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summary This work main goal is to develop metal composites on a ceramic 

matrix, designated as CERMETs. Hence, and having as starting 

materials the ceramic and composite powders produced by 

INNOVNANO, mechanosynthesis powders were also prepared.  

The yttria stabilized zirconia (YSZ) based powders (produced by 

those two methods) were crystallographic, chemically, 

morphologically, rheological, thermal and magnetically 

characterized. Pressed compacts from the previous powders 

were prepared and sintered in vacuum conditions, followed by 

their characterization namely in terms of structure, 

microstructure, mechanical and magnetic behavior.  

The results were analyzed with a critical mind, trying to co-relate 

the physical and chemical properties of the powders and green 

compacts with the final sintered properties. The comparison 

between ceramic and composites (either powders, either 

sintered compacts) was always the main goal during the 

development of this work. 

The results include the evaluation of the meaning and 

importance of the several powders preparation steps that are 

conducted in INNOVNANO’s producing method, the importance 

of the tetragonal zirconia phase stabilization, the magnetic 

response and the interpretation of the decrease in mechanical 

resistance verified in CERMETs.  

 
 
 
 



 
 

  



 
 

 
 
 
 
 
 
 

palavras-chave CERMETOs, Compósitos de matriz cerâmica, Zircónia 

estabilizada com Ítria, liga metálica, EDS, Mecanossíntese.  

 

 

resumo A realização deste trabalho tem como objetivo a produção e 

caracterização de compósitos de metal em matriz cerâmica 

(CERMETOS). Assim sendo, e tendo como base pós cerâmicos e 

compósitos produzidos pela INNOVNANO, foram também 

produzidos pós por mecanossíntese.  

Os pós à base de zircónia estabilizada com ítria (YSZ), produzidos 

por estes dois métodos, foram caracterizados cristalográfica, 

química, morfológica, reológica, térmica e magneticamente. Os 

pós foram compactados e sinterizados em vácuo, seguindo-se a 

sua caracterização, principalmente estrutural, microestrutural, 

mecânica e magnética.   

Todos os resultados foram analisados com olhar crítico e 

tentando relacionar as propriedades físicas e químicas dos pós e 

compactos verdes com as propriedades finais dos sinterizados. A 

comparação entre cerâmicos e compósitos (quer pós, quer 

sinterizados) foi sempre o principal objetivo deste trabalho.  

Os resultados incluem a avaliação da importância das várias 

etapas de preparação dos pós, essencialmente no processo 

produtivo da INNOVNANO, a avaliação da estabilização da fase 

tetragonal da zircónia, a resposta magnética e a interpretação do 

decréscimo nas propriedades mecânicas verificado nos 

compósitos. 
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1.1 CERMETs 

Chapter 1 gives an overview on the topic of this thesis: ceramic – metal composites, normally 

designated as CERMETs. 

This chapter presents a general definition of CERMETs, enumerates the different types of 

CERMETs and discusses materials performance based on the interaction of the second metallic 

phase within the ceramic matrix. Due to the exceptional mechanical properties of YSZ and to the 

fact that YSZ is currently the major product of INNOVNANO, an overview of its properties, relations 

with the structure, processing and application is also presented. Particular emphasis will be given 

to the relations between structure and properties. The phase diagram for YSZ is described and due 

to the current importance of nanotechnology the changes that occur in this phase diagram when 

dealing with nanosized powders are also presented. After, INNOVNANO company is described as a 

producer of YSZ nano-powders, and its proprietary EDS production method is analyzed. The main 

products of INNOVNANO are also described. 

Finally, due to the direct relation with this thesis YSZ CERMETs are reviewed. The importance 

of nano-sized products, the mechanical properties of CERMETs, the magnetic response and the 

sintering behavior are some of the topics that will be discussed. 

The name “CERMETs” was introduced after the II World War. It is composed of the syllables 

“cer” from ceramics and “met” from metals. Originally this expression was supposed to describe 

materials which combine the favorable material properties of ceramics (hardness and wear 

resistance) with those of metals (toughness, especially) 1. 

There are several definitions of CERMETs in use. According to R.M. German 2 a CERMET is a 

particulate composite consisting of ceramic particles bonded with a metal matrix. Kolaska and 

Ettmayer 3 define CERMETs shortly as sintered hard metals based on TiC, Ti(C,N) but with the 

exclusion of WC–Co hard metals. Finally W. Lengauer 4 gives a more precise definition: CERMETs 

are based on Ti(C,N) and exhibit, therefore, a purely cubic face centered hard material phase. They 

exhibit high wear resistance at high cutting rates if compared to conventional WC–Co hard metals. 

They also show high lifetimes and a good surface quality of machined materials. Typically, the hard 

material particles of CERMETs show a typical core–rim structure which is formed by the varying 

chemical stability of its components as well as by interaction between the molten binder metal and 

the hard phases during liquid phase sintering 1. 

Non-conductive ceramic matrix, with high hardness and wear resistance, have been 

produced with dispersed electrically conductive secondary phases. Usually, the dispersed 
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conductive phase (e.g. TiC, TiN, TiCN, WC or TiB2) raises the electrical conductivity of the composites 

above the threshold of 1 S/m. This property enables the products to be produced by electric 

discharge machining, for instance 5. 

The design of new superhard materials (with hardness H > 40 GPa) has been a current 

challenge to scientists and engineers. The materials based on nanoparticles are one of the studied 

areas. The first propose was for the substitution of diamond particles in high resistance tools. The 

diamond tools cannot be used for machining steel, because it reacts with iron and silicon. Previous 

experimental results of hardness of single-phase nanostructured metals or metallic superlattices 

clearly indicate that hardness increases with decreasing grain size (between 20 and 100 nm) up to 

5-7 times following a d-1/2 dependence known as the Hall-Petch effect. However, this trend inverts 

for particle sizes below 20 nm (inverse Hall-Petch effect) for which hardness decreases due to a 

grain sliding process along particle boundaries. The origin of superhardness in these composites is 

attributed to: 1. the suppression of dislocations due to the small crystal size of nanoparticles; 2. the 

supermodulus effect in the nanocrystal core due to the compressive stress of the noncrystalline 

shell; 3. a strong interaction in the interface between different components 6.  

Over the last decades, it is increasingly being recognized that new applications for materials 

require functions and properties that are not achievable by single phase materials. Combining 

dissimilar materials for these new applications creates interfaces whose properties and processing 

need to be understood to bridge the gap between the composite material microstructure and the 

end-product 7. 

Different types of composites have been emerging, such as YSZ CERMETs. In this work, YSZ 

with metal addition are designated as CERMETs, despite the most usual designation as composites. 

YSZ is consider as the ceramic phase in those CERMETs and the metal phases can be based in nickel, 

titanium and cobalt metals or based metallic alloys, among others. 
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1.2 Yttria-stabilized Zirconia (YSZ) 

Zirconia-based ceramics, as yttria stabilized zirconia (YSZ) and ceria stabilized zirconia present 

chemical stability, dielectric characteristics, high coefficient of thermal expansion, and crystal 

structural and lattice constant similar to that of silicon. Compositions within this system find such 

widespread applications as thermal barrier coatings in gas turbines, electrolytes in fuel cells, and 

high-temperature crucibles 8–10. Table 1.1 present a range of typical properties of commercial YSZ.  

 
Table 1.1 – Typical properties of commercial YSZ 11 

Physical properties  

Density 5.85 – 6.10 g/cm3 

Mechanical properties  

Elasticity modulus (E) 200 – 210 GPa 

Compressive strength 2200 – 2500 MPa 

Electrical properties (at R.T.)  

Electrical resistivity >1×1012 ohm.cm 

Dielectric constant 29 

Dielectric strength 9.00 – 19.0 kV/mm 

Dissipation factor 0.001 – 0.002 

Thermal properties  

Coefficient of thermal expansion (linear) 10.3 – 11.0 µm/m.°C 

Thermal conductivity 2.20 – 2.50 W/m.°C 

 

These features predestine YSZ for a variety of applications: refractory ceramics, ceramic 

glazes, thermal-barrier coatings (TBCs), electroceramics, insulators, solid oxide fuel cells, oxygen 

sensors and abrasives, grinding media and machining tools. The advantageous characteristics of 

ZrO2-based materials become improved when these materials are produced from nanostructured 

powders 9,10. 

There are several chemical methods to produce YSZ: spray pyrolysis, combustion synthesis, 

hydrothermal synthesis, sol-gel synthesis, polymeric complexing methods, and EDS (INOOVNANO’s 

patent) 12,13.  

 

1.2.1. Phase characterization and transformation toughening  

Zirconia-based ceramics have been demonstrated to be one of the strongest and toughest 

oxide yet produced (as exemplified in Table 1.1 – Mechanical properties). The reason why zirconia-

based products have these features will be explained later on. 
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Pure ZrO2 can exist in three crystallographic forms: cubic (c-ZrO2), tetragonal (c-ZrO2) and 

monoclinic (m-ZrO2). All of these phases are variants of the cubic fluorite structure. At room 

temperature, monoclinic phase is stable. The cubic to tetragonal transformation occurs at about 

2340 °C and the tetragonal to the monoclinic one at about 1170 °C 14,15. Figure 1.1 shows a 

representation of the crystallographic structures of zirconia.  

 

 
Figure 1.1 – Representation of crystallographic structures of Zirconia 16.  

 

The addition of soluble oxides in zirconia (MgO, CaO, Sc2O3, Y2O3 or CeO2) decreases the 

tetragonal to monoclinic (t ↔ m) and cubic to tetragonal (c ↔ t) transformation temperatures. 

These additions are therefore said to stabilize the high temperature phases. Doping ZrO2 with such 

oxides can suppress this phase transformation, and a metastable cubic fluorite solid solution can 

be obtained at room temperature (when more than ≈8 mol% of the yttria stabilizer is added). Such 

a system is referred to as the fully yttria-stabilized zirconia (YSZ). Doping with lower valence oxides 

(as the previously stated) can introduce oxygen vacancies into zirconia crystal lattice. When doping 

with a smaller amount than needed to produce fully stabilized zirconia, partially stabilized zirconia 

(PSZ) or tetragonal zirconia polycrystals (TZP) can be obtained. PSZ consists of fine (< 1 µm) 

inclusions of tetragonal zirconia in a cubic matrix. PSZ is obtained by sintering in the tetragonal + 

cubic two-phase field at relatively high temperature. These oxides have very high fracture 

toughness due to the “transformation toughening”. Yttria TZP typically contains 1.5–3 mol% Y2O3, 

where some amount of cubic zirconia will be present in the microstructure if the amount of yttria 

exceeds about 4 mol% 8,15,17. 

If the yttria’s amount is about 3 mol%, YSZ structure becomes tetragonal (t-ZrO2) after 

heating above 1000 °C and the t-phase is metastable below 1000 °C where it coexists with the 

monoclinic one (partially stabilized YSZ). In the pure isolated oxides (yttria and zirconia), none of 



Emulsion Detonation Synthesis (EDS) Zirconia-based CERMETs: Chapter 1 – Introduction 
Universidade de Aveiro - INNOVNANO 

7 
 

the high temperature phases (tetragonal and cubic) can be retained by quenching to room 

temperature 10,14,18.  

Because of stoichiometry violation, an addition of the Y2O3 stabilizer introduces a large 

amount of O2- vacancies or vacancies aggregate with a metal atom in the ZrO2 host lattice. The O2- 

vacancies existence in YSZ leads to the ionic oxygen conductivity of the material.  Further types of 

open-volume defects become of importance in the YSZ nanomaterials due to a significant volume 

fraction occupied by grain boundaries (GB’s): GB-associated vacancy-like misfit defects, vacancy 

clusters at GB’s intersections (triple points), voids and pores 10. The cubic polymorph has the ability 

to conduct oxygen ions due to the high oxygen vacancy concentration, which increases when 

temperature rises. This characteristic of the cubic polymorph is the reason for its applicability in 

solid oxide fuel cells (SOFCs) and oxygen sensors 19. 

The tetragonal to monoclinic transformation of zirconia has a great technological significance, 

due to its reversible and diffusionless (known as martensitic) features, with a hysteresis of 100 °C 

and an expansion of 4 to 5 vol.% on cooling. Because of this fact, any pure zirconia sintered block 

will suffer from multicracking and spontaneous failure on cooling. This detrimental mechanical 

instability is suppressed by PSZ and TZP 7. 

The martensitic transition ability to harness the volume expansion of the structure leads to 

the interesting properties of high strength and toughness displayed by many zirconia products 15. 

When a crack develops on zirconia surface containing metastable t-ZrO2, it is subjected to a 

macroscopic tensile stress. This tensile stress concentration at the crack tip causes the 

transformation of metastable t-ZrO2 to the monoclinic crystalline phase. The consequent volume 

increase of the crystals, constrained by the surrounding ones, results in a favorable compressive 

stress which acts on the surfaces of the crack, and thus hinders its propagation. Such a mechanism 

has been defined as “transformation toughening” or “phase transformation toughening” 7,20.  

The large volume and shape deformations, which occur through the martensitic 

transformation, set up large strains in the structure. These strains cannot be relieved by diffusion. 

Instead, they are accommodated by elastic or plastic deformation of the surrounding matrix. 

Different models for the nucleation controlled martensitic transformation in zirconia have been 

developed. Although it is agreed that the martensitic reaction is nucleation controlled 15. 

In Y-TZP's (Yttria stabilized tetragonal zirconia polycrystals) nucleation has been observed to 

occur at grain corners and has been shown to be easier in faceted intergranular grains compared 

to spherical intragranular grains of equivalent dimensions. Such behavior supports the theory of a 

“stress assisted” transformation mechanism. The stress, which is seen within the material being 
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subject to a propagating crack, is often sufficient to initiate the martensitic transformation. The 

subsequent volume expansion is in effect a “crack stopping” force and leads to the high values of 

strength and toughness recorded for these materials 8,15. Gupta et al. discovered that very fine 

grained (0.2–1.0 µm) single-phase tetragonal zirconia, TZP, exhibits similar properties 21. 

Nowadays YSZ is of great importance in many applications, like electrolytes for solid oxide 

fuel cells (SOFCs) and oxygen sensors, refractory materials for high temperature furnaces as well as 

protective coatings for metals 8. 

 

1.2.2. Phase diagrams 

The amount of alloying oxide required to produce stabilized zirconia is determined from the 

phase diagram. The phase diagram for the zirconia-yttria system is shown in Figure 1.2. Consider, 

for instance, in the phase diagram, compositions containing 6 mol% Y2O3 equilibrated at various 

temperatures and then quenched to room temperature sufficiently rapidly to prevent cation 

diffusion. Above about 2300 °C such a material will be single phase with the fluorite structure, and 

on quenching will undergo a diffusion less transformation to a multiply twinned tetragonal phase. 

At 2000 °C the equilibrium is a two-phase mixture of tetragonal solid solution containing about 2 

mol% Y2O3 and fluorite solid solution containing about 8 mol% Y2O3; when it is quenched the t-phase 

transforms to monoclinic and the fluorite phase to tetragonal 14. 

For the same composition, at 1400 °C, the equilibrium is again two phase with a tetragonal 

phase containing about 4 mol% Y2O3 and a fluorite phase containing about 14 mol% Y2O3; on 

quenching the tetragonal phase transforms to monoclinic but the fluorite phase now contains 

sufficient yttria to retain that structure at room temperature and does not undergo any 

transformation 14. 

Bulk materials behave differently of nanostructured materials, as is well known. In the 

specific case of nanocrystalline YSZ (n-YSZ) particles with small grain size and high specific surface 

help to reduce the phase transformation response time. The high surface area also causes high 

catalytic activity. n-YSZ properties are attributed to the large fraction of atoms within the interface 

region. It was shown that in systems with nanosized particles, the effect of surface area becomes 

significant and affects the Gibbs energy of each phase. Furthermore, the stability regions in an n-

YSZ system can be significantly different from those in bulk YSZ. To gain a better insight into the 

behavior and further improve of performance of YSZ system, it is essential to understand the 

thermodynamic properties of these materials 8,19,22. 
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Figure 1.2 – Phase diagram of Zirconia-Yttria system. The figure shows the zirconia rich zone (mol% of ZrO2 

> mol% of Y2O3) 15. 

 

Hence, in order to develop a specific phase diagram for n-YSZ, several studies 19,22–24 have 

been published.  The total surface energy of particles depends on surface area and specific surface 

energy. As so, to have a Gibbs energy definition for a nanostructured system, the specific surface 

energy has to be measured 19. 

Some aspects that are important to consider when designing a phase diagram for n-YSZ (this 

will be presented based on the Mohammad Asadikiya et al. study): 

1. Calculation of Gibbs energy for bulk materials 

For bulk materials, the Gibbs energy is given by equation 1, in which H is the enthalpy, T is 

temperature and S the entropy.  

𝛥𝐺𝑏𝑢𝑙𝑘 =  𝛥𝐻 − 𝑇𝛥𝑆      Eq. 1 
 

The model used for bulk m-ZrO2 and t-ZrO2 is (Y3+,Zr4+)1(O2-,Va)2. In this model, the first 

sublattice is occupied by Y3+ and Zr4+ ions and the second one is occupied by an O2- ion and a vacancy. 

The model used for c-ZrO2 is (Y,Y3+,Zr,Zr4+)1(O2-,Va)2. Since the yttria concentration in m-ZrO2 is 

extremely low (as suggested by the phase diagram in Figure 1.2), this phase can be treated as an 

ideal solution, and the interaction parameter for m-ZrO2 phase was considered to be zero 19. 
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2. T-zero temperature method to determine phase boundaries 

The phase transition in YSZ system are observed with a considerable delay, since the kinetics 

is very slow. In order to determine the phase boundaries under such conditions, Kaufman and 

Cohen 25 suggested a T-zero temperature approach (partial equilibrium method). Based on this 

method, the starting transition temperature of t-ZrO2  m-ZrO2 during cooling and the starting 

transition temperature of m-ZrO2  t-ZrO2 to on heating are captured. Based on these two 

transition temperatures, T0 is calculated as an average temperature of previews ones. In other 

words, T0 is a temperature at which the Gibbs energies of two adjacent phases are equal in a 

determined composition. This T0 temperature is located in the two-phase region and it is a 

theoretical limit for a diffusionless transformation 19. 

Mohammad Asadikiya et al. developed the n-YSZ phase diagram at room temperature, using 

the T-zero method and shown that for n-YSZ there is a phase diagram area where the stabilization 

of t-phase is possible almost until room temperature - Figure 1.3.   

When dealing with systems that have extremely slow kinetics, as is the case of YSZ, it is highly 

possible that heated samples will not reach the equilibrium. Hence, the measured enthalpy of such 

samples will be different to that of the same sample in its final equilibrium 19. 

 

 
Figure 1.3 - Partial phase diagram of bulk YSZ, with indication of T0 and T’0 lines, being T0 the M/T T-zero 
temperature line and T’0 is the T/C T-zero temperature line. Adapted from 19. 
 

Mohammed Asadikiya et al. study allowed us to conclude that the phase stabilization in YSZ 

system is a complex matter. Moreover, the size of YSZ particles, the amount of yttria and 

temperature of the system are fundamental parameters. When dealing with nanosized YSZ, the 

stabilization of high temperature phases (tetragonal and cubic) is facilitated, i.e., it occurs at low 

temperature, because the grain boundaries phenomena overcame the equilibrium Gibbs energy.  
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1.2.3. YSZ Innovnano products 

1.2.3.1. Innovnano, the Company  

INNOVNANO emerges as a manufacturer of nanostructured zirconia and zirconate ceramic 

powders since 2009. The synthesis technology is unique, and therefore, patented. This unique 

production method, Emulsion Detonation Synthesis (EDS), guarantees a small grain size 

(maintenance of the intrinsic nanostructure) and chemical homogeneity. The high performance 

produced powders support high-tech industries as biomaterials, energy materials, electronics and 

sensors and thermal barrier coatings 26–28. 

 
 

1.2.3.2. EDS technology  

Emulsion Detonation Synthesis (EDS) method was developed and patented by INNOVNANO 

28. Dynamic shock induces chemical reactions, that is known for a fact. The EDS process is based on 

the detonation of two water-in-oil (W/O) emulsions, one is the initiator and the other is the 

secondary one. This process occurs at extremely high pressures and temperatures (> 10000 bar, 

from 500 to 3000 ˚C) in one single step. This kind of nanostructured powder production allows a 

high purity (> 99.9%) and an industrial level of production 29. 

The shock wave induced in the EDS reaction leads to high pressure reactions to occur in 

micro-seconds, that by other process would take hours or days, enabling the synthesis of large 

quantities of high pressure synthesized products 29. 

The reaction of synthesis takes place by combining the high temperature, high dynamic 

pressures and quenching. This potentiates the production of already known materials with 

improved properties and also the synthesis of compounds hard to obtained by common synthesis 

techniques, both at industrial scale and with massive costs 29. 

The EDS process tries to take advantage of the relation between the diameters of the first 

stable liquid particles to be formed during gaseous phase reaction and the saturation degree of 

metal-oxide (ZrO2, for instance). Gaseous phase comprises three stages in the synthesis of 

nanoparticles: 1. production of the compound in the vapor phase, 2. condensation in the form of 

nanoparticles and 3. control and preservation of the dispersed nanocrystalline state 29. 

There are several reasons that make water in oil (W/O) emulsions particularly suitable for 

the powder synthesis by EDS: 1. Complete chemical reactions during detonation, assured by the 

high homogeneity grade of all the components; 2. Flexibility in terms of possible precursors and 
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components that allows controlling the purity and final properties of the powders; 3. Stability and 

safety of the emulsion, due to the high water content 28,29. 

These unique synthesis technologies sets INNOVNANO apart from other manufactures. EDS 

allows significant flexibility in the choice of precursors and components. Great control over the 

purity, chemical composition, structure, morphology and final properties of the powders are some 

of the parameters that can be easily managed 28,30. 

The specific properties of YSZ nanostructured powders prepared by EDS are: 31,32 

 High chemical homogeneity with uniform yttria distribution 

 High density 

 Uniform grain sizes with high specific-surface area 

 Low sintering temperatures 

 Enhanced physical and chemical properties 

As is commonly known, ceramics powders need very high temperatures to sinter (usually 

above 1000°C). Therefore, the high temperatures induce undesirable grain size growth. The EDS 

produced powders allows the densification at lower temperatures (currently 100-150°C lower than 

conventional powders) due to its nanometric size 31. 
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1.2.3.3. 2YSZ  

Innovnano’s 2 mol% YSZ is a product that, depending on the powder treatment, can be 

provided as a ready-to-press binderless powder or a suspension. The suspension can have up to 40 

wt.% of solid content. These powders produce high performance ceramics with high fracture 

toughness and bending strength that complement each other 33. 

Table 1.2 shows the cataloged chemical and physical properties of Innovnano’s 2YSZ product. 

 

Table 1.2 – The properties of 2YSZ Innovnano powders. Adapted from 33. 

Chemical analysis (wt.%)  

ZrO2 + HfO2 + Y2O3 + Al2O3 >99.9 

HfO2 <3.0 

Y2O3 3.5 ± 0.3 

Al2O3 0.4 ± 0.1 

SiO2 <0.015 

Fe2O3 <0.02 

Na2O <0.005 

Other oxides (CuO, ZnO, MgO, CaO) <0.07 

Physical analysis   

Crystallite size (nm) 20 

Primary particle d50 (nm) 50 

Powder d50 (nm) <250 

Granule d50 (µm) 60 

Specific-surface area (m2/g) 25 ± 3 

Mechanical properties after sintering  

Grain size (µm) < 250 

Density (g/cm3) up to 6.07 

Hardness (HV10) up to 1350 

Bending strength (MPa) up to 1800 

Fracture toughness (HV10) (MPa.m0.5) up to 15 
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1.2.3.4. 3YSZ  

The 3 mol% Yttria-stabilized Zirconia (3YSZ) nanostructured powder is one of the most 

produced powders in Innovnano. The ceramic products made from this powders are designed for 

structural applications, offering high strength, enhanced fracture resistance and excellent 

tribological performance to endure physically demanding applications 32. 

The nanostructure of this powder provides it with excellent sinterability, enabling effective 

processing at 50 to 75 °C lower than conventional micropowders, saving energy and retaining the 

powder’s nanostructure for improved ceramic properties 32. 

The 3YSZ powders can be sold as spay-dried granulated powder, with and without binder 

(ready-to-press), as slurries and as suspensions. The atomized powders are especially suitable for 

hot isostatic pressing (HIP), which can improve material features, resulting in a highly dense 

material with reduced porosity 32.  

The properties of the respective sintered part lead to its cataloging as a structural ceramic. 

The applications are hard-wearing components, coatings, tiles and devices in multiple industries, 

including the biomedical sector, industrial foundries and steel plants, mining, chemical industries 

and pharmaceutical manufacturing. Some particular application examples include pump linings, 

valve components, nozzles, tank linings or ceramic sleeves and cutting tools 32. 
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1.3. Interaction between metal and ceramic matrix 

In order to explain the behavior of composite materials, in which the constituent phases have 

different properties, percolation theory emerges. 

Percolation theory is a well reported mathematic theory and largely studied subject. It 

describes the geometry and behavior of connected clusters in a random space, modeling the 

richness of the various interconnections that may be present in a random grid. Percolation theory 

explains why certain properties of multiphase materials undergo a dramatic change when one of 

the phases reaches a critical concentration, fc, instead of following the linear rule of mixtures. This 

theory tries to explain physical properties such as electrical resistivity, optical properties, thermal 

conductivity, among others 7. 

To understand the range of new properties emerged in composites materials, percolation 

theory is an important tool, especially in those materials whose phases (matrix and particles) 

present very different values of a given property, such as CERMETs. Therefore, the percolation 

theory is a powerful tool for designing new materials in the range of the percolation threshold (fc) 

7. In the specific case of this work, the percolation theory was not applied to select the amount of 

second phase because this has been previously selected by INNOVNANO. 

The theory says that the infinite metal cluster) formed at the percolation threshold can be 

used to release internal stresses induced into the bulk of the material. This happens because of the 

thermal expansion mismatch between different phases or because an enantiomorphic phase 

transformation, such as α ↔ β quartz, martensitic transformations, among others, occurs. The last 

example is the case of the tetragonal to monoclinic (t ↔ m) ZrO2 transformation. At the percolation 

threshold and above there is an infinite cluster that ensures the conductivity in the system 7,34. 

Academically, a ceramic/metal interface is known as a contact between two classes of 

materials that usually have very different properties from each of the materials due to their 

different bonding characteristics. The difference in material properties between the metal and the 

ceramic induces stress singularities at the interface. The stress singularity combined with the 

thermal residual stress can degrade the strength of ceramic/metal joints. As so, microstructural 

development at ceramic/metal interfaces plays a critical role in all of these processes. The 

interfacial morphology can determine the performance characteristics of dissimilar material joints, 

such as metal–matrix composites, ceramic–matrix composites, electronic packages, glass-to-metal 

seals, bioglass–metal coatings, metal to dental ceramics joining, etc 7. 

Different systems behave differently. For instance, Al2O3/Ni composites were proved to have 

an enhancement of toughness. This is attributed mainly to a crack bridging mechanism. However, 
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this mechanism is fully operative only when the metallic inclusions are strongly bonded to the 

brittle matrix. If the ductile phase inclusions are weakly bonded to the ceramic matrix, the cracks 

will propagate along the ceramic/metal interface, and the contribution of the ductile particle to 

improve the toughness of the final dense composites will be negligible. This weak bonding is 

observed in composites of 3 mol% yttria tetragonal partially stabilized zirconia (3Y-TZP) with nickel. 

The addition of Ni particles to 3Y-TZP matrix does not increase the toughness of the composites. 

The electronic structure of the interfaces must be the reason for the weak ZrO2/Ni interface 

compared with Al2O3/Ni 7. 
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1.4. TiC CERMETs 

As said before, TiC were the first referred and defined CERMETs. In recent years, the interest 

in TiC/TiCN-based materials has been growing because of their good high-temperature hardness, 

superior thermal conductivity, excellent creep resistance, relatively low friction coefficient, perfect 

high-temperature oxidation resistance and chemical stability. 35  

This family of structural and wear-resistance materials can compete with WC-Co hard metals 

in several applications, in particular machining of steel, and they are superior in surface finishing 

operations. Industrially, these materials have another advantage in comparison with WC-Co 

hardmetals: they are less expensive. As so, Ti(C,N)-based CERMETs have been widely used as high-

speed cutting tool materials for semi-finish and finish machining of carbon steel, stainless steel and 

alloy steel. They can provide a better geometry accuracy control and surface quality35,36. 

Usually, Ti(C,N)-based CERMETs are composed of two phases, as previously mentioned: one 

is a hard ceramic phase, carbonitride particles that can provide high hardness, and the other is a 

metallic binder phase, for instance nickel or cobalt which gives contributions to the strength and 

toughness of the material.  The microstructure of Ti(C, N)-based CERMETs is typically characterized 

by carbonitride particles, exhibiting a ‘‘core-rim” structure, bonded with a metallic phase. It is well 

known that different final mechanical properties of these composites depend on different chemical 

composition and microstructure of “core-rim-binder” phase. The microstructure and performance 

can be engineered by varying properly the chemical composition, such as Co, Mo, Cr, Mo2C, WC, 

TaC, NbC ,Cr3C2, AlN, C among others 35. 

Submicron or nanometric carbide powders have been developed as cutting tools with ultra-

fine microstructures.  The use of small size powders in hard metals and CERMETs improves greatly 

their mechanical properties. However, the fracture toughness is usually inversely proportional to 

the hardness and grain size, unless the grain size is extremely fine or at a nanoscale. Recently, ultra-

fine TiCN-based CERMETs with completely dense bodies showed a high hardness (Vickers Hardness 

(HV) with 30 N load, HV30 = 1800 MPa) but with a very limited toughness (7–9 MPa.m1/2). Although, 

this toughness can be improved by using high binder content, increased grain size of the ceramic 

phase or using (Ti,W)C solid solution powders instead of binary powders. However, the hardness 

will be weakened, leading to dissatisfied wear resistance 36. 

TiC powders are industrially prepared through TiO2 carbothermal reduction at high 

temperatures (1700 °C – 2100 °C). Subsequently, TiC powders and other raw materials are 

uniformly mixed in certain proportions to produce the TiC-metal. Finally, the TiC CERMET can be 

prepared by vacuum sintering at high temperature 36.  
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1.5. WC CERMETs 

Another example of a composite family, sometimes called CERMET composites and largely 

utilized in the industry, as a substitute of the high resistance steel working pieces, is the tungsten 

carbide/cobalt system (WC/Co). This chapter gives an overview on this group of materials. Some 

composites of WC are presented, as WC with Co/Ni, WC-Co with YSZ and Ni/W matrix with zirconia.  

These cemented tungsten carbides consist of the hard carbide phase WC embedded in a 

ductile metallic matrix, usually referred to as binder phase. For cemented tungsten carbides, the 

great properties of the components are superimposed; the carbide phase WC provides hardness 

and wear resistance while the ductile binder (transition metal as Co, Fe or Ni) contributes to 

toughness and strength, in accordance with what occur with TiC CERMETs.  Due to the excellent 

combination of hardness and toughness, cemented tungsten carbides are often referred to as “hard 

metals” and are used widely in cutting, rock drilling and molding. Hard metal has been industrially 

produced since the 1920s and nowadays represents more than 40% of the cutting tool market 37,38. 

1.5.1. WC matrix with (Co/Ni) 

Despite of being produced for several decades now, during the last years, the deployment of 

cobalt natural resources and the increasing demands on material performance had led researches 

to the optimization of new binder compositions and the development of specific coatings to 

improve the useful properties 38. 

C.M. Fernandes et al. have presented a method of preparing composite powders of WC and 

low Ni/Fe/Cr binder content (4–7 wt.%) composites, consisting of sputtered metallic binder onto 

WC particles and Figure 1.4 presents the microstructures of the composites prepared from those 

powders and from conventionally milled ones. The coated powders resulting from this technique 

show a very high uniformity of binder distribution associated with a nanocrystalline structure. The 

surface properties of the particles were changed, increasing the powder’s flowability, pressing 

behavior and sinterability in such a way that easier powder processing could be adopted 38. In C.M. 

Fernandes’s study, depth-sensing indentation was used to measure the mechanical properties in 

compressive strength, with a small size sample.  The characteristics obtained for a standard WC–Co 

sample using this method were very close to the published results of macroscopic characterizations 

for the determined values of hardness, H, Young’s modulus, E, and yield stress, σy. They concluded 

that the lower values of E of the sintered WC–Ni/Fe/Cr compared to those found in similar sintered 

conventional powders cannot be attributed to differences in grain size as for H and σy. The high 

binder uniformity and the nanometer-sized coating achieved by the sputter-deposition process is 
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not the principal cause for the lowest values of E. They proved that the decrease in E may have its 

origin in Ni diffusion into WC powders during the sputtering, which is enhanced during the sintering 

process. However, a preferential orientation could also have a role in E values, contributing to their 

decrease. It was suggested that lower amounts of ductile binder could be needed to obtain 

convenient ductile properties in the composites prepared from sputtered powders, than when a 

conventional mixing process is used 38. 

 

 
Figure 1.4 – Optical micrographs of a composite prepared from WC powders coated with iron rich binders (a) 
and a conventionally prepared WC composite with the same binders (b). The surrounding area shows the 
heterogeneity of binder distribution. 38. 

 

Wei Su et al. recently prepared and studied WC with 6 mol% (Co, Ni) composite powders with 

different Co/Ni ratios. These composites were fabricated through hydrogen reduction of WC–

(Co,Ni)C2O4.2H2O precursor. They have concluded that the liquid phase temperature and corrosion 

resistance of WC–6(Co, Ni) cemented carbides increase with the increase of Ni content. When 20 

wt.% Co is substituted by Ni, the average WC grain size decreases from 1.67 μm to 1.48 μm, the 

hardness and the transverse rupture strength increases from 2182 MPa to 2276 MPa, respectively, 

while the corrosion rate decreases and the magnetic coercivity, Hc, is increased 37. The coercivity, 

or coercive force, Hc, is a measure of the ability of a ferromagnetic material to withstand an 

external magnetic field without being demagnetized 9. Although the addition of Ni is supposed to 

facilitate the solution-precipitation of WC particles and promote the growth of WC grains, the liquid 

phase temperature of WC–6(Co,Ni) increases with increasing Ni content. Co substituted by Ni 

should have the positive and negative effects on the growth of WC grains 37. 

As shown in Figure 1.5, the magnetic saturation (point when the increasing of external 

magnetic field cannot increase the magnetization of the material – Ms or CoM) of WC–6(Co, Ni) 

sintered alloys is affected together by Ni and W contents in Co, and the variation of the magnetic 

saturation of WC–6(Co,Ni) sintered alloys is a convex parabola. Since the magnetic saturation 

quantities of pure cobalt and nickel are 202 μTm3/kg and 68 μTm3/kg, respectively, the addition of 

Ni is responsible for decreasing the magnetic saturation of WC–6Co sintered alloys. Meanwhile, W 
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dissolved in the binder can further reduce the magnetic saturation of WC–6Co sintered alloys 37. 

For a constant binder phase, coercive force, Hc is supposed to decrease with increasing average WC 

grain size of sintered alloys. In addition, coercive force increases with the decrease of Ni content 

and the increase of W content in Co. It can be seen from Figure 1.5 that the coercive force, or 

magnetic coercivity, of WC–6(Co, Ni) sintered alloy reaches the highest value of 12.4 kA/m when 

20 wt.% Co is substituted by Ni 37,39. 

 

 
Figure 1.5 – Effects of gradual cobalt substitution by nickel on magnetic saturation (CoM) and coercive force 
or coercivity (Hc) of WC/6Co alloy 37. 

 

1.5.2. WC-Co matrix with YSZ 

As described above, WC-Co CERMET is an important material the substitution of tool and die 

steels. According to different requirements, they should have good wearability, impact toughness, 

high strength and high hardness 40. Some composites of WC-Co, as WC-Co/YSZ, have shown 

improvement of mechanical properties and hence become good substitutes of hard metal tools.  

An example of some recently developed CERMET composites is WC-20wt.%Co + 3YSZ 

(composite of tungsten carbide with 20 wt.% cobalt matrix with 0, 1, 2 and 3 wt.% 3YSZ) that were 

prepared by normal vacuum sinter processing and characterized by Lin An et al 40. Results showed 

that 3YSZ spherical particles with different sizes which were uniformly distributed in Co and WC 

matrix phases; the bending strength and impact toughness of these WC-20wt%Co + 3YSZ 

composites were improved remarkably, but the hardness values had a small change 40. The macro 

hardness (HRA) of the composites with 3YSZ was slightly higher than that of the specimen without 

3YSZ with no distinct fluctuation of macro hardness all over the composites 40.  
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1.5.3. Ni/W matrix with ZrO2 

Metal matrix composites (MMCs) have been developed with increasing interest because of 

the demand for advanced materials with precisely controlled properties. These class of materials 

have almost unlimited possibilities for material engineering, as their properties can be designed 

depending on the application. The properties of MMCs are mainly determined by the combination 

of components as well as by their interfacial characteristics, like in the CERMETs case. MMC 

coatings are usually designed to improve surface tribological properties, since metals are hardened 

by the incorporation of ceramic particles. Different types of particles with a variety of properties, 

e.g., oxides (Al2O3, ZrO2), carbides (SiC, WC, SiC), nitrides (Si3N4) and borides (TiB2, ZrB2), have been 

commonly used to reinforce matrices of microcrystalline metals or alloys 41. 

The nickel-based alloys are widely applied as composite matrices due to their superior 

properties. Despite that, nanostructured nickel is generally unstable, which may lead to a rapid 

grain growth even at low temperatures. Alloying with some metals of high melting points has been 

found to improve the stability of that system. Nanocrystalline Ni–W alloys are known for their 

stability, high hardness, high wear resistance at elevated temperatures, high melting point, low 

coefficient of thermal expansion, high tensile strength and high corrosion resistance in many 

aggressive environments 41. 

Composite coatings of a nanostructured Ni–W matrix reinforced by zirconia (ZrO2) 

nanoparticles are new materials. Zirconia is an extremely refractory material that offers high 

hardness, high wear resistance and chemical inertness 41,42. E. Beltowska-Lehman et al. synthesized 

composite coatings consisting of a nanocrystalline Ni–W alloy matrix reinforced with ZrO2 particles 

(average size of 50 nm) by electrochemical deposition assisted by an external field 41. All the 

composite coatings were crack free, homogenous, compact and well adherent to the steel substrate. 

In addition, good interconnection between the phases (ceramic particles and the metallic matrix), 

the lack of voids and discontinuity at the interface were observed. These composite coatings exhibit 

a considerable enhancement in microhardness in comparison to pure Ni–W and composite Ni/ZrO2 

coatings. The Ni–W/ZrO2 composites with the lowest ceramic content (about 5 wt.%) presented the 

best mechanical properties 41. 
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1.6. Zirconia composites 

Zirconia, or zirconium oxide (ZrO2) is a very hard, highly refractory oxide, its mechanical 

properties (σflexural > 1GPa) are very similar to those of metals and its colour similar to tooth colour 

20. Zirconia (ZrO2) exhibits a high melting point (2700 °C), low electronic and thermal conductivities 

and good oxygen-ion conductivity at higher temperatures. Zirconia possesses, moreover, favorable 

mechanical properties (enhanced strength and fracture toughness). Such properties make this 

material a good candidate to produce composites. When it is added to a metal matrix, it is possible 

to have products like the Ni-W/ZrO2 MMCs already mentioned. 41 When zirconia, or a stabilized 

phase of zirconia, is used as the matrix, several other composites are possible to be produced, and 

some of them will be presented in this chapter.  

Note that two kind of designations will be used: CERMETs and composites. The CERMETs are 

referred to materials that are composed of a main ceramic phase (Zirconia or YSZ) with a dispersed 

metal (in the reduced state). Composites are designated as materials composed by a ceramic phase 

and a second phase, that can also be a ceramic, as well as an oxidized material.  

 

1.6.1. Zirconia matrix with TiO2 and Fe3O4  

The addition of a secondary hard phase to zirconia can increase the hardness, while 

maintaining the high toughness due to transformation toughening phenomena and crack deflection. 

ZrO2-based composites such as ZrO2/TiB2, ZrO2/TiCN, ZrO2/TiN, ZrO2/TiC have recently received 

large attention. ZrO2–WC composites have also been investigated and show promising properties 

18. 

Jun Wang et al. have produced magnetic solid superacids (materials with acidity superior to 

the sulfuric acid) by introducing TiO2 and magnetic substrates in zirconia matrix. Results indicated 

that the introduction of TiO2 and magnetic substrates (iron based) affect the phase transformation 

from tetragonal phase (t-ZrO2) to monoclinic phase (m-ZrO2) even with calcined temperatures of 

1200 °C. Furthermore, the solid superacids doped with magnetic substrates presented 

superparamagnetic properties - Figure 1.6 43. The referred authors presented an easy synthetic 

strategy to design and synthesize ZrO2/TiO2/Fe3O4 solid superacid by chemical co-precipitation 

method. This material not only has the advantages of a solid acid, but also the introduction of TiO2 

and Fe3O4 markedly delays the tetragonal-to-monoclinic phase transformation, which greatly 

improved the thermal stability of zirconia and inhibited the crystal growth; the introduction of Fe3O4 
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confer zirconia with magnetic properties, which can be used for the separation of the zirconia 

composite component from the reaction media, through introduction of a magnetic field 43. 

Figure 1.6 shows the hysteresis loop of the solid superacid measured at room temperature. 

The corresponding saturation magnetization and the coercive force of the represented sample 

were 11 emu.g−1 and 0 Oe, respectively. The value of the latter is a typical characteristic of 

superparamagnetic materials. The emerging of superparamagnetism at room temperature may be 

due to the Fe3O4 particle with very small particle size 43,44. 

 

 
Figure 1.6 – Typical hysteresis loop of solid superacid of calcined tetragonal stabilized zirconia 43. 

 

1.6.2. Ordering in Zirconia/Nickel composites 

Monolithic zirconia/nickel (ZrO2/Ni) CERMETs were prepared by a wet-processing method 

(70 % solid content in water slurries, with ball milling homogenization), with Ni vol% of 16 to 40% 

by C. Pecharromán et al. Microstructural analysis on SEM images revealed an evidence of a partial 

ordering of the metallic particles inside the ceramic matrix. This ordering does not appear in other 

type of composites, for instance, mullite/molybdenum CERMETs 45. 

ZrO2/Ni and mullite/molybdenum suspensions were prepared by C. Pecharromán et al. and 

the SEM micrographs of sintered parts of both composites are presented in Figure 1.7. 

Mullite/molybdenum is formed by randomly shaped particles, whereas in the case of ZrO2/Ni, all 

the nickel particles (white color) have a spherical shape, completely surrounded by walls of 

insulating ZrO2 (gray). Some porosity (black) can also be observed. The addition of nickel causes 

incomplete matrix densification. Individual nickel particles are completely surrounded by zirconia, 

which implies that the nickel particles present a nearest-neighbor ordering. It was shown that the 

percolation threshold of zirconia/nickel composites appears as a fc = 0.34 (volume), exceeding the 

theoretical value of 0.16, as a consequence of its microstructural ordering 7,45. 
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Figure 1.7 – SEM micrographs of monolithic composites of mullite/molybdenum with 34 vol.% of Mo (A) and 
ZrO2/Ni with 18 vol.% of Ni (B). At the bottom, theoretical models representing different topologies: 
disordered (C) and ordered (D) particles. The mean first-neighbor distance <r> is well defined only in (D) 7,45. 

 

Evidence of abnormally high percolation-threshold concentrations is a well-established 

experimental fact described in the literature, especially in zirconia/nickel CERMETs that have been 

prepared using a wet procedure, as the one used by C. Pecharromán et al. The geometrical 

interpretation of this effect is illustrated in Figure 1.7 – C and D. For the mullite/molybdenum 

CERMET, the metallic particles are randomly placed. This fact implies that, at metal concentrations 

greater than the percolation threshold, the overlapping between the individual particles becomes 

very important and, as a consequence, large metallic clusters appear. For the ZrO2/Ni system, the 

small ceramic particles completely isolate each individual metallic particle. In addition, it is possible 

to find a definite mean first-neighbor distance. This topology appears to be very similar to that of a 

liquid suspension, which suggests that the used wet processing, in this particular system, could 

account for the observed ordering of nickel particles. However, the ultimate reasons for such a 

ZrO2/Ni disposition remain unclear 7. 

Furthermore, a study of dielectric constant (εr) of samples of ZrO2/Ni below the percolation 

threshold was performed. The information about the mullite/molybdenum system showed that, in 

this system, the maximum capacity occurs at a Mo fraction fc =0.155 (volume), which is similar to 

the theoretically expected value of fc = 0.16. Conversely, a higher percolation-threshold value (fc = 

0.345 ±
 
0.015) was obtained in the ZrO2/Ni system. The electrical properties near the percolation 

threshold follow a scaling law, relative to the concentration, being εr (max.) = 850 for f = 0.345 45. 
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1.6.3. YSZ composites 

In the specific case of YSZ, it is important to understand how metal additives like nickel, cobalt, 

copper, calcium or praseodymium (Ni, Co, Cu, Ca, Pr, respectively) interact with the microstructure 

development and properties of YSZ. In this case, we will be talking about YSZ CERMETs. But there 

are other types of mixtures with YSZ, that are the ones of YSZ with metal oxides, that will be 

described as YSZ composites.  

Even just relatively small amounts of dopant can influence the properties of YSZ. The addition 

of metals is one of the easiest and cheapest methods to improve the densification, control the 

microstructure and reduce the sintering temperature of YSZ. However, it has been observed that 

not all elements or concentration leads to an improvement in densification 13,46. 

For instance, considering the YSZ metal oxide composites (note that this is different from a 

YSZ CERMET), when NiO is added to YSZ at levels below the bulk solid solubility limit (1.5 mol%), 

the grain growth is enhanced, electrical conductivity appears and cubic zirconia is stabilized, 

although, in some cases, the metastable tetragonal phase was also stabilized. Despite that, the 

content of NiO usually used is higher (up to 50 mol%) especially for the applications of anodes for 

solid oxide fuel cells 13,46. 

Another example is the addition of CuO that reduces the sintering temperature of YSZ due to 

the formation of a liquid phase at about 1100°C but, at concentrations above 1 wt.%, CuO led to 

the formation of large pores, due to the decomposition of the oxide and the formation of Cu2O and 

oxygen. 46 

 

1.6.3.1. YSZ matrix with WC composites 

Dongtao Jiang et al. produced, by hot pressing at 1450°C for 1h, fully dense ZrO2-based 

nanocomposites with addition of 5–40 vol% WC. They have proved that the hardness and bending 

strength of the composites increases with increasing WC content, whereas the toughness hardly 

changes 18. 

The best results were obtained for a 2 mol% Y2O3 stabilized ZrO2-based composite with 40 

vol% WC (see SEM microstructure in Figure 1.8). An exceptionally high strength of 2GPa combined 

with a hardness of 14.80 GPa and a good fracture toughness of 9.4 MPa.m1/2 were obtained for this 

composition. Only WC/Co CERMETs properties matched such attractive combination of properties. 

The composites are substantially harder and stronger than the fine-grained Y-TZP, whereas the 

excellent toughness of Y-TZP is maintained. The strength improvement was accompanied with a 

change in fracture mode of the ZrO2 grains from intergranular to transgranular. The ZrO2/WC 
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nanocomposites were found to have slightly plastically deformation before fracturing during 

bending 18. 

The major toughening mechanisms in ZrO2/WC composites were identified to be 

microcracking, crack bridging, crack deflection and crack branching. The coherent ZrO2/WC 

interface indicates a good bonding between the two phases. This can improve the mechanical 

properties 18. 

 

 

Figure 1.8 – Microstructure of a ZrO2-based composite with 40 vol% WC, showing the existence of bright WC 
nanoparticles in a dark ZrO2 matrix 18.  

 

1.6.4. YSZ/metal - CERMETs 

When dealing with ceramic/metal composites, or CERMETs, there are some parameters that 

are preponderant in the final properties of sintered products. For instance, to optimize the hardness 

of ceramic/metal nanocomposites, it is necessary to have relatively high fraction of the hard phase. 

This can be made through increasing the ratio between the dopant particle size and the radius of 

the matrix grains. Ceramic matrices with very small grains can be a way of solving the problem 

without exceeding the content of dopant, which would harm it dispersion in the matrix 6.  

However, the sintering of such composites is not easy because the growth rate of ceramic 

nanoparticles is very large, inducing exaggerated grain growth. To avoid this, YSZ is an appropriate 

ceramic matrix, because its grain growth during sintering is, usually, very low (from 200 to 300 nm). 

According to C. Pecharromán et al., it can be stated that the singular properties of nanocrystalline 

metals embedded in dense rigid matrices open a new path to prepare superhard materials suitable 

to be used for metallurgical applications where diamond based materials do not work 6. 
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1.6.4.1. YSZ matrix composites with Ni 

Dense nanostructured CERMETs have been produced by embedding Ni nanoparticles with a 

large degree of mono-dispersity into tetragonal partially stabilized zirconia. Specific work has been 

made with 3 mol% yttria tetragonal partially stabilized zirconia (3Y-TZP). One of the reasons to use 

YSZ and Ni as a composite is that both substances have similar thermal expansion coefficient (α): 

αNi = 13.3x10-6 K-1; α3Y-TZP = 12x10-6 K-1). Furthermore, the thermal stresses into Ni nanoparticles are 

slightly expansive, so that it is possible to discard the influence of compressive stresses on the origin 

of nanoparticle superhardness 6. Beyond that, metallic nickel is not too expensive and this metal is 

not under supply risk conditions.  

The YSZ/Ni systems presents some advantages related to the intrinsic properties and 

behaviors of both materials. The use of nanostructured 3Y-TZP (with about 200nm) in 3-TZP/Ni 

CERMETs results in a fine microstructure of TZP, with moderate growth during sintering, which can 

minimize coalescence phenomena on nickel nanoparticles. Although bulk Ni metal shows elastic 

moduli (G and E or shear and Young’s modulus, respectively) similar to those of 3Y-TZP, its hardness 

is lower than that of ordinary metals (HV = 0.6 GPa). However, hardness enhancements have been 

found in metal matrix composites, where the metallic matrix was nanocrystalline nickel 6. 

Another advantage of using Ni in 3Y-TZP matrices is that in composites with particle size 

below microns, very large nickel concentration, about twice as ideal percolation theory predicts, is 

needed to produce a true infinite cluster 6. 

The introduction of Ni nanoparticles into sintered ceramics has resulted in the addition of 

ferromagnetic behavior and accompanied magnetic remote sensing capability of stress and/or 

fracture of the composite. Given that, there are several studies that have dispersed Ni nanoparticles 

within YSZ, specially, tetragonal partially stabilized zirconia YSZ (Y-TZP), which also leads to 

remarkable improvement of fracture strength (1.9 GPa) for systems with 1 to 2 vol.% of Ni 47,48. 

 

Principal applications of YSZ-Ni composites 

Yttria-stabilized zirconia-nickel oxide and YSZ-nickel (metal) systems, or CERMETs, are 

important in different technological applications: YSZ-NiO composites are used as the starting 

material for the fabrication of Ni-YSZ anodes in solid oxide fuel cells, after one or more reduction 

steps; YSZ for coatings or bondings to metals; Ni-zirconia used for catalytic applications 49. 

Solid oxide fuel cells (SOFCs) are an interesting device for energy conversion systems owing 

to their high efficiency and environmentally friendly nature. One of the most frequently used SOFCs 

system employs yttria stabilized zirconia (YSZ) as an electrolyte, CERMET like nickel-yttria stabilized 
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zirconia as anode, conducting oxides like lanthanum manganites, La1-xMxMnO3 or LaCoO3, as 

interconnect. The requirements of an anode material are: compatibility with other SOFC 

components and porous microstructure (70% theoretical density and remaining 30% open porosity). 

Metal like nickel and cobalt are generally used in the form of CERMETs with YSZ because of the 

reducing conditions of the fuel gas prevailing during SOFCs operation. In these components, YSZ act 

as supporting matrix for metal particles, ensuring their uniform dispersion and preventing 

coalescence 50. 

The Ni CERMET is generally used as the anode in SOFCs with fully stabilized zirconia 

electrolyte because of the low cost of Ni. The two-phase anode layer consists of YSZ component 

and metallic Ni that has a good electrocatalytic activity for H2 oxidation. The nickel and YSZ systems 

should form continuous electronic and ionic pathways, respectively. In order to have CERMET 

electrodes with good anodic activity, the CERMET layer should have continuous network structure 

of both Ni and YSZ components, rich three-phase boundary sites and good adherence to the 

electrolyte. A CERMET consisting of Ni and YSZ has high electronic conductivity, reasonable ionic 

conductivity and high catalytic activity for hydrogen oxidation 50. 

However, YSZ/Ni CERMET has multiple problems to effective implementation. Ni/YSZ is 

propitious to carbon deposition, or coking, when using hydrocarbon fuels, sulphur poisoning, nickel 

agglomeration upon prolonged usage and is not redox stable. This has been found to be partially 

alleviated by modification of the microstructure and distribution of the Ni and YSZ phases in the 

CERMET 51. 

S.T. Aruna et al. shown that for composites with less than 30 vol.% of Ni, the electrical 

conductivity increases with increasing temperature whereas at higher nickel content the CERMETs 

exhibit metallic behavior. The thermal expansion coefficient of the CERMETs increases with 

increasing Ni content. The 30Ni-YSZ cermet with high electrical conductivity (40 S/cm) and low 

thermal expansion coefficient (11.64x10-6 K-1) appears to be compatible with the electrolyte (YSZ) 

for SOFCs application 51. One of the registered patents for production of YSZ-NiO anodes for SOFCs 

belongs to Tanaka Chemical Corporation and Daiichi Kigenso Kagaku Kogyo Co., Ltd 50. 

 

1.6.4.2. Micro versus nanometric CERMETs  

The microstructures of a micrometric or a nanometric composite are not similar. For instance, 

3Y-TZP/Ni nanocomposites can reach high densities (>98% theoretical) in a relatively large range of 

the compositions (up to 30 vol% of Ni). However, 3Y-TZP/Ni microcomposites present a significant 

fraction of porosity (5–15%) mainly associated to the nickel microparticles. Nickel nanoparticles 
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usually present a faceted aspect, with curved lines flanking sharp interfaces, and a good epitaxy 

between Ni and ZrO2, in contrast with the porous structures found in microcomposites, which never 

displayed lattice matching in the ZrO2/Ni interfaces (see HRTEM micrographs in Figure 1.9). The 

large amount of porosity associated to nickel microparticles and practically no matching between 

Ni and ZrO2 lattices found in microcomposites justify the weak interface 7. 

 

 
Figure 1.9 – HRTEM micrographs of 3Y-TZP/Ni interfaces found in nancomposites (A) and microcomposites 
(B). In (A), from the angular orientation of (111) Ni planes and (112) Zirconia planes with respect to the 
interface, it has been assigned as ZrO2(002)/Ni(110) 7. 

 

The origin of the good epitaxy in nanocomposite interfaces is in the sintering mechanism can, 

according to the authors, be related to two reasons: (1) a very good lattice matching between ZrO2 

and Ni (taking into account a 45° rotation in one of the crystals lattices) and (2) the evaporation– 

condensation coarsening mechanism operating in metallic nanoparticles during sintering. It should 

be noted that the temperature range to verify this process is very close to but less than the melting 

point of nanoparticles. Therefore, the optimal conditions to obtain the best epitaxy requires a 

careful sintering temperature control 7. 

The microstructure development of Ni+YSZ powders during calcination should also depend 

strongly on the concentration of Ni2+ ions present in the surfaces and boundaries. The distribution 

of Ni2+ ions at high temperature may be either kinetically or thermodynamically determined. In both 

cases, particle growth occurs until a critical particle size is reached where the solubility limit is 

exceeded. At this critical particle size, either NiO forms or Ni2+ ions diffuse into the bulk YSZ. The 

study of magnetic properties offers a way to distinguish between these two cases: paramagnetic 

signature of Ni2+ ions in solution or antiferromagnetic properties of NiO 13. 
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1.6.4.3. Enhanced mechanical properties 

The mechanical properties of a CERMET will depend on their microstructure and interface 

ceramic/metal behavior. Figure 1.10 shows a TEM micrograph of a sintered 3Y-TZP/Ni CERMET with 

different arrangements of Ni particles.  The particles labeled as (a), the smallest ones (10 to 40 nm), 

appear coated with an amorphous or poorly crystallized layer. It has been stated that this 

microstructure, commonly found in isolated metallic nanocrystals is the cause of a hardening of the 

nanocrystalline core as a consequence of the isostatic stresses induced by the external coating on 

the particle core. Ni single crystals with an average particle size of 120 nm are labeled as (b). They 

present some sharp and straight interfaces along the crystallographic planes of Y-TZP and Ni. 

Between these interfaces, curved boundaries with some degree of disorder can be observed. Large 

nickel polycrystals with an average size similar or even larger than the 3Y-TZP grains have been 

labeled as (c). The aspect of the surface of such particles is irregular, due to loop dislocations 6. 

 

 

Figure 1.10 – TEM picture of a 5 vol.% Ni in 3Y-TZP. (a) small particles covered with amorphous layer; (b) 
single crystals of Ni; (c) large Ni particles – grain size similar to YSZ one. Adapted from 6. 

 

The hardness of the nanocomposite must be directly related to the distribution of Ni particles 

into those three types of populations. In this sense, (a) nanoparticles must be responsible for the 

hardness increase. It is well known that for very small nanoparticles (around 15 nm for nickel), 

dislocations are thermodynamically unstable, thus, in nanostructured systems with amorphous 

matrices, plastic deformations take place through grain boundary sliding. Additionally, the two 

main plastic deformation mechanisms on ceramic matrix (dislocation displacement and grain 

sliding), will be hindered by the presence of Ni nanoparticles. The effects of these nanoparticles on 

zirconia can be stated as pinning of dislocations at the interface, as well as blocking of the 3Y-TZP 

grain sliding hindered by hard Ni nanoparticles laying between zirconia grains 6,52. As so, mechanical 
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properties of the composites are enhanced, compared with both isolated materials, when 

nanometric Ni particles are well dispersed in YSZ matrix. Once that Ni concentration increases, 

populations of (b) but especially (c) particles (Figure 1.10) increase due to coarsening phenomena 

driven by the growing of 3Y-TZP grains. As a consequence of the ductile character of (c) particles, 

hardness of these composites must notably decrease, as shown in Figure 1.11 6. 

 

 

Figure 1.11 – Vickers hardness (HV) of 3Y-TZP/Ni nanocomposites. The blank squares represent two samples 
of micrometer composites (Ni content with d50 = 2µm). The dashed lines represent theoretical hardness 
calculated assuming the linear rule of mixtures (considering 10.8 and 0.6 GPa for YSZ and Ni respectively) 6. 

 

Small additions of Ni and NiO in Y-TZP can also improve fracture toughness of both solid 

solution, Y-TZP/NiO and Y-TZP/Ni nanocomposites. H. Kondo et al. have produced samples by 

pressureless sintering. They have proved that the addition of more than 0.3 mol% NiO resulted in 

microcracking of the sintered body because of over-destabilization of tetragonal structure of 

zirconia 47. 

The solid solution of NiO into Y-TZP resulted in the destabilization of the tetragonal phase of 

zirconia, and it seems to be the reason to the fracture toughness improvement in those composites. 

The Y-TZP/Ni CERMET was still destabilized by the remaining nickel solution after the reduction, so 

its fracture toughness (KIC) was improved too 47. 

Raman spectroscopy was performed in the areas closed to the KIC indentation. A very limited 

amount of monoclinic phase was detected in the ceramic sample (Y-TZP), since the tetragonal-to-

monoclinic transformation zone was relatively narrow. In contrast, the Y-TZP/0.3 mol% NiO solid 

solution sintered sample exhibited a higher amount of monoclinic phase than the monolithic Y-TZP. 
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This is explained by the fact that solid solution with NiO destabilizes the tetragonal phase of the Y-

TZP, which tends to transform to monoclinic phase 47. 

Moya et al. opened a new route to obtain mechanically stable m-ZrO2 composites sintered 

close to the theoretical density through the incorporation of Ni particles, with a concentration 

slightly over the percolation threshold (considering fc = 0.32 volume, by this author), which are able 

to suffer plastic deformation at the t  m transformation temperature absorbing a large fraction 

of the corresponding volume expansion of zirconia matrix 7,53. 

The explanation of the mechanism by which the internal stresses developed inside the bulk 

of the materials is released is: the infinite Ni defect created at the percolation threshold can be 

considered like a nickel rod inside an m-ZrO2 matrix that extends over the length of the sample. At 

the t   m transformation temperature the zirconia deformation induces plasticity in the rod and 

it flows releasing the ceramic matrix internal stresses. If this rod is thick enough, it will flow until 

the ceramic internal stresses match the nickel yield strength at the t  m transformation 

temperature. This case was correspondent to the fc = 0.4 sample where the metal concentration is 

above the percolation threshold, so the nickel particles have merged into an infinite cluster, 

extended along the whole volume of the sample. In the t  m temperature transformation, the 

metal in the cluster flows like a liquid in a porous medium, releasing the zirconia matrix internal 

stresses 7. Lopez-Esteban, S. et al. have compared the mechanical resistance of mullite/Mo and 

YSZ/Ni composites. It was proved that in the case of mullite/Mo the metal particles are strongly 

bonded to the mullite matrix. Because of this the KIC of the composites containing 32 vol.% Mo was 

found to be about 4 times higher than that of the matrix. Conversely, in Y-TZP/Ni (30 vol.%) 

composites the Ni particles were weekly bonded to the ceramic matrix, consequently the KIC value 

of the composites (4 MPa.m1/2) was found to be around 25% lower than that of the matrix (5.5 

MPa.m1/2). Despite the coefficient of friction of both ceramic/metal composites was found to be 

very much the same (around 0.75), their wear behavior was totally different 7,54. 

The specific wear rate of the Y-TZP/Ni was around 5 times higher than the one corresponding 

to the mullite/Mo. These results can be rationalized by considering that the mullite/molybdenum 

strongly bonded interfaces have promoted the plastic deformation of the ductile phase and 

prevented the ceramic/metal debonding. Then the microcracks were forced to pass through the 

ceramic grains and metal particles. On the other way, in the Y-TZP/Ni composites the interfaces 

were weak, and therefore the microcracks were generated between the ceramic grain boundaries 

and at the ceramic/metal interface. Hence, the ceramic grains as well as the metal particles were 

easily dug out, increasing the specific wear rate of the ceramic/metal composite. In the case of 
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strong ceramic/metal interfaces, as in mullite/Mo composites, the wear behavior of these 

composites can be significantly superior to both the brittle matrix and the metal 7,54. 

 

Griffith equation 

The YSZ and YSZ CERMET systems have, usually, a brittle fracture. Hence, it is important to 

define Griffith equation for that type of materials. Brittle solids fail because surface defects of that 

materials concentrate applied tensile stresses. It is also known that the crack propagation occurs 

when the released elastic strain energy is at least equal to the energy required to generate new 

crack surface 55,56. 

Griffith assumed that the strain energy around the crack or surface defect is converted into 

surface energy as the crack propagates, and it is possible to calculate the applied tensile stress for 

failure, Sf, by eq. 2, where E is the Young’s Modulus, ϒ is the surface or fracture energy and L is the 

crack depth. The eq. 2 is known as the Griffith fracture equation and the surface energy is 

considered to be invariant for a particular material and can be calculated from the fracture strength 

if the crack length is known 55,56.  

𝑆𝑓 = √
2𝐸ϒ

𝜋𝐿
     Eq. 2 

 

1.6.4.4. Magnetic behavior 

Several works about YSZ matrix with metal particles composites make use of magnetic 

characterization to fully characterize the CERMETs. The representation of magnetization (M, in 

A.m2.kg-1 or emu.g-1) versus applied magnetic field (H, in T or Oe) can be very useful, inclusive to 

understand if the metallic phase is oxidized or not. Moreover, the magnetic behavior can be used 

to verify if a material is suitable for applications where the magnetic detection is mandatory.  

The study of A. Morrissey et al. utilizes a single phase (cubic) 10 mol% Y2O3-doped ZrO2 (10YSZ) 

with different nickel dopant percentages 13. They measured the magnetization of all samples (0.01, 

0.1, 0.5 and 1.0 mol% NiO in 10YSZ) and conclude that the 10YSZ sample exhibits a very small 

positive slope consistent with very small amounts of paramagnetic impurity such as a transition 

element ion. The highly linear response observed for the variation of magnetization with the 

external magnetic field for NiO-doped samples was a classic paramagnetic characteristic from Ni2+ 

ions in solution. The increase of the slope, or the susceptibility, as a function of NiO dopant 

concentration indicates that higher amounts of NiO in the starting powders lead to higher 

concentration of Ni2+ ions in solution. For the lower calcination temperature, the susceptibility 
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increases linearly with NiO content, but in contrast samples calcined at higher temperatures 

displays a drop in susceptibility for higher content of NiO. However, when the specimens were 

sintered at 1500 °C, the susceptibility was recovered. It was concluded that the drop in 

magnetization was due to the formation of NiO, which has antiferromagnetic response in an order 

of magnitude less than the paramagnetic response of Ni2+ ions in solution, and thus, its formation 

results in a significant lowering of the susceptibility 13. 

It was expected that surface segregation of Ni2+
 ions is driven by surface energy, as observed 

in other systems. As particles grow, ions move with the moving particle surface or grain boundary. 

As the total combined surface and grain boundary area decreases with increasing particle 

coarsening, the number of available sites for Ni2+
 ions decreases, because the number of grain 

boundaries decreases, until the solubility limit is finally reached. At this point, Ni2+
 ions either diffuse 

into bulk YSZ or NiO forms. The magnetometry experiments and TEM analysis have confirmed that 

NiO does indeed form. It was shown that the higher calcination temperature leads to much larger 

particle size and that the presence of Ni increases the particle size 13,57,58. In conclusion, for a particle 

size on the order of tens of nanometers, a relatively large amount of Ni2+
 ions may exist in solution 

at surfaces and grain boundaries. At 1000 °C, the YSZ particles grow and NiO inclusions when the 

concentration of Ni2+
 exceeds the surface/grain-boundary solubility limit. If the powders are heated 

to 1500 °C, NiO dissolves into the YSZ lattice 13. 

H. Kondo et al. have studied dense ceramic-metal nanocomposites fabricated by internal 

reduction method: sintering of ceramic-metal oxide solid solution and subsequent heat treatment 

in reducing atmosphere to promote the precipitation of metal nanoparticles 47. Dense 3Y-TZP and 

0.3 mol% NiO solid solution ceramic were prepared by pressureless sintering and Y-TZP/Ni were 

obtained. H. Kondo et al. have analyzed the magnetic properties of Y-TZP/Ni nanocomposite by the 

super conducting quantum interference magnetometer (SQUID).  As it is presented in Figure 1.12, 

the Y-TZP–0.3 mol% NiO solid solution possessed a typical diamagnetic property that was of the 

same nature as monolithic Y-TZP (not shown), despite the fact that the cubic form of NiO had 

antiferromagnetism as its intrinsic magnetic characteristic. Such a behavior exhibits neither 

precipitation of NiO nor anti-ferromagnetic coupling between solute Ni2+ ions in tetragonal ZrO2 cell 

because of very low concentration of Ni in Y-TZP 47. 

In contrast, the Y-TZP/Ni (instead of NiO) exhibits ferromagnetic nature, as is seen in Figure 

1.12. The fact that the ferromagnetic properties of the nanocomposite are not attenuated by 

diamagnetism of the Y- TZP–NiO solid solution proved that metallic Ni was certainly in the form of 

inclusions in Y-TZP/Ni nanocomposite after the internal reduction 47. 
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The coercivity force of the ferromagnetic material increases with decreasing the particle size 

and accompanies magnetic structure transition from multidomain to single-domain state to 

minimize the total magnetic energy 47,59. However, there is a point when coercivity is drastically 

reduced, when the particle size becomes smaller than critical single-domain size, and the 

ferromagnetic material exhibits superparamagnetic behavior as already reported by numerous 

researchers. The magnetic coercivity of the Y-TZP/Ni nanocomposite determined from the 

magnetization curve (Figure 1.12) was 810 A.m-1 47,59. 

J. T. Abiade et al. have synthesized magnetic nanocomposites consisting of Ni nanoparticles 

in multiple layer of YSZ, by controlling the early stages of thin film growth during laser ablation. The 

magnetic properties of the Ni/YSZ nanocomposites were studied using a physical property 

measurement system equipped with the vibrating sample magnetometer (VSM) 9. 

 

Figure 1.12 – Magnetization curves of Y-TZP/0.3 mol% NiO solid solution and Y-TZP/Ni nanocomposite after 
the internal reduction treatment measured by the super-conducting quantum interference magnetometer at 
room temperature 47. 

 

Figure 1.13 shows the magnetization versus magnetic field (M–H) curves at 300 K for the 

samples with various nickel deposition times. The different deposition times gave products with 

different particle size: the higher the deposition time, the higher the particle size. The M–H loops 

clearly demonstrate classical magnetic size effects in which the samples undergo 

superparamagnetic (SPM) to ferromagnetic (FM) transition as the nanoparticle size is increased 9. 

The coercivity values obtained by J. T. Abiade et al. from each curve are: 0, 0.13, 1.8 and 2.0 

A.m−1 for deposition ascending order in particle size. A clear magnetic signal from the Ni 

nanoparticles was present 9,60. 
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SPM particles are characterized by the lack of remanence and coercivity due to the effect of 

thermal fluctuations on the direction of the magnetization vector. For SPM samples there is such a 

blocking temperature that when T is minor than blocking temperature, the sample will behave as a 

FM. It is clear that, based on Figure 1.13, the sample with smaller particle size has the typical 

transition from SPM to FM characteristics. The M–H loops at 300, 200, and 100 K (or 27, -73, -173 

°C) all pass through the origin and possess no remanence or coercivity. However at 10 K, the M–H 

loop shows strong FM characteristics with coercivity of about 3.0 A.m−1 (Figure 1.13 – right)9,60. 

It was proved that the coercivity increases with the amount of deposited nickel, which 

indicates that the particle size range is in the single-domain typical behavior. The average size of 

the Ni nanoclusters was estimated to be <5 to 20 nm for all samples. For the superparamagnetic 

sample, a blocking temperature of about 100 K has been estimated 9. 

 

Figure 1.13 – Left: M-H loops recorded at 300 K for samples with different particle size, increasing with the 
deposition time shown in the picture. The data for the sample deposited for 9 s was amplified in the top-left 
corner. Right: Temperature dependence of M-H loops for the smaller particle size sample 9. 

 

1.6.4.5. Sintering studies of YSZ+Ni CERMETs 

E. Lopez-Honorato et al. have studied the effect of NiO and Ni on the sintering of 5 mol% YSZ 

at temperatures from 1100 to 1400 °C in air with heating rate of 10 °C/min. Differences in the 

densification behavior were observed between the direct use of NiO powders and Ni metal as 

precursors. It was shown that with the addition of Ni, the shrinkage rate was increased at 1200 °C 

and YSZ sintering was completed at 1300 °C instead of 1400 °C. Addition of NiO or Ni also stabilized 

the cubic phase and promoted grain growth in YSZ during sintering 46. 

The interactions between NiO and YSZ can occur during the preparation of powders, sintering 

processes and operation. A. Kuzjukevics et al. prepared composites of NiO and CERMETs of Ni, by 

radio frequency plasma synthesis 61. Dissolution of NiO in 5YSZ and 6YSZ (Zirconia doped with 5 and 
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6 mol% of yttria, respectively) stabilizes the cubic YSZ phase after sintering, in air, at high 

temperatures (above 1200 °C). The formed cubic solid solution, however, is metastable and it 

decomposes by an extended heat treatment at 1200°C. Above 1300°C, NiO can inhibit the full 

densification of YSZ. Ni/NiO addition increased the density of YSZ from 60 up to 90% when sintered 

at 1200 °C, promoted grain growth and stabilized the cubic phase 46,49. 

The use of Ni as the initial powder was more efficient than NiO in increasing the density of 

YSZ at temperatures below 1300 °C. It was pointed out that further additions of Ni or NiO above 

0.5 wt.% up to 2 wt.% have insignificant effect on the density of YSZ. On the other hand, the density 

of the mixture YSZ+Ni increased up to 98% for 0.5 wt.% Ni, but then decrease to 94% for the sample 

with 2 wt.% 46. Note that if one considers 3 wt.% Ni it corresponds to ~2.3 vol.% in the YSZ/Ni system; 

0.5 wt. % corresponds to 0.4 vol.%; 2 wt.% corresponds to 1.5 vol.%; 36.4 wt.% corresponds to 30 

vol.%. The differences in density are also reflected in changes of the mechanical properties. Young’s 

modulus of sintered (at 1400 °C) YSZ was very similar for samples with or without 0.5 wt.% Ni, and 

about 207 GPa. At 1200 °C the sample containing 0.5 wt.% Ni presented a Young’s modulus of 191 

GPa, considerably higher than the value obtained for the same sample with NiO (65 GPa) and about 

seven times higher than the value for YSZ (26 GPa). Heat treatments at 1200°C and addition of Ni 

resulted in the best results regarding YSZ Young’s modulus 46. XRD analysis of YSZ+2 wt.% Ni showed 

that YSZ initial powder contained a combination of monoclinic and cubic/tetragonal phases (see 

Figure 1.14); the cubic and tetragonal phases appear overlapped and are identified as hklC and hklT 

respectively in the amplified image. The monoclinic phase disappeared after sintering at 1100 °C 

and NiO appears after oxidation of Ni (at about 400 °C). The increase in temperature induces the 

dissolution of the NiO into zirconia cubic structure 46.  

In accordance with this, as-prepared and heat treated plasma-produced 8 and 10 mol% YSZ 

powders doped with 0, 5, 10 and 75 mol% NiO has been investigated by A. Kuzjukevics et al. The as-

prepared powders were mixtures of metastable tetragonal and cubic phases but they transform to 

a single YSZ phase upon heat treatment above 1200°C 49. In this study the lattice parameter of all 

NiO-doped samples increases with sintering temperature, but a clear decrease happens above 

1200°C. According to Shannon 62 the ionic radii of Y3+, Zr4+ and Ni2+ are 0.1019, 0.084 and 0.069 nm, 

respectively, for 8-coordinated yttrium and zirconium ions and 6 coordinated Ni ion. Hence, an 

interpretation of the lattice parameter changes in terms of incorporation of Ni2+ suggests that the 

amount of dissolved Ni2+ in YSZ lattice increases until 1200°C and above this temperature it 

decreases again 49. 
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In conclusion, several authors verified that the cubic phase amount in YSZ increases with 

sintering temperature and NiO concentration. The transformation to a single YSZ phase occurs 

above 1200°C and is associated with the dissolution of the Y2O3-poor tetragonal phase in the Y2O3-

rich cubic phase. The improvement of the sintering of YSZ and the stabilization of cubic phase could 

be related to an increase in the oxygen vacancy concentration and/or duo to the differences in ionic 

radii 46,49,62. 

Figure 1.15 shows SEM micrographs of samples sintered at 1400°C. The micrographs suggest 

that the addition of Ni and NiO improved the densification, as suggested by other authors, but the 

use of NiO produced coarser grains than those of Ni (b and c). The addition of 0.5 wt.% NiO 

produced grains as large as 3 µm whereas similar microstructures were observed only for 2 %wt. 

Ni 46. 

 

 

  

Figure 1.14 – (a) Effect of sintering temperature on the phase composition of YSZ+2 wt.% Ni. M, c and t refer 
to Monoclinic, Cubic and Tetragonal phase, respectively. Bottom XRD spectrum is before sintering. 
(b) Detail of the XRD pattern of YSZ with 2 wt.% Ni with different sintering temperature treatments 46. 

 

(a) (b) 
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Figure 1.15 – Effect of NiO on the microstructure of YSZ sintered at 1400°C: (a) YSZ; (b) 0.5 wt.% Ni; (c) 0.5 
wt.% NiO; and (d) 2 wt.% Ni 46. The grain size is clearly increasing with the amount of NiO.  
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1.7. Motivation and main goals 

The main goals of this thesis is the characterization of YSZ based CERMETs (with less than 10 

wt.% of metal alloy) powders produced by INNOVNANO by Emulsion Detonation Synthesis (EDS), 

and the comparison with equivalent CERMET powders produced by mechanosynthesis. Sintering 

will be performed and ceramic and CERMET parts characterized.   

Specific objectives include:  

1. A full characterization of the YSZ CERMET powders that INNOVNANO is currently 

producing, comprising the characterization of powders morphology, thermal behaviour, 

chemical composition, metal particles distribution in the YSZ powders and their 

reproducibility and dependence of these properties on the processing batch and 

processing variables. 

2. Synthesis of equivalent INNOVNANO’s CERMETs by an alternative method, namely by 

mechanosynthesis. The mechanosynthesis will be used to mix the INNOVNANO’s YSZ 

ceramic powders with the same alloy to produce equivalent CERMET powders. 

Mechanosynthesis YSZ CERMET powders will be characterized and their performance 

compared.  

3. Low oxygen content atmosphere sintering of YSZ CERMETs compacts produced from 

INNOVNANO and mechanosynthesis and characterization of sintered compacts in terms 

of chemical composition, structure, microstructure, thermal, electrical, magnetic and 

mechanical properties. 

4. Establishment of the relations between processing and properties of the final YSZ 

CERMET powders and sintered compacts.



 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

2. Experimental procedure 
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2.1 Materials  

To full fill the objectives of this work previously described, the materials under study are YSZ 

and YSZ CERMETs powders and ceramics. The YSZ ceramic powders were produced by the property 

EDS method from INNOVNANO, and the YSZ CERMETs powders were prepared by two methods: 

EDS and Mechanosynthesis. Along this work the powders and ceramics originated from the two 

methods are compared. 

The YSZ CERMETS compositions resulted from the combination of YSZ and a metal alloy. 

Different CERMETs compositions were prepared in which the alloy content is varied, namely: from 

INNOVNANO, two powders with %2 metal alloy (2Y+M (DET.) and 2Y+M (PA)) and by 

mechanosynthesis, two powders with %2 metal alloy (MS-2M and MS-Y2M) and one with %1 metal 

alloy (MS-1M). The specification will be described below in this chapter. Note that %1 and %2 are 

indicative of the metal amount. They pretend only to show that %2 is higher than %1. 

Figure 2.1 shows the schematic procedure to obtain the YSZ CERMETS powders under study 

and Table 2.1 contains a full description of all these powders. It contains the following information: 

the metal alloy addition method, composition and treatments of each powder, as heat treatment 

after EDS process, milling and atomization processes and addition of pressing binders (~5 wt.% 

divided in a true binder, Optapix AC 112 and a pressing/demolding agent, Selosol 920) and sintering 

treatment. Figure 2.2 summarizes the experimental procedure of the present work. 

 
Figure 2.1 – Powders production scheme. 
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XRF – X-ray fluorescence; XRD – X-ray diffraction; BET - Brunauner, Emmet and Teller; CPS - Disc 
centrifuge particle sizer; VSM - Vibration sample magnetometer; DTA/TG – Thermal dilatometric 
analysis and Thermogravimetric analysis; SEM – Scanning electron microscopy; TEM – 
Transmission electron microscopy; CIP – Cold Isostatic Pressing.  

  
Figure 2.2 – Scheme of the experimental procedure for powder processing and characterization. 

 

2.1.1. Powder production 

2.1.1.1. EDS powders 

The EDS process was already described in the section 1.2.3.2.  

 

2.1.1.2. Mechanosynthesized powders 

Powders produced by mechanosynthesis or metal alloying are designated by MS. The 

produced powders are MS-1M and MS-2M and MS-Y2M, as is indicated by Table 2.1 and described 

in this section.  

For mechanosynthesis a planetary high speed ball milling was used: Fritsch Planetary Mono 

Mill Pulverisette 6 classic line. The comminution of the material takes place primarily through the 

high-energy impact of grinding balls. The grinding bowl or jar, containing the material to be ground 

and grinding balls, rotates around its own axis on a main disk whilst rotating rapidly in the opposite 

direction. With this configuration, the centrifugal force causes the ground sample material and 
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Table 2.1 – Sample designation and description of all studied powders.  

Sample designation 
Sample 

abbreviation 

Description 

Production 

method 
Composition 

Heat 

Treatment 

Pressing 

Binders 

Granulation 

and 

atomization 

Sintered 

pellet 

2YSZ (DET.) 2Y (DET.) Detonation  Yes No No No 

2YSZ 2Y Detonation  Yes No Yes Yes 

2YSZ (PA) 2Y (PA) Detonation  Yes Yes Yes Yes 

2YSZ+M (DET.) 2Y+M (DET.) Double detonation  Yes No No No 

2YSZ+M (PA) 2Y+M (PA) Double detonation  Yes Yes Yes Yes 

MS-2Y(DET.)+1M MS-1M 
Detonation + 

mechanosynthesis 
 Yes No No Yes 

MS-2Y(DET.)+2M MS-2M 
Detonation + 

mechanosynthesis 
 Yes No No Yes 

MS-2YSZ+2M MS-Y2M 
Detonation + 

mechanosynthesis 
 Yes No No Yes 

 

 

 

 

 

Confidential  



 

 
 

grinding balls to separate from the inner wall of the grinding bowl. The grinding balls then cross the 

bowl at high speed and further grind the sample material by impact against the opposite bowl wall. 

In addition, impact between the balls themselves on the sample material adds to the size reduction 

process - Figure 2.3 – A and B 63,64. 

In this work, a 275 mL steel bowl was used. The gridding media were YSZ balls (3 mol% Y2O3) 

from Tosoh Corporation; 5mm and 10mm balls were used. Based on previous works regarding 

mechanosynthesis (65,66) the bowl was filled with balls until about half of its volumetric capacity 

adding 37.22 and 258.43 g of 5 mm and 10 mm diameter balls, respectively. Considering a 20:1 

ball:powder ratio, the total amount of powder was 14.783 g. The rotation speed was 350 RPM and 

the cycles were repeated for 5 min milling, and 5 min pause, in total, for 2h.  

 

 

 

Figure 2.3 – A: High speed ball milling apparatus. B: Schematic representation of the movement of the 
material and media inside the bowl in a planetary high speed ball milling 64. C: Scheme of mechanosynthesis 
process. 

 

The MS powders were prepared with %1 and %2 of metal alloy (M). The MS-1M powder was 

produced by mixing %1 of M with INNOVNANO’s powders 2YSZ (DET.), and in the case of MS-2M, 
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%2 of M was added to the same ceramic powder. %1 and %2 are only indicative of the metal amount. 

The MS-Y2M was also produced with %2 of M but with 2Y powder, as depicted in Table 2.1. For 

each mechanosynthesis cycle, the weight of balls was controlled and the amount of material to 

perform was adapted. The total variation was smaller than 0.5%.  

After weighing the precursor powders were mixed manually in a plastic container (60 ml) and 

placed inside the bowl with the balls. The bowl was closed and pressurized with an inert gas (Argon) 

at about 2 bar. The argon supply was slowly opened and the free valve was opened, carefully, to 

make the argon flow through the interior of the bowl, but avoiding the exit of the powders. This 

was kept for about 1 min and the opened valve was closed, the pressure was set at 2 bar and the 

argon flow was closed and disconnected. The process is described in Figure 2.3 – C. 

The selected milling operation conditions were: 350 RPM with 5 min milling and 5 min pause. 

This was defined as a 10 min cycle. The total number of cycles was set as 23 to have a total milling 

time of 120 min. To remove the MS powders from the bowl, after each 120 min cycle, the bowl was 

removed from the mill, the balls were placed in a glass cup and the powder was removed with a 

brush. After that, the balls were placed in the bowl again and all the procedure was repeated, with 

300 RPM speed for just 2 min and argon purge, in order to remove the powder that was stuck to 

the balls and bowl. The removing process was then repeated.  

This milling process was repeated, in total, for 10 times for samples MS-1M and MS-2M. For 

MS-Y2M the process was repeated for 5 times in total. The total mass obtained in each cycle was 

controlled and the yield was always greater than 90%.  

 

2.1.2. Pressing and calcination 

Powder pellets of 20 mm diameter and ~2 mm thickness were uniaxialy pressed at 78 MPa 

using steel molds. The uniaxial pressed pellets were after submitted to a cold isostatic pressing (CIP) 

step at 196 MPa, for about 15 minutes. The pressed pellets were placed in rubber sleeves prior to 

CIP. In some cases, to optimized the pressing step some ethylene glycol was added as a lubricant, 

despite that the (PA) designated samples already had a mixed organic binder (a step that is 

conducted in INNOVNANO). After pressing and before sintering the pressed pellets were heat-

treated to decompose the organics (PA and oil residues from the pressing step). For (PA) samples, 

the heat treatment took place at 600 ̊ C for 4h with a heating rate of 0.8 ̊ C and for the other samples 

at 300 ˚C for 4h with the same heating rate. The loss weight of the samples was recorded. Figure 

2.4 shows a representation of all the process, from powders to sintered pellets.  



Emulsion Detonation Synthesis (EDS) Zirconia-based CERMETs: Chapter 2 – Experimental procedure 
Universidade de Aveiro - INNOVNANO 

48 
 

 

Figure 2.4 – Scheme of the complete process since powders until sintering pellets obtaining. 

 

2.1.3. Sintering  

The sintering was performed in a tubular furnace under vacuum at heating rate of 5 ˚C/min, 

maximum temperature of 1400 °C, 2h of dwell time, and cooling rate of 8 ˚C/min, as represented 

in Figure 2.6 – A). These conditions were selected based, both on the thermal behavior of the 

CERMETs and on the INNOVNANO’s sintering conditions. The pressure was between 15 and 20 

mBar. 15 mBar is the minimum pressure reached by the used equipment. The dwell was performed 

at pressures bellow 20 mBar.  

This sintering system is composed by a vertical tubular furnace, an alumina pipe, a 

thermocouple, a temperature register, exhaust pipes, a primary vacuum pump and a pressure 

register. The furnace is composed by the eating unit and the temperature controller (Eurotherm). 

The temperature register (Kipp & Zonen) is connected with the thermocouple (type R, Heraeus 

Pt/Pt-Rh 13%) that is in the hot zone of the furnace, protected by an alumina tube.  

The pressure register (Adixen ACS 2000) is connected to the top exit of the furnace and gives 

the real time pressure inside the camera during sintering (in mBar). The primary vacuum pump 

(Adixen Pascal 2010 SD) is connected to the exhaust pipes and to the ventilation system, in order 

to take the gases from the furnace and inject them in the ventilation.  

The furnace has a hot zone of about 3 cm. As so, and in order to make the sintering process 

less time consuming as possible, alumina crucibles were specially designed and produced to fit in 

each other and to allow the sintering of 3 samples per cycle (Figure 2.6 – B). 
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Figure 2.5 – Picture of the furnace, temperature register and vacuum system. 
  

 
  

Figure 2.6 – A: Sintering cycle schematic representation. B: Alumina crucibles used in the sintering process. 
 

The sintering temperature was fixed with a setting point of 1488 ˚C to perform, in real 

temperature, 1400 ˚C in the hot zone of the furnace. This setting point was a result of several 

burning tests. The samples diameter, thickness and weight were measured before and after 

sintering.  

A    

B 
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2.2 Characterization techniques 

The techniques used to characterize powders and sintered compacts will be presented and 

briefly described.  

2.2.1. Crystallographic characterization 

2.2.1.1. XRD: X-Ray diffraction 

XRD analysis was performed to YZS and YSZ CERMETs powder and sintered bodies. For the 

sintered products XRD analysis was performed in pieces of the sintered pellets, instead of milled 

sintered powders, because manual milling process in sintered bodies could cause stresses and 

phase transition to the products. 

A Panalytical - X’pert-PRO equipment was utilized. The X-ray was performed at room 

temperature, with a target source of X-ray of copper, in which the wavelength of the radiation K1 

is 1.540598 and of K2 is 1.544426 𝐴̇. The scan range was from 2θ = 9.9890 ˚ until 2θ = 79,9997 ˚, 

with a step size of 0.0263 ˚, with a scanning step time of ~96.4 s. 

In this technique the X-ray are produced by the interaction of a high energy electron with the 

target surface. This target is, usually, copper. From this interaction (electron with internal layers of 

the metal atom), X-ray is produced. The utilized X-ray in the analysis is a result of an overlap of the 

continuous and characteristic X-ray from the target 67–69. After being produced, the X-ray is directed 

to the sample in analysis by means of filters, slits, masks and monochromators. After being 

diffracted, the beam is directed to the detector by similar equipment (see Figure 2.7) 70. 

 

 
Figure 2.7 – X-Ray operation scheme 70. 

 

One simple and very used way of representation of the geometrical relation that determines 

the angular distribution of the intensity of the diffraction maximums is the Bragg’s Law (eq. 3), in 
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which is the wavelength of the incident radiation (𝐴̇), d is the interplanar spacing (𝐴̇), 𝜃 is the 

angle between the incident beam and the diffraction planes from the crystal lattice 67,70. 

2𝑑𝑠𝑖𝑛𝜃=𝑛𝜆     Eq. 3 

 

The XRD equipment records the intensity of diffracted X-Ray beam for each angle 𝜃, 

previously chosen. By comparison with diffraction patterns recorder in specific JCPDS files, the 

obtained diffraction patterns can be interpreted, and the crystallographic phases identified. The 

obtained data can be refined by Rietveld method and weight percent of each phase, changes in 

crystallographic lattice and the crystallite sizes and strain of each phase 67,70 can be calculated. 

To identify the crystallographic phases that each sample contained, a group of PDF/JCPDS 

files were compiled and the theoretical cells were calculated. After that, all the cells were identified 

in each pattern and the Rietveld adjustment was performed, step by step, and as the software 

PowderCell were indicating phases with 0 wt.%, they were excluded. After all the process, the RWP, 

i.e., the error of the approximation, was always smaller than 10. The selected PDF/JCPDS files were: 

monoclinic zirconia (m-ZrO2), PDF card 00-065-0687; tetragonal zirconia (t-ZrO2), PDF 04-016-2115;  

 

 

The Bragg-Brentano configuration, the one described and used until now, is not adequate to 

analyze surfaces, thin films or thin layers, due to the penetration depth of X-ray and subsequent 

interaction with layers / substrate underneath. In this case Grazing-angle configuration (GAXRD) 

should be used, as for the analysis of the sintered bodies surfaces to understand if superficial 

oxidation took place on the CERMETs ceramics. To achieve this, low incident angles are selected 

(about 2θ = 2˚), by tilting the sample 71. 

 

2.2.1.2. Raman spectroscopy 

Raman spectroscopy is a technique based on inelastic scattering of monochromatic laser 

source light. This means that the frequency of photons in monochromatic light changes upon 

interaction with a sample. Photons of the laser light are absorbed by the sample and then reemitted. 

The frequency of the reemitted photons is shifted up or down in comparison with original 

monochromatic frequency, which is called the Raman effect. This shift provides information about 

vibrational, rotational and other low frequency transitions in molecules. Raman spectroscopy can 

be used to study solid, liquid and gaseous samples. In other words, every substance has an 

Confidential 
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individual spectrum and therefore the method can be used to identify a chemical compound, its 

structural elements, and its presence in an alloy 72,73. 

A sample is normally illuminated with a laser beam in the ultraviolet (UV), visible (Vis) or near 

infrared (NIR) range. Scattered light is collected with a lens and is sent through interference filter 

or spectrophotometer to obtain a Raman spectrum of the sample.  

In this work, micro-Raman spectrometer (Horiba Jibin Yvon) with a 442 nm excitation laser 

(Ar-ion) was utilized. The laser was focused on the sample to spot size of ~2 µm using a 100 x 

objective lens. Some powders and sintered pellets were analyzed by this technique. The samples 

did not need any special preparation.  

 

2.2.2. Morphologic and chemical characterization 

2.2.2.1. SEM 

SEM, Scanning Electron Microscopy, is a powerful tool to obtain high resolution images from 

millimeter to nanometer scale. In this technique, the surface of a specimen to be examined is 

scanned with an electron beam, and the reflected (or back-scattered) beam of electrons is collected, 

then displayed at the same scanning rate on a cathode ray tube (similar to a CRT television screen). 

The image on the screen, which may be photographed, represent the surface features of the 

specimen. The surface may or may not have been polished and etched, but it must be electrically 

conductive; a very thin metallic or carbon surface coating must be applied to nonconductive 

materials. Magnifications ranging from 10 to in excess of 50000 X are possible, as are also very great 

depths of field 74. 

Image formation in the SEM is dependent on the acquisition of signals produced from the 

electron beam and specimen interactions. These interactions can be divided into two major 

categories: elastic interactions and inelastic interactions 75. 

Elastic scattering results from the deflection of the incident electron by the sample atomic 

nucleus or by outer shell electrons of similar energy. Incident electrons that are elastically scattered 

through an angle of more than 90° are called backscattered electrons (BSE), and yield a useful signal 

for imaging the sample 74,75. 

Inelastic scattering occurs through a variety of interactions between the incident electrons 

and the electrons and atoms of the sample, and results in the primary beam electron transferring 

substantial energy to that atom. As a result, the excitation of the specimen electrons during the 

ionization of specimen atoms leads to the generation of secondary electrons (SE), which are 
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conventionally defined as possessing energies of less than 50 eV and can be used to image or 

analyze the sample. In addition to those signals that are utilized to form an image, a number of 

other signals are produced when an electron beam strikes a sample, including the emission of 

characteristic x-rays, Auger electrons, and cathode luminescence 74,75. 

Accessory equipment allows qualitative and semi quantitative analysis of the elemental 

composition of very localized surface areas. Energy Dispersive X-ray Spectroscopy (SEM-EDS) is an 

example. In this case, the electron beam is directed to one area or point of the sample and the 

interaction of the beam within the sample works as the X-ray production principal: the beam makes 

one inner atom electron to go out, while an external electron is stabilized in the low energy electron 

hole. In this process, a specific amount of energy is released. Each atom has specific released 

energies and the atoms that are present in that point or area of the sample can be identified 74,75. 

In this specific work, SEM was used for morphological and chemical analysis of powders and 

sintered products. For powders, the observations were simply made in carbon conductive tape with 

a small amount of material on it. Another sample preparation for powders was consider as well, by 

impregnation of the powders in araldite resin. The samples were polished with SiC abrasive papers 

and diamond pastes.  

To evaluate the microstructure of sintered bodies, one sintered sample was broken and 

impregnated in araldite. The araldite impregnation was performed by using a Caldofix kit, with a 

Caldofix resin and a Caldofix hardener. The mixture was made in a plastic cup (20:1 resin:hardener, 

in weight). The components were manually mixed for 3 minutes. A small amount of the mixture 

was placed in the respective mold and placed in an oven at 80 ˚C for 15 minutes. The samples were 

then positioned over the dried araldite, and the mold was filled with the remaining mixture. The 

mold was placed again in the oven for 5 h. 

After impregnation, the samples were polished with SiC abrasive papers and diamond pastes. 

In order to reveal the grain boundaries of the polished samples, several chemical etchings were 

performed, but none was efficient. As so, the sintered and polished cross section samples were 

taken of the araldite resin (by heating it and mechanical removing) and placed in a furnace for 

thermal etching. The thermal etching conditions were: 1333 ˚C for 25 min and, after that, 1350 ˚C 

for 30 min. The experimental procedure for polishing all samples is described schematically on 

Figure 2.8. The described samples were analyzed in a SEM Hitachi S-4100 equipment (25 keV 

accelerated beam) – Figure 2.9 – A.  

A second batch of sintered samples were prepared, exactly the same way, without removing 

the araldite and no thermal or chemical etching, to perform SEM-EDS maps in a SEM Hitachi SU-70 
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equipment – Figure 2.9 – B. All samples were carbon covered in vacuum (9x10-3 mbar) with a 

EMITCH K950 X turbo evaporator.   

 
Figure 2.8 – Schematic representation of the sample preparation for SEM. To see more about “Polishing and 
gridding in INNOVNANO” see Table 2.4. 

 

  

Figure 2.9 – SEM Hitachi S-4100 (A) and STEM Hitachi SU-70 (B) (DEMaC) 

 

2.2.2.2. TEM 

The working principle of Transmission Electron Microscope (TEM) is, somehow, similar to 

SEM. TEM system is based on the interaction of a highly energetic electron beam with a sample. 

The range of acceleration voltages, typically between 100 and 400 kV, is much higher than in SEM, 

and the analyzed samples have to be very thin in order to be transparent to electrons 29. 

Transmission microscopy has the ability to give, almost simultaneously, the real image of the 

sample and diffraction mode (the reciprocal space resultant from the sample). The transmitted and 

forward scattered electrons form a magnified image with very high resolution, allowing the analysis 

of features at the atomic scale29,70. 

After interact with the sample, the electrons go throw the bottom side of the sample with an 

intensity distribution and directions controlled by the laws of diffraction imposed by the crystal 

A               B 
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lattice. Afterword, the objective lens builds the image of the angular distribution of the diffracted 

beams 70. 

The contrast formation is highly dependent on the imaging mode (bright-field and dark-field 

modes, for instance), but generically is related with mass, thickness, diffraction and phase contrast. 

Bright-field is the most commonly used imaging mode. In this case the contrast is basically formed 

due to the increased electron scattering as the beam passes by atoms with higher atomic numbers 

or by thicker regions of the sample that appear as dark regions in the image providing information, 

for example, about the morphology of the sample 29,70,76. 

 

 

Figure 2.10 – TEM Hitachi H9000 equipment (DEMaC). 
 
 

TEM technique was utilized to analyze the morphology of INNOVNANO’s and 

mechanosynthesis nanopowders. Each sample was prepared individually. A small amount of each 

powder (less than 0.03 g) was placed in 50 ml of ethanol. The mixture was ultrasonicated (Hielscher 

- UP200S) for 3 min (0.5 cycle and 80 % ultrasounds capacity). After that, a copper grid, covered 

with carbon in one side, was passed through the suspension and placed in a proper sample order 

on an oven at 50 ˚C for, at least, 24h. A Hitachi H9000 microscope was used in DEMaC (Figure 2.10). 

 

2.2.2.3. ICPS 

Inductively Coupled Plasma Spectroscopies (ICP-MS (mass spectroscopy) and ICP-OES (optical 

emission spectroscopy)) are designed to determine the composition of a wide variety of materials, 

with excellent sensitivity. ICPS are very powerful tools for detection and analysis of trace elements 

in materials.  Inductively Coupled Plasma is the excitation source used in Optical Emission and Mass 

Spectrometry instruments. The ICPS source consists of a quartz torch inside a radio frequency (RF) 
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coil.  Argon is passed through the torch and RF energy is applied to the coil.  When a spark is added 

to the highly energized argon atoms, electrons are stripped from the argon, and the plasma is 

formed. The argon ions and free electrons are further agitated by the RF field, causing the 

temperatures within the plasma to reach approximately 8000 - 10000 K  77. 

In most of the analyzes using ICPS techniques, the sample is introduced in liquid form (solid 

materials need to be dissolved).  The liquid is converted to an aerosol using a nebulizer and is then 

sprayed into the center of the plasma.  The particles within the aerosol are dried, atomized, ionized, 

excited and relaxed in a very short distance and time. It is from this point forward that the two 

instrument types differ. ICP-OES separates the light emitted from the plasma into its discrete 

component wavelengths using a diffraction grating.  Each element in the periodic table has its own 

distinct set of emission wavelengths. On the other hand, in ICP-Mass Spectrometer (ICP-MS) the 

ions generated in the plasma are directed through a quadrupole mass spectrometer.  The 

quadrupole filters the ions based on their mass to charge ratio (m/z) so that only ions with a specific 

m/z reach the electron multiplier detection system.  Within the calibration range of the method, 

the signal intensity for a given analyte ion is proportional to its concentration in the solution.  The 

solution concentration is then used to calculate the mass fraction of the analyte in the material 

being tested 78.  

The metal alloy was ICPS-MS tested in a Thermo X Series ICPS-MS equipment. The sample 

was provided as powder and it was digested and analyzed by “Laboratório Central de Análises” in 

University of Aveiro.  

 

2.2.2.4. XRF: X-ray fluorescence 

X-ray fluorescence (XRF) is a largely used technique to characterize, qualitative and 

quantitative, elemental composition of materials. The principle is the same that is used in SEM-EDS 

(see section 2.2.2.1), but in this case, the beam is an intense X-ray, usually produced from rhodium 

targets (or chromium, tungsten and molybdenum). When the beam interacts with the sample, each 

element of the material composition will emit characteristic X-ray, which is detected and analyzed 

by a specific detector. The elements that are possible to be analyzed are, in most of the cases, the 

ones with atomic number bigger than sodium’s. Some equipment is prepared to analyze elements 

since Be 29,79.  

The main advantages are that XRF analysis can be perform in air, with no need of vacuum 

ambience, and in a short period of time. The sample preparation is easy and the analysis in non-

destructive. Despite that is difficult to focus the incident X-ray beam in a small spot, and the 
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resolution is affected. The matrix affects the XRF measurements due to the absorption of secondary 

X-ray by the sample 29,79. 

All powders were analyzed by XRF at INNOVNANO. Pellets were manually pressed (25 tons). 

A 5:1 (wt.%) material:pressing wax was used. One of the surfaces of the pellet was covered with 

boric acid. A properly calibrated Bruker-AXS S4 Pioneer X-ray fluorescence spectrometer (with 

rhodium X-ray source) was used to evaluate the chemical composition of all powders.  

 

2.2.3. Particle and grain size analysis 

2.2.3.1. CPS 

A Disc centrifuge particle sizer, CPS Disc centrifuge (CPD Instrument, Inc – Model DC20000), 

available at INNOVNANO, was used to determine the particle size distribution of the EDS and MS 

produced powders. This equipment separates particles by its size using centrifugal sedimentation 

in a liquid medium and assesses a wide range of particle sizes from 5 nm to 10 µm 29. 

The sedimentation is stabilized by a slight density gradient within the liquid. This density 

gradient is established by additions of saccharose solutions with different concentrations. The 

sedimentation of particles occurs in an optically clear and rotating disc. The suspension of particles 

is injected in the middle of the rotating disc (in the specific case of this working testes, 15000 RPM) 

and when the particles approach the outside of the rotating disc, they block a portion of one light 

beam that passes through the disc. The changes in the light are recorded and converted into particle 

size by a software (CPSV95) 29. 

After the calibration of the equipment with saccharose solutions samples can be analyzed. 

For each sample 0.1 ml of a standard saccharose solution, prepared by manufacturer guidance, is 

injected in the disc. After that, 0.1 ml of the suspension of particles to analyze is injected. 

Suspensions to analyze were prepared by adding one specific amount of powder to distillated water 

and/or ethanol that was placed in a sonicator (Hielscher – UP200S) for several minutes (see Table 

2.2). Ethanol media was used to dissolve the organic binder for powders with PA.  
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Table 2.2 – Experimental conditions to perform CPS analysis 

Sample (powder) 
Powder weight 
(g) 

Water volume 
(ml) 

Ethanol volume 
(ml) 

Sonicator time 
(min) 

2Y 0,020 40 0 2 

2Y (DET.) 0,035 35 0 2 

2Y+M (DET.) 0,026 35 0 2 

2Y (PA) 0,030 30 10 5 

2Y+M (PA) 0,020 30 10 5 

MS-1M 0,079 35 0 2 

MS-2M 0,080 35 0 2 

MS-Y2M 0,085 35 0 2 

 

2.2.3.2. Malvern Laser diffraction 

Similar suspensions were prepared to perform Malvern Laser diffraction aggregate and 

agglomerate size distribution. A Malvern Mastersizer 2000, from MALVERN Instruments, was used. 

In this case, the equipment utilizes the laser diffraction to measure the size of the particles, 

aggregates or agglomerates, depending on the sample preparation. The powder sample, in aqueous 

or ethanol medium, passes through the measurement area where a laser beam illuminates the 

particles. Several detectors accurately measure the intensity of the scattered light by the particles. 

The scattered light signal is converted to particle size by the algorithm of the adequate refraction 

model 29.  

The Malvern analysis was performed on all studied powders – ceramic and CERMETs. The 2Y, 

2Y (PA) and 2Y+M (PA) products were not de-agglomerated in ultrasounds because the goal was to 

measure the agglomerate size. The (DET.) and MS powders were disaggregated in order to try to 

measure the particle size. The (PA) products were analyzed in ethanol and the others in water 

media. The measurements were conducted under the following experimental conditions: agitator 

speed of 1295 RPM and 70 % of ultrasounds, with previous de-agglomeration in the sonicator. 

 

2.2.3.3. BET 

The adsorption measurements based on the Brunauer, Emmet Teller (BET) isotherm are 

current methods used to determine the Specific Surface Area (SSA) of dense and porous materials. 

N2 is the most commonly used gas in BET analysis. The normal operation temperature to perform 

this analysis is 77 K, in which the N2 adsorption is easier to measure 80. 

To determine the SSA of one sample, a known mass of the sample in placed in contact with 

a known volume of gas. The sample will adsorb the gas, creating a decrease in pressure, from which 

the amount of adsorbed gas can be calculated. As so, a plot of the amount of gas adsorbed versus 



Emulsion Detonation Synthesis (EDS) Zirconia-based CERMETs: Chapter 2 – Experimental procedure 
Universidade de Aveiro - INNOVNANO 

59 
 

the relative pressure of gas (P/P0, being P0 the saturation vapor pressure of the adsorption used gas) 

is represented and is called adsorption isotherm 80,81. 

To calculate de SSA the BET equation is applied to the lower values of P/P0 isotherm (between 

0.05 and 0.3) according to eq. 4, being V the volume of adsorbed gas, CBET a constant and Vm the 

volume of an absorbed monolayer and is calculated from the slope and the intercept. This Vm is 

applied in Eq. 5 in which S satnds for the surface area, NA for Avogadro Number, for the area of 

an adsorbed gas molecule and V0 for the volume of one mole of gas at STP – standard temperature 

and pressure 80,81. 

𝑃

𝑉(𝑃0−𝑃)
=

1

𝑉𝑚𝐶𝐵𝐸𝑇
+

𝐶𝐵𝐸𝑇−1

𝑉𝑚𝐶𝐵𝐸𝑇
 

𝑃

𝑃0
     Eq.4 

 

𝑆 =  
𝑁𝐴𝜎𝑉𝑚

𝑉0
      Eq.5 

 

The average particle size (GBET) of a powder can be calculated from the surface area and the 

theoretical density of the sample, assuming a certain particle shape and dense de-agglomerated 

particles (eq. 6). SF is a particle shape factor (see Table 2.3) and dS is the theoretical density of the 

solid material 82. 

 

𝐺𝐵𝐸𝑇 =  
𝑆𝐹

𝑆×𝑑𝑆
       Eq.6 

 

Table 2.3– Powder shape as respective shape facto, f, and packing fraction. 82 

Powder shape Shape factor, SF Packing fraction 

Sphere 6.0 0.60 

Ellipsoid 7.6 0.52 

Cylinder (1:1) 6.0 0.61 

Cylinder (1:2)  5.0 0.60 

Cylinder (1:10)  4.2 0.48 

Cube  7.4 0.72 

Parallelepiped (1:4:4)  9 0.68 

Flake (1:10) 24 0.55 

 

For surface area analysis all the powders were degassed overnight at 200 ˚C and the analysis 

performed at 77 K using a Micromeritics – Gemini V2380. 
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2.2.3.4. Sintered pellets grain size 

The grain size measurement of polished and thermal etched fracture surfaces of the sintered 

bodies was performed by ImageJ software using SEM micrographs previously acquired. The images 

were uploaded in the program, the scale was defined and a mesh grid mask was applied. With that 

mesh grid above the picture, the grain size was measured by measuring the distance of a crossing 

grain with the mesh grid. The distances were measured starting in a grain boundary that was 

crossed by the grid and stopping when other grain boundary of the same grain appeared. The 

process was performed with horizontal and vertical grid lines. The grains that were not totally 

visible in the image have not been considered. To have a statistic representative average grain size, 

3 micrographs of each sample were analyzed. 

The average grain size was the result of ~500 length measurements and the final result was 

multiplied by 1.5, which is the correction factor for spherical grains 70. 

 

2.2.4. Density determination 

2.2.4.1. Powders density/flowability 

In order to determine the green powder density and their ability to be compacted, three 

experimental procedures were conducted: bulk density, tapped density and true density 

determinations. Flowability was also estimated. These procedures are usual in INNOVNANO and 

were the procedures followed in this. 

 

Bulk Density 

To determine the bulk density, i.e., the mass of a number of particles divided by the volume 

that they occupy, Hall and Carney funnels were used. The procedure was initiated with measuring, 

approximately, 40 ml of powder to a cup. Then, the powder was leaked to the Carney funnel, with 

the exit closed. A calibrated copper cup, with a known mass and volume was placed below the 

funnel and the exit was opened. The powder flowed to the copper cup, and the funnels were used 

to guarantee a good dispersion of the powder through the cup volume. The excess powder was 

removed from the top of the cup with a metallic rule, the cup was carefully cleaned in the outside 

and it was weighted. This procedure was repeated 4 times for each powder. The bulk density is 

calculated by eq. 7, where dBulk is the bulk density (g/cm3), mcup is the cup mass (g), mexp is the 

experimental measured mass of the cup (g) and Vcup is the cup volume (cm3). 
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𝑑𝑏𝑢𝑙𝑘 =
∑(𝑚𝑒𝑥𝑝−𝑚𝑐𝑢𝑝)

number of repetitions
×

1

𝑉𝑐𝑢𝑝
     Eq.7 

 

Flowability 

Powder flowability is simply defined as the ability of one powder to flow. By this, flowability 

is sometimes thought of as one-dimension characteristic of a powder, whereby powders can be 

ranked one sliding scale from free-flowing to non-flowing 83. 

To evaluate the flowability of the powders, 50 g of powders were placed in a Carney funnel, 

with the hole closed. The hole was opened simultaneously with the time measuring initiation on a 

chronometer. The procedure was performed 3 times for each sample. When the powders flowed 

through the Hall funnel, the procedure was repeated using that funnel. The flowability was 

measured for 2Y, 2Y (PA) and 2Y+M (PA) powders. (DET.) and MS powders did not flow through the 

funnels without the help of the operator.  

The Hausner ratio (eq. 8) and Carr’s index (eq. 9) are both mesaurements of the flow 

properties of powders. A Hausner ratio below 1.25 indicates a free flowing powder whereas a 

Hausner ratio higher than 1.25 indicates a poor flowability. The smaller the Carr’s index, the better 

the flow properties. For instance, 5-15 indicates excellent. 12-16 good, 18-21 fair and higher than 

23 poor flowability 84. 

𝐻𝑎𝑢𝑠𝑛𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =  
𝑑𝑡𝑎𝑝𝑝

𝑑𝑏𝑢𝑙𝑘
     Eq. 8 

 

𝐶𝑎𝑟𝑟′𝑠 𝑖𝑛𝑑𝑒𝑥 =  
𝑑𝑡𝑎𝑝𝑝−𝑑𝑏𝑢𝑙𝑘

𝑑𝑡𝑎𝑝𝑝
× 100 (%)    Eq. 9 

 

Tapped density 

Tapped density was measured to assess the compressibility of the powders. The procedure 

was initiated by measuring the weight of one glass 50 ml beaker (mbeaker). 40 ml of powder were 

placed in a glass cup and then in the breaker, using the Hall funnel. The initial volume (Vi) and mass 

(mi) of the breaker with the powders was registered. The tapped procedure was initiated by tapping 

with the breaker in a soft surface 10 times. The volume was registered (V10). More 90 taps were 

performed and the volume was registered (V100). Then, more 150 (V250) and the procedure was 

continued (500, 1000, 2000 taps) until the registered volume was constant (Vfinal). The procedure 

was performed 3 times for each sample. 
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The tapped density was measured in 2Y, 2Y (PA) and 2Y+M (PA) powders. The (DET.) and MS 

powders could not flow through the funnel or the volume did not stabilize after 2000 taps. The 

tapped density (dtapp) was calculated by eq. 10. 

𝑑𝑡𝑎𝑝𝑝 =
∑(

𝑚𝑖−𝑚𝑏𝑒𝑎𝑘𝑒𝑟
𝑉𝑓𝑖𝑛𝑎𝑙

)

number of repetions
     Eq. 10 

 
 

True density – pycnometer 

Gas pycnometers are used to determine the true density (dtrue), more precisely, the volume 

of a known mass of powders and bulk materials. The samples are placed in a container of known 

volume. The working principle of a pycnometer is similar to the BET one. The true volume of the 

sample is calculated from the difference in pressure when a known amount of gas is allowed to 

expand into a chamber containing the sample. That said, the true volume of the sample obtained 

by this technique excludes any pore volume accessible to the gas. Closed porosity is included in the 

volume measured by the equipment 29. 

The most commonly used gas is helium, because of its small size. It can penetrate the finest 

pores. Moreover, it is an inert gas. True density is calculated by dividing the measured weight of 

the sample by the true volume, measured by the pycnometer.  

The true densities of the powders used in this work were determined in vacuum, with helium 

as measurement gas, using a Micrometrics - AccuPyc II 1340 pycnometer. For each sample the true 

density is the mean values obtained after 10 cycles. 

 

2.2.4.2. Geometric apparent density 

The apparent density was geometrically determined in green pressed pellets (after isostatic 

pressing) and sintered pellets. The apparent density is defined as simply the mass of the body 

divided by its volume. The mass was measured with a four digits’ balance and the volume was 

calculated by measuring the diameter and thickness of the pellets. Eq. 11 shows how geometrical 

density was calculated, were dG is the geometrical density, D is the diameter of the pellet, in cm, L 

is the thickness, in cm, and m is the mass of the pellet, in g. 

 

𝑑𝐺 =  
4𝑚

𝜋𝐷2𝐿
      Eq. 11 
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2.2.4.3. Archimedes method 

In order to have an approximation of the sintered bodies real density, Archimedes method 

in water was performed. The samples were placed on an oven, at 110 ˚C, for 2 h. Their weight was 

recorded and identified as P1. After that, the samples were again placed in the oven for 10 min and 

then placed in boiling water for 10 min. Thereafter, the samples were placed in cold water for more 

10 min. They were clean with a wet paper and weighed (P2). After that, the immerse weight was 

measured with an Archimedes apparatus (P3). After finishing the process, the samples were placed 

in the oven for more 2 h to dry. 

The Archimedes density (dA) was calculated by eq. 12 (the water density was considered to 

be 1.00 g/cm3). 

𝑑𝐴 =
𝑃1×𝜌𝐻2𝑂

𝑃2−𝑃3
      Eq. 12 

 

In order to determine the relative density of each sample, the theoretical density (dth) was 

calculated, using the mixture rule (eq. 13), where Wi is the weight fraction of each constituent and 

ri is the theoretical density of each component 

𝑑𝑡ℎ =  
1

∑
𝑊𝑖
𝑟𝑖

      Eq. 13 

2.2.5. Thermal analysis  

2.2.5.1. DTA/TG 

The Differential Thermal Analysis (DTA) is based on the reactions that occur in a sample that 

is subjected to a thermal cycle. When a physical transformation occurs (organic material is burned, 

crystallizations or phase transformations occur), the sample does not keep the same temperature 

as if no changes had happened. DTA apparatus combine a furnace, a reference material and a 

measuring system. A thermocouple is connected to the sample and to the reference material. When 

a reaction happens in the sample, a differential temperature between the sample and the reference 

material is registered in the form of an electrical signal. As so, the result of as DTA analysis is a 

dependence of an electrical signal depending on the temperature.  

Thermogravimetric Analysis, or simply TG, is used to characterize the weight losses from 

moisture, decomposition of volatiles and organic material or oxidation reactions in a sample 

submitted to a thermal cycle. Usually DTA and TG are coupled analysis. This is the case of the utilized 

equipment: SETARAM - Labsys TG-DSC16, with a type B thermocouple. DTA/TG analysis were 
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performed in powders. The DTA/TG experimental conditions were set as: 10 ̊ C/min for heating rate, 

until 1400 or 1500 ˚C, depending on the sample to be analyzed, in air atmosphere.  

 

2.2.5.2. Dilatometry 

Dilatometry analysis is a very powerful and widely used tool to study the sintering behavior 

of compacted powders. In this type of analysis, a solid sample (usually, pressed powders) is 

subjected to a controlled temperature cycle and the variation in sample dimensions registered as a 

function of the temperature. A curve representative of the linear shrinkage (ΔL/L0, being ΔL = L – L0, 

L is the real time length and L0 the initial length) as a function of time or temperature is constructed. 

The dilatometry analysis was performed in powder compacts in a Linseis equipment, model 

ADIDI 4.0, type S thermocouple. To perform the analysis, the powders were pressed into pellets. A 

steel mold was used to uniaxial press at ~104 MPa pellets with 10 mm diameter. The dilatometry 

experimental conditions were set as: 10 ˚C/min for heating rate, until 1400 or 1500 ˚C, depending 

on the sample to be analyzed. The atmosphere was either air or inert gas (Argon flow). 

In order to evaluate the densification of the tested samples, the green density of the 

compacts was measured, and the final density was estimated based on eq. 14, where is the 

density, the green density, and y the total shrinkage.  

𝜌 =  𝜌0 ×
1

(1−𝑦)3       Eq. 14 

2.2.6. Electrical conductivity 

AC Electrical impedance of the sintered pellets was measured at DEMaC with an Agilent 

E4980A LCR meter (Inductance, Capacitance and Resistance meter). Computer aided data was 

acquired with the help of a software developed at University of Aveiro. Measurements were 

conducted as a function of frequency of the electric field and temperature. The temperature was 

recorded by means of a thermocouple connected to a Eurotherm 2404 sensor / controller.  

Electrical conductivity/resistivity was measured just for sintered bodies. The sintered pellets 

were polished, with a P120 SiC abrasive paper, until the thickness was near 1 mm. After that both 

sides were polished with the same series of SiC abrasive paper as the one used for the preparation 

of SEM cross sections. The last SiC abrasive paper was P2000. Gold/palladium thin film of 5.5 mm 

diameter electrodes were sputtered on both sides of the sintered pellets with an argon plasma, 

using a POLARON E 5000 equipment. Prior to the electrode deposition samples surface was cleaned 

with ethanol. After that, they were placed inside de equipment, covered with a plastic mask (with 

a 5.5 mm hole) and vacuum created (0.11 torr), the argon flow was opened and the electrical field 
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was applied (1.2 kV). The deposition took place for 3 min, with a 1 min pause, followed by 3 min 

more of deposition. After that samples were turned and the process repeated. Prior to the electrical 

measurements the resistivity of the electrodes measured. 

 For the electrical measurements the set parameters were: 1 V for the amplitude of the AC 

current, the frequency points as 51 (in logarithmic scale), the frequency range from 100 Hz to 1 

MHz, and 3 for the number of sweeps with the interval between them of 3 sec. Each sample was 

placed in a platinum metal piece and high sensitive needles connected to the LCR meter were 

placed in contact, one with the platinum piece and the other with the masked side of the sample. 

Impedance (|Z|) and phase angle (δ) were automatically recorded for the set acquisition 

conditions, at room temperature (recorded as ~25 °C). With this data, and using Eq. 15 and 16 

resistivity, of each sample was calculate. In these equations, A is the electrode area, L is the 

sample thickness and R is the resistance (ohm). 

 

𝑅 =
|𝑍|

cos(𝛿)
       Eq. 15 

𝜌 =
𝑅×𝐴

𝐿
     Eq. 16 

 

Relative permittivity (r) was also calculated, using eq. 17, where C is the capacity, defined by 

eq. 18, and is the vacuum permittivity (=8.85x10-12 F/m), f is the frequency, in Hz, of the applied 

electrical field: 

𝜀𝑟 =
𝐶×𝐿

𝜀0×𝐴
      Eq. 17 

 

𝐶 =
sin(𝜃)

2𝜋𝑓×|𝑍|
      Eq. 18 

 

2.2.7. Thermal conductivity 

Thermal conductivity of sintered pellets was also measured, using a C-Therm TCi equipment. 

The equipment is composed of a thermal unit and a thermal sensor. This sensor has an electric 

spiral that heats the sample under analysis. The equipment registers the initial sample temperature 

before the application of the field and after the application of the field. Based on the temperature 

changes, the software calculates the thermal conductivity of each specimen. 
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This is a very good comparative method. That is the purpose of measuring the thermal 

conductivity of the sintered samples was to understand the role of the metal alloy in the CERMETs 

thermal conductivity behavior. 

To guarantee a good contact between the temperature sensor and the sample, there should 

be a liquid or past medium between the sample and the sensor. For room temperature is common 

to apply water. That was the case for the measurements of this work. To improve that contact, a 

metal weight of 500 g was placed over the sample. The thermal conductivity was measured to all 

sintered bodies, except MS-Y2M, and 5 measurements were conducted for each sample, in at least 

4 samples by composition.  

 

2.2.8. Mechanical characterization 

2.2.8.1. Flexural strength 

Biaxial flexural strength (piston-on-three-ball test) was performed using a Universal Materials 

Testing Machine Zwick/Roell Z020. For each sintered group of bodies, at least 5 pellets were fine 

polished in both surfaces, as specified in Table 2.4. One of the surface of the pellets was fully 

polished and the other was just gridded. The first gridding step, step 1, was time adapted to have 

polished pellets with about 1.25-1.35 mm thickness.  

The presented flexural strength values (in MPa) for each tested condition were obtained from 

the average of tested pellets. The test was performed considering the standard ISO 6872:2008 (E).  

 

Table 2.4 – Gridding and polishing steps to prepare sintered pellets to flexural and hardness tests.  

 Gridding Polishing 

Step 1 2 3 4 5 

Surface MS-PIANO 220 MD-PIANO 1200 MS-LARGO MS-Mac MD-Nap 

Liquid lubricant water water -- -- -- 

Speed (RPM) 300 150 150 150 150 

Force (N) 300 210 180 150 150 

Time (min) Variable 2 8 6 1 

 

2.2.8.2. Hardness 

Indentation hardness measures the resistance of sample to deformation due to a constant 

compression load from an indenter (sharp object, made of diamond, most of the times). The 

indentation test consists on forcing an indenter with specific shape through the sample, with 
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controlled time and load or force (F) and in measuring the critical dimensions of the left indentation. 

Frequent indentation hardness scales are Brinell, Rochwell and Vickers. 

In INNOVNANO, the usual batch hardness test that is preformed is the Vickers hardness. The 

time for the initial application of the force is usually between 2 and 8 s, and the test force is 

maintained for 10 s to 15 s. After the force has been removed, the diagonal lengths of the 

indentation are measured and the arithmetic mean (𝑑𝑙) is calculated. The Vickers hardness number 

(𝐻𝑉), is given by eq. 19, where F is the applied load to the diamond indenter and Aind is the 

indentation surface area (mm2). Aind is expressed in eq. 20. 

𝐻𝑉 =  
𝐹

𝐴𝑖𝑛𝑑
       Eq. 19 

𝐴𝑖𝑛𝑑 =
𝑑𝑙

2

2sin (
136

2
)

≈
𝑑𝑙

2

1.8544
     Eq. 20 

 

KIC, or fracture toughness, is traditionally measured using the three-point bending test. Due 

to the complexity of the method and the long time sample preparation, KIC was measured using the 

crack indentation method. Indentation tests were performed at INNOVNANO using a WIKI 100B 

system from Affri equipped with Affri Fully Automatic System software.  KIC calculation is based on 

the applied force (F) and crack length (lind) that is measured with the software. If the crack is 

developed only at the corners of the indentation (Palmqvist type of crack), eq. 21 is applied, where 

E is the Young’s modulus (considered as 210 GPa), aind is the indent half diagonal and lind is the 

Palmqvist crack length.  

 

𝐾𝐼𝐶 = 0.0089(
𝐸

𝐻𝑉
)

2

5
𝐹

𝑎𝑖𝑛𝑑√𝑙𝑖𝑛𝑑
     Eq. 21 

 

With the purpose of obtaining an average value for the hardness and fracture toughness, 10 

Vickers indentations were performed: 10 HV10 and 10 HV30 for some samples and 10 HV1 for one 

sample. The HV value was measured based on standard BS EN 843-4 2005. The test force was 

maintained for 15 seconds in each indentation. HV values are obtained automatically after 

indentation by the software. The measurements of fracture toughness were performed in the same 

indentations used for HV calculation. The crack length was measured by optical microscopy. The 

fracture toughness values were calculated based on Niihara equation (see eq. 22) 29,85. 

 

𝐾𝐼𝐶 = 0.035 × E
2

5 × 𝐻𝑉
3

5 × 𝑎𝑖𝑛𝑑 × 𝑙𝑖𝑛𝑑
−

1

2  Eq. 22 
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2.2.9. Magnetic behavior 

Vibrating Sample Magnetometer (VSM) systems are a common method to measure the 

magnetic properties of materials as a function of magnetic field, temperature, and time. These 

systems are capable of analyzing powders, solid, liquids, single crystals and thin films. The more 

recent equipment is connected to a software that, automatically, record all acquisition/control data 

86,87. 

The VSM works with the principle that if a material is placed within a uniform magnetic field 

H, a magnetic moment M will be induced in the sample. In a VSM, a sample is placed within suitably 

placed sensing coils, and sinusoidal motion is induced, i.e., mechanically vibrated. The resulting 

magnetic flux changes induce a voltage in the sensing coils that is proportional to the magnetic 

moment of the sample. The magnetic field may be generated by an electromagnet, or a 

superconducting magnet. Variable temperatures may be achieved using either cryostats or furnace 

assemblies 86. 

The hysteresis loop gives the relation between the magnetization M and the applied field H, 

as previously said in section 1.6.4.4. 

Some parameters are often extracted from this type of curves: the saturation magnetization 

Ms, the remanence Mr, the coercivity Hc and the squareness ratio SQR. The loop illustrated in Figure 

2.11 shows the behavior for the easy axis of magnetization (i.e., in the anisotropy direction). The 

loop has a rectangular shape and exhibits irreversible changes of the magnetization. In the case of 

one hard axis loop, where the hard axis is at right angles to the easy axis, is more or less linear and 

generally hysteresis free, i.e., the magnetization is reversible. Magnetic materials that show a 

preferential direction for the alignment of magnetization are said to be magnetically anisotropic 

86,87. 

The intrinsic saturation is approached at high H, and at zero-field the remanence is reached. 

The squareness ratio is given by the ratio of (Mr/Ms) and is essentially a measure of how square the 

hysteresis loop is. In general, large SQR values are desired for recording medium. The formal 

definition of the coercivity Hc is the field required to reduce the magnetization to zero, after 

saturation. The physical meaning of Hc  is dependent on the magnetization process, and may be the 

nucleation field, domain wall coercive field, or anisotropy field. Hc is related to the reversal 

mechanism and the magnetic microstructure, i.e., shape and dimensions of the crystallites, nature 

of the boundaries, and also the surface and initial layer properties, etc. 86. 
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Figure 2.11 – Typical hysteresis loop of a magnetic sample. 

 

The specific saturation magnetization Ms is directly proportional to the amount of magnetic 

phase in a two phase mixture 88. Considering a composite of ceramic matrix with the metal alloy M, 

it is possible to establish the following relation (eq. 23): 

  

𝑀𝑠(𝑠𝑎𝑚𝑝𝑙𝑒) =  𝑀𝑠(𝑐𝑒𝑟𝑎𝑚𝑖𝑐) × 𝐶(𝑐𝑒𝑟𝑎𝑚𝑖𝑐) + 𝑀𝑠(𝑀) × 𝐶(𝑀)   Eq. 23 

 

where C(i) is the concentration of the identified phase i, (in vol.%). Ms(sample), Ms(ceramic) and 

Ms(M) stands for the saturation magnetization of one specific sample, the ceramic and metallic 

phase, respectively. Considering that the ceramic does not have magnetic response (as is the case 

of the present YSZ ceramics), the eq. 23 is simplified to eq. 24: 

𝐶(𝑀) =  
𝑀𝑠(𝑠𝑎𝑚𝑝𝑙𝑒)

𝑀𝑠(𝑀)
     Eq. 24 

 

The magnetic properties of some of the powders and sintered bodies were measured using 

a Cryogenic, UK VSM equipment. The powder samples were analyzed as powders, without any 

pressing process. The sintered pellets were smoothly polished with a P800 SiC abrasive paper and 

cleaned with ethanol before the measurements. 



 

 
 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results and discussion 
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3.1 Powders characterization 

This section gives a full characterization of the powders, starting with the YSZ powders 

produced by EDS, the commercial metal alloy and the CERMET powders obtained either by EDS or 

Mechanosynthesis. The experimental procedure of powders preparation and characterization is 

described in section 2. 

3.1.1. YSZ powders 

It is important to remind that all the powders are, in theory, composed of 2 mol% Y2O3 and 

the differences are reported and summarized in Table 2.1. 2Y (DET.) powder was only detoned, and 

the 2Y and 2Y (PA) powders were milled and atomized, although the last designated sample 

contains pressing binders added during milling (specified in section 2.1.) 

Figure 3.1 – A and B presents the XRD patterns for the three types of YSZ powders produced 

by EDS at INNOVNANO. The XRD patterns presented in A and B are from the same group of samples 

but in B a semi-logarithmic representation was used to evidence smaller peaks. Rietveld refinement 

was employed to analyze the XRD patterns. The XRD patterns of all the powders are characterized 

by peaks identified with the monoclinic/tetragonal (m/t) zirconia crystalline phases. 2Y and 2Y (PA) 

exhibit very similar XRD patterns, while it is clear that 2Y (DET.) shows a different XRD pattern. 

Although with the same monoclinic/tetragonal (m/t) zirconia crystalline phases 2Y (DET.) evidences 

more intense and better defined peaks than 2Y and 2Y (PA). This fact occurs because these 2Y and 

2Y (PA) powders are wet milled and atomized after being EDS processed. An efficient milling process 

induces a decrease in the crystallite size, and the smaller the crystallite size, less intense and wider 

are the peaks.  

Table 3.1 presents the XRD data for all the studied powders of this work. The table also 

includes information about the wt.% of m/t phases, their crystallite size and strain, and an 

estimation of the unit cell volume. A reduction in the calculated crystalline size of m/t phases (Table 

3.1) is verified from 2Y (DET.) to 2Y and 2Y (PA), which indicates that the milling was efficient.  

To note that the tetragonal zirconia file (PDF 04-016-2115) that was used to refine the results 

corresponds to a solid solution of Y2O3 in ZrO2. Due to the very small amount of Y2O3 in the present 

powders, no isolated yttrium phases were identified in XRD and Y2O3 may be mainly in solid solution 

with the tetragonal phase of zirconia, since the solubility limit of Yttrium in the tetragonal phase is 

higher than in the monoclinic one (see Figure 1.2) 14,15. Despite that, it is possible that both zirconia 

phases have Y2O3 in solid solution.  
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Figure 3.1 – XRD patterns for YSZ powders: 2Y (DET.), 2Y and 2Y (PA). The crystallographic phases that were 
identified are recognized with symbols: • for tetragonal ZrO2 and   for monoclinic ZrO2. (A) and (B) show the 
same data but with linear and logarithmic (base 10) scale bar in OY axis, respectively.  

 

As mentioned in the Introduction the mechanical performance of zirconia based powders 

depends directly on the ratio of both m and t-phases. So in terms of characterization of YSZ powders, 

one important aspect to assess is the m/t phase ratio. Table 3.1 clearly highlights that 2Y (DET.) 

exhibits a higher amount of tetragonal phase. The mechanical milling process induced the 

stabilization of the equilibrium phase: m-ZrO2. 

 

Table 3.1 – Identified XRD phases, calculated wt.% of each crystalline phase and respective crystallite size, 
strain and unit cell volume for YSZ powders (2Y (DET.), 2Y and 2Y (PA)), and YSZ CERMET powders under study 
in this work. The parameters were calculated with PowderCell software. 

 YSZ and YSZ CERMET powders 

Parameter Phase 
2Y 

(DET.) 
2Y 

2Y 
(PA) 

2Y+M 
(DET.) 

2Y+M 
(PA) 

MS-
1M 

MS-
2M 

MS-
Y2M 

wt.% of 
identified 
phase 

m-ZrO2 13 77 81      

t-ZrO2 87 23 19 84 35 41 41 32 

Metal - - -      

Crystallite 
size of 
phases (nm) 

m-ZrO2 56 32 30 50 20 13 13 13 

t-ZrO2 57 15 15 92 15 12 12 12 

Metal - - - 15 12 12 12 13 

Strain 

m-ZrO2 0.001 0.002 0.002 0.001 0.001 0.004 0.003 0.003 

t-ZrO2 0.001 0.002 0.003 0.001 0.001 0.003 0.004 0.004 

Metal - - - 0.001 0.006 0.007 0.007 0.007 

Unit cell 

volume (Ȧ3) 

m-ZrO2 142.3 141.9 141.7 149.6 142.7 142.7 141.1 141.7 

t-ZrO2 67.3 67.5 67.4 67.1 67.7 67.7 67.1 67.3 

Metal - - -      

 

A B 
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The strain (Table 3.1)  calculated with PowderCell, associated with the identified differences 

of the powders XRD patterns with the theoretical one is higher in milled powders, as expected. 

However, the changes are not highly significant. The unit cell volumes are almost constant for all 

the samples and are slightly larger than the theoretical unit cell volumes for monoclinic and 

tetragonal phases, 140.71 and 67.15 Ȧ3 , respectively (calculated from the theoretical cell 

parameters from the respective JCPDS/PDF files), namely in the case of the monoclinic structure. 

This may indicate that yttrium atoms may tend to destabilize the monoclinic phase (this observation 

is in accordance with the phase diagram of zirconia/yttria, because for higher amounts of yttria, the 

temperature required to stabilize the t-ZrO2 phase is reduced - see Figure 1.2 14,15).  

Raman spectra of these YSZ powders were acquired to confirm the crystallographic data 

obtained by XRD. The visible Raman spectrum for 2Y (DET.) and 2Y is shown in Figure 3.2. Based on 

previous studies 73,89–93, peaks were identified corresponding to both characteristic crystallographic 

phases. . The red numbers are indicative of t-ZrO2 and the yellow ones of m-ZrO2 peaks. The black 

ones are not characteristic of any of those crystallographic phases. The typical tetragonal and 

zirconia Raman shifts confirm the XRD data.  

 
Figure 3.2 – Raman spectra of YSZ powders (2Y (DET.) and 2Y). The tetragonal zirconia peaks are identified 
with wavelength values in red and the monoclinic zirconia ones with yellow. 

 

In order to chemically characterize the YSZ powders, XRF was performed and results are 

presented in Table 3.2, considering all the elements as oxides. Table 3.2 also includes XRF data for 

YSZ CERMET powders. The chemical composition of the three YSZ powders is approximately the 

same, although the milled samples (2Y and 2Y (PA)) have a higher content in alumina than 2Y (DET.). 



Emulsion Detonation Synthesis (EDS) Zirconia-based CERMETs: Chapter 3 – Results and discussion 
Universidade de Aveiro - INNOVNANO 

76 
 

This comes from the intentionally addition of a small amount of alumina (~0.25 wt.%) to the zirconia 

powders during the milling process at INNOVNANO to help posterior sintering, by creating a solid 

solution of Al2O3 in t-ZrO2 lattice 94,95.  

The ceramic powders presented ~95 wt.% of ZrO2 and ~3 wt.% of Y2O3, close to the nominal 

composition with 2 mol.% of Y2O3, equivalent to 3.6 wt.% Y2O3. HfO2 is not considered as a 

contamination because it is usual to find such results in XRF data, once that Hf oxide and ZrO2 are 

isomorphs, and their structure is basically the same.  

 

Table 3.2 – XRF results for all YSZ powders (2Y (DET.), 2Y and 2Y (PA)) and YSZ CERMET powders under study 
in this work. The first lines of the table correspond the major oxides and the last one to the minor oxides 

 YSZ and YSZ CERMET powders 

Oxide (wt.%) 
2Y 

(DET.) 
2Y 

2Y 
(PA) 

2Y+M 
(DET.) 

2Y+M 
(PA) 

MS-
1M 

MS- 
2M 

MS-
Y2M 

ZrO₂ 94.66 94.52 94.76 90.46 91.47 92.16 90.52 90.66 

HfO₂ 1.63 1.64 1.64 1.7 1.79 1.59 1.58 1.61 

         

         

         

Other elements 
(Al₂O₃, SiO₂, MgO, 

CaO, CuO, ZnO) 

0.06 0.40 0.31 0.81 0.55 0.11 0.12 0.36 

 

SEM micrographs of the YSZ powders in carbon tape sample preparation mode (see more 

about this in section 2.2.2.1) are presented Figure 3.3. Two different types of particles groups can 

be considered: aggregates that are the stable shape of the nano-sized particles, and agglomerates 

that have spherical shape (approximately) that result from the atomization process. 2Y (DET.) 

micrographs show that these aggregates, that can be small (hundreds of nanometers) as well as 

relatively big (around 10 microns), are composed of nanoparticles. This indicates that these 

powders are not homogenous in terms of aggregate size. For atomized 2Y (PA) powder the 

agglomerate size is between 30 and 100 µm, composed of very small particles, that have around 

hundreds of nanometers (compare 2Y (PA) 1000 and 40000 times magnified micrographs).   

TEM analysis of 2Y (DET.) particles was also performed (Figure 3.4). Isolated particles (grains) 

have approximately spherical shape and diameters lower than 100 nm. Aggregates have some 

hundreds of nm. No particles larger than 100 nm were found, and the average particle size lies in a 

few tens of nanometers.  
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2Y (DET.) 

   
25.0 kV; 1000x 25.0 kV; 4000x 25.0 kV; 40000x 

2Y (PA) 

   
25.0 kV; 100x 25.0 kV; 1000x 25.0 kV; 40000x 

Figure 3.3 – SEM micrographs of YSZ powders: 2Y (DET.), 2Y and 2Y (PA). 

 

  
300.0 kV; 30000x 300.0 kV; 50000x 

Figure 3.4 – TEM micrographs of 2Y (DET.) powder. 

 

The aggregate particle size distribution measured by Malvern is depicted in Figure 3.5, in 

which the curves are represented in semilogarithmic scale to evidence the peaks. It is important to 

remind that 2Y (DET.) powder was disaggregated in ultrasounds and 2Y and 2Y (PA) samples were 

not (see section 2.2.3). As a result of this, 2Y (DET.) presented a particle size distribution with lower 

aggregate values that the agglomerate average size of the 2Y and 2Y (PA) samples. The secondary 

peak, at ~8 μm is indicative of a not totally disaggregation of the powders. The addition of pressing 

binders induced a slightly increase in the average agglomerate size, but a lower size distribution as 

well.   

7.5 µm 

 
750 nm 

 

30 µm 

 

300 µm 

 

30 µm 

 

750 nm 

 

100 nm 

 

200 nm 
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Figure 3.5 –Aggregate/agglomerate size distribution determined by Malvern.  

 

The d50 values for Malvern and CPS particle size measurements of powders are shown in 

Table 3.3. Note that the CPS analysis was acquired with all powders disaggregated. Table 3.3 

indicates that the particle size measured by CPS of 2Y (DET.) is around 440 nm. This value is not the 

true one, based on the already discussed SEM micrographs. Despite that, the Malvern analysis 

revealed an even greater d50 value. The milling process in 2Y was efficient, once the CPS d50 value 

decreased. The addition of pressing binders increased the aggregation of the particles, because 

both CPS and Malvern d50 values increased.  

 

Table 3.3 – Morphologic characterization of YSZ and YSZ CERMET powders: d50 measured by CPS and Malvern 
equipment, surface area measured by BET (S), theoretical density of the solid material (ds) and GBET is the 
grain size calculated from S and ds, according to eq. 6. 

YSZ and YSZ 
CERMET powders 

d50 (µm) 
S (m2/g) dS (g/cm3) GBET (nm) 

CPS Malvern 

2Y (DET.) 0.44 0.9 15.1 6.04 66 

2Y 0.28 29 22.2 5.87 46 

2Y (PA) 0.41 58 13.3 5.86 77 

2Y+M (DET.) 0.46 1.2 7.1 6.09 138 

2Y+M (PA) 0.37 39 8.0 5.96 126 

MS-1M 0.52 1.1 6.7 5.95 150 

MS-2M 0.56 1.1 6.3 6.04 157 

MS-Y2M 0.47 1.3 7.5 6.01 133 

  

The Malvern’s results of ceramic powders (2Y, 2Y (DET.) and 2Y (PA)) presentd d50 values 

larger than with CPS, due to the higher aggregation and agglomeration state in the first technique.   
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The BET surface area (S) was used to calculate the particle size (GBET) considering a spherical 

shape according to eq. 6, and the results are also indicated in Table 3.3. The theoretical density of 

the solids (ds) was calculated considering the mixing rule, the XRD phase composition and the 

respective theoretical density of each phase. It is possible to conclude that the milling process was, 

indeed, effective, for the 2Y sample – the grain size decreased from 2Y (DET.) to 2Y powder. The 

introduction of the organic binder tends to either harm the milling process or create stronger 

aggregates. The GBET calculation, associated with the observation from SEM and TEM, allowed to 

conclude that CPS did not measure the true particle size, despite it is closer to that value than the 

Malvern measurement.  

Three types of powder densities were accessed: bulk, dbulk, tapped, dtapp, and real, dreal. The 

green density of uniaxially pressed compacts was also measured, and the results for the studied 

powders are shown in Table 3.4. The significant digits of each measurement result from the 

respective first significant digit of the standard deviation and dtapp was not registered for (DET.) and 

MS-powders, because their volume was not stable after 2000 taps. The results of Table 3.4 show 

that 2Y (DET.) powder have the lower bulk density. Otherwise, its real density is the highest 

between all YSZ powders. The addition of pressing binders reduces all the values of density 

comparing 2Y (PA) with 2Y, because the organic binder tends to increase the porosity in atomized 

powders (discussed later in section 3.1.3). However, the green density of packed 2Y (PA) sample is 

the highest between ceramic samples, which indicates that, despite the lower powder density 

values registered for 2Y (PA), it has good pressing characteristics. The addition of pressing binders 

by INNOVNANO is efficient, once that the green density of the compacts increased, compared with 

the same sample without binder. The densities data is in accordance with what was accessed by 

the SEM, TEM, CPS and Malvern’s analysis: 2Y (DET.) powder is aggregated in irregular shapes, while 

2Y and 2Y (PA) were agglomerated in spherical shapes.  

Based on the measured powder densities, Hausner Ratio and Carr’s Index were calculated, 

as well. These ratios are compared with flowability time measurements. The YSZ powders after 

atomization and granulation presented a Hausner Ratio minor than 1.25 and Carr’s Index between 

12 and 16 which means that they have good flowability. 2Y (PA) powders are in the limit between 

good and reasonable flowability 84. The flowing times are in accordance with these conclusions. The 

irregular aggregate shape of 2Y (DET.) powders, the atomized agglomerations state of 2Y and 2Y 

(PA), and the respective densities are in accordance with these data.  
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Table 3.4 – Density and flowability of powders and green density of isostatically pressed compacts.  

 
Powder densities  

(g/cm3) 
Flowability 

Green density 
of uniax. 
compacts 

(g/cm3) 

YSZ and YSZ 
CERMET powders 

dbulk dtapp dreal 
Flowability 
Carney (s) 

Hausner 
Ratio 

Carr's 
Index 

dG  

2Y (DET.) 0.349 - 5.800 - - - 2.50 

2Y 1.227 1.40 5.630 31 1.14 12.38 2.69 

2Y (PA) 0.992 1.19 4.642 21 1.20 16.63 2.84 

2Y+M (DET.) 0.450 - 5.770 - - - 3.37 

2Y+M (PA) 0.949 1.26 4.899 50 1.33 24.65 3.17 

MS-1M 1.34 - 5.706 - - - 3.20 

MS-2M 1.12 - 5.753 - - - 3.14 

MS-Y2M 1.25 - 5.558 - - - 3.16 

 

In order to fully characterize the YSZ powders, thermogravimetric and dilatometry analysis 

were also performed. It was possible to conclude that the product with organic binder (PA) 

presented a weight loss of a ~6.5%, from ~200-750 °C, not observed in the other powders, 

corresponding to the binder burnout. Both 2Y (DET.) and 2Y powders are thermally stable, not 

evidencing marked variations in terms of weigh losses or gains.  

The sintering behavior of YSZ powder compacts was accessed by dilatometry, in reducing 

argon atmospheres and 2Y (PA) powder was also analyzed in air. The reducing atmospheres were 

considered because they are needed to densify CERMETs, and to be possible the comparison 

between CERMETs and ceramic samples.  

The dilatometric behavior of YSZ powder is presented in Figure 3.6.  Figure 3.6 – A presents 

the comparison between the three YSZ powders analyzed in argon. Table 3.5 complements the data 

of Figure 3.6. The 2Y and 2Y (PA) sample presented almost the same total shrinkage. The final 

densification was calculated from the green density, the total shrinkage and corrected by the 

weight losses (eq. 14) and it is very close for 2Y (PA) and 2Y (Table 3.5). This indicates that the binder 

addition does not harm the densification in argon. The 2Y (DET.) is the compact with a smaller green 

density and maximum of shrinkage and, so, its densification is smaller than the 2Y and 2Y (PA). The 

increased packing efficiency in the atomized powders and the addition of alumina during the milling 

process in 2Y and 2Y (PA) increased the densification features of those samples.  

The dilatometric analysis of 2Y (PA) sample in argon and air comparison (Figure 3.6 – B) shows 

that there are no significant changes between the two sintering atmospheres. However, a slightly 

superior shrinkage is achieved in air atmosphere, and there is evidence that the densification is on 

the final stage for the argon sintered sample.  
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If one considers that the theoretical density of the compacts is ~6.0 g/cm3, the green density 

of the compacts is very low (around, and sometimes smaller than 50 %). The low densification 

values are probably due to the fact that the pellets used for the dilatometric analysis were only 

uniaxially pressed. An isostatic pressing step would be necessary to achieve denser materials. The 

isostatic green density of compact that were sintered are higher (discussed later on section 3.2.1). 

 

 
Figure 3.6 – Dilatometric analysis of YSZ powders. (A): 2Y (DET.), 2Y and 2Y (PA) dilatometric curves (in bold) 
and respective derivatives (with dots) in argon. (B): 2Y (PA) in argon and in air, and respective derivative 
curves (with dots). The analysis was performed with 10 °C/min heating rate. 
     

 

Table 3.5 – Dilatometric analysis complementary table: Green density of compacts and respective relative 
density, total shrinkage, thermogravimetric weight losses and final density of the powders are presented.  

YSZ and YSZ 
CERMET 
powders 

Green 
density 

compacts 
(g/cm3) 

Total shrinkage 
(%) 

(in argon, at 1400 
°C) 

TG 
weight 
losses 

(%) 

Final density 
(calculated) * 

(g/cm3) 

Final relative 
density (%) 

(calculated) * 

2Y (DET.) 2.50 16.7 0 4.33 72 

2Y 2.69 18.0 0 4.88 81 

2Y (PA) 2.84 18.1 6.5 4.83 81 

2Y+M (DET.) 3.37 16.7 0 5.83 97 

2Y+M (PA) 3.17 17.5 4.5 5.39 90 

MS-1M 3.20 15.1 0 5.23 87 

MS-2M 3.14 12.1 0 4.62 77 

MS-Y2M 3.16 11.2 0 4.51 75 

*The final density was calculated taking into account the wt.% losses recorded in TG analysis and considering 
that the theoretical density of all sintered pellets is 6.0 g/cm3. The variation is +/- 0.1 g/cm3. 
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In conclusion: 

1. All the YSZ powders under study, 2Y, 2Y (PA) and 2Y (DET.) have the expected m-t zirconia 

phases and the phases stabilization depends on the treatment of the ceramic powders; 

however, detoned powders 2Y (DET.) tend to have higher amount of t-phase than the 

milled ones. 

2. The morphology of the studied ceramic powders is also different, as expected; the 2Y and 

2Y (PA) powders were milled and atomized, which decreased the size of the isolated 

particles and created spherical agglomerates conferring good flowability to the powders. 

3. The green and sintered density of the 2Y and 2Y (PA) was higher than those of 2Y (DET.) 

powder, which revealed that the milled and atomized powders have better pressing and 

sintering features than the other samples. It was confirmed that the intentional addition 

of alumina during the INNOVNANO milling process for 2Y and 2Y (PA) powders improves 

the sinterability. 
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3.1.2. Metal alloy, M  

The metal alloy, designated as M, was used to produce the CERMETs under study in this work. 

The XRD pattern of the metal alloy is shown in Figure 3.7. The XRD pattern is coincident with the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 – XRD pattern for the metal alloy M under study in this work. The crystallographic phase that was 
identified was only the metal alloy. OY axis bar is in linear scale. 

 

The equivalent spherical diameter of the metal alloy grains, calculated by BET surface area, 

is shown in Table 3.6; this powder has a small surface area (~3 m2/g), so a large grain size, 3 to 5 

times superior than YSZ powders. Comparing the BET grain size with SEM micrographs (Figure 3.8), 

it is possible to conclude that the metal alloy agglomerates are composed of smaller particles, ~230 

nm (Table 3.6). CPS and Malvern particle size analysis were not conducted because these metallic 

powders do not disperse in water nor in ethanol. 

Thermogravimetric analysis, in atmospheric air, was also performed to understand the 

oxidation behavior of the metal alloy. The Figure 3.10 shows that the oxidation starts ~600 °C with 

a maximum gain of ~29 wt.% at 1250 °C.  
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Table 3.6 – BET surface area, grain size and crystallographic features of the metal alloy. 

Sample 
S 

(m2/g) 
dS 

(g/cm3) 
GBET 
(nm) 

XRD 

   

M 3.1 8.62 228    

 

M 

   
25.0 kV; 100x 25.0 kV; 1000x 2.5 kV; 4000x 

Figure 3.8 – SEM micrographs of the metal alloy. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 – SEM-EDS of the metal alloy. 
 

 
Figure 3.10 – TG and DTA of the metal alloy in air. 

1 

30 µm 

 

300 µm 

 

7.5 µm 
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3.1.3. CERMET powders produced by EDS 

Two CERMET powders produced by EDS in INNOVNANO, by re-detonation or double-

detonation of 2Y powder with metal alloy, were studied in this work: 2Y+M (DET.) and 2Y+M (PA) 

(see Table 2.1) which will be characterized following the same sequence and organization that used 

in the previous section for YSZ powders.  

Figure 3.11 presents the XRD patterns of these CERMET powders. 2Y+M (DET.) powder has 

more tetragonal zirconia phase and more defined and intense peaks than the 2Y+M(PA). A similar 

behavior was verified for the equivalent YSZ powders. A small peak from M is identified in these 

CERMETs, indicating the metal alloy presence. 

 

   
Figure 3.11 - XRD patterns for EDS-CERMET powders: 2Y+M (DET.) and 2Y+M (PA). The crystallographic phases 
that were identified are recognized with symbols: • for tetragonal ZrO2,   for monoclinic ZrO2 and * for the 
metal alloy M. (A) and (B) show the same data but with linear and logarithmic (base 10) scale bar in OY axis, 
respectively.  

 

Table 3.1 exhibits the phase composition calculated by Rietveld refinement with PowderCell 

software. The values presented in this table confirm that 2Y+M(DET.) CERMET powders have more 

t-ZrO2 phase than m-ZrO2 one, while 2Y+M (PA) CERMET powder have the opposite relation. The 

larger amount of m-ZrO2 phase in the 2Y+M (PA) is related with the milling process, similarly to what 

was observed for YSZ powders.  

The strain was also calculated for each phase by PowderCell software and it is possible to 

conclude that the presence of metal does not have a significant interference in the ceramic YSZ 

matrix, but in 2Y+M (PA) CERMET powder, the strain in the metal matrix is slightly higher. The 

calculated unit cell volume for these CERMETs is slightly higher than the ones from YSZ powders, 

especially for the m-zirconia phase in 2Y+M (DET.) CERMET powder. These powders were resultant 

from the EDS process followed by a thermal treatment, and the stabilized monoclinic phase can be 
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a result of fast, non-equilibrium phenomena, which would affect the crystallographic lattice and, 

therefore, the unit cell volume.  

Raman spectra of EDS-CERMETs is presented in Figure 3.12. The 2Y powder spectrum is 

represented for comparison. 2Y+M (PA) and 2Y+M (DET.) powders have very similar spectra, with 

almost no m-ZrO2 peaks. According with XRD patterns more peaks corresponding to m-ZrO2 were 

expected to be detected in 2Y+M (PA) sample. Moreover, the CERMET powders have shown less 

clear spectra than the YSZ ceramic ones, with less intense, broaden peaks, and the base line is not 

well defined. These effects can be caused by the metal presence. As known, pure metals do not 

present first-order Raman bands 96. When the primitive cell only contains one atom, the material 

will only present the so-called acoustic phonons that are not detected in a Raman spectrum. This 

can be the reason why the peaks are not well defined. The non-identified peaks could be from 

shifting in normal lattice and bonds of zirconia that could had occur because of the metal or yttrium 

oxide presence. 

 

 
Figure 3.12 - Raman spectra of EDS-CERMET powders (2Y+M (DET.) and 2Y+M (PA)). The ceramic powder 2Y 
is represented for comparison. The tetragonal zirconia peaks are identified with the values in red and the 
monoclinic zirconia ones with yellow. 
 

 

 

 

 

 

2Y+M (DET.) and 2Y+M (PA) CERMET powders SEM micrographs are depicted in Figure 3.13. 

These powders have similar morphology to the equivalent ceramic powders. This can indicate that 
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the metal in the CERMETs is well dispersed. 2Y+M (PA) CERMET powder tend to have slightly larger 

particles when compared to 2Y (PA). Almost perfect agglomerate spheres were observed in 2Y (PA) 

while in 2Y+M (PA) the agglomerates are more elongated and smaller. It is possible that the metal 

alloy harms the process of atomization and the particles tends to be agglomerated in elongated 

structures.  

 

2Y+M (DET.) 

   
25.0 kV; 1000x 25.0 kV; 1000x 25.0 kV; 40000x 

2Y+M (PA) 

   
25.0 kV; 100x 25.0 kV; 1000x 25.0 kV; 40000x 

Figure 3.13 - SEM micrographs of EDS-CERMET powders: 2Y+M (DET.) and 2Y+M (PA).  

 

SEM-EDS was performed in both 2Y+M (DET.) and 2Y+M (PA) CERMET powders, and the 

result can be seen in Figure 3.14. The areas that were used to perform that analysis are highlighted 

with red squares and numbers in the SEM micrographs. A small peak corresponding to metal was 

found in both samples. Note that in all SEM-EDS intensity graphs presented in this work, Y was 

never highlighted because we do not had enough precision to quantify it. The energy of Y is very 

close to the Zr one, and the amount of Y is very small. 

Figure 3.15 shows the impregnated polished ceramic (2Y, 2Y (PA)), CERMET (2Y+M (PA)) and 

metal (M) powders. 2Y and 2Y (PA) atomized agglomerates are approximately spherical and 2Y 

granules are dense, as previously suggested by Figure 3.3. On the contrary, the 2Y (PA) revealed 

some porosity and less uniform shapes than 2Y ceramic powder. The granules or agglomerates of 

M powder are dense and also spherical. Similar structures were found The same was verified for 

the 2Y+M (PA) powders presented similar agglomerates to those found in 2Y (PA). However, Figure 

3.15 micrographs confirmed that the atomized granules of 2Y+M (PA) are not uniform in size and 

shape: they tend to be elongated to bigger shapes and have a larger width of size distribution than 
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observer for 2Y (PA) powders. The inside porosity verified in (PA) powders (ceramic and CERMET) 

can explain the lower values of real density measured for that (PA) samples - Table 3.4. 

Microstructural analysis highlight that metal adding tends to elongate the agglomerates, and the 

organic binder adding is responsible for some inside porosity appearance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14 - SEM-EDS of EDS-CERMET powders: 2Y+M (DET.) and 2Y+M (PA). 

 

 

2Y (PA) 2Y+M (PA) 

  
25.0 kV; 300x 25.0 kV; 300x 

2Y M 

  
25.0 kV; 300x 25.0 kV; 300x 

Figure 3.15 - SEM micrographs of ceramic (2Y and 2Y (PA)), CERMET (2Y+M (PA)) and metal alloy (M) powders, 
impregnated in araldite and polished. 
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TEM micrographs of EDS-CERMET powders are shown in Figure 3.16, clearly showing that 

these powders are aggregates composed of nanoparticles.  

 

2Y+M(DET.) 

  
300.0 kV; 15000x 300.0 kV; 50000x 

2Y+M (PA) 

  
300.0 kV; 15000x 300.0 kV; 50000x 

Figure 3.16 – TEM micrographs of EDS-CERMET powders: 2Y+M (DET.) and 2Y+M (PA).  

 

The aggregate/agglomerate size of 2Y+M (DET.) and 2Y+M (PA) powders are represented in 

Figure 3.17 and d50 data and BET surface area analysis parameters are recorded in Table 3.3. The 

ceramic powder 2Y and CERMET powder 2Y+M (PA) have very similar agglomerate size distribution. 

However, 2Y+M (PA) CERMET powder has a smaller quantity of agglomerates between 0.8 and 10 

µm. These small size agglomerates can deteriorate the flowability although it could be eliminated 

with a correct sieving. The 2Y+M (DET.) CERMET powders revealed a bimodal dependence of the 

aggregate size. Most aggregates are in the range of 0.3 to 7 µm, but there are some others with 50 

to 120 µm. This can be an effect of the metal addition due to the possible aggregation of the 

particles. Despite that, the average aggregate size of the (DET.) CERMET powders is clearly smaller 

than 2Y+M (PA) agglomerate size, as expected, because (DET.) sample was not atomized and it was 

disaggregated with ultrasounds (confirmed by Malvern d50 values). The Table 3.3 shows the 

100 nm 

 

100 nm 

 

300 nm 

 

300 nm 

 



Emulsion Detonation Synthesis (EDS) Zirconia-based CERMETs: Chapter 3 – Results and discussion 
Universidade de Aveiro - INNOVNANO 

90 
 

morphologic characteristics of those powders which presented, as previously observed, a smaller 

grain size and larger agglomerate for (PA) products when compared to the (DET.) ones. 

 

 
Figure 3.17 - Aggregate/agglomerate size distribution of EDS-CERMET powders determined by Malvern. 

 

As in the case of YSZ ceramic powders, densities and flowability of 2Y+M (DET.) and 2Y+M 

(PA) EDS-CERMET powders were tested (Table 3.4). The bulk density of the 2Y+M (DET.) CERMET 

(0.450 g/cm3) is smaller than (PA) one (0.949 g/cm3), as a consequence of the milling and 

atomization steps. The tapped and real density of 2Y+M (PA), respectively 1.26 and 4.899 g/cm3, is 

slightly bigger than the 2Y (PA) one probably due to the effect of the metal content, that have a 

theoretical density superior to the ceramic matrix. The flowability of 2Y+M (DET.) EDS-CERMET 

powders was not measurable and even that of 2Y+M (PA) is low (see Carney index and Hausner 

ratio in Table 3.4), probably due to the small size agglomerates that were found in the Malvern 

curves (already discussed in Figure 3.17). The green density of 2Y+M (DET.) and 2Y+M (PA) CERMET 

uniaxially pressed compacts (3.37 and 3.17 g/cm3 respectively) is higher than the ceramics one, 

probably due to the higher density of the metal phase, and also due to better pressing features that 

the ductile metal phase can provide to the CERMETs. However, a change in behavior is observed: 

the green density of 2Y+M (PA) compact is smaller than that of 2Y+M (DET.), on the contrary to 

what was observed for 2Y and 2Y (PA) compacts. This can also be an effect of the small size of the 

agglomerates of 2Y+M (PA), already discussed.  

A gain in weight in CERMETs was expected, due to the observer oxidation of the metal alloy 

(Figure 3.10), and TG analysis was performed. However, the base line of TG curves was not well 

defined, and the amount of metal is very small in the produced CERMETs, which does not allow 
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precise conclusions about the weight gain in TG curves due to the metal oxidation (to be 

remembered that these analyzes were performed in air atmosphere). However, 2Y+M (PA) sample 

shows the weight loss due to the organic binder burnout, ~ 4.5 wt.%, until about 500 °C. 

The sintering behavior was studied by dilatometry (Figure 3.18). The 2Y+M (DET.) presented 

less densification in air, which is expected due to oxidation effects of the metal alloy. Moreover, 

the densification of 2Y+M (DET.) in air was not completed until 1400 °C. The analysis was repeated 

until 1500 °C but the sintering was not complete either. In the milled and atomized EDS-CERMET 

(2Y+M (PA) sample) the densification is not much affected by the atmosphere and the final 

shrinkage at 1400 °C is similar in air and argon. 

 

 
Figure 3.18 – Comparison of dilatometric curves in argon and air for: (A): 2Y+M (DET.) and (B) 2Y+M (PA) EDS-
CERMET compacts. In bold, the dilatometric curves and respective derivatives, with dots. Heating rate = 10 
°C/min. 

 

When comparing the dilatometric behavior of 2Y (PA), 2Y+M (DET.) and 2Y+M (PA) 

compacted powders in argon atmosphere, Figure 3.19 and Table 3.5, it is observable that the 

shrinkage starts earlier for 2Y (PA), followed by 2Y+M (PA) and then by 2Y+M (DET.) and the final 

shrinkage decreases in the same order. 2Y+M (DET.) presented a higher green density than 2Y+M 

(PA) and 2Y (PA), which lead to a higher final densification, despite the slightly smaller total 

shrinkage. This was not expected, based on the results shown for 2Y (DET.) and 2Y (PA) ceramic 

powders and indicates that both the metal and the processing of the powders influences the 

densification, but more important than that, the initial density of green compacts have a strong 

effect on the densification of the pellets. 
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Figure 3.19 - EDS-CERMET powders, 2Y+M (DET.) 2Y+M (PA), dilatometric curves (in bold) and respective 
derivatives (with dots) in argon. 2Y (PA) sample dilatometry and derivative curve is also shown for comparison 
purposes. Heating rate = 10 °C/min.   

 

 

In conclusion: 

1. The metal addition to YSZ powders does not revealed a significant interference in t/m 

phase stabilization. 

2. CERMET powders tend to be strongly aggregated, with larger aggregate size than in 

ceramic ones. 

3. The atomized CERMET powders revealed elongated agglomerates, when compared with 

only ceramic ones. The addition of pressing binders induces porosity inside the 

agglomerates. 

4. The metal presence in 2YSZ CERMET powders causes a delaying on the shrinkage curves 

to high temperatures (20-40 °), but denser samples are possible to obtain at 1400 °C, 

because the green density of CERMETs is higher than that of ceramic ones. 
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3.1.4. CERMET powders produced by mechanosynthesis  

The characterization of the mechanosynthesis powders: MS-CERMET powders is now 

presented. 

From the XRD patterns of the MS-CERMET powders (Figure 3.20), a small quantity of metal 

alloy M is identified, just like in the case of EDS-CERMET powders. Beyond that, two types of MS-

CERMET powders were prepared: one from the 2Y(DET.), that produced the powders designated 

as MS-1M and MS-2M samples, and the second MS-CERMET powder group from 2Y powder, that 

was designated as MS-Y2M. The first group presented higher amount of tetragonal zirconia than 

the one prepared from 2Y powder (MS-Y2M). This is in accordance with the initial ratio of m/t 

phases in the starting ceramic powders.  

Another variable was the increase of metal content in the group of MS-CERMETs prepared 

from 2Y (DET.) ceramic powder. The increase amount of metal addition to 2Y (DET.) ceramic powder 

does not seem to have a strong effect on the stabilization of phases of the CERMET powders since 

the content of t-ZrO2 in MS-1M and MS-2M is very close.  

The MS-CERMET powders XRD parameters are represented in Table 3.1, as for the previously 

analyzed samples. The XRD patterns of MS-CERMET powders presented low intensity and large 

peaks. In fact, MS-CERMET powders presented smaller crystallite size (12 and 13 nm) than the 

ceramic starting powders (56 and 57 nm), Table 3.1, which indicates that the milling was efficient. 

The calculated strain values show that the mechanosynthesis process induces a higher strain into 

the YSZ lattice, which was not verified in EDS-CERMET powders. 

 
Figure 3.20 - XRD patterns for MS-CERMET powders: MS-1M, MS-2M and MS-Y2M. The identified 
crystallographic phases are marked with symbols: • for tetragonal ZrO2 and   for monoclinic ZrO2 and * for 
the metallic phase. (A) and (B) show the same data but with normal and logarithmic scale bar in OY axis, 
respectively.  
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It was already observed that the Raman spectra of the EDS CERMET powders, with metal 

alloy, presented less defined peaks, more broaden and the base line was not stable (Figure 3.12), a 

behavior also found in MS CERMETs (Figure 3.21). Besides, the powder with less content of metal 

(MS-1M) revealed a spectrum with some monoclinic peaks, while the other MS and 2Y+M products 

only present wider peaks corresponding to the tetragonal phase. It seems that the metal 

camufflated the monoclinic phase peaks in Raman spectrum. 

 

 

 
Figure 3.21 - Raman spectra of MS-CERMET powders. The tetragonal zirconia peaks are identified with the 
values in red and the monoclinic zirconia ones with yellow. 

 

 

 

 

SEM micrographs of MS-CERMERTs (Figure 3.22) show that the particles size seems to be 

similar in all MS-powders but coarser aggregates are observed when compared to EDS powders 

(both ceramic, Figure 3.3, and CERMETs, Figure 3.13).  

SEM-EDS was performed in MS-1M and MS-2M (identified as 4 and 5 red numbers) and the 

results are shown in Figure 3.23. Several areas were tested, and a strong signal from metal, 

indicative of an isolated metal rich area, was never detected. i.e., areas with different morphology 

and/or chemical composition were not found. This fact can indicate a good dispersion of the metal.   

As in the previous studied powders, TEM micrographs (Figure 3.24) show nanosized particles 

inside larger aggregates.  

 

MS-2M 
MS-1M 
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MS-1M 

   
25.0 kV; 1000x 25.0 kV; 4000x 25.0 kV; 40000x 

MS-2M 

   
25.0 kV; 1000x 25.0 kV; 4000x 25.0 kV; 40000x 

MS-Y2M 

   
25.0 kV; 1000x 25.0 kV; 4000x 25.0 kV; 40000x 

Figure 3.22 – SEM micrographs of MS-CERMET powders: MS-1M, MS-2M and MS-Y2M.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.23 - SEM-EDS of MS-CERMET powders: MS-1M and MS-2M.  
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MS-1M 

  
300.0 kV; 15000x 300.0 kV; 50000x 

MS-2M 

  
300.0 kV; 50000x 300.0 kV; 50000x (bright field) 

Figure 3.24 – TEM micrographs of MS-CERMET powders: MS-1M, MS-2M.  

 

The aggregate size of MS-CERMET powders (Figure 3.25) show that the MS-powders have 

similar unimodal particle size distributions with a peak of maximum frequency around 1 µm. These 

distributions are similar, slightly dislocated to the left (coarser aggregate size) to those found in 2Y 

(DET.) sample (Figure 3.5). The MS powders tend to have wider peaks that the previous studied 

powders (EDS produced ones). The MS CERMET powders have the tendency to present some 

particles with size until 20 µm, which can be from strongly aggregated particles. That fact can affect 

the sintering behavior of the MS produced CERMET powders. 

By comparing the CPS d50 values (Table 3.3), MS-1M and MS-2M (that are powders from the 

same YSZ powder precursor, 2Y (DET.)) it is possible to conclude that average particle size measured 

by CPS in MS products is higher than in the starting powders. This can be an effect of the small 

dislocation to high values of the aggregate size distribution discussed in Malvern curves. The BET 

surface area and the respective calculated grain size leads us to conclude that the MS process was 

not so efficient as a milling step, because the BET surface area is smaller in MS powders than in the 
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initial ceramic powder, which can be an effect of the larger initial agglomerate size of the metal 

alloy and the difficulty of milling ductile powders 63. 

 
Figure 3.25 - Aggregate size distribution of MS-CERMET powders determined by Malvern 

 

Flowability, Hausner Ratio and Carr’s Index were not measured and calculated because MS-

CERMET powders did not present enough flowability to pass through the Hall funnel. With the 

analysis of the densities values (Table 3.4), it is possible to conclude that bulk density of the MS 

products is higher than of EDS-powders. The MS-Y2M real density is slightly inferior when compared 

to MS-1M and MS-2M, probably because the primary powder of that sample (2Y) also has a slightly 

inferior real density compared to the primary powder of the other MS products (2Y (DET.)). The 

tapped density was not recorded because it was not constant after 2000 hits. 

From the thermogravimetric analysis that were performed in MS-powders, no changes that 

deserve to be highlighted were detected. The dilatometric analysis in argon and in air atmospheres 

for the three MS-CERMET powders (Figure 3.26) shows that the densification is always facilitated 

by the inert atmosphere: it starts at lower temperature and the densification rates are always 

higher than in air (this applies for all analyzed powders, but especially for MS-CERMET powders). 

Despite that, the total shrinkage is smaller than in the 2Y (PA) or 2Y+M (PA). The curves also present 

a small shrinkage ~300 °C that may can come from the burning of the ethylene glycol used to 

lubricate the pressing mold.  
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Figure 3.26 – Dilatometric analysis in argon and air (at bold), and respective derivative curve (with dots) s of 
MS-CERMET powders; (A): MS-1M, (B): MS-2M, and (C): MS-Y2M. Heating rate = 10 °C/min. 

 

Figure 3.27 shows a comparison of the dilatometric curves of MS-powders tested in argon 

clearly showing that the higher the metal content, the poor is the densification. From the data of 

Table 3.5  despite the poor rheological features of MS-CERMETs compared with EDS ones, the green 

density of the MS-CERMETs was not affected, i.e., the green density of MS-CERMET was calculated 

as very similar to that of EDS-CERMET ones. This means that, even that the MS-CERMET powders 

have poor flowability and low homogenous aggregates, they have very good pressing features, 

without any pressing binder (the ethylene glycol was only used as lubricant). However, the final 

density of MS-powders was lower than the EDS-CERMETs ones. The measured green density of the 

MS-CERMET compacts is an average value, and based on rheological features and final densification 

values of these compacts, it is suggested that some kind of of non-uniform density, with large non-

densifiable pores may be present in the green compacts reducing the compact sinterability 97. Due 

to time constraints further analysis have not been pursued to clarify these observations. 
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Figure 3.27 – A: MS-CERMET powders, MS-1M, MS-2M and MS-Y2M, dilatometric curves (bold) and 
respective derivatives (with dots) in argon. B: Dilatometric analysis of EDS CERMETs already presented, here 
for comparison effects only. Heating rate = 10 °C/min. 

 

 

In conclusion: 

1. The analyzed CERMET powders, produced by EDS and MS, presented similar chemical 

compositions, except for the MS-1M that has less metal content than the others MS-

CERMET powders.  

2. The production method affected the morphology and rheology of the powders. While 

EDS-CERMET powders were very similar to EDS-ceramic powders in several parameters, 

as particle size, as expected, MS products presented changes in the aggregate size and, 

especially, in the densification behavior. 

3. The increasing in metal content (from %1 to %2) in MS-powders harmed their 

densification (especially in air) and the MS-Y2M powder, prepared from a different 

starting ceramic powder, did not revealed any improvement neither in densification or 

morphology.  

4. The rheology of MS-CERMET powders should be improved in order to achieve high 

densifications. The addition of alumina, based in what is done by INNOVNANO in EDS-

CERMET powders could be another way to improve densification of MS-CERMET powders.  
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3.2. Sintered products characterization 

The goal of this section is to characterize the sintered products prepared from YSZ ceramic 

and YSZ CERMET powders described in the previous sections, in terms of structure, microstructure 

and properties, namely mechanical, electrical and magnetic.  

Two ceramic powders, 2Y and 2Y (PA), and four CERMET powders, 2Y+M (PA), MS-1M, MS-

Y2M were pressed, calcined and sintered. The sintering cycle was the same for all the samples, i.e., 

heating up to 1400 °C, at 5 ˚C/min, holding time of 2 hours and cooling rate of 8 ˚C/min, in vacuum 

(15 to 20 Pa) and the detailed experimental procedure can be consulted in sections 2.1.2 and 2.1.3. 

The properties of YSZ sintered ceramics will be presented firstly, followed by the properties of YSZ 

sintered CERMETs. 

 

3.2.1. Structural and Microstructural characterization 

3.2.1.1. Ceramic parts 

The XRD analysis in sintered pellets were performed in broken pieces in order to avoid a 

milling process, which could influence the real tetragonal/zirconia ratio. As stated before (section 

1.2), the mechanical stress in partially stabilized tetragonal zirconia stabilizes the m-ZrO2.  

The XRD patterns of ceramic sintered ceramics (Figure 3.28 and Table 3.7) present the 

respective phase composition, strain and cell parameters accessed by Rietveld approximation in 

PowderCell software. Comparing the data from Table 3.1 relative to powders and the data from 

Table 3.7, relative to sintered bodies, it is clear that the sintering process brings the stabilization of 

t-ZrO2: varying from 23 and 19 wt.% t-phase to 93 and 97 wt.% for 2Y and 2Y (PA) sample, 

respectively. This is indicative that the ceramic system is efficient, i.e., after sintering, the tetragonal 

phase is stabilized, which is the main feature of mechanical resistant products of YSZ.  

The calculated crystallite sizes of t-ZrO2 (Table 3.7) is smaller than the monoclinic one, for 

both ceramic samples. For 2Y (PA), the crystallite size of both m and t-phases is near the double of 

that of 2Y. This can be related with the slightly larger particle size (d50) of 410 nm.  

Calculated strains are the same for all the ceramics and can be considered as near zero. The 

unit cell volumes are very close to the theoretical ones (140.7 and 67.1 𝐴̇3, for t-ZrO2 and m-ZrO2, 

respectively). Density parameters and densification features of sintered bodies are recorded in 

Table 3.8.  
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Figure 3.28 – XRD patterns of sintered ceramics (2Y and 2Y (PA)).  

 

Table 3.7 - Identified XRD phases, calculated wt.% of each crystalline phase and respective crystallite size, 
strain and unit cell volume for YSZ sintered bodies: 2Y and 2Y (PA). The parameters were calculated with 
PowderCell software. 

 Sintered 2Y and 2Y (PA) 

Parameter Phase 2Y Sint. 2Y (PA) Sint. 

wt.% of 
identified phase 

m-ZrO2 7 3 

t-ZrO2 93 97 

Crystallite size of 
phases (nm) 

m-ZrO2 60 32 

t-ZrO2 50 66 

Strain 
m-ZrO2 0.001 0.001 

t-ZrO2 0.001 0.001 

Unit cell volume 
(Ȧ3) 

m-ZrO2 140.7 141.6 

t-ZrO2 67.4 67.3 

 

Both ceramics are sintered to 97%. 2Y (PA) is the one that presented the smaller green 

uniaxial density (Table 3.5), but after isostatic pressing, the tendency is inversed: the green density 

of 2Y (PA) is higher (Table 3.8). The higher green density can be due to the binders due to the 

plasticizing features. The densification ratios that were found for sintered bodies are much higher 

than the ones accessed by dilatometric analysis. This may be due to the isostatic pressing step that 

was not performed in the dilatometric analysis pellets and that increased significantly the green 

density of the sintered bodies.  

In the case of the sintered bodies, the theoretical density was calculated considering the wt.% 

calculated by XRD and the respective theoretical density of each phase (dth (t-ZrO2) = 6.072 g/cm3; 

dth (m-ZrO2) = 5.816 g/cm3).  
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The weight losses were controlled during the calcination and sintering steps and the results 

are also presented in Table 3.8. The results are in accordance with the already discussed for the TG 

behavior of powders. This data is divided in green-calcined and calcined-sintered weight losses to 

understand that the amount of organic binder in (PA) should be ~5.6 wt.%, which is in accordance 

with the nominal value. The total value of losses for 2Y (PA) is in accordance with that ~6.5wt.% 

from the TG analysis. About 2 wt.% of the ~6.5 wt.% losses in 2Y (PA) can be due to some moisture, 

absorbed lubricant oil or other type of volatile impurities, because ~2 wt.% losses were recorded 

for 2Y.  

 
Table 3.8 – Density and after-sintered characteristics of ceramic sintered bodies. Green isostatic density; 
weight losses (green-calcined and calcined-sintered), geometric final density, respective densification 
calculated based on the theoretical density (calculated based on the XRD phases wt.%), and grain size 
measurements.  

 Sintered 2Y and 2Y (PA) 

Parameter 2Y Sint. 2Y (PA) Sint. 

Green density (dG) (isostatic) (g/cm3) 3.07 3.42 

Weight loss (%) 
Green-calcined 0.2 5.6 

Calcined-sintered 2.0 1.2 

Geometric (sintered) (g/cm3) 5.88 5.86 

Densification (%) 97 97 

Theoretical density (dth) (g/cm3) 6.05 6.06 

Grain size (nm) 
Average 281 238 

STD 26 8 

 

Figure 3.29 exhibits SEM micrographs of sintered ceramics. 2Y and 2Y (PA) have uniform 

microstructures with some residual porosity.  

The average and standard deviation of the measured grain size is presented in Table 3.8 and 

the grain size distribution is shown in Figure 3.30. The grain size of the sintered ceramics is in the 

range of hundreds of nanometers, between 230 and 315 nm. The grain size of 2Y (PA) is smaller 

than the 2Y one. Both particle size measurement (d50 and GBET) of the powders and the crystallite 

size of the sintered compacts are higher for 2Y (PA). This indicates that the smaller particles and 

crystallites tend to coalesce and result in microstructures with larger particle size. Moreover, the 

grain size distribution (Figure 3.30) revealed that 2Y grain size distribution is wider, with value larger 

than 1000 nm.  In conclusion, 2Y (PA) revealed a smaller average value (Table 3.8) and narrower 

grain size distribution. This can be an effect of binders burning out or the Malvern’s evaluated 

agglomerate distribution size. It was verified that 2Y (PA) presented a slightly less wide dispersion.  
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2Y 

  
25.0 kV; 6000x 25.0 kV; 30000x 

2Y (PA) 

  
25.0 kV; 6000x 25.0 kV; 30000x 

Figure 3.29 - SEM micrographs of sintered ceramics: 2Y and 2Y (PA).  
 
 

 

 
Figure 3.30 – Sintered ceramic samples grain size distribution (nm) in histograms. 
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3.2.1.2. CERMET parts 

The XRD patterns for the sintered CERMET samples are represented in Figure 3.31.  

In contrast to the XRD results from equivalent powders, no obvious peaks from the metal 

alloy neither related to extra phases were identified in the XRD patterns of the sintered CERMETs 

(both EDS or MS-produced). Some indefinite peaks can be found in MS-2M and 2Y+M (PA) sintered 

CERMETs that might be related with the metal alloy. Based on Rietveld analysis, the information 

presented in Table 3.9 show that some metal was detected, except for the MS-1M sample, the one 

with less amount in metal. These observations may be an indication of no strong oxidation of the 

metal alloy and some metal reaction either by incorporation in the YSZ lattice or volatilization 

during the sintering step. Important to note here that in some cases the metal content is very close 

to the detection limit of the equipment. 

In an attempt to confirm the above observations and to inspect the sintered surfaces grazing 

angle XRD (GAXRD) analysis was performed, but the resultant patterns were very similar to the 

presented in Figure 3.31. New peaks indicative of surface oxidation were also not detected.  

Interesting to note is that the percentage of t-ZrO2 and m-ZrO2 varied in sintered CERMETs, 

with the processing method and amount of metal. (Table 3.9). CERMETs with less amount of metal 

(MS-1M) have a high percentage of stabilized tetragonal zirconia (85 wt.%). The MS-CERMETs with 

%2 of metal presented around 44 wt.% of tetragonal stabilized zirconia. EDS-CERMET presented 

the lowest tetragonal content: only around 28 wt.% of t-ZrO2.  

 

 
Figure 3.31 – XRD patterns of sintered EDS-CERMET (2Y+M (PA)) and MS-CERMETs (MS-1M, MS-2M and 

MS-Y2M). 

MS-Y2M Sint. 
MS-2M Sint. 
MS-1M Sint. 
2Y+M (PA) Sint. 
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Table 3.9 – Identified phases, calculated wt.% of each crystalline phase and respective crystallite size, strain 
and unit cell volume for CERMET sintered bodies: 2Y+M (PA), MS-1M, MS-2M and MS-Y2M. The parameters 
were measured with PowderCell software. 

 Sintered EDS and MS-CERMETs 

Parameter Phase 2Y+M (PA) MS-1M MS-2M MS-Y2M 

wt.% of 
identified phase 

m-ZrO2     

t-ZrO2 28 85 55 52 

Metal     

Crystallite size of 
phases (nm) 

m-ZrO2 60 27 47 100 

t-ZrO2 30 38 32 84 

Metal 15 - 10 11 

Strain 

m-ZrO2 0.003 0.001 0.002 0.002 

t-ZrO2 0.002 0.001 0.001 0.001 

Metal 0.001 - 0.004 0.007 

Unit cell volume 
(Ȧ3) 

m-ZrO2 141.2 140.7 141.0 141.3 

t-ZrO2 67.4 67.2 67.3 67.4 

Metal     

 

The less amount of stabilized tetragonal phase in EDS-CERMET is not due to the metal 

because the MS-CERMETs have the same amount of metal alloy, and the tetragonal stabilization 

was not so low. For the specific case of MS-CERMETs, the higher the metal content, the less t- ZrO2 

is stabilized, comparing MS-CERMETs with %2 and %1 in metal alloy. Moreover, the magnetization 

results, discussed later on section 3.2.2., show that the real amount of metal in 2Y+M (PA) is lower 

than for MS-2M or MS-Y2M, which reinforces the idea that the lower amount of stabilized 

tetragonal phase in the EDS-CERMET is not due to metal presence, possible indicating a process 

dependence. 

In accordance with Table 3.9, the crystallite sizes of zirconia phases of 2Y+M (PA), MS-1M 

and MS-2M CERMETs are not significantly different, being slightly larger for MS-Y2M (Table 3.1). 

The metal alloy phase crystallite size is almost the same in all samples. The strain of the three 

identified phases in sintered EDS-CERMETs is between 0.001 and 0.003, which is low. In the MS-

CERMET sintered bodies, the strain in the metal lattice is higher, especially for MS-2M and MS-Y2M 

bodies. This may be indicative of some extra stresses in metal alloy crystalline lattice in the MS-

CERMETs with larger amount of metal.  

For CERMETs with %2 of metal, the unit cell volume of monoclinic phase is around 141 Ȧ3, 

which is slightly superior to the theoretical one (140,71 Ȧ3). The m-ZrO2 unit cell volume of MS-1M 

is the same as the theoretical. The tetragonal unit cell volume is almost the same for all CERMETs 

and very close to the theoretical (67,14 Ȧ3). The metal alloy unit cell volume is always inferior to 

the theoretical, which can explain the relatively high recorded strains. The unit cells volume 
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measurements indicate that there are no significant changes in the crystallite lattice of the 

CERMETs.  

The Raman spectra of the sintered CERMETs, including 2Y ceramic sintered pellet for 

comparison, are presented in Figure 3.32. These data are in accordance with XRD patterns. The 

samples that presented higher amount of tetragonal phase in XRD patterns, presented more 

intense peaks in Raman shifts, typical of that phase. The same occurs for the monoclinic phase. 2Y 

ceramics gives a Raman spectrum with only tetragonal typical peaks, which is in accordance with 

the 93 wt.% t-phase identified in XRD. The MS-1M sample is the one, from MS-CERMETs, with the 

closest spectrum to equivalent ceramic body and this means that it has the higher amount of 

tetragonal zirconia. MS-2M and 2Y+M (PA) presented some lower intensity tetragonal peaks, but 

monoclinic ones are very clear, which is also in accordance with XRD. The non-identified peaks (218 

and 560 cm-1) are, probably, contributions from the metal bonds. Peaks with similar Raman shifts 

were also present, but non-identified, in the powder samples. After sintering, the Raman spectra 

of CERMETs is more defined that in powders, which might indicate some metal lost (volatilization) 

during sintering. In fact, this is suggested by magnetic response analysis.  

 

 
Figure 3.32 - Raman spectra of sintered ceramic (2Y) and sintered CERMETs (2Y+M (PA), MS-1M and MS-2M). 
The tetragonal zirconia peaks are identified with the values in red and the monoclinic zirconia ones with blue. 

 

 

MS-2M Sint. 
MS-1M Sint. 
2Y+M (PA) Sint. 
2Y Sint.  
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Table 3.10 presents sintering parameters for the different CERMETs. The green density of the 

CERMETs is not significantly different, despite the fact that EDS-CERMETs include organic binders 

and MS-CERMETs not. However, changes occur after sintering. EDS 2Y+M (PA) was densified to 94 

%, while the best result for MS CERMETs is 85 % for MS-2M. The MS-1M has the second best MS-

CERMET densification (84 %) and MS-Y2M the worst one (75 %). In a first approximation, the results 

are in accordance with dilatometric analysis, with the densification of EDS-CERMET being slightly 

inferior to that of ceramics. Previously, it was proposed that the rheology of MS-CERMETs did not 

facilitate its uniform packing, harming the sintering process and, moreover, the metal presence 

delays the sintering.  

The isostatic pressing step was important in almost all the samples to reach higher 

densifications. Density gradients in MS-CERMET pressed pellets are possible due to the already 

discussed powders characteristics: not granulated and atomized, together with the strong 

aggregated powders and the wide aggregate size distribution. Powders morphologies and possible 

pressed density gradients did not allow sintered densifications over 85 %.  

To conclude, densification of EDS-CERMETs (2Y+M (PA)) is higher than for MS-CERMETs, with 

MS-Y2M less densified CERMETs bodies. To increase the densification in MS-CERMETs, the 

improvement of the powders rheology and the use of sintering additives (as the one used in 2Y, 2Y 

(PA) and 2Y+M (PA) compositions) may be considered. The metal alloy delayed the densification, 

once the EDS-CERMET presented a smaller densification that the one of ceramic products. 

 

Table 3.10 – Density and after-sintered characteristics of EDS and MS-CERMETs sintered bodies. Green 
isostatic density; weight losses (green-calcined and calcined-sintered), geometric final density, respective 
densification calculated based on the theoretical density (calculated based on the XRD phases wt.%), and 
grain size measurements. 

 Sintered EDS and MS-CERMETs 

Parameter 
2Y+M (PA) 

Sint. 
MS-1M 

Sint. 
MS-2M 

Sint. 
MS-Y2M 

Sint. 

Green density (dG) (isostatic) (g/cm3) 3.373 3.429 3.415 3.339 

Weight loss 
(%) 

Green-calcined 3.7 0.3 0.2 0.8 

Calcined-sintered 1.1 1.1 1.0 1.4 

Geometric (sintered) (g/cm3) 5.56 5.04 5.12 4.54 

Densification (%) 94 84 85 75 

Theoretical density (dth) (g/cm3) 5.94 6.03 6.01 6.03 

Grain size (nm) 
Average 251 248 252 220 

STD 17 8 22 11 
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The weight losses were slightly superior compared to the thermogravimetric recorded values, 

and this can be due to the use of more quantity of ethylene glycol during pressing step to avoid the 

demolding cracking that was frequent, especially in MS-CERMETs. The 2Y+M (PA) revealed 3.7 wt.% 

losses during calcination due to the binder burnout. A small volatilization of the metal can also 

contribute to that value. The wt.% losses are smaller than the one verified for ceramic parts, which 

is also in accordance with TG analysis. The ~1.5-2 wt.% losses of MS-CERMETs is due to 

contaminations, moisture or pressing lubricant, as already discussed for the ceramic parts. 

Figure 3.33 presents CERMETs thermal etched SEM micrographs. CERMETs micrographs 

revealed a different microstructure from the ceramic ones. Red circles in figures C and F of Figure 

3.33 are examples of different areas. A second phase is identified. EDS was performed in that areas 

and the result is shown in Figure 3.34: red circles areas are very rich in Ni and Fe, which are the 

components of the metal alloy.  

MS-CERMET sintered bodies also revealed big pores in agreement with the low densification 

above determined. This is typified by MS-CERMETs with the lowest density values of 75%, that 

reveals a high amount of big pores, sometimes larger than 1 μm, that are very difficult to close and 

hindered densification.  

The average grain size of CERMETs is between 209 and 270 nm, which is smaller than the 

equivalent ceramics (Table 3.10). These results are in accordance with the previous powder 

characterization: ceramic powders possess larger particle/aggregate size (Table 3.3) presented 

smaller grain size in sintered products. The smaller the aggregate size, the greater is the grain size 

growth.  

CERMETs grain size distributions are represented in Figure 3.35 and no significant differences 

deserve to be highlighted. 2Y CERMETs exhibit the widest grain size distribution. These observations 

corroborate those of other authors, that stated that YSZ is a good sintering system because 

nanoparticles do not grow too much, maintaining the grain size in the nanometric range 6. The 

present results also indicate that the metal addition up to 10 wt.% has no a significant influence on 

the final average grain size. 
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2Y+M (PA) 

   
25.0 kV; 6000x 25.0 kV; 15000x 25.0 kV; 30000x 

MS-1M 

   
25.0 kV; 3000x 25.0 kV; 15000x 25.0 kV; 30000x 

MS-2M 

   
25.0 kV; 3000x 25.0 kV; 15000x 25.0 kV; 30000x 

MS-Y2M 

   
25.0 kV; 6000x 25.0 kV; 15000x 25.0 kV; 30000x 

Figure 3.33  - SEM micrographs of sintered CERMETs: 2Y+M (PA), MS-1M, MS-2M and MS-Y2M. 
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Figure 3.34 – EDS spectra of some CERMET samples, performed on the red circles areas of Figure 3.33. 
 
 

 
Figure 3.35 - Sintered CERMET samples grain size distribution (nm) in histograms. 

 

Densification issues with CERMETs were related by other authors, namely José S. Moya et al 

7. These authors showed that 3Y-TZP/Ni nanocomposites can reach high densities (>98% theoretical) 

in a relatively large range of the compositions (up to 30 vol% of Ni). However, 3Y-TZP/Ni 

microcomposites present a significant fraction of porosity (5–15%) mainly associated to the metal 

microparticles. Metal nanoparticles usually present a faceted aspect, with curved lines flanking 

sharp interfaces, and a good epitaxy between Ni and ZrO2, in contrast with the porous structures 

found in microcomposites, which never displayed lattice matching in ZrO2/Ni interfaces. This can 

be the case of MS CERMETs. Possibly, and it was discussed before in section 0, the 

mechanoshynthesis was not effective, especially with the metal alloy particle size reducing, which 

could have cause the low densification of these products.  
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SEM-EDS maps were performed in the CERMET samples to analyze the metal distribution and, 

for comparison, 2Y (PA) ceramic sample was also examined (Figure 3.36). As is possible to see in 

Figure 3.36 , the distribution of Zr and Y elements is very uniform in 2Y (PA) sample. The fact that 

no strong and large green or red areas are presented indicates that there is a good dispersion of 

yttrium in zirconium lattice. In the products that had metallic alloy in their composition, the tracked 

elements were Zr from the ceramic phase and Ni from the alloy (Fe and Mo individual maps are 

minority elements and no strong intensity points were found in those element maps, that is why 

the individual maps of that elements are not shown).  

2Y (PA) 

  
Figure 3.36 – SEM-EDS map of 2Y (PA) sample (B) and respective micrograph that represents the analyzed 
area (A). Magnification: 3000x. 

 

SEM microstructures of the examined area (A), the overlapped SEM-EDS maps (B), the 

zirconium individual map (C) and the metal individual map (D) are presented bellow for EDS-

CERMET (Figure 3.37) and MS-CERMETs (MS-1M, Figure 3.38; MS-2M, Figure 3.39; MS-Y2M, Figure 

3.40). The SEM-EDS map of 2Y+M (PA) sintered body (Figure 3.37) indicates that there are metallic 

clusters or inclusions in the EDS-CERMETs. The secondary image, or the micrograph of the analyzed 

area (A), shows a second phase with different aspect from the matrix, and the SEM-EDS maps show 

that these areas correspond to a metallic phase (the respective Zr map (C) show black areas and 

the Ni map (D) show bright blue areas. The size of these areas in 2Y+M (PA) is between 1 and 3 µm.  

The MS-1M sintered body SEM-EDS maps (Figure 3.38) indicates that there are also metallic 

inclusions corresponding to black areas in Zr map (C) and blue bright areas in Ni map (D). These 

second phase areas have smaller dimensions than EDS-CERMET (less than 2 µm size), probably 

because the metallic content of the MS-CERMET is half that of the previous one; accordingly, MS-

2M (Figure 3.39), with the double amount of Ni alloy (equivalent to that of 2Y+M (PA)) show slightly 

larger metallic areas than the EDS-CERMET case. However, the observations indicate that the metal 

dispersion 2Y+M (PA) is slightly better than in MS-2M. 
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2Y+M (PA) 

  

  
Figure 3.37 – SEM-EDS map of 2Y+M (PA) sample (B) and respective micrograph that represents the analyzed 
area (A). Magnification: 3000x. 

 

MS-1M 

 

  
Figure 3.38 – SEM-EDS map of MS-1M sample (B) and respective micrograph that represents the analyzed 
area (A). Magnification: 3000x. 
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MS-2M 

 

  
Figure 3.39 – SEM-EDS map of MS-2M sample (B) and respective micrograph that represents the analyzed 
area (A). Magnification: 3000x. 

 

MS-Y2M CERMET were also analyzed (Figure 3.39). The metallic inclusions are, once again, 

present and their size and aspect is close to the 2Y+M (PA).  

 

MS-Y2M 

 

  
Figure 3.40 – SEM-EDS map of MS-Y2M sample (B) and respective micrograph that represents the analyzed 
area (A). Magnification: 3000x. 
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In conclusion: 

1. The sintering process brings the stabilization of t-ZrO2 in YSZ samples. 

2. MS-CERMETs with less amount of metal have a high percentage of stabilized tetragonal 

zirconia. EDS-CERMET presented the lowest tetragonal content, probably due to stress 

effects in the ceramic matrix of the composite.  

3. The densification of EDS-CERMET is lower than for ceramics, but higher than for the MS-

CERMETs. To increase the densification in MS-CERMETs sintering additives (as the one 

used in 2Y, 2Y (PA) and 2Y+M (PA) compositions), MS processing conditions and pressing 

binders may be considered.  

4. The metal addition up to 10 wt.% has no a significant influence on the final average grain 

size. 

5. Mechanosynthesis of INNOVNANO’s YSZ powders is a total novelty and the production of 

CERMETs through this method and raw materials is also a challenge.  

6. The increase in metal alloy content tends to increase the size of the metallic inclusions.  
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3.2.2. Mechanical characterization 

This chapter presents the results of the mechanical behavior (flexural strength and fracture 

toughness) of the YSZ CERMETs under study.  

The flexural strength testing was performed as previously explained in section 2.2.8.1. and 

the presented values are an average of, at least, 4 tested specimens. The results are summarized in  

Table 3.11 that includes also the amount of tetragonal zirconia, % densification and grain size of 

each specimen for comparison purposes. The flexural strength for YSZ ceramics are high (~1000 

MPa for 2Y and 1200 MPa for 2Y (PA)), and are in accordance with INNOVNANO’s standards: σflexural 

> 1000 MPa. Considering the standard deviation, both ceramic samples have almost the same 

flexural strength.   

As previously stated in section 1.2.1., the great mechanical properties of Y-TZP are due to the 

stabilization of tetragonal phase. The higher the amount in t-phase, the higher the mechanical 

resistance 7,20. However, the CERMETs flexural strength is very low, even the 2Y+M (PA) with 94 % 

densification. When comparing this EDS-CERMET with the ceramic samples, despite the 

microstructure of both samples is similar, the flexural strength decreased about 7 times. Despite 

the relative high densification value, 2Y+M (PA) showed the lowest amount of t-zirconia between 

all the sintered products. That fact should be highly responsible for the decrease in mechanical 

resistance, associated with the relatively small amount of porosity. The MS-CERMETs presented a 

content in t-ZrO2 phase between 50 and 85 wt.%. However, the densification of these products was 

always below 85 %. The relatively low amount of tetragonal phase, associated with the porosity, 

decreased the mechanical resistance of MS-CERMETs. In conclusion, both porosity and low amount 

of tetragonal phase were responsible for the low flexural strength recorded in CERMETs (EDS and 

MS samples).  

 

Table 3.11 – Flexural strength testing data, tetragonal phase wt.%, densification % and grain size of all the 
sintered bodies. 

Ceramic and CERMETs  
σflexural  
(MPa) 

t-ZrO2  
(wt.%) 

Densification 
(%) 

Grain size 
(nm) 

Si
n

te
re

d
 p

el
le

ts
 2Y 1046 +/- 260 93 97 281 +/- 26 

2Y (PA) 1248 +/- 190 97 97 238 +/-   8 

2Y+M (PA) 155 +/- 24 28 94 251 +/- 17 

MS-1M 165 +/- 24 85 84 248 +/-   8 

MS-2M 125 +/- 26 55 85 252 +/- 22 

MS-Y2M 260 +/- 70 52 75 220 +/- 11 

 



Emulsion Detonation Synthesis (EDS) Zirconia-based CERMETs: Chapter 3 – Results and discussion 
Universidade de Aveiro - INNOVNANO 

116 
 

An additional experiment should be considered to understand how the metal/ceramic 

interfaces affect the stabilization of tetragonal phase and the mechanical resistance mechanisms.  

Moreover, Pecharromán and Patscheider explained that the hardness of a nanocomposite of nickel 

and YSZ must be directly related to the distribution of Ni particles into types of populations. 15 nm 

nickel nanoparticles must be responsible for composite hardness increase. It is well known that for 

very small nanoparticles dislocations are thermodynamically unstable, thus, in nanostructured 

systems with amorphous matrices, plastic deformations take place through grain boundary sliding. 

Additionally, the two main plastic deformation mechanisms on ceramic matrix (dislocation 

displacement and grain sliding) will be hindered by the presence of Ni nanoparticles. The effects of 

these nanoparticles on zirconia can be stated as pinning of dislocations at the interface, as well as 

blocking of the tetragonal zirconia grain sliding hindered by hard Ni nanoparticles laying between 

zirconia grains 6,52. This make us conclude that the inclusions, even with a few microns, are not 

indicative of a mechanical resistance increase. In conclusion, tetragonal phase should be stabilized 

in CERMETs and the metal alloy should be well dispersed, within nanometer size, in order to have 

an improvement on mechanical properties of the CERMET.  

As previously said, in a composite, if the ductile phase inclusions are weakly bonded to the 

ceramic matrix, when mechanical requests happen, the cracks will propagate along the 

ceramic/metal interface, and the contribution of the ductile particle to improve the toughness of 

the final dense composites will be negligible. This weak bonding was observed in composites of 3 

mol% yttria tetragonal partially stabilized zirconia (3Y-TZP) with nickel. The addition of Ni particles 

(less than 30 vol.%) to 3Y-TZP matrix did not increase the toughness of the composites in the case 

of Moya et al. The electronic structure of the interfaces must be the reason for the weak ZrO2/Ni 

interface compared with Al2O3/Ni 7. 

Table 3.12 exhibits the Vickers Hardness (HV) of the EDS ceramics (2Y, 2Y (PA)) and CERMET 

(2Y+M (PA)) and the fracture toughness determined by Palmqvist method 29. The hardness values 

of the EDS ceramics and CERMET are very close and is in accordance with other authors 

measurements 6. The fracture toughness of the ceramics is equivalent, with almost the same 

standard deviation, and the fracture toughness of 2Y+M (PA) is very low, compared with the 

previous ones. As 2Y+M (PA) presented a very low flexural strength, HV1 was measured, instead of 

HV10 and HV30. The HV of MS-CERMETs was not measured due to the absence of a flat uniform 

surface related to the high amount of porosity. The mechanical properties data allow the conclusion 

that, in fact, the sintering process was not effective to confer high mechanical resistance to the 

CERMET samples. 2Y+M (PA) sample is a CERMET with very low fracture toughness and flexural 
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strength due to the low amount of t-stabilized phase and residual porosity (~6 %). The MS products 

have very low flexural strength and the fracture toughness was not possible of being evaluated 

because the low amount of t-phase and the low densification percent.  

 

Table 3.12 – Vickers hardness (HV) and fracture toughness (For HV1, HV10 and/or HV30 indentations) of the 
sintered pellets.  

 HV (GPa) 
Fracture toughness (KIC) (MPa.m1/2) 

Calculated by: 

Sample 1 10 30 HV1 HV10 HV30 

Si
n

te
re

d
 

p
e

lle
ts

 2Y - 12.1 11.8 - 18 +/- 3 13 +/- 1 

2Y (PA) - 12.0 11.6 - 18 +/- 3 13 +/- 1 

2Y+M (PA) 11.0 - - 5 +/- 1 - - 

 

This results show that, either the metal dispersion was not effective and it harmed the 

flexural strength, because the metallic inclusions were weak zones; the sintering cycle was not 

effective, creating cracking, and hindering the t-ZrO2 stabilization; MS-CERMET powders needed an 

extra processing step like some kind of milling, possibly in water, to homogenize it. The first 

hypothesis is declined by the SEM-EDS maps that shown that, despite having micrometer size 

inclusions, the dispersion of the metal was not bad; and the solution for the second hypothesis can 

be a changing in the sintering cycle, reducing the heating and cooling rate, and possibly, increasing 

the dwell temperature and/or time; but more important than that, it is important to understand 

how is possible to maintain the stabilization of t-ZrO2 at high wt.% values in CERMETs, which was 

not the case (Table 3.9). 

Kondo et al. have stated that dispersed Ni nanoparticles within YSZ, specially, tetragonal-YSZ, 

leads to remarkable improvement of fracture strength (1900 MPa) for systems with 1 to 2 vol.% of 

Ni 47. To have a good dispersion of metallic phase and to keep the amount of t-phase in high 

percentages, Kondo et al. composites were produced by the internal reduction method. This 

method implies the mixing in a solution and after that a sintering reducing process that guarantees 

a good Ni dispersion in the partially tetragonal stabilized zirconia 47.  

In the present composites, or CERMETs, it seems that the destabilization of the tetragonal 

phase is due to tensions introduced by the metallic inclusions. In fact, it was frequent to find cracked 

samples after sintering, as exemplified by Figure 3.41, indicating a possible high level of stresses in 

the body released via cracking during the cooling process.  The metal micro-inclusions may have 

induced tensions on the ceramic matrix during shrinkage, which, as previously described, will 

stabilize the monoclinic phase.  



Emulsion Detonation Synthesis (EDS) Zirconia-based CERMETs: Chapter 3 – Results and discussion 
Universidade de Aveiro - INNOVNANO 

118 
 

 

 
Figure 3.41 – Cracked sintered CERMET of 2Y+M (PA).  

 

In conclusion: 

1. Several factors can affect the mechanical behavior of YSZ ceramics, that include the m/t 

phases ratio, porosity, defects, inclusions, among others; 

2. The presence of the metal alloy in the current EDS-CERMETs affects markedly the ratio 

between m/t phases, decreasing considerably the tetragonal phase; hence the flexural 

strength of EDS-CERMETs decreases when compared with the flexural strength of 

equivalent YSZ ceramics; 

3. We hypothesized that the reasons for the decrease of the tetragonal phase may be 

related with the internal local stresses created by the metallic particles during 

densification, being released during cooling, as clearly demonstrated by the cracked 

CERMETs; 

4. Our results also clearly show that internal stresses caused by metallic inclusions and 

consequent transformation to the monoclinic phase have a more determinant impact in 

the overall mechanical properties than porosity. 
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3.2.3. Thermal and electrical conductivity 

The electrical resistivity (AC)was measured for 2Y, 2Y+M (PA), MS-1M and MS-2M sintered 

pellets. The resistivity curves are represented in Figure 3.42 and the electrical permittivity was 

calculated for a fixed frequency, at 10 kHz. Permittivity and thermal are presented in Table 3.13.  

 

 
Figure 3.42 – Resistivity as a function of frequency for ceramic 2Y, and CERMETs: 2Y+M (PA), MS-1M and MS-
2M.   

 

There are no significant differences in the variation of the electrical resistivity with the 

frequency for all the samples. As the frequency increases the electrical resistivity decreases. The 

highest resistivity was observed for MS-2M (~25 MΩ.m) and the lowest for 2Y (~7.5 MΩ.m) (Figure 

3.42). CERMETs present a higher resistivity than ceramics. Permittivity varies between 53 and 39 

for the different CERMETs. The literature reports permittivity for YSZ ceramics at room temperature 

varying between around 30 11. The different values here obtained are directly related with the 

presence of the metallic inclusions and porosity. Depending on the concentration of the metallic 

inclusions and their percolation threshold a Maxwell-Wagner polarization may respond for the 

increase of the permittivity in the presence of the metal alloy. However, it is important not to 

discard the detrimental effect of the porosity on the permittivity of the CERMETs. Interesting would 

be also to consider the role of m/t phases in the dielectric response. 

The thermal conductivity average and standard deviation are a result of 4 measured samples, 

with 5 measurements in each sample (Table 3.13). The average values are very close to each other, 

which leads to the same conclusion that the metal addition was not effective in increasing the 

thermal conductivity. 

 

MS-2M Sint 
MS-1M Sint. 
2Y+M (PA) Sint. 
2Y Sint. 
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Table 3.13 – Room temperature thermal conductivity and permittivity (at 10 kHz) for sintered ceramics (2Y 
and 2Y (PA) and CERMETs (2Y+M (PA), MS-1M and MS-2M). 

Sample 
Permittivity (ε) 

At 10 kHz 
Thermal conductivity (k) 

(W/mK) 
Si

n
te

re
d

 Y
SZ

 
an

d
 

C
ER

M
ET

s 
2Y 53 +/- 1 2.7 +/- 0.2 

2Y (PA) - 3.4 +/- 0.1 

2Y+M (PA) 46.26 +/- 0.02 3.2 +/- 0.2 

MS-1M 37.01 +/- 0.01 3 +/- 0.2 

MS-2M 39.01 +/- 0.01 3 +/- 0.1 
 

Several authors 98–100 have shown that the thermal and electrical conductivity increase is not 

linear in CERMETs of metal and YSZ, as suggested by the mixture rules. A simulation for the thermal 

conductivity of ceramic/metal CERMETs was done based on the McLachlan model, assuming a 

randomly dispersed conductive phase (metal), based on the study of Vitorino et al.98. The simulation 

was done considering a critical factor (fcr) of 0.15, 0.2, 0.25 and 0.3, that is the critical volume to 

ensure percolation. The thermal conductivity of the ceramic matrix, YSZ, was considered to be 2.5 

W/mK (11) and the thermal conductivity of the metal alloy was considered to be 35 W/mK (101).  The 

simulation graph is presented in Figure 3.43. For CERMETs with less than 10 wt.% it is possible to 

conclude that this amount is clearly insufficient to affect, in a significant way, the thermal 

conductivity. Other authors have shown that the same behavior is applied for electrical conductivity, 

which also explains the observed results 99,100. 

 
Figure 3.43 – Simulation for several critical factor of the thermal conductivity of the CERMET (k) versus the 
volume fraction of metal 98. 
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3.3. Magnetic characterization 

Magnetic response was tested by VSM, as explained in section 2.2.8.. In order to characterize 

the powder and sintered compacts CERMETs, firstly, 2Y and M powders, and 2Y and 2Y (PA) sintered 

bodies were tested. Figure 3.44-A shows the magnetic M-H loops for ceramic powders and sintered 

bodies, and B, the M powder magnetic response. The 2Y powder, as a metal oxide by nature, show 

a typical diamagnetic response. 2Y sintered ceramic presented a paramagnetic typical response. 

These observations indicate that the sintering process has changed the magnetic behavior of 2Y 

from diamagnetic to paramagnetic. 2Y (PA) sintered bodies do not present any characteristic loop 

and the total magnetization of this sample is close to zero. 

 

 

 

 

  
Figure 3.44 – VSM magnetization curve of A: 2Y powder, 2Y and 2Y (PA) sintered pellets; B: metal alloy (M).  

 

Figure 3.45 shows the M-H loops of powders and sintered bodies comparison, namely: (A): 

2Y+M (PA); (B): MS-2M; (C): MS-1M; and (D): comparison of the sintered compacts of the three 

analyzed samples. The magnetic characteristics (magnetization and coercivity) of the samples are 

summarized in Table 3.14. Note that the coercivity was calculated considering the normal tendency 

of the curves, scorning the close to zero variations in M-H loops. For all the compositions, a decrease 

in the magnetic saturation of the sintered bodies was verified, when comparing to the respective 

non-sintered powders. The sintering process, in spite of being performed in low content oxygen 

atmosphere, induced some changes in the magnetically responsive metal alloy, possibly a partially 

oxidation or even some volatilization, as discussed before. 
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Figure 3.45 – VSM magnetization curves for CERMET samples: powders and sintered compacts. On the 
bottom of the image, there are two amplified graphs of the central area of the main graph in order to evaluate 
the coercivity of the samples. 

Powders       Sintered 

A      B 

C      D 

MS-2M Sint 
MS-2M 

2Y+M (PA) Sint 
2Y+M (PA) 

MS-1M Sint 
MS-1M 

MS-2M Sint 
MS-1M Sint. 
2Y+M (PA) Sint. 
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However, the MS powders are the ones with larger magnetization, specifically, the MS-2M 

powder is the one with the higher MS value. The MS-2M and 2Y+M (PA) powders should have 

present the same magnetization, once they have the same nominal wt.% of metal alloy. MS-1M 

CERMET powder presented, approximately, half of the MS-2M magnetization, which was the 

expected, because the metal content is in the same proportion. The low magnetization in the EDS 

powder, 2Y+M (PA), cannot be interpreted as smaller metal quantity that in MS. 

The expanded graphs of Figure 3.45 were used to measure the coercivity of the samples. No 

superparamagnetic behavior, i.e., with magnetic response but coercivity equal to zero, was found 

in the studied compositions. The study of magnetic response at 5 K for 2Y+M (PA) indicates that at 

low temperature, the magnetic response is delayed, making the M-H loop wider (Figure 3.46). As 

phenomena’s are delayed, materials dipoles have time to align with the field, so the magnetic 

response is increased, but the maximum magnetization is not achieved with low intensity fields.  

 

  
Figure 3.46 – VSM magnetization curve of 2Y+M (PA) sample at room temperature and 5K, on the left. 

Magnification of the M-H loop on the right.  

 

It is possible to see that the coercivity (Table 3.14) of 2Y+M (PA) powder is minor than for MS 

powder samples. This can indicate that the particle size of metal particles is smaller in 2Y+M (PA) 

then in MS powders 87. This is confirmed by CPS and BET analysis.  

The coercivity of the sintered samples are very close between each other, which did not 

happen in powders, and can be an indication that, in the sintering process, the metallic particles 

grow until a more or less constant grain size for all samples (by SEM-EDS maps, the estimated values 

of the inclusion size are close, 2-4 μm, and the calculated crystallite size of the metal phase was 

also almost constant 10-15 nm - Table 3.9).  

The metal vol.% calculated by Eq. 24 (2.2.8) and respective wt.%, calculated based on the 

theoretical densities of both powders and sintered compacts (based on XRD phases wt.%), are also 
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presented in Table 3.14. For 2Y+M (PA), the calculated amount of metal is smaller than the nominal 

one both in the powder and sintered bodies. This indicates that the metal is partially oxidized or it 

occur some volatilization during sintering. For the MS-powder samples, the calculated amount of 

metal is higher than the nominal, which might be indicative that contaminations from the steel 

bowl could have occurred. After sintering, the metal amount in MS-sintered pellets is close to the 

nominal one. The magnetic response results are in accordance with previous studies 47,48. 

 
Table 3.14 – Magnetic features of powders and wt.% of metal alloy calculated based in equation 24. 

 Hc Ms 
Vol.% (M) Wt.% (M) 

Wt.% (M) 

Sample T kA/m emu/g Theoretical 

M Powder       

2Y 
Powder      

 Sintered      

2Y (PA) Sintered      

2Y+M (PA) 
300 K 

Powder      
 

Sintered      

2Y+M (PA) 
5 K 

Powder      
 

Sintered      

MS-1M 
Powder      

 
Sintered      

MS-2M 
Powder      

 
Sintered      

 

 

In conclusion: 

1. The sintering process induces the oxidation and/or volatilization of the metal alloy. 

2. A small amount of metal (up to 10 wt.%) allows the production of CERMETs with magnetic 

response. 
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In this work, nano-sized powders and sintered compacts were prepared and characterized. 

Two different kind of products were studied: ceramic and CERMET ones. The CERMETs were 

obtained by mixing the same ceramic as the non-CERMET with a metal alloy. The CERMETs were 

produced by two different methods: EDS, industrial property of INNOVNANO, and 

mechanosynthesis, in University of Aveiro.  

The powders characterization was performed through crystallographic, chemical, 

morphological and physical (density, flowability, thermal/electrical behavior and magnetization) 

characterization. This allowed us to obtain a good knowledge of the features of the ceramic 

powders produced by different variants from the same main production method. The sintered 

pellets were also characterized by the same techniques, except flowability, with weight losses and 

shrinkage control and thermal and electrical responses testing. 

The XRD crystallographic analysis allowed us to conclude that the milling process to which 

EDS powders were subjected after detonations tends to stabilize the monoclinic zirconia phase. The 

mechanosynthesis process also tends to stabilize the monoclinic phase in powders. In ceramic 

powders, after sintering, the stabilization is inverted: more tetragonal zirconia is stabilized. 

However, the tetragonal stabilization after sintering in CERMETs is not so trivial as in ceramics. The 

result of t-phase content in 2Y+M (PA) was especially low. In conclusion, the presence of the metal 

alloy seems to harm the stabilization of tetragonal zirconia, especially in the EDS-CERMET; in MS-

CERMETs, the more amount of metal the most evident is this effect. Stresses associated with the 

relatively high size (micrometer scale) of the inclusions of the metal seem to be the reason for the 

decrease in t-phase.  

CPS particle size testing allowed more accurate measurements than with Malvern equipment. 

It is possible to conclude that the milling process of EDS-powders was efficient and, moreover, the 

(DET.) powders have a relatively large size distribution, with an average aggregate size of ~1 μm, 

while the milled and atomized powders have average agglomerate sized around 25-75 μm. The 

ceramic atomized and milled EDS powders (2Y and 2Y(PA)) had a very good flowability, which is not 

found in (DET.) products and in CERMET powders, especially in mechanosynthesis ones. Moreover, 

the BET surface area and the respective calculated grain size leads us to conclude that the MS 

process was not efficient as a milling step, because the BET surface area is smaller in MS powders 

than in the initial ceramic powder, which can be an effect of the larger initial agglomerate size of 

the metal alloy, and also due to the ductile features of the metallic phase. A further homogenization 

and/or granulation steps would be necessary to make MS powders have a good flowability. The use 

of a previously milled and atomized powder (2Y) instead of a just detoned one (2Y (DET.)) to 
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perform the mechanosynthesis with the metal alloy (giving MS-Y2M sample) did not revealed any 

improvements in densification.  

The green and final density of milled and atomized powders are higher than the only detoned 

powders. The first group of powders presented better pressing and sintering features. It was 

confirmed that the intentional addition of alumina during the INNOVNANO milling process 

improves sintering behavior. 

TEM micrographs proves that the studied powders are made of nano-sized particles, despite 

the physical particle size techniques only identified around micron sized structures – aggregates. 

Moreover, SEM micrographs showed that the atomized agglomerates of only ceramic samples have 

a homogenous distribution, with a spherical shape. The atomized CERMET powders are more 

irregular and tend to have more elongated agglomerates.  

Despite the rheology of MS-CERMETs powders is not as good as EDS-powders, the bulk and 

green density after pressing is higher than the EDS-powders ones. This means that the pressing 

features of MS-powders are very good, but a gradient of densities can be present (this was not 

evaluated), because the final densification of MS powders was not so efficient as EDS powders. The 

granulation and atomization step, associated with the addition of alumina, in the EDS produced 

powders had a strong influence in the sintering behavior of 2Y, 2Y (PA) and 2Y+M (PA) samples. 

These steps were not performed in MS-powders, and that was revealed in the final densification.  

The argon sintering was very important to keep the low amount of oxygen inside the furnace. 

The magnetization results showed that the metal was only partially oxidized or volatized. If, instead 

of a close to reductive atmosphere, a normal or oxidant atmosphere were used during sintering, 

the metal would be fully, or almost fully, oxidized, and the densification of CERMETs would be 

strongly harmed. Moreover, the magnetic response would be eliminated, because the metal oxide 

has an antiferromagnetic behavior. The magnetization curves also indicated that there is some 

contamination with iron during mechanosynthesis. These magnetization results are the main result 

of this work, once it was shown that just a small amount of metal addition (up to 10 wt.%) in a non-

magnetic matrix produced CERMETs with a relatively strong magnetic response, that allow 

detectability and removal of eroding parts in a working piece.  

The ceramic powders were the ones with highest densification, indicating that the metal alloy 

addition difficult or delays the process, as suggested by dilatometric analysis. EDS-CERMET (2Y+M 

(PA)) densification is higher than for the MS-CERMETs, being MS-Y2M the less densified part. 

Probably, the granulation step and the addition of alumina, as done by INNOVNANO to EDS-ceramic 

and CERMETs, would be necessary as well to densify MS-CERMETs. The grain size of ceramics is 
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slightly higher than that of CERMET sintered products and the metallic phase tends to precipitate 

in micrometer inclusions. SEM-EDS maps of sintered products proved that the metal alloy is 

dispersed in ceramic matrix in small inclusions (1-4 µm). The EDS-CERMET revealed a slightly better 

dispersion of the metal compared with MS-1M. The CERMETs of MS with %2 of metal alloy revealed 

slightly bigger inclusions.  

The weak interfaces, the micrometric size of metallic inclusions, the low amount of tetragonal 

phase and the low densification in MS-CERMETs worked together to produce sintered bodies with 

very low flexural strength. A future study in necessary to understand which kind of tensions are 

between the ceramic matrix and the metallic inclusions that do not allowed the stabilization of t-

phase.  

In terms of thermal and electrical conductivity, it was shown that the metal content was very 

low to allow a significant increase in both of that features. The porosity and m/t phase ratio were 

the responsible for the recorded changes.  

 

Further work: 

1. Mechanosynthesis studies to achieve the more efficient parameters to promote a good 

particle size reduction and a sharper aggregate size distribution. 

2. Granulation and/or atomization step for MS-powders. 

3. Preparation of samples with more metal content to understand the sintering behavior 

and if thermal and electrical conductivity are improved. 

4. Perform studies to increase the densification and mechanical properties of CERMET 

samples. 

5. Studies to understand what is the phenomena that harmed the stabilization of t-phase 

in CERMETs.  
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