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with the inventories at the ports, the underlying planning problem is a maritime inven-tory routing problem. Suh problems are very omplex. Usually modest improvementsin the supply hain planning an translate into signi�ant ost savings.In this paper we onsider a real maritime Short Sea Inventory Routing Problem(SSIRP) ourring in the arhipelago of Cape Verde. An oil ompany is responsible forthe inventory management of di�erent oil produts in several tanks loated in the mainislands. Fuel oil produts are imported and delivered to spei� islands and stored inlarge supply storage tanks, so the inventory management does not need to be onsideredin these tanks. From these islands, fuel oil produts are distributed among all theinhabited islands using a small heterogeneous �eet of ships with dediated tanks. Theseproduts are stored in onsumption storage tanks with limited apaity. Consumptionrates are assumed to be given and onstant over a time horizon of several months.Some ports have both supply tanks for some produts and onsumption tanks of otherproduts.We have witnessed an inreased interest in studying optimization problems withinmaritime transportation [14, 15, 16℄ and, in partiular, in the last �fteen years, prob-lems ombining routing and inventory management [8, 12℄. These problems are oftenalled Maritime Inventory Routing Problems (MIRPs). Most of the published MIRPontributions are based on real ases from the industry, see for the single produt ase[11, 21, 22, 24℄ and for the multiple produts ase [7, 13, 28, 30, 33, 35℄.This SSIRP is addressed in a ompanion paper [4℄ where di�erent mathematial for-mulations are disussed and ompared for the SSIRP onsidering a shorter time horizon.There, two main approahes to model the problem are onsidered. One uses a ontinuoustime model where an index indiating the visit number to a partiular port is added tomost of the variables. This approah was used in [7℄, [11℄ and [33℄ for MIRPs where theprodution and/or onsumption rates are onsidered given and �xed during the plan-ning horizon. The other approah onsists of using a model that ombines a disrete andontinuous time where the disrete time orresponds to an arti�ial disretization of theontinuous time. Disrete time models have been developed in [2, 22, 23, 24, 28, 30, 34℄to overome the ompliating fators with time varying prodution and onsumptionrates. In addition, for eah approah two new extended formulations are tested in [4℄.In [3℄, the SSIRP for short-term planning is onsidered. For the short-term plansdemand orders are onsidered, that is, �xed amounts of oil produts that must bedelivered at eah port within a �xed period of time. These orders are determinedfrom the initial stok levels and the onsumption rates and lead to a problem withvarying demands (orresponding to the demand orders). Several key issues taken intoaount in the short-term problem are relaxed here or inorporated indiretly in thedata. For instane, port operating time windows that are essential in the short-term2



plan are ignored here. Otherwise, the problems onsidered originate from the sameompany in the same region. These problems are solved using the same ommerialsolver we use here, onsidering a formulation whih is improved by the strengtheningof de�ning inequalities and the inlusion (through separation) of valid inequalities. In[7℄ a problem similar to the SSIRP is onsidered with onstant onsumption rates anddediated ompartments in the ships.In this paper we develop and ompare di�erent hybrid heuristis for the SSIRP.As disussed in [8, 34℄, most ombined maritime routing and inventory managementproblems desribed in the literature have partiular features and harateristis, andtailor-made methods are developed to solve the problems [12℄. These methods are oftenbased on heuristis or deomposition tehniques. Reent hybrid heuristis that use MIPsolvers as a blak-box tool have been proposed. Here we onsider and ombine threehybrid heuristis: Rolling Horizon (RH), Loal Branhing (LB) and Feasibility Pump(FP). In RH heuristis the planning horizon is split into smaller sub-horizons. Then, eahlimited and tratable mixed integer problem is solved to optimality. Within maritimetransportation RH heuristis have been used in [25, 28, 32, 33, 34℄. Loal Branhing (LB)was introdued by Fihetti and Lodi [19℄ to improve feasible solutions. LB heuristissearh for loal optimal solutions by restriting the number of binary variables thatare allowed to hange their value in the urrent solution. Feasibility Pump (FP) wasintrodued by Fishetti, Glover and Lodi [18℄ to �nd initial feasible solutions for MIPproblems.Computational experiments reported in Setion 6 show that a ombined heuristiusing the three approahes outperformed the other tested heuristis and, in partiular,outperformed the most used approah within MIRPs, the RH heuristi.To solve eah subproblem we onsider the ar-load �ow (ALF) formulation intro-dued in [4℄, sine this was the model with the best performane among all the testedmodels for this problem with short time horizons. The ALF formulation is improved bya pre-omputation of estimates for the number of visits to eah port, and with the inlu-sion of valid inequalities. In partiular, we introdue a new family of lique inequalitiesfor MIRPs when ontinuous time models are used.The main ontributions of this paper, the heuristi strategies and the valid inequal-ities, an easily be used in other MIRPs.The remainder of this paper is organized as follows. In Setion 2, we desribe thereal problem. The ar-load �ow formulation is presented in Setion 3 and strategiesto tighten the formulation are disussed in Setion 4. In Setion 5 we desribe severalhybrid heuristis. The omputational experimentations are reported in Setion 6. Finalonlusions are given in Setion 7.
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2. Problem desriptionIn Cape Verde, fuel oil produts are imported and delivered to spei� islands andstored in large supply storage tanks. From these islands, fuel oil produts are distributedamong all the inhabited islands using a small heterogeneous �eet of ships. The produtsare stored in onsumption storage tanks. Two ports have both supply tanks for someproduts and onsumption tanks for other produts, while the remaining ports have onlyonsumption tanks. Not all islands onsume all produts. The onsumptions (whihare usually foreasted) are assumed to be onstant over the time horizon. It is assumedthat eah port an reeive at most one ship at a time and a minimum interval betweenthe departure of a ship and the arrival of the next one must be onsidered. Waitingtimes are allowed.Eah ship has a spei�ed load apaity, �xed speed and ost struture. The argohold of eah ship is separated into several argo tanks. The produts an not be mixed,so we assume that the ships have dediated tanks to partiular produts.The traveling times between two onseutive ship visits are an estimation basedon pratial experiene. Additionally, we onsider set-up times for the oupling anddeoupling of pipes, and operating times.To prevent a ship from delivering small quantities, minimum delivery quantitiesare onsidered. The maximum delivered quantity is imposed by the apaity of theonsumption storage tank. Safety stoks are onsidered at onsumption tanks. As theapaity of the supply tanks is very large when ompared to the total demand over thehorizon, we omit the inventory aspets for these tanks.In eah problem instane we are given the initial stok levels at the onsumptiontanks, initial ship positions (whih an be a point at sea) and quantities on board eahship. The inter-island distribution plan onsists of designing routes and shedules for the�eet of ships inluding determining the number of visits to eah port and the (un)loadingquantity of eah produt at eah port visit. The plan must satisfy the safety stoks ofeah produt at eah island and the apaities of the ship tanks. The transportationand operation osts of the distribution plan must be minimized over a �nite planninghorizon.3. Mathematial ModelIn [4℄ a omparison of six di�erent formulations for the SSIRP for a shorter timehorizon is given. Three of those formulations onsider a time disretization and theother three onsider ontinuous time. For eah time option the following formulationsare onsidered: an ar-load formulation, where the model keeps only trak of the infor-mation of the load on board eah ship ompartment in eah port visit; an ar-load �owformulation, where new variables are used to keep the information about the quantity4



of eah produt in eah ompartment when a ship leaves a port en route to the nextone; and a multi-ommodity formulation, where the �ow on eah ar is disaggregatedaordingly to its destination. That omparison led to the hoie of the ontinuous timear-load �ow formulation. In this setion we present that ar-load �ow formulation.Routing onstraintsLet V denote the set of ships. Eah ship v ∈ V must depart from its initial positionin the beginning of the planning horizon. The set of ports is denoted by N . For eahport we onsider an ordering of the visits aordingly to the time of the visit. The shippaths are de�ned on a network where the nodes are represented by a pair (i,m), where iis the port and m represents the mth visit to port i. Diret ship movements (ars) fromport arrival (i,m) to port arrival (j, n) are represented by (i,m, j, n).We de�ne SA as the set of possible port arrivals (i,m), SA
v as the set of ports thatmay be visited by ship v, and set SX

v as the set of all possible movements (i,m, j, n) ofship v.For the routing we de�ne the following binary variables: ximjnv is 1 if ship v sailsfrom port arrival (i,m) diretly to port arrival (j, n), and 0 otherwise; xoimv indiateswhether ship v sails diretly from its initial position to port arrival (i,m) or not; wimvis 1 if ship v visits port i at arrival (i,m), and 0 otherwise; zimv is equal to 1 if ship vends its route at port arrival (i,m), and 0 otherwise; zov is equal to 1 if ship v is notused and 0 otherwise; yim indiates whether a ship is visiting port arrival (i,m) or not.
∑

(i,m)∈SA
v

xoimv + zov = 1, ∀v ∈ V, (1)
wimv −

∑

(j,n)∈SA
v

xjnimv − xoimv = 0, ∀v ∈ V, (i,m) ∈ SA
v , (2)

wimv −
∑

(j,n)∈SA
v

ximjnv − zimv = 0, ∀v ∈ V, (i,m) ∈ SA
v , (3)

∑

v∈V

wimv = yim, ∀(i,m) ∈ SA, (4)
yi(m−1) − yim ≥ 0, ∀(i,m) ∈ SA : m > 1, (5)
xoimv, wimv, zimv ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SA

v , (6)
ximjnv ∈ {0, 1}, ∀v ∈ V, (i,m, j, n) ∈ SX

v , (7)
zov ∈ {0, 1}, ∀v ∈ V, (8)
yim ∈ {0, 1}, ∀(i,m) ∈ SA. (9)Equations (1) ensure that eah ship either departs from its initial position and sailstowards another port or the ship is not used. Equations (2) and (3) are the �ow onser-vation onstraints, ensuring that a ship arriving at a port also leaves that port or ends5



its route. Constraints (4) ensure that one ship only visits port (i,m) if yim is equal toone. Constraints (5) state that if port i is visited m times, then it must also have beenvisited m− 1 times. Constraints (6)-(9) de�ne the variables as binary.Load and unload onstraintsLet K represent the set of produts and Kv represent the set of produts that ship
v an transport. Not all ports onsume all produts. Parameter Jik is 1 if port i isa supplier of produt k; −1 if port i is a onsumer of produt k, and 0 if i is neithera onsumer nor a supplier of produt k. The quantity of produt k on board ship vat the beginning of the planning horizon is given by Qvk, and Cvk is the apaity ofthe ompartment of ship v dediated for produt k. The minimum and the maximumdisharge quantities of produt k at port i are given by Q

ik
and Qik, respetively.In order to model the loading and unloading onstraints, we de�ne the followingbinary variables: oimvk is equal to 1 if produt k is loaded onto or unloaded from ship

v at port visit (i,m), and 0 otherwise. In addition, we de�ne the following ontinuousvariables: qimvk is the amount of produt k loaded onto or unloaded from ship v at portvisit (i,m), fimjnvk denotes the amount of produt k that ship v transports from portvisit (i,m) to port visit (j, n), and foimvk gives the amount of produt k that ship vtransports from its initial position to port visit (i,m).The loading and unloading onstraints are given by:
foimvk +

∑

(j,n)∈SA
v

fjnimvk + Jikqimvk =
∑

(j,n)∈SA
v

fimjnvk, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv (10)

foimvk = Qvkxoimv, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv, (11)

fimjnvk ≤ Cvkximjnv, ∀ v ∈ V, (i,m, j, n) ∈ SX
v , k ∈ Kv, (12)

0 ≤ qimvk ≤ Cvkoimvk, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv : Jik = 1, (13)

Q
ik
oimvk ≤ qimvk ≤ Qikoimvk, ∀v ∈ V, (i,m) ∈ SA

v , k ∈ Kv : Jik = −1, (14)
∑

k∈Kv

oimvk ≥ wimv, ∀v ∈ V, (i,m) ∈ SA
v , (15)

oimvk ≤ wimv, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv, (16)

fimjnvk ≥ 0, ∀v ∈ V, (i,m, j, n) ∈ SA
v , k ∈ Kv, (17)

foimvk, qimvk ≥ 0, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv, (18)

oimvk ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv. (19)Equations (10) are the �ow onservation onstraints. Equations (11) determine thequantity on board when ship v sails from its initial port position to port arrival (i,m).Constraints (12) require that the vehile apaity is obeyed. Constraints (13) imposean upper bound on the quantity loaded at a supply port. Constraints (14) impose lower6



and upper limits on the unloaded quantities. Constraints (15) ensure that if ship vvisits port arrival (i,m), then at least one produt must be (un)loaded. Constraints(16) ensure that if ship v (un)loads one produt at visit (i,m), then wimv must be one.Constraints (17)-(19) are the non-negativity and integrality onstraints.Time onstraintsIn order to keep trak of the inventory level it is neessary to determine the start andthe end times at eah port arrival. We de�ne the following parameters: TQ
ik is the timerequired to load/unload one unit of produt k at port i; T S

ik is the set-up time requiredto operate produt k at port i. Tijv is the traveling time between port i and j by ship v;
TO
iv indiates the traveling time required by ship v to sail from its initial position to port

i; TB
i is the minimum interval between the departure of one ship and the next arrival atport i. T is the length of the time horizon. Given the start time tim and end time tEimvariables for port arrival (i,m), the time onstraints an be written as:

tEim ≥ tim +
∑

v∈V

∑

k∈Kv

TQ
ik qimvk +

∑

v∈V

∑

k∈Kv

T S
ikoimvk, ∀(i,m) ∈ SA, (20)

tim − tEi(m−1) − TB
i yim ≥ 0, ∀(i,m) ∈ SA : m > 1, (21)

tEim + Tijv − tjn ≤ T (1− ximjnv), ∀v ∈ V, (i,m, j, n) ∈ SX
v , (22)

∑

v∈V

TO
ivxoimv ≤ tim, ∀(i,m) ∈ SA, (23)

tim, t
E
im ≥ 0, ∀(i,m) ∈ SA. (24)Constraints (20) de�ne the end time of servie at port visit (i,m). Constraints (21)impose a minimum interval between two onseutive visits at port i. Constraints (22)relate the end time of port visit (i,m) to the start time of port visit (j, n) when ship

v sails diretly from port visit (i,m) to (j, n). Constraints (23) ensure that if ship vtravels from its initial position diretly to port visit (i,m), then the start time is at leastthe traveling time between the two positions. Constraints (24) de�ne the ontinuoustime variables.Inventory onstraintsThe inventory onstraints are onsidered for eah unloading port. They ensure thatthe stok levels are within the orresponding bounds and link the stok levels to the(un)loaded quantities.For eah onsumption port i, and for eah produt k, the onsumption rate, Rik,the minimum Sik, the maximum Sik and the initial stok S0
ik levels, are given. Theparameter µi denotes the maximum number of visits at port i.We de�ne the nonnegative ontinuous variables simk and sEimk indiating the stoklevels at the start and at the end of port visit (i,m) for produt k, respetively. The7



inventory onstraints are as follows:
si1k = S0

ik −Rikti1, ∀i ∈ N, k ∈ K : Jik = −1, (25)
sEimk = simk +

∑

v∈V

qimvk −Rik(t
E
im − tim), ∀(i,m) ∈ SA, k ∈ K : Jik = −1, (26)

simk = sEi(m−1)k − Rik(tim − tEi(m−1)), ∀(i,m) ∈ SA : m > 1, k ∈ K : Jik = −1, (27)
Sik ≤ simk, s

E
imk ≤ Sik, ∀(i,m) ∈ SA, k ∈ K : Jik = −1, (28)

Sik ≤ sEiµik
− Rik(T − tEiµi

) ≤ Sik, ∀i ∈ N, k ∈ K : Jik = −1. (29)Equations (25) alulate the stok level of eah produt at the �rst visit. Equations(26) alulate the stok level of eah produt when the servie ends at port visit (i,m).Equations (27) relate the stok level at the start of port visit (i,m) to the stok levelat the end of port visit (i,m− 1). The upper and lower bounds on the stok levels areensured by onstraints (28)-(29).Objetive funtionThe objetive is to minimize the total routing osts inluding traveling, operatingand set-up osts. The traveling ost of ship v from port i to port j is denoted by CT
ijv,while CT

oiv represents the traveling ost of ship v from its initial port positions to port
i. The set-up ost of produt k at port i is denoted by CO

ik. The objetive funtion is asfollow:
∑

v∈V

∑

(i,m,j,n)∈SX
v

CT
ijvximjnv +

∑

v∈V

∑

(i,m)∈SA
v

CT
oivxoimv +

∑

v∈V

∑

(i,m)∈SA
v

∑

k∈Kv

CO
ikoimvk. (30)The formulation de�ned by (1)-(30) is denoted by F-SSIRP, and the feasible set willbe denoted by X.4. Tightening the formulationTightening the formulation provided in the previous setion is essential to speedup the solution approahes (Branh and Bound and hybrid heuristis), and to providetighter bounds that will be used in Setion 6 to evaluate the quality of the testedheuristis. The tightening is done by inluding new inequalities. Many families ofinequalities were tested. Here we present only the ones that provided best results froma preliminary study.
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4.1. Tightening time onstraintsTime onstraints (22) linking the time variables with the routing variables are veryweak. Parameter T works as a big M onstant. An approah to tighten suh onstraintsis to establish time windows to the time events.
Aim ≤ tim ≤ Bim, ∀(i,m) ∈ SA, (31)
AE

im ≤ tEim ≤ BE
im, ∀(i,m) ∈ SA. (32)Then, onstraints (22) an be replaed by the stronger inequalities

tEim − tjn + (BE
im + Tijv − Ajn)ximjnv ≤ BE

im − Ajn.These inequalities an be further strengthened as follows (see Proposition 1 in [5℄):
tEim − tjn +

∑

v∈V |(i,m,j,n)∈SX
v

max{0, BE
im + Tijv −Ajn}ximjnv ≤ BE

im − Ajn, ∀(i,m), (j, n) ∈ SA.(33)One an take Aim = AE
im = 0 and Bim = BE

im = T. However, by reduing the widths ofthe time windows we strengthen inequalities (33). In this SSIRP we are dealing withmultiple ships, multiple produts, and all supply ports also at as demand ports of otherproduts. Beause of this harateristis it is hard to derive tight time windows.For simpliity, we provide only those time windows formulas that proved to be moste�etive for our ase. Other rules an be derived adapting the ones given in [10℄ forthe single item ase. Sine inventory aspets are only relevant for onsumption tanks,and sine all the loading ports of ertain produts are also onsumption ports of otherproduts, time windows are established based on the unloading produts only.The start of time windows are omputed as follows:
Aim = minv∈V {T

O
iv}+ (m− 1) ∗

(

TB
i +mink∈K|Jik=−1

{

TQ
ikQik

+ T S
ik

})

,

AE
im = minv∈V {T

O
iv}+ (m− 1) ∗ TB

i +m ∗mink∈K|Jik=−1

{

TQ
ikQik

+ T S
ik

}

,and the end of time windows are omputed as follows:
Bim = min

{

T,mink∈K|Jik=−1

{(

S0
ik + (m− 1) ∗ Sik − Sik

)

/Rik − T S
ik

}}

,

BE
im = min

{

T,mink∈K|Jik=−1

{(

S0
ik +m ∗ Sik − Sik

)

/Rik − T S
ik

}

− TB
i

}

.The end of time windows an be further strengthened. Let µi denote a lower boundon the number of visits to port i, i ∈ N (see in Setion 4.2 how to ompute theseparameters). If m ≤ µi, then T in the Bim formula given above an be replaed by
T − (µi −m) ∗ TB

i − (µi −m+ 1) ∗mink∈K|Jik=−1

{

TQ
ikQik

+ T S
ik

}

,9



and, if m < µi, then T in the BE
im formula an be replaed by

T − (µi −m) ∗
{

TB
i +mink∈K|Jik=−1

{

Q
ik
TQ
ik + T S

ik

}}

.4.2. Lower bounds on the number of visitsA ommon approah to tighten formulations for routing problems is to inlude on-straints imposing a minimum number of visits to eah node. The impat on the redutionof the integrality gap is usually high. Equations
yiµi

= 1, ∀i ∈ N (34)an be added to eah model. These parameters µi an be omputed from the inventoryinformation and traveling times. However, sine the traveling times between islands aresmall, the number of visits is better estimated through the inventory information andstorage apaities (at ships and ports).For eah port i ∈ N where produt k is unloaded, Jik = −1, let
DN

ik = max{T × Rik − S0
ik + Sik, Q

ik
}denote the net onsumption over the time horizon. The minimum number of visits toport i for unloading produt k is given by

λik =

⌈

DN
ik

Qik

⌉

.In the real problem, eah produt has a single origin. As inventory management atsupply tanks is disregarded, the minimum number of visits to load a produt an beestimated using the total onsumption supplied by that origin. The onsumption of thatprodut must be satis�ed either from that port or from the quantity in the ship tanksat the beginning of the planning horizon.For eah produt k ∈ K, loaded at port i ∈ N (Jik = 1) let
DN

ik =
∑

j∈N |Jjk=−1

(T ×Rjk − S0
jk + Sjk),denote the net onsumption of this produt over the time horizon. The minimum numberof loadings of produt k at port i is given by

λik =

⌈

DN
ik −

∑

v∈V Qvk

max{Cvk : v ∈ V }

⌉

.10



A lower bound on the total number of visits to port i ∈ N an be given by the followingequation:
µ
i
= max{λik : k ∈ K}. (35)Better bounds an be obtained by solving subproblems for eah port. A subproblemis solved for the onsumption produts at the port and, if the port is also a supplier ofother produts, another subproblem is solved for the supply produts.Although the subproblems are NP-hard, they an be solved very quikly using aommerial software.First we state the subproblem for onsumption produts. All the routing onstraintsare ignored in the subproblems. For these subproblems assoiated to eah port theinventory and time onstraints are the same as for the original model. The ship apa-ity for eah produt is overestimated by the maximum of the ship apaities for thatprodut.Let Ck = max{Cvk : v ∈ V, k ∈ Kv}. For eah port i let Mi = {1, 2, · · · , µi}. Thesubproblem is de�ned as follows:

NV D(i) : min
∑

m∈Mi

yim (36)
s.t.

qimk ≤ Ckoimk, ∀m ∈Mi, k ∈ K, Jik = −1 (37)
Q

ik
oimk ≤ qimk ≤ Qikoimk, ∀m ∈Mi, k ∈ K : Jik = −1, (38)

oimk ≤ yim, ∀m ∈Mi, ∀k ∈ K : Jik = −1, (39)Constraints (25)− (29) for node iConstraints (20), (21), (24) for node i

yim ∈ {0, 1}, ∀m ∈Mi, (40)
oimk ∈ {0, 1}, ∀m ∈Mi, k ∈ K : Jik = −1, (41)
qimk ≥ 0, ∀m ∈Mi, k ∈ K : Jik = −1, (42)where oimk =

∑

v∈V oimkv, qimk =
∑

v∈V qimkv.The objetive funtion (36) minimizes the number of visits at port i. Constraints(37) - (39) have a similar meaning as onstraints (13), (14), (16), only now the ship isignored and an overestimation of the ship apaities is used.If port i is also a supplier, we de�ne the following subproblem, NV S(i), where onlythe ship tank apaities are onsidered.
min{

∑

v∈V

uiv :
∑

v∈V

Cvkuiv ≥
∑

j∈N :Jjk=−1

DN
jk−

∑

v∈V

Qvk, ∀k ∈ K : Jik = 1, uiv ∈ Z+, ∀v ∈ V },11



where uiv indiates the number of visits of ship v to port i.If port i is simultaneously a onsumption and a supply port, the minimum numberof visits is the maximum between NV D(i) and NV S(i). These two subproblems will bealled port subproblems.4.3. Integer knapsak inequalitiesInequalities from knapsak relaxations have previously been used for MIRPs, see forinstane [24, 27, 34℄.Let Dk(S) denote the total demand of produt k, from ports in S during the planninghorizon, where S ⊆ N and Jik = −1 for all i ∈ S. Hene, Dk(S) =
∑

i∈S T × Rik. Let
NDk(S) denote the amount of demand Dk(S) that must be transported from ports in
N \ S. That is, NDk(S) = Dk(S) −

∑

v∈V Qvk −
∑

i∈S(S
0
ik − Sik). Then, the followinginteger set is a relaxation of X :

RX =

{

χ ∈ Z
|V |
+ :

∑

v∈V

Cvkχv ≥ NDk(S)

}

.where
χv =

∑

(i,m)∈SA
v |i∈N\S

∑

(j,n)∈SA
v |j∈S

ximjnv,denotes the number of times ship v visits a port in S oming from a port not in S duringthe planning horizon T .Valid inequalities for RX are valid for X. A partiular ase of these inequalities isthe following Gomory ut
∑

v∈V

∑

(i,m)∈SA
v |i∈N\S

∑

(j,n)∈SA
v |j∈S

⌈

Cvk

Q

⌉

ximjnv ≥

⌈

NDk(S)

Q

⌉

, (43)where Q an be any positive number. We take Q = Ck.However, when | V |= 2 the onvex hull of RX an be ompletely desribed inpolynomial time, see [6℄. When | V |> 2 faet de�ning inequalities for restritions of
RX to two variables χv an be lifted using the lifting funtion ω3 presented in [6℄. Thisapproah was used in [3℄. Here we provide an example.Example 4.1. Let N = {1, 2, · · · , 7}, V = {1, 2, 3, 4}, K = {1, 2, 3, 4}. Fix port i = 6,and onsider the apaities of the ompartments dediated to produt k = 1 : C11 = 900,
C21 = 600, C31 = 920, and C41 = 700. Suppose that for i = 6 and k = 1 with J61 = −1,we have ND61 = 3675. The following relaxation is derived

RX = {χv ∈ Z+ : 900χ1 + 600χ2 + 920χ3 + 700χ4 ≥ 3675} .12



Inequality 3χ1 + 2χ2 ≥ 13 is a faet-de�ning inequality for RX restrited to χ3 =
χ4 = 0. The lifting funtion assoiated with this inequality is:

ϕ(z) = max 13− 3χ1 − 2χ2s. t. 900χ1 + 600χ2 ≥ 3675− z,

χ1, χ2 ∈ Z+.In order to lift simultaneously the oe�ients of χ3 and χ4, the lifting funtion ϕ(z) anbe overestimated by the subadditive lifting funtion ω3 desribed in [6℄. Both funtions aredepited in Figure 1. Then the lifted inequality 3χ1+2χ2+ω3(920)χ3+ω3(700)χ4 ≥ 13
⇔ 3χ1 + 2χ2 + 3.26667χ3 + 3χ4 ≥ 13 is valid for RX.Notie that if only three variables are onsidered then one an use ϕ(z) instead of ω3whih gives a better oe�ient for χ3 sine ϕ(920) = 3.

75 375 675 975 1275123
4

z

ϕ

ω3

Figure 1: Lifting funtion ϕ and subadditive funtion ω3.Similar knapsak inequalities an be derived for loading ports and for relaxationsusing the operating variables oimvk instead of the traveling variables. For brevity weomit those inequalities.4.4. Clique inequalitiesThe name lique inequalities has been used for di�erent families of valid inequalitiesfor vehile routing problems. Here we introdue a family of lique inequalities whihan be regarded as a generalization of the subtour elimination onstraints (SEC):
ximjnv + xjnimv ≤ 113



Although subtour elimination onstraints inluding more than two variables an beuseful to improve the integrality gap, our experiene showed that good omputationalresults an be obtained using SEC inluding only two variables. These inequalities anbe regarded a partiular ase of lique inequalities on a given on�it graph. Consider theon�it graph G = (N , E), where eah node in N , denoted by (i,m, j, n, v), orrespondsto a variable ximjnv, and there is an edge in E between two nodes if the orrespondingvariables annot be set simultaneously to one (the two nodes are in on�it).De�nition 4.2. Let G = (N , E) be a on�it graph. Then we de�ne the following pairsof inompatible variables:(i) ximjnv and xjnimv, ∀v ∈ V, (i,m, j, n) ∈ SXv
.(ii) ximjnv1 and ximlwv2, ∀v1, v2 ∈ V, (i,m, j, n) ∈ SXv1

, (i,m, l, w) ∈ SXv2
.(iii) xlwjnv1 and ximjnv2, ∀v1, v2 ∈ V, (l, w, j, n) ∈ SXv1

, (i,m, j, n) ∈ SXv2
.(iv) xlwjnv1 and xjnimv2, ∀v1, v2 ∈ V : v1 6= v2, (l, w, j, n) ∈ SXv1

, (j, n, i,m) ∈ SXv2
.As onsequene of the above disussion we have the following result:Proposition 4.1. If C ⊂ N is a lique in the on�it graph G, then the inequality

∑

(i,m,j,n,v)∈C

ximjnv ≤ 1 (44)is valid for X.Remark 4.3. An inequality based on a pair of inompatible inequalities of type (i) is aSEC.In order to separate lique inequalities we need to onsider weights on the nodes.The weight of node (i,m, j, n, v) is given by the value of the variable ximjnv in the linearsolution. Finding the most violated lique inequality implies to solve the maximumweight lique problem, whih is known to be strongly NP-hard. Here we use a simplegreedy separation heuristi. First, �nd the maximum weight lique with two nodesand update C aordingly. Then augment set C in a greedy fashion. In eah iterationadd to C the maximum weight node that forms a lique with the nodes in C, that is,
C ← C ∪ {v∗} where

v∗ = argmax{wv : ∀u ∈ C, {u, v} ∈ E}.14



and wv is the weight of node v. The proess stops when a maximal lique is found. Ifthe resulting lique inequality (44) is violated then it is added as a ut, otherwise nonew inequality is added.Figure 2 shows an example of a linear relaxation solution and the respetive on�itgraph. Starting with the maximum weight lique with two nodes
C = {(1, 1, 2, 1, 2), (1, 1, 2, 2, 2)}.

C is further expanded. First with (2, 2, 1, 1, 2) and then with (3, 1, 1, 1, 1). Hene, C =
{(1, 1, 2, 1, 2), (1, 1, 2, 2, 2), (2, 2, 1, 1, 2), (3, 1, 1, 1, 1)}. The (violated) maximal lique in-equality is
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0.1Figure 2: Example of a partial linear relaxation on the left. The two types of ars represent di�erentships. The orresponding on�it graph is given on the right.5. Hybrid heuristisThe formulation F-SSIRP tightened with the strategies disussed in the previoussetion an hardly be used to solve real instanes using a generi MIP solver. However,15



reent hybrid heuristis have been proposed that use MIP solvers as a blak-box tool.Here we onsider and ombine three suh heuristi proedures: rolling horizon, loalbranhing and feasibility pump.5.1. Rolling Horizon heuristiWhen onsidering a planning horizon of several months, the tested instanes beometoo large to be handled by ommerial software. To provide feasible solutions we havedeveloped a Rolling Horizon (RH) heuristi. The main idea of the RH heuristi is tosplit the planning horizon into smaller sub-horizons, and then repeatedly solve limitedand tratable mixed integer problem for the shorter sub-horizons. In transportationproblems, RH heuristis have been used in several related works [9, 31, 28, 32℄.In eah iteration k of the RH heuristi (exept the �rst and last one), the sub-horizon onsidered is divided into three parts: (i) a frozen part where binary variablesare �xed; (ii) a entral part (CPk) where no restrition or relaxation is onsidered, and(iii) a foreasting period (FPk) where binary variables are relaxed. The entral periodin iteration k beomes a frozen period in iteration k+1, and the foreasting period fromiteration k beomes the entral period in iteration k + 1, see Figure 3. The proess isrepeated until the whole planning horizon is overed. In eah iteration the limited mixedinteger problem is solved. When moving from iteration k to iteration k+1 we (a) �x thevalues of the binary variables, (b) update the initial stok level of eah produt at eahport, () alulate the quantity of eah produt on board eah ship, and (d) update, foreah ship, the initial position and the travel time and ost from that position to everyport, see Algorithm 1. Based on preliminary tests we set CPk = FPk = 5 days.Algorithm 1 Rolling Horizon heuristi1: k ← 12: U ← number of iterations to over the planning horizon [1, · · · , T ]3: while k ≤ U do4: Relax binary variables in foreasting period FPk5: Solve a limited mixed integer problem de�ned by CPk and FPk6: Freeze the variables ximjnv, xoimv, oimvk, wimv, zimv and yim in CPk7: if k < U then8: Update the initial stok level of produt k at port i9: Calulate the quantity of eah produt on board eah ship v10: Update, for eah ship v, the initial position and the travel time and ost fromthat position to every port i11: end if12: k ← k + 113: end while 16



t
CPk FPk

CPk+1 FPk+1

IterationkIterationk+1

frozen periodfreezing strategy entral perioddetailed planning foreasting periodsimpli�ation strategy

Figure 3: The rolling horizon heuristi5.2. Loal Branhing heuristiLoal Branhing (LB) was introdued in [19℄ to improve a given feasible solution.The LB heuristi searhes for a loal optimum by restriting the number of variablesthat an hange their value in the urrent feasible solution.More formally, onsider a feasible set of the form {(u, v) ∈ {0, 1}n×R
m ∩ P} where

P is a polyhedron. Given a feasible solution (u, v), let S = {j ∈ {1, · · · , n} : uj = 1}denote the set of indies of the binary variables that are set to 1. The extra onstraint
∑

j∈S

(1− uj) ≤ ∆, (45)is onsidered, where ∆ is a given positive integer parameter, indiating the number ofvariables uj, j ∈ S that are allowed to �ip from one to zero.Many strategies were tested to ombine the two heuristi approahes RH and LB.Here we present only three suh strategies. In the RH, the problem is deomposed intosubproblems. In eah iteration the subproblem is solved to optimality. For the ombinedheuristis we used the same deomposition as for the RH. For all three ombined strate-gies, for eah subproblem, a onstraint (45) with ∆ = 0 is added on the variables of thefrozen period. Doing so, we allow the ontinuous variables to hange their value withinthe frozen period. The strategies di�er in the solution approah for eah subproblem,and on whether they perform a loal searh in the neighborhood of the �nal solution ornot. 17



LB1: For eah subproblem, the solver is interrupted when the �rst feasible solutionis reahed.LB2: Solve eah subproblem twie. First the solver is run until either an integralitygap (gap = 100× (UB −LR)/LR where UB is the best known upper bound and LR isthe best known lower bound) less than or equal to 10% is ahieved or a maximum timelimit is reahed. Then a onstraint (45) with ∆ = 2 is added over the variables in theentral period, and the subproblem is solved again until a gap of 5% is reahed or thetime limit is attained.LB3: Obtain a feasible solution with LB2. For a t, 0 < t < T , impose a onstraint(45) with ∆ = 0 for the period [0, T − t], and a onstraint (45) with ∆ = 6 for the period
[T − t, T ]. Solve the new problem. Using the new solution impose new onstraints onperiods [0, T − 2t], with ∆ = 0, and [T − 2t, T ], with ∆ = 6, and solve the problemagain. This proedure is repeated until at least one of the following stopping riterion isreahed: (i) time limit; (ii) maximum number of iterations without improvement; (iii)a maximum number of iterations. This algorithm is detailed in Algorithm 2. In ourexperiments we used t = 5 days, and a maximum number of 5 iterations.5.3. Feasibility Pump heuristiFeasibility Pump (FP) was introdued by Fishetti, Glover and Lodi [18℄ as a heuris-ti sheme to �nd a feasible solution for a given mixed integer program. Suh a proedurean be useful for those problems where �nding an initial solution an be an hard task.FP is a rounding sheme that generates a sequene of frational solutions from the linearrelaxation whih are rounded. The heuristi stops when a feasible solution is found orother stopping riteria is reahed.Here we use FP to speed-up the �nding of an initial feasible solution. Although wefollowed the underlying ideas of FP, it was neessary to adjust this heuristi sheme toour MIRP. We fous on the problem at hand and not on the general FP sheme.In this setion, and for simpliity, we denote the points in the spae of variables ofF-SSIRP by x. First the linear relaxation of F-SSIRP is solved and a linear solution x∗ isobtained. Then the binary variables with frational values are rounded, and a solution
x is obtained. If x is feasible (x ∈ X) we stop. Otherwise, a new frational solutionis derived by �nding the linear solution in the linear relaxation of X that minimizes adistane funtion to x. The proess is repeated until a feasible solution is found or aprede�ned maximal number of iterations is reahed. If the rounding proedure stopswithout a feasible solution, then we run the solver.Next we address the main steps of the FP algorithm in more detail.Rounding shemeFor the rounding sheme we �rst onsider the routing variables, ximjnv. We set
ximjnv = 1 whenever ximjnv > 0.5 and ximjnv = 0 whenever ximjnv < ǫ, for small ǫ.18



Algorithm 2 LB3 heuristi// �rst part (obtain a feasible solution for a planning horizon T, ximjnv)1: T ← length of the planning horizon2: T1 ← length of the sub-horizon3: Solve the problem for a time horizon of T1 = 2t periods4: Save the feasible solution, ximjnv, and ompute S5: T1 ← T1 + t6: ∆1 ← 07: ∆2 ← 68: Bin ← 09: while T1 ≤ T do10: Using the port subproblem NV D(i), determine the minimum number of visits ateah port i for time horizon [0, T1]11: Add onstraints ∑j∈S(1− xj) ≤ ∆1 for time horizon [0;T1 − 3t]12: if Bin = 0 then13: Solve the problem until gap ≤ 10% or time limit is reahed14: Bin ← 115: else16: Add onstraints ∑j∈S(1− xj) ≤ ∆2 for time horizon [T1 − 3t;T1]17: Solve the problem until gap ≤ 5% or time limit is reahed18: Bin ← 019: T1 ← T1 + t20: Remove all added onstraints and update the model21: end if22: Update the solution, ximjnv and S23: end while// seond part (improve the feasible solution , ximjnv)24: number of iterations ← 125: while number of iterations ≤ max number of iterations and solution improves do26: Redue the �xed period of variables with t days: T1 ← T1 − t27: Add onstraints ∑j∈S(1− xj) ≤ ∆228: Update the solution, ximjnv and S29: number of iterations ← number of iterations+130: end while
19



Using the routing �ow onservation onstraints we �x the value of the remaining rout-ing variables. Then the remaining binary variables xoimv, wimv, zimv, yim oim are trivially�xed. This guided rounding sheme provided better results than rounding all binaryvariables simultaneously or rounding all the routing variables simultaneously �rst. So-phistiated rounding shemes are disussed in [20℄. In our experiments we use ǫ = 0.1.The distane funtionGiven a 0-1 MIP solution obtained by rounding x we de�ne the following distanefuntion
φ(ximjnv, ximjnv) =

∑

v∈V

∑

(i,m,j,n)∈SX
v

|ximjnv − ximjnv|

=
∑

v∈V

∑

(i,m,j,n)∈SX
v |ximjnv=1

(1− ximjnv)

+
∑

v∈V

∑

(i,m,j,n)∈SX
v |ximjnv=0

ximjnv (46)If φ(ximjnv, ximjnv) = 0, then a feasible solution an be derived. Otherwise a newlinear solution x∗ is obtained by solving the problem:
min{φ(ximjnv, ximjnv) : x ∈ XL}where XL denotes the linear relaxation of the feasible set X of F − SSIRP.Random perturbationDuring the exeution of the proedure two problems may arise: (i) the algorithman be aught in a yle, i.e., the same sequene is visited onseutively; and (ii) theonvergene to a feasible solution is very slow.Both problems (i) and (ii) are solved by performing a restart, that is, a new 0-1 MIPsolution is derived by performing a random perturbation step. This step is similar tothe one given in [1℄ and it is applied to the routing variables on the rounding sheme,that is, ximjnv = ⌊x∗

imjnv + ρ(z)⌋ where z ∈ [0, 1] is a uniform random variable and
ρ(z) = 2z(1− z) if z ≤ 0.5 and ρ(z) = 1− 2z(1− z) if z > 0.5.To measure the onvergene speed we ompute the di�erene between the value ofthe distane funtion in two onseutive solutions. When this di�erene is very small(smaller than a given δ) we perform the random perturbation.Algorithm 3 desribes the FP heuristi. In the omputational results we set δ = 0.1and a maximum number of 50 iterations. 20



Algorithm 3 Feasibility Pump heuristi1: Relax binary variables2: Solve LP-relaxation of F-SSIRP. Let x∗ denote its optimal solution3: Obtain x by rounding x∗4: number of iterations ← 15: while number of iterations ≤ max number of iterations and φ(ximjnv, ximjnv) > 0do6: Solve the LP: x∗ ← argmin{φ(ximjnv, ximjnv) : x ∈ XL}7: Obtain x by rounding x∗8: if φ(ximjnv, x
∗
imjnv) < δ then9: Apply the random perturbation step10: end if11: number of iterations ← number of iterations+112: end while6. Computational experimentationIn this setion we report the omputational results when testing di�erent hybridheuristi approahes.All omputations were performed using the optimization software Xpress OptimizerVersion 20.00.05 with Xpress Mosel Version 3.0.0, on a omputer with proessor IntelCore 2 Duo 2.2GHz and with 4GB of RAM.We tested 12 real instanes from a ompany in Cape Verde with 2 di�erent ships, 7ports and 4 produts.First we report a summary of results that testify the model hoies. These testswere run for periods of 15 days. Then we report the results from the tests onduted toompare several hybrid strategies for periods of 2 and 6 months.6.1. Model tuningFirst we onsider the use of port subproblems to estimate the minimum numberof port visits. Figure 4, on the left, shows the minimum number of visits alulatedusing the formula (35), alulated using the subproblems, and the number of visitsin the optimal solution for the 12 instanes tested. On the right, the �gure depitsthe integrality gap (GAP), given by GAP = 100 × (OPT − LR)/OPT where OPTis the optimal value, obtained using the Xpress optimizer, and LR is the value of thelinear relaxation. We onsider the ases: �initial� when no minimum number of visitsis imposed, �formula� when the minimum is obtained using (35), �subproblem� whenthe minimum is obtained using port subproblems and �exat� when we onsider theminimum equal to the number of visits in the optimal solution.21
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Figure 4: Estimation of the minimum number of visits (on the left) and its impat on the integralitygap (on the right).In average, the initial integrality gap is 26.7%, drops to 24.1% using equations (35),and drops to 17.7% using subproblems. If the exat value in the optimal solution isused, the average gap is 13.2%.Table 1 summarizes the integrality gaps when model F-SSIRP is used. TT meansthat the time onstraints were tightened, SP means that the minimum number of visitswas estimated using the port subproblem. IK indiates that the Integer Knapsakinequalities are added, and C means that the lique inequalities are added.Table 1: Evolution of the average integrality gap with model tightening.F-SSIRP + TT F-SSIRP + TT + SP F-SSIRP + TT + SP + IK F-SSIRP+TT+SP+IK+C26.7 17.7 10.9 10.9In Table 2 we present the average solutions times, the number of B&B nodes, andthe number of uts added in eah ase. We an see that although the lique inequalitiesdo not improve the integrality gap signi�antly, they are important with regard to theredution in number of B&B nodes and running time.6.2. Hybrid heuristisIn this setion we report experiments arried out for omparing the hybrid heuristisin terms of running time, integrality gap and number of B&B nodes over two planninghorizons: 2 and 6 months. Sine the optimal solutions ould not be obtained for thesetime horizons, the integrality gap (GAP) is omputed as GAP = 100× (UB−LR)/LRwhere UB is the value obtained by the heuristi and LR is the value of the linear22



Table 2: Comparison of time (in seonds), and B&B nodes using valid inequalities.F-SSIRP+TT F-SSIRP+TT+SP+IK F-SSIRP+TT+SP+IK+CInst. Time Nodes Time Nodes Cuts Time Node Cuts1 288 23788 38 1017 12 36 1015 162 11 19 25 1491 5 9 7 63 31 1377 51 3451 9 55 5678 164 63 3970 26 919 9 17 575 105 19 2777 15 2307 7 16 533 116 69 6188 23 2433 9 23 2433 97 15 754 8 379 5 6 327 68 20 8785 18 2917 10 10 622 119 40 8071 23 1423 7 24 603 910 40 1551 23 3535 9 9 3 1311 58 16729 111 5383 9 73 2509 1112 71 9299 41 8003 8 41 8003 8Average 60.4 6942.3 33.5 2771.5 8.3 26.6 1859.0 10.5relaxation. The value LR is obtained using the port subproblems to estimate the numberof visits, and inluding IK and C inequalities. These model strengthening tehniques areused whenever the optimization of the model F-SSIRP ours as a subproblem embeddedin a hybrid heuristi. The valid inequalities are added only at the root node.For a time horizon of 2 months, Table 3 shows the performane of the RH heuristi,LB1 and LB1 ombined with FP. It reports the time in seonds, the number of B&Band the integrality gap for eah heuristi. The performane of LB2 and LB2 ombinedwith FP is given in Table 4, and the performane of LB3 and LB3 ombined with FP isgiven in Table 5.
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Table 3: Computational results using RH, LB1 and LB1+FP for T = 2 months.RH LB1 LB1+FPInst. Time Nodes Gap Time Nodes Gap Time Nodes Gap1 1409 141380 37,1 45 1631 24,8 62 1753 27,72 951 148330 26,0 31 692 18,1 88 3229 31,23 1421 119833 12,4 365 30027 30,2 401 12420 16,84 4908 349909 41,1 51 2118 22,0 110 1700 28,25 649 105135 33,5 81 2829 30,8 126 2744 36,26 711 106265 33,0 598 53813 38,3 405 29366 30,97 362 47432 29,5 384 24356 28,2 321 22785 18,78 1285 160392 28,0 225 17487 29,1 256 16439 23,49 1107 122907 31,5 684 60289 33,6 322 13265 22,110 865 105245 25,8 97 3706 27,0 108 11027 27,111 985 143251 28,5 97 3706 28,1 64 2023 26,912 1106 167755 30,2 3 13 24,3 74 2838 32,9Av. 1313,3 143152,8 29,7 221,8 16722,3 27,9 194,8 9965,8 26,8Table 4: Computational results for LB2 and LB2+FP for T = 2 months.LB2 LB2+FPInstane Time (se.) Nodes Gap Time (se.) Nodes Gap1 277 19887 23,2 106 4014 16,12 104 7982 11,8 72 3859 12,43 817 54236 21,8 780 48717 20,74 155 10214 22,6 192 12692 18,65 552 31737 15,2 252 10013 17,86 1755 122197 20,4 940 78983 20,47 1066 79101 21,3 481 26912 16,28 734 63262 20,0 672 28244 25,49 846 54919 16,7 1083 41811 21,710 1047 52706 17,5 397 7660 14,111 285 10004 20,6 423 11650 18,412 744 27989 11,2 456 12493 14,7Average 698,5 44519,5 18,5 487,8 23920,7 18,1
24



Table 5: Computational results for LB3 and LB3 + FP for T = 2 months.LB3 LB3+FPInstane Time (se.) Nodes Gap Time (se.) Nodes Gap1 301 20561 20,5 107 4014 12,92 105 7982 8,6 144 7718 12,43 951 64918 18,8 781 48717 18,14 185 15624 18,2 384 25384 18,65 573 33366 11,9 504 20026 17,86 2018 131345 20,4 1211 86043 20,47 1079 79303 18,5 485 26943 12,98 760 64206 17,0 686 28353 17,09 850 54919 13,7 1088 41811 18,710 1050 52706 14,5 399 7660 11,011 312 10770 17,9 425 11650 15,712 753 28264 7,8 461 12494 11,5Average 744,8 46997,0 15,7 556,3 26734,4 15,6We an see that LB heuristis ombined with FP are, in average, faster than theLB heuristis whih are in turn faster than the RH heuristi. The use of FP is morerelevant on those harder instanes, where the solver is not able to �nd good initialfeasible solutions quikly. As expeted, LB1 is faster than LB2, and LB2 is faster thanLB3. However, the quality of the solutions obtained varies in the opposite diretion.The most sophistiated heuristi, LB3 ombined with FP, provides solutions with anintegrality gap whih is, in average, half of the integrality gap of the usual RH heuristi.The running time is almost a third of the running time of the RH heuristi.Tables 6 and 7 give the omputational results for 6 months for heuristis RH, LB1,and LB2 and LB3 ombined FP. The behavior of these algorithms is similar to the aseof 2 months. Only the gaps are higher. However, as this gap is omputed by use of thelinear relaxation value we do not know whether this inrease results from a deteriorationof the upper bound, the lower bound, or both.
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Table 6: Computational results for RH and LB1 for T = 6 months.RH LB1+FPInstane Time (se.) Nodes Gap Time (se.) Nodes Gap1 3324 107998 42,6 2816 25114 24,32 10258 207125 44,8 1937 23517 28,73 3451 62775 45,6 2872 57014 26,14 4631 115802 41,6 1040 14311 26,55 6149 103324 47,7 3689 48353 32,86 10288 139427 42,5 3977 77989 31,57 7219 105059 42,4 1468 35739 27,88 3776 166414 46,2 1213 34326 32,59 4196 209323 47,2 7792 102636 29,710 2658 113510 45,1 4854 39172 30,511 13244 208361 44,8 569 12772 27,912 2079 93102 45,1 3042 35513 29,4Average 5939,4 136018,3 44,6 2939,1 42204,7 29,0Table 7: Computational results for LB2 and LB3 for T = 6 monthsLB2+FP LB3+FPInstane Time (se.) Nodes Gap Time (se.) Nodes Gap1 4404 166993 23,1 4551 167148 21,12 1260 78999 20,7 1300 79060 18,63 2469 83566 23,8 2507 83647 22,04 1736 83330 20,3 1819 83457 18,25 2917 99785 28,2 3142 100031 26,66 3109 114450 28,7 3125 114455 27,17 2899 102661 31,9 3004 102776 30,48 2349 113899 28,7 2480 114137 27,19 3894 142451 21,1 4109 142606 19,210 1392 53626 20,7 1598 53742 18,711 2308 110136 24,4 2454 110286 22,612 1607 67245 24,5 1881 67355 22,8Average 2528,7 101428,4 24,7 2664,1 101558,5 22,9To test the heuristi approahes that performed best on the larger instanes, wereated two arti�ial future senarios where the demands as well as the number ofships are inreased. One senario with three ships and demands that are 1.5 timesthe urrent demands, and another senario with four ships and double demands. Eahsenario is identi�ed by the number of ships (| V |= 3 and | V |= 4). We opted not toredue the length of eah sub horizon. All the tested heuristis run within a reasonable26



omputational time e�ort for 2 months. For 6 months, RH, LB2 and LB3 heuristiswere too time onsuming.In Table 8 we give the omputational results. For | V |= 3 we used a variantof LB2, where only the �rst run (until a gap of 10%) is performed, ombined withFP. For | V |= 4 we used LB1 ombined with FP. We ould not solve most of thelinear relaxations within 1 day time limit. To ompute the lower bound we omputedthe linear relaxation of the model obtained from F-SSIRP by removing all time andinventory onstraints, and with the additional uts disussed in Setion 4. Additionallywe imposed, for eah port i and eah produt k suh that Jik = −1, the onstraint
∑

v∈V

∑µi

m=1 qimvk ≥ T ×Rik + Sik − S0
ik.Table 8: Computational results for larger instanes with 3 and 4 ships|V|=3 |V|=4Instane Time (se.) Nodes Gap Time (se.) Nodes Gap1 988 10154 27,0 5218 45921 31,02 1096 20695 29,7 5017 44186 35,13 924 30403 29,8 4633 51406 24,54 2120 34692 30,3 6804 47798 28,25 2120 49307 32,7 5706 49415 35,96 2199 25836 36,9 10988 55062 40,87 1158 32612 33,7 3338 48450 31,28 2340 62303 33,3 4173 54671 30,79 1486 51884 29,9 6813 52666 35,210 1857 51934 35,0 9958 47864 34,311 2275 25875 31,1 4581 49583 36,612 2628 30691 31,1 5064 47717 31,2Average 1765,9 35532,2 31,7 6024,4 49561,6 32,97. ConlusionsWe have presented a mathematial model for the short sea inventory routing prob-lem. This model is tightened with valid inequalities and an estimation of the minimumnumber of visits to eah port by solving some port subproblems. In partiular we in-trodued new lique inequalities that an be used to tighten ontinuous time maritimeinventory routing models.Given the long time horizons, we propose and ompare di�erent strategies of om-bining three well-known heuristis that use the mathematial model as a blak-box.The Rolling Horizon heuristi is used to deompose the original problem into smaller27
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