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with the inventories at the ports, the underlying planning problem is a maritime inven-tory routing problem. Su
h problems are very 
omplex. Usually modest improvementsin the supply 
hain planning 
an translate into signi�
ant 
ost savings.In this paper we 
onsider a real maritime Short Sea Inventory Routing Problem(SSIRP) o

urring in the ar
hipelago of Cape Verde. An oil 
ompany is responsible forthe inventory management of di�erent oil produ
ts in several tanks lo
ated in the mainislands. Fuel oil produ
ts are imported and delivered to spe
i�
 islands and stored inlarge supply storage tanks, so the inventory management does not need to be 
onsideredin these tanks. From these islands, fuel oil produ
ts are distributed among all theinhabited islands using a small heterogeneous �eet of ships with dedi
ated tanks. Theseprodu
ts are stored in 
onsumption storage tanks with limited 
apa
ity. Consumptionrates are assumed to be given and 
onstant over a time horizon of several months.Some ports have both supply tanks for some produ
ts and 
onsumption tanks of otherprodu
ts.We have witnessed an in
reased interest in studying optimization problems withinmaritime transportation [14, 15, 16℄ and, in parti
ular, in the last �fteen years, prob-lems 
ombining routing and inventory management [8, 12℄. These problems are often
alled Maritime Inventory Routing Problems (MIRPs). Most of the published MIRP
ontributions are based on real 
ases from the industry, see for the single produ
t 
ase[11, 21, 22, 24℄ and for the multiple produ
ts 
ase [7, 13, 28, 30, 33, 35℄.This SSIRP is addressed in a 
ompanion paper [4℄ where di�erent mathemati
al for-mulations are dis
ussed and 
ompared for the SSIRP 
onsidering a shorter time horizon.There, two main approa
hes to model the problem are 
onsidered. One uses a 
ontinuoustime model where an index indi
ating the visit number to a parti
ular port is added tomost of the variables. This approa
h was used in [7℄, [11℄ and [33℄ for MIRPs where theprodu
tion and/or 
onsumption rates are 
onsidered given and �xed during the plan-ning horizon. The other approa
h 
onsists of using a model that 
ombines a dis
rete and
ontinuous time where the dis
rete time 
orresponds to an arti�
ial dis
retization of the
ontinuous time. Dis
rete time models have been developed in [2, 22, 23, 24, 28, 30, 34℄to over
ome the 
ompli
ating fa
tors with time varying produ
tion and 
onsumptionrates. In addition, for ea
h approa
h two new extended formulations are tested in [4℄.In [3℄, the SSIRP for short-term planning is 
onsidered. For the short-term plansdemand orders are 
onsidered, that is, �xed amounts of oil produ
ts that must bedelivered at ea
h port within a �xed period of time. These orders are determinedfrom the initial sto
k levels and the 
onsumption rates and lead to a problem withvarying demands (
orresponding to the demand orders). Several key issues taken intoa

ount in the short-term problem are relaxed here or in
orporated indire
tly in thedata. For instan
e, port operating time windows that are essential in the short-term2



plan are ignored here. Otherwise, the problems 
onsidered originate from the same
ompany in the same region. These problems are solved using the same 
ommer
ialsolver we use here, 
onsidering a formulation whi
h is improved by the strengtheningof de�ning inequalities and the in
lusion (through separation) of valid inequalities. In[7℄ a problem similar to the SSIRP is 
onsidered with 
onstant 
onsumption rates anddedi
ated 
ompartments in the ships.In this paper we develop and 
ompare di�erent hybrid heuristi
s for the SSIRP.As dis
ussed in [8, 34℄, most 
ombined maritime routing and inventory managementproblems des
ribed in the literature have parti
ular features and 
hara
teristi
s, andtailor-made methods are developed to solve the problems [12℄. These methods are oftenbased on heuristi
s or de
omposition te
hniques. Re
ent hybrid heuristi
s that use MIPsolvers as a bla
k-box tool have been proposed. Here we 
onsider and 
ombine threehybrid heuristi
s: Rolling Horizon (RH), Lo
al Bran
hing (LB) and Feasibility Pump(FP). In RH heuristi
s the planning horizon is split into smaller sub-horizons. Then, ea
hlimited and tra
table mixed integer problem is solved to optimality. Within maritimetransportation RH heuristi
s have been used in [25, 28, 32, 33, 34℄. Lo
al Bran
hing (LB)was introdu
ed by Fi
hetti and Lodi [19℄ to improve feasible solutions. LB heuristi
ssear
h for lo
al optimal solutions by restri
ting the number of binary variables thatare allowed to 
hange their value in the 
urrent solution. Feasibility Pump (FP) wasintrodu
ed by Fis
hetti, Glover and Lodi [18℄ to �nd initial feasible solutions for MIPproblems.Computational experiments reported in Se
tion 6 show that a 
ombined heuristi
using the three approa
hes outperformed the other tested heuristi
s and, in parti
ular,outperformed the most used approa
h within MIRPs, the RH heuristi
.To solve ea
h subproblem we 
onsider the ar
-load �ow (ALF) formulation intro-du
ed in [4℄, sin
e this was the model with the best performan
e among all the testedmodels for this problem with short time horizons. The ALF formulation is improved bya pre-
omputation of estimates for the number of visits to ea
h port, and with the in
lu-sion of valid inequalities. In parti
ular, we introdu
e a new family of 
lique inequalitiesfor MIRPs when 
ontinuous time models are used.The main 
ontributions of this paper, the heuristi
 strategies and the valid inequal-ities, 
an easily be used in other MIRPs.The remainder of this paper is organized as follows. In Se
tion 2, we des
ribe thereal problem. The ar
-load �ow formulation is presented in Se
tion 3 and strategiesto tighten the formulation are dis
ussed in Se
tion 4. In Se
tion 5 we des
ribe severalhybrid heuristi
s. The 
omputational experimentations are reported in Se
tion 6. Final
on
lusions are given in Se
tion 7.
3



2. Problem des
riptionIn Cape Verde, fuel oil produ
ts are imported and delivered to spe
i�
 islands andstored in large supply storage tanks. From these islands, fuel oil produ
ts are distributedamong all the inhabited islands using a small heterogeneous �eet of ships. The produ
tsare stored in 
onsumption storage tanks. Two ports have both supply tanks for someprodu
ts and 
onsumption tanks for other produ
ts, while the remaining ports have only
onsumption tanks. Not all islands 
onsume all produ
ts. The 
onsumptions (whi
hare usually fore
asted) are assumed to be 
onstant over the time horizon. It is assumedthat ea
h port 
an re
eive at most one ship at a time and a minimum interval betweenthe departure of a ship and the arrival of the next one must be 
onsidered. Waitingtimes are allowed.Ea
h ship has a spe
i�ed load 
apa
ity, �xed speed and 
ost stru
ture. The 
argohold of ea
h ship is separated into several 
argo tanks. The produ
ts 
an not be mixed,so we assume that the ships have dedi
ated tanks to parti
ular produ
ts.The traveling times between two 
onse
utive ship visits are an estimation basedon pra
ti
al experien
e. Additionally, we 
onsider set-up times for the 
oupling andde
oupling of pipes, and operating times.To prevent a ship from delivering small quantities, minimum delivery quantitiesare 
onsidered. The maximum delivered quantity is imposed by the 
apa
ity of the
onsumption storage tank. Safety sto
ks are 
onsidered at 
onsumption tanks. As the
apa
ity of the supply tanks is very large when 
ompared to the total demand over thehorizon, we omit the inventory aspe
ts for these tanks.In ea
h problem instan
e we are given the initial sto
k levels at the 
onsumptiontanks, initial ship positions (whi
h 
an be a point at sea) and quantities on board ea
hship. The inter-island distribution plan 
onsists of designing routes and s
hedules for the�eet of ships in
luding determining the number of visits to ea
h port and the (un)loadingquantity of ea
h produ
t at ea
h port visit. The plan must satisfy the safety sto
ks ofea
h produ
t at ea
h island and the 
apa
ities of the ship tanks. The transportationand operation 
osts of the distribution plan must be minimized over a �nite planninghorizon.3. Mathemati
al ModelIn [4℄ a 
omparison of six di�erent formulations for the SSIRP for a shorter timehorizon is given. Three of those formulations 
onsider a time dis
retization and theother three 
onsider 
ontinuous time. For ea
h time option the following formulationsare 
onsidered: an ar
-load formulation, where the model keeps only tra
k of the infor-mation of the load on board ea
h ship 
ompartment in ea
h port visit; an ar
-load �owformulation, where new variables are used to keep the information about the quantity4



of ea
h produ
t in ea
h 
ompartment when a ship leaves a port en route to the nextone; and a multi-
ommodity formulation, where the �ow on ea
h ar
 is disaggregateda

ordingly to its destination. That 
omparison led to the 
hoi
e of the 
ontinuous timear
-load �ow formulation. In this se
tion we present that ar
-load �ow formulation.Routing 
onstraintsLet V denote the set of ships. Ea
h ship v ∈ V must depart from its initial positionin the beginning of the planning horizon. The set of ports is denoted by N . For ea
hport we 
onsider an ordering of the visits a

ordingly to the time of the visit. The shippaths are de�ned on a network where the nodes are represented by a pair (i,m), where iis the port and m represents the mth visit to port i. Dire
t ship movements (ar
s) fromport arrival (i,m) to port arrival (j, n) are represented by (i,m, j, n).We de�ne SA as the set of possible port arrivals (i,m), SA
v as the set of ports thatmay be visited by ship v, and set SX

v as the set of all possible movements (i,m, j, n) ofship v.For the routing we de�ne the following binary variables: ximjnv is 1 if ship v sailsfrom port arrival (i,m) dire
tly to port arrival (j, n), and 0 otherwise; xoimv indi
ateswhether ship v sails dire
tly from its initial position to port arrival (i,m) or not; wimvis 1 if ship v visits port i at arrival (i,m), and 0 otherwise; zimv is equal to 1 if ship vends its route at port arrival (i,m), and 0 otherwise; zov is equal to 1 if ship v is notused and 0 otherwise; yim indi
ates whether a ship is visiting port arrival (i,m) or not.
∑

(i,m)∈SA
v

xoimv + zov = 1, ∀v ∈ V, (1)
wimv −

∑

(j,n)∈SA
v

xjnimv − xoimv = 0, ∀v ∈ V, (i,m) ∈ SA
v , (2)

wimv −
∑

(j,n)∈SA
v

ximjnv − zimv = 0, ∀v ∈ V, (i,m) ∈ SA
v , (3)

∑

v∈V

wimv = yim, ∀(i,m) ∈ SA, (4)
yi(m−1) − yim ≥ 0, ∀(i,m) ∈ SA : m > 1, (5)
xoimv, wimv, zimv ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SA

v , (6)
ximjnv ∈ {0, 1}, ∀v ∈ V, (i,m, j, n) ∈ SX

v , (7)
zov ∈ {0, 1}, ∀v ∈ V, (8)
yim ∈ {0, 1}, ∀(i,m) ∈ SA. (9)Equations (1) ensure that ea
h ship either departs from its initial position and sailstowards another port or the ship is not used. Equations (2) and (3) are the �ow 
onser-vation 
onstraints, ensuring that a ship arriving at a port also leaves that port or ends5



its route. Constraints (4) ensure that one ship only visits port (i,m) if yim is equal toone. Constraints (5) state that if port i is visited m times, then it must also have beenvisited m− 1 times. Constraints (6)-(9) de�ne the variables as binary.Load and unload 
onstraintsLet K represent the set of produ
ts and Kv represent the set of produ
ts that ship
v 
an transport. Not all ports 
onsume all produ
ts. Parameter Jik is 1 if port i isa supplier of produ
t k; −1 if port i is a 
onsumer of produ
t k, and 0 if i is neithera 
onsumer nor a supplier of produ
t k. The quantity of produ
t k on board ship vat the beginning of the planning horizon is given by Qvk, and Cvk is the 
apa
ity ofthe 
ompartment of ship v dedi
ated for produ
t k. The minimum and the maximumdis
harge quantities of produ
t k at port i are given by Q

ik
and Qik, respe
tively.In order to model the loading and unloading 
onstraints, we de�ne the followingbinary variables: oimvk is equal to 1 if produ
t k is loaded onto or unloaded from ship

v at port visit (i,m), and 0 otherwise. In addition, we de�ne the following 
ontinuousvariables: qimvk is the amount of produ
t k loaded onto or unloaded from ship v at portvisit (i,m), fimjnvk denotes the amount of produ
t k that ship v transports from portvisit (i,m) to port visit (j, n), and foimvk gives the amount of produ
t k that ship vtransports from its initial position to port visit (i,m).The loading and unloading 
onstraints are given by:
foimvk +

∑

(j,n)∈SA
v

fjnimvk + Jikqimvk =
∑

(j,n)∈SA
v

fimjnvk, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv (10)

foimvk = Qvkxoimv, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv, (11)

fimjnvk ≤ Cvkximjnv, ∀ v ∈ V, (i,m, j, n) ∈ SX
v , k ∈ Kv, (12)

0 ≤ qimvk ≤ Cvkoimvk, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv : Jik = 1, (13)

Q
ik
oimvk ≤ qimvk ≤ Qikoimvk, ∀v ∈ V, (i,m) ∈ SA

v , k ∈ Kv : Jik = −1, (14)
∑

k∈Kv

oimvk ≥ wimv, ∀v ∈ V, (i,m) ∈ SA
v , (15)

oimvk ≤ wimv, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv, (16)

fimjnvk ≥ 0, ∀v ∈ V, (i,m, j, n) ∈ SA
v , k ∈ Kv, (17)

foimvk, qimvk ≥ 0, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv, (18)

oimvk ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SA
v , k ∈ Kv. (19)Equations (10) are the �ow 
onservation 
onstraints. Equations (11) determine thequantity on board when ship v sails from its initial port position to port arrival (i,m).Constraints (12) require that the vehi
le 
apa
ity is obeyed. Constraints (13) imposean upper bound on the quantity loaded at a supply port. Constraints (14) impose lower6



and upper limits on the unloaded quantities. Constraints (15) ensure that if ship vvisits port arrival (i,m), then at least one produ
t must be (un)loaded. Constraints(16) ensure that if ship v (un)loads one produ
t at visit (i,m), then wimv must be one.Constraints (17)-(19) are the non-negativity and integrality 
onstraints.Time 
onstraintsIn order to keep tra
k of the inventory level it is ne
essary to determine the start andthe end times at ea
h port arrival. We de�ne the following parameters: TQ
ik is the timerequired to load/unload one unit of produ
t k at port i; T S

ik is the set-up time requiredto operate produ
t k at port i. Tijv is the traveling time between port i and j by ship v;
TO
iv indi
ates the traveling time required by ship v to sail from its initial position to port

i; TB
i is the minimum interval between the departure of one ship and the next arrival atport i. T is the length of the time horizon. Given the start time tim and end time tEimvariables for port arrival (i,m), the time 
onstraints 
an be written as:

tEim ≥ tim +
∑

v∈V

∑

k∈Kv

TQ
ik qimvk +

∑

v∈V

∑

k∈Kv

T S
ikoimvk, ∀(i,m) ∈ SA, (20)

tim − tEi(m−1) − TB
i yim ≥ 0, ∀(i,m) ∈ SA : m > 1, (21)

tEim + Tijv − tjn ≤ T (1− ximjnv), ∀v ∈ V, (i,m, j, n) ∈ SX
v , (22)

∑

v∈V

TO
ivxoimv ≤ tim, ∀(i,m) ∈ SA, (23)

tim, t
E
im ≥ 0, ∀(i,m) ∈ SA. (24)Constraints (20) de�ne the end time of servi
e at port visit (i,m). Constraints (21)impose a minimum interval between two 
onse
utive visits at port i. Constraints (22)relate the end time of port visit (i,m) to the start time of port visit (j, n) when ship

v sails dire
tly from port visit (i,m) to (j, n). Constraints (23) ensure that if ship vtravels from its initial position dire
tly to port visit (i,m), then the start time is at leastthe traveling time between the two positions. Constraints (24) de�ne the 
ontinuoustime variables.Inventory 
onstraintsThe inventory 
onstraints are 
onsidered for ea
h unloading port. They ensure thatthe sto
k levels are within the 
orresponding bounds and link the sto
k levels to the(un)loaded quantities.For ea
h 
onsumption port i, and for ea
h produ
t k, the 
onsumption rate, Rik,the minimum Sik, the maximum Sik and the initial sto
k S0
ik levels, are given. Theparameter µi denotes the maximum number of visits at port i.We de�ne the nonnegative 
ontinuous variables simk and sEimk indi
ating the sto
klevels at the start and at the end of port visit (i,m) for produ
t k, respe
tively. The7



inventory 
onstraints are as follows:
si1k = S0

ik −Rikti1, ∀i ∈ N, k ∈ K : Jik = −1, (25)
sEimk = simk +

∑

v∈V

qimvk −Rik(t
E
im − tim), ∀(i,m) ∈ SA, k ∈ K : Jik = −1, (26)

simk = sEi(m−1)k − Rik(tim − tEi(m−1)), ∀(i,m) ∈ SA : m > 1, k ∈ K : Jik = −1, (27)
Sik ≤ simk, s

E
imk ≤ Sik, ∀(i,m) ∈ SA, k ∈ K : Jik = −1, (28)

Sik ≤ sEiµik
− Rik(T − tEiµi

) ≤ Sik, ∀i ∈ N, k ∈ K : Jik = −1. (29)Equations (25) 
al
ulate the sto
k level of ea
h produ
t at the �rst visit. Equations(26) 
al
ulate the sto
k level of ea
h produ
t when the servi
e ends at port visit (i,m).Equations (27) relate the sto
k level at the start of port visit (i,m) to the sto
k levelat the end of port visit (i,m− 1). The upper and lower bounds on the sto
k levels areensured by 
onstraints (28)-(29).Obje
tive fun
tionThe obje
tive is to minimize the total routing 
osts in
luding traveling, operatingand set-up 
osts. The traveling 
ost of ship v from port i to port j is denoted by CT
ijv,while CT

oiv represents the traveling 
ost of ship v from its initial port positions to port
i. The set-up 
ost of produ
t k at port i is denoted by CO

ik. The obje
tive fun
tion is asfollow:
∑

v∈V

∑

(i,m,j,n)∈SX
v

CT
ijvximjnv +

∑

v∈V

∑

(i,m)∈SA
v

CT
oivxoimv +

∑

v∈V

∑

(i,m)∈SA
v

∑

k∈Kv

CO
ikoimvk. (30)The formulation de�ned by (1)-(30) is denoted by F-SSIRP, and the feasible set willbe denoted by X.4. Tightening the formulationTightening the formulation provided in the previous se
tion is essential to speedup the solution approa
hes (Bran
h and Bound and hybrid heuristi
s), and to providetighter bounds that will be used in Se
tion 6 to evaluate the quality of the testedheuristi
s. The tightening is done by in
luding new inequalities. Many families ofinequalities were tested. Here we present only the ones that provided best results froma preliminary study.

8



4.1. Tightening time 
onstraintsTime 
onstraints (22) linking the time variables with the routing variables are veryweak. Parameter T works as a big M 
onstant. An approa
h to tighten su
h 
onstraintsis to establish time windows to the time events.
Aim ≤ tim ≤ Bim, ∀(i,m) ∈ SA, (31)
AE

im ≤ tEim ≤ BE
im, ∀(i,m) ∈ SA. (32)Then, 
onstraints (22) 
an be repla
ed by the stronger inequalities

tEim − tjn + (BE
im + Tijv − Ajn)ximjnv ≤ BE

im − Ajn.These inequalities 
an be further strengthened as follows (see Proposition 1 in [5℄):
tEim − tjn +

∑

v∈V |(i,m,j,n)∈SX
v

max{0, BE
im + Tijv −Ajn}ximjnv ≤ BE

im − Ajn, ∀(i,m), (j, n) ∈ SA.(33)One 
an take Aim = AE
im = 0 and Bim = BE

im = T. However, by redu
ing the widths ofthe time windows we strengthen inequalities (33). In this SSIRP we are dealing withmultiple ships, multiple produ
ts, and all supply ports also a
t as demand ports of otherprodu
ts. Be
ause of this 
hara
teristi
s it is hard to derive tight time windows.For simpli
ity, we provide only those time windows formulas that proved to be moste�e
tive for our 
ase. Other rules 
an be derived adapting the ones given in [10℄ forthe single item 
ase. Sin
e inventory aspe
ts are only relevant for 
onsumption tanks,and sin
e all the loading ports of 
ertain produ
ts are also 
onsumption ports of otherprodu
ts, time windows are established based on the unloading produ
ts only.The start of time windows are 
omputed as follows:
Aim = minv∈V {T

O
iv}+ (m− 1) ∗

(

TB
i +mink∈K|Jik=−1

{

TQ
ikQik

+ T S
ik

})

,

AE
im = minv∈V {T

O
iv}+ (m− 1) ∗ TB

i +m ∗mink∈K|Jik=−1

{

TQ
ikQik

+ T S
ik

}

,and the end of time windows are 
omputed as follows:
Bim = min

{

T,mink∈K|Jik=−1

{(

S0
ik + (m− 1) ∗ Sik − Sik

)

/Rik − T S
ik

}}

,

BE
im = min

{

T,mink∈K|Jik=−1

{(

S0
ik +m ∗ Sik − Sik

)

/Rik − T S
ik

}

− TB
i

}

.The end of time windows 
an be further strengthened. Let µi denote a lower boundon the number of visits to port i, i ∈ N (see in Se
tion 4.2 how to 
ompute theseparameters). If m ≤ µi, then T in the Bim formula given above 
an be repla
ed by
T − (µi −m) ∗ TB

i − (µi −m+ 1) ∗mink∈K|Jik=−1

{

TQ
ikQik

+ T S
ik

}

,9



and, if m < µi, then T in the BE
im formula 
an be repla
ed by

T − (µi −m) ∗
{

TB
i +mink∈K|Jik=−1

{

Q
ik
TQ
ik + T S

ik

}}

.4.2. Lower bounds on the number of visitsA 
ommon approa
h to tighten formulations for routing problems is to in
lude 
on-straints imposing a minimum number of visits to ea
h node. The impa
t on the redu
tionof the integrality gap is usually high. Equations
yiµi

= 1, ∀i ∈ N (34)
an be added to ea
h model. These parameters µi 
an be 
omputed from the inventoryinformation and traveling times. However, sin
e the traveling times between islands aresmall, the number of visits is better estimated through the inventory information andstorage 
apa
ities (at ships and ports).For ea
h port i ∈ N where produ
t k is unloaded, Jik = −1, let
DN

ik = max{T × Rik − S0
ik + Sik, Q

ik
}denote the net 
onsumption over the time horizon. The minimum number of visits toport i for unloading produ
t k is given by

λik =

⌈

DN
ik

Qik

⌉

.In the real problem, ea
h produ
t has a single origin. As inventory management atsupply tanks is disregarded, the minimum number of visits to load a produ
t 
an beestimated using the total 
onsumption supplied by that origin. The 
onsumption of thatprodu
t must be satis�ed either from that port or from the quantity in the ship tanksat the beginning of the planning horizon.For ea
h produ
t k ∈ K, loaded at port i ∈ N (Jik = 1) let
DN

ik =
∑

j∈N |Jjk=−1

(T ×Rjk − S0
jk + Sjk),denote the net 
onsumption of this produ
t over the time horizon. The minimum numberof loadings of produ
t k at port i is given by

λik =

⌈

DN
ik −

∑

v∈V Qvk

max{Cvk : v ∈ V }

⌉

.10



A lower bound on the total number of visits to port i ∈ N 
an be given by the followingequation:
µ
i
= max{λik : k ∈ K}. (35)Better bounds 
an be obtained by solving subproblems for ea
h port. A subproblemis solved for the 
onsumption produ
ts at the port and, if the port is also a supplier ofother produ
ts, another subproblem is solved for the supply produ
ts.Although the subproblems are NP-hard, they 
an be solved very qui
kly using a
ommer
ial software.First we state the subproblem for 
onsumption produ
ts. All the routing 
onstraintsare ignored in the subproblems. For these subproblems asso
iated to ea
h port theinventory and time 
onstraints are the same as for the original model. The ship 
apa
-ity for ea
h produ
t is overestimated by the maximum of the ship 
apa
ities for thatprodu
t.Let Ck = max{Cvk : v ∈ V, k ∈ Kv}. For ea
h port i let Mi = {1, 2, · · · , µi}. Thesubproblem is de�ned as follows:

NV D(i) : min
∑

m∈Mi

yim (36)
s.t.

qimk ≤ Ckoimk, ∀m ∈Mi, k ∈ K, Jik = −1 (37)
Q

ik
oimk ≤ qimk ≤ Qikoimk, ∀m ∈Mi, k ∈ K : Jik = −1, (38)

oimk ≤ yim, ∀m ∈Mi, ∀k ∈ K : Jik = −1, (39)Constraints (25)− (29) for node iConstraints (20), (21), (24) for node i

yim ∈ {0, 1}, ∀m ∈Mi, (40)
oimk ∈ {0, 1}, ∀m ∈Mi, k ∈ K : Jik = −1, (41)
qimk ≥ 0, ∀m ∈Mi, k ∈ K : Jik = −1, (42)where oimk =

∑

v∈V oimkv, qimk =
∑

v∈V qimkv.The obje
tive fun
tion (36) minimizes the number of visits at port i. Constraints(37) - (39) have a similar meaning as 
onstraints (13), (14), (16), only now the ship isignored and an overestimation of the ship 
apa
ities is used.If port i is also a supplier, we de�ne the following subproblem, NV S(i), where onlythe ship tank 
apa
ities are 
onsidered.
min{

∑

v∈V

uiv :
∑

v∈V

Cvkuiv ≥
∑

j∈N :Jjk=−1

DN
jk−

∑

v∈V

Qvk, ∀k ∈ K : Jik = 1, uiv ∈ Z+, ∀v ∈ V },11



where uiv indi
ates the number of visits of ship v to port i.If port i is simultaneously a 
onsumption and a supply port, the minimum numberof visits is the maximum between NV D(i) and NV S(i). These two subproblems will be
alled port subproblems.4.3. Integer knapsa
k inequalitiesInequalities from knapsa
k relaxations have previously been used for MIRPs, see forinstan
e [24, 27, 34℄.Let Dk(S) denote the total demand of produ
t k, from ports in S during the planninghorizon, where S ⊆ N and Jik = −1 for all i ∈ S. Hen
e, Dk(S) =
∑

i∈S T × Rik. Let
NDk(S) denote the amount of demand Dk(S) that must be transported from ports in
N \ S. That is, NDk(S) = Dk(S) −

∑

v∈V Qvk −
∑

i∈S(S
0
ik − Sik). Then, the followinginteger set is a relaxation of X :

RX =

{

χ ∈ Z
|V |
+ :

∑

v∈V

Cvkχv ≥ NDk(S)

}

.where
χv =

∑

(i,m)∈SA
v |i∈N\S

∑

(j,n)∈SA
v |j∈S

ximjnv,denotes the number of times ship v visits a port in S 
oming from a port not in S duringthe planning horizon T .Valid inequalities for RX are valid for X. A parti
ular 
ase of these inequalities isthe following Gomory 
ut
∑

v∈V

∑

(i,m)∈SA
v |i∈N\S

∑

(j,n)∈SA
v |j∈S

⌈

Cvk

Q

⌉

ximjnv ≥

⌈

NDk(S)

Q

⌉

, (43)where Q 
an be any positive number. We take Q = Ck.However, when | V |= 2 the 
onvex hull of RX 
an be 
ompletely des
ribed inpolynomial time, see [6℄. When | V |> 2 fa
et de�ning inequalities for restri
tions of
RX to two variables χv 
an be lifted using the lifting fun
tion ω3 presented in [6℄. Thisapproa
h was used in [3℄. Here we provide an example.Example 4.1. Let N = {1, 2, · · · , 7}, V = {1, 2, 3, 4}, K = {1, 2, 3, 4}. Fix port i = 6,and 
onsider the 
apa
ities of the 
ompartments dedi
ated to produ
t k = 1 : C11 = 900,
C21 = 600, C31 = 920, and C41 = 700. Suppose that for i = 6 and k = 1 with J61 = −1,we have ND61 = 3675. The following relaxation is derived

RX = {χv ∈ Z+ : 900χ1 + 600χ2 + 920χ3 + 700χ4 ≥ 3675} .12



Inequality 3χ1 + 2χ2 ≥ 13 is a fa
et-de�ning inequality for RX restri
ted to χ3 =
χ4 = 0. The lifting fun
tion asso
iated with this inequality is:

ϕ(z) = max 13− 3χ1 − 2χ2s. t. 900χ1 + 600χ2 ≥ 3675− z,

χ1, χ2 ∈ Z+.In order to lift simultaneously the 
oe�
ients of χ3 and χ4, the lifting fun
tion ϕ(z) 
anbe overestimated by the subadditive lifting fun
tion ω3 des
ribed in [6℄. Both fun
tions aredepi
ted in Figure 1. Then the lifted inequality 3χ1+2χ2+ω3(920)χ3+ω3(700)χ4 ≥ 13
⇔ 3χ1 + 2χ2 + 3.26667χ3 + 3χ4 ≥ 13 is valid for RX.Noti
e that if only three variables are 
onsidered then one 
an use ϕ(z) instead of ω3whi
h gives a better 
oe�
ient for χ3 sin
e ϕ(920) = 3.

75 375 675 975 1275123
4

z

ϕ

ω3

Figure 1: Lifting fun
tion ϕ and subadditive fun
tion ω3.Similar knapsa
k inequalities 
an be derived for loading ports and for relaxationsusing the operating variables oimvk instead of the traveling variables. For brevity weomit those inequalities.4.4. Clique inequalitiesThe name 
lique inequalities has been used for di�erent families of valid inequalitiesfor vehi
le routing problems. Here we introdu
e a family of 
lique inequalities whi
h
an be regarded as a generalization of the subtour elimination 
onstraints (SEC):
ximjnv + xjnimv ≤ 113



Although subtour elimination 
onstraints in
luding more than two variables 
an beuseful to improve the integrality gap, our experien
e showed that good 
omputationalresults 
an be obtained using SEC in
luding only two variables. These inequalities 
anbe regarded a parti
ular 
ase of 
lique inequalities on a given 
on�i
t graph. Consider the
on�i
t graph G = (N , E), where ea
h node in N , denoted by (i,m, j, n, v), 
orrespondsto a variable ximjnv, and there is an edge in E between two nodes if the 
orrespondingvariables 
annot be set simultaneously to one (the two nodes are in 
on�i
t).De�nition 4.2. Let G = (N , E) be a 
on�i
t graph. Then we de�ne the following pairsof in
ompatible variables:(i) ximjnv and xjnimv, ∀v ∈ V, (i,m, j, n) ∈ SXv
.(ii) ximjnv1 and ximlwv2, ∀v1, v2 ∈ V, (i,m, j, n) ∈ SXv1

, (i,m, l, w) ∈ SXv2
.(iii) xlwjnv1 and ximjnv2, ∀v1, v2 ∈ V, (l, w, j, n) ∈ SXv1

, (i,m, j, n) ∈ SXv2
.(iv) xlwjnv1 and xjnimv2, ∀v1, v2 ∈ V : v1 6= v2, (l, w, j, n) ∈ SXv1

, (j, n, i,m) ∈ SXv2
.As 
onsequen
e of the above dis
ussion we have the following result:Proposition 4.1. If C ⊂ N is a 
lique in the 
on�i
t graph G, then the inequality

∑

(i,m,j,n,v)∈C

ximjnv ≤ 1 (44)is valid for X.Remark 4.3. An inequality based on a pair of in
ompatible inequalities of type (i) is aSEC.In order to separate 
lique inequalities we need to 
onsider weights on the nodes.The weight of node (i,m, j, n, v) is given by the value of the variable ximjnv in the linearsolution. Finding the most violated 
lique inequality implies to solve the maximumweight 
lique problem, whi
h is known to be strongly NP-hard. Here we use a simplegreedy separation heuristi
. First, �nd the maximum weight 
lique with two nodesand update C a

ordingly. Then augment set C in a greedy fashion. In ea
h iterationadd to C the maximum weight node that forms a 
lique with the nodes in C, that is,
C ← C ∪ {v∗} where

v∗ = argmax{wv : ∀u ∈ C, {u, v} ∈ E}.14



and wv is the weight of node v. The pro
ess stops when a maximal 
lique is found. Ifthe resulting 
lique inequality (44) is violated then it is added as a 
ut, otherwise nonew inequality is added.Figure 2 shows an example of a linear relaxation solution and the respe
tive 
on�i
tgraph. Starting with the maximum weight 
lique with two nodes
C = {(1, 1, 2, 1, 2), (1, 1, 2, 2, 2)}.

C is further expanded. First with (2, 2, 1, 1, 2) and then with (3, 1, 1, 1, 1). Hen
e, C =
{(1, 1, 2, 1, 2), (1, 1, 2, 2, 2), (2, 2, 1, 1, 2), (3, 1, 1, 1, 1)}. The (violated) maximal 
lique in-equality is

x11212 + x11222 + x31111 + x22112 ≤ 1. 1,1 3,1
4,1

2,12,2
5,1

0.10.10.60.7 0.2
0.60.10.10.20.1

4,1,2,1,23,1,1,1,1 5,1,2,1,11,1,2,1,21,1,2,2,2
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0.1

0.6

0.1

0.7

0.6

0.1

0.2
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0.1Figure 2: Example of a partial linear relaxation on the left. The two types of ar
s represent di�erentships. The 
orresponding 
on�i
t graph is given on the right.5. Hybrid heuristi
sThe formulation F-SSIRP tightened with the strategies dis
ussed in the previousse
tion 
an hardly be used to solve real instan
es using a generi
 MIP solver. However,15



re
ent hybrid heuristi
s have been proposed that use MIP solvers as a bla
k-box tool.Here we 
onsider and 
ombine three su
h heuristi
 pro
edures: rolling horizon, lo
albran
hing and feasibility pump.5.1. Rolling Horizon heuristi
When 
onsidering a planning horizon of several months, the tested instan
es be
ometoo large to be handled by 
ommer
ial software. To provide feasible solutions we havedeveloped a Rolling Horizon (RH) heuristi
. The main idea of the RH heuristi
 is tosplit the planning horizon into smaller sub-horizons, and then repeatedly solve limitedand tra
table mixed integer problem for the shorter sub-horizons. In transportationproblems, RH heuristi
s have been used in several related works [9, 31, 28, 32℄.In ea
h iteration k of the RH heuristi
 (ex
ept the �rst and last one), the sub-horizon 
onsidered is divided into three parts: (i) a frozen part where binary variablesare �xed; (ii) a 
entral part (CPk) where no restri
tion or relaxation is 
onsidered, and(iii) a fore
asting period (FPk) where binary variables are relaxed. The 
entral periodin iteration k be
omes a frozen period in iteration k+1, and the fore
asting period fromiteration k be
omes the 
entral period in iteration k + 1, see Figure 3. The pro
ess isrepeated until the whole planning horizon is 
overed. In ea
h iteration the limited mixedinteger problem is solved. When moving from iteration k to iteration k+1 we (a) �x thevalues of the binary variables, (b) update the initial sto
k level of ea
h produ
t at ea
hport, (
) 
al
ulate the quantity of ea
h produ
t on board ea
h ship, and (d) update, forea
h ship, the initial position and the travel time and 
ost from that position to everyport, see Algorithm 1. Based on preliminary tests we set CPk = FPk = 5 days.Algorithm 1 Rolling Horizon heuristi
1: k ← 12: U ← number of iterations to 
over the planning horizon [1, · · · , T ]3: while k ≤ U do4: Relax binary variables in fore
asting period FPk5: Solve a limited mixed integer problem de�ned by CPk and FPk6: Freeze the variables ximjnv, xoimv, oimvk, wimv, zimv and yim in CPk7: if k < U then8: Update the initial sto
k level of produ
t k at port i9: Cal
ulate the quantity of ea
h produ
t on board ea
h ship v10: Update, for ea
h ship v, the initial position and the travel time and 
ost fromthat position to every port i11: end if12: k ← k + 113: end while 16
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Figure 3: The rolling horizon heuristi
5.2. Lo
al Bran
hing heuristi
Lo
al Bran
hing (LB) was introdu
ed in [19℄ to improve a given feasible solution.The LB heuristi
 sear
hes for a lo
al optimum by restri
ting the number of variablesthat 
an 
hange their value in the 
urrent feasible solution.More formally, 
onsider a feasible set of the form {(u, v) ∈ {0, 1}n×R
m ∩ P} where

P is a polyhedron. Given a feasible solution (u, v), let S = {j ∈ {1, · · · , n} : uj = 1}denote the set of indi
es of the binary variables that are set to 1. The extra 
onstraint
∑

j∈S

(1− uj) ≤ ∆, (45)is 
onsidered, where ∆ is a given positive integer parameter, indi
ating the number ofvariables uj, j ∈ S that are allowed to �ip from one to zero.Many strategies were tested to 
ombine the two heuristi
 approa
hes RH and LB.Here we present only three su
h strategies. In the RH, the problem is de
omposed intosubproblems. In ea
h iteration the subproblem is solved to optimality. For the 
ombinedheuristi
s we used the same de
omposition as for the RH. For all three 
ombined strate-gies, for ea
h subproblem, a 
onstraint (45) with ∆ = 0 is added on the variables of thefrozen period. Doing so, we allow the 
ontinuous variables to 
hange their value withinthe frozen period. The strategies di�er in the solution approa
h for ea
h subproblem,and on whether they perform a lo
al sear
h in the neighborhood of the �nal solution ornot. 17



LB1: For ea
h subproblem, the solver is interrupted when the �rst feasible solutionis rea
hed.LB2: Solve ea
h subproblem twi
e. First the solver is run until either an integralitygap (gap = 100× (UB −LR)/LR where UB is the best known upper bound and LR isthe best known lower bound) less than or equal to 10% is a
hieved or a maximum timelimit is rea
hed. Then a 
onstraint (45) with ∆ = 2 is added over the variables in the
entral period, and the subproblem is solved again until a gap of 5% is rea
hed or thetime limit is attained.LB3: Obtain a feasible solution with LB2. For a t, 0 < t < T , impose a 
onstraint(45) with ∆ = 0 for the period [0, T − t], and a 
onstraint (45) with ∆ = 6 for the period
[T − t, T ]. Solve the new problem. Using the new solution impose new 
onstraints onperiods [0, T − 2t], with ∆ = 0, and [T − 2t, T ], with ∆ = 6, and solve the problemagain. This pro
edure is repeated until at least one of the following stopping 
riterion isrea
hed: (i) time limit; (ii) maximum number of iterations without improvement; (iii)a maximum number of iterations. This algorithm is detailed in Algorithm 2. In ourexperiments we used t = 5 days, and a maximum number of 5 iterations.5.3. Feasibility Pump heuristi
Feasibility Pump (FP) was introdu
ed by Fis
hetti, Glover and Lodi [18℄ as a heuris-ti
 s
heme to �nd a feasible solution for a given mixed integer program. Su
h a pro
edure
an be useful for those problems where �nding an initial solution 
an be an hard task.FP is a rounding s
heme that generates a sequen
e of fra
tional solutions from the linearrelaxation whi
h are rounded. The heuristi
 stops when a feasible solution is found orother stopping 
riteria is rea
hed.Here we use FP to speed-up the �nding of an initial feasible solution. Although wefollowed the underlying ideas of FP, it was ne
essary to adjust this heuristi
 s
heme toour MIRP. We fo
us on the problem at hand and not on the general FP s
heme.In this se
tion, and for simpli
ity, we denote the points in the spa
e of variables ofF-SSIRP by x. First the linear relaxation of F-SSIRP is solved and a linear solution x∗ isobtained. Then the binary variables with fra
tional values are rounded, and a solution
x is obtained. If x is feasible (x ∈ X) we stop. Otherwise, a new fra
tional solutionis derived by �nding the linear solution in the linear relaxation of X that minimizes adistan
e fun
tion to x. The pro
ess is repeated until a feasible solution is found or aprede�ned maximal number of iterations is rea
hed. If the rounding pro
edure stopswithout a feasible solution, then we run the solver.Next we address the main steps of the FP algorithm in more detail.Rounding s
hemeFor the rounding s
heme we �rst 
onsider the routing variables, ximjnv. We set
ximjnv = 1 whenever ximjnv > 0.5 and ximjnv = 0 whenever ximjnv < ǫ, for small ǫ.18



Algorithm 2 LB3 heuristi
// �rst part (obtain a feasible solution for a planning horizon T, ximjnv)1: T ← length of the planning horizon2: T1 ← length of the sub-horizon3: Solve the problem for a time horizon of T1 = 2t periods4: Save the feasible solution, ximjnv, and 
ompute S5: T1 ← T1 + t6: ∆1 ← 07: ∆2 ← 68: Bin ← 09: while T1 ≤ T do10: Using the port subproblem NV D(i), determine the minimum number of visits atea
h port i for time horizon [0, T1]11: Add 
onstraints ∑j∈S(1− xj) ≤ ∆1 for time horizon [0;T1 − 3t]12: if Bin = 0 then13: Solve the problem until gap ≤ 10% or time limit is rea
hed14: Bin ← 115: else16: Add 
onstraints ∑j∈S(1− xj) ≤ ∆2 for time horizon [T1 − 3t;T1]17: Solve the problem until gap ≤ 5% or time limit is rea
hed18: Bin ← 019: T1 ← T1 + t20: Remove all added 
onstraints and update the model21: end if22: Update the solution, ximjnv and S23: end while// se
ond part (improve the feasible solution , ximjnv)24: number of iterations ← 125: while number of iterations ≤ max number of iterations and solution improves do26: Redu
e the �xed period of variables with t days: T1 ← T1 − t27: Add 
onstraints ∑j∈S(1− xj) ≤ ∆228: Update the solution, ximjnv and S29: number of iterations ← number of iterations+130: end while
19



Using the routing �ow 
onservation 
onstraints we �x the value of the remaining rout-ing variables. Then the remaining binary variables xoimv, wimv, zimv, yim oim are trivially�xed. This guided rounding s
heme provided better results than rounding all binaryvariables simultaneously or rounding all the routing variables simultaneously �rst. So-phisti
ated rounding s
hemes are dis
ussed in [20℄. In our experiments we use ǫ = 0.1.The distan
e fun
tionGiven a 0-1 MIP solution obtained by rounding x we de�ne the following distan
efun
tion
φ(ximjnv, ximjnv) =

∑

v∈V

∑

(i,m,j,n)∈SX
v

|ximjnv − ximjnv|

=
∑

v∈V

∑

(i,m,j,n)∈SX
v |ximjnv=1

(1− ximjnv)

+
∑

v∈V

∑

(i,m,j,n)∈SX
v |ximjnv=0

ximjnv (46)If φ(ximjnv, ximjnv) = 0, then a feasible solution 
an be derived. Otherwise a newlinear solution x∗ is obtained by solving the problem:
min{φ(ximjnv, ximjnv) : x ∈ XL}where XL denotes the linear relaxation of the feasible set X of F − SSIRP.Random perturbationDuring the exe
ution of the pro
edure two problems may arise: (i) the algorithm
an be 
aught in a 
y
le, i.e., the same sequen
e is visited 
onse
utively; and (ii) the
onvergen
e to a feasible solution is very slow.Both problems (i) and (ii) are solved by performing a restart, that is, a new 0-1 MIPsolution is derived by performing a random perturbation step. This step is similar tothe one given in [1℄ and it is applied to the routing variables on the rounding s
heme,that is, ximjnv = ⌊x∗

imjnv + ρ(z)⌋ where z ∈ [0, 1] is a uniform random variable and
ρ(z) = 2z(1− z) if z ≤ 0.5 and ρ(z) = 1− 2z(1− z) if z > 0.5.To measure the 
onvergen
e speed we 
ompute the di�eren
e between the value ofthe distan
e fun
tion in two 
onse
utive solutions. When this di�eren
e is very small(smaller than a given δ) we perform the random perturbation.Algorithm 3 des
ribes the FP heuristi
. In the 
omputational results we set δ = 0.1and a maximum number of 50 iterations. 20



Algorithm 3 Feasibility Pump heuristi
1: Relax binary variables2: Solve LP-relaxation of F-SSIRP. Let x∗ denote its optimal solution3: Obtain x by rounding x∗4: number of iterations ← 15: while number of iterations ≤ max number of iterations and φ(ximjnv, ximjnv) > 0do6: Solve the LP: x∗ ← argmin{φ(ximjnv, ximjnv) : x ∈ XL}7: Obtain x by rounding x∗8: if φ(ximjnv, x
∗
imjnv) < δ then9: Apply the random perturbation step10: end if11: number of iterations ← number of iterations+112: end while6. Computational experimentationIn this se
tion we report the 
omputational results when testing di�erent hybridheuristi
 approa
hes.All 
omputations were performed using the optimization software Xpress OptimizerVersion 20.00.05 with Xpress Mosel Version 3.0.0, on a 
omputer with pro
essor IntelCore 2 Duo 2.2GHz and with 4GB of RAM.We tested 12 real instan
es from a 
ompany in Cape Verde with 2 di�erent ships, 7ports and 4 produ
ts.First we report a summary of results that testify the model 
hoi
es. These testswere run for periods of 15 days. Then we report the results from the tests 
ondu
ted to
ompare several hybrid strategies for periods of 2 and 6 months.6.1. Model tuningFirst we 
onsider the use of port subproblems to estimate the minimum numberof port visits. Figure 4, on the left, shows the minimum number of visits 
al
ulatedusing the formula (35), 
al
ulated using the subproblems, and the number of visitsin the optimal solution for the 12 instan
es tested. On the right, the �gure depi
tsthe integrality gap (GAP), given by GAP = 100 × (OPT − LR)/OPT where OPTis the optimal value, obtained using the Xpress optimizer, and LR is the value of thelinear relaxation. We 
onsider the 
ases: �initial� when no minimum number of visitsis imposed, �formula� when the minimum is obtained using (35), �subproblem� whenthe minimum is obtained using port subproblems and �exa
t� when we 
onsider theminimum equal to the number of visits in the optimal solution.21
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Figure 4: Estimation of the minimum number of visits (on the left) and its impa
t on the integralitygap (on the right).In average, the initial integrality gap is 26.7%, drops to 24.1% using equations (35),and drops to 17.7% using subproblems. If the exa
t value in the optimal solution isused, the average gap is 13.2%.Table 1 summarizes the integrality gaps when model F-SSIRP is used. TT meansthat the time 
onstraints were tightened, SP means that the minimum number of visitswas estimated using the port subproblem. IK indi
ates that the Integer Knapsa
kinequalities are added, and C means that the 
lique inequalities are added.Table 1: Evolution of the average integrality gap with model tightening.F-SSIRP + TT F-SSIRP + TT + SP F-SSIRP + TT + SP + IK F-SSIRP+TT+SP+IK+C26.7 17.7 10.9 10.9In Table 2 we present the average solutions times, the number of B&B nodes, andthe number of 
uts added in ea
h 
ase. We 
an see that although the 
lique inequalitiesdo not improve the integrality gap signi�
antly, they are important with regard to theredu
tion in number of B&B nodes and running time.6.2. Hybrid heuristi
sIn this se
tion we report experiments 
arried out for 
omparing the hybrid heuristi
sin terms of running time, integrality gap and number of B&B nodes over two planninghorizons: 2 and 6 months. Sin
e the optimal solutions 
ould not be obtained for thesetime horizons, the integrality gap (GAP) is 
omputed as GAP = 100× (UB−LR)/LRwhere UB is the value obtained by the heuristi
 and LR is the value of the linear22



Table 2: Comparison of time (in se
onds), and B&B nodes using valid inequalities.F-SSIRP+TT F-SSIRP+TT+SP+IK F-SSIRP+TT+SP+IK+CInst. Time Nodes Time Nodes Cuts Time Node Cuts1 288 23788 38 1017 12 36 1015 162 11 19 25 1491 5 9 7 63 31 1377 51 3451 9 55 5678 164 63 3970 26 919 9 17 575 105 19 2777 15 2307 7 16 533 116 69 6188 23 2433 9 23 2433 97 15 754 8 379 5 6 327 68 20 8785 18 2917 10 10 622 119 40 8071 23 1423 7 24 603 910 40 1551 23 3535 9 9 3 1311 58 16729 111 5383 9 73 2509 1112 71 9299 41 8003 8 41 8003 8Average 60.4 6942.3 33.5 2771.5 8.3 26.6 1859.0 10.5relaxation. The value LR is obtained using the port subproblems to estimate the numberof visits, and in
luding IK and C inequalities. These model strengthening te
hniques areused whenever the optimization of the model F-SSIRP o

urs as a subproblem embeddedin a hybrid heuristi
. The valid inequalities are added only at the root node.For a time horizon of 2 months, Table 3 shows the performan
e of the RH heuristi
,LB1 and LB1 
ombined with FP. It reports the time in se
onds, the number of B&Band the integrality gap for ea
h heuristi
. The performan
e of LB2 and LB2 
ombinedwith FP is given in Table 4, and the performan
e of LB3 and LB3 
ombined with FP isgiven in Table 5.
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Table 3: Computational results using RH, LB1 and LB1+FP for T = 2 months.RH LB1 LB1+FPInst. Time Nodes Gap Time Nodes Gap Time Nodes Gap1 1409 141380 37,1 45 1631 24,8 62 1753 27,72 951 148330 26,0 31 692 18,1 88 3229 31,23 1421 119833 12,4 365 30027 30,2 401 12420 16,84 4908 349909 41,1 51 2118 22,0 110 1700 28,25 649 105135 33,5 81 2829 30,8 126 2744 36,26 711 106265 33,0 598 53813 38,3 405 29366 30,97 362 47432 29,5 384 24356 28,2 321 22785 18,78 1285 160392 28,0 225 17487 29,1 256 16439 23,49 1107 122907 31,5 684 60289 33,6 322 13265 22,110 865 105245 25,8 97 3706 27,0 108 11027 27,111 985 143251 28,5 97 3706 28,1 64 2023 26,912 1106 167755 30,2 3 13 24,3 74 2838 32,9Av. 1313,3 143152,8 29,7 221,8 16722,3 27,9 194,8 9965,8 26,8Table 4: Computational results for LB2 and LB2+FP for T = 2 months.LB2 LB2+FPInstan
e Time (se
.) Nodes Gap Time (se
.) Nodes Gap1 277 19887 23,2 106 4014 16,12 104 7982 11,8 72 3859 12,43 817 54236 21,8 780 48717 20,74 155 10214 22,6 192 12692 18,65 552 31737 15,2 252 10013 17,86 1755 122197 20,4 940 78983 20,47 1066 79101 21,3 481 26912 16,28 734 63262 20,0 672 28244 25,49 846 54919 16,7 1083 41811 21,710 1047 52706 17,5 397 7660 14,111 285 10004 20,6 423 11650 18,412 744 27989 11,2 456 12493 14,7Average 698,5 44519,5 18,5 487,8 23920,7 18,1
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Table 5: Computational results for LB3 and LB3 + FP for T = 2 months.LB3 LB3+FPInstan
e Time (se
.) Nodes Gap Time (se
.) Nodes Gap1 301 20561 20,5 107 4014 12,92 105 7982 8,6 144 7718 12,43 951 64918 18,8 781 48717 18,14 185 15624 18,2 384 25384 18,65 573 33366 11,9 504 20026 17,86 2018 131345 20,4 1211 86043 20,47 1079 79303 18,5 485 26943 12,98 760 64206 17,0 686 28353 17,09 850 54919 13,7 1088 41811 18,710 1050 52706 14,5 399 7660 11,011 312 10770 17,9 425 11650 15,712 753 28264 7,8 461 12494 11,5Average 744,8 46997,0 15,7 556,3 26734,4 15,6We 
an see that LB heuristi
s 
ombined with FP are, in average, faster than theLB heuristi
s whi
h are in turn faster than the RH heuristi
. The use of FP is morerelevant on those harder instan
es, where the solver is not able to �nd good initialfeasible solutions qui
kly. As expe
ted, LB1 is faster than LB2, and LB2 is faster thanLB3. However, the quality of the solutions obtained varies in the opposite dire
tion.The most sophisti
ated heuristi
, LB3 
ombined with FP, provides solutions with anintegrality gap whi
h is, in average, half of the integrality gap of the usual RH heuristi
.The running time is almost a third of the running time of the RH heuristi
.Tables 6 and 7 give the 
omputational results for 6 months for heuristi
s RH, LB1,and LB2 and LB3 
ombined FP. The behavior of these algorithms is similar to the 
aseof 2 months. Only the gaps are higher. However, as this gap is 
omputed by use of thelinear relaxation value we do not know whether this in
rease results from a deteriorationof the upper bound, the lower bound, or both.
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Table 6: Computational results for RH and LB1 for T = 6 months.RH LB1+FPInstan
e Time (se
.) Nodes Gap Time (se
.) Nodes Gap1 3324 107998 42,6 2816 25114 24,32 10258 207125 44,8 1937 23517 28,73 3451 62775 45,6 2872 57014 26,14 4631 115802 41,6 1040 14311 26,55 6149 103324 47,7 3689 48353 32,86 10288 139427 42,5 3977 77989 31,57 7219 105059 42,4 1468 35739 27,88 3776 166414 46,2 1213 34326 32,59 4196 209323 47,2 7792 102636 29,710 2658 113510 45,1 4854 39172 30,511 13244 208361 44,8 569 12772 27,912 2079 93102 45,1 3042 35513 29,4Average 5939,4 136018,3 44,6 2939,1 42204,7 29,0Table 7: Computational results for LB2 and LB3 for T = 6 monthsLB2+FP LB3+FPInstan
e Time (se
.) Nodes Gap Time (se
.) Nodes Gap1 4404 166993 23,1 4551 167148 21,12 1260 78999 20,7 1300 79060 18,63 2469 83566 23,8 2507 83647 22,04 1736 83330 20,3 1819 83457 18,25 2917 99785 28,2 3142 100031 26,66 3109 114450 28,7 3125 114455 27,17 2899 102661 31,9 3004 102776 30,48 2349 113899 28,7 2480 114137 27,19 3894 142451 21,1 4109 142606 19,210 1392 53626 20,7 1598 53742 18,711 2308 110136 24,4 2454 110286 22,612 1607 67245 24,5 1881 67355 22,8Average 2528,7 101428,4 24,7 2664,1 101558,5 22,9To test the heuristi
 approa
hes that performed best on the larger instan
es, we
reated two arti�
ial future s
enarios where the demands as well as the number ofships are in
reased. One s
enario with three ships and demands that are 1.5 timesthe 
urrent demands, and another s
enario with four ships and double demands. Ea
hs
enario is identi�ed by the number of ships (| V |= 3 and | V |= 4). We opted not toredu
e the length of ea
h sub horizon. All the tested heuristi
s run within a reasonable26




omputational time e�ort for 2 months. For 6 months, RH, LB2 and LB3 heuristi
swere too time 
onsuming.In Table 8 we give the 
omputational results. For | V |= 3 we used a variantof LB2, where only the �rst run (until a gap of 10%) is performed, 
ombined withFP. For | V |= 4 we used LB1 
ombined with FP. We 
ould not solve most of thelinear relaxations within 1 day time limit. To 
ompute the lower bound we 
omputedthe linear relaxation of the model obtained from F-SSIRP by removing all time andinventory 
onstraints, and with the additional 
uts dis
ussed in Se
tion 4. Additionallywe imposed, for ea
h port i and ea
h produ
t k su
h that Jik = −1, the 
onstraint
∑

v∈V

∑µi

m=1 qimvk ≥ T ×Rik + Sik − S0
ik.Table 8: Computational results for larger instan
es with 3 and 4 ships|V|=3 |V|=4Instan
e Time (se
.) Nodes Gap Time (se
.) Nodes Gap1 988 10154 27,0 5218 45921 31,02 1096 20695 29,7 5017 44186 35,13 924 30403 29,8 4633 51406 24,54 2120 34692 30,3 6804 47798 28,25 2120 49307 32,7 5706 49415 35,96 2199 25836 36,9 10988 55062 40,87 1158 32612 33,7 3338 48450 31,28 2340 62303 33,3 4173 54671 30,79 1486 51884 29,9 6813 52666 35,210 1857 51934 35,0 9958 47864 34,311 2275 25875 31,1 4581 49583 36,612 2628 30691 31,1 5064 47717 31,2Average 1765,9 35532,2 31,7 6024,4 49561,6 32,97. Con
lusionsWe have presented a mathemati
al model for the short sea inventory routing prob-lem. This model is tightened with valid inequalities and an estimation of the minimumnumber of visits to ea
h port by solving some port subproblems. In parti
ular we in-trodu
ed new 
lique inequalities that 
an be used to tighten 
ontinuous time maritimeinventory routing models.Given the long time horizons, we propose and 
ompare di�erent strategies of 
om-bining three well-known heuristi
s that use the mathemati
al model as a bla
k-box.The Rolling Horizon heuristi
 is used to de
ompose the original problem into smaller27



and more tra
table problems, the Feasibility Pump heuristi
 is used to �nd initial solu-tions for MIP problems, and the Lo
al Bran
hing heuristi
 is used to improve feasiblesolutions.The best strategy tested 
ombines all the three heuristi
s, and allowed us to obtainsolutions whose integrality gap is in average half of the integrality gap obtained usingthe rolling horizon heuristi
 alone. We provided 
omputational results for time horizonsup to 6 months.In order to evaluate the quality of the solutions obtained by the hybrid pro
edures,an important future dire
tion of resear
h is to investigate approa
hes to derive tightlower bounds, spe
ially for long time horizons where the size of the linear relaxationmodel is quite large.A
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