are transmitted from 
one cell to its daughters (red 
asterisk, b) or between generations 
of an organism (blue asterisk, c) do 
qualify. Source: Bird (2007). 
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genistein and biochanin A), it was observed that only some, namely vinclozolin 

and 5-azacytidine, influence DNA methylation in Daphnia; both these  chemicals 

provoked a reduction in the global DNA methylation levels of the offspring (F1) but 

this effect was only transferred to two subsequent non-exposed generations (F2) 

for the 5-azacytidine exposure (Vandegehuchte, Lemière, et al., 2010). 

Although it may be tempting to claim that these results indicate that epigenetic 

transgenerational inheritance indeed occurs in Daphnia, it should be noticed that 

the identification of transgenerational effects can be particularly challenging in 

species where the embryo develops in the body of the mother (e.g. Daphnia or 

humans). As Harris et al. (2012) stated “…maternal exposure to environmental 

factors could affect the offspring either by retention of maternal epigenetic states in 

the germ line cells that give rise to the embryo, a true transgenerational effect, or 

more simply by exposure of the somatic cells of the embryo while it is in the 

mother”. Therefore, these authors claimed that transgenerational epigenetic 

effects in Daphnia species can only be confirmed when epigenetic alterations 

persist through 3 post-exposure generations. In addition, Harris et al. (2012) and 

Vandegehuchte et al. (2010) remarked that the examination of gene-specific 

methylation status would enhance the detection of transgenerational epigenetic 

effects by being more biologically informative. Nowadays, techniques such as 

bisulphite sequencing, methylated DNA immunoprecipitation (meDip) or DNA 

methylation sensitive restriction enzyme digests allow gene-specific analyses 

(Harris et al., 2012; Kurdyukov & Bullock, 2016).  

 

1.7. Objectives and Structure of the Dissertation 

The main aim of the present dissertation was to explore the potential role of 

epigenetic mechanisms in the evolutionary adaptation of freshwater species to 

climate change. The specific objectives addressed in the different chapters of the 

present document were:  

1) to review the impacts of climate change on freshwater ecosystems and explore 

the evolutionary role of epigenetic mechanisms in both short- and long-term 

adaptation of freshwater organisms to the corresponding environmental 

fluctuations;  



28 
 

2) to explore the role of epigenetic transgenerational inheritance in the adaptation 

of Daphnia magna to increased levels of a selected model stressor reflecting 

climate change impacts in freshwater ecosystems, i.e. salinity.  

 

In order to appropriately expose the work done while tackling these 

objectives, this dissertation was organized in four chapters. The present chapter 

(chapter 1) consists of a general introduction widely covering the main topics 

addressed throughout and recording on the global picture for a proper 

contextualisation of the following chapters.  

Chapter 2 and chapter 3 essentially contain two manuscripts already 

submitted or in preparation to be submitted for publication in international, peer-

reviewed journals in the field. Chapter 2 consists of a theoretical review on the 

evolutionary role of epigenetic mechanisms, in a climate change context. Chapter 

3 evaluates the importance of epigenetically acquired phenotypes and their 

transmission across several generations in the response of Daphnia magna 

exposed to high salinity levels.  

Finally, chapter 4 represents the final wrap-up of the major discussion 

items and provides the final remarks summarising the findings.  
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Chapter 2 - The role of epigenetics in the response and 

adaptation of species to climate change in freshwater 

ecosystems: a review 

2.1. Abstract  

Freshwater ecosystems are amongst the most threatened ecosystems on Earth. 

Currently, climate change is the most important driver of freshwater transformation 

and its effects include changes in the composition, biodiversity and functioning of 

freshwater ecosystems. Understanding the capacity of freshwater species to 

tolerate the environmental fluctuations induced by climate change is critical to the 

development of effective conservation strategies. In the last few years, epigenetic 

mechanisms became increasingly considered in this context because of their 

pivotal role in gene-environment interactions. In addition, the evolutionary role of 

epigenetically inherited phenotypes is a relatively recent but promising field. Here, 

we revise and examine the impacts of climate change on freshwater ecosystems, 

exploring the potential role of epigenetic mechanisms in both short- and long-term 

adaptation of species. Focusing on the most promising future research avenues 

through the disentangling of the effects of climate change on freshwater 

biodiversity, potential molecular targets for epigenetic studies are specifically 

highlighted. Plus, available techniques and its adequacy, as well as the most 

suitable freshwater species to perform such studies are discussed. 

 

Keywords: climate change, freshwater biodiversity, adaptation, epigenetic 

mechanisms, phenotype, transgenerational epigenetic inheritance 

 

2.2. Introduction 

Freshwater biodiversity is nowadays widely recognised as being severely 

threatened as a direct or indirect result of the human footprint. Thus, it urges to 

establish and maintain the effort towards monitoring freshwater biodiversity loss, 

unravelling the mechanisms involved and implementing mitigation and remediation 

measures. This is the general arena of this review. Its main aim was to collect 

evidences to provide valuable insights concerning the resilience of freshwater 
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species to cope with the environmental transformations induced by climate 

change, therefore supporting further establishment of protective measures against 

freshwater biodiversity loss. We present a global picture of the condition of 

freshwater resources and summarize the most significant drivers of freshwater 

transformation. The impacts of climate change-related stressors on freshwater 

ecosystems are extensively scrutinized and, in this context, the evolutionary role of 

epigenetic mechanisms is addressed by focusing on epigenetically determined 

phenotypes and their inheritance across several generations. Theoretical 

considerations and key experimental findings are presented, and an integrative 

discussion on these topics is made. Focusing on freshwater biota, future research 

avenues are highlighted, with key molecular targets to be tackled, the most current 

techniques available for the job and the most suitable freshwater model species 

being comprehensively discussed.  

 

2.3. Condition of World’s Freshwater: Drivers of Transformation 

Hydrosphere is composed by all the available water (liquid, solid and gas) and its 

volume corresponds approximately to 1.386 x 106 Km3, but only 2.5% of it is 

actually freshwater. In terms of freshwater distribution, 68.7% is perennially frozen 

and 29.9% is groundwater (Carpenter, Stanley, & Vander Zanden, 2011; 

Shiklomanov, 2000). Moreover, only 0.26% of the Earth’s freshwater can be found 

in lakes, reservoirs and rivers (Carpenter et al., 2011). Thus, freshwater is 

undoubtedly amongst the most precious resources for humankind. Besides 

humans’ basic consumption needs, freshwater plays a key role in industrial 

processes, particularly in food, energy and fibre production, and it is vital to the 

dilution and degradation of discharged or deposited pollutants (Carpenter et al., 

2011; Drechsel, Qadir, & Wichelns, 2015; Rockström, Gordon, Folke, Falkenmark, 

& Engwall, 1999). Consequently, freshwater scarcity has been set forward has one 

of the most dangerous threats for human societies (Carpenter et al., 2011; 

Mekonnen & Hoekstra, 2016). 

Worldwide, human demand for freshwater currently approaches or exceeds 

its supply, and consequently, the provision of freshwater is only achieved following 

disruptive exploitation in numerous terrestrial and aquatic ecosystems (Corcoran, 
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2010; R. Jackson et al., 2001; Woodward, Perkins, & Brown, 2010). Plus, the 

drainage of chemicals from agricultural and urban areas and the discharge of 

contaminated waters from e.g. mining, medical and industrial activities lead to an 

increase in the quantity of exogenous chemicals such as organic compounds, 

metals, acids and alkalis, being released and spread throughout freshwater 

ecosystems (Carpenter et al., 2011; Durance & Ormerod, 2009; WWAP, 2017). 

Several of these contaminants are reportedly toxic to aquatic organisms and 

humans (Corcoran, 2010; Drechsel et al., 2015; WWAP, 2017). Besides direct 

anthropogenic impacts, climate change has been pointed out as another important 

driver of freshwater transformation (Carpenter et al., 2011; Michener, Blood, 

Bildstein, Brinson, & Gardner, 1997; Woodward et al., 2016; Woodward, Perkins, 

et al., 2010). It has risen as a consequence of human activities and its impacts can 

already be seen worldwide (IPCC, 2014; Mimura, 2013; Schewe et al., 2014).  

In summary, freshwaters are among the most impacted and altered 

systems on Earth, although their protection and conservation is critical to the well-

being of future generations (Carpenter et al., 2011; Dudgeon et al., 2006; WWAP, 

2017).  

 

2.4. Impacts of Climate Change on Freshwater Ecosystems  

Climate change has provoked significant alterations in several climate trends 

(IPCC, 2014; Michener et al., 1997; Rahmstorf, 2007). These transformations are 

happening at an unprecedented pace and projections suggest that climate change 

will further cause profound alterations in freshwater systems within a few years 

(Cañedo-Argüelles et al., 2013; Carpenter et al., 2011; Woodward, Dybkjær, et al., 

2010; Woodward, Perkins, et al., 2010). Therefore, climate change has been 

touted the greatest emerging threat to global biodiversity and to the functioning of 

freshwater ecosystems (Bellard, Bertelsmeier, Leadley, Thuiller, & Courchamp, 

2012; Dudgeon et al., 2006; Woodward, Perkins, et al., 2010). These ecosystems 

are already pressured by a myriad of anthropic stressors while they are heavily 

explored for goods and services (Carpenter et al., 2011; Foley, 2005; Karr & 

Dudley, 1981), and it is noteworthy that despite a small percentage of the Earth 

surface is covered by freshwater ecosystems (approximately 0.8%), they have 
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been estimated to support almost 6% of all described species (Dudgeon et al., 

2006). In this way, the claim by Woodward et al. (2010) that “freshwater 

biodiversity is disproportionately at risk on a global scale” can be appropriately 

quoted. And indeed, climate change is transforming the composition, biodiversity 

and functioning of numerous freshwater ecosystems as synthesized in Table 1 

(Cañedo-Argüelles et al., 2013; Carpenter et al., 2011; Williams, 1987; Woodward 

et al., 2016; Woodward, Perkins, et al., 2010).  
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Table 1. Summary of the predicted and/or observed effects of climate change on the biological, chemical and physical features of freshwater 
ecosystems worldwide. 

Reference 
Assessment 

Region 
Biological effects Chemical and Physical effects 

Hering et al., 
2010 

Europe 

progressive loss of phytoplankton diversity; 
earlier phytoplankton Spring growth; 

suppression of large zooplankton species and consequent reduction in 
grazing intensity; 

enhanced macrophyte and algal growth; 
more complex life cycles in zooplankton species; 

earlier summer decline of daphnids; 
changes in the distribution of cold-water species; 

reduced reproduction success and increased predator pressure on the 
eggs and young life stages of cold-water species; 
extinction of fish and invertebrates in cold regions; 

extinction of cold stenothermic taxa in temperate and warm regions; 
increased colonization of small streams by alien species; 

alterations in fish communities, including in assemblages’ structure; 
higher density of planktivorous cyprinid fish species; 

changes in the migration patterns of several fish species; 
greater proportion of terrestrial plant species in floodplain; 

lower benthic invertebrate abundance and diversity; 
influx of invasive vegetation species of wetlands; 
increased number of invertebrates r-strategists; 

changes in life strategies of bivoltine or semivoltine life cycles. 

higher water temperatures; 
reduced water quality; 

increased loss of  water bodies by drying; 
changes in flow regimes, thus in sedimentation rates and 

channel morphology; 
higher differences of ice break-up timing between colder 

and warmer regions; 
higher frequency and duration of extreme events such as 

rainstorms and drought; 
increased sea-salt deposition; 

lower recharge of groundwater; 
more variation of carbon, phosphorus and nitrogen 

mineralisation rates; 
increased frequency of acidification pulses; 

higher runoff of total organic carbon; 
higher water oxygen depletion. 

Ryan & Ryan, 
2006 

New Zealand 

changes in the structure and composition of aquatic communities; 
faster growth rates and smaller adult sizes in some freshwater 

invertebrates;  
earlier maturity of stream invertebrates; 

less food sources for stream insects; 
more frequent scouring of benthos; 

lower predation efficiency of certain fishes; 
increased parasite abundance; 
higher animal metabolic rates; 

lower genetic diversity of populations; 
increased likelihood of successful establishment of exotic aquarium 

escapees. 

warmer water temperatures, particularly in streams; 
drier flood plains; 

increased frequency of extreme climatic events, such as 
floods; 

increased eutrophication and oxygen depletion in lakes. 
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Allen, Smith, & 
Darwall, 2012 

Indo-Burma 
Region 

(Thailand, 
Vietnam, 

Cambodia, 
Lao,  

Myanmar) 

severe impacts on species highly specialized, with complex life 
histories, with restricted ranges/limited distribution and/or with specific 

habitat requirements; 
increased migration of species that are relatively close to their upper 

thermal limits; 
increased migration to higher elevations or latitudes; 

loss of body mass in amphibians; 
higher metabolic rates in amphibians; 
shifts in the timing of fish migration; 
higher metabolic costs for fishes; 

increased invasion of alien species; 
higher transmission of fish parasites and diseases; 

skews in sex ratios of aquatic reptiles; 
depletion of plankton; 
food-web alterations. 

higher water temperatures; 
less rainfall; 

increased saltwater intrusion and erosion in delta regions; 
lower water oxygen levels; 

exacerbation of anthropogenic stressors; 
more extreme flow events; 

higher tendency to develop dry-season droughts. 

Dallas & 
Rivers-Moore, 

2014 
South Africa 

changes in aquatic biodiversity; 
alterations in phenology and life-history patterns of several species; 

higher susceptibility of species with specialised habitat and/or 
microhabitat requirements, narrow environmental tolerances or 

thresholds, dependence on specific environmental triggers, 
dependence on interspecific interactions, and poor ability to disperse or 

colonise a new area; 
changes in the composition of communities; 
changes in species distribution and range; 

extinction of vulnerable species; 
higher number of invasive and pest species; 

higher number of waterborne and vector-borne diseases; 
changes in vegetation. 

warmer water temperatures; 
increased frequency and intensity of extreme events; 
increased sedimentation and turbidity of the water; 

changes in nutrient cycles; 
higher transport of dissolved pollutants, such as 

pesticides and pathogens; 
mobilisation of adsorbed pollutants, such as metals and 

phosphorus; 
lower concentration of dissolved oxygen; 

higher salinization in semi-arid and arid areas; 
higher organic matter decomposition; 
changes in channel geomorphology; 

decreased longitudinal and lateral connectivity; 
changes in groundwater recharge rates. 

Mulholland et 
al., 1997 

South-
Eastern 

United States 
and Gulf 
Coast of 
Mexico 

simplified biological communities; 
favouring of species with short and multivoltine life histories; 

higher rates of primary production; 
less habitat for cool water species; 

expansion of subtropical species northwards; 
increased invasion of non-native species. 

warmer water temperatures; 
lower water quality; 

higher frequency of short and strong rainfall events; 
increased organic matter decomposition; 

higher rates of nutrient cycling; 
changes in the salinity regimes and flushing rates of 

estuaries; 
shorter periods of inundation of riparian wetlands; 

exacerbation of anthropogenic stressors. 
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Measuring and predicting the impacts of climate change on freshwater 

ecosystems has been the aim of several studies. Among them, warmer 

temperatures, greater variability of precipitation and higher water salinities have 

been highlighted as the most important derived stressors for freshwater 

ecosystems (Cañedo-Argüelles et al., 2013; Carpenter et al., 2011; Dudgeon et 

al., 2006; Kefford et al., 2016). Warmer temperatures affect freshwater systems by 

decreasing the duration of the ice season, as they influence the melting of 

glaciers, permafrost and other ice sheets (Alley, 2000). Moreover, a warmer 

climate also contributes to changes in evaporation and precipitation ratios 

(Cañedo-Argüelles et al., 2013; Carpenter et al., 2011). All these factors constitute 

important sources of limnological changes, since they provoke variations in the 

seasonality and magnitude of hydrologic income of lakes and streams (Carpenter 

et al., 2011; Fenoglio, Bo, Cucco, Mercalli, & Malacarne, 2010; Hering et al., 

2010). The increase in the global surface temperature has also been leading to a 

rise in the heat absorbed by freshwater systems, especially on its surface (R. 

Jackson et al., 2001; Sabine et al., 2004). Warmer water temperatures decrease 

the amount of oxygen that can be dissolved, thereby decreasing the quantity of 

free oxygen that aquatic organisms can use in respiration (Carpenter et al., 2011; 

Hering et al., 2010; R. Jackson et al., 2001). Warmer waters also promote the 

decrease of habitat ranges of several aquatic organisms through their life cycle, 

the most iconic example being that of salmonids (Hoegh-Guldberg et al., 2007; 

Mohseni, Stefan, & Eaton, 2003; Schindler, 2001).  

The rise in salinity is another climate change-related source of freshwater 

transformation (Mengel et al., 2016; Michener et al., 1997; Mimura, 2013; 

Rahmstorf, 2010). Mainly provoked by sea level rising, the rise in salinity observed 

in freshwater ecosystems has severe impacts on freshwater biodiversity, as it 

affects the survival and reproduction of several species which are typically poorly 

tolerant to variations in salts concentration (Carpenter et al., 2011; Gonçalves, 

Castro, Pardal, & Gonçalves, 2007; Martínez-Jerónimo & Martínez-Jerónimo, 

2007; Mimura, 2013; Woodward, Perkins, et al., 2010). Even relatively small 

changes in salinity have been argued or shown to have an impact on freshwater 

and brackish ecosystems by depleting biodiversity and by changing their dynamics 
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and functioning (Cañedo-Argüelles et al., 2013; Kefford et al., 2016; Loureiro, 

Pereira, Pedrosa, Gonçalves, & Castro, 2013).  

Once the salinity levels and/or temperature increases in a freshwater 

ecosystem, animals can only survive and reproduce if they adapt themselves to 

the new environment or if they behaviourally can avoid the stressor (Berg et al., 

2010; Kefford et al., 2016; Nielsen, Brock, Rees, & Baldwin, 2003). However, 

freshwater ecosystems, lentic and semi-lotic ones in particular, are usually 

relatively isolated and physically fragmented within large terrestrial landscapes 

(Dudgeon et al., 2006; Woodward, Perkins, et al., 2010). Thus, freshwater species 

inhabiting these freshwater ecosystems cannot easily migrate or disperse into a 

new habitat while the environment is changing (Woodward et al., 2016; 

Woodward, Perkins, et al., 2010).  Because of this decreased likelihood of a 

successful escape, freshwater species must adapt or will perish when facing the 

environmental fluctuations induced by climate change (Dudgeon et al., 2006; Eros 

& Grant, 2015; Woodward, Perkins, et al., 2010). Therefore, studying the adaptive 

potential of freshwater species is essential to understand the effects of climate 

change on these animals and their ecosystems (Heino, Virkkala, & Toivonen, 

2009; Loureiro, Castro, Cuco, Pedrosa, & Gonçalves, 2013; Woodward et al., 

2016; Woodward, Perkins, et al., 2010). More precisely, a deep understanding on 

the strategies used by freshwater organisms to cope with environmental change is 

critical to better picture the resilience of freshwater ecosystems under such 

environmental pressure, and hence for a conscientious development of effective 

protection/management actions towards the conservation of these valuable 

resources (Dudgeon et al., 2006; Loureiro, Castro, et al., 2013; Woodward et al., 

2016; Woodward, Perkins, et al., 2010).  

 

2.5. Epigenetic Mechanisms and their Evolutionary Role 

Epigenetic mechanisms consist of potential heritable changes in gene activity, 

function or expression without altering the underlying DNA sequence (Bernstein, 

Meissner, & Lander, 2007; Bird, 2007; Goldberg, Allis, & Bernstein, 2007; 

Jaenisch & Bird, 2003). Epigenetic mechanisms include (i) the chemical 

modification of cytosine residues of DNA (DNA methylation); (ii) the modification of 
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histones associated with DNA (protein modifications) as they respond to 

environmental changes constraining chromatin structure and DNA accessibility 

(Bird, 2002, 2007; Goldberg et al., 2007; Kouzarides, 2007); (iii) non-coding RNAs 

(ncRNAs) that can control gene expression, forming complex RNA regulatory 

networks of the genome (Klimenko, 2017; Mattick & Makunin, 2006; Rinn & 

Chang, 2012). Epigenetic modifications are affected by environmental changes 

and are considered crucial for interpreting the genomes under the influence of 

physiological factors (Baccarelli & Bollati, 2009; Feil & Fraga, 2012; Ho & 

Burggren, 2010; Jaenisch & Bird, 2003).  

Epigenetics has been increasingly gaining relevance in several fields, 

mainly due to studies revealing links between epigenetic mechanisms and several 

key molecular and cellular processes, such as transcriptional silencing, 

chromosome inactivation, transposable element regulation, development and 

tumorigenesis (Kingston, Tamkun, Baulcombe, & Dean, 2014; Morey & Avner, 

2010; Sadikovic, Al-Romaih, Squire, & Zielenska, 2008; Sharma, Kelly, & Jones, 

2009; Slotkin & Martienssen, 2007). One such field is evolutionary biology 

(Jablonka & Lamb, 2007; K. N. Laland et al., 2015; Pigliucci & Muller, 2010); while 

it is commonly assumed that the molecular basis of the evolutionary processes are 

random mutations followed by Natural Selection (Avise & Ayala, 2009; Jablonka & 

Lamb, 2007), these processes fail to explain several evolutionary phenomena 

(Burggren, 2016; Jablonka & Lamb, 2007; K. N. Laland et al., 2015). For example, 

they fail to explain some cases of rapid adaptation that are observed in natural 

populations because they are based on the progressive accumulation of small 

genetic and phenotypic differences (Bernardi & Bernardi, 1986).  

Numerous environmental factors have been shown to influence epigenetic 

mechanisms (Blake & Watson, 2016; Guillette, Parrott, Nilsson, Haque, & Skinner, 

2016; Willbanks et al., 2016). As epigenetic mechanisms regulate gene 

expression, the consequence of a given environmental stress scenario can be a 

change in the phenotype (Burggren, 2016; Jaenisch & Bird, 2003; Moore, Le, & 

Fan, 2013). Moreover, epigenetic alterations are cleared and re-established at 

each generation, but some of them can be inherited through successive 

generations even when the initial stress pressure disappears (Bird, 2007; Daxinger 
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& Whitelaw, 2010; Vandegehuchte & Janssen, 2014). By this means, 

environmentally induced epigenetic modifications and their resulting phenotypes 

can be inherited through successive generations (Bird, 2007; Bräutigam et al., 

2013; Burggren, 2016). Burggren (2016) highlighted that epigenetically inherited 

phenotypes work in the same sense as genetically inherited phenotypes, since 

they can be neutral, advantageous or disadvantageous for the organisms from the 

Natural Selection perspective. Therefore, epigenetically inherited phenotypes can 

also impact the overall fitness of the organisms that carry such traits and if 

advantageous, they can increase their adaptive capacity (Bossdorf, Richards, & 

Pigliucci, 2008; Burggren, 2016; Jaenisch & Bird, 2003; Varriale, 2014). Despite 

this similarity, there are significant differences between epigenetically determined 

phenotypes and genetically determined phenotypes, the most functionally 

dramatic being the fact that, when there are environmental fluctuations, 

epigenetically determined phenotypes arise more rapidly and far more broadly 

than genetically determined phenotypes (Burggren, 2016; Ho & Burggren, 2010; 

Jablonka & Lamb, 2007; Kussel & Leibler, 2005; Rando & Verstrepen, 2007).  

In addition, it is well established that DNA methylation is an important 

facilitator of genome mutation and it has been shown that the rates of base 

mutation are remarkable higher in methylated cytosines than in non-methylated 

cytosines (Cooper & Krawczak, 1989; Coulondre, Miller, Farabaugh, & Gilbert, 

1978; Denissenko, Chen, Tang, & Pfeifer, 1997; Nabel, Manning, & Kohli, 2012). 

Interestingly, Qu et al. (2012) showed that CpG methylation is a major determinant 

of proximal natural genetic variation. In fact, most individuals within a given natural 

population usually experience exposure to an environmental stressor at the same 

time and in the same extent (Burggren, 2016). When a group of organisms is 

exposed to a certain stressor, the same epigenetically determined phenotypes are 

known to be consistently acquired (Feil & Fraga, 2012; Klironomos, Berg, & 

Collins, 2013; Rando & Verstrepen, 2007), confirming that a given environmental 

stressor can thrive into the same epigenetic modifications (and their resulting 

phenotypes) in the different exposed organisms (Burggren, 2016; Weyrich et al., 

2016). Furthermore, the analysis of DNA methylation in wide-ranging taxa 

revealed that the patterns of DNA methylation are conserved across deep 
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phylogenies (Mendizabal, Keller, Zeng, & Yi, 2014; Sarda, Zeng, Hunt, & Yi, 2012; 

Suzuki & Bird, 2008); and the genomic regions that reflect divergence of DNA 

methylation between related species seem to be enriched for both tissue and 

development specializations (Hernando-Herraez et al., 2013; Mendizabal et al., 

2014; J. Wang, Cao, Zhang, & Su, 2012).  

Nowadays, the evolutionary role of epigenetic mechanisms is a major and 

popular topic of scientific discussion. Several authors have been embracing the 

idea that the framework of the Modern Synthesis needs to be extended (Jablonka 

& Lamb, 2007; K. Laland et al., 2014; Pigliucci & Muller, 2010). Furthermore, it has 

been suggested that epigenetic mechanisms are important to the speciation 

process by enlarging the range of phenotypes available  for the action of Natural 

Selection and for increasing the speed of speciation (Bossdorf et al., 2008; K. 

Laland et al., 2014; Mendizabal et al., 2014; Schrey, Richards, Meller, Sollars, & 

Ruden, 2012). Other specific fields linking to evolutionary biology to explain the 

natural dynamics of species, namely ecology, ecotoxicology and conservation 

biology, can also benefit from a better understanding of epigenetic mechanisms 

(Allendorf, Hohenlohe, & Luikart, 2010; Bossdorf et al., 2008; Mendizabal et al., 

2014; Vandegehuchte & Janssen, 2011, 2014). As an illustration, the study by 

Vogt et al. (2015) stressed the potential importance of epigenetic mechanisms in 

the establishment of the freshwater marbled crayfish as a new species 

(Procambarus fallax f. virginalis), but epigenetic modifications are also important 

for the rapid adaptation of invasive species to different environments (Ardura, 

Zaiko, Morán, Planes, & Garcia-Vazquez, 2017; Chown et al., 2015; Pu & Zhan, 

2017). Climate change is fostering the expansion of invasive species worldwide, 

these being recognised as one of the most dangerous threats to freshwater 

biodiversity and ecosystems (Table 1; Allen, Smith, & Darwall, 2012; Fenoglio, Bo, 

Cucco, Mercalli, & Malacarne, 2010; Friberg, 2014). It is indeed likely that by 

better exploring the role of epigenetic mechanisms in the adaptation of invasive 

species to freshwater habitats enables or supports the development of better and 

more efficient management strategies.  

The summarized findings concerning epigenetically modified phenotypes, 

and the transmission of epigenetic marks across generations, support new 
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perspectives in the study of species adaptation to climate change towards a 

comprehensive understanding on the phenomenon. In this context, studies 

exploring the link between epigenetic inheritance, phenotype determination and 

Natural Selection are those more immediately required in order to clarify the 

evolutionary role of epigenetic mechanisms. Empirical data deriving from such 

studies are indeed crucial to build feasible new theoretical considerations in the 

field of evolutionary biology. 

 

2.6. Epigenetic Adaptation to Climate Change  

In a climate change context, extreme climatic events, the exacerbation of existing 

pollution and alien species invasion, water temperatures, greater variability in 

precipitation patterns and higher levels of salinity have been set forward as the 

most important threats to freshwater biodiversity and ecosystems (Bush & 

Hoskins, 2017; Cañedo-Argüelles et al., 2013; Carpenter, Stanley, & Vander 

Zanden, 2011; M. Jackson, Loewen, Vinebrooke, & Chimimba, 2016; Markovic, 

Carrizo, Kärcher, Walz, & David, 2017; Woodward et al., 2016; Woodward, 

Dybkjær, et al., 2010; Woodward, Perkins, & Brown, 2010). Focusing on 

temperature and salt stress, several studies explored the role of epigenetic 

mechanisms in the short-term responses of different species. Kumar & Wigge 

(2010) showed that the short-term adaptation of Arabidopsis thaliana to 

temperature changes is partly mediated through histone modification. Suter & 

Widmer (2013) found that the exposure of several generations of A. thaliana to 

increased salt concentrations and heat conditions induced heritable phenotypic 

changes, but interestingly, the heritable effects of the heat exposure disappeared 

in the second non-exposed generation. The exposure of a parthenogenetic 

population of Artemia to a non-lethal heat shock resulted in an increase in the 

levels of the heat shock protein 70, which configured increased tolerance to heat 

stress and additional resistance against the pathogenic bacteria Vibrio campbellii 

(Norouzitallab et al., 2014); the acquired phenotypic traits were transmitted to 

three successive non-exposed generations and correlated with altered levels of 

global DNA methylation and acetylated histones H3 and H4. Weyrich et al. (2016) 

investigated the adaptation of wild guinea pigs (Cavia aperea) to rising 
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temperatures. The authors exposed adult male guinea pigs (F0) to an increased 

ambient temperature and then compared the liver (as the main thermoregulatory 

organ) of the F0 fathers and F1 progeny, finding “an ‘immediate’ and ‘heritable’ 

epigenetic response” (Weyrich et al., 2016). Remarkably, Asselman et al. (2015) 

studied global cytosine methylation patterns following exposure of two different 

Daphnia magna genotypes to 15 stressor gradients and found that salinity was the 

single abiotic factor that significantly affected global DNA methylation levels in 

both clones tested. These studies support arguments on the decisive role that 

epigenetic mechanisms may have in constraining the response of freshwater 

populations to environmental fluctuations, particularly regarding stressor factors 

linked to climate change such as temperature and/or salinity.  

Despite the interesting results obtained in the above-mentioned short-term 

studies, the role of epigenetic mechanisms in constraining responses in the long-

term is particularly relevant in the context of this review since these are those cues 

allowing improved rationales in evolutionary arenas. Although more difficult to 

achieve, there are some reports in the literature in this context. Kronholm et al. 

(2017) manipulated DNA methylation and histone acetylation in the unicellular 

green alga Chlamydomonas reinhardtii both genetically and chemically. Through 

their method, the authors were able to monitor the amount of epigenetic variation 

generated or transmitted in populations adapting to three different challenging 

environments (salt stress, phosphate depletion, and high CO2 levels) for two 

hundred asexual generations. They observed that, by reducing the amount of 

epigenetic variation available in the populations, a reduction of adaptation to the 

different environments occurs while the opposite would happen when levels of 

epigenetic variation were kept unchanged.  

Varriale (2014) reviewed the evolutionary role of epigenetic mechanisms in 

vertebrate species, following on previous records on the variation of global DNA 

methylation levels of several cold- and warm-blooded vertebrates (e.g., (Jabbari, 

Cacciò, Païs De Barros, Desgrès, & Bernardi, 1997; Varriale & Bernardi, 2006a, 

2006b). Curiously, the levels of methylation of the tested warm-blooded species 

were consistently lower than those of the cold-blooded vertebrates. Intrigued by 

these results, the authors latter showed that independently of the phylogenetic 
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distances, there was a negative correlation between methylation and temperature, 

when comparing the levels of 5-methylcytosine in the genome of fishes inhabiting 

different environments, namely polar, temperate and tropical regions (Varriale, 

2014).   

Artemov et al. (2017) investigated the role of DNA methylation in the 

adaptation of populations of the marine stickleback (Gasterosteus aculeatus) to 

freshwater conditions. Notably, the DNA methylation profile of marine sticklebacks 

transferred into freshwater partially converged to that of a freshwater stickleback, 

with the genes encoding ion channels (KCND3, CACNA1FB, and ATP4A) being 

differentially methylated between the marine and the freshwater populations. In 

agreement to these results, the potential importance of epigenetic mechanisms in 

constraining the evolution of K-strategist species has been stressed by Lighten et 

al. (2016), who compared the transcriptome of two recently diverged populations 

of the winter skate (Leucoraja ocellata) and found that epigenetic mechanisms 

determined the different profiles of gene expression observed in the populations; 

in addition, a relevant portion of the differentially expressed transcripts was 

correlated to genes whose function is involved in the different life-history traits of 

the populations.  

Globally, the described findings seem to corroborate that epigenetic 

mechanisms indeed have an important evolutionary role. More precisely, some of 

these studies provide in vivo evidence that epigenetic mechanisms are capable of 

shaping the genome of organisms, allowing long-term adaptation of populations to 

environmental changes (Bernardi & Bernardi, 1986; Jablonka & Lamb, 2007; 

Wang, Crutchley, & Dostie, 2011). Particularly in a climate change scenario, there 

is strong evidence that epigenetic mechanisms contribute to the phenotypic 

plasticity and to the adaptive capacity of several organisms, including plants and 

fishes (Bossdorf et al., 2008; Bräutigam et al., 2013; Munday, 2014; Rey, Danchin, 

Mirouze, Loot, & Blanchet, 2016; Vannier, Mony, Bittebière, & Vandenkoornhuyse, 

2015). Focusing on climate change, Rey et al. (2016) proposed a molecular 

engine that combines epigenetic mechanisms and transposable elements to 

explain how organisms can adjust their phenotypes, regulate the production of 
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phenotypic and genetic variation, and stably transmit the phenotypes across 

generations.  

 

2.7. Conclusions and Perspectives for Future Research  

It is becoming increasingly evident that epigenetic adaptation indeed is involved in 

the evolutionary adaptation of species to climate change. However, the adaptive 

potential of freshwater populations to climate change is still poorly understood, and 

both short- and long- term studies are needed to clarify whether epigenetic 

mechanisms contribute to the process (Allen et al., 2012; Kefford et al., 2016; 

Munday, 2014; Rey et al., 2016). To tackle this objective more promptly, one 

possible approach is to focus on the molecular mechanisms and cellular pathways 

that regulate the susceptibility of freshwater species to temperature and salinity 

fluctuations. For example and as to salinity fluctuations, the sodium pump, Na+/K+-

ATPase, is the main responsible for osmoregulation in freshwater crustaceans, 

thus the genes encoding and regulating expression of this protein group are 

interesting candidate targets to look at in this context (Bianchini & Wood, 2008; 

Henry, Lucu, Onken, & Weihrauch, 2012; Latta, Weider, Colbourne, & Pfrender, 

2012; Sáez, Lozano, & Zaldívar-Riverón, 2009). Moreover, the critical role of heat 

shock proteins in stress tolerance in general, and thermal stress in particular, has 

been highlighted for several freshwater species and marine invertebrates 

(Matthews, 2012; Solan & Whiteley, 2016). Thus, this set of genes and their 

regulators also seem promising candidates for future research regarding 

adaptation to climate change.  

In addition, examination of gene-specific methylation status would enhance 

the detection of transgenerational epigenetic effects, which are more informative 

regarding adaptation strategies and the heritability driving evolution (Harris, 

Bartlett, & Lloyd, 2012; Vandegehuchte, De Coninck, Vandenbrouck, De Coen, & 

Janssen, 2010). Currently the tools for the job are available, and techniques such 

as bisulphite sequencing, methylated DNA immunoprecipitation (meDip) or DNA 

methylation sensitive restriction enzyme digests allow gene-specific analyses 

(Harris et al., 2012; Kurdyukov & Bullock, 2016).  
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Finally, the availability of well-known models for addressing epigenetics in 

the freshwater biota is pivotal to boost a better understanding of the responses to 

climate change by these ecosystems. In freshwater communities, Daphnia has 

been touted as an epigenetic model (Bell & Stein, 2017; Brander, Biales, & 

Connon, 2017; Harris et al., 2012). The underlying reason for this statement is the 

reproductive strategy of these animals, which allows the establishment of 

parthenogenetic clones with the consequent possibility of eliminating genetic 

variability in experimental trials (Harris et al., 2012; Weider & Hebert, 1987). 

Furthermore, the draft genome sequence of D. magna is now available, as well as 

a large quantity of ecological, ecotoxicological and evolutionary literature on 

Daphnia species that can facilitate the understanding of gene × environment 

interactions (Baudo, 1987; Bell & Stein, 2017; Harris et al., 2012). Besides 

Daphnia, the marbled crayfish has been suggested as a suitable model organism 

for epigenetic, environmental epigenomics and evolutionary studies (Vogt, 2008). 

In fact, it has been used for experiments in different fields and bears the 

advantage of being a vigorous, clonable and eurytopic organism (Vogt, 2008, 

2017; Vogt et al., 2015). The zebrafish (Danio rerio) seems also a suitable model 

organism for epigenetic research, particularly in development and disease studies 

(Detrich, Westerfield, & Zon, 2016; Martinez-Sales, García-Ximénez, & Espinós, 

2015; Mudbhary & Sadler, 2011), although necessarily more representative of 

tropical ecosystems.  

The studies addressed in this review have been helping to unveil the 

potential role of epigenetic mechanisms in the adaptation of species to climate 

change, over different temporal scales. Focusing on freshwater biodiversity, 

similar studies could provide valuable insights into the adaptive capacity of 

freshwater species to climate change, and mechanisms involved in their 

responses to habitat transitions. Therefore, they could be helpful resources for 

decision makers, being highlighted that the incorporation of transgenerational 

epigenetic heritability into risk assessment procedures could allow the 

establishment of protective measurements against biodiversity loss (Shaw et al., 

2017). As climate change is contributing to the rapid decline of freshwater 
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ecosystems around the world, more than ever, their protection is an urgent and 

serious issue.  
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Chapter 3 - Transgenerational effects of salinity stress in Daphnia 

magna: the role of epigenetic mechanisms 

 

3.1. Abstract  

The salinization of freshwaters is an important ecological issue. Salinity is a 

serious threat to freshwater ecosystems and an important form of environmental 

perturbation affecting freshwater biodiversity. Epigenetic transgenerational 

inheritance can influence the response of organisms to environmental stressors 

but this phenomenon remains barely explored in fields dedicated to the 

understanding of the effects of such stressors. An example of this knowledge 

scarcity is that for epigenetic responses in Daphnia, which is a key organism in 

aquatic toxicology, including within regulatory frameworks. We exposed one 

generation of Daphnia magna to high levels of salinity and found that the exposure 

provoked specific methylation patterns that were transferred to the three 

consequent non-exposed generations. These transgenerational effects were 

detected in four genes that encode for proteins (PAXIP1-associated glutamate-rich 

protein; DET1- and DDB1-associated protein; Prefoldin subunit 3; 60S ribosomal 

protein L36) that have important roles in the organisms’ response to environmental 

change: DNA damage repair, cytoskeleton organization and protein synthesis. Our 

results highlight the potential importance of epigenetic transgenerational 

inheritance in the gene × environment interactions of Daphnia.   

 

Keywords: Freshwater ecosystems, Epigenetic transgenerational inheritance, 

DNA methylation, Salinity, Daphnia magna  

 

3.2. Introduction 

Phenomena such as increased temperature, evaporation in waterbodies, and sea 

level rising have become more and more frequent in the past decade due to 

environmental change acceleration (IPCC, 2014). In this context, and also driven 

by secondary salinization referring to the accumulation of salts in both water and 

land ecosystems due to human activities (Cañedo-Argüelles et al., 2013; Griffith, 

Norton, Alexander, Pollard, & LeDuc, 2012), coastal freshwater ecosystems are 
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increasingly exposed to salinity fluctuations (Kefford et al., 2016; Schallenberg, 

Hall, & Burns, 2003). Experimental evidence has been generated on the potential 

impacts of salinity rising in freshwater communities, typically reflecting in reduced 

growth rates, development rates and fecundity, as well as increased mortality 

(Bailey et al., 2004; Hall & Burns, 2003; Jeppesen et al., 1994; Schallenberg et al., 

2003; Stoks, Geerts, & Meester, 2014). Due to its intermediate position in trophic 

food web (Coldsnow, Mattes, Hintz, & Relyea, 2017; Lampert, 2006; Sommer & 

Stibor, 2002), zooplankton has been for long seen as a suitable and representative 

group to assess on such problematic, potentially indicating on putative effects of 

climate change on the structure and function of the whole ecosystem (Colbourne 

et al., 2011; Stoks et al., 2014)  

A consistent decrease in the diversity and abundance of zooplankton 

communities exposed to increased salinity was reported by Hall & Burns (2003) 

and Schallenberg et al. (2003). Amongst freshwater zooplankters, cladoceran’s 

responses to salinity fluctuations have been more widely studied. They resist to 

minor changes in salinity given their osmoregulatory capacity (Arnér & Koivisto, 

1993; Martínez-Jerónimo & Martínez-Jerónimo, 2007), while they show differential 

physiological tolerances to several ionic components (Bos, Cumming, Watters, & 

Smol, 1996). Daphnia is a particularly important and well-studied cladoceran due 

to its central role in the freshwater food-web. Daphnia are hyperosmotic 

regulators, meaning that their body fluids have higher salt concentration than the 

water (Evans, 2005; Marshall, 2002) and denoting osmoregulation as an extremely 

important physiological process to assure the offsetting of the continuous ion loss 

to water (Aladin & Potts, 1995; Griffith, 2017; Lucu & Towle, 2003). The relevance 

of osmoregulation in Daphnia is even highlighted by specific features of their life-

cycle. For example, since the brood chamber has direct contact with the external 

medium, it is imperative for the eggs to have an impermeable membrane until 

osmoregulatory organs are formed in the emerging juveniles (Aladin & Potts, 

1995). A key actor in daphnids’ osmoregulation is the transmembrane protein 

Na,K-ATPase, located at the basolateral membrane of mitochondria-rich cells 

(Sáez, Lozano & Zaldívar-Riverón, 2009). In fact, this protein is responsible for the 

active transport of sodium ions into the blood, whereas such ions enter cells 
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through a Na/H exchanger (Bianchini & Wood, 2008; Lucu & Towle, 2003; 

Madsen, Jensen, Tipsmark, Kiilerich, & Borski, 2007; Sáez et al., 2009; Tsai & Lin, 

2007).  

The response to such a new environmental challenge as saline intrusion 

requires that organisms adapt to the stressor, and they may cope with the change 

through different strategies. They may more immediately adapt by physiologically 

acclimating to the new conditions depending on phenotypic plasticity ranges 

(Bijlsma & Loeschcke, 2005; Boersma, Spaak, & De Meester, 1998; Castro, 

Consciência, & Gonçalves, 2007; Loureiro et al., 2015; Van Doorslaer et al., 

2009). However, genotypic plasticity and concurrent microevolution may also 

mediate the tolerance of cladoceran populations to salinity in the long term (De 

Meester, 1996a, 1996b; Loureiro et al., 2012; Loureiro, Castro, Cuco, Pedrosa, & 

Gonçalves, 2013; Ortells, Reusch, & Lampert, 2005; Van Doorslaer et al., 2009; 

Van Doorslaer, Stoks, Jeppesen, & De Meester, 2007). Still concurring but yet 

remaining largely unexplored is the role of epigenetic mechanisms in adaptive 

strategies in general, and in particular that exhibited by cladocerans to increasing 

salinity stress. Yet, epigenetic mechanisms may be a crucial part of the adaptive 

and evolutionary response that can be transmitted to subsequent generations. To 

our best knowledge, the study by Asselman et al. (2015) is the single one so far 

addressing DNA methylation in Daphnia magna following short exposure of one 

generation to increased salinity levels, and the authors found that this was, 

amongst those stressors tested, the only abiotic stressor capable of affecting 

global DNA methylation levels.  

Epigenetics comprises the study of both mitotically and meiotically heritable 

changes in gene activity and expression without a change in the DNA sequence 

(Bird, 2007; Goldberg, Allis, & Bernstein, 2007; Vandegehuchte & Janssen, 2011). 

Epigenetic modifications may be triggered by environmental factors, thus it is 

essential to understand how these can change organisms’ response towards its 

ecophysiological context (Harris, Bartlett, & Lloyd, 2012; Vandegehuchte & 

Janssen, 2011). Several molecular mechanisms are known to be involved in 

epigenetics and new ones are continuously being discovered. However, the 

chemical modification of cytosine residues of DNA (DNA methylation) and the 
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modification of histones associated with DNA (protein modification) are those best 

described so far (Kouzarides, 2007; Lennartsson & Ekwall, 2009; Vandegehuchte 

& Janssen, 2011). These mechanisms can thereby regulate gene expression, and 

so they contribute to the determination of the phenotype of the organisms, 

contributing to the range of responses these organisms can show following 

exposure to environmental stressors.  

In general, epigenetic alterations are cleared and re-established at each 

generation but some can be inherited through successive generations, sometimes 

even when the initial stress challenge is no longer present (Daxinger & Whitelaw, 

2010; Skinner, 2009; Vandegehuchte & Janssen, 2011); since epigenetic 

alterations can be adaptive, selection for meiotic transmission may allow the 

transference of epigenetic information to the following generations (Harris et al., 

2012). Although already documented in humans (Morgan & Whitelaw, 2008; 

Youngson & Whitelaw, 2008), mice (Cropley, Suter, Beckman, & Martin, 2006), 

Drosophila (Xing et al., 2007) and Arabidopsis (Johannes et al., 2009), this 

transgenerational inheritance is only postulated in Daphnia. The identification of 

transgenerational effects is indeed less straightforward in organisms in which the 

embryo undergoes development within the mother’s body. Such a problem was 

faced by Guerrero-Bosagna et al. (2012) when investigating the existence of 

transgenerational effects associated with vinclozolin exposure in mice. In such a 

scenario, it is unclear whether progeny exposure could affect the offspring through 

the transmission of maternal epigenetic states (true transgenerational effect), or by 

the direct exposure of the somatic cells of the embryo to the stressor through the 

permeable brood pouch. In fact, embryos originating F1 and the germ line that 

then produces F2 are simultaneously present within the mother’s body. Therefore, 

the epigenetic traits must persist until F3 to validate the existence of 

transgenerational inheritance, once this is the first unexposed generation and, 

consequently, the first generation in which a transgenerational phenomenon can 

be unequivocally concluded (Harris et al., 2012; Skinner, 2009). 

Daphnids are relatively well-studied organisms regarding their 

ecophysiological responses to saline intrusion. This, along with the recognized role 

of Daphnia as an ecogenomic model (Miner, De Meester, Pfrender, Lampert, & 
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Hairston, 2012; J. R. Shaw et al., 2008), offers a unique opportunity to study 

genome-wide methylation patterns, gaining an insight on the importance of 

epigenetics in the adaptive responses of freshwater organisms to salinity 

fluctuations. Daphnia magna was used here following such a rationale. Moreover, 

Daphnia magna can be found in both fresh and brackish water habitats, in a range 

of water bodies that goes from large lakes to small ponds, some of them 

temporary, such as rock pools, through an originally Holarctic distribution that 

currently expanded to some arid climatic regions (Ebert, 2005; Vanoverbeke, De 

Gelas, & De Meester, 2007). As far as salinity tolerance is concerned, Daphnia 

magna is deemed euryhaline, surviving to salt ranges between 3.8 and 38 g.L-1 

(Alonso, 1996; Boronat, Miracle, & Armengol, 2001). As a cyclical parthenogen 

(Kleiven, Larsson, & Hobek, 1992), Daphnia can be experimented in such a way 

that genetic and epigenetic influences on organisms become clearly separated 

due to their clonal reproduction (Deng & Lynch, 1996; Harris et al., 2012; Koivisto, 

1995), with the additional advantage of an easy handling through a short, highly 

productive reproductive cycle (Lampert, 2006).  

Following on the above reasoning, the overall aim of the present study was 

to study whether epigenetic mechanisms may play a role in the adaptation of 

daphnids to freshwaters affected by saline intrusion. We specifically hypothesized 

that differential DNA methylation patterns can be identified in Na,K-ATPase genes 

and gene regulators, after challenging Daphnia magna with an increased salinity 

level and that these patterns are transmitted to subsequent generations. Further 

special attention was given to examining the possibility that gene-specific 

methylation patterns prevail through generations, with the ultimate objective of 

understanding whether there is a transgenerational inheritance of DNA 

methylation patterns in daphnids or not.  

 

3.3. Material and Methods  

3.3.1. Daphnia culturing 

Monoclonal cultures of Daphnia magna (clone Beak) have been reared in our 

laboratory for more than 50 generations. Daphnids were cultured in ASTM hard 

water medium (ASTM, 1980) enriched with vitamins (Elendt & Bias, 1990) and 
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supplemented with an organic additive (Baird et al., 1989). Cultures were 

maintained under a constant temperature of 20 ± 2ºC and a 16hL:8hD photoperiod 

(provided by cool fluorescent white lights). The culture medium was renewed and 

organisms were fed three times a week, with concentrated suspensions of 

Raphidocelis subcapitata (3 x 105 cells·mL-1), which is cyclically cultured in Woods 

Hole MBL (Stein, 1973).  

 

3.3.2. Exposure and sampling 

Experiments were conducted under the previously described temperature and 

photoperiod conditions. Six cultures of 70 neonates (< 24 h old, collected from the 

3rd-5th brood in bulk cultures) were established in plastic buckets filled with 4 L of 

test solution (57 mL per daphnid), three for each control (0 g/L NaCl) and salinity 

(4.1 g/L NaCl) exposures. The salt concentration used in the experiment was 

established on the basis of the results of a standardized short-term toxicity 

experiment to study the organisms’ current sensitivity to NaCl (OECD, 2004). In 

this trial, different treatments (each with four replicates) were tested: 0, 3.50, 4.03, 

4.63, 5.32 and 6.12 g/L NaCl. Five neonates, ageing less than 24 hours and born 

between the 3rd and 5th brood, were assigned to each replicate. The test was 

carried out in glass vials filled with 10 mL of test solution and the exposure lasted 

for 48 h, under a 16hL:8hD photoperiod and a temperature of 20 ± 2ºC, without 

food supply. Immobilization was recorded at the end of the test and ECx values 

were estimated by Probit Analysis as a reference for setting the exposure level in 

the epigenetics experiment. Regression significance (p < 0.05) and significant 

goodness-of-fit (Pearson coefficient Chi-square statistics; p < 0.05) were 

confirmed, ensuring the feasibility of the estimates.  

Regarding the epigenetics experiment, the exposure of daphnids lasted 

until the neonates initiating the experiment matured and reached their third brood. 

Subsequently, mothers were harvested, and stored at -80ºC for DNA extraction, 

immediately after releasing the third brood, always with its brood pouch empty. All 

subsequent generations were started with 3rd brood new-born neonates (< 24h 

old) and maintained in clean medium until releasing their third brood, after which 

mothers were harvested and new generations established with the released 
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neonates (Figure 1). This procedure was repeated for all the four generations 

present in the experimental design. 

DNA extraction was performed from daphnids’ frozen tissue using 

MasterPureTM Complete DNA and RNA Purification Kit (Epicentre, Madison, WI, 

USA), according to manufacturer’s instructions. A NanoDrop 1000 

spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) was used to 

roughly verify DNA quantity and quality. Quality criteria consisted of 260/230 ratios 

above 1.7, and 260/280 ratios between 1.8 and 2.1.  

 

  

Figure 1 - Overview of the experimental design setup for the multigeneration experiment. F0, F1, F2, 
F3 represent generations. Arrows represent 3rd brood offspring. White rectangles represent clean 
medium while grey rectangles represent medium NaCl dissolved in the culture medium at 4.1 g/L. 
Plus and minus quoting immediately indicate the history of each culture regarding exposure to 
NaCl (+) and maintenance in clean medium (-).  

 

3.3.3. Reduced representation bisulfite sequencing 

Reduced representation bisulfite sequencing was performed over the DNA 

samples, i.e. the sampled DNA was digested with restriction enzymes, treated with 

bisulfite and finally sequenced (Meissner et al., 2005). These steps were carried 

out in the Ghent University reference center for next generation sequencing 

(NXTGNT) and allowed the detection and quantification of methylation profiles. 
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3.3.4. Bioinformatic analysis 

Quality control of the raw data was executed with FastQC (version 0.11.5; Simon 

Andrews, Babraham Bioinformatics). Based on these results, the data was 

trimmed with Trim Galore, a wrapper tool around Cutadapt and FastQC (version 

0.4.4; Felix Krueger, Babraham Bioinformatics), capable of automate quality and 

adapter trimming, as well as quality control, with an added functionality to remove 

biased methylation positions for RRBS sequence files. For our data, bases with a 

quality score below 30 were trimmed. Moreover, adapter sequences (Illumina) 

were removed and RRBS mode activated. 

Subsequently, Bismark (version 0.18.1; Felix Krueger, Babraham 

Bioinformatics) was used for the mapping of our samples. The Daphnia magna 

genome assembly (Orsini et al., 2016, wfleabase.org) was used as a reference. 

Analysis of the data with Bismark resulted in methylation calls for every single 

cytosine analysed on each strand.  

To determine the false positive rate, the error rate (sum of the non-

conversion rate and T/C sequencing errors) was calculated. Results showed an 

average error rate of approximately 0.4% for our samples. Thus, to differentiate 

true positives from false positives, a model based on the binomial distribution B 

(n,p) was used, in which n referred to the coverage depth of each potential 

methylated cytosine and p to the false positive rate. P-value was adjusted to 0.05 

by Benjamini & Hochberg, 1995, hence only P-values < 0.05 were considered true 

positives. 

Afterwards, bedtools intersect was used to identify the cytosines within 

genic regions. To this end, we used the gene models of Orsini et al. (Orsini et al., 

2016). 

 

3.3.5. Statistical analysis  

Statistics were performed with R (R, Auckland, New Zeland). To quantify genes’ 

methylation levels, the number of methylated cytosines was normalised to the total 

number of cytosines present in that gene. The existence of differentially 

methylated genes (DML) between treatments was assessed by DMLtest function 

for cytosines within genic regions, from DSS package (Park & Wu, 2016; Wu et al., 
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2015). A Wald test was performed for each CpG site under the null hypothesis that 

the means of both treatments were equal. Subsequently, regions with statistically 

significant CpG sites were highlighted by callDML function. Furthermore, 

differentially methylated loci were sorted by statistical significance. For this test, 

alpha level was set up at p=0.05. 

 

3.4. Results 

The total number of non-significant and significant differentially methylated genes, 

in the comparisons between the control and the exposed and subsequent non-

exposed generations, are represented in table 1. 

 

Table 1. Total number of significant and non-significant methylated genes. 

Comparison Total number of genes 
Total number of significantly 

differentially methylated genes 
(p<0.05) 

Control – F0 20 450 93 
Control – F1 18 334 96 
Control – F2 23 944 84 
Control – F3  23 193 103 

 

A total number of 53 genes were exclusively differentially methylated 

between the control and NaCl-challenged organisms in the F0 generation, 60 in 

the F1, 31 in the F2 and 55 in the F3 (figure 2). Remarkably, four genes were 

significantly differentially methylated (p<0.05) in treated organisms compared to 

the control across the four generations (F0-F1-F2-F3), namely the genes that 

encode for the PAXIP1-associated glutamate-rich protein, the DET1- and DDB1-

associated protein, the Prefoldin subunit 3 and the 60S ribosomal protein L36 

(table 2).  For all the comparisons (Control x F0, Control x F1, Control x F2 and 

Control x F3), these genes had higher methylation levels in the control than in the 

exposed and following non-exposed generations.  
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Figure 2 - Venn Diagram overlapping the genes differentially methylated between NaCl treatments 
and the control through the different generations (p<0.05). A highlight was made to the four genes 
that were found differentially methylated across the four generations comprised in the experiment. 

 

Four genes were significantly differentially methylated (p<0.05) between 

NaCl-treated and the control across three consecutive generations (F0-F1-F2), 

namely the genes that encode for the Golgi apparatus membrane protein TVP23 

B, the NADH dehydrogenase [ubiquinone] 1 beta subcomplex, the Small nuclear 

ribonucleoprotein G and an uncharacterized protein. For all the comparisons 

(Control x F0, Control x F1 and Control x F2), the genes that encode the Golgi 

apparatus membrane protein TVP23 B and the Small nuclear ribonucleoprotein G 

had higher methylation levels in the control than in the exposed and following non-

exposed generations. However, the gene that encodes the NADH dehydrogenase 

[ubiquinone] 1 beta subcomplex showed higher methylation levels in the control 

than in the exposed and subsequent non-exposed generations.  
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Table 2. Significantly differentially methylated genes, across the four generations comprised in the 
experiment and the first three generations.  

 Gene ID Annotation Comparison p-value 

Genes 
differentially 
methylated 

across  
F0/F1/F2/F3 
generations 

Dapma7bEVm
007142t1 

PAXIP1-associated 
glutamate-rich protein 

Control – F0 
Control – F1 
Control – F2 
Control – F3 

2.97e-03 
8.09e-06 
8.68e-04 
2.27e-03 

 
Dapma7bEVm

007954t1 
 

 DET1- and DDB1-
associated protein 

Control – F0 
Control – F1 
Control – F2 
Control – F3 

2.29e-07 
1.65e-08 
2.85e-04 
1.57e-05 

Dapma7bEVm
007536t1 

 Prefoldin subunit 3 

Control – F0 
Control – F1 
Control – F2 
Control – F3 

5.07e-03 
4.19e-05 
2.33e-05 
3.22e-02 

Dapma7bEVm
010667t1 

 60S ribosomal 
protein L36 

Control – F0 
Control – F1 
Control – F2 
Control – F3 

1.22e-03 
3.63e-04 
2.70e-03 
1.38e-03 

Genes 
differentially 
methylated 

across 
F0/F1/F2 

generations 

Dapma7bEVm
001295t1 

Golgi apparatus 
membrane protein 

TVP23 B 

Control – F0 
Control – F1 
Control – F2 

1.18e-02 
8.50e-03 
5.28e-03 

 
Dapma7bEVm

004966t1 
 

 NADH 
dehydrogenase 

[ubiquinone] 1 beta 
subcomplex subunit 

8, mitochondrial 

Control – F0 
Control – F1 
Control – F2 

1.87e-02 
3.00e-03 
3.50e-02 

Dapma7bEVm
028806t1 

 Small nuclear 
ribonucleoprotein G 

Control – F0 
Control – F1 
Control – F2 

1.18e-02 
2.49e-03 
3.74e-03 

Dapma7bEV 
m026583t1 

Uncharacterized 
protein 

Control – F0 
Control – F1 
Control – F2 

4.53e-03 
1.70e-08 
5.62e-07 

 

3.5. Discussion 

The epigenetic repertoire in Daphnia includes not only DNA methylation but also 

histone modifications (Lai et al., 2016; Robichaud, Sassine, Beaton, & Lloyd, 

2012). In addition, non-coding RNAs have been identified in Daphnia pulex and 

Daphnia magna (Chen, McKinney, Nichols, & Sepúlveda, 2014; Ünlü, Gordon, & 

Telli, 2015). Therefore, the potential importance of epigenetic mechanisms in the 

gene × environment interactions of Daphnia species has been receiving increased 

attention (Asselman et al., 2017; Bell & Stein, 2017; Brander, Biales, & Connon, 

2017; Harris et al., 2012; J. L. A. Shaw et al., 2017). Particularly, several 
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alternative phenotypes have been postulated to be epigenetically determined and 

transgenerationally inherited (Bell & Stein, 2017; Harris et al., 2012).  

For example, as daphnids are exposed to predator cues (kairomones) the 

formation of protective helmets occurs in both the exposed mothers and their non-

exposed progeny (Agrawal, Laforsch, & Tollrian, 1999; Laforsch & Tollrian, 2004). 

Besides, the formation of neckteeth and environmental sex determination have 

been proposed to be examples of epigenetic inheritance (Harris et al., 2012). 

Several experimental studies followed the effects of a range of environmentally 

relevant compounds for several generations of non-exposed Daphnia offspring 

(Vandegehuchte, Kyndt, et al., 2009; Vandegehuchte, De Coninck, Vandenbrouck, 

De Coen, & Janssen, 2010; Vandegehuchte, Lemière, & Janssen, 2009; 

Vandegehuchte, Lemière, Vanhaecke, Berghe, & Janssen, 2010), with evidences 

suggesting a role of epigenetics in defining response patterns. The exposure of 

one generation to a sub-lethal Zn concentration caused a reduction in the global 

DNA methylation levels of the offspring (F1), but this effect did not prevail in the 

second generation (F2) (Vandegehuchte, Lemière, & Janssen, 2009). Following 

daphnids’ exposure to chemical substances known to affect DNA methylation in 

mammals (vinclozolin, 5-azacytidine, 2'-deoxy-5-azacytidine, genistein and 

biochanin A), it was observed that only vinclozolin and 5-azacytidine influence 

DNA methylation in Daphnia; both these chemicals provoking a reduction in the 

global DNA methylation levels of the offspring (F1) but this effect was only 

transferred to two subsequent non-exposed generations (F2) for the 5-azacytidine 

exposure (Vandegehuchte, Lemière, et al., 2010).  

Despite these promising results, environmentally induced epigenetic 

transgenerational effects need to be monitored through 3 post-exposure 

generations (Bell & Stein, 2017; Brander et al., 2017; Harris et al., 2012; J. L. A. 

Shaw et al., 2017). Following this rationale, our experimental design allowed us to 

confirm that epigenetic transgenerational inheritance indeed occurs in Daphnia 

magna. More precisely, we demonstrated that the exposure of one generation to 

high salinity levels provoked methylation patterns that were transferred to the three 

subsequent non-exposed generations. Remarkably, the transgenerational effects 

were detected in four genes that encode for important proteins (PAXIP1-
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associated glutamate-rich protein; DET1- and DDB1-associated protein; Prefoldin 

subunit 3; 60S ribosomal protein L36) for the regulation of responses to 

environmental stress.  

Actually, the PAXIP1-associated glutamate-rich protein is known to have 

multiple roles in gene regulation (Cho et al., 2007; Kumar et al., 2014; Z. Zhang, 

Sun, Cho, Chow, & Simons, 2013). It is part of the histone methyltransferase 

MLL2/MLL3 complex, which suggests its potential role in epigenetic transcriptional 

activation (Cho et al., 2007). In addition, this protein controls genome stability and 

it is crucial to DNA repair (Kumar et al., 2014). Salinity is known to provoke DNA 

breaks and the potential higher expression of the PAXIP1-associated glutamate-

rich protein suggest its recruitment to repair the DNA damage induced by salinity 

(Demirkiran, Marakli, Temel, & Gozukirmizi, 2013; Dmitrieva, Cui, Kitchaev, Zhao, 

& Burg, 2011; Gong, Cho, Kim, Ge, & Chen, 2009). The DET1- and DDB1-

associated protein is conserved and its orthologs can be found in vertebrates and 

invertebrates (Pick et al., 2007). This protein is involved in ubiquitination and 

subsequent proteasomal degradation of target proteins (Lee & Zhou, 2007; Pick et 

al., 2007). It is known to be part of the DDD-E2 complex which interacts with 

multiple ubiquitin E3 ligases, and CUL4A and WD repeat proteins (Irigoyen et al., 

2014; Pick et al., 2007; Schumacher, Wilson, & Day, 2013). Under abiotic stress, 

ubiquitin/proteasome systems have been pointed out as key mechanisms to 

optimize the adaptation and survival strategies of different species to 

environmental stressors (Chiu, Pan, Zhao, & Gazzarrini, 2016; Jeon et al., 2012; 

Mudagandur, Gopalapillay, & Vijayan, 2016; Yu, Wu, & Xie, 2016). Prefoldin 

subunit 3 binds specifically to cytosolic chaperonin and has an important role in 

the functioning of the actin and tubulin-based cytoskeleton (Millán-Zambrano & 

Chávez, 2014; Rommelaere et al., 2001; Vainberg et al., 1998). In particular, it is 

critical to the tubulin complex assembly and it has been directly implied in the 

tolerance of Arabidopsis to salt stress (Gu et al., 2008; Rodríguez-Milla & Salinas, 

2009). In fact, it has been suggested that the cytoskeleton plays an essential role 

in plant adaptation to high levels of salinity (Rodríguez-Milla & Salinas, 2009; 

Soda, Sharan, Gupta, Singla-Pareek, & Pareek, 2016; C Wang et al., 2010; Che 

Wang, Zhang, & Huang, 2011). Consistently, our results suggest that cytoskeleton 
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may also be important in the response of Daphnia magna to salinity. The 

differentially methylated 60S ribosomal protein L36 is a component of the large 

ribosomal subunit and it is relevant for protein synthesis (Alkayal et al., 2010; Koia, 

Moyle, Hendry, Lim, & Botella, 2013; Wei et al., 2017). Alkayal et al. (2010) 

studied the effects of salinity stress on the algae Dunaliella salina and showed that 

a big portion of the differentially expressed sequence tags (EST) (control vs. 

salinity treatment) were related to protein synthesis (the vast majority encoded 

ribosomal proteins). Under salt stress, organisms invest substantial resources in 

maintaining protein synthesis to improve their resilience (J. Wang et al., 2015; Wei 

et al., 2017; Zhu, 2002). 

Four genes were also differentially methylated from the control in the 

exposed and two subsequent non-exposed generations (F0-F1-F2). These genes 

encode for proteins (Golgi apparatus membrane protein TVP23 B; NADH 

dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial; Small 

nuclear ribonucleoprotein G; Uncharacterized protein) that are also potentially 

important in the response to salinity stress. These proteins are related to vesicular 

trafficking, mitochondrial membrane respiratory chain and splicing of cellular pre-

mRNAs, and there are several studies that highlighted the relevance of these 

molecular processes and pathways in the response of different species to abiotic 

stressors in general and salinity in particular (Brandizzi, Snapp, Roberts, 

Lippincott-Schwartz, & Haves, 2002; Ding et al., 2014; Gallois et al., 2009; Huang 

et al., 2011; Ma et al., 2015; Sanan-Mishra, Tuteja, & Sopory, 2002; F. Zhang et 

al., 2016).  

Our results suggest that DNA methylation is not involved in the regulation of 

the expression of the Na,K-ATPase subunits in salt stress conditions. However, 

the gene that encodes for the V-type proton ATPase subunit G was differentially 

methylated between NaCl-challenged organisms and the control in the F0, F2 and 

F3 generations, revealing that this gene may be epigenetically regulated. Under 

stress conditions, such as salinity, the survival of cells strongly depends on 

maintaining or adjusting the activity of the V-ATPase (Beyenbach & Wieczorek, 

2006; Toei, Saum, & Forgac, 2010). For a better understanding of the importance 

of epigenetic mechanisms in Daphnia gene × environment interactions and in the 
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regulation of the expression of the Na,K-ATPase subunits, the correlation between 

different methylation levels and differential gene expression and protein levels 

should be established. In addition, the role of other epigenetic mechanisms, such 

as histone modifications, should be further explored (Harris et al., 2012; Lai et al., 

2016; Robichaud et al., 2012).  

The present study supports the recent claims that epigenetic inheritance 

should be incorporated into risk assessment procedures, as due to epigenetic 

transgenerational inheritance environmental perturbations can influence the future 

health and function of the ecosystems (Mirbahai & Chipman, 2014; J. L. A. Shaw 

et al., 2017; Vandegehuchte, Kyndt, et al., 2009; Vandegehuchte, Lemière, 

Janssen, et al., 2009; Vandegehuchte & Janssen, 2011). Globally, our results 

suggest that DNA methylation is an important mechanism in the response of 

Daphnia magna to high levels of salinity. In addition, the inheritance of DNA 

methylation patterns in non-exposed generations reinforces the potential 

importance of epigenetic transgenerational inheritance in the responses of 

Daphnia species to environmental changes.   
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Chapter 4 - General discussion and final remarks  

Throughout this dissertation, the importance of epigenetics in the response of 

freshwater organisms to the environmental transformations induced by climate 

change has been extensively explored.  

On a global scale, climate change is altering the composition, biodiversity and 

functioning of numerous freshwater ecosystems. Sea level rise is one of the most 

important climate change-related consequences as it promotes the salinization of 

freshwater ecosystems. In fact, saline intrusion is recognized as an important form 

of environmental perturbation to freshwater biodiversity.  

Epigenetic mechanisms are crucial to better understand gene × environment 

interactions. Environmental factors influence epigenetic mechanisms, therefore 

contributing to the determination of phenotypes. Furthermore, epigenetically 

acquired phenotypes have been proven to be inherited across several 

generations, although this is not widely demonstrated experimentally. 

Daphnia have a key role in freshwater ecosystems, being used as indicators of 

environmental change in several fields, such as ecology, ecotoxicology and 

evolutionary biology. Moreover, Daphnia has been set forward as an epigenetic 

model organism and its ecophysiological response to salinity intrusion is well 

characterized. Consequently, Daphnia species are ideal to detail the study of the 

response of freshwater organisms to environmental salinity fluctuations.  

This dissertation unveiled that epigenetic mechanisms have an important 

evolutionary role by contributing to the phenotypic plasticity and to the adaptive 

capacity of different taxonomic groups. Remarkably, epigenetic mechanisms seem 

to allow both short- and long-term adaptation of freshwater populations to the 

environmental transformations induced by climate change. Another key finding of 

this work was that a one-generation exposure of Daphnia magna to high salinity 

levels resulted in an epigenetic adaptation to the hyperosmotic environment. More 

precisely, the exposure provoked DNA methylation patterns that were transferred 

to three subsequent non-exposed generations. In addition, these transgenerational 

effects were observed in genes that encode for proteins with key roles (DNA 

damage repair, cytoskeleton organization and protein synthesis) in the response of 

different organisms to environmental change.  
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The mentioned findings are novel and critical to better picture the resilience of 

freshwater species under environmental change. In addition, such results open 

future research avenues. Amongst them is included the understanding of the role 

of other epigenetic mechanisms (e.g. histone modifications and non-coding RNAs) 

in the gene × environment interactions of freshwater species. Besides, to 

understand if temporary exposures to environmental stressors affect the future 

health and function of the ecosystem through epigenetic transgenerational 

inheritance is a key research topic.  

In the future, the exploration of the mentioned far-reaching results and 

proposed research questions will certainly have important implications in several 

fields such as ecotoxicology, ecology, aquatic toxicology and evolutionary biology, 

and also more robust conclusions on whether epigenetic inheritance should be 

considered in higher-tier environmental risk assessment frameworks as a valuable 

indicator will certainly arise. 

 


