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Abstract We consider a variant of the well-known Single Node Fixed-Charge
Network (SNFCN) set where a set-up variable is associated with the node,
indicating whether the node is open or not. This set arises as a relaxation of
several practical mixed integer problems. We relate the polyhedral structure
of this variant with the polyhedral structure of the SNFCN set. We show
that in the presence of the node set-up variable new facet-defining inequalities
appear and establish the relation between the new family of inequalities with
the flow cover inequalities. For the constant capacitated case we provide a full
polyhedral description of the convex hull of the given set.

Keywords Mixed integer sets · Valid inequalities · Single node flow set

1 Introduction

We consider mixed integer sets of the form

X =
{

(x, z, y) ∈ Rn
+ × Bn × B

∣

∣

∑

j∈N

xj ≤ dy, xj ≤ cjzj , j ∈ N
}

,

where N = {1, . . . , n}, d > cj > 0, ∀j ∈ N , and integer.
Set X is much related with the well-known SNFCN set which is the re-

striction of X to the subspace defined by y = 1. We also consider set X1 =
{(x, z, y) ∈ X |y = 1}. The SNFCN set is the projection of X1 into the (x, z)
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space. Variable y can be regarded as a set-up variable associated to the node
itself. Thus, y indicates whether the capacity of the node is installed or not.
So, in the classical SNFCN set the capacity of the node is assumed to be in-
stalled. As usual, the binary variables zj are associated with the arcs entering
the node and indicating whether the arc is open or not.

The convex hull of X will be denoted by P and the convex hull of the
restricted set X1 by P 1.

Set X arises as a relaxation of several mixed integer problems. Next we
provide a few examples. In the single-item Lot-sizing with Supplier Selection
Problem (LSSP) we are given a set N of suppliers. In each time period one
needs to decide lot-sizes and a subset of suppliers to use in order to satisfy
the demands while minimizing the costs. For each time period, set X arises
as follows: y represents the binary variable indicating whether there is a set-
up for production or not, zj indicates whether the supplier j ∈ N is selected
or not, xj is the amount supplied by supplier j, d is the production capacity
and cj is the supplying capacity of supplier j, see [9]. Other examples occur
in inventory-routing problems such as the Vendor-Managed Inventory-Routing
Problem (see [1]), where, for each time period t, y is a binary variable indicating
whether the supplier is visited at time t or not, zj is a binary variable equal
to 1 if the retailer j is served at time t, and 0 otherwise, d is the capacity
of the vehicle, and cj is the maximum inventory level in retailer j. In some
related problems, d may also represent the inventory capacity and y indicates
whether the warehouse is set-up to receive goods or not. Variables xj represent
the supplied quantities and variables zj indicate the suppliers selected (as
in the LSSP). Other examples can be found where such relaxations occur
under particular cases. See, for instance, the Capacitated Location Problem
presented in [4] where the binary variable y indicates whether a facility is
installed at a given node, zj indicates whether client j is served or not from
that node, xj indicates the quantity that the facility sends to client j ∈ N. d
represents the facility capacity and cj represents the capacity of the facility-
client link.

Although, as we will show later, valid inequalities derived for X1 are, under
general conditions, valid for X (and, therefore, can be used to tighten the
general mixed integer problems with set-ups on the nodes), a deep study of
this particular set is of practical interest, in particular, when the set-up variable
may play an important role. Our goal is to provide a better understanding of
such sets and explain what can be gained with the explicit inclusion of the
set-up variable in the model.

The single node fixed-charge set has been intensively studied in the past,
and different variants of the model have been considered. Padberg et al. [7]
considered sets of the type

X[△] =
{

(x, z) ∈ Rn
+ × Bn

∣

∣

∑

j∈N

xj △ d, xj ≤ cjzj, j ∈ N
}

,

where △ ∈ {≤,=,≥}. They introduced the well-known “flow cover” inequali-
ties. For the case ≤ these inequalities can be stated as follows.
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Proposition 1 Let S be a cover such that
∑

j∈S cj = d + λ, λ > 0 and c̄ =
maxj∈S cj > λ. Then the simple flow cover inequality

∑

j∈S

xj −
∑

j∈S

(cj − λ)+zj ≤ d−
∑

j∈S

(cj − λ)+, (1)

defines a facet of P 1, and for L ⊆ N \S with 0 < c̄−λ < ck ≤ c̄ for all k ∈ L,
the extended flow cover

∑

j∈S∪L

xj −
∑

j∈S

(cj − λ)+zj ≤ d−
∑

j∈S

(cj − λ)+ +
∑

j∈L

(c̄− λ)zj , (2)

defines a facet of P 1.

They showed that inequalities (2) together with the defining inequalities are
enough to describe P 1 when cj = c, ∀j ∈ N. Gu et al. [5] provided a strat-
egy for sequence independent lifting of the flow cover inequalities using valid
superadditive lifting functions. In particular, the lifted inequalities generalize
inequalities (2).

Our main contribution is to extend the well-known polyhedral results for
the SNFCN set to set X and establish relations between the results for both.
The paper is organized as follows. In Section 2 we establish basic properties of
P, introduce a simple family of facet-defining inequalities and relate set X with
set X1. In Section 3 we introduce the set-up flow cover inequalities and relate
this class of inequalities with the well-known flow cover inequalities. We show
that the new class of inequalities together with the inequalities defining X, and
the simple family introduced in Section 2, give the complete characterization
of P when the capacities are constant. In Section 4 we discuss the lifting
of the set-up flow cover inequalities. Preliminary computational experiments
are reported in Section 5. Finally, main conclusions and future research are
addressed in Section 6.

2 Properties of P

In this section we establish basic properties for P and relate polyhedron P
with the SNFCN polyhedron.

We assume that for each k ∈ N, 0 < ck < d and
∑n

i=1 ci > d+ ck. Under
these assumptions we trivially have the following result.

Proposition 2 P and P 1 are full dimensional polyhedra.

It can be easily checked that the inequalities xj ≥ 0, zj ≤ 1, xj ≤ cjzj for
all j ∈ N, y ≤ 1 and

∑

j∈N xj ≤ dy define facets of P. These are called trivial
(facet-defining) inequalities.

Proposition 3 Consider a non-trivial facet-defining inequality
∑

j∈N

αjxj +
∑

j∈N

βjzj ≤ δy + γ. (3)
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Then (i) βj ≤ 0, ∀j ∈ N, (ii) γ = 0, (iii) δ ≥ 0, (iv) αj ≥ 0, ∀j ∈ N, (v) if
βj < 0 then αj > 0, ∀j ∈ N.

Proof Let F be the facet defined by (3). Proof of (i). Suppose βj > 0. If there
exists a point (x∗, z∗, y∗) ∈ F∩X satisfying z∗j = 0, then the point (x∗, z′, y∗) ∈
X where z′j = 1, z′k = z∗k, k 6= j violates (3). Hence, F ⊆ {(x, z, y) | zj = 1},
which is a contradiction.

Proof of (ii). Since (0,0, 0) ∈ X and inequality (3) is valid for X , then
γ ≥ 0. Suppose γ > 0. Since there can be no point in F with y = 0 (because
xj = 0, j ∈ N and βj ≤ 0, j ∈ N) then y = 1, ∀(x, z, y) ∈ F . Thus, F ⊆
{(x, z, y) | y = 1}, which is a contradiction.

Proof of (iii). Since (0,0, 1) ∈ X, γ = 0, and (3) is valid for X, then δ ≥ 0.

Proof of (iv). Suppose to the contrary that αj < 0 for some j ∈ N . There
must exist a point (x∗, z∗, y∗) ∈ F ∩X satisfying x∗

j > 0, since otherwise F ⊆
{(x, z, y) | xj = 0}. As (x∗, z∗, y∗) ∈ F , then

∑

i∈N αix
∗
i +

∑

i∈N βiz
∗
i = δy∗.

Then we generate a new point (x′, z∗, y∗) ∈ X such that x′
i = x∗

i , ∀i 6= j, x′
j =

0. Clearly, (x′, z∗, y∗) ∈ X violates inequality (3). Therefore αj ≥ 0, ∀j ∈ N .

Proof of (v). Suppose that for some j ∈ N , βj < 0 and αj = 0. Then as
in the proof of (iv) we can show that all the points in F satisfy zj = 0 and so
F ⊆ {(x, z, y) | zj = 0}, which is a contradiction.

Set X is very closely related to X1. The following property relates valid
inequalities for the two sets: X and X1.

Proposition 4 Consider the following inequality

∑

j∈N

αjxj +
∑

j∈N

βjzj ≤ δ, (4)

(i) If (4) is valid for X1, then (4) is valid for X.
(ii) If βj ≤ 0, ∀j ∈ N, then inequality (4) is valid for X1, if and only if

∑

j∈N

αjxj +
∑

j∈N

βjzj ≤ δy, (5)

is valid for X.

Proof (i) Suppose (x, z, y) ∈ X violates (4). Hence y = 0, which implies xj =
0, ∀j ∈ N . Thus, the point (0, z, 1) ∈ X1 and violates inequality (4), which is
a contradiction.
(ii) Consider (x, z, y) ∈ X and suppose that (4) is valid for X1. If y = 1, then
validity of (4) implies that (x, z, y) satisfies (5). If y = 0, then

∑

j∈N xj ≤
dy = 0 and xj ≥ 0 imply that xj = 0, ∀j ∈ N . Since βj ≤ 0 and zj ≥ 0, then
∑

j∈N βjzj ≤ 0 which shows that (x, z, y) satisfies (5). Now suppose that (5)

is valid for X . Since X1 is a restriction of X with y = 1 so (4) is valid for X1.
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From Proposition 4, part (i), it follows that the flow covers are valid for X.
Moreover, the inequalities

∑

j∈S

xj −
∑

j∈S+

(cj − λ)zj ≤
(

d−
∑

j∈S+

(cj − λ)
)

y, ∀S ⊆ N, (6)

where S is a cover and S+ = {j ∈ S : cj > λ}, are valid for X. Inequalities (6)
can be regarded as strengthened simple flow cover inequalities.

Observing that the point (x, z, y) = (0,0, 0) satisfies (5) as equation, it is
straightforward to check the following result.

Proposition 5 If (4) defines a facet of P 1, then (5) defines a facet of P.

However, the structure of P is richer than the structure of P 1 since it
includes many new facet-defining inequalities. Next we introduce a new family
of facet-defining inequalities.

Proposition 6 The inequality

xj ≤ cjy, j ∈ N, (7)

is valid for X and defines a non-trivial facet of P .

Proof The proof of validity is trivial. To show it defines a facet consider
the following 2n + 1 affinely independent points: (0,0, 0), (0, ek, 0), k ∈ N,
(cjej , ej, 1), (cjej + bkek, ej + ek, 1), k ∈ N \ {j}, where bk = min{d − cj , ck}
and ek is the vector with 1 in component k and 0 elsewhere.

3 Set-up flow cover inequalities

In this section we introduce the set-up flow cover inequalities which can be
seen an extension of the flow cover inequalities to set X.

Proposition 7 Let S be a cover with maxj∈S cj > λ. For each ∅ 6= S
+

⊆
S+ = {j ∈ S : cj > λ}, the simple set-up flow cover inequality

∑

j∈S

xj −
∑

j∈S
+

(cj − λ)zj ≤
(

d−
∑

j∈S
+

(cj − λ)
)

y, (8)

is a facet of P.

Proof First, we justify the validity. If y = 0, then xj = 0, ∀j ∈ N . Since, for

j ∈ S
+
, cj − λ > 0 and zj ≥ 0, then −

∑

j∈S
+(cj − λ)zj ≤ 0, which implies

(8). Now assume y = 1. Let (x, z, y) be a point of X with zi = 1 for i ∈ T ,
and zi = 0 otherwise. We consider the following cases.

Case 1. |S
+
\ T | = 0. It implies zj = 1, ∀j ∈ S

+
and so the validity of (8)

follows from
∑

j∈S xj ≤ d clearly.
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Case 2. |S
+
\ T | ≥ 1. Then

∑

j∈S xj −
∑

j∈S
+(cj − λ)zj =

∑

j∈S∩T xj −
∑

j∈S
+
∩T

(cj − λ) ≤
∑

j∈S∩T cj −
∑

j∈S
+
∩T

cj + |S
+
∩ T |λ =

∑

j∈S∩T cj +
∑

j∈S
+
\T

cj −
∑

j∈S
+ cj − λ + (|S

+
∩ T | + 1)λ ≤

∑

j∈S cj − λ −
∑

j∈S
+ cj +

(|S
+
∩T |+1)λ = d−

∑

j∈S
+ cj +(|S

+
∩T |+1)λ ≤ d−

∑

j∈S
+(cj −λ), where

the last inequality follows from |S
+
\T | ≥ 1 which implies |S

+
∩T | ≤ |S

+
|−1.

To prove (8) defines a facet we construct 2n+1 affinely independent points
of the form (X

S\S
+ , X

S
+ , XN\S , ZS\S

+ , Z
S

+ , ZN\S, y), satisfying (8) as equa-

tion, whereXJ is the vector of xj ’s for j ∈ J ⊆ N. Since S is a cover, there exist
s =| S | affinely independent points (Xk

S\S
+ , Xk

S
+), k ∈ S satisfying 0 ≤ xj ≤

cj for j ∈ S and
∑

j∈S xj = d. We assume S = {1, . . . s}. Now, for k ∈ S
+
, let

lk = max{
∑

j∈S xj−
∑

j∈S
+(cj−λ)zj+

∑

j∈S
+
\{k}

(cj−λ)|
∑

j∈S xj ≤ d, xj ≤

cjzj , j ∈ S, zj ∈ {0, 1}, j ∈ S, zk = 0} and let X
k
= (X

k

S\S
+ , X

k

S
+) be an opti-

mal solution of this maximization problem. From validity of (8), and zk = 0,
we have lk+(ck−λ) ≤ d. On the other hand, as ck > λ, then

∑

j∈S\{k} cj ≤ d.

Hence, considering the solution zj = 1, and xj = cj for all j ∈ S \ {k}, y = 1,
and zk = xk = 0, we have lk ≥ d− (ck − λ). Thus, lk = d− (ck − λ).

Combining the assumptions
∑

j∈N cj > d + ck and maxj∈S cj > λ gives

S $ N . Without loss of generality, assume that 1 ∈ S
+
. For each vector

X
k
with the property

∑

j∈S X
k

j = d − (ck − λ), we define εk > 0 such that
∑

j∈S X
k

j + εk
∑

j∈N\S cj = d. In fact, εk = (ck − λ)/(
∑

j∈N\S cj).
Let ej denote the jth unit vector, 1 denote the vector whose components

are all one, and 0 denote the vector whose components are all zero. Then
consider the following points:

(i) (Xk

S\S
+ , Xk

S
+ ,0,1,1,0, 1), k ∈ S,

(ii) (X
k

S\S
+ , X

k

S
+ ,0,1,1− ek,0, 1), k ∈ S

+
,

(iii) (0,0,0,0,0, ej, 0), j ∈ N \ S,

(iv) (X
1

S\S
+ , X

1

S
+ , ε1cjej,1,1− e1, ej , 1), j ∈ N \ S,

(v) (0,0,0, ek,0,0, 0), k ∈ S \ S
+
,

(vi) (0,0,0,0,0,0, 0).
The set of given points belong to X and satisfies inequality (8) at equality.

Suppose that these points lie on the following hyperplane.
∑

j∈N

αjxj +
∑

j∈N

βjzj = γy + γ0. (9)

Substituting point (vi) in hyperplane (9) gives γ0 = 0. Using points of type

(iii) and (v) we have βj = 0, j ∈ N \ S
+
. Since points (i) lie in the hyperplane

∑

j∈S αjxj +
∑

j∈S
+ βj = γ, and uniquely define

∑

j∈S xj = d, then αj =

α, j ∈ S and αd+
∑

j∈S
+ βj = γ. Considering the point of type (ii) with k = 1

and points in (iv) we obtain αj = 0, j ∈ N \ S. By substituting the points (ii)

in (9) it follows that α
∑

j∈S X
k

j +
∑

j∈S
+ βj −βk = γ, for k ∈ S

+
. Combining
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this equation with αd +
∑

j∈S
+ βj = γ and

∑

j∈S X
k

j = d − (ck − λ) implies

βk = −α(ck − λ), k ∈ S
+
. Finally, using any point of type (i) it follows that

γ = α
(

d−
∑

j∈S
+(cj −λ)

)

. Hence, (9) is a positive multiple of the hyperplane

defined by (8).

Notice that the simple flow covers can be obtained from (8), setting y = 1 and

considering S
+
= S+.

Next we give the extended set-up flow cover inequalities. The result is
given without proof since it can be derived from the lifting of inequalities (8)
discussed in Section 4.

Proposition 8 Let S be a cover with maxj∈S cj > λ. For each ∅ 6= S
+

⊆
S+ = {j ∈ S : cj > λ}, and for each L ⊆ N \S where for k ∈ L, c̄−λ < ck ≤ c̄,
and c̄ = max

j∈S
+ cj , the extended set-up flow cover inequality

∑

j∈S∪L

xj −
∑

j∈S
+

(cj − λ)zj −
∑

j∈L

(c̄− λ)zj ≤
(

d−
∑

j∈S
+

(cj − λ)
)

y, (10)

is a facet of P.

When the capacities are constant (cj = c, ∀j ∈ N) we obtain the following
class of inequalities.

Corollary 1 Assume cj = c, ∀j ∈ N, d > c > 0, nc > d, and assume d is not
a multiple of c. Define r = d − ⌊d

c
⌋c. Let S1, S2 ⊆ N such that S1 ∩ S2 = ∅

and |S1| < ⌈d
c
⌉, ⌈d

c
⌉ ≤ |S1|+ |S2|. Then the following inequality is non-trivial

facet of P .
∑

j∈S1

xj +
∑

j∈S2

(xj − rzj) ≤ (d− kr)y, (11)

where k = ⌈d
c
⌉ − |S1|.

Example 1 Consider an instance with n = 4, d = 14, and c = 5. So r = 4. Us-
ing the software PORTA [3], we obtain 18 facet-defining inequalities for P 1 and
57 facet-defining inequalities for P . The non-trivial facet-defining inequalities
for P 1 are the following.

x2 + x3 + x4 − 4z2 − 4z3 − 4z4 ≤ 2,

x1 + x3 + x4 − 4z1 − 4z3 − 4z4 ≤ 2,

x1 + x2 + x4 − 4z1 − 4z2 − 4z4 ≤ 2,

x1 + x2 + x3 − 4z1 − 4z2 − 4z3 ≤ 2,

x1 + x2 + x3 + x4 − 4z1 − 4z2 − 4z3 − 4z4 ≤ 2.

For P we have 43 non-trivial inequalities. For instance, considering S =
{1, 2, 3}, we have the following facet-defining inequalities of type (11) for k =
1, 2, and 3 :

x1 + x2 + x3 − 4z2 ≤ 10y, k = 1,

x1 + x2 + x3 − 4z2 − 4z3 ≤ 6y, k = 2,

x1 + x2 + x3 − 4z1 − 4z2 − 4z3 ≤ 2y, k = 3.
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Note that for k = 3, the inequality appears in P 1 as a facet-defining in-
equalities by setting y = 1. However for k = 1 and k = 2 the corresponding
inequalities for P 1, obtained by setting y = 1, are not facet-defining.

Next we give the full polyhedral description of P when the cj = c, ∀j ∈ N.

Theorem 1 If cj = c, j ∈ N, the defining inequalities of X with inequalities
(7) and (11) suffice to describe P.

Proof Set X can be decomposed into two mixed-integer sets whose polyhedral
characterization is known: set X1, obtained by restricting y = 1, and set
X0 obtained by restricting y = 0. The convex hull of X1, denoted by P 1,
was derived in [7], and is given by the trivial facet-defining inequalities and
the simple flow cover inequalities. The convex hull of X0, P 0, is given by
P 0 = {(x, z, y) ∈ R2n+1 : xj = 0, j ∈ N, 0 ≤ zj ≤ 1, j ∈ N, y = 0}. Polyhedron
P is the closed convex hull of P 0

⋃

P 1 and can be represented as a linear
program in a higher dimensional space (see [2]) as follows:

{

(x, z, y, x0, z0, y0, x1, z1, y1, δ0, δ1) ∈ R6n+5 :

x0
j = 0, j ∈ N, 0 ≤ z0j ≤ δ0, j ∈ N, y0 = 0,

x1
j ≥ 0, j ∈ N, x1

j ≤ cz1j , j ∈ N, z1j ≤ δ1, j ∈ N,
∑

j∈N

x1
j ≤ dδ1, y1 = δ1,

∑

j∈S

(x1
j − rz1j ) ≤ (d− r⌈

d

c
⌉)δ1, ∀S ⊆ N :| S |≥ ⌈

d

c
⌉,

xj = x0
j + x1

j , zj = z0j + z1j , y = y0 + y1, δ0 + δ1 = 1
}

.

Projecting out variables x0
j , x

1
j , z

1
j , j ∈ N, δ0, δ1, y0, y1 (using the equations

x0
j = 0, x1

j = xj − x0
j , z

1
j = zj − z0j , δ

0 = 1− δ1, δ1 = y1, y0 = 0, y1 = y − y0)

we obtain:
{

(x, z, y, z0) ∈ R3n+1 :

xj ≥ 0, j ∈ N, (12)
∑

j∈N

xj ≤ dy, (13)

∑

j∈S

(xj − rzj + rz0j ) ≤ (d− r⌈
d

c
⌉)y, ∀S ⊆ N :| S |≥ ⌈

d

c
⌉, (14)

zj − z0j ≤ y, j ∈ N, (15)

z0j ≤ 1− y, j ∈ N, (16)

xj ≤ c(zj − z0j ), j ∈ N, (17)

z0j ≥ 0, j ∈ N } . (18)

Now we use the Fourier-Motzkin elimination (see [6]) to project out variables
z0j , j ∈ N. Inequalities (15) and (16) imply zj ≤ 1, ∀j ∈ N ; inequalities (15)
and (17) imply xj ≤ cy ∀j ∈ N ; (16) and (18) imply y ≤ 1; (17) and (18)
imply xj ≤ czj, ∀j ∈ N. Finally, combining (14), with (15) for j ∈ S1 ⊆ S
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and (18) for j ∈ S2 = S \ S1 we have (11). Notice that when |S1| ≥ ⌊d
c
⌋ the

projected inequality does not define a facet. Hence, the projected polyhedron
is P.

Next we explain the relation between the polyhedra defined by the simple
flow covers (1), PSFC , the strengthened simple flow covers (6), P Y

SFC , and the
polyhedron defined by the simple set-up flow covers (8), P Y

SSFC .

Proposition 9 The inclusions PY
SSFC ⊆ P Y

SFC ⊆ PSFC hold. Moreover,
P Y
SFC

⋂

{(x, z, y) : zj ≤ y, ∀j ∈ N} = P Y
SSFC ∩ {(x, z, y) : zj ≤ y, ∀j ∈ N}.

Proof The first two inclusions are trivial. Suppose zj ≤ y, ∀j ∈ N. Since
P Y
SSFC ⊆ P Y

SFC we have P Y
SFC

⋂

{(x, z, y) : zj ≤ y, ∀j ∈ N} ⊇ P Y
SSFC ∩

{(x, z, y) : zj ≤ y, ∀j ∈ N}. To prove the inclusion ⊆ we show that inequalities

(8) with S
+

( S+ do not define facets. For each ∅ ( S
+

( S+ we have
∑

j∈S+\S
+ zj ≤

∑

j∈S+\S
+ y. Thus,

∑

j∈S+\S
+(cj−λ)zj ≤

∑

j∈S+\S
+(cj−λ)y.

Adding this inequality to (6) (which is (8) with S
+
= S+) we obtain the set-up

flow cover (8) defined by S+ and S
+
.

Restrictions zj ≤ y occur in some practical problems where a set-up of an
arc can occur only if the node is open, see for example [1]. Proposition 9 states

that in such cases inequalities with S
+
( S+ are dominated and it suffices to

strengthen the flow covers (6) to get the non-dominated inequalities.

Example 2 Consider the data in Example 1 and the fractional solution y∗ =
0.7, z∗1 = 1, z∗2 = 1, z∗3 = 0.5, z∗4 = 0, x∗

1 = 5, x∗
2 = 2.3, x∗

3 = 2.5, x∗
4 = 0. There

is no flow cover inequality (2) and no strengthened flow cover inequality (6)
cutting off the extreme point. However the inequality x1+x2+x3−4z3 ≤ 10y
is violated.

Now we consider the separation problem associated with the set-up flow
cover inequalities. Consider a fractional solution (x∗, z∗, y∗). If there is an
inequality (8) cutting off (x∗, z∗, y∗) for a given set S and S+, the most violated

inequality is obtained by considering S
+

= {j ∈ S+|z∗j ≤ y∗}. Thus, any
separation heuristic for flow covers directly leads to a separation heuristic
for inequalities (8). Following [7], for each λ one can find the most violated
inequality (8) by solving the knapsack problem:

ηλ = max
{

∑

j∈N

τj(λ)wj |
∑

j∈N

cjwj = d+ λ, wj ∈ {0, 1}, j ∈ N
}

,

where τj(λ) = x∗
j + (cj − λ)+ × (y∗ − z∗j )

+. Let U = {j ∈ N |wj = 1} and

U
+
= {j ∈ U |cj > λ∧y∗ > z∗j }. If ηλ > dy∗ then a violated inequality (8) with

S = U and S
+
= U

+
has been found. Otherwise, no such violated inequality

exists.
In the constant capacitated case, the separation of (11) amounts to check-

ing whether max
S1,S2⊆N,S1∩S2=∅,k=⌈ d

c ⌉−|S1|

{
∑

j∈S1
x∗
j +

∑

j∈S2
(x∗

j − rz∗j ) +
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kry∗
}

is strictly greater than dy∗ (the inequality induced by S1, S2, and k
is violated) or not. In the last case there are no violated inequalities in this
family.

The foregoing maximization problem is equivalent to the following integer
program.

(IP ) max
{

∑

j∈N

(

ujx
∗
j + vj(x

∗
j − rz∗j )

)

+ kry∗|
∑

j∈N

uj + k =

⌈

d

c

⌉

,

uj + vj ≤ 1, j ∈ N, k ≤

⌈

d

c

⌉

, uj, vj ∈ {0, 1}, j ∈ N, k ∈ Z+
0

}

,

where uj = 1 if and only if j ∈ S1 and vj = 1 if and only if j ∈ S2. This
integer program (IP) is a special case of the Transportation Problem for which
there are very efficient combinatorial algorithms.

4 Lifting the set-up flow cover inequalities

In this section we discuss the lifting of inequalities (8), following the approach
presented in [5].

For T ⊂ N , let X = {(x, z, y) ∈ X |(xj , zj) = (0, 0), j ∈ T } and consider a
valid inequality (8) for X. For a given variable pair (xk, zk), k ∈ T, we want
to determine the coefficients αk, βk such that the inequality

∑

j∈S

xj + αkxk −
∑

j∈S
+

(cj − λ)zj + βkzk ≤
(

d−
∑

j∈S
+

(cj − λ)
)

y, (19)

is valid for X
k
=

{

(x, z, y) ∈ X |(xj , zj) = (0, 0), j ∈ T \ {k}
}

. Let

hk(u) = max
{

αkxk + βkzk|xk = u, 0 ≤ xk ≤ ckzk, zk ∈ {0, 1}
}

,

and consider the lifting function:

f(u) = min
(

d−
∑

j∈S
+

(cj − λ)
)

y −
∑

j∈S

xj +
∑

j∈S
+

(cj − λ)zj

s.t.
∑

j∈N\T

xj ≤ dy − u,

0 ≤ xj ≤ cjzj, j ∈ N \ T,

zj ∈ {0, 1}, j ∈ N \ T,

y ∈ {0, 1},

where S ⊆ N \ T is a cover with maxj∈S cj > λ. Then inequality (19) is valid

for X
k
if and only if hk(u) ≤ f(u), 0 ≤ u ≤ ck. Moreover, in order to obtain

a strongest lifted inequality (known as maximal lifting), αk and βk should be
such that the equation hk(u) = f(u) has two linearly independent solutions. If
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(8) defines a facet for conv(X) and the lifting is maximal, then the resulting

inequality defines a facet for conv(X
k
).

First we characterize function f. Feasibility of the lifting problem associated
with the lifting function f(u), for u > 0, implies y = 1 because xj ≥ 0, j ∈ N\T
and

∑

j∈N\T xj ≤ dy−u. Hence the lifting function is similar to the one given

in [5], p. 450, for the flow covers on [0, d].

Let S
+
= {ℓ1, . . . , ℓr} with cℓi ≥ cℓi+1

for i = 1, . . . , r − 1. Function f, for
u ≥ 0, can be written as

f(u) =



















iλ, Mi ≤ u ≤ Mi+1 − λ, i = 0, . . . , r − 1,

u−Mi + iλ, Mi − λ ≤ u ≤ Mi, i = 1, . . . , r − 1,

u−Mr + rλ, Mr − λ ≤ u ≤ d,

where M0 = 0 and Mi =
∑i

k=1 cℓk for i = 1, . . . , r.

From Theorem 6 in [5], function f is superadditive on [0, d]. Hence, the
lifting of all variable pairs (xj , zj), j ∈ T can be done simultaneously. Different
functions hj(u) can be defined for each j ∈ T, leading to maximal lifted in-
equalities. For each j ∈ T we define hj(u) as a line passing through the points
(u, hj(u)) for u = cj and u = Mi−λ where i = argmax{t ∈ {1, . . . , r}|Mt−λ ≤
cj}. It can be easily checked that hj(u) underestimates f in [0, cj]. From this
discussion, and computing the values of αj , βj such that hj(u) = f(u) for the
two points given above, it follows that the following inequalities are valid for
X.

∑

j∈S

xj +
∑

j∈T

αjxj −
∑

j∈S
+

(cj − λ)zj +
∑

j∈T

βjzj ≤
(

d−
∑

j∈S
+

(cj − λ)
)

y, (20)

where, (αj , βj) = ( λ
cj−Mi+λ

, (i − 1)λ− λ(Mi−λ)
cj−Mi+λ

) if Mi ≤ cj ≤ Mi+1 − λ, and

(αj , βj) = (1, iλ−Mi) otherwise. Inequalities (20) imply (10) since, for j ∈ L,

c̄− λ ≤ cj ≤ c̄, where c̄ = max{cj |j ∈ S
+
}.

An interesting question arises when we consider more general sets X ′ ob-
tained fromX replacing the inequality

∑

j∈N xj ≤ dy by
∑

j∈N xj−
∑

j∈N−
xj ≤

dy or by
∑

j∈N xj ≤ dy + s with s ≥ 0. In both cases (8) is valid for the re-

striction of X ′ to the subspace defined by (xj , zj) = (0, 0), j ∈ T ∪ N−, or
s = 0, respectively. For these cases, in order to lift (8), we need to consider
f(u) for u < 0. For negative u, the minimum of the lifting function is obtained
by setting y = 0. For example, as long as u ≥ −

∑

j∈S\S
+ cj , the value of f(u)

is obtained by setting y = 0, xj = zj = 0, j ∈ S
+
and

∑

j∈S\S
+ xj = u. Hence,

for u < 0, we have

f(u) =































−γ − rλ, u ≤ −
∑

j∈S cj ,

u+Nj − jλ, −γ −Nj ≤ u ≤ −γ −Nj + λ, j = 1, . . . , r,

−γ − jλ, −γ −Nj+1 + λ ≤ u ≤ −γ −Nj , j = 0, . . . , r − 1,

u, −γ ≤ u ≤ 0,

where γ =
∑

j∈S\S
+ cj , N0 = 0 and Nj =

∑r

k=r−j+1 cℓk for j = 1, . . . , r.
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Function f(u) is not superadditive in all its domain. In order to perform
a simultaneous lifting we derive superadditive functions that underestimate
f (called valid lifting functions). Since f(u) is superadditive for u ≥ 0, one
such function can be obtained by underestimating f on the negative side:

g1(u) =

{

u u < 0,

f(u) u ≥ 0.

Proposition 10 Function g1 is a valid superadditive lifting function for f.

Proof Since g1 is superadditive on [0, d] and on [−∞, 0], separately, we only
need to prove that g(u1) + g(u2) ≤ g(u1 + u2) when u1 and u2 have opposite
signs. Assume u1 < 0 and Mi ≤ u2 ≤ Mi+1 − λ.

If u1+u2 < 0, then g1(u1+u2) = u1+u2 ≥ u1+Mi = u1+
∑i

t=1 cℓt ≥ u1+iλ
= g1(u1) + g1(u2).

Now assume u1 + u2 ≥ 0. Case 1: Mj ≤ u1 + u2 ≤ Mj+1 − λ, for some
j ≤ i. As u1 + u2 ≤ Mj+1 − λ and −u2 ≤ −Mi, then u1 ≤ Mj+1 − λ − Mi

= Mj+1 − λ − Mj+1 −
∑i

t=j+2 cℓt ≤ −λ − (i − j − 1)λ = (j − i)λ. Hence
g1(u1 + u2) = jλ = (j − i)λ + iλ ≥ u1 + iλ = g1(u1) + g2(u2). Case 2:

Mj − λ ≤ u1 + u2 ≤ Mj, for some j ≤ i. As u2 ≥ Mi = Mj +
∑i

t=j+1 cℓt ≥
Mj + (i − j)λ, then g1(u1 + u2) = u1 + u2 − Mj + jλ ≥ u1 + (i − j)λ + jλ
= u1 + iλ = g1(u1) + g2(u2).

The case u1 < 0 and Mi − λ ≤ u2 ≤ Mi is similar to the previous one, so
it will be omitted.

This function may differ from f largely when u < γ. In such cases, and
when γ > λ we can use the following function, g2, that provides a better ap-
proximation of f for u < 0 but differs from f on the positive side.

g2(u) =







































































u+Nr + kcr − (r + k)λ, −γ −Nr − kcr ≤ u ≤ −γ −Nr − kcr + λ, k ≥ 1,

−γ − (r + k)λ, −γ −Nr − (k + 1)cr + λ ≤ u ≤ −γ −Nr − kcr, k ≥ 0,

u+Nj − jλ, −γ −Nj ≤ u ≤ −γ −Nj + λ, j = 1, . . . , r,

−γ − jλ, −γ −Nj+1 + λ ≤ u ≤ −γ −Nj , j = 0, . . . , r − 1,

u, −γ ≤ u ≤ 0,

iλ, ic1 ≤ u ≤ (i+ 1)c1 − λ, i ≥ 0,

u− ic1 + iλ, ic1 − λ ≤ u ≤ ic1, i ≥ 1,

where c1 = max{cj |j ∈ S
+
} and cr = min{cj|j ∈ S

+
}.

Proposition 11 Function g2 is a valid superadditive lifting function for f if
γ > λ.

The proof of superadditivity of g2 is similar to the proof of g1, only many more
cases need to be checked, thus we omitted it here.

5 Computational experiments

In this section we illustrate the use of the proposed inequalities to improve
the integrality gap on a set of randomly generated instances. The conducted
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experimentes are preliminary, since it is outside of the scope of this paper to
provide a deep study of the effectiveness of these inequalities in benchmark
instances.

In order to test the impact of the inequalities developed for X, with dif-
ferent capacities, in the reduction of the integrality gap, we generate different
sets of instances considering a maximization problem and compute, for each
set, the average initial gap (IG), the average closed gap using inequalities (8)
(CGS), and the average closed gap using the lifted inequalities (20) (CGL).
Initial gaps are computed as UB−OPT

UB
×100 where OPT indicates the optimal

value and UB denotes the upper bound obtained by the linear relaxation of
the problem. Moreover, closed gaps are calculated as UB−IUB

UB−OPT
× 100 where

IUB denotes the linear relaxation with inequalities (8) for CGS and, linear
relaxation with inequalities (20) for CGL. For CGS, inequalities are added
using the separation algorithm of Section 3 to the linear relaxation solution,
and then the linear relaxation is solved again. The process is repeated until
no new cuts are found. For inequalities (20) we use the same procedure while
we only lift the inequalities (20). All computations are performed using the
optimization software Xpress-Optimizer version 23.01.03 [8].

The test instances are generated randomly on the basis of the following
data. We consider n = 50, two possible values for d (100 and 500), two possible
values for the objective coefficient of y, denoted by coy, and for each possible
combination of d and coy we randomly generate the values of cj from three
sets. For d = 100 we consider two uniform distributions for intervals I1 = [4, 5],
I2 = [10, 20], and another set I3 = [4, 6]∪ [9, 11]∪ [14, 16], where cj is assigned
to each interval with probability 1/3 and then it is generated using the uniform
distribution for the corresponding interval. Similarly, for d = 500 we consider
I4 = [15, 17], I5 = [40, 60], I6 = [10, 30] ∪ [40, 60] ∪ [70, 90]. These intervals
allow us to test the cases where the coefficients are almost constant and the
cases where coefficients belong to different magnitudes. Coefficients of zj are
randomly generated in the interval [θj − 20, θj + 20] where θj = −5µj and µj

denotes the average value of the interval for cj. Coefficient of xj is randomly
generated in the interval [10, 15]. For each possible combination of d, coy and
interval for cj , we generate 5 instances. In Table 1 we report the average results
of those 5 instances.

Table 1 Average dual gaps and average closed dual gaps using inequalities.

d=100 I1 I2 I3
IG CGS CGL IG CGS CGL IG CGS CGL

coy = −10 0.47 16.06 69.54 0.84 17.64 87.38 0.24 28.96 70.18
coy = −1000 68.79 87.5 93.16 50.95 55.17 93.57 53.81 90.66 94.45

d=500 I4 I5 I6
IG CGS CGL IG CGS CGL IG CGS CGL

coy = −10 0.36 3.31 39.04 0.62 14.92 56.55 0.35 21.70 56.25
coy = −1000 0.47 3.31 42.66 0.79 14.92 72.61 0.45 21.70 56.25
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It can be concluded from Table 1 that the improvement from use of the
simple set-up flow covers (8), and the lifted inequalities (20) decreases as d
increases. Also lifting has a clear impact on the reduction of the initial gap in
all tested cases. The impact of inequalities (8) depends on the coefficients cj
considered. Besides, in most cases this impact is greater when the values of cj
increase.

6 Conclusions and future research

In this paper we derive a family of valid inequalities, the set-up flow cover
inequalities, for a feasible set X, which can be regarded as a variant of the
SNFCN set where a new binary variable y, is associated with the capacity of
the node. Based on these inequalities we provide a complete polyhedral char-
acterization of the convex hull of X when capacities on the arcs are constant.
For the case of varying capacities, we lifted the set-up flow cover inequalities.
The preliminary computational results were encouraging, suggesting further
tests to study the effectiveness of these inequalities should be carried out in
benchmark instances sets.

Future research directions include the investigation of the polyhedral struc-
ture in the case where y is integer and the study of fast separation heuristics
for the set-up flow cover inequalities. The main goal of this line of research is
to apply the new inequalities to more general mixed integer problems such as
lot-sizing, inventory-routing and network design problems.
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