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resumo 
 

 

A presente tese tem como objetivo adquirir uma compreensão aprofundada 
acerca do processo de cristalização de vidros à base de silicato de lítio com a 
adição de pequenas quantidades de outros componentes. Os principais 
componentes investigados neste estudo são os óxidos de Mn, Al, B e P. 
Estudaram-se os efeitos de cada um destes componentes na estrutura do 
vidro, na separação de fases líquido-líquido, nos processos de nucleação e 
crescimento de cristais, na microestrutura e no conjunto das fases cristalinas 
formadas. Os vitro-cerâmicos utilizados neste estudo são produzidos a partir 
de amostras tridimensionais de vidro fundido e vertido em moldes, ou a partir 
de pós de frita obtida por arrefecimento dos fundidos em água. 
 
 
A adição de óxidos de Mn aos vidros de silicato de lítio resulta na criação de 
entidades moleculares individuais de Mn. Por conseguinte, estas entidades 
moleculares dificultam o todo o processo de cristalização do vidro. Óxidos de 
Al e B são incorporados na rede de vidro como formadores de rede. Estes 
componentes, por conseguinte, também diminuem a tendência do vidro para a 
cristalização. O P2O5 também desempenha um papel de formador de rede do 
vidro. No entanto, ele aumenta a tendência do vidro para a cristalização. Dá-se 
uma ênfase especial ao estabelecimento de correlações entre a estrutura do 
vidro e seu comportamento na cristalização. Estes esforços levaram à 
introdução de um novo modelo matemático baseado na mecânica estatística 
para descrever a estrutura de vidro. O modelo foi desenvolvido principalmente 
para silicatos binários e mais tarde estendido para composições de silicatos 
multicomponentes. 
 
 



xii 
 
 

  



xiii 
 
 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 

glasses, glass-ceramics, lithium silicate, glass structure, crystallization. 
 

abstract 

 
The present thesis is aimed at gaining an in-depth understanding of the 
crystallization process in multicomponent lithium silicate based glasses when 
other components are added in small amounts. The added components 
investigated in this study are oxides of Mn, Al, B and P. The effects of each of 
these components on glass structure, liquid-liquid phase separation, crystal 
nucleation, crystal growth, microstructure and phase assemblage are studied. 
The glass ceramics used in this study are produced by both bulk glasses 
obtained by melt quenching as well as by powder methods from glass frits. 
 
Oxides of Mn when added to lithium silicate glasses result in creating individual 
Mn molecular entities. Consequently, these molecular entities hinder the overall 
crystallization ability of the glass. Oxides of Al and B are incorporated into glass 
network as network formers. These components consequently decrease the 
overall crystallization ability of the glass.  P2O5 is also incorporated into glass 
network as network former. However, it increases the overall crystallization 
ability of the glass. Particular emphasis is given to establishing correlations 
between glass structure and its corresponding crystallization behaviour. These 
efforts led to introducing a new mathematical model based on statistical 
mechanics for describing the glass structure. The model was primarily 
developed for binary silicates and later on extended to multicomponent 
silicates. 
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1 Introduction 

The works of the LORD are great, sought out of all them that have pleasure therein. 

(Psalms 111:2)
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1.1 Background 

The discovery of glass-ceramics (GCs) by S. D. Stookey in 1950s, invoked huge 

interest in these materials from both academic as well as industrial areas. Today, the 

usage of these materials covers a wide spectrum of applications.
1
 The academic research 

in this area can be divided into two categories according to the glass systems studied: 

(1) stoichiometric and binary systems and (2) multicomponent systems. Due to the 

relative simplicity of the first category of glass systems, deeper fundamental studies 

were possible, addressing various aspects of glass crystallization. However, there are 

still several open problems even in this area which needs further light to be shed upon.
2–

4
 Coming to the second category of glass systems, the compositions studied so far 

typically came from particular applications. These glass systems usually have more than 

five components, mostly non-stoichiometric and have nucleating agents present in them. 

Most of the studies in this area are primarily focused on elucidating the role of a 

component(s) on, 

 The final properties of GCs correlating with its microstructure and/or phase content 

 Kinetics of the overall crystallization 

However, due to the extreme complexity of such multicomponent systems, these 

studies severely lack in providing any understanding of the mechanism on how these 

component(s) influence the crystallization process itself. Studies like these mainly 

benefit optimizing the process parameters or in fine tuning of the chemical 

compositions in already developed GCs but, hardly contribute to the development of 

new GCs. This is similar to the plight of glass research, where advancements in 

fundamental understanding lag far behind that of technological advancements.
5
 As a 

result, there exists a lack of knowledge in this area and due to this, a study done by 

Montazerian et al.
6
, on the commercialization of GC research, clearly showed a decline 

in the number of patents in last decade. This is a concern and thus, industry also urges 

for a renewed focus on fundamental physics and chemistry governing GCs.
7
  

Therefore the goal of this doctoral work is to enhance our understanding of glass 

crystallization in multicomponent systems. For this, lithium silicate system has been 

chosen and role of the components Mn, P, Al and B which have practical interest was 
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investigated. Particular attention was given to the understanding the structure and 

thermodynamics of the liquid phase. 

1.2 Objectives 

The main objective of this research work is to gain fundamental understanding of 

nucleation and crystallization processes occurring in complex glass compositions based 

on lithium disilicate. The base glass composition used for this study belonged to xLi2O 

‒ (100‒x)SiO2 glass system for x = 24‒28 (mol %), which are non-stoichiometric LS2 

based glass composition with excess silica present in them. For this glass system, the 

effect of a particular dopant both in the presence and in the absence of nucleating agents 

was evaluated on four aspects of glass crystallization; which are: (1) liquid-liquid phase 

segregation, (2) crystal nucleation, (3) crystal growth and (4) phase transformation at 

higher temperature. The dopants which are relevant for many applications among others 

are the oxides of Mn, P, Al and B, used extensively to achieve specific properties to the 

final glass-ceramics. When present even in small concentrations, these dopants might 

have a huge impact on the whole nucleation and crystallization process. In this current 

work these four dopants were used to carry out studies about their influence on the 

overall process of crystallization of LS2 based glasses. The objectives of this thesis are 

twofold: 

1. To study the effects of a dopant on glass structure and overall crystallization. The 

applications of this kind of study are enormous and important. 

2. To establish glass structure-nucleation correlations. 

1.3 Structure of the Report 

This report consists of five chapters. This first chapter gives a brief introduction on 

the background and objectives of the current work. The second chapter provides a 

succinct literature review covering various fields within glass science highlighting our 

current understanding in these fields. The third chapter is divided into seven sub-

chapters containing all the scientific work done within the frame work of the objective 

mentioned (Section 1.2). This chapter also contains literature review whenever it is 

required. The fourth chapter contains the entire conclusions from this current study. 

Finally, the fifth chapter presents suggestions for the future work. 
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Chapter 2 

 

 

 

2 Literature Review 

For the invisible things of him from the creation of the world are clearly seen, being 

understood by the things that are made, even his eternal power and Godhead; so that 

they are without excuse… 

(Romans 1:20)
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2.1 Glass 

Glasses belong to an important class of materials available to scientists and 

engineers. Throughout history, mankind has been using these materials in both art and 

architecture. In modern times, glasses gained huge technological value with wide range 

of applications. Moreover, glasses also occur in nature through different natural 

processes examples include: (a) rapidly cooled magma from volcanos produces volcanic 

glass; (b) lightning strikes produce Fulgurite and etc. Further, these materials are also 

found on the lunar soil, which makes us believe that these materials are found 

everywhere in the universe. As a result, glass research has not only been of interest to 

the field of materials engineering, but also to other fields of science such as geology, 

minerology, and petrology etc. In all the cases, glasses formed in nature are prepared by 

sudden quenching of the molten rock. Traditionally, this same method has been 

employed by mankind to produce glasses; this method is termed as melt quenching 

technique. However, currently there are many other methods available to produce 

glasses. Further, as natural glasses which are mainly made of silicates, traditional 

glasses were prepared from silicates. However, today with advancement of technology, 

we have glasses prepared from many other materials. 

A glass is defined as: An amorphous solid completely lacking in long range, 

periodic atomic structure, and exhibiting a region of glass transformation behaviour.
8
 

This definition describes two fundamental properties of glass: (1) glass structure (or the 

lack of it!) and (2) glass transition. In the next two sections, these two properties of 

glasses will be expounded. 

2.2 Glass Structure 

One of the earliest consideration of the glass structure was proposed by 

Zachariasen in his classic paper.
9
 Today, his ideas remain central to the field of glass 

research and they are called as random network theory. According to Zachariasen, the 

atoms in a crystal and a glass are linked together by the same interactions and vibrate 

about their equilibrium positions. Howbeit, the main structural distinction between both 

is that, a glass lacks periodicity and symmetry in the structure contrary to a crystal. Due 

to lack of symmetry, the properties of glasses are isotropic (unless prepared in an 
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external field). Another essential consequence of the lack of symmetry is that the unit 

cell of the glass is of infinite size.  Next in his paper, Zachariasen goes into considerable 

detail on the glass structure by taking examples of oxide glasses; which is also the 

interest of the current thesis. In analysing the structure of vitreous silica, Zachariasen 

noticed that the glass network is built up of oxygen tetrahedra surrounding silicon 

atoms. The tetrahedra are connected to each other by corner sharing such that each 

oxygen atom is linked to two silicon atoms. A two dimensional representation of this 

structure is presented in Figure 2.2.1a‒b with tetrahedra represented as triangles. 

Zachariasen concluded that a vitreous network can only be built by oxygen tetrahedra or 

oxygen triangles, because oxygen octahedra or oxygen cubes would lead to periodic 

structures. 

 

Figure 2.2.1 Two dimensional representation of network structure of (a) vitreous and (b) 

crystalline silica; (c) vitreous silicate. 

Zachariasen noticed that the following general rules hold for vitreous oxides. 

1. Each oxygen atom is linked to no more than two cations. 

2. The oxygen coordination number of the network cation is small. 

3. Oxygen tetrahedra or triangles share only corners and not edges or faces. 

4. At least 3 corners of each oxygen polyhedron must be shared in order to form a 

3‒dimensional network. 

5. Sample contains a high percentage of cations which are surrounded by oxygen 

tetrahedra or by oxygen triangles. 

(a) (b) (c)

Si R BO NBO
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These general rules have become rules for the glass formation. However, they do 

not explain the formation of glasses in non-oxide systems and some of the rules are not 

valid even for the oxide systems: for example the existence of oxygen triclusters.
10

 

Therefore, today glass researchers do not take these rules dogmatically; but they gave a 

starting point to the structural analysis of glasses. 

By introducing some components such as alkali and alkaline earth oxides into the 

vitreous oxide networks, the extra oxygens do not form bridges but form free ends as 

shown in Figure 2.2.1c; having a different structural functionality. Therefore, 

depending upon the type of structural function the components in oxide glasses are 

divided into three groups: 

1. Network formers: This type of components build the glass network by forming 

oxygen tetrahedra and oxygen triangles which are also called network units or 

structural units. These units are connected to each other by corner sharing 

creating oxygen bridges, which are called bridging oxygens (BO) as described 

by random network theory (shown in Figure 2.2.1a). The common examples 

are: SiO2, B2O3 and P2O5. 

2. Network modifiers: This type of components break down the glass network by 

creating terminal oxygens also called non-bridging oxygens (NBO) as shown in 

the Figure 2.2.1c. The common examples are alkali and alkaline earth oxides. 

3. Intermediate oxides: This type of components assumes either the role of 

network formers or network modifiers. One of most common examples (also of 

interest in this thesis) is Al2O3. 

In silicate glasses, depending upon the number of BOs and NBOs present on a 

particular silicate tetrahedron, the unit is called Qn unit; where, n is the number of BOs 

and n ∈  {0, 1, 2, 3 and 4}. 

2.2.1 Structure of binary glasses 

The distribution of Qn units, also called network speciation, in a glass composition 

is of central importance for understanding the structure of the glass.
11–17

 Therefore, 

theoretical models were proposed for binary silicate systems in order to predict the Qn 

distribution.
11,15,18

 Two prominent models are: (1) binary model and (2) statistical model 

which take the composition of the glass to be: x (R2O or RO) ‒ (1‒x) SiO2; where R 
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corresponds to alkali or alkaline earth element and x ∈  [0, 2/3]. In the binary model, 

only two types of adjacent Qn units are possible at each composition as described in the 

Eq. (2.2-1) and the distribution plotted in Figure 2.2.2a. Thus, this model is only 

applicable to crystalline silicates, which exhibit an ordered distribution. 

 𝑄𝑛
𝑏𝑖𝑛(%) =

{
 
 
 
 

 
 
 
 
𝑛(1 − 𝑥) + 5𝑥 − 3

1 − 𝑥
𝑥 ∈ [

3 − 𝑛

5 − 𝑛
,
4 − 𝑛

6 − 𝑛
]

𝑛(𝑥 − 1) − 7𝑥 + 5

1 − 𝑥
𝑥 ∈ (

4 − 𝑛

6 − 𝑛
,
5 − 𝑛

7 − 𝑛
]

0 𝑥 ∈ [0,
2

3
] ∩ (

3 − 𝑛

5 − 𝑛
,
5 − 𝑛

7 − 𝑛
)

 
Eq. (2.2-1) 

 

The statistical model on the other hand assumes a completely random distribution 

of Qn units. To calculate the amount of each Qn unit, it uses binomial probability mass 

distribution function where, the probability for n successes associated with choosing 

BO(s) out of 4 trials is calculated. The equation describing this distribution is given in 

the Eq. (2.2-2) and plotted in Figure 2.2.2b. 

 𝑄𝑛
𝑠𝑡𝑎𝑡(%) = (

4

𝑛
)
(𝑥)𝑛(2 − 3𝑥)4−𝑛

2(1 − 𝑥)
 

Eq. (2.2-2) 

 

 

Figure 2.2.2 (a) Binary and (b) statistical models for Qn distribution in silicate glasses. 

In practice, glass compositions are not in agreement with either of the models 

discussed above. Most of the experimental glasses however show distributions that lie 

in between the distributions of binary and statistical models.
19,20
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a temperature dependence of the distribution. Therefore in Chapter 3.6, a new model is 

proposed that has capability to predict the actual Qn distribution. 

2.2.2 Structure of multicomponent glasses 

Other network formers such as B2O3 and P2O5 also undergo network speciation 

when added into silicate glasses. Similar to SiO2, P2O5 also exists as a tetrahedral unit 

having one doubly bonded oxygen on one corner, which acts as terminal oxygen similar 

to NBO. On other three corners, the oxygens can be either BO or NBO. Therefore, 

depending upon the number of BOs and NBOs present on a particular phosphate 

tetrahedron, the unit is called Qn(P) unit; where, n is the number of BOs and n ∈  {0, 1, 2 

and 3}. And B2O3 in borate and borosilicate glasses, undergoes a different kind of 

network speciation where, it speciates into three coordinated trigonal unit (B
III

) and four 

coordinated tetrahedral unit (B
IV

). The B
IV

 has a net one unit of negative charge on it; 

therefore in order to balance the charge it requires a cation called charge compensator. 

This is fulfilled by network modifiers that also act as charge compensators. The 

individual boron units, just as silicate units, could further speciate in terms of number of 

BOs and NBOs on each unit forming different extended structures.
21

 The B-speciation in 

borosilicate glasses is described by empirical models proposed based on the 

experimental data.
22–25

 In Chapter 3.7 however, an extended model for multicomponent 

systems is proposed. 

2.3 Glass transition 

2.3.1 Classical approach 

Traditionally, the glass transition behaviour is understood based on the volume vs 

temperature (V‒T) or enthalpy vs temperature (H‒T) diagrams as shown in Figure 

2.3.1. The point ‘a’ represents the state of the liquid at a temperature above melting 

point (Tm). As the liquid is cooled, the volume (or enthalpy) decreases with the structure 

of the liquid rearranging to an equilibrium structure. Now, as it passes through Tm, 

avoiding crystallization, it reaches a regime called supercooled liquid; represented by a 

point ‘b’. At lower temperatures, rearrangement of the atomic units in the liquid slow 

down. Therefore, at some temperature, liquid starts falling out of the equilibrium 

entering into a region called glass transition region represented by point ‘c’. Further 

decrease of the temperature would lead to extremely slow transformations such that the 



12 
 
 

structure becomes rigid which is called glass; represented by the point ‘d’. The glass 

transition is a kinetic phenomenon that depends on both the relaxation time (τrelax) and 

the experimental time scale (τobs). The time τrelax is a temperature dependent function, 

corresponding to the time needed for the glass to relax to its equilibrium state; it is an 

intrinsic property of a particular glass system. While the time τobs corresponds to the 

observational time used in a particular experiment. The ratio between both times is 

called Debora number (D) given by,
26

 

 𝐷 =
𝜏𝑟𝑒𝑙𝑎𝑥
𝜏𝑜𝑏𝑠

 Eq. (2.3-1) 

In the supercooled region: D < 1; in the glass transition region: D = 1; in glassy 

state region: D > 1. Therefore, by controlling the cooling (or heating) rates different τobs 

values can be chosen, correspondingly different glass transition ranges. Figure 2.3.1 

shows two glass transition ranges for fast and slow cooling. 

 

Figure 2.3.1 Temperature dependence on the properties of the liquid leading to glass transition 

(Adapted from 
27

). 

The glass transition region is a smooth continuous function and does not occur at 

a single point. However, glass scientists like to define a point called glass transition 

temperature (Tg) which is point that lies in the glass transition region. Depending upon 

the type of experimental technique employed to measure Tg, several conventions have 

been adopted to determine its value. Typical experimental heating and cooling rates 

involved when measuring Tg, range between two orders of magnitude (10
0 to 2

) in K min
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1
. At these time scales, the glass transition occurs at temperatures where viscosity is 

between 10
12

 to 10
13

 Pas. Therefore, Tg has been conventionally defined as the 

temperature at which the liquid has viscosity of 10
12

 Pas;
28

 sometimes this temperature 

is also called as T12. There is another quantity called fictive temperature (Tf) defined by 

the intersection of extrapolated glass and liquid lines. The physical meaning of Tf is 

understood as the temperature at which the equilibrium liquid structure resembles that 

of glass structure.
29

 However, since the beginning, this concept has been controvertial;
30

 

which will be discussed later in this section. When different heating and cooling rates 

are employed, the glass transition region shows a profile similar to a hysteresis loop: 

where, the cooling and the heating paths are different. Usual cooling rates involved in 

the glass preparation by air cooling are between 10
3
 to 10

4
 K min

‒1
; which are higher 

than the heating rates used in measuring the glass transition.  As a result while cooling, 

the system goes through bcd and while heating, it goes through deb. 

2.3.2 Energy landscape approach 

        

Figure 2.3.2 Schematic of PEL hypersurface (Adapted from 
31

). 

So far in the above discussion, the glass transition behaviour was understood by 

considering some macroscopic property of the system. The microscopic physics of the 

glass transition behaviour is understood using the concept of potential energy landscape 
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(PEL) approach.
31–34

 In PEL approach, a system of N particles with appropriate 

potentials is considered and the classical Hamiltonian (𝓗) is written for this system 

given by, 

 ℋ(𝒓𝟏, 𝒓𝟐, 𝒓𝟑…𝒓𝑵) = ℋ(𝑞1, 𝑞2…𝑞3𝑁) Eq. (2.3-2) 

Where, r1, r2, r3 … rN are the position vectors of N particles. This expression does 

not include canonical momenta since we are dealing with condensed matter. Therefore, 

the phase space is 3N dimensional space and function 𝓗 is a hypersurface in 3N + 1 

dimensional space; a 2-dimensional analogue is presented in Figure 2.3.2. This surface 

contains a lot of local minima, each of which is called intrinsic structure. Any two local 

minima are connected by a saddle point also called as transition point. The volume of 

space containing the steep descent from transition point to the intrinsic structure is 

called a ‘basin’. For a particular system, if there are Ω number of intrinsic structures, we 

can construct a Ω × Ω energy matrix,
35

 

 𝓗 =

(

 
 
 
 
 
 

ℋ11 ℋ12 ℋ13 . . ℋ1𝛺

ℋ21 ℋ22 ℋ23 . . ℋ2𝛺

ℋ31 ℋ32 ℋ33 . . ℋ3𝛺

. . . . . .

. . . . . .

ℋ𝛺1 ℋ𝛺2 ℋ𝛺3 . . ℋ𝛺𝛺)

 
 
 
 
 
 

 Eq. (2.3-3) 

The diagonal elements denoted by 𝓗ii are the energies of i
th

 intrinsic structure 

whereas the non-diagonal elements are denoted by 𝓗ij are the energies of transition 

points connecting i
th

 and j
th

 intrinsic structures. Moreover, the matrix 𝓗 is a symmetric 

matrix; i.e.  𝓗 = 𝓗T
. The initial (time t = 0) equilibrium probability distribution of the 

system among various intrinsic structures some temperature T (0) is given by, 

 𝑓𝑖(0) =
1

𝑄
exp (

ℋ𝑖𝑖

𝑘𝐵𝑇(0)
) Eq. (2.3-4) 

Where, Q is canonical partition function and kB is the Boltzmann constant. By 

cooling the system through some temperature path T (t), the probability distribution f (t) 

changes. This change is governed by Ω number of coupled master equations given by, 
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𝑑𝑓𝑖(𝑡)

𝑑𝑡
=∑𝑊𝑗𝑖(𝑇(𝑡))𝑓𝑗(𝑡)

𝛺

𝑗≠𝑖

−∑𝑊𝑖𝑗(𝑇(𝑡))𝑓𝑖(𝑡)

𝛺

𝑗≠𝑖

 Eq. (2.3-5) 

Where, Wij and Wji are the rate parameters given according to transition state 

theory, 

 𝑊𝑖𝑗(𝑇(𝑡)) = 𝜈𝑖𝑗 exp [−
ℋ𝑖𝑗 −ℋ𝑖𝑖

𝑘𝐵𝑇(𝑡)
] Eq. (2.3-6) 

Where, νij is the attempt frequency. All the rate parameters can also be expressed 

in the form of matrix, 

 𝑾 =

(

 
 
 
 
 
 

0 𝑊12 𝑊13 . . 𝑊1𝛺

𝑊21 0 𝑊23 . . 𝑊2𝛺

𝑊31 𝑊32 0 . . 𝑊3𝛺

. . . . . .

. . . . . .

𝑊𝛺1 𝑊𝛺2 𝑊𝛺3 . . 0 )

 
 
 
 
 
 

 Eq. (2.3-7) 

In this case, the W is not a symmetric matrix i.e. W ≠ W
T
. As the system evolves 

along a certain temperature path T (t), the evolution of probability distribution f (t) can 

be studied. Any property of the system such as volume, entropy etc. given by the 

parameter A (t) is obtained by taking the ensemble average, 

 𝐴(𝑡) =∑𝐴𝑖𝑓𝑖(𝑡)

𝛺

𝑖=1

 Eq. (2.3-8) 

Where, Ai corresponds to the property for the i
th

 intrinsic structure. This way, the 

temperature dependence of property along a temperature path T (t) can be determined. 

The main step involves, solving the set of master equations Eq. (2.3-5). This could be 

computationally expensive process; however, there are several efficient algorithms are 

used to simplify the process.
36

 In the supercooled state, the system can explore all the 

intrinsic structures where, the transition points act as connectors, connecting all the 

intrinsic structures together; a Schematic representation is presented in Figure 2.3.3 as a 

disconnectivity diagram.
36

 In the supercooled state, the system is considered to be 

ergodic. As the temperature decreases, the transition points that have higher energy 
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become unreachable, disconnecting some of the intrinsic structures; loosing ergodicity. 

However, the intrinsic structures that are still connected would have internal ergodicity. 

Thus, in this state the system is considered to have broken-ergodic.
37

 However, in the 

real systems the breaking down of ergodicity is a continuous process and are therefore 

modelled using concept of continuously broken-ergodic.
38

 It is in this region the glass 

transition takes place and the system fall out of equilibrium. Further decrease of the 

temperature results in a complete loss of ergodicity and the system is frozen achieving a 

glassy state.  

 

Figure 2.3.3 View of glass transition from the PEL perspective (Adapted from 
39

). 

2.4 Liquid-liquid phase segregation 

Liquid-liquid phase segregation (LLPS) or liquid-liquid immiscibility is a very 

common phenomenon in many glass compositions.
8
 Binary silicate glasses exhibit 

LLPS with nearly all oxides in the periodic table.
40

 It occurs whenever the glass 

composition departs from the stoichiometry. In glasses, the occurrence of LLPS affects 

the translucency of the glass, due to the scattering of the light. Therefore, controlling the 
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LLPS is of central importance in glass manufacturing. However, glass-ceramists are 

usually not worried about the translucency of the GC. Nonetheless, glass-ceramists are 

interested in how LLPS affects the crystal nucleation rates; and thus to use LLPS for 

their own advantage. Therefore, from this perspective understanding LLPS is of key 

significance also to the field of GCs. 

2.4.1 Mechanism of LLPS 

The LLPS involves two relevant aspects: (1) thermodynamics and (2) kinetics. 

The thermodynamic aspect of LLPS can be understood using a simple Gibbs’s free 

energy of mixing (ΔGmix) model for binary system, given by the following equation,
41

 

 ∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥 

Eq. (2.4-1) 

 ∆𝐺𝑚𝑖𝑥 = 𝛼𝑥(1 − 𝑥) + 𝑅𝑇[𝑥 ln 𝑥 + (1 − 𝑥) ln(1 − 𝑥)] 

Where, ΔHmix and ΔSmix are the heat of mixing and entropy of mixing. Using the 

regular solution model
42

 the equation is expanded in terms of mole fractions of one of 

the components, x. The term α, which depends on the bond energies between atoms, 

controls the LLPS. When it is negative, there will be complete mixing of the liquid 

without LLPS; and when it is positive, the system starts to undergo LLPS. The Eq. 

(2.4-1) is plotted in Figure 2.4.1a, for some positive value of α at three different 

temperatures. In this phase diagram, compositions between the points a and b would 

undergo LLPS.  The points a and b are the points of tangency for the common tangent 

drawn as shown in the Figure 2.4.1a, and the points c and d are the inflection points 

where the condition  
𝜕2∆𝐺𝑚𝑖𝑥

𝜕𝑥2
⃒𝑥𝑐, 𝑥𝑑 = 0 is satisfied. Different regions of LLPS in a 

phase diagram are generated by the loci of the points a, b, c, and d for all the 

temperatures as shown in Figure 2.4.1b. The boundaries corresponding to the loci of a 

and b are called immiscibility boundaries whereas, the boundaries corresponding to the 

loci of c and d are called spinodal boundaries. The immiscibility boundaries produce a 

region called immiscibility dome. The immiscibility dome is divided into three regions 

(I, II and III) by the spinodal boundaries are shown in the Figure 2.4.1b. In the regions I 

and III the system undergoes droplet like LLPS for which, the kinetics of LLPS has the 

same underlying theory as kinetics of crystal nucleation.
41

 Here, the two segregated 
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regions have a large compositional difference. In the region II, the system undergoes 

spinodal decomposition where, the two segregated regions have a small compositional 

difference. The detailed kinetic models for the LLPS are proposed by Cahn et al.
43–45

 

    

Figure 2.4.1 (a) Schematic of Gibb’s free energy of mixing diagram and (b) the corresponding 

phase diagram with different regions of LLPS. 

The model presented shows symmetric plots for the free energy diagram as well 

as phase diagram. However, glass forming compositions show very non-symmetric 

curves and the variations in the free energy curves are hardly visible.
46–48

 The actual 

free energy curve for the Li2O‒SiO2 system is plotted in Figure 3.4.5 and Figure 3.4.12 

illustrates this point. Nevertheless, this simple model gives a general understanding of 

the LLPS. Further, the mechanism of LLPS in multicomponent systems would be an 

extension of this simple model.
49

 The current thesis is mainly concerned with LLPS in 

binary systems. 

2.4.2 Stable and metastable immiscibility 

Binary silicate melts belonging to the systems: MgO-SiO2, CaO-SiO2 and SrO-

SiO2, undergo what is known as stable immiscibility.
50

 An example of the phase 

diagram exhibiting this kind of LLPS is shown in Figure 2.4.2a having a immiscibility 

dome existing above the liquidus temperature (TL).
51

 Inside the immiscibility dome, the 

liquid phase readily separates into two phases. When the melt is quenched for glass 
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preparation, one or two glass phases could be obtained.
40,52

 The SiO2-rich phase 

expectedly forms glass while, the other phase could be crystallized. If the crystallization 

is avoided, the system continues to undergo LLPS to its equilibrium state below TL; this 

type of LLPS known as metastable immiscibility (Figure 2.4.2a). 

 

Figure 2.4.2 Schematic of phase diagrams showing (a) stable and (a) ‒ (b) metastable 

immiscibility. 

Binary silicate compositions belonging to the systems: Li2O-SiO2, Na2O-SiO2 and 

Ba2O-SiO2, have immiscibility dome below the TL, therefore these compositions always 

undergo metastable immiscibility (Figure 2.4.2b).
53

 Therefore, the LLPS in these 

systems is observed only by avoiding devitrification of the supercooled liquid. 

However, the existence of the immiscibility dome can be inferred from the ‘S’ shaped 

(or its mirror image in the case of reversed compositional axis) liquidus curve as seen in 

Figure 2.4.2b.  

2.4.3 Atomistic approach to LLPS 

Previous sections on LLPS dealt with understanding the mechanism of LLPS from 

thermodynamics perspective, which is a macroscopic approach. However, it is also 

important to understand the LLPS from an atomistic approach. In binary alkali and 

alkaline earth silicate glasses, the tendency for LLPS increases in the following order Cs 

< Rb < K < Na < Li <Ba < Sr < Ca < Mg.
51

  Several studies
53–58

 have shown that there 

is strong correlation between LLPS and  ionic field strengths (Z/r
2
, Z is valance and r is 

radius) or ionic potentials (Z/r) of the modifiers ions in these binary systems. A 

thorough investigation
59

 on 41 different binary silicate systems revealed that higher the 

ionic potential, the larger is the immiscibility gap. Therefore, it was suggested that the 

LLPS occurs due to coulombic repulsions between poorly screened cations bounded by 
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BOs strongly polarized towards the silicon, and by non-bridging oxygens. There is 

another school of thought, which suggests that the silicate liquids are made of long 

range structures containing 3D frameworks, sheets, chains, dimers and monomers. And, 

the immiscibility is caused by the un-mixing of these polymeric species.
41

 Nevertheless, 

this field of research is still green, and so much work needs to be done in order to 

understand what causes the LLPS at an atomic level. 

2.5 Glass-Ceramics 

Unlike glasses which are defined based on their properties, GCs are defined based 

on their processing. Therefore, GCs are defined as the materials produced by controlled 

crystallization of the glass.
1
 Three parameters are usually controlled when producing 

GCs: (1) chemical composition of the glass, (2) heat treatment temperatures and (3) the 

durations of the heat treatments. These parameters are controlled in such a way to obtain 

GCs with preferred phase assemblage and microstructure ultimately leading to a 

material with required properties. 

Hence, for the production of GCs, it is essential to understand the overall 

thermodynamics and kinetics of crystallization of the base glass, which includes two 

steps: 

a) Crystal nucleation 

b) Crystal growth 

Figure 2.5.1 presents an example of temperature dependence of steady-state 

crystal nucleation and crystal growth rates. Curves like these, giving the kinetic 

information about crystal nucleation and growth for a particular composition, are 

essential for designing processing routes for the production of GCs. Such curves are 

conventionally generated by experimentally measuring the rates at each temperature by 

microscopy.
60

 Such experiments are very laborious and time consuming. Therefore, 

there has been a need for theoretical models which can predict these rates without 

actually measuring. The crystal nucleation rates in glasses have been attempted to be 

described by classical nucleation theory (CNT),
2
 which is given by the following 

equation, 



21 
 
 

 𝐼 (𝑇) = 𝐼𝑜 exp (−
𝑊∗ + ∆𝐺𝐷

𝑅𝑇
) Eq. (2.5-1) 

Where, I is the steady-state nucleation rate, Io is a constant (or a function with a 

weak temperature dependence), W
*
 is the thermodynamic barrier for nucleation ΔGD is 

the kinetic barrier for nucleation, R is the gas constant and T is the temperature. The 

detailed derivation of this equation and its implication to glass science will be in the 

subsequent sections. The crystal growth rates (U) in oxide glasses are given by two 

models.
61

 The first one is called normal or continuous growth model
62

 given by, 

 𝑈 (𝑇) =
𝐷𝑢
𝜆
[1 − exp (−

∆𝐺 
𝑅𝑇
)] Eq. (2.5-2) 

Where, U(T) is the temperature steady-state growth rate, λ is the jump distance, 

ΔG is the thermodynamic driving force, which is the difference between free energies of 

liquid and sold phase and Du is the diffusion coefficient for the transport of molecular 

units to the solid-liquid interface. This model can describe growth rates in SiO2 and 

GeO2 systems. However, growth rates in alkali silicate systems are described well using 

screw dislocation model
63

 given by the following equation, 

 𝑈 (𝑇) = 𝑓
𝐷𝑢
𝜆
[1 − 𝑒𝑥𝑝 (−

∆𝐺 
𝑅𝑇
)] Eq. (2.5-3) 

Where, 𝑓 =
𝜆∆𝐺 
4𝜋𝜎𝑉𝑚

 Eq. (2.5-4) 

Here, f is the called site factor which is a fraction representing the amount of 

available sites at solid-liquid interface where the incoming molecular units can be 

added. 

Combining both the nucleation and growth rates can describe the complete 

transformation kinetics of a particular system. This theory was developed within the 

period from 1937 to 1941 by Kolmogorov
64

, Johnson and Mehl
65

 and Avrami.
66–68

 All 

the proposed models are combined in the JMAK theory.
69

 However, there are other less 

fundamental models that also give useful kinetic information, which are used in sections 

3.4.3.1 and 3.5.3.2. 
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Figure 2.5.1 Schematics of temperature dependence of study-state crystal nucleation and 

growth rates (Adapted from 
8
). 

2.5.1 Thermodynamics of Nucleation 

In order to derive the nucleation rate, the CNT model starts with a thermodynamic 

argument. A quantity denoted by W(i) is defined as shown in Eq. (2.5-5). This function 

is called as work function or free energy barrier for nucleation. Here, i is the number of 

atomic units in the nucleating cluster representing the size of the cluster, μL and μS are 

the chemical potentials associated liquid and solid phases, S(i) is the surface energy of 

the cluster, which is dependent on the size of the, α depends on geometrical shape of the 

nucleus and σ is the interfacial surface energy between two droplets. 

 𝑊(𝑖) = −𝑖(𝜇𝐿 − 𝜇𝑆) + 𝑆(𝑖)𝜎 

Eq. (2.5-5)  𝑊(𝑖) = −𝑖∆𝜇 + 𝑆(𝑖)𝜎 

 𝑆(𝑖) = 𝛼 𝑖
2
3⁄  

The chemical potential difference between liquid and solid phases denoted by Δμ is 

the thermodynamic driving force for nucleation. The work function plotted in Figure 

2.5.2 shows that the surface energy (𝑆(𝑖)𝜎) has a monotonically increasing component 

whereas volume energy (−𝑖∆𝜇) has a monotonically decreasing component. The net 
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result of both functions make W(i) go through a maximum. The size of the nucleus 

where this maximum occurs i.e. i = c and the corresponding value of W(i) are called the 

critical size and activation energy respectively given by, 

 𝑐 =
8

27
(
𝛼𝜎

∆𝜇
)
3

;𝑊(𝑐) =
4

27

(𝛼𝜎)3

∆𝜇2
 Eq. (2.5-6) 

Any nucleus with size greater than c continues to grow to a larger crystal. 

Otherwise it could dissolve back to the liquid. This thermodynamic argument applies 

for describing the nucleation occurring in the bulk of the system and it is called as 

homogenous nucleation. Nucleation that happens by the assistance of external surfaces 

or on the particles within the system is called heterogeneous nucleation. The next 

presents the kinetic argument for the crystal nucleation. 

 

Figure 2.5.2 Variation of work function W with the size of the nucleus. 

2.5.2 Kinetics of Nucleation: Classical Nucleation Theory 

The kinetic description of nucleation is given by CNT. The CNT model was 

developed by a series of works by Kaischew and Stranski
70

, Volmer and Weber
71

 and 

Becker and Döring
72

 based on the following assumptions
61

: 

1. It considers a spatially homogenous distribution of components (atoms or 

molecules) that makeup the system. 
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2. If Ci stands for the cluster containing i number of components (i ∈ ℕ), then the 

cluster can grow or decay by addition of only a single component at a time, 

given by, 

 𝐶1 + 𝐶𝑖−1  
𝑘𝑖−1
+

⇌
𝑘𝑖
−
  𝐶𝑖 Eq. (2.5-7) 

 𝐶1 + 𝐶𝑖  
𝑘𝑖
+

⇌
𝑘𝑖+1
−
  𝐶𝑖+1 Eq. (2.5-8) 

Where, ki
+
 and ki

‒
 are the reaction rate constants associated to attachment and 

detachment a single component to Ci. 

3. By supposing the reactions Eq. (2.5-7) and Eq. (2.5-8) are of first order, the net 

forward flux for both reactions is given by, 

 𝐼𝑖(𝑡) = 𝑘𝑖−1
+ 𝑁𝑖−1(𝑡) − 𝑘𝑖

−𝑁𝑖(𝑡) 

Eq. (2.5-9) 
 𝐼𝑖+1(𝑡) = 𝑘𝑖

+𝑁𝑖(𝑡) − 𝑘𝑖+1
− 𝑁𝑖+1(𝑡) 

Where, Ni is the number of clusters of size i. Therefore the rate of change of Ni 

is given by, 

 
𝑑𝑁𝑖(𝑡)

𝑑𝑡
= 𝐼𝑖(𝑡) − 𝐼𝑖+1(𝑡) Eq. (2.5-10) 

4. The clusters are assumed to take an equilibrium shape as they form. 

5. The state of the system (i.e. T and P) is not changed during the course of 

nucleation. 

6. Once the size of a cluster reaches an upper limit c, called critical size, it is 

removed from the system therefore, 

 𝑁𝑖(𝑡) = 0; ∀ 𝑖 ≥ 𝑐 Eq. (2.5-11) 

After the removal of the cluster, c numbers of components are added back into 

the system. Thus, the number of components is always conserved in the 

system, given by, 
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 𝑁1(𝑡) +∑𝑖𝑁𝑖(𝑡)

𝑐−1

𝑖=2

= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Eq. (2.5-12) 

7. During the above mentioned process, after a short amount of time τ, the 

number of clusters of size i approaches an equilibrium value Ni
e
; given by, 

 lim
𝑡 → 𝜏

𝑁𝑖(𝑡) = 𝑁𝑖
𝑒  

Eq. (2.5-13) 

This is called steady-state approximation. As a result, CNT only determines 

steady-state nucleation rate; the non-steady state nucleation rate will be 

discussed in the subsequent section. 

8. This steady-state distribution of  clusters is modelled as a statistical distribution 

corresponding to a canonical ensemble of clusters of different sizes, given by 

equilibrium, 

 𝑁𝑖
𝑒 = 𝑁𝑒

−
𝑊𝑖
𝑘𝐵𝑇 Eq. (2.5-14) 

Where, N is the total number of components. As a result of this assumption, 

Eq. (2.5-9) is zero thus, Ii (t) = Ii+1 (t). Therefore the following relations hold, 

 𝐼 = 𝑘1
+𝑁1(𝑡) − 𝑘2

−𝑁2(𝑡) 

Eq. (2.5-15) 

 𝐼 = 𝑘2
+𝑁2(𝑡) − 𝑘3

−𝑁3(𝑡) 

 𝐼 = 𝑘3
+𝑁3(𝑡) − 𝑘4

−𝑁4(𝑡) 

 … 

 𝐼 = 𝑘𝑖−1
+ 𝑁𝑖−1(𝑡) − 𝑘𝑖

−𝑁𝑖(𝑡) 

 𝐼 = 𝑘𝑖
+𝑁𝑖(𝑡) − 𝑘𝑖+1

− 𝑁𝑖+1(𝑡) 

 … 

 𝐼 = 𝑘𝑐−2
+ 𝑁𝑐−2(𝑡) − 𝑘𝑐−1

− 𝑁𝑐−1(𝑡) 

 𝐼 = 𝑘𝑐−1
+ 𝑁𝑐−1(𝑡) 
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Multiplying, 2
nd

 equation with (k2
‒
/k2

+
), 3

rd
 equation with (k2

‒
/k2

+
) (k3

‒
/k3

+
), i

th
 

equation with (k2
‒
/k2

+
) (k3

‒
/k3

+
) … (ki

‒
/ki

+
) and the last equation with (k2

‒
/k2

+
) 

(k3
‒
/k3

+
) … (ki

‒
/ki

+
) … (kc‒1

‒
/k c‒1

+
) and solving we get, 

 
𝐼 =

𝑘1
+𝑁1(𝑡)

[1 + ∑ (∏ (
𝑘𝑛−

𝑘𝑛
+)

𝑖
𝑛=2 )𝑐−1

𝑖=2 ]
 

Eq. (2.5-16) 

9. Now, the principle of detailed balancing due to the microscopic nature of each 

reaction in Eq. (2.5-15) is applied, which results in the following equations, 

 𝑘1
+𝑁1

𝑒 − 𝑘2
−𝑁2

𝑒 = 0 

Eq. (2.5-17) 

 𝑘2
+𝑁2

𝑒 − 𝑘3
−𝑁3

𝑒 = 0 

 𝑘3
+𝑁3

𝑒 − 𝑘4
−𝑁4

𝑒 = 0 

 … 

 𝑘𝑖−1
+ 𝑁𝑖−1

𝑒 − 𝑘𝑖
−𝑁𝑖

𝑒 = 0 

As a result we obtain, 

 ∏
𝑘𝑛
+

𝑘𝑛−

𝑖

𝑛=2

=
𝑘𝑖
+𝑁𝑖

𝑒

𝑘1
+𝑁1

𝑒  Eq. (2.5-18) 

10. Assuming N1
e
 = N1 (t) = N, and from Eq. (2.5-16) and Eq. (2.5-18) we 

get, 

 
𝐼 =

1

∑ (
1

𝑘𝑖
+𝑁𝑖

𝑒)
𝑐−1
𝑖=1

 
Eq. (2.5-19) 

11. Assuming Eq. (2.5-14) to be a continuous function, we get, 

 
𝐼 =

1

∫ (
1

𝑘𝑖
+𝑁𝑖

𝑒) 𝑑𝑖
𝑐−1

1

 
Eq. (2.5-20) 

12. Assigning a constant value for the ki
+
 = k

+
 and taking it out of the 

integral and using Eq. (2.5-14) would yield, 
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𝐼 =

𝑁𝑘+

∫ (𝑒
𝑊(𝑖)
𝑘𝐵𝑇)𝑑𝑖

𝑐−1

1

 
Eq. (2.5-21) 

13. Expanding W(i) to third order, 

 𝑊(𝑖) = 𝑊(𝑐) +
𝜕𝑊(𝑐)

𝜕𝑖
(𝑖 − 𝑐) +

1

2

𝜕2𝑊(𝑐)

𝜕𝑖2
(𝑖 − 𝑐)2 +⋯ Eq. (2.5-22) 

However, because W(c) is the maximum, the following are true for some 

positive value of φ. 

 
𝜕𝑊(𝑐)

𝜕𝑖
= 0  𝑎𝑛𝑑   

𝜕2𝑊(𝑐)

𝜕𝑖2
= −𝜑 Eq. (2.5-23) 

Therefore, 

 𝑊(𝑖) = 𝑊(𝑐) −
1

2
𝜑(𝑖 − 𝑐)2 Eq. (2.5-24) 

Substituting Eq. (2.5-24) into Eq. (2.5-21) would give, 

 𝐼 =
𝑁𝑘+

∫ 𝑒
𝑊(𝑐)
𝑘𝐵𝑇 𝑒

−
𝜑(𝑖−𝑐)2

2𝑘𝐵𝑇 𝑑𝑖
𝑐−1

1

 
Eq. (2.5-25) 

Taking, 

 
𝛤𝑍 =

1

∫ 𝑒
−
𝜑(𝑖−𝑐)2

2𝑘𝐵𝑇 𝑑𝑖
𝑐−1

1

 
Eq. (2.5-26) 

Where, ΓZ is called the Zeldovich factor. Substituting Eq. (2.5-26) into Eq. 

(2.5-25) would give the basic equation for classical nucleation theory. 

 𝐼 = 𝑁𝑘+𝛤𝑍𝑒
−
𝑊(𝑐)
𝑘𝐵𝑇  Eq. (2.5-27) 



28 
 
 

  



29 
 
 

 

 

 

 

Chapter 3 

 

 

 

3 Results and Discussion 

The simple believeth every word: but the prudent man looketh well to his going. 

(Proverbs 14:15)
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3.1 Preface 

This section contains all the experimental work and scientific contributions that 

have been accomplished in the frame of the proposed objectives (Section 1.2). It is 

divided into seven sub-chapters including this preface and they are arranged in a 

chronological order. Starting from the next, each sub-chapter corresponds to a 

manuscript resulted from the current research work that has been published in (or 

submitted to) a SCI journal. 

3.1.1 General Study 

The next four sub-chapters (3.2 to 3.5) comprise a general study aimed at 

particularly addressing the primary objective of this thesis that is, the investigation of 

the role of dopants on lithium silicate glass structure and its crystallization behaviour. 

This exhaustive general study not only adds fundamental knowledge to the literature, 

which is necessary for the advancement of glass and glass-ceramic technology but, also 

develops key concepts required for establishing correlations between glass structure and 

its crystallization behaviour. To this end, four types of dopants were used, which are 

oxides of Mn, Al, B and P. Their effects were studied on both monolithic glasses and 

glass powered compacts. The glass structure was investigated by wide range of methods 

including several spectroscopic techniques and thermo-physical properties. The 

crystallization behaviour was studied by thermal analysis and by controlled 

crystallization experiments. Since sintering is also a part of GCs production when they 

are produced by powdered route, the sintering behaviour was also investigated. 

3.1.2 Limitation of existing models 

The second objective of this thesis (Section 1.2) involves establishing the 

correlations between glass structure and its crystal nucleation behaviour. Based on the 

understanding gained from the previous general study, it was apparent that there is a 

need for the theoretical models which can establish these correlations in 

multicomponent silicate glasses. Therefore, the attention was refocused to 

understanding the existing models related to this area; so that they can be extended to 

multicomponent composition. The current theoretical progresses in this area are 

presented in the literature review (Chapter 2). 
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When it comes to glass structure (Sections 2.2 and 3.6.1), it was realised that 

currently there are no models describing the Qn distribution based on fundamental 

physics even for simple binary systems. Concerning LLPS, apart from the 

thermodynamic model, to my knowledge currently there are no models which 

rigorously describe the microscopic origin of LLPS. The crystal nucleation in glasses, 

thus far has been tried to be explained by CNT (Sections 2.5.1 and 2.5.2). The test of 

CNT on range of simple stoichiometric compositions revealed huge discrepancies 

between experiments and theory, where the theory predicts nearly 50 orders of 

magnitude lower values of crystal nucleation rates.
73–76

 Therefore, currently there are no 

fundamental theories available which could describe either the glass structure or the 

crystal nucleation even for simple glass composition. 

3.1.3 Need for new models 

Recognizing the limitations of the current models the need for the new models was 

quickly realised. Considering that the second objective of this thesis involves 

establishing correlations between glass structure and crystal nucleation rates, a new idea 

was put forth. Where, it was considered that the crystal nucleation rates are proportional 

to the probability of structural units coming together by random process (Eq. (3.1-1)). 

 𝐼 (𝑇) ∝ [𝑃𝑛(𝑇)]
𝑐 Eq. (3.1-1) 

Where, I (T) is the temperature dependent steady state nucleation rate, Pn(T) is 

temperature dependence of probability for the occurrence of a given Qn unit and c is the 

size of the critical nucleus. Using this idea, kinetic equation was developed with the 

arguments similar to that of CNT. Based on the experimental Qn-distribution obtained 

from NMR experiments of lithium disilicate glass, the equation was tested. The 

calculated value for crystal nucleation rate was 1 × 10
9
 m

‒3
 s
‒1

, which is close to the 

experimental value. Unlike CNT model which gives a discrepancy of 50 orders of 

magnitude, the model based on this new idea seemed to predict nucleation rates very 

accurately. 

However in order to develop this new idea into a full-fledged theory based on the 

fundamental physics and supported by huge experimental data is beyond the scope of 

this current thesis. Therefore, this work is assigned as one of the future works and the 
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directions are presented in Section 5.1. Moreover, apart from the idea presented in Eq. 

(3.1-1), the exact equations and derivations used for obtaining the crystal nucleation rate 

in lithium disilicate glass are not presented here because of their potential importance 

for the future proposals. Nonetheless, a small part of the problem is addressed in this 

thesis. Unlike CNT, nucleation theory based on this new idea can be readily extended to 

multicomponent glass systems. 

It can be seen that Eq. (3.1-1) requires temperature dependent function of probability 

distribution (Pn(T)) of Qn units. So far, models describing this probability distribution 

are non-existent. Therefore, a new model was proposed based on statistical and quantum 

mechanics in sub-chapter 3.6 for binary compositions describing the Qn distribution. In 

sub-chapter 3.7, the model was extended to multicomponent compositions. Both these 

models answer the second objective of this thesis establishing correlations between the 

glass structure and the crystal nucleation. 
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Abstract 

The structural role of Mn was investigated in a relatively simple non-

stoichiometric LS2 based glass composition. Glasses were prepared by partially 

replacing SiO2 by MnO2 from the base glass belonging to the system Li2O–K2O–Al2O3–

SiO2. An overall depolymerisation of the glass network was observed according to 

magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform 

infrared (FTIR) spectroscopic studies, suggesting a network modifier role for Mn. 

However, thermal analysis, phase segregation and nucleation in the glasses suggested 

that Mn might also act as network former. Moreover, calculated crystal field parameters 

from the UV-Visible spectroscopy, showing high ligand field strength (Δo) and Racah 

inter electronic repulsion (B) pointed out to a possible existence of Mn as individual 

molecular entities in the interstitials of the glass network. The crystallization of bulk 

glasses and the sintering of glass powder compacts were studied in order to get further 

inputs about the structural role of Mn in glasses/glass-ceramics. 
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3.2.1 Introduction 

MnO2 is an important industrial raw material. Approximately 500,000 tonnes of 

MnO2 are consumed annually as a component of dry cell batteries (Leclanché cell or 

zinc–carbon batteries). Other important industrial applications include the use of MnO2 

as an inorganic pigment in ceramics and in glassmaking.
77,78

 

The obtaining of suitable mechanical, chemical, thermal or electrical properties 

for the final materials presides to the design of glass-ceramic compositions for most of 

the functional applications. In particular, dental restorations require the development of 

a material that reproduces the aesthetic appearance of natural teeth, including colour, 

translucency, and fluorescence properties. Translucency can be obtained by controlling 

the relative refractive indices and volume concentrations of the crystalline and residual 

glassy phases. Colour and fluorescence can be achieved by the addition of transition 

metal oxides and rare-earth oxides to the base composition.
79

 Transition metal oxides 

can also contribute to the fluorescence properties of inorganic materials. Manganese is a 

well-known activator in many crystals and glasses and the Mn
2+

 ion exhibits broadband 

emission characteristics.
80,81

 In a molten glass, the Mn cations distribute into couple 

states such as Mn
2+
–Mn

3+
. According to Schreiber,

82
 the change in redox depends on 

glass composition, melting temperature, atmosphere, concentration of redox couples 

and the presence of other redox couples. At a given melting condition, the redox couple 

shifts towards the oxidized state when modifier ions or glass basicity are increased.
83

 

Mn in glasses may be expected to be in the form of MnO4
–
 and MnO4

2–
 anions, 

and in the form of Mn
2+

, Mn
3+

 and Mn
4+

 cations, or a mixture of these.
84

 It has been 

demonstrated that all Mn oxides when heated to 1000 ºC and higher are transformed 

into Mn orthomanganate (Mn2
2+

Mn
4+

O4).
85,86

 Manganese ions exist in different valence 

states occupying tetrahedral or octahedral sites in a glass network. For example, Mn
3+

 

ions in borate glasses exist only in octahedral coordination, whereas in silicate and 

germanate glasses are in both tetrahedral and octahedral environments.
87

 Tetrahedral 

and octahedral Mn
2+

 ions exhibit luminescence emission in the green and red regions 

for various glasses, respectively.
88–90

 Therefore, Mn
2+

, having a coordination number of 

six in silicate glasses, plays a modifying cation role, but Mn
4+

, forming coordinate 

polyhedra [MnO4]
4–

, may participate in the formation of a glass network together with 

Si
4+

. 
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The content and valence states of Mn in various environments in the glasses are 

dependent on quantitative properties of modifiers and glass formers, size of the ions in 

the glass structure, their field strength, mobility of the modifier cation, etc.
91,92

 

Several interesting studies are available regarding the use of Mn as a colouring 

agent for glass matrices (e.g. 
93–98

), as well as on the environment of Mn ion in various 

inorganic glass systems (e.g. 
99–108

). However, most of these works report studies in 

borate, phosphate or other glass systems and few studies have been carried on silicate 

based glasses. The present study aims towards investigating the role of manganese on 

the glass structure of a relatively simple non-stoichiometric lithium disilicate based 

glass composition in the glass forming region of Li2O–K2O–Al2O3–SiO2 with 

SiO2/Li2O molar ratio of 3.12. Based on the established role of the Mn in the glass 

structure this paper discusses (1) crystallization in bulk glasses and (2) sintering 

behaviour and crystallization in glass powder compacts. 

3.2.2 Experimental procedure 

3.2.2.1 Glass Preparation 

Four experimental glass compositions were prepared using a general formula 

(mol.%): 23Li2O−2.64K2O−2.64Al2O3−(71.72−x)SiO2–xMnO2, with x varying from 0 

to 2 (Table 3.2.1). Accordingly, these glasses were designated as GMn0.0 (x = 0.0), 

GMn0.5 (x = 0.5), GMn1.0 (x = 1.0) and GMn2.0 (x = 2.0). In all compositions, molar 

concentrations of Li2O, K2O and Al2O3 were kept constant, while SiO2 has been 

partially replaced by MnO2. 

Table 3.2.1  Compositions of the glass in mol. % 

 GMn0.0 GMn0.5 GMn1.0 GMn2.0 

Li2O 23.00 23.00 23.00 23.00 

K2O 2.64 2.64 2.64 2.64 

Al2O3 2.64 2.64 2.64 2.64 

SiO2 71.72 71.22 70.72 69.72 

MnO2 0.00 0.50 1.00 2.00 

SiO2/Li2O 3.12 3.10 3.07 3.03 

Powders of technical grade SiO2 (purity >99%) and reagent grade Li2CO3 (purity 

>99%), K2CO3 (purity >99%), Al2O3 (purity >99%) and MnO2 (purity >99%) were used 

as precursors. To give batch compositions of 100 g, these powders were homogenously 
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mixed by ball milling, and then calcined at 800 °C for 1 h. Pt crucibles were used to 

melt the compositions at 1550 °C for 1 h in air. Bulk (monolithic) glasses were prepared 

by pouring the glass melt on a bronze mould and immediately annealing at 450 °C for 1 

h. To prepare glass powder, glass frits were obtained by quenching the glass melts in 

cold water. The frits were dried and milled in a high speed agate mill in order to obtain 

a particle sizes between 5−10 µm as determined by the particle size analyser (Coulter 

LS 230, Fraunhofer optical model, Amherst, MA). Rectangular bars having dimensions 

4 mm × 5 mm × 50 mm were prepared by uniaxial pressing of glass powders with a 

pressure of 80 MPa for 10 seconds. 

3.2.2.2 Heat treatment schedule 

Bulk glasses from all the four compositions were cut into required size and heat 

treated at a heating rate of 2 ºC min
−1

 in air up to temperatures in the range of 650−900 

°C with intervals of 50 ºC and kept for 1 h at the set temperatures. Using the same 

heating rate (2 ºC min
−1

), glass powder compacts were sintered at 800, 850 and 900 °C 

for 1 h in air. 

3.2.2.3 Characterization of the samples 

Differential thermal analysis (DTA, Setaram Labsys, Setaram Instrumentation, 

Caluire, France) was carried out on all glass compositions obtained by crushing the 

glass frits having particle sizes between 5−10 µm (~6 µm, particle size analyser). DTA 

experiments were carried out in air from ambient temperature to 1000 °C at a heating 

rate of 20 ºC min
−1

 using ~30 mg of sample in an Alumina crucible, with α-Alumina 

powder as reference material. For GMn0.0 and GMn2.0, a heating rate of 5 ºC min
−1

 was 

also performed to compare with hot-stage microscopy results. 

Optical transmission spectra were obtained for all bulk glasses using polished 

samples (on both parallel sides) with thickness of ~0.9 mm. The spectra were recorded 

over a range 200−800 nm wavelength using UV-VIS-NIR spectrophotometer (UV-

3100, Shimadzu, Japan). Infrared transmittance spectra of glass powders prepared by 

crushing the bulk annealed glasses were obtained using Fourier Transform Infrared 

Spectrometer (FTIR, model Mattson Galaxy S-7000, USA) in the range of 300−1400 

cm
−1

. Samples for FTIR were prepared by mixing 1/150 (by weight) portion of the 

sample with KBr and hand pressed to obtain pellets. 
29

Si MAS-NMR spectra was 
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recorded for glass powders prepared from frit glass on a Bruker ASX 400 spectrometer 

operating at a Larmor frequency of 79.52 MHz with Bo = 9.4 T using a 7 mm probe 

rotating at 5 kHz. A 5 µs length radio-frequency excitation pulse equivalent to 90º flip 

angle with 60 s delay time was used. Tetramethylsilane was used as chemical shift 

reference. 
27

Al MAS-NMR spectra were recorded on a Bruker ASX 400 spectrometer 

operating at a Larmor frequency of 104.28 MHz with Bo = 9.4 T using a 4 mm probe 

rotating at 15 kHz. A 0.78 µs radio-frequency pulse length equivalent to 10º flip angle 

with 1 s delay time was used. Al(NO3)3 was used as the chemical shift reference. 

Microstructures of the samples were recorded using reflected light optical 

microscope (Jenaphot 2000, Zeiss, Germany) and scanning electron microscope (SEM, 

SU-70, Hitachi, Japan). For microstructural observation, samples were polished and 

etched using 2 vol.% hydrofluoric acid for 60 s. Crystalline phase content in the 

samples was determined by X-ray diffraction (XRD, Rigaku Geigerflex D/Mac, C 

Series, Japan) using Cu Kα radiation with 2θ varying from 10−60° steps of 0.02 s
−1

. 

A side-view hot-stage microscope (HSM, Leitz Wetzlar, Germany) equipped with 

a Pixera video camera and image analysis system was used to investigate the sintering 

behaviour of glass powder compacts. The cylindrical shaped samples from glass powder 

compacts with height and diameter of ~3 mm were prepared by cold-pressing the glass 

powders. The cylindrical samples were placed on a 10 mm ×15 mm ×1 mm alumina 

(>99.5 wt. % Al2O3) support and the measurements were conducted in air with a heating 

rate (β) of 5 ºC min
−1

. The temperature was measured with a chromel–alumel 

thermocouple contacted under the alumina support. The temperatures corresponding to 

the characteristic viscosity points (first shrinkage (TFS), maximum shrinkage (TMS), 

softening (TD), half ball (THB) and flow (TF)) were obtained from the graphs and 

photomicrographs taken during the hot-stage microscopy experiment. 

Apparent densities of the all the samples (bulk glasses, bulk glass-ceramics and 

sintered glass powder compacts) were measured using Archimedes Principle by 

immersion in ethylene glycol. 3-point bending strength of the sintered glass powder 

compacts were performed using universal testing machine (Shimadzu Autograph AG 25 

TA). 
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3.2.3 Results 

With increasing the MnO2 content in the experimental glass compositions, the 

melts demonstrated severe bubbling at temperatures close to 1550 ºC. However, the 

bubbles were relatively large and confined to the top surface of the melt. Therefore the 

cast glasses obtained were transparent and bubble free. 

3.2.3.1 Optical Study of bulk glasses 

Glasses GMn0.0 and GMn0.5 were colourless and light pink respectively whilst 

GMn1.0 and GMn2.0 showed a very strong colouring to purple. Figure 3.2.1 shows the 

UV-Visible transmittance spectra of the experimental glasses. Glass with no Mn 

addition (GMn0.0) did not show any absorption bands in the investigated region, whereas 

Mn doped glasses showed broad absorptions bands with magnitude proportional to Mn 

content. There are two absorption bands at ~474 nm and 631 nm in glass GMn0.5. Glass 

GMn1.0 featured three absorption bands at 489 nm, 581 nm and 638 nm. In the glass 

GMn2.0, the absorption bands are obtained at 478 nm and 631 nm. The purple colour in 

the Mn doped glasses is usually attributed to Mn
3+

 ions which exhibit absorption at 

~480 nm.
82,109–112

 With Mn in 2+ oxidation state the absorption bands usually are 

centred near ultraviolet regions.
111,112

 Therefore, based on the UV-Visible spectra of 

experimental glasses suggesting the strongest absorption bands at ~470 nm, it is 

reasonable to conclude that Mn ions mostly exist in 3+ oxidation state. This assumption 

will be further discussed in the subsequent sections. 

From Figure 3.2.1, the glass GMn1.0 was selected and the absorption bands were 

identified from their position in the UV-Visible spectra using Tanabe-Sugano diagrams. 

Additionally, the octahedral ligand field splitting parameter Δo and inter-electronic 

repulsion Racah parameter B values were determined. Based on the ligand field strength 

consideration and 3d
4
 electronic configuration of Mn

3+
, the electrons can exist in high 

spin or low spin states for low and high ligand field strengths, respectively.
113

 

Subsequently, the ground state configurations are 
5
Eg and 

3
T1g for low and high field 

ligand field strength, respectively. Based on calculations from the Tanabe-Sugano 

diagrams, the ground state was identified as 
3
T1g. Also the absorption bands in the 

regions ~480 nm, ~580 nm and ~630 nm correspond to the transitions 
3
T1g → 

5
Eg, 

3
T1g 

→ 
1
T2g and 

3
T1g → 

1
Eg, respectively. Further, due to Jahn-Teller distortion, the ground 
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state further splits.
111

 For GMn1.0, the ligand field splitting parameter was calculated to 

be Δo = 53494 cm
−1

 and Racah parameter B = 1392 cm
−1

. 

 
Figure 3.2.1 UV-Visible transmittance spectra of experimental glasses. 

From the Beer-Lambert law, the linear attenuation coefficient α can be calculated 

using an approximate equation given by, 

 𝛼 = −
1

𝑡
ln 𝑇 Eq. (3.2-1) 

Where, t is the thickness of the glass sample and T is measured transmittance. 

From the transmittance spectra, the optical band gap energy can be calculated using 

Tauc relationship given by the equation, 

 𝛼ℎ𝜈 = 𝐴(ℎ𝜈 − 𝐸𝑔)
𝑛 Eq. (3.2-2) 

where, α is linear attenuation coefficient, h is Planck constant, ν is the frequency 

of the photon, A is a constant related to the extent of band tailing, Eg is the band gap 

energy and the exponent n depends on the nature of the material. For direct band gap n 

= ½, and for indirect band gap n = 2. A Tauc plot is drawn with energy of the photon 

(hν) on abscissa and (αhν)
1/n

 on ordinate. An extrapolation of the linear portion of the 

curve onto the abscissa would yield optical band gap energy; because, when (αhν)
1/n

 = 

0, then Eg = hν. In the present work, both direct and indirect band gaps were calculated, 

i.e. for both n = ½ and 2. Figure 3.2.2a‒b shows the Tauc plots for n = ½ and n = 2, 
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respectively. In both cases, it can be noticed that there is red shift in the optical band 

gap (i.e. decreasing Eg). 

 

 
Figure 3.2.2  Tauc plots for (a) direct band gap, n = ½; and (b) indirect band gap, n = 2. 

3.2.3.2 FTIR 

The FTIR transmittance spectra of the experimental glasses are presented in 

Figure 3.2.3. Due to the amorphous nature of the glasses and wide distribution of Qn 

units, there is a lack of sharpness in the absorption bands. All experimental glass 

compositions showed four absorption bands; of which one broad peak is centred at 

~1050 cm
−1

. Two sharper peaks centred at ~470 cm
−1

 and ~780 cm
−1

. With Mn content 

increasing, the peak centred at ~1050 cm
−1

 broadens more. The assignment of these 

bands is as follows:
114

 

1. The low frequency band at ~470 cm
−1

 is attributed to transverse-optical (TO1) 

mode ρ(Si-O-Si) correspond to rocking motions of oxygen atoms. 



43 
 
 

2. Band near ~780 cm
−1

 is characteristic of transvers-optical (TO2) mode νs(Si-O-

Si) caused by symmetric stretching of oxygen atoms. 

3. The broad band at ~1050 cm
−1

 is due transverse-optical (TO3) mode νas(Si-O-Si) 

appear as a result of antisymmetric stretching of the oxygen atoms. The shoulder 

at high frequency side of this band is also a characteristic of this mode. 

 
Figure 3.2.3  FTIR of annealed bulk glasses. 

3.2.3.3 MAS-NMR 

The 
29

Si MAS-NMR spectra for experimental glasses GMn0.5, GMn1.0 and GMn2.0 

are shown in Figure 3.2.4a. It is to be noted that due to the amorphous nature of the 

glasses, they gave a broad peak indicating the wide distribution of Qn units. The spectra 

of GMn0.5, GMn1.0 and GMn2.0 glasses show that the broad peak is centred at −95.3 

ppm, −93.2 ppm and −92.8 ppm respectively suggesting a depolymerisation trend of the 

glass network at 0.5 to 2 mol. % MnO2 additions. At the same time broadening of the 

main peaks due to extended distribution of the Qn units can be observed. According to 

De Jong et al.,
115

 for various Qn units the mean chemical shifts were as follows, −107 

ppm (Q4), −92 ppm (Q3), −82 ppm (Q2) and −69 ppm (Q1). Therefore, the centring of 

the peaks between −92 and −96 ppm in the experimental glasses evidenced that Q3 is 

the dominant species. However, the shoulders centred at about −104.5 ppm in glass 

GMn0.5 suggest presence of Q4 units in the experimental glasses. 

27
Al MAS-NMR spectra are shown in Figure 3.2.4b. It can be noticed that for all 

the experimental glass compositions the chemical shift peaks are centred at ~52 ppm. 

This is a characteristic feature for aluminium existing in a glass network with 

tetrahedral coordination.
116–118
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Figure 3.2.4  (a) 

29
Si MAS-NMR and (b) 

27
Al MAS-NMR spectra of experimental glasses. 

3.2.3.4 Thermal and other properties of bulk glasses 

DTA thermographs for the glass powders are shown in Figure 3.2.5. The 

properties of the experimental glasses, including glass transition temperature (Tg), peak 

crystallization temperature (TP), molar volumes (Vm), density and optical basicity values 

of experimental glasses and other thermal parameters are presented in Table 3.2.2. The 

Hrubÿ parameter of glass stability (KH) was calculated by the equation,
119

 

 𝐾𝐻 = 
(𝑇𝑝 − 𝑇𝑔)

(𝑇𝑚 − 𝑇𝑔)
 Eq. (3.2-3) 

The KH values gradual decrease with Mn addition, while the reduced glass-

transition temperature (Tgr) given by Tg/Tm shows an apparent opposite trend. The 

calculation of molar volumes (Vm) given by M/ρ (where, M is molar mass and ρ is 

density of the glasses) was based on the optical study, assuming that majority of Mn 
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exists in +3 oxidation state. The optical basicity of glasses was calculated using the 

general formula:
120

 

 𝛬𝑐𝑎𝑙 = 𝑋𝐴
1

𝛾𝐴
+ 𝑋𝐵

1

𝛾𝐵
+⋯ Eq. (3.2-4) 

Where Λcal is the calculated optical basicity, γA and γB are basicity moderating 

parameters, and XA and XB are mole fractions of oxides A and B, respectively. 

 
Figure 3.2.5  DTA of experimental glasses at heating rate of 20 K min

‒1
. 

Table 3.2.2 Properties of the experimental glasses. 

 GMn0.0 GMn0.5 GMn1.0 GMn2.0 

Tg ± 2 (ºC) 460 458 467 465 

Tp ± 2 (ºC) 665 665 657 651 

KH 0.41 0.40 0.40 0.39 

Tgr 0.58 0.58 0.59 0.59 

Density (g cm
−3

) 2.36 ± 0.01 2.38 ± 0.01 2.39 ± 0.01 2.39 ± 0.01 

Molar Volume, Vm (cm
3
 

mol
−1

) 
23.37 23.25 23.28 23.46 

Calculated optical 

basicity, Λcal 
0.5279 0.5282 0.5285 0.5291 

3.2.3.5 Microstructural and phase analysis of bulk glasses and glass-ceramics 

Figure 3.2.6 presents the microstructures of the annealed bulk glasses showing 

the presence of metastable glass immiscibility regions. With increasing the MnO2 

content two main trends can be inferred from the micrographs: (a) the size of segregated 

droplets increases; (b) the population density of the droplets decreases. Additionally, in 
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the composition GMn2.0, the microstructure reveals a growth of dendritic type crystals 

(Figure 3.2.6, insert). 

 
Figure 3.2.6  SEM images of bulk annealed glass revealing phase segregation. 

Figure 3.2.7a‒d presents optical micrographs of glass samples GMn0.0 and 

GMn0.5 heat treated at 700 ºC, (Figure 3.2.7a‒b) and at 800 ºC (Figure 3.2.7c‒d). At 

700 ºC, the GMn0.0 sample reveals the formation of both bulk crystalline clusters and 

surface dendritic crystallization. The Mn addition (GMn0.5) seemingly decreased the 

population density of bulk crystalline clusters while concomitantly increased the 

thickness of the surface layer (Figure 3.2.7b), variations that can be associated with a 

favoured tendency towards surface crystallization. With increasing the heat treatment 

temperature to 800 ºC, the spherulites and dendrides merged resulting in the formation 

of fully crystallised structures (Figure 3.2.7c‒d). 
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Figure 3.2.7  Microstructures of bulk glass-ceramics of samples (a) GMn0.0 and (b) GMn0.5 heat 

treated at 700 ºC for 1 h; and (c) GMn0.0 and (d) GMn0.5 heat treated at 800 ºC for 1 h; pictures 

were taken by optical microscope with a magnification of ×50 and the surface layer is on the 

right side of the image. The inserts in (c) and (d) are the corresponding higher magnification 

images. 

Figure 3.2.8 compares the X-ray diffractograms of experimental bulk glasses heat 

treated at various temperatures. Key points to be noticed from these diffractograms are 

as follows:  

1. LS and LS2 start to form at 700 ºC in all glass compositions and continue to grow 

upon further increasing the heat treatment temperature. 

2. The formation of minor amounts of quartz took place at 900 ºC for glasses 

GMn0.0 and GMn0.5, but at a lower temperature (800 ºC) for glasses GMn1.0 and 

GMn2.0. 

Non-heat treated annealed bulk glass GMn2.0 shows a very low intensity single 

peak at 2θ = 31.3º, almost coincident with a peak of LS, but which could not be surely 

assigned to any phase. 
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Figure 3.2.8  X-ray diffractograms of bulk glasses (a) GMn0.0, (b) GMn0.5, (c) GMn1.0 and (d) 

GMn2.0 heat treated at various temperatures for 1 h. LS2: lithium disilicate (Li2Si2O5, ICDD card 

01-070-4856); LS: lithium metasilicate (Li2SiO3, ICDD card 01-049-0803); Q: quartz (SiO2, 

ICDD card 01-077-1060) [scale bar for (a), (b), (c) & (d) is 89000 cps]. 
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3.2.3.6 Microstructural and phase analysis of sintered glass powder compacts 

Figure 3.2.9 shows relatively low magnification SEM images of glass-powder 

compacts made for three compositions (GMn0.0, GMn1.0, and GMn2.0 – lines) sintered at 

different temperatures (800, 850 and 900 ºC – columns), to shed light on the porosity; 

while Figure 3.2.10 presents more detailed microstructural features of the same samples 

sintered at 800 and 900 ºC.  

 
Figure 3.2.9 SEM images showing the effect of sintering temperature and composition on 

porosity in glass powder compacts heat treated at 800, 850 and 900 ºC for 1 h: (a) to (c) GMn0.0; 

(d) to (f) GMn1.0; and (g) to (i) GMn2.0. 
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Figure 3.2.10 SEM images showing evolution microstructure of glass powder compacts 

sintered at: (a) to (d) 800 ºC and (e) to (i) 900 ºC. 

X-ray diffractograms of samples sintered in the range from 800900 ºC are 

presented in the Figure 3.2.11). At 800 ºC, LS emerged as major crystalline phase in 

GMn0.0 together with minor amounts of LS2 and quartz, while LS2 was already formed at 

this temperature for all Mn containing samples, becoming even the major phase for the 

higher added amounts of Mn. Therefore, Mn addition favours the formation of LS2 over 

LS. 
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Figure 3.2.11 X-ray diffractograms of sintered glass powder compacts; (a) GMn0.0, (b) GMn0.5, 

(c) GMn1.0 and (d) GMn2.0 sintered at 800, 850 and 900 ºC. LS2: lithium disilicate (Li2Si2O5, 

ICDD card 01-070-4856); LS: lithium metasilicate (Li2SiO3, ICDD card 01-070-0330); Q: 

quartz (SiO2, ICDD card 00-047-1144) [scale bar for (a), (b), (c) & (d) is 22400 cps]. 

3.2.3.7 Sintering behaviour and mechanical strength of glass powder compacts 

Figure 3.2.12 shows the sintering behaviour of the glass powder compacts of 

GMn0.0 and GMn2.0 under a constant heating rate of 5 ºC min
1

 from room temperature 

to 1000 ºC. DTA curves are also presented along with the HSM results. Characteristic 

points of sintering and crystallization are presented in Table 3.2.3. 
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Figure 3.2.12 DTA and HSM curves for glass powder compacts: (a) GMn0.0, (b) GMn2.0. 

Table 3.2.3 Characteristic points of crystallization and sintering in glasses. 

  GMn0.0 GMn2.0 

 Tg ± 2 (ºC) 490 486 

DTA Tc ± 2 (ºC) 571 560 

 Tp ± 2 (ºC) 648 624 

 TFS1 ± 5 (ºC) 510 510 

 TMS1 ± 5 (ºC) 583 583 

 δ1 (%) 18 18 

HSM TFS2 ± 5 (ºC) 794 775 

 TMS2 ± 5 (ºC) 928 851 

 δ2 ± 5 (%) 19 19 

 THB ± 5 (ºC) 945 937 

 

The effects of Mn content on density and flexural strengths variations with 

sintering temperature are presented in Figure 3.2.13. Increasing up to maximum values 

followed decreasing trends are features common to all curves, but they appear shifted to 

lower temperatures with increasing Mn contents. 
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Figure 3.2.13 Some properties of sintered glass powder compacts heat treated at different 

temperatures; (a) density and (b) bending strength; [ : GMn0.0; : GMn0.5; : GMn1.0; : 

GMn2.0]. 

3.2.4 Discussion 

3.2.4.1 Glass Structure 

The heat treatment caused a reduction of Mn from Mn
4+

 to lower oxidation states 

and the release of oxygen, processes that can be described by the following equations: 

 𝑀𝑛𝑂2 ↔ 𝑀𝑛2𝑂3 +
1

2
𝑂2 Eq. (3.2-5) 

 𝑀𝑛2𝑂3 ↔ 2𝑀𝑛𝑂 +
1

2
𝑂2 Eq. (3.2-6) 

The evolution of oxygen during glass preparation was responsible for the 

observed severe bubbling of the melts with increasing Mn contents. Whenever, added to 

silicate glass systems, Mn tends to exist either in +3 or +2 oxidation state; higher 

oxidation states such as +4 and +7 are possible but very unlikely.
111,121

 This redox 

equilibrium is common in glass systems doped with transition elements,
82

 and several 

studies 
82,122,123

 proved that the redox ratio depends on glass optical basicity (Λ) when 

other parameters are maintained constant. In the present study, the calculated optical 

basicity (Λcal) (Table 3.2.2) for the experimental glasses revealed only slight increments 

with the composition. These results suggest that similar chemical environment and 

redox ratio exist in all glass compositions, thus reflecting the constancy of melting 

conditions used. This hypothesis is supported by a near linear variation at λ = 500 nm of 

absorbance versus concentration according to Beer-Lambert law (not shown). The redox 

ratio also depends on several other parameters such as melt temperature, oxygen 
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fugacity (fO2) etc.
82

 Silicate glasses prepared by melting in atmospheric oxygen fugacity 

tend to have Mn majorly in +3 oxidation state. No evidence of Mn
2+

 was found by 

Nelson et al. 
112

 in sodium silicate glasses melted in air, since this oxidation state would 

require reducing conditions during melting.
109,111,112,124

 Optical absorption spectra of 

present glasses with peak maximum at ~500 nm, a characteristic Mn
3+

 absorption band 

for silicate glass systems, further supports the hypothesis that nearly all Mn in the 

present experimental glasses exists as Mn
3+

. In the presence of octahedral ligand field, 

Mn
3+

 with 3d
4
 electronic configuration experiences Jahn-Teller distortion that causes 

further splitting of optical absorption bands.
111

 This could result in over masking the 

weaker absorption bands of Mn
2+

 if at all present in the system. However, if Mn
3+

 is 

present in low spin state, the Jahn-Teller effect would be weak. In the present glass 

compositions, for GMn1.0 with high ligand field splitting parameter (Δo) of 53494 cm
−1

, 

Mn
3+

 should exist in low spin state and therefore have weak Jahn-Teller effect. Also 

complex laying on the right side of the vertical line in Tanabe-Sugano diagram of d
4
, 

gives rise to spin forbidden states. Anyway, further experiments like EPR spectroscopy 

and chemical titrations needs to be done to positively confirm the negligible presence of 

Mn
2+

 in the system. 

Now that we have hypothesized with reasonable assumption that Mn is present in 

the glass majorly as Mn
3+

, it is important to understand its role in the glass network. 

According to Nelson et al.,
125

 transition metal ions when dissolved in glass systems 

exist as one of the following species in the glass network structure, (1) as individual 

molecular entities, (2) as quasi-molecular complexes, (3) as network modifiers and (4) 

as network formers. When existing as individual molecular entities, they play no role in 

the network connectivity of the system. As quasi-molecular complexes, these ions are 

coordinated with non-bridging oxygens and play some role in the network locally. The 

difference between quasi molecular complex and network modifiers is basically the type 

of bonding they form, varying from predominantly covalent to ionic, respectively. With 

this in mind, we will try identifying the role played by Mn in the network of our glasses. 

The increase in chemical shifts with the added amounts of Mn observed in the 
29

Si 

MAS-NMR spectra (Figure 3.2.4a) suggests a network depolymerisation trend and a 

network modifier role for Mn. But the overall picture should be a bit more complex, 

considering that MnO2 was added at the expenses of SiO2, therefore causing a decrease 

in the SiO2/Li2O molar ratio (Table 3.2.1); which, itself, should result in glass network 
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depolymerisation. From the 
29

Si MAS-NMR spectra it can be inferred that Q
3
 units 

seem to be the dominant species of [SiO4]
4−

 polyhedra. Also with increasing manganese 

content from 0.5 to 2 mol.% the overall paramagnetic broadening of the NMR peaks 

can be noticed due to small additions of paramagnetic ions.
126

 In contrast, no change in 

the chemical shift can be observed in 
27

Al MAS-NMR spectra of glasses (Figure 

3.2.4b), indicating that network connectivity of Al2O3 polyhedra was unaffected by Mn 

addition. The peak centred at ~52 ppm is attributed to aluminium in tetrahedral 

coordination, therefore, playing the role of network former. 

The FTIR absorption broad band centred at ~1050 cm
−1

 attributed to various 

vibrational and stretching modes of [SiO4]
4−

 tetrahedra in Figure 3.2.3 tends to exhibit 

an increasing shoulder near ~950 cm
−1

 with the addition of MnO2. According to 

Innocenzi,
114

 this band is associated with the existence of non-bridging oxygens in the 

glass. This is consistent with NMR results, confirming that MnO2 addition leads to glass 

network depolymerisation. On the other hand, the decreasing trend in the band gap 

energies (Figure 3.2.2) accounts for an increased disorder in the system, also consistent 

with the formation of non-bridging oxygens that are less prone to tightly bound 

electrons.
127,128

 So far, all the evidences point out to a possible (but yet non-conclusive) 

network modifier role of Mn. 

The effects of adding network modifiers on molar volume (Vm) of a glass depend 

on their ionic radii.
8
 For example, smaller radii alkali earth metals (Li, Na) that can fit in 

interstitial positions of a glass would lead to network shrinkage (smaller Vm values); 

while the addition of K, Rb and Cs would lead to network expansion of the same glass. 

Assuming a network modifier role for Mn in the present system, an overall decrease in 

Vm should be expected as ionic radii of Mn ions (0.58–0.64 Å) are in the same range as 

Li
1+

 ion (0.59−0.92 Å).
129

 But Table 3.2.2 shows a first decrease of Vm upon adding 0.5 

mol.% Mn (GMn0.5) and a subsequent increase with further Mn additions, with the value 

for GMn2.0 being greater than that of GMn0.0. This increase in Vm suggests that Mn is 

acting more as a network former, thus contradicting the continuous depolymerization 

trend inferred from NMR and FTIR results. All these evidences make it difficult 

assuming either network modifier or network former roles for Mn. It is likely that Mn 

forms individual molecular entities or quasi-molecular complexes without interacting 

much with the glass network. 
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The Δo and B crystal field parameters drawn from UV-Visible spectroscopy 

results of GMn1.0 glass can give further hindsight regarding the bonding of this system. 

If the transition metal acts as network modifier, it is coordinated with non-bridging 

oxygens by ionic bonds having larger B values due to enhanced electron repulsion 

among the anions. But being weaker, ionic bonds show smaller Δo values. In the case of 

covalent bonding, overlapping of the atomic orbitals would result in the formation of 

molecular orbitals with an expansion of the electron cloud, the well-known 

Nephelauxetic Effect; as a result they show lower B values.
124

 Being stronger, covalent 

bonds show larger Δo values. In other words, B and Δo values should decrease and 

increase, respectively, if transition metal ions act as network formers and form covalent 

bonds. In the present case larger values of both B and Δo can be observed. This supports 

the hypothesis that Mn present in network interstitials is coordinated with oxygen atoms 

forming almost independent structural units. Mn bonded to oxygen in octahedral 

coordination might account for the high Δo values, while the isolation of the structural 

units could help explaining the high B values. Upon studying the effects of small 

additions of Mn into sodium silicate glasses, Mortuza et al. 
126

 arrived to a similar 

conclusion, suggesting that Mn is not chemically bonded to the glass network.  

The replacement of silica by MnO2 and the consequent decrease of SiO2/Li2O 

ratio are expected to cause depolymerisation of the glass network as seen from MAS-

NMR and FTIR spectra. However, the network contraction might be hindered by Mn 

structural units present in the interstitials that tend to cause network expansion. The 

relatively constant Tg values (458467 ºC) (Table 3.2.2) also support this interpretation, 

otherwise a more accentuated reduction in Tg should have been observed. 

According to the Li2O−SiO2 phase diagram, for SiO2/Li2O ratios less than 5.5 the 

droplets observed in the micrographs of annealed glasses (Figure 3.2.6) are SiO2-rich 

dispersed in the Li2O-rich matrix.
128,130

 Moreover, an overall reduction in phase 

segregation can be noticed from the SEM images. This suggests that the formation of 

Mn structural units increased the glass viscosity and, as a consequence, reduced its 

tendency to immiscibility. For a better understanding of these structural units, further 

experiments, including molecular dynamic simulations, will be required to shed light on 

its chemical nature and structure. 
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3.2.4.2 Crystallization in Bulk Glasses 

Heat treating the glasses at various temperatures (650900 ºC) resulted in bulk 

and surface crystallization, as seen in the optical micrographs of GMn0.0 and GMn0.5 

heat treated at 700 ºC (Figure 3.2.7a‒b). But the number of crystals in the bulk tends to 

decrease with incremental additions of Mn due to a less favourable homogenous 

nucleation in the glass. Using Classical and Adiabatic nucleation theories, Zanotto 
3,131

  

proved that glasses tend to nucleate homogenously when Tgr is less than ~0.58−0.60. 

The Tgr values reported in Table 3.2.2 are within this range. Therefore, adding Mn into 

the system reduces the overall tendency for homogenous nucleation and enhances 

surface crystallization. Several studies 
3,132,133

 proved that liquid-in-liquid phase 

segregation in glass promotes nucleation. Phase segregated droplets with a composition 

similar to that of crystals would reduce the kinetic barrier for nucleation. This explains 

the decreasing number of crystalline clusters in bulk when going from samples GMn0.0  

to GMn0.5 (Figure 3.2.7) or even its absence in the case of GMn2.0 glass (not shown). 

The increase in the Tgr is attributed to an increase in glass viscosity. 

Mn-rich structural units do not appear to have much effect on glass viscosity at 

higher temperatures as deduced from the decreasing TP values (Figure 3.2.5). This 

would result in an overall decrease in the activation energy for crystallization with 

increasing Mn contents. But the concomitant less bulk nucleation extent in glasses 

resulted in low crystalline content (Figure 3.2.10). The overall depolymerisation trend 

of glass network seems to predominate at higher temperatures causing the crystals to 

growth. But viscosity measurements and crystallization kinetics studies would be 

required to better understand these phenomena in the present glasses.  

3.2.4.3 Sintered Glass Powder Compacts 

From the SEM microstructures of glass powder compacts sintered at various 

temperatures shown in Figure 3.2.9, it can be seen that adding Mn (GMn0.0, GMn0.5 and 

GMn1.0) enhanced densification at lower temperatures (800850 ºC). But further 

increasing the Mn content (GMn2.0) and sintering temperature (900 ºC) tended to reduce 

density. Only the GMn0.0 sample shows proper densification at 900 ºC. There was a 

clear trend for the formation of pores of increasing size with increasing Mn contents and 

sintering temperatures. This can be explained by the gradual shifting to lower 
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temperatures of the exothermic DTA peaks (Figure 3.2.5) and a concomitant decrease 

in glass viscosity that favours gas release inside a glassy phase according to Eq. (3.2-5) 

and Eq. (3.2-6). 

The features of crystals formed upon sintering the glass powder compacts at 800 

ºC and 900 ºC are shown in the higher magnification SEM images of Figure 3.2.10. At 

both temperatures the size of crystals noticeably increased with increasing Mn contents 

due to the lowering of glass viscosity and of the activation energy for crystallization. 

This decrease in activation energy for crystallization is consistent with the reduction in 

the TP (Figure 3.2.5, Table 3.2.2) and with the XRD results displayed in Figure 3.2.11, 

favouring the crystallization process at lower temperatures. Upon sintering at 800 ºC, LS 

was the main crystalline phase obtained from GMn0.0, while the formation of LS2 was 

favoured from Mn-containing compositions. 

The HSM and DTA curves of GMn0.0 and GMn2.0 glass powders compacts 

presented in Figure 3.2.12 and the corresponding results reported in Table 3.2.3 shed 

further light on the sequence of thermal events. Until the first shrinkage (TFS1) and 

maximum shrinkage (TMS1) both GMn0.0 and GMn2.0 curves followed similar HSM 

profiles and reached the same TFS1 and TMS1 values. The formation of necks among the 

glass particles, especially among the smaller ones starts at TFS1 
134

 and gradually extends 

to the coarser ones, making the compact to shrink. But the meanwhile occurrence of 

devitrification manifested by the exothermic DTA peak tends to hamper further 

densification. These opposite influences lead to the first maximum shrinkage. The 

comparison of HSM and DTA curves displayed in Figure 3.2.12 shows that nucleation/ 

crystallization processes started at lower temperatures in the GMn2.0 sample, likely due 

to its lower activation energy. Moreover, TP values are < 700 ºC, the temperature at 

which the first XRD signs of crystallization appeared for bulk glasses (Figure 3.2.12). 

This suggests that heterogeneous nucleation is taking place at the surface of glass 

particles. 

The balance between densification and crystallization processes leads to the 

observed shrinkage plateau. With temperature increasing the remaining glassy phase 

softens and stimulates surface and bulk diffusion and a second shrinkage (TFS2) step 

starts and continues while the driving forces for densification will predominate over the 

crystallization and phase transformation. The crystallization process and the second 
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maximum shrinkage (TMS2) occur earlier for GMn2.0 in comparison to GMn0.0. Heat 

treating GMn2.0 above TMS2 resulted in over firing effects expressed by swelling/foaming 

due to the release of oxygen inside a partial melted glass. This foaming tendency with 

increasing Mn contents is clearly illustrated by the increasing porosity (Figure 3.2.9). It 

is also consistent with the evolution of density and bending strength values of sintered 

glass powder compacts presented in Figure 3.2.13, especially by the accentuated 

decreases observed for GMn2.0 at higher temperatures. General increasing trends up to 

maximum values of these two properties, followed by decreasing tendencies are 

observed for the other compositions, but the curves appear shifted to lower temperatures 

as Mn content increases. In the case of GMn0.0, there is a continuous increase in the 

bending strength with sintering temperature. For GMn0.5 and GMn1.0 the maximum 

bending strength is reached at 850 ºC and after that, at 900 ºC the bending strength 

values decline. In the case of GMn2.0, there is a continuous decrease in the bending 

strength values. 
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Abstract 

The aim of the present work is to investigate the effect of substituting B2O3 for 

Al2O3 in a non-stoichiometric LS2 glass composition belonging to the system 

Li2OK2OAl2O3SiO2. Addition of equimolar amounts of K2O and Al2O3 to binary 

lithium silicate glass compositions improves chemical resistance, sintering behaviour 

and mechanical properties of the glass-ceramics produced from sintered glass powder 

compacts. However, in bulk (monolithic) glasses Al2O3 addition hinders bulk 

nucleation. It also suppresses crystallization of LS2 and promotes formation of a meta-

stable crystalline phase called LS. The results showed that B substitution resulted in the 

depolymerisation of glass network increasing the percentage of NBOs leading to 

decreasing viscosity, molar volumes, oxygen densities and glass transition temperatures. 

The simultaneous mixture of Al and B into the glass composition resulted in decreased 

liquid-liquid phase segregation (LLPS) and lower crystal nucleation tendency when 

compared to Al pure or B pure compositions. Further, Al rich glasses featured lithium 

metasilicate crystallization at initial stages and then transformed into LS2 at higher 

temperatures, while with B addition glasses crystallize directly into LS2. 
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3.3.1 Introduction 

Glass-ceramics (GCs) are used in wide variety of applications ranging from 

military, biomedical to consumer goods like cooktops.
1
 Particularly in restorative 

dentistry leucite and lithium disilicate (LS2) based GCs are meeting the demand for 

excellent aesthetic and good mechanical properties with relative ease of processing.
135

 

These materials’ compositions are carefully tailored and given controlled heat 

treatments to obtain desired nucleation and crystallisation of glasses. By adjusting the 

crystal size and fraction, required translucency and mechanical properties can be 

achieved. The key aspect of glass-ceramics in comparison to conventional ceramics is 

that they are inherently pore free which makes them well suited for high mechanical 

strength applications.
136

 Over last four decades several fundamental studies have been 

performed on nucleation and crystallization of glasses belonging to various systems 

addressing various aspects of glass crystallization.
2–4

 However, most of these studies 

were restricted to simple stoichiometric or binary compositions and only few studies 

were performed on multicomponent systems.
137–145

 From an application point of view, 

in a multicomponent system, the addition of a particular dopant to the glass system 

changes its structure and chemistry consequently affecting its nucleation and 

crystallization behaviour; thereby it has a direct effect on final physical and chemical 

properties of GCs. During the initial stages of crystallization the phases that nucleate 

should directly depend upon local initial glass structure. Therefore, probing the bulk 

glass structure would offer deeper insights into the initial stages of nucleation.
146

 Hence, 

it is imperative to understand the effect of a specific dopant on glass structure so that its 

crystallization behaviour can be understood in a new perspective. Therefore the current 

paper is mainly aimed at evaluating the effect of glass structure on crystal nucleation 

and overall crystallization of Al and B doped glasses. 

Addition of aluminium and boron oxides to silicate glasses is known to improve 

chemical resistance of both glasses and GCs.
147

 Apart from enhancing chemical 

resistance, Al2O3 also has a huge influence on the nucleation and crystallization 

behaviour of the glass. Several detailed studies on effect of Al2O3 were carried out by 

the authors of the present paper. 
142,145,148–151

 Addition of Al2O3 decreases phase 

segregation in the glass which consequentially results in the reduction of the nucleation 

rate.
152

 Furthermore, Al2O3 drops the overall tendency of the glass to devitrify 
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enhancing its glass stability and also promotes crystallization of LS over LS2 When it 

comes to B2O3 addition into silicate glasses, apart from promoting chemical resistance 

like Al2O3, B2O3 also improves thermal shock resistance and raises electrical resistivity 

of the glass.
8
 Contrary to the role of Al2O3, B2O3 is known to promote amorphous phase 

separation.
53

 

Most of the commercial GCs used in various applications have nucleating agents 

added into them in order to promote higher nucleation rate and fine grained 

microstructure. Nonetheless, in a study like the current one, the presence of nucleating 

agents would make it difficult to ascertain the function of a particular dopant on the 

glass structure and ultimately the crystallization behaviour. Therefore, in the present 

study, a relatively simple multicomponent non-stoichiometric glass belonging to the 

system Li2OK2OAl2O3SiO2 with no nucleating agents added was chosen. In this 

system, the effects of substituting Al2O3 for B2O3 are elucidated. The structure of the 

glasses is probed employing wide range of characterization techniques. Based on the 

structural findings the nucleation and crystallization behaviour of these glasses were 

explored. 

3.3.2 Experimental work 

3.3.2.1 Preparation of glasses and glass-ceramics  

Table 3.3.1 Compositions of the experimental glasses in mol%. 

 GB0 GB25 GB50 GB75 GB100 

Li2O 23.00 23.00 23.00 23.00 23.00 

K2O 2.64 2.64 2.64 2.64 2.64 

Al2O3 2.64 1.98 1.32 0.66 0.00 

B2O3 0.00 0.66 1.32 1.98 2.64 

SiO2 71.72 71.72 71.72 71.72 71.72 

(B2O3) / (B2O3+Al2O3) 0.00 0.25 0.50 0.75 1.00 

Five experimental glass compositions were prepared including the base glass 

(23Li2O  2.64K2O  2.64Al2O3  71.72SiO2) by partially replacing Al2O3 by B2O3 in 

steps of 25%. Accordingly, these glasses were named GBx for x = 0, 25, 50, 75 and 

100% replacement of Al2O3. In all the compositions molar concentrations of Li2O, K2O 

and SiO2 were kept constant with K2O present in the same equimolar amounts as the 
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sum of Al2O3 and B2O3. Table 3.3.1 presents the compositions of the experimental 

glasses. 

For precursors, powders of technical grade SiO2 (purity  99%) and reagent grade 

Li2CO3 (purity  99%), K2CO3 (purity  99%), Al2O3 (purity  99%) and H3BO3 (purity 

 99%) were used. These powders were mixed homogenously by ball milling and 

calcined at 800 ºC in alumina crucibles for 1 h in air. The calcined powders (~100 g 

batch sizes) were further mixed in mortar-pestle for homogeneity and transferred to Pt-

crucibles for melting at temperature of 1550 ºC for 1 h in air. Bulk (monolithic) bar 

shaped glasses were prepared by pouring the melt on bronze mould. To investigate 

LLPS, samples GB0, GB50, and GB100 were annealed at 520 ºC for a long duration (100 

h) in order to bring the samples to thermodynamic equilibrium. Non-annealed bulk 

glasses were heat treated at temperatures between 650900 ºC with 50 ºC interval at a 

rate of 2 K min
1

 for 1 h in air to investigate the devitrification process. 

3.3.2.2 Characterizations of the samples 

Optical spectra of the bulk glasses were recorded using UV-VIS-NIR 

spectrophotometer (UV-3100, Shimadzu) in the range 200–800 nm wavelength with a 

resolution of 0.2 nm. For this, bulk glass slices of thickness 1.5−2.0 mm were cut from 

the bars and the both parallel sides were polished to a mirror finish. Fourier transform 

infrared spectroscopy (FTIR, model Mattson Galaxy S-7000) was carried out in the 

range of 300−1400 cm
−1

 with a resolution of 4 cm
−1

 on glass powders prepared by 

crushing the bulk glass. Samples for FTIR were prepared by mixing 1/150 (by weight) 

portion of the sample with KBr and hand pressed to obtain pellets. Raman spectra 

(Bruker RFS100 FT-Raman) were recorded for the same glass powders in the range of 

300−1800 cm
−1

 with a resolution of 4 cm
−1

. The samples were excited by an infrared 

laser of power 350 mW with an excitation wavelength of 1064 nm. 
29

Si and 
27

Al magic 

angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR, Bruker ASX 

400) was conducted on selected glass samples prepared by crushing them into fine 

powder. 
29

Si MAS-NMR was performed for samples GB0, GB25, GB50 and GB100 using 

tetramethylsilane as a chemical shift reference. The spectrometer was operated at a 

Larmor frequency of 79.5 MHz with a 9.4 T magnetic field (Bo) using a 7 mm probe 

rotating at 5 kHz. The samples were excited with a 3.25 μs radiofrequency (RF) pulse 

equivalent to 90º flip angle using a 60 s delay time. 
27

Al MAS-NMR was carried out on 
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samples GB0 and GB50 employing Al(NO3)3 as a chemical shift reference. The 

spectrometer was operated at a Larmor frequency of 104.3 MHz with a 9.4 T magnetic 

field (Bo) using a 4 mm probe rotating at 14 kHz. The samples were excited with a 0.7 

μs RF pulse equivalent to 10º flip angle using a 2 s delay time. 
11

B MAS-NMR spectra 

were recorded for the samples GB50 and GB100 using Hahn-echo technique with 90º and 

180º pulses in order to get better resolution of the spectra. The spectrometer was 

operated at a Larmor frequency of 128.4 MHz with a 9.4 T magnetic field (Bo) using a 4 

mm probe rotating at 14 kHz. The samples were excited with a ~6.5 μs RF pulse 

equivalent to 90º flip angle using a 1 s delay time. H3BO3 was used as a chemical shift 

reference. In order to evaluate higher coordinated Al units, 
27

Al MAS-NMR was 

performed using higher magnetic field of 16.4 T (Bruker Avance III HD 700) for 

sample GB25. For this, 4 mm probe was used rotating at 14 kHz with a 10º flip angle and 

delay time of 1 s. Deconvolutions of all NMR spectra were performed using Dmfit 

program. 

Differential thermal analysis (DTA, Setaram Labsys) was carried out in air from 

ambient temperature to 1000 ºC with a heating rate of  = 20 ºC min
1

. For each DTA 

experiment, ~30 mg of non-annealed bulk glass crushed to grain sizes in the range of 

500−1000 µm (collected by sieving) was used. DTA experiments were carried out using 

alumina crucibles with α-Al2O3 powder as a reference material. Dilatometry (BÄHR 

Thermo Analyse GmbH 2000, model DIL 801) was performed on all the bulk glass 

samples from room temperature to 600 ºC at 5 ºC min
−1

 heating rate. Prismatic samples 

of length ~10 mm and cross section ~3×4 mm
2
 were prepared for dilatometry. Densities 

of all bulk glasses were measured employing Archimedes principle by immersing 

samples in ethylene glycol solution. 

Microstructures of all glasses and GCs were recorded using reflected light optical 

microscope (Jenaphot 2000, Zeiss) and scanning electron microscope (SEM, SU-70, 

Hitachi). Samples for microstructural observation were polished and etched using 2 

vol.% hydrofluoric acid for 60 s. Crystalline phase content in all glasses and glass-

ceramic samples was determined by X-ray diffraction (XRD, Rigaku Geigerflex D/Mac, 

C Series) using Cu Kα radiation with 2θ varying from 1060º steps of 0.02º s
−1

. 
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3.3.3 Results 

All the bulk cast glasses obtained after melting at 1550 ºC were transparent and 

bubble free. X-ray diffraction conducted on the glasses (not shown) revealed no 

crystalline phases confirming they are all amorphous. Considering the high melting 

temperature, at which the lighter elements (such as Li and B in the current 

compositions) are prone to the volatilization, weight losses of the glasses were 

measured before and after melting. The weight losses were less than 0.2 %; which is a 

negligible value and it is within the limits of experimental errors.
8
 In the case of boron, 

since it is present at a dopant level concentration, its volatilization would be far more 

negligible.
153

 

3.3.3.1 MAS-NMR Spectroscopy 

Figure 3.3.1a‒c show the 
29

Si, 
27

Al and 
11

B MAS-NMR spectra of the 

experimental glasses, respectively. In all three Figures, the spectra show relatively broad 

peaks which are tell-tale features for glasses, revealing their amorphous nature and wide 

distributions of bond angles and bond lengths. From 
29

Si MAS-NMR spectra in Figure 

3.3.1a, it can be seen that for all glass samples, the spectra presents a peak maximum 

near ~ −92 ppm and a shoulder in the range of −104 to −106 ppm, corresponding to Q3 

and Q4 units of (SiO4)
−2

 tetrahedra respectively.
115,154

 By performing boron substitution, 

the peak corresponding to Q4 gets more resolved by shifting to lower values of the 

chemical shifts i.e. from −104.4 to −106.4 ppm for 0 and 100% replacement of boron 

respectively. However, peak maximum corresponding to Q3 remains unchanged in all 

compositions. Also all glasses show a small shoulder approximately near −80 ppm 

corresponding to Q2. Between the two major peaks (i.e. −92 and −104.4 ppm), glasses 

GB25 and GB50 show two small shoulders; these shoulders are not present in Al pure 

(GB0) or B pure (GB100) compositions. Deconvolution of 
29

Si spectra was performed in 

order to quantitatively determine the fractions of Si units present. For the deconvolution 

of 
29

Si NMR spectra, four Gaussian line shapes were used corresponding to Q2, Q3, Q4 

and Q4(1X) (Q4 connected to one X (Al or B) atom in second coordination sphere). An 

example of 
29

Si deconvolution is presented in Figure 3.3.2a and relative amounts of 

each Q unit as well as the fitting parameters are presented in Table 3.3.2. However, due 

to the complexity of current glass compositions with the formation of additional 

linkages such as Si−O−Al and Si−O−B leads to the creation of new Q units which 
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strongly affect the 
29

Si chemical shift.
 154,155

 Therefore, the information obtained from 

the NMR deconvolution were used carefully within the limitations of experimental 

errors. 

 
Figure 3.3.1  Multinuclear NMR spectra of (a) 

29
Si, (b) 

27
Al and (c) 

11
B of bulk non-annealed 

experimental glasses. ( : Bo = 9.4 T and : Bo = 16.4 T) 

Table 3.3.2 NMR parameters for 
29

Si deconvolution. 

    GB0 GB25 GB50 GB100 

δiso (ppm) 

Q
2
 −78.5 ″ ″ ″ 

Q
3
 −92.6 ″ ″ ″ 

Q
4
(1X) −103.4 ″ ″ −104.0 

Q
4
 −108.9 ″ ″ ″ 

FWHM 

(ppm) 

Q
2
 5.1 8.5 10.3 9.5 

Q
3
 15.7 ″ 15.1 14.8 

Q
4
(1X) 9.7 10.7 10.9 10.8 

Q
4
 10.4 10.3 10.4 10.5 

Amount (%) 

Q
2
 1 3 4 4 

Q
3
† 74 70 65 64 

Q
4
(1X) 15 16 18 17 

Q
4
 10 11 13 15 

δiso: Chemical shift 

FWHM: Full width at half maximum 

X: Al or B 

†: Corresponds to both Q
3
 and Q

4
(3Al) 

The 
27

Al MAS-NMR spectra of the samples GB0, GB25 and GB50 presented in the 

Figure 3.3.1b show non-symmetrical peaks for GB0 and GB50 and a near symmetrical 

peak for GB25 with peak maximums centred at ~52 and 56.4 ppm respectively. 
27

Al 

being spin I=5/2 nuclei, experiences quadrupolar interactions with electric field gradient 

resulting in broadening and shifting of the peaks from the isotropic chemical shift 

values.
154

 However, at higher magnetic fields quadrupolar effects are reduced and 

therefore GB25 shows lower quadrupolar effects and confirming the nonexistence of 5− 

and 6−fold coordinated Al.
118

 In order to find out the true chemical shift values for GB0 
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and GB50 the spectral deconvolution was performed using Czejeck distribution model 

according to Neuville et al.
156

 by fitting one line shape. The peaks obtained have 

chemical shifts 58.85 and 58.84 ppm and quadrupolar coupling constants (CQ) 4.4 and 

4.5 MHz for GB0 and GB50 respectively. Therefore, being able to fit with one line shape 

and with the obtained chemical shift values, it can be concluded that majority of Al 

exists in 4-fold coordination.
 117,118,154,157

 

 
Figure 3.3.2  Deconvolution of (a) 

29
Si nuclei of GB0 and (b) 

11
B nuclei of GB100 NMR spectra. 

11
B MAS-NMR spectra for glasses GB25, GB50 and GB100 shown in the Figure 

3.3.1c have one broad peak and another relatively sharper peak centred close to −1.3 

ppm, each corresponding to trigonal (BO3, B
III

) and tetrahedral (BO4, B
IV

) boron species 

respectively.
154

 The peak at −1.3 ppm can be attributed to reedmergnerite like structural 

units of boron where each of the tetrahedral boron is coordinated with four Si 

tetrahedrons. 
154,158

 In order to identify the relative contents of B
III

 and B
IV

 units of 

boron, the 
11

B MAS-NMR spectra were deconvoluted and an example is presented in 

Figure 3.3.2b. The line shapes were simulated by using two trigonal peaks with second-

order quadrupolar effects each corresponding to symmetric (B
IIIs

, boron with 0 or 3 
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bridging oxygens) and asymmetric trigonal (B
IIIa

, boron with 1 or 2 bridging oxygens) 

boron units.
159

 For tetrahedral boron units a single mixed Gaussian/Lorentzian peak was 

used. The NMR parameters used for the deconvolution of the spectra, which are 

isotropic chemical shift (δiso), quadrupolar coupling constant (CQ), and quadrupolar 

asymmetry parameter (η) along with the relative contents of each boron species, are 

presented in Table 3.3.3. 

Table 3.3.3 NMR parameters for 
11

B deconvolution. 

Boron Site δiso (ppm) CQ (MHz) η Amount (%) 

GB25     

B
IV

 ‒1.38 --- --- 38.25 

B
IIIa

 17.00 2.64 0.42 46.45 

B
IIIs

 11.50 2.14 0.04 15.30 

GB50     

B
IV

 ‒1.36 --- --- 43.28 

B
IIIa

 17.07 2.58 0.42 38.27 

B
IIIs

 11.48 2.34 0.04 18.45 

GB100     

B
IV

 ‒1.33 --- --- 48.04 

B
IIIa

 17.41 2.63 0.35 38.81 

B
IIIs

 11.16 2.14 0.17 13.15 

δiso: Chemical shift 

CQ: Quadrupolar coupling constant 

η: asymmetry parameter 

3.3.3.2 Raman Spectroscopy 

The Raman spectra of the experimental glasses are presented in Figure 3.3.3. All 

glasses showed a broad peak between 400600 cm
−1

 with peak maximum at ~550 cm
−1

. 

Other peak positions are at wavenumbers 789, ~954 and ~1086 cm
−1

. The assignments 

of these peaks are as follows: 
155,160,161

 

1. The broad peaks between 400−600 cm−1
 are attributed to mixed stretching and 

bending modes of Si−O−Si bridging bonds.  

2. The peak at 789 cm
−1

 corresponds to inter-tetrahedral deformation mode 

involving significant cation motion. 

3. The peaks near ~954 cm
−1

 correspond to Si−O symmetric stretching in a 

structural unit with two terminal oxygens (Q
2
). 
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4. The broad peaks ranging from 1000−1200 cm−1
 could be attributed to both Q

3
 

and vibration of non-bridging oxygens; however peak maximum at 1086 cm
−1

 

indicate that Q
3
 is present in bigger amounts. 

.  
Figure 3.3.3  Raman spectra of experimental glasses. 

3.3.3.3 FTIR 

The FTIR transmittance spectra of the experimental glasses presented in Figure 

3.2.4 also show broad peaks indicating amorphous nature of the glasses and wide 

distribution of Qn units. All experimental glass compositions showed four absorption 

bands; of which one broad peak is centred at ~1050 cm
−1

. Two relatively sharper peaks 

appear centred at ~467 cm
−1

 and 780 cm
−1

. These peak positions are assigned to various 

vibrational modes according Innocenzi: 
114

 

1. The low frequency band at ~470 cm
−1

 is attributed to transverse-optical (TO1) 

mode ρ(Si−O−Si) correspond to rocking motions of oxygen atoms. It could also 

be attributed to the symmetric stretching vibrations of LiO4 tetrahedra. 

2. The band near ~780 cm
−1

 is characteristic of transverse-optical (TO2) mode 

υs(Si−O−Si) caused by symmetric stretching of oxygen atoms. 

3. The broad band at ~1050 cm
−1

 is due transverse-optical (TO3) mode υas(Si–O–

Si) appear as a result of antisymmetric stretching of the oxygen atoms. The 

shoulder at high frequency side of this band is also a characteristic of this mode. 
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Figure 3.3.4 FTIR spectra of experimental glasses. 

3.3.3.4 UV-Visible Spectroscopy 

Figure 3.3.5a shows optical transmission spectra of the experimental glasses. 

Apart from the strong UV absorption edge near ~300 nm in the UV region, glasses did 

not show any other absorption band in the examined region. The spectral curves for 

GB50, GB75 and GB100 show almost same profile and therefore indistinguishable in the 

Figure 3.3.5a. The band gap energy (Eg) for all the glasses was calculated using Tauc 

relationship given by the, 

 𝛼ℎ𝜈 = 𝐴(ℎ𝜈 − 𝐸𝑔)
𝑛

 Eq. (3.3-1) 

 𝑊ℎ𝑒𝑟𝑒,   𝛼 = −
1

𝑡
𝑙𝑛 𝑇   (𝑎𝑝𝑝𝑟𝑜𝑥. ) Eq. (3.3-2) 

Here, α is the linear attenuation coefficient, T is the percent transmittance, t is the 

thickness of the sample, h is the Planck’s constant, ν if the frequency of the photon, A is 

a constant related to band tailing, Eg is the band gap energy and the value of n depends 

on type of transition with values ½ and 2 for direct and indirect band gaps respectively. 

From the Tauc plots with (αhν)
1/n

 versus hν, the linear portion of each plot is 

extrapolated to intersect abscissa to give optical band gaps. In the present paper indirect 

band baps were calculated for all experimental glasses by taking n = 2. The results of 
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the band gaps presented in Figure 3.3.5b insert and Table 3.3.4 increase with 

increasing B substitution. 

 
Figure 3.3.5 (a) UV-Visible spectra and (b) optical band gaps of experimental glasses. 

3.3.3.5 Physical and thermal properties of glasses 

Densities of all monolithic glasses are presented in Table 3.3.4. The values of 

density (ρ), molar volume (Vm) and oxygen density (ρO) were calculated using following 

formulas: 

 𝑉𝑚 =
𝑀

𝜌
 Eq. (3.3-3) 

 𝜌𝑂 =
𝑀𝑂 (𝑋𝐿𝑖2𝑂 + 𝑋𝐾2𝑂 + 3𝑋𝐴𝑙2𝑂3 + 3𝑋𝐵2𝑂3 + 2𝑋𝑆𝑖𝑂2)

𝑉𝑚
 Eq. (3.3-4) 

Where M and ρ are molecular weight and density of the glass, MO is the molecular 

weight of oxygen and X is the molar fraction of each oxide component present in each 

glass. Values of molar volumes and densities are presented in in Table 3.3.4 and Figure 

3.3.6. Values for coefficient of thermal expansion (CTE, 200‒400 ºC) and glass 

softening or deformation temperatures (Td) determined from dilatometry are also 

presented in Table 3.3.4 as well as the characteristic points (Tg: glass transition 

temperature, Tc: crystallization onset temperature, Tp: crystallization peak temperature, 

TS: solidus point and TL: liquidus point) from the DTA curves for all glasses. To identify 

these characteristic points, the intersection method was employed as shown in the 

Figure 3.3.7; for Tg onset of baseline shift was used. Hrubý parameter (KH) for glass 
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stability 
119,162

 and reduced glass transition temperature 
163

 (Tgr) for the glasses were 

calculated by the formula: 

 𝐾𝐻 =
𝑇𝐶 − 𝑇𝑔

𝑇𝑆 − 𝑇𝑐
 Eq. (3.3-5) 

 𝑇𝑔𝑟 =
𝑇𝑔 

𝑇𝐿
   (𝑡𝑒𝑚𝑝. 𝑖𝑛 𝐾) Eq. (3.3-6) 

The percentage of non-bridging oxygens (NBOs) with respect to total number 

oxygens present as an indicator of polymerization of glass network for each glass 

composition was calculated based on the formula: 

 𝑁𝐵𝑂 (%) =
2×([𝐿𝑖2𝑂]+[𝐾2𝑂]−[𝐴𝑙2𝑂3]−[𝐵

𝐼𝑉
2𝑂3])

[𝐿𝑖2𝑂]+[𝐾2𝑂]+3[𝐴𝑙2𝑂3]+3[𝐵2𝑂3]+2[𝑆𝑖𝑂2]
  Eq. (3.3-7) 

Here all Al is assumed to be in tetrahedral coordination and the amount of B
IV

 

units is obtained from 
11

B NMR deconvolution. The values of NBO percentage are 

presented in Table 3.3.4 for glass compositions GB0, GB25, GB50 and GB100. 

 

Figure 3.3.6 Molar volumes (Vm, ) and oxygen densities (ρO, ) of experimental glasses as a 

function of boron replacement. 
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Table 3.3.4 Properties of experimental glasses 

  GB0 GB25 GB50 GB75 GB100 

Tg 

(ºC) 

480 480 480 479 476 

Td 522 507 514 501 497 

Tc 707 703 699 688 679 

Tp 824 812 797 767 768 

TS 951 952 925 918 917 

TL 987 986 981 977 970 

Tc ‒ Tg 227 223 219 209 203 

Tgr  0.598 0.598 0.601 0.602 0.602 

KH  0.93 0.89 0.97 0.91 0.85 

Density 

(g cm
−3

) 

2.35 ± 

0.003 

2.36 ± 

0.003 

2.36 ± 

0.002 

2.36 ± 

0.002 

2.36 ± 

0.003 

Oxygen 

Density 

1.209 ± 

0.002 

1.216 ± 

0.001 

1.220 ± 

0.001 

1.226 ± 

0.001 

1.233 ± 

0.002 

Molar 

Volume 

(cm
3
 

mol
−1

) 

23.43 ± 

0.03 

23.29 ± 

0.03 

23.21 ± 

0.02 

23.09 ± 

0.02 

22.97 ± 

0.03 

CTE 
×10

−6
 

K
−1

 
9.6 9.9 10.1 9.9 10 

Band Gap 

Energy 
eV 3.8 3.83 3.86 3.86 3.89 

NBO % 26 26.4 26.8 --- 27.5 

  
Figure 3.3.7 DTA curve of glass GB75 at heating rate of 20 ºC min

−1
. 

3.3.3.6 Microstructures and phase analysis 

The non-annealed cast glasses showed small signs of liquid-liquid phase 

segregation (LLPS) near the edges where thermal conditions must have been prone for 

its occurrence. To shed further light on LLPS, the glasses were annealed at 520 ºC for 
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100 h. Homogenous droplet-like LLPS occurred throughout the samples in the 

following relative extents GB0 > GB100 > GB50, as obtained from SEM images (e.g. 

Figure 3.3.8c−d). The size of the droplets varied from few tens to 200 nm. The LLPS 

was also visible macroscopically as the glasses appeared cloudy. The cloudiness was 

greater for Al-rich sample GB0 compared to GB50 or GB100. XRD analysis of annealed 

glass samples (not shown) revealed no crystalline phases. 

 

  
Figure 3.3.8 Metastable liquid-liquid phase segregation of (a) & (b) non-annealed glasses and 

(c) & (d) annealed at 520 ºC for 100 hours. 

The microstructures of glasses heat treated at lower temperatures (650 700 ºC, 

Figure 3.3.9) reveal a nucleation extent dependence on B substitution. The number of 

spherulitic crystals in bulk glasses (a qualitative measure of nucleation rate) displays an 

apparent exponential-type increase with B substitution, excepting GB25 that shows the 

lowest nucleation extent. Extensive crystallization occurred upon heat treating the glass 

samples at temperatures ≥ 700 ºC as seen in the optical (Figure 3.3.10a−c) and SEM 

(Figure 3.3.10d) micrographs, with morphological features depending on B substitution 

and heat treatment temperature. 

The X-ray diffractograms for all samples isothermally treated for 1 h at 

temperatures between 650900 ºC are presented in Figure 3.3.11. Transient phases are 

not expected under these close to thermodynamic equilibrium conditions. It can be seen 

(a) GB50,Non-annealed 
250 nm 

(b) GB75,Non-annealed 
250 nm 

(c) GB0, 520 °C, 100 h 
1 μm 

(d) GB100, 520 °C, 100 h 
1 μm 
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that LS2 and LS2-ss (low temperature solid solution phase of LS2) were the prominent 

crystalline phases formed at 650 ºC. The crystallization propensity was enhanced with 

increasing B substitution. Al-rich glasses tend to crystallize minor mounts of LS phase 

and retain it at higher temperatures. Increasing B substitution favoured the formation of 

various polymorphs of silica at higher temperature.  

  

  
Figure 3.3.9 Optical microscope images showing degree of nucleation with B substitution. 

In order to identify any transient phases formed upon heat treating under non- 

isothermal conditions, the extreme compositions GB0 and GB100 (particle sizes between 

500−1000 µm) were subjected to a heat treatment similar to DTA ( = 20 ºC min
−1

). 

The samples were quenched from temperatures below melting point in order to preserve 

any transient crystalline phase formed. The diffractograms of these samples presented in 

Figure 3.3.12b show formation of LS and LS2 in GB0 and GB100 respectively. Thus the 

crystallization and melting peaks in DTA (Figure 3.3.7) should correspond to these 

transient phases. 

(a) GB0, 700 °C 500 μm (b) GB25, 700 

°C 
500 μm 

(c) GB50, 700 

°C 
500 μm (d) GB100, 650 °C 500 μm 
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Figure 3.3.10 Micrographs of: (a) – (c) optical microscopy of completely crystallized glasses; 

(d) SEM morphology of spherulite crystals. 

The solidus (TS) and the liquidus (TL) points obtained from the DTA curves 

plotted against the percent boron replacement and the X-ray patterns of resulting GB0 

and GB100 samples are displayed in Figure 3.3.12a‒b. With boron replacement 

increasing, TL gradually decreases, while TS remains constant up to GB25, steeply drops 

for GB50, being followed by a decreasing trend to constant values. Even not 

corresponding to equilibrium conditions, the shapes of both these curves together seem 

physiognomies of a phase diagram. 

3.3.4 Discussions 

3.3.4.1 Glass structure and properties 

The structure of glasses consists essentially of Q
3
 and Q

4
 network forming units 

(Figure 3.3.2a). According to earlier co-authors’ studies 
148,149

 and other literature 

reports 
115,155

, the 
29

Si NMR spectra of binary lithium silicate glass system (L23S77) with 

similar Li2O/SiO2 ratio (3.34) showed two very distinct peaks for Q
3
 and Q

4
 units with 

(a) GB0, 800 °C 500 μm (b) GB50, 750 

°C 
500 μm 

(c) GB100, 700 

°C 
500 μm 

(d) GB75, 650 

°C 
2.5 μm 
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peak maximums located at approximately −92 and −108 ppm respectively. In the case 

of GB0, the presence of equimolar amount of Al2O3 and K2O shifts the −108 ppm peak 

(seen as a shoulder) to higher values. Since Al is present in this glass system in 4−fold 

coordination as suggested by 
27

Al NMR results (Figure 3.3.1b), the shift of −108 ppm 

is due to the deshielding effect on Si nuclei when Al atoms are introduced in the second 

coordination sphere creating Q
4
(mAl)-like units.

154,155,164
 However, addition of Al had 

no apparent effect on Q
3
 peak suggesting no possible formation of Q

3
(mAl)-like units. 

Hence it seems that Al forms tetrahedral units and is preferentially coordinated to Q
4
 

tetrahedra in the next nearest neighbourhood (NNN). According to the 
29

Si NMR 

deconvolution of GB0 (Figure 3.3.2a and Table 3.3.2), Q
4
(1X) unit positioned at 

−103.4 ppm with a shift of about 5.5 ppm from Q
4
, should be assigned as Q

4
(1Al) unit. 

The result of 
29

Si NMR deconvolution for GB0 is in accordance with deconvolution 

reported earlier
143

 for this composition (Q
3
: 74.3%, Q

4
: 25.7%) where separate peaks for 

Q
4
(1Al) and Q

4
 were not considered but a single peak accounting to both m = 0 and 1. 

Because of this oversimplification, the earlier 
29

Si NMR deconvolution results were less 

consistent with the chemical composition. In the present case, the relative amounts of 

each unit corresponding to Q
2
, Q

3
, Q

4
(1Al) and Q

4
 are 1, 74, 15 and 10 % respectively. 

According to the percentage of Q
4
(1Al) units, the amount of Al2O3 in the glass 

composition was calculated to be ~1.32 mol%, i.e., half of total (2.64 mol%) Al2O3 

incorporated in this glass composition. Also, the percent of Q
3
 units is higher than 

expected for this composition. Since Al−O−Al type linkages are prohibited according to 

Loewenstein's Rule in aluminosilicate networks,
165–167

 the possible explanation for the 

underestimation of Al would be the involvement of the remaining Al atoms in the 

formation of other units such as Q
4
(2Al) and Q

4
(3Al) whose chemical shifts lie at 

approximately −98 and −92 ppm respectively. Therefore, the upsurge in the amount of 

Q
3
 units is consistent with the creation of Q

4
(3Al) units, which have same chemical shift 

as Q
3
 units. The likelihood of the creation of Q

4
(2Al) units was also assumed but 

attempts to quantify these units gave only small values. Considering the broad and 

overlapping peaks of Q
3
 and Q

4
(1Al), and that the inclusion of another small peak 

corresponding to Q
4
(2Al) would only make deconvolution less reliable, thus this 

Q
4
(2Al) peak was not taken into account. The deconvolution of GB0 

29
Si NMR 

spectrum gave a slight (~2 mol %) underestimation of SiO2 amount, possibly due to the 

occurrence of some LLPS (Figure 3.3.8). The 
29

Si nuclei present in phase segregated 

regions richer in SiO2 would have spin-lattice relaxation times (T1) extremely large in 
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comparison to 60 s delay times used in the current NMR experiments.
168

 These 

relaxation times can be reduced by the addition of paramagnetic impurities to glass. But 

our previous studies
144

 showed that even small addition of paramagnetic ions had a huge 

influence on glass crystallization. The extent of phase separation in the current 

experimental glasses used for NMR was observed to be very small. Figure 3.3.8a‒b 

represent those small phase segregated regions responsible for the underestimation Si 

content according to 
29

Si NMR results. To conclude, in sample GB0, even considering a 

random mixing of the glass network with a diminutive phase separation, Al atoms 

would form tetrahedral units that are preferentially coordinated to Q
4
 Si units in NNN. 

Now considering the composition GB100 where entire Al was substituted for B, the 

shoulder at −104 ppm (Figure 3.3.2a) shifted back to a lower value, while a small 

shoulder appeared near −81 ppm. According to 
11

B NMR spectral deconvolution of 

GB100 (Figure 3.3.3b, Table 3.3.3), ~48% B exists as B
IV

 and the rest is present as B
III

 

with about a quarter of B
III

 units in symmetric sites. The B
IV

 units can be substituted into 

the tetrahedral Si sites with an alkali charge compensator similarly to Al, whereas the 

B
III

 units can form their own network or be coordinated with Si units. Nevertheless, it is 

well known that in borosilicate melts borate and silicate groups undergo a random 

mixing with limited formation of individual networks.
169,170

 The degree of this random 

mixing would be in the order B
IV

 > B
IIIa

 > B
IIIs

. The exact information regarding the 

extent of this mixing can only be determined by other techniques such as 
17

O NMR 

spectroscopy where bridges like Si−O−Si, Si−O−B
IV

 and Si−O−B
III

 can be obtained; 

however this kind of a study is out of the scope of the present paper. Nevertheless, 
29

Si 

NMR spectrum is very sensitive to the B
IV

 units if they are present in NNN where Si 

nuclei experience similar effect of deshielding as Q
4
(mAl) units. Nanba et al.

147
 used the 

glass optical basicity concept of Duffy and Ingram
171

 and hypothesized that the 

chemical shift of Q
4
(1X) would be in the order Al > B

IV
 > B

III
 > Si for each X. Also 

several studies
155,169,172

 used the arguments of Brown and Shannon
173

 on bond strengths 

and showed that B
III

 units in the NNN of Si do not show any deshielding relative to Si. 

Hence Si units having B
III

 units in the NNN would experience similar deshielding effect 

as Si NNN units; hence they cannot be easily detected by 
29

Si NMR spectroscopy. 

Therefore, Q
4
(1X) in 

29
Si NMR deconvolution of the sample GB100 (Table 3.3.2) 

corresponds to Q
4
(1B) type unit where B here is only a B

IV
 unit. Due to greater 

deshielding effect of B
IV

 units compared to Al, the chemical shift of the peak Q
4
(1X) for 
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the sample GB100 shows a slightly lower value of −104 ppm compared to GB0. The 

relative amounts of Q
2
, Q

3
, Q

4
(1B) and Q

4
 peaks were 4, 64, 17 and 15 % respectively. 

17 % of Q
4
(1B) accounts for the total B

IV
 units obtained from 

11
B NMR deconvolution, 

suggesting that, within the limits of experimental errors, no Q
4
(2B) or Q

4
(3B) units 

were formed. This means that similarly to Al, B
IV

 units are also preferentially 

coordinated to Q
4
 units of Si in the NNN even in a randomly mixed glass network. 

However, a small shoulder near −81 ppm should probably correspond to Q
3
(mB) type 

units with m ≥ 2 suggesting a small fraction of B
IV

 units are coordinated to Q
3
 units. 

Specific attempts to quantify this peak give an integrated area of less than 1% which can 

be neglected in a pragmatic approach. Similarly to the glass GB0, NMR results of glass 

GB100 also gave underestimation of SiO2 content possibly for the same reasons (i.e. the 

presence of LLPS). Nonetheless, the deconvolution results for both 
11

B and 
29

Si nuclei 

revealed a reasonable internal consistency with the chemical composition. The increase 

in FWHM of Q
4
(1X) peak is possibly due to the wide distribution of bond lengths and 

bond angles due to the presence of both B
III

 and B
IV

 units instead of a single Al in GB0. 

In glass compositions with 25−75% boron substitution, the network structure is 

expected to be a mixture of both endmembers GB0 and GB100. In these glasses both Al 

and B
IV

 units contribute to Q
4
(1X). Applying structural arguments discussed for the 

endmembers, when a given amount of Al is removed it is expected that Q
3
 and Q

4
(1X) 

contents will decrease, by adding same amount B and since it preferentially create 

Q
4
(1B) units it will increase Q

4
(1X) content. The net result would be a gradual decrease 

in Q
3
 and a proportional increase in the rest of the peaks. The qualitative 

29
Si NMR 

deconvolution data presented in Table 3.3.2 show a judicious agreement with this 

hypothesis. The factors governing the decrement in Q
3
 with B substitution are the 

speciation extents of B into B
III

 and B
IV

 units and of Q
3
 into Q

2
 and Q

4
 units. As 

quadrupolar nuclei, B requires higher magnetic fields for obtaining well resolved peaks 

speciation. Therefore, within the limits of these experimental errors, the 
29

Si and 
11

B 

NMR deconvolution results for glasses GB25 and GB50 were consistent with chemical 

composition. The FWHM of Q
4
(1X) peak goes through a maximum between the two 

endmembers due to the involvement of all three Al, B
IV

 and B
III

 units as opposed to just 

one or two in GB0 and GB100, respectively. The small shoulders in the region between 

Q
3
 and Q

4
 should be due to mixtures of Q

4
(1Al) and Q

4
(1B) units. 
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The overall effect of replacing Al by B on glass structure is that part of boron in 

the form of B
IV

 substitutes Al tetrahedra and most of the rest in form of B
III

 bonds to a 

NBO. The net effect is an increase of NBOs thus leading to a slight depolymerisation of 

the glass network as confirmed in Table 3.3.4. The percentage of NBOs shows an 

increasing trend from 26 to 27.5% for 0 to 100% boron replacement, respectively. 

Whereas 
29

Si NMR spectra are very sensitive to Al and B
IV

 units when present in 

NNN, Raman and FTIR spectra, Figure 3.3.3 and Figure 3.3.4, do not show significant 

variations with Al by B substitution. This can be attributed to the minor changes in 

network polymerization and the considerably smaller numbers of B−O−M and Al−O−M 

(M: Al, B, or Si) vibrations in comparison to Si−O−Si. Nevertheless, both Raman and 

FTIR spectra give a consistent perception of the overall glass structure. 

The small variations in band gap energy (Figure 3.3.5b insert, Table 3.3.4) are 

noteworthy considering the small B contents. Interestingly, the band tail slopes of B-

containing samples (especially for GB25), are lower in comparison to that of GB0. 

Optical absorption edge in glasses is generally caused by excitonic type transitions of 

valance electrons in NBOs to higher levels.
8,174

 Therefore, an increase in the number of 

NBOs could lead to a decrease in energy of UV absorption. On the other hand, 

transitions can also occur between the extra electron of Al in a tetrahedral position and 

the charge compensating alkali (K) around it. Such K-Al pairing causes a significant 

reduction in the UV absorption edge and masks the absorption caused by NBOs. This 

effect should also be evident when B is present in 4‒fold coordination. When B replaces 

Al and is present as B
III

 and B
IV

 units, as perceived from the 
11

B NMR spectra, the sum 

of K-Al and K-B pairs decreases. Accordingly, the band gap energy increases even 

when glass network depolymerisation is enhanced. 

The ionic radii of network formers in the current glass system are 0.53, 0.25, 0.15 

and 0.40 Å for Al
IV

, B
IV

, B
III

 and Si
IV

 respectively.
129

 Upon replacing Al by B, the total B 

goes into glass network as B
IV

 and B
III

 units having lower ionic radius than Al resulting 

in contraction of glass network (Figure 3.3.6). The depolymerized glass network further 

reduces the molar volume. The variations in the molar volume and oxygen density 

should be strongly linked to B
IV

 to B
III

 ratio which dictates the number NBOs, B
IV

 and 

B
III

. The near linear variations observed in Figure 3.3.6 indicate that B
IV

 to B
III

 ratio 

remains approximately constant in agreement 
11

B NMR. The CTE (Table 3.3.4) is 
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almost insensitive to B substitution. Glass network depolymerisation causes the 

interstitials to be filled with modifier ions, tending to enhance the CTE. On the other 

hand, B−O bonds having higher bond strengths than Al−O bonds should cause a 

decrease in the CTE values. These two opposing effects cancel out each other, 

explaining the nearly constant CTE values. The structure of supercooled liquids can be 

approximated to the glass structure that was discussed so far. Therefore at isokom 

temperature of glass softening point where viscosity is ~10
6.6

 Pas, the structure of a 

supercooled liquid should be similar to its glassy state. The decrease in the glass 

softening temperatures with B addition is an indication of decreasing viscosity, 

therefore clearly supporting the depolymerisation of glass network due to B 

substitution. However, higher B−O bond strengths do not seem to have great role on 

viscosity in the supercooled state. 

The findings concerning the network structure of supercooled glasses will be 

useful for understanding the nucleation process that also occurs at deep undercooling as 

discussed in the following section. 

3.3.4.2 Phase segregation and crystal nucleation 

Nucleation of non-stoichiometric glasses is greatly influenced by the LLPS 

phenomena. Therefore it is of paramount interest to understand the influence of B 

substitution on LLPS. The role of LLPS on crystal nucleation of glasses was thoroughly 

investigated and clearly established by James et al.
132,133,152,175,176

 According to their 

findings, compositional variations brought along the LLPS process create ideal zones 

for the commencement of homogenous nucleation. As shown in Figure 3.3.8c−d, the 

size of droplets in annealed glasses ranging from 20 to 200 nm indicates that nucleation 

and growth occurred simultaneously at 520 ºC. These droplets should correspond to 

SiO2-rich regions embedded in Li2O-rich matrix. Borosilicate glasses are also likely to 

show LLPS into boron- and silicon-rich regions. But considering the small added 

amounts of B, the compositions should lie only within the two liquid regions of ternary 

alkali borosilicate phase diagram
177

. 

Dopants are likely to affect both kinetics and thermodynamics (Gibbs free energy, 

the sum of enthalpy and entropy contributions) of LLPS in glasses. 
178

 The main 

contributions to enthalpy term include: (1) heat of formation of NBOs; (2) deformation 

of the Si tetrahedra in the presence of alkali ions; these reactions are exothermic and 
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endothermic respectively. Entropy is mainly related to mixing of NBO pairs and 

bridging oxygens (configurational entropy). LLPS is mostly enthalpy driven 

(endothermic deformation of the Si tetrahedral). Topping et al.
179

 extended this concept 

to aluminosilicate glasses to explain the reduction of LLPS due to Al2O3 addition that 

converts NBOs into bridging oxygens with an overall charge of 1− on each AlO4 

tetrahedral unit. Being an exothermic reaction it would reduce the overall driving force 

for LLPS. This enthalpy-based explanation might only be part of the overall picture as it 

contrasts with the largest extent of LLPS observed for the present Al2O3-rich GB0 glass 

in comparison to B-containing compositions.  According to Charles
178

, in a binary alkali 

silicate system the entropy is due to interchanges of NBO pairs and bridging oxygens 

(of Si−O−Si type). However, additional types of bridging oxygens (Si−O−Al, 

Si−O−B
III
, Si−O−B

IV
 and B−O−B) should be created upon adding Al2O3 and B2O3. 

These units are likely to increase the entropy and with the mixed Al and B glasses 

should show the large entropy. Hence, it is hypothesised that this increase in entropy 

might change the free energy curve and reduce thermodynamic driving force and 

ultimately the extent of LLPS, explaining the observed trend GB0 > GB100 > GB50. 

Further work is needed in this direction with more quantitative modelling of entropy on 

free energy involving 
17

O NMR in order to evaluate the influence of the various forms 

of bridging oxygens. Apart thermodynamic driving force, the kinetics of LLPS is also 

dependent on glasses’ viscosity, which decreased with increasing B substitution due to 

the creation of additional NBOs. The thermodynamic driving force for LLPS changes in 

the order GB0 > GB100 > GBx´ (here x´ is 25, 50 or 75) and the kinetic barrier for LLPS 

of glasses change in the order GB100 > GB75 > GB50 > GB25 > GB0. Such B content 

dependence of thermodynamics and kinetics behaviours would have a direct and 

profound implication on the crystal nucleation rate. 

The nucleation rate of crystals depends on the kinetics of LLPS where faster 

kinetics enhances the crystal nucleation rate by shifting the composition of the glass 

matrix during the process. Considering the glass samples GB0 and GB100, GB0 has 

comparatively larger thermodynamic driving force but higher viscosity. Due to its 

lowest viscosity, GB100 exhibits the fastest kinetics of LLPS and the highest crystal 

nucleation rate in comparison to other glasses. All mixed B and Al containing glasses 

have lower thermodynamic driving force for LLPS in comparison to GB0 and GB100; 

however the kinetics barrier for LLPS decreases with increasing B substitution, and the 
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crystal nucleation rates are expected to concomitantly increase. However, because the 

thermodynamic driving force goes through a minimum between the two end members 

GB0 and GB100, at a particular B substitution between the end members, the crystal 

nucleation rate is expected to be lower than in the rest of the samples. This explains why 

the glass sample GB25 showed lowest crystal nucleation rate among all the experimental 

glasses (Figure 3.3.9). 

The crystal nucleation of the glasses is correlated to glass transition temperature 

by a parameter called reduced glass transition temperature Tgr.
131,163

 Homogenous 

nucleation occurs in glasses for Tgr < 0.58−0.60. The increasing trend of Tgr values with 

B substitution (Table 3.3.4) suggests a slowdown in the nucleation rate. Crystallization 

of metastable LS2-ss solid solution occurred upon heat treating glasses at 650 ºC 

(Figure 3.3.11a). This phase commonly forms when excess mount of SiO2 is present in 

comparison to LS2 stoichiometry.
180,181

 Nonetheless at higher temperatures this phase 

degrades and transforms into LS2 and LS2-ss silica. Increased nucleation rate in non-

stoichiometric phase segregated lithium silicate has been ascribed to the nucleation of 

LS2-ss phase.
182

 Therefore, LS2-ss can be assumed as the nucleating phase in all glass 

compositions. Accordingly, a constant TL value can be assumed for all glass 

compositions; considering a same nucleating phase, the Tgr values tend to follow Tg 

values which are in accordance with the nucleation rates exhibited by glasses. 

Therefore, the increasing Tgr values with B substitution can be attributed to changing 

crystallizing phase rather than the nucleating phase. 



85 
 
 

 
Figure 3.3.11 X-ray diffraction patterns of crystallized glasses at temperatures: (a) 650 ºC, (b) 

700 ºC, (c) 800 ºC and (d) 900 ºC ( : Lithium disilicate (Li2Si2O5, ICDD 04-009-4359); : 

Lithium metasilicate (Li2SiO3, ICDD 00-029-0828); : Cristobalite (SiO2, ICDD 01-082-

0512); : Tridymite (SiO2, ICDD 01-074-8988); : Quartz (SiO2, ICDD 01-082-0512); : 

Lithium disilicate solid solution (Li2Si2+xO5+2x, West et al.
181

 and Glasser
180

). 
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3.3.4.3 Morphology and phase assemblage of crystallised glasses 

Al-rich glass compositions exhibited high glass stability as seen from XRD results 

(Figure 3.3.11a-b) and with B substitution the glasses showed an increasing tendency 

to devitrify under isothermal conditions due to a lowering viscosity. The concomitant 

crystallization of LS and LS2 reduces the meaningfulness of glass stability parameter KH 

(Table 3.3.4) derived from non-isothermal (DTA) conditions explaining the apparent 

lack of consistency observed. The plot of TS and TL against B replacement (Figure 

3.3.12a) resembles a region of Li2O−SiO2 phase diagram
183

 around LS2 stoichiometry 

where a transition from LS to LS2 occurs. Figure 3.3.12b shows that pure LS and LS2 are 

obtained under non-isothermal conditions from the extreme compositions GB0 and 

GB100, respectively. Therefore, Figure 3.3.12a suggests that LS and LS2 are 

preferentially formed for B replacement up to 25 % and ≥ 50 %, respectively. Based on 

the crystallizing phases, the glasses could be divided into two groups (0−25 % and 

50−100 % B substitution). In each group the KH values follow the trend of glass stability 

as seen by XRD. However, a simple glass stability parameter such Tc−Tg shows better 

accordance with XRD for all compositions. Complete LS2 crystallization was achieved 

for glasses GB0 and GB100 at 800 ºC and 700 ºC, respectively (Figure 3.3.10). The early 

crystallization of LS in Al-rich end member suggests that glass becomes Si-depleted for 

crystallization probably due to increased liquid stability. When present, LS is a transient 

and transforms into LS2 under suitable heat treatment schedule and might lead to 

morphological changes (Figure 3.3.10). 

 
Figure 3.3.12 (a) Variation of solidus and liquidus points as a function of boron replacement. 

(b) Corresponding XRD patterns for glasses GB0 and GB100 below solidus curve. : lithium 

disilicate (Li2Si2O5, ICDD 01-070-4056); : lithium metasilicate (Li2SiO3, ICDD 01-049-

0803); : cristobalite (SiO2, ICDD 01-089-3607).  
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Abstract 

This article reports on the effect of Al2O3 and B2O3 added as dopants on the 

preparation of glass-ceramics (GCs) belonging to the lithium silicate glass system. The 

GCs are prepared by sintering route using glass powders. The reasons for the 

crystallization of the metastable crystalline phase lithium metasilicate (LS) are discussed 

and the impact of the dopants on the thermodynamics and kinetics of crystallization is 

investigated. The addition of dopants modifies the thermodynamic equilibrium of the 

system and this change is mainly entropy driven and also slow down the kinetics of 

crystallization. Differential thermal analysis and hot-stage microscopy are employed to 

investigate the glass forming ability, sintering and crystallization behaviour of the 

studied glasses. The crystalline phase assemblage studied under non-isothermal heating 

conditions in the temperature range of 800–900 ºC in air. Well sintered and dense glass-

ceramics are obtained after sintering of glass powders at 850900 ºC for 1 h featuring 

crystalline phase assemblage dominated by lithium disilicate (LS2). 
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3.4.1 Introduction 

Glass-ceramics (GCs) are composite materials of one or more crystalline phases 

immersed in a residual glassy phase. They generally feature interesting properties such 

as high strength, low density, chemical stability, low thermal expansion and low 

dielectric properties, which allow using them in a wide variety of applications.
1,184

 GCs 

can be produced by sintering glass particle compacts followed by simultaneous or 

subsequent crystallization.
1,185,186

 The powder technology permits the use of glasses 

with an extremely wide range of compositions, including compositions that are difficult 

to adapt to the classical casting-crystallization technologies due to a high viscosity of 

the melt, or unsuitable crystallization kinetics. In most cases the sintered materials 

acquire a uniform microcrystalline structure with a high content of a mineral phase. In 

addition, compared with the classical technology, the physical-chemical properties of 

the materials obtained can be more stable and reproducible.
187

 However, in a glass 

powder compact system, a competition between crystallization and sintering will begin 

above the glass transition temperature (Tg) both processes decreasing the free energy of 

the glass powder.
188

 If the crystallization occurs before sintering is complete, further 

densification will be suppressed by the increased viscosity resulting in glass-ceramic 

materials with relatively poor mechanical properties due to porosity.
189

 Therefore, it is 

fundamental to understand the densification and crystallization behaviours of the system 

during the heat treatment of glasses. 

Among the diverse glass systems used to produce GCs, lithium disilicate (LS2) 

based glasses occupy a prominent position due to the intensive activity on this system 

along the last decades. The interest is motivated by an attractive set of properties 

exhibited by the resulting GCs, making them suitable for different advanced 

applications (e.g. dental restorations, electrically insulating materials, transparent GC 

armour, etc.).
1,53,136

 However, GCs derived from binary Li2O–SiO2 system exhibit some 

unfavourable characteristics in terms of their mechanical strength and chemical 

durability which hinder their use in several technological areas.
190

 Therefore non-

stoichiometric or multicomponent compositions have been developed to overcome this 

problem. For instance, adding some oxides such as Al2O3 and K2O to the stoichiometric 

composition have been reported to enhance the chemical durability of Li2O–SiO2 

derived GCs.
191,192

 In previous works, the effect of Al2O3, K2O, and MnO2 on the 
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sintering and crystallization behaviours of non-stoichiometric glasses in the Li2O–SiO2 

system with SiO2/Li2O molar ratios greater than 3 has been reported (Section 

3.2).
134,142,144,151

 Sintering and crystallization studies of glass powder compacts with a 

binary composition 23Li2O–77SiO2 revealed high fragility, and low flexural strength 

and density. In contrast, good densification behaviour and improved mechanical 

strength resulted from adding equimolar amounts (2.63 mol. %) of Al2O3 and K2O to 

the Li2O–SiO2 composition.
142

 A further insight into the specific effects of adding 

incremental amounts of K2O on structure–property relationships and crystallization 

behaviour of glasses in the Li2O–Al2O3–K2O–SiO2 revealed that excess K2O contents 

within the range of 2.63–12.63 mol. % was found to reduce bulk crystallization in 

glasses with the predominant formation of lithium metasilicate (LS) phase. Only in low-

K2O compositions LS2 phase was formed, resulting in a GC with high mechanical 

strength (∼173–224 MPa), good chemical resistance (∼25–50 μg cm
−2

) and low total 

conductivity (∼210
−18

 S cm
−1

) making the materials suitable for a number of practical 

applications.
134

 In Mn-doped glass powder compacts in the system 23Li2O–2.64K2O–

2.64Al2O3–(71.72–x)SiO2–xMnO2 (x = 0–2 mol. %), sintering and crystallization 

occurred at lower temperatures than the parent composition conferring higher strength 

at low sintering temperatures, but the occurrence of foaming in Mn-doped samples at 

higher temperatures drastically reduced density and mechanical strength.
144

 

The present study aims towards investigating the effects of the partial and total 

substitution of Al2O3 by B2O3 on the sintering behaviour and crystallization of glass 

powder compacts of a relatively simple non-stoichiometric lithium disilicate based glass 

composition in the glass forming region of Li2O–K2O–Al2O3–SiO2 with SiO2/Li2O 

molar ratio of 3.12. This paper is a continuation of our previous work
193

 in which GCs 

of  the same compositions were investigated addressing the influence of Al2O3 and B2O3 

on glass network structure, liquid-liquid phase segregation and crystal nucleation in 

monolithic glasses. In this paper, particular emphasis was given to the crystalline phase 

evolution and sintering ability of glass powders. The investigation uses several 

thermodynamic calculations in order to address the crystallization of equilibrium and 

non-equilibrium crystal phases. The formation kinetics of these phases was also 

investigated. GCs were prepared by sintering green powder compacts and their 

properties were measured. 
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3.4.2 Experimental procedure 

3.4.2.1 Materials preparation 

Five glass compositions were prepared based on the general formula 23.00Li2O ‒ 

2.64K2O ‒ 2.64(1‒z)Al2O3 ‒ 2.64(z)B2O3 ‒ 71.72SiO2 (mol %.) where, z = 0.00, 0.25, 

0.50, 0.75 and 1.00. Here Al2O3 is replaced by B2O3 from 0 to 100 % at steps of 25 %; 

correspondingly the samples were named GB0, GB25, GB50, GB75 and GB100. Table 

3.4.1 presents details of compositions in mole percentages. 

Glasses were synthesized using SiO2, Li2CO3, K2CO3, Al2O3 and H3BO3 

precursors in the form of powders (all with purity > 99%). These powders were 

homogenously mixed in a ball mill and calcined at 800 ºC for 1 h in alumina crucibles. 

Calcined powders were further mixed for homogeneity using mortar-pestle and 

transferred to platinum crucibles for melting at the temperature of 1550 ºC for 1 h in air. 

Melts were quenched into cold water to obtain glass frits. Glass frits were dried and 

milled in a high speed agate mill for 2 h in order to obtain glass powders of particle 

mean sizes ranging between 812 μm as determined by particle size analyser (Coulter 

LS 230, Fraunhofer optical model, Amherst, MA). 

Table 3.4.1 Compositions of the experimental glasses (in mol %) 

 Li2O K2O Al2O3 B2O3 SiO2 

GB0 23.00 2.64 2.64 0.00 71.72 

GB25 23.00 2.64 1.98 0.66 71.72 

GB50 23.00 2.64 1.32 1.32 71.72 

GB75 23.00 2.64 0.66 1.98 71.72 

GB100 23.00 2.64 0.00 2.64 71.72 

GCs were prepared by sintering route; rectangular bars of glass powder compacts 

of dimensions 50 mm × 5 mm × 4 mm were prepared by uniaxial pressing with a 

pressure of 80 MPa. Glass powder compacts were then sintered at temperatures of 800, 

850 and 900 ºC for 1 h in air at a heating rate of 2 ºC min
‒1

 to obtain GCs. 

3.4.2.2 Characterisation 

All glass powders were subjected to differential thermal analysis (DTA, Setaram 

Labsys, Setaram Instrumentation, France) in air from room temperature to 1000 ºC, at 
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heating rates (β) of 10, 15, 20 and 25 ºC min
‒1

. For DTA, alumina crucibles were used 

to hold sample powders (~30 mg) with α-Al2O3 as reference material. The sintering 

behaviour of glass powders was studied by side-view hot stage microscope (HSM, Leitz 

Wetzlar, Germany) equipped with a Pixera video camera and image analysis system. 

Samples for HSM (GB0, GB50 and GB100) were prepared by pressing glass powders into 

cylindrical shapes of diameter ~3 mm. Measurements were conducted in air at a heating 

rate of 5 ºC min
‒1

. Temperatures corresponding to the characteristic points of viscosity 

(First shrinkage (TFS), maximum shrinkage (TMS), half ball (THB) and flow (TF)) were 

obtained from the graphs and photomicrographs taken during the hot-stage microscopy 

experiment. In order to compare HSM results with crystallization, DTA with a heating 

rate of 5 ºC min
‒1

 was also employed for samples GB0, GB50 and GB100. 

Microstructures of sintered GCs were examined by scanning electron microscopy 

(SEM, SU-70, Hitachi, Japan). Samples for SEM were prepared by grinding, polishing 

and etching for 60 s using 2 vol. % hydrofluoric acid. Crystalline phases present in the 

sintered GCs were examined by x-ray diffraction (XRD, Rigaku Geigerflex D/Mac, C 

Series, Japan) using Cu Kα radiation with 2θ varying from 10–60 º steps of 0.02 s
‒1

. 

Flexural strengths of sintered GCs bars were measured by three-point bending test 

using universal testing machine (Shimadzu Autograph AG 25 TA). Densities of sintered 

GCs were measured by Archimedes principle by immersing the samples into ethylene 

glycol. The shrinkages after sintering were calculated by measuring the contraction of 

lengths. 

3.4.3 Results 

The glass frits obtained after melting at 1550 ºC were amorphous as examined by 

XRD (Supplementary information Section 3.4.5.1). In order to estimate the 

volatilization of the glass melt at high temperatures, weight losses were measured 

before and after melting.
8
 All glass melts showed weight losses of less than 0.2%. This 

loss is a negligible value which could be attributed mainly to Li and does not 

significantly affect the overall composition. Some of the experimental results on GCs 

for the sample GB0 were already reported in our previous article
144

, and therefore most 

of these results are not presented here and the readers are advised to refer to this article. 
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3.4.3.1 Crystallization 

Figure 3.4.1 presents the DTA plots of all the glasses measured at β = 20 ºCmin
‒1

. 

Samples show 2‒3 crystallization peaks (TP1, TP2 and TP3) and a melting peak. The 

phases corresponding to each crystallization peak were identified by XRD (Section 

3.4.5.3). In all the glasses, TP1 corresponds mainly to the crystallization of LS phase and 

with increasing B2O3 substitution, LS2 also starts to crystallize. TP2 corresponds mainly 

to the crystallization of LS2 with small amount of cristobalite and quartz; the amounts of 

these SiO2 polymorphs increase with B2O3 substitution. TP3 corresponds to the further 

crystallization of cristobalite and quartz. The activation energies corresponding to each 

DTA crystallization event (EC) were calculated according to Kissinger model
194

 given 

by the Eq. (3.4-1). 

 ln
𝛽

𝑇𝑃
2 = −

𝐸𝑐
𝑅𝑇𝑃

+ 𝑐𝑜𝑛𝑠𝑡. Eq. (3.4-1) 

 

Figure 3.4.1 DTA of glass compositions at β = 20 ºC min
‒1
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Figure 3.4.2 X-ray diffractograms of sintered GCs. [ : Lithium disilicate (Li2Si2O5, ICDD 04-

009-4359); : Lithium metasilicate (Li2SiO3, ICDD 00-029-0828); : Quartz (SiO2, ICDD 01-

075-8321); : Tridymite (SiO2, ICDD 01-074-8988); : Cristobalite (SiO2, ICDD 01-082-

0512)]. 
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Table 3.4.2 presents the values of EC1, EC2 and EC3 corresponding to TP1, TP2 and 

TP3, respectively. The curve fitting and fit parameters can be found in the supplementary 

information (Figure 3.4.9). It is interesting to note that the EC values for the 1
st
 

crystallization peak goes through a maximum between end members GB0 and GB100; 

while the values of the 2
nd

 crystallization peak continuously decrease. For all the 

samples the broad endothermic peaks (in the range 900 to 1000 ºC) with a shoulder 

seems to be a convolution of two endothermic peaks corresponding to LS and LS2 

phases. It is difficult to assign the order in which they appear, but this subject will be 

discussed in the subsequent section. The XRD patterns of sintered GCs are presented in 

Figure 3.4.2. Increased B substitution resulted in the decreasing and increasing amounts 

of LS and SiO2 crystalline phases, respectively. Figure 3.4.3 presents various 

microstructural features encountered in the sintered samples. In all the compositions, the 

predominant phase LS2 exists as crystals with needle-like morphology and show 

regional aggregates of large crystals surrounded by smaller crystals (Figure 3.4.3a). 

Table 3.4.2 Characteristic temperatures and activation energies and fit parameters of each 

crystallization peak. 

    1
st
 peak  2

nd
 peak  3

rd
 peak    

  Tg 
‡
  TP1 

‡
 EC1  TP2 

‡
 EC2  TP3 

‡
 EC3  TL  

  ºC  ºC kJ mol
‒1

  ºC kJ mol
‒1

  ºC kJ mol
‒1

  ºC  

GB0  500  671 183  898 628  --- ---  972  

GB25  504  661 182  884 357  --- ---  972  

GB50  502  654 193  849 383  873 387  968  

GB75  503  655 186  820 318  857 405  963  

GB100  499  650 168  774 286  823 312  962  

‡
Data for heating rate = 20 °C min

‒1
. 

3.4.3.2 Sintering 

Figure 3.4.4 presents HSM curves, micrographs and the corresponding 

crystallization peak temperatures for the glass samples GB50 and GB100. The same plots 

for the sample with GB0 labelled as GMn0.0 can be found in Figure 3.2.12 or in the  

published paper.
144

 The crystallization peak temperatures under HSM conditions (5 ºC 

min
–1

) were derived by extrapolation from the Kissinger model (Eq. (3.4-1)). This 
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method was employed because at the low heating rate the DTA gave a noisy curve. The 

derived peak temperatures are still in good agreement with the experimental results 

(Figure 3.4.10). The corresponding points of sintering (TP, TFS and TMS) and amounts of 

shrinkage (δ) after each sintering event according to HSM are presented in Table 3.4.3. 

Sample GB0 showed two sintering events, while the samples GB50 and GB100 showed 

three sintering events. The values of densities, shrinkage and bending strengths of the 

sintered GCs are presented in Table 3.4.4. 

 

 

 

Figure 3.4.3 SEM images of sintered GCs. A: aggregates of large crystals inside particles; P: 

pores; Q: quartz crystals; T: tridymite crystals. 

(a) GB25, 850 ºC 5 μm 

A 

P 

(b) GB100, 850 ºC 5 μm 

Q 

(c) GB100, 900 ºC 5 μm 

T 
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Table 3.4.3 Characteristic points of sintering 

  GB0 
†
 GB50 GB100 

 TP1 (ºC) 648 609 599 

DTA TP2 (ºC) 875 813 734 

 TP3 (ºC) --- 836 782 

 TFS1 (ºC) 510 512 509 

 TMS1 (ºC) 583 568 557 

 δ1 (%) 18 22 10 

 TFS2 (ºC) 774 746 711 

HSM TMS2 (ºC) 928 796 724 

 δ2 (%) 19 5 3 

 TFS3 (ºC) --- 880 855 

 TMS3 (ºC) --- 913 932 

 δ3 (%) --- 10 22 

 Total shrinkage 37 37 35 

 

Table 3.4.4 Properties of sintered glass-ceramics 

  GB0 GB25 GB50 GB75 GB100 

Density 

(g cm
‒1

) 

800 ºC 2.26 ± 0.008 2.23 ± 0.017 2.27 ± 0.004 2.16 ± 0.005 2.25 ± 0.017 

850 ºC 2.37 ± 0.004 2.27 ± 0.007 2.30 ± 0.050 2.20 ± 0.011 2.36 ± 0.013 

900 ºC 2.37 ± 0.005 2.38 ± 0.004 2.36 ± 0.000 2.32 ± 0.009 2.32 ± 0.004 

Shrinkage 

(%) 

800 ºC 12.60 ± 0.06 13.05 ± 0.13 14.65 ± 0.03 11.75 ± 0.02 14.03 ± 0.03 

850 ºC 15.90 ± 0.17 13.89 ± 0.00 15.49 ± 0.12 13.09 ± 0.05 16.61 ± 0.25 

900 ºC 18.00 ± 0.17 14.76 ± 0.13 15.75 ± 0.09 15.65 ± 0.08 15.47 ± 0.18 

Bending 

Strength 

(MPa) 

800 ºC 147 ± 14 084 ± 01 236 ± 11 135 ± 11 131 ± 14 

850 ºC 216 ± 03 188 ± 12 174 ± 08 173 ± 19 256 ± 09 

900 ºC 281 ± 05 264 ± 15 245 ± 15 228 ± 10 201 ± 10 
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Figure 3.4.4 HSM curves for glass powder compacts (a) GB50 and (b) GB100. Insets correspond 

to HSM micrographs: (1) initial, (2) ‒ (4) after 1
st
, 2

nd
 and 3

rd
 shrinkages respectively and (5) 

half ball point. 

3.4.3.3 Thermodynamic Analysis 

The Gibbs free energy‒composition curve for Li2O‒SiO2 binary liquid was 

calculated from 0‒36 mol. % of Li2O according to the procedure given by Charles
47

 

employing extrapolation of Li2O‒SiO2 phase diagram of Kracek
183

 (Section 3.4.5.6). 

Because the LS and LS2 phases are stoichiometric compounds, they were assumed as 

points on the free energy‒composition diagram (Figure 3.4.12). However this is an 
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approximation because both LS and LS2 are known to exhibit an extended range of solid 

solutions.
181

 Tangents drawn through the points of LS and LS2 to liquid curve, which 

meet at ≈0.00 mol. % of Li2O, and are shown along with the liquid curve for 

temperatures 600 and ~800 ºC in Figure 3.4.5a and b. 

The Li2O‒SiO2 phase diagram is redrawn based on the experimental data by 

Kracek
183

 (Figure 3.4.11). The crystal‒liquid equilibrium lines were extrapolated in 

order to give the liquidus temperature at non-equilibrium conditions. For a binary Li2O‒

SiO2 system at SiO2/Li2O ratio of experimental glasses, this liquidus temperature was 

obtained to be 997 ºC based on these extrapolations. The thermodynamic liquidus 

temperatures (TL) for experimental glass compositions GB0 and GB100 were calculated 

from DTA according to the procedure suggested by Ferreira et al.
195

 and are presented 

in Table 3.4.2 (Figure 3.4.13). These TL values should correspond to the liquidus points 

where LS2 and liquid phases are in equilibrium. Addition of charge compensated oxides 

of Al and B corresponding in compositions GB0 and GB100 resulted in a 25 and 35 ºC 

drop of this TL value, respectively. 

The influence of dopants on the binary free energy-composition curve at any 

composition x in the xLi2O – (1‒x)SiO2 system was estimated by deriving an equation. 

This equation takes the following form, 

 ∆𝐺𝑚𝑖𝑥,𝑀𝑢𝑙𝑡𝑖 ≈ (1 − 𝑐)[∆𝐺𝑚𝑖𝑥,𝑏𝑖𝑛𝑒𝑟𝑦(𝑥)] + 𝑅𝑇𝑔(𝑥, 𝑐) Eq. (3.4-2) 

Here, 𝑐 is total amount of the dopants added to the binary system ∆𝐺𝑚𝑖𝑥,𝑀𝑢𝑙𝑡𝑖, is 

the final free energy after the addition of dopants as a function of composition, 

∆𝐺𝑚𝑖𝑥,𝑏𝑖𝑛𝑒𝑟𝑦 is the change in the free energy due to the mixing of xLi2O and (1–x)SiO2 

for a binary system and 𝑔(𝑥, 𝑐) is the associated change due to the addition of dopants. 

The detailed derivation of Eq. (3.4-2) is presented in supplementary information 

(Section 3.4.5.8) and we would like to emphasise that this equation is only valid for 

small concentrations of dopants. The activities of LS2 (𝑎𝐿𝑆2) component were calculated 

in all the compositions based on the drop in the TL value. The equation was derived 

based on the freezing point depression and takes the form, 

 𝑙𝑛(𝑎𝐿𝑆2) =
1

𝑅
[(−∆𝐻𝑓𝑢𝑠

𝑜 + 𝑃) × (
1

𝑇
−

1

𝑇𝑓𝑢𝑠
) + 𝑄] Eq. (3.4-3) 
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Where,  

 𝑃 = 𝐴𝑇𝑓𝑢𝑠 +
𝐵

2
𝑇𝑓𝑢𝑠
2 +

𝐶

3
𝑇𝑓𝑢𝑠
3 +

𝐷

4
𝑇𝑓𝑢𝑠
4 −

𝐸

𝑇𝑓𝑢𝑠
  Eq. (3.4-4) 

 

𝑄 = 𝐴𝑙𝑛 (
𝑇𝐿
𝑇𝑓𝑢𝑠

) +
𝐵

2
(𝑇𝐿 − 𝑇𝑓𝑢𝑠) +

𝐶

6
(𝑇𝐿

2 − 𝑇𝑓𝑢𝑠
2 )

+
𝐷

12
(𝑇𝐿

3 − 𝑇𝑓𝑢𝑠
3 ) + 𝐸 (

1

𝑇𝐿
2 −

1

𝑇𝑓𝑢𝑠
2 ) 

Eq. (3.4-5) 

Here, R is the gas constant, ∆𝐻𝑓𝑢𝑠
𝑜  and 𝑇𝑓𝑢𝑠 are the heat and temperature of fusion 

for pure LS2 phase respectively and A to E are the constants derived from the difference 

in specific
196

 heats between solid and liquid LS2. The detailed derivation of Eq. (3.4-3) 

is presented in the supplementary information (Section 3.4.5.9). 

 

Figure 3.4.5 Free energy‒Composition diagrams of binary Li2O‒SiO2 system.  : 

∆𝑮𝒎𝒊𝒙,𝒃𝒊𝒏𝒆𝒓𝒚 of liquidus;  : tangent between liquidus and LS2;  : tangent between 

liquidus and LS;  : Liquidus point of the experimental compositions. 

3.4.4 Discussion 

3.4.4.1 Occurrence of Lithium Metasilicate Phase 

In all GCs three crystalline phases were evident, viz. LS, LS2 and polymorphs of 

SiO2 (Figure 3.4.2 & Figure 3.4.8). Even though all glass compositions had excess 

SiO2 compared to stoichiometric LS2, the crystallization of LS, a phase rich in Li occurs 

at lower temperatures. The reason for the occurrence of this metastable crystalline phase 
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can be explained from the thermodynamics. According to the free energy‒composition 

diagrams of the binary Li2OSiO2 system (Figure 3.4.5a and b), within the range 

where the experimental compositions lie and for temperatures ≤ 800 ºC there is always a 

driving force for the crystallization of both LS and LS2. The magnitudes of these driving 

forces for both LS and LS2 approach a close value as the temperature is decreased. 

Thermodynamically, at lower temperatures there would be always some equivalent 

probability for the formation of both LS and LS2 phases in a non-stoichiometric 

composition. This explains why even in the binary non-stoichiometric system LS phase 

experimentally occurred at lower temperatures (Figure 3.4.7). However, this probability 

would be greatly decreased with increasing temperatures. The formation of this LS 

phase has a technological interest, and is been utilized in the processing LS2‒based 

machinable dental GCs.
197

 

3.4.4.2 Influence of Dopants on Crystallization process 

Addition of charge compensated dopants as Al and B oxide units would affect the 

overall free energy of the system. At any composition x in the ternary xLi2O – (1‒x) 

SiO2 system, the change in the overall free energy is described by Eq. (3.4-2). Here, the 

term 𝑔(𝑥, 𝑐) which is the contribution from the addition of dopants, is a constant value 

for a given total amount of dopant c since the dependence on x is small for a small 𝑐. 

This term 𝑔(𝑥, 𝑐) would have both enthalpic and entropic influences on it. The entropic 

contribution would always have a negative effect and thereby decrease the ∆𝐺𝑚𝑖𝑥,𝑀𝑢𝑙𝑡𝑖 

value. On the other hand, enthalpic contributions could be either negative or positive 

and thus affect the  ∆𝐺𝑚𝑖𝑥,𝑀𝑢𝑙𝑡𝑖 term by decreasing or increasing it respectively. Thus 

the net effect of adding dopants is a constant positive or negative value of 𝑔(𝑥, 𝑐) that 

would shift the binary curve (∆𝐺𝑚𝑖𝑥,𝑏𝑖𝑛𝑒𝑟𝑦) positively or negatively. For a negative shift 

there would be less driving force for the crystallization; conversely for a positive shift, a 

greater driving force. Adding Al2O3 and B2O3 into silicate melts has a negative and a 

positive contribution to the enthalpy, respectively.
179,198,199

 Because of this reason Al2O3 

when added to silicate glasses is incorporated into the glass network; while B2O3, after 

certain concentration separates into another phase.
177

 However, both Al2O3 and B2O3 

have a positive contribution to the entropy to the system; leading to a negative effect 

on 𝑔(𝑥, 𝑐). In our previous study
193

, we observed experimentally that at small 

concentration, the enthalpic contributions are small and the state of the system is mainly 
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driven by entropy. This means the term 𝑔(𝑥, 𝑐) is always negative for all compositions 

and in case of mixed Al and B compositions, it is more negative because of much 

greater entropy. Therefore, the thermodynamic driving force with the B2O3 substitution 

goes through a minimum. 

Adding Al and B oxides should lead to the decrease in the overall kinetics of 

crystallization since a large extent of atomic rearrangements would be needed, requiring 

higher thermal energies. However, at a very small scale there would be in-

homogeneities in the composition due random distribution of Li
+1

 ions in the glass 

leading to Li-rich and Si-rich regions. Therefore, in these Li-rich regions with 

depolymerized Si units, kinetically it would be more favourable for the crystallization of 

LS phase to occur. Furthermore, our previous investigation
193

 of the current 

compositions by NMR spectroscopy elucidated that, Al and B tetrahedra preferentially 

coordinated to highly polymerized Si units. Therefore, this leaves the depolymerized 

network free from dopants. Thus, it is easier for the liquid to crystallize in (i) 

depolymerized (Q
2
) and dopants free regions rather than in (ii) polymerized (Q

3
 or Q

4
) 

dopant containing regions. In regions of (ii) higher thermal energies would be needed 

for the crystallization to occur. 

Therefore simultaneous effect of small driving force for the formation LS and the 

kinetic restriction for the crystallization of LS2 result in the profound occurrence of LS 

phase whenever dopants are added. This explanation could be generalized to many 

multi component non-stoichiometric glass systems which report the occurrence of LS 

phase.
200–203

 

3.4.4.3 Crystallization and Sintering Sequence 

In the current glass compositions, as the temperature is increased above Tg, the 

system continuously gains thermal energy to undergo a transformation from its liquid 

state to all the possible crystalline states (LS, LS2 and SiO2) (Figure 3.4.1). However, 

though there would be a greater driving force for the crystallization of LS2 and 

polymorphs of SiO2, there will be kinetic restriction for the crystallization of these 

phases because of the reasons discussed in the previous section. Thus, LS phase with 

small driving force crystallizes with the available Q
2
 units. The activation energies for 

the crystallization of the LS phase are presented in Table 3.4.2 for each composition. 

These values go through a maximum with increasing B2O3 substitution. This particular 
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trend in the kinetic activation energies could be attributed to the thermodynamic driving 

forces; which also go through a minimum. Since the total concentration of dopants is 

the same in all the glass compositions, we can expect similar kinetic restrictions in all 

glasses. But this is not completely true because of their differences in terms of 

intermolecular interactions. However, these interactions play a minor role as the 

changes in the system are mainly entropy driven.
193

 The presence of both Al and B 

together provokes larger entropy, consequently leading to stable liquid phase with less 

free energy, and thus there is less driving force for crystallization. Therefore, the trend 

in the activation energies is the manifestation of the trend in thermodynamic driving 

forces; similar correlation was also found by others.
204

 

As the temperature is further increased, the driving force for the LS crystallization 

decreases eventually ceasing. This leaves the residual liquid at a composition richer in 

the concentration of Al or B oxides. With further increments in the temperature to 

greater than ~800 ºC, the LS phase would no longer be stable. At this stage the existing 

LS phase can either transform to LS2 by taking SiO2 or rejecting Li2O (reactions (6) and 

(7)); or it could dissolve back into the liquid phase as given by reaction (8). 

𝐿𝑖2𝑆𝑖𝑂3(𝑐𝑟) + 𝑆𝑖𝑂2(𝑙𝑖𝑞) ↔ 𝐿𝑖2𝑆𝑖2𝑂5(𝑐𝑟) ∆𝐻 = −12 𝑘𝐽 𝑚𝑜𝑙−1 Eq. (3.4-6) 

𝐿𝑖2𝑆𝑖𝑂3(𝑐𝑟) ↔
1

2
𝐿𝑖2𝑆𝑖2𝑂5(𝑐𝑟) +

1

2
𝐿𝑖2𝑂(𝑙𝑖𝑞) ∆𝐻 = +65 𝑘𝐽 𝑚𝑜𝑙−1 Eq. (3.4-7) 

𝐿𝑖2𝑆𝑖𝑂3(𝑐𝑟) ↔ 𝐿𝑖2𝑂(𝑙𝑖𝑞) + 𝑆𝑖𝑂2(𝑙𝑖𝑞) ∆𝐻 = +152 𝑘𝐽 𝑚𝑜𝑙−1 Eq. (3.4-8) 

The reaction Eq. (3.4-6) is exothermic, whereas the reactions Eq. (3.4-7) and Eq. 

(3.4-8) are endothermic (obtained from thermochemical tables
196

). Since no peaks were 

registered in DTA experiments in the range of 800 ºC, it is likely that reactions (6) to (8) 

require higher thermal energies. Furthermore, XRD results of quenched samples 

(Figure 3.4.8) still showed presence of LS phase at same amounts even after the end of 

second crystallization event (Figure 3.4.1). This strongly confirms that LS phase did not 

transform (reaction (6) & (7)) or dissolve back into the liquid (reaction (8)). However, 

during the isothermal heat treatments for the preparation of GCs, the LS phase vanishes 

at higher temperatures (Figure 3.4.2), strongly suggesting that the reactions (6), (7) & 

(8) are kinetically slow and require higher thermal energies. 
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Further increasing the temperature provides sufficient thermal energies for the 

crystallization of LS2 phase. However, at this stage Al and B oxides are no longer 

dopants in the liquid phase but have significant concentrations in the remaining glassy 

matrix. As a result there will be significant enthalpic contributions from Al and B 

oxides to the 𝑔(𝑥, 𝑐) term (Eq. (3.4-2)). Since B2O3 has a positive contribution to the 

enthalpy, it would increase the overall free energy of the liquid phase. As a result, with 

B2O3 substitution, there would be much greater driving force for crystallization leading 

to lower thermal activation energies. Therefore, the kinetic activation energies for the 

crystallization of LS2 phase (Table 3.4.2) show a continuously decreasing trend with 

B2O3 substitution. Additionally, there would be one more contribution to the decreasing 

EC2 values, which is the slight depolymerisation of the glass network because the 

substituted B units go into the glass network as both 3‒ and 4‒coordinated B units (B
III

 

and B
IV

). This converts the charge compensating oxide into a network modifying oxide, 

thus decreasing the viscosity. At room temperature the glasses showed equal 

concentrations of B
III

 and B
IV

 units.
193

 However, at higher temperatures the equilibrium 

could shift more towards B
III

 units,
205,206

 creating even more non-bridging oxygens 

leading to less viscosity. The occurrence of third crystallization peak in GB50 to GB100 

(Figure 3.4.1) could also be associated with this decreased viscosity. It is also possible 

that, due to the increased B2O3 concentrations in the liquid phase at the end of the first 

crystallization, could lead to immiscibility of B2O3. This would leave the silicate liquid 

phase free from dopants with less kinetic restrictions, thus lowering the activation 

energies. However, this argument is questionable because alkali borosilicate systems do 

not show any immiscibility at temperatures above 750 ºC.
46,177

 Therefore at high 

temperatures B2O3 should still be present in the liquid phase without separating out. 

At temperatures greater than 900 ºC all compositions showed melting (Figure 

3.4.1). This broad endothermic peak could have contributions from both LS and LS2 

phases because each DTA curve shows a small shoulder. Therefore, this suggests that 

the LS phase might have disassociated according to the reactions Eq. (3.4-7) or Eq. 

(3.4-8). This argument is supported by the Figure 3.4.8 where, there is a reduction in 

the LS content in the beginning of the endothermic peak. The liquidus temperatures 

measured from the DTA corresponding to the melting of LS2 decreases from 972 to 962 

ºC with B2O3 substitution. This depression in the freezing point is associated with 

different activities of LS2 phase. With the substitution of B2O3 the activities decrease. 
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The sintering behaviour studied by HSM presented in Figure 3.4.4 and Table 

3.4.3 shows that all glass composition started to sinter (TFS1) at ~510 ºC; temperature 

just above Tg which is ~500 ºC for all compositions (Table 3.4.3). However, the 

sintering was interrupted (TMS1) by the first crystallization event (LS phase 

corresponding to TP1). The decreasing values of TMS1 with increasing added amounts of 

B2O3 are in accordance with values of TP1. Since activation energies for the 

crystallization of LS go through a maximum with B2O3 substitution (Table 3.4.2), the 

amounts of LS phase that can crystallize go through minimum. As a consequence, in 

mixed Al and B compositions there will be less hindrance towards first sintering and the 

extents of shrinkage (δ1) follow a trend similar to EC1 values. The second sintering event 

started (TFS2) after the end of first crystallization event and again is interrupted by the 

second crystallization event (TP2). The values of EC2 and TP2 decrease with B2O3 

substitution and accordingly the values of δ2 and TMS2 also decrease. Because of a large 

EC2 value for the sample GB0, the second crystallization event caused extremely small 

interruption
144

 to the sintering process, subsequently leading to a large δ2 value (Table 

3.4.3). Whereas for samples GB50 and GB100 lower EC2 values combined with the third 

crystallization event (TP3) resulted in a significant interruption to the sintering leading to 

a plateau region. At the end of all the crystallization events samples GB50 and GB100 

undergone final sintering event (TFS3) until full densification is reached (TMS3). 

3.4.4.4 Sintered Glass-Ceramics 

Glass-ceramics showed various crystalline phases when sintered isothermally at 

different temperatures (Figure 3.4.2). Samples GB0
144

, GB25 and GB50 still have the 

presence of metastable LS phase even after sintering for 1 h at 800 ºC. This suggests 

that in Al2O3 rich compositions the conversion of LS to LS2 (for example giving by Eq. 

(3.4-3)) is kinetically very slow. This transformation becomes faster with B substitution 

with no presence of LS in GB75 and GB100. As discussed earlier, the faster kinetics for 

the formation of LS2 with B2O3 substitution is associated with the slight 

depolymerisation of the silicate network due to B speciation; apart from a large driving 

force. In a binary system, at temperatures below 1470 ºC, the stable SiO2 polymorph is 

tridymite. But in the current sintered GCs the main SiO2 crystallized polymorph was 

quartz; also with small amounts of cristobalite. In the samples GB75 and GB100 prepared 

at 900 ºC however, the quartz was converted to tridymite. 
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The sintered GCs exhibited various microstructural morphological aspects as 

presented in Figure 3.4.3. The glass powders used for the sintering had average particle 

sizes ranging between 8–12 μm. Figure 3.4.3a captures these particles after sintering 

which look like aggregates of large crystals; and all glass compositions showed this 

kind of morphological feature. Inside these particles, the extent of nucleation is limited, 

leading to concurrent formation of large size crystals. Whereas, at the boundaries of 

these particles, there is a viscous region during sintering where, increased surface area 

resulted in increased crystal nucleation, eventually resulting in a large number of small 

crystals. Also the porosity is associated along the boundaries of these particles. The 

contrast in all the SEM images was obtained by etching with hydrofluoric acid. Since all 

the glass compositions are SiO2 rich, compared to LS2 stoichiometry, the residual glass 

after the crystallization of LS2 became even richer in SiO2. The degree of etching for 

each phase would therefore be in the decreasing order for LS, LS2, residual glass (SiO2 

rich) and SiO2 (crystal), respectively. Therefore, the quartz and tridymite crystals (in 

Figure 3.4.3a and b, respectively) appear protruded from the surface while LS2 crystals 

appear caved in. The both SiO2 phases which are quartz and tridymite showed different 

crystal morphologies. 

Table 3.4.4 presents some physical properties of GCs. The densification degree is 

clearly enhanced with increasing sintering temperature as deduced from the concomitant 

increases in density and shrinkage. This general trend is not completely followed by the 

sample GB100 that reached maximum density and shrinkage values upon sintering at 850 

ºC, followed by decreases with further raising the temperature to 900 ºC. These 

decreases are associated with the conversion of the dense quartz to less dense tridymite 

phase. The same effect is not visible for GB75 prepared at 900 ºC which also contains 

tridymite due to its small amounts. The bending strengths of the GCs depend both on 

the densification degree (absence of pores) and crystalline phase content. For GCs 

prepared at 800 ºC, with B2O3 substitution the crystalline phase content increases and 

changes from predominantly LS to LS2. While the densification goes through a 

maximum because at the low heating rate (2 ºC min
‒1

) the samples got sintered mainly 

at lower temperatures. Densification is less hindered by crystallization in samples 

containing mixed Al and B oxides and they sintered better accordingly. It is likely that 

the low values of bending strengths for B2O3 rich compositions are associated with SiO2 

phase transition leading to some micro-cracks. 
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3.4.5 Supplementary Information 

3.4.5.1 Preparation of glasses 

X-ray diffractograms of as prepared glass samples are presented in Figure 3.4.6; 

show all the samples are completely amorphous 

 

Figure 3.4.6 X-ray diffractograms of glass powders. 

3.4.5.2 Occurrence of Li2SiO3 phase 

Figure 3.4.7 shows the glass powder of non-stoichiometric lithium silicate heat 

treated at 550 ºC. The chemical composition of this sample named as L23S77 is 23Li2O–

77SiO2 (mol. %). The X-ray diffractograms clearly shows small occurrence of 

metastable LS phase. There is also another phase showing a peak at 2θ ≈ 22.5º; probably 

related to some SiO2 polymorph. 
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Figure 3.4.7 X-ray diffractograms of L23S77 heat-treated at 550 ºC. [ : Lithium disilicate 

(Li2Si2O5, ICDD 04-009-4359); : Lithium metasilicate (Li2SiO3, ICDD 00-029-0828)]. 

3.4.5.3 Crystallization events encountered in DTA 

The DTA curves in the manuscript (Figure 3.4.1) show 2 or 3 crystallization 

peaks for each sample. The crystalline phases corresponding to each crystallization 

event in DTA were identified by XRD. The samples were prepared by air quenching 

them at the end of each crystallization event (TP1, TP2 and TP3). Figure 3.4.8 shows the 

diffractograms for samples at heating rate of 20 ºC min
–1

. Same procedure was 

employed for heating rate of 10 ºC min
–1

 and similar results were obtained. 

 

Figure 3.4.8 Crystalline phases corresponding to crystallization peaks in DTA (20 ºC min
–1

) for 

(a) GB0 and (b) GB100. [ : Lithium disilicate (Li2Si2O5, ICDD 04-009-4359); : Lithium 

metasilicate (Li2SiO3, ICDD 00-029-0828); : Quartz (SiO2, ICDD 01-075-8321) ; : 

Cristobalite (SiO2, ICDD 01-082-0512)]. 
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3.4.5.4 Kissinger plots for crystallization kinetics 

 

Figure 3.4.9 Plots for the Kissinger model for (a) TP1, (b) TP2 and (c) TP3. 
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3.4.5.5 DTA plots at 5 ºC min‒1 

Figure 3.4.10 shows DTA plots of the experimental compositions collected from 

room temperature to 800 ºC; these are used for comparison with HSM data. Peaks 

obtained from the experimental data shows good agreement with the peaks derived from 

the Kissinger method. Therefore for peaks at temperatures > 800 ºC, since experimental 

data is not available, they were derived from the Kissinger method. 

 

Figure 3.4.10 DTA plots at β = 5 ºC min
‒1

. 

3.4.5.6 Calculation free energy vs composition diagrams 

In order to calculate the free energy vs composition diagram of binary system, the 

procedure suggested by Charles
47

 was employed. The procedure uses freezing point 

depression for calculating activities of SiO2. The Li2O‒SiO2 phase diagram is 

constructed based on the data given by Kracek
183

 and presented in Figure 3.4.11. The 

equilibrium lines were obtained by fitted data points with polynomial functions 

represented as 𝑇𝑐(𝑥); 𝑥 represents the chemical composition in 𝑥Li2O ‒ [1 − 𝑥]SiO2. 

These polynomial functions are then extrapolated to 500 ºC shown as dotted lines in 

Figure 3.4.11; while the blue line represents the equivalent binary composition of the 

experimental glasses. 
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Figure 3.4.11 Li2O‒SiO2 phase diagram (dots: data from Kracek
183

). 

The free energy‒composition diagrams were calculated from x = 0.00 to 0.36 are 

presented in Figure 3.4.12. Assuming no formation of solid solutions for LS2 and LS 

they were shown by dots. 

 

Figure 3.4.12 Free energy‒composition diagram of the liquid of the binary Li2O‒SiO2 system at 

(a) 500 and (b) 800 ºC. The dots represent molar free energies of, ( ) equivalent binary 

composition of liquid phase, ( ) LS2 and ( ) LS. 
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3.4.5.7 Liquidus temperatures 

The liquidus temperatures were determined by the method suggested by Ferreira 

et al.
195

 The values for GB0 and GB100 were obtained to be 1245 K (972 ºC) and 1235 K 

(962 ºC) respectively. Figure 3.4.13 shows the plots with fitting parameters used for 

these calculations. The rest of the values are presented in Table 3.4.2. 

 

Figure 3.4.13 Determination liquidus temperatures for samples. 

3.4.5.8 Influence of dopant 

In this we derive the change in free energy due to small addition of dopants. For a 

binary system the change in free-energy of the system due to mixing of individual 

components is given as, 

 ∆𝐺𝑚𝑖𝑥,𝑏𝑖𝑛𝑒𝑟𝑦 = 𝑅𝑇(𝑥𝐿𝑖2𝑂 ln 𝑎𝐿𝑖2𝑂 +𝑥𝑆𝑖𝑂2 ln 𝑎𝑆𝑖𝑂2) Eq. (3.4-9) 

Where, 𝑥𝑖 and 𝑎𝑖 are the mole fraction and activities of the 𝑖𝑡ℎ component. By 

considering 𝑥 = 𝑥𝐿𝑖2𝑂, and 𝑎𝑖 = 𝛾𝑖xi, Eq. (3.4-9) can be represented as, 

 
∆𝐺𝑚𝑖𝑥,𝑏𝑖𝑛𝑒𝑟𝑦 = 𝑅𝑇(𝑥 ln 𝛾𝐿𝑖2𝑂 +(1 − 𝑥) ln 𝛾𝑆𝑖𝑂2 + 𝑥𝑙𝑛(𝑥)

+ (1 − 𝑥) ln(1 − 𝑥)) 
Eq. (3.4-10) 

In the case of small addition of  𝑁 number of dopants to the binary system the 

change in free energy due to mixing can be represented by, 
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∆𝐺𝑚𝑖𝑥,𝑚𝑢𝑙𝑡𝑖 = 𝑅𝑇(𝑥′𝐿𝑖2𝑂 ln 𝑎′𝐿𝑖2𝑂 +𝑥′𝑆𝑖𝑂2 ln 𝑎′𝑆𝑖𝑂2 +

∑ 𝑥′𝑛 ln 𝑎′𝑛
𝑁
𝑛=1 )  

Eq. (3.4-11) 

Again if we write  𝑥 =
𝑥′𝐿𝑖2𝑂

𝑥′𝐿𝑖2𝑂+𝑥′𝑆𝑖𝑂2
 and 𝑐 = ∑ 𝑥′𝑛

𝑁
𝑛=1 ; thus, 

 𝑥′𝐿𝑖2𝑂 = 𝑥(1 − 𝑐); 𝑥′𝑆𝑖𝑂2 = (1 − 𝑥)(1 − 𝑐)  Eq. (3.4-12) 

All the new parameters in this multicomponent system are represented by a 

superscript ‘; and the parameters for dopants represented by subscript n. From Eq. 

(3.4-12) and relation 𝑎′𝑖 = 𝛾′𝑖𝑥𝑖, Eq. (3.4-11) can be written as, 

∆𝐺𝑚𝑖𝑥,𝑀𝑢𝑙𝑡𝑖 = 𝑅𝑇 ((1 − 𝑐) [𝑥 ln 𝛾′
𝐿𝑖2𝑂

+(1 − 𝑥) ln 𝛾′
𝑆𝑖𝑂2

+

𝑥 ln 𝑥′𝐿𝑖2𝑂 +(1 − 𝑥) ln 𝑥′𝑆𝑖𝑂2] + ∑ 𝑥𝑛 ln 𝛾′𝑛
𝑁
𝑛=1 + ∑ 𝑥𝑛 ln 𝑥′𝑛

𝑁
𝑛=1 )  

Eq. (3.4-13) 

∆𝐺𝑚𝑖𝑥,𝑀𝑢𝑙𝑡𝑖 = 𝑅𝑇 ((1 − 𝑐) [𝑥 ln 𝛾′
𝐿𝑖2𝑂

+(1 − 𝑥) ln 𝛾′
𝑆𝑖𝑂2

+

𝑥 ln 𝑥 + (1 − 𝑥) ln(1 − 𝑥)] + (1 − 𝑐) ln(1 − 𝑐) + ∑ 𝑥𝑛 ln 𝛾′𝑛
𝑁
𝑛=1 +

∑ 𝑥𝑛 ln 𝑥′𝑛
𝑁
𝑛=1 )  

Eq. (3.4-14) 

The activity coefficients are functions of composition and temperature i.e. 

( 𝛾𝑖(𝑥, 𝑐, 𝑇)). However for very small additions of dopants, it can be assumed that the 

system follows Henry’s law. Therefore the activity coefficients for Li2O and SiO2 

shouldn’t be affected significantly. Therefore, 𝛾𝐿𝑖2𝑂 ≈ 𝛾′𝐿𝑖2𝑂 and 𝛾𝑆𝑖𝑂2 ≈ 𝛾′𝑆𝑖𝑂2; and the 

activity coefficients of the dopants would approach a constant value. Thus, from Eq. 

(3.4-10), Eq. (3.4-14) can be written as, 

∆𝐺𝑚𝑖𝑥,𝑀𝑢𝑙𝑡𝑖 ≈ (1 − 𝑐)[∆𝐺𝑚𝑖𝑥,𝑏𝑖𝑛𝑒𝑟𝑦] + 𝑅𝑇[(1 − 𝑐) ln(1 − 𝑐) +

∑ 𝑥𝑛 ln 𝛾′𝑛
𝑁
𝑛=1 + ∑ 𝑥𝑛 ln 𝑥′𝑛

𝑁
𝑛=1 ]  

Eq. (3.4-15) 

The above equation is a general relation for any binary system with N different 

types of dopants added. In the current study it is Li2O‒SiO2 system and, 𝛾′𝑛 would have 

a unique value for each dopant. The above equation can also be rewritten as, 

 ∆𝐺𝑚𝑖𝑥,𝑀𝑢𝑙𝑡𝑖 ≈ (1 − 𝑐)[∆𝐺𝑚𝑖𝑥,𝑏𝑖𝑛𝑒𝑟𝑦(𝑥)] + 𝑅𝑇𝑔(𝑥, 𝑐) Eq. (3.4-16) 
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If we assume that the values of  𝛾′𝑛 are independent of 𝑥 in a small range, then 

𝑔(𝑥, 𝑐) will have a unique value which is either positive or negative depending on the 

type of dopant. This will shift the entire binary free energy‒composition curve by a 

small value positively or negatively. 

3.4.5.9 Activities of LS2 at the liquidus 

On the liquid‒LS2 equilibrium line from of the phase diagram (Figure 3.4.11), the 

chemical potentials of pure solid (𝜇𝑠
𝑜) and liquid (𝜇𝑙) LS2 are related as, 

 𝜇𝑠
𝑜 = 𝜇𝑙 Eq. (3.4-17) 

 𝜇𝑠
𝑜 = 𝜇𝑙

𝑜 + 𝑅𝑇𝑙𝑛(𝑎𝐿𝑆2) Eq. (3.4-18) 

 𝑙𝑛(𝑎𝐿𝑆2) =
𝜇𝑙
𝑜 − 𝜇𝑠

𝑜

𝑅𝑇
= −

∆𝐺𝑓𝑢𝑠
𝑜

𝑅𝑇
 Eq. (3.4-19) 

Here, µlº is the chemical potential of pure liquid LS2; 𝑎𝐿𝑆2 is the activity of LS2 in 

the solution. Differentiating Eq. (3.4-19) and applying Gibbs–Helmholtz equation gives, 

 
𝑑 (𝑙𝑛(𝑎𝐿𝑆2))

𝑑𝑇
=
∆𝐻𝑓𝑢𝑠

𝑅𝑇2
 Eq. (3.4-20) 

By considering the changes in the specific heats, 

 ∆𝐻𝑓𝑢𝑠 = ∆𝐻𝑓𝑢𝑠
𝑜 +∫ ∆𝐶𝑝𝑑𝑇

𝑇

𝑇𝑓𝑢𝑠

 Eq. (3.4-21) 

Where, ∆𝐶𝑝 is the difference between the specific heats of liquid and solid; for 

which, values were obtained from the thermochemical tables
207

 which takes the form, 

∆𝐶𝑝 = 𝐴 + 𝐵𝑇 + 𝐶𝑇
2 +𝐷𝑇3 + 𝐸𝑇−2      

 (S14) 

Where, 

A = 72; 

B = ‒8.41   10
‒2

; 
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C = 2.3 × 10
‒5

; 

D = ‒1.3   10
‒9

; 

E = 5.7 × 10
6
; 

Now, Eq. (3.4-20) can be written as, 

 𝑑(ln 𝑎𝐿𝑆2)

𝑑𝑇
=
∆𝐻𝑓𝑢𝑠

𝑜 + ∫ ∆𝐶𝑝𝑑𝑇
𝑇

𝑇𝑓𝑢𝑠

𝑅𝑇2
 Eq. (3.4-22) 

Integrating, 

 ∫ 𝑑 (𝑙𝑛(𝑎𝐿𝑆2))
𝑎𝐿𝑆2
1

= ∫
∆𝐻𝑓𝑢𝑠

𝑜 +∫ ∆𝐶𝑝𝑑𝑇
𝑇
𝑇𝑓𝑢𝑠

𝑅𝑇2
𝑑𝑇

𝑇

𝑇𝑓𝑢𝑠
  Eq. (3.4-23) 

Solving the Eq. (3.4-23) gives the following equation, 

 𝑙𝑛(𝑎𝐿𝑆2) =
1

𝑅
[(−∆𝐻𝑓𝑢𝑠

𝑜 + 𝑃) × (
1

𝑇
−

1

𝑇𝑓𝑢𝑠
) + 𝑄]  Eq. (3.4-24) 

Where, 

 𝑃 = 𝐴𝑇𝑓𝑢𝑠 +
𝐵

2
𝑇𝑓𝑢𝑠
2 +

𝐶

3
𝑇𝑓𝑢𝑠
3 +

𝐷

4
𝑇𝑓𝑢𝑠
4 −

𝐸

𝑇𝑓𝑢𝑠
  Eq. (3.4-25) 

 

𝑄 = 𝐴𝑙𝑛 (
𝑇

𝑇𝑓𝑢𝑠
) +

𝐵

2
(𝑇 − 𝑇𝑓𝑢𝑠) +

𝐶

6
(𝑇2 − 𝑇𝑓𝑢𝑠

2 ) +

𝐷

12
(𝑇3 − 𝑇𝑓𝑢𝑠

3 ) + 𝐸 (
1

𝑇2
−

1

𝑇𝑓𝑢𝑠
2 )  

Eq. (3.4-26) 

The activities of LS2 for each composition can be obtained by substituting T = TL 

in Eq. (3.4-25) and Eq. (3.4-26). The values of 𝑎𝐿𝑆2 are, 

GB0: 0.78 

GB25: 0.78 

GB50: 0.77 

GB75: 0.75 

GB100: 0.75  
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Abstract 

We report on the effects of SiO2/Li2O molar ratio and adding P2O5 on the 

structure and crystallization behaviour of multicomponent lithium disilicate based 

glasses under non-isothermal conditions. Two non-stoichiometric P2O5-free lithium 

disilicate glasses featuring equimolar contents of K2O and Al2O3 and with SiO2/Li2O 

molar ratios varying between 2.622.92 were synthesized in the Li2OSiO2 system 

through the melt-quench technique. The influence of partially replacing (K2O + Al2O3) 

by P2O5 while keeping the same SiO2/Li2O molar ratios of P2O5-free counterpart glasses 

was also investigated. Differential thermal analysis was used to study crystallization 

kinetics of glasses; their structural features were assessed by nuclear magnetic 

resonance; and the crystalline phase evolution was followed by X-ray diffraction. The 

results showed that P2O5 enhances the formation of fine lithium disilicate crystals. 

However, an increase in SiO2/Li2O molar ratio has an opposite effect, decreasing the 

overall crystallization rate and preventing the formation of lithium disilicate. 
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3.5.1 Introduction 

Glass-ceramics can be produced by melting glasses and converting the vitreous 

substances into fine-grained materials through controlled nucleation and growth of 

crystalline phases via heat treatment.
1,208

 In particular, the Li2OSiO2 system has 

attracted great interest since Stookey developed the first glass-ceramic material on the 

near stoichiometric lithium disilicate composition (Li2Si2O5, hereafter named LS2) 
209

. 

After this, and during the last decades, the nucleation and crystallization in the binary 

Li2OSiO2 system has been widely investigated.
210–213

 

However, glass-ceramics derived from the binary system exhibit some 

unfavourable characteristics in terms of their mechanical and chemical properties which 

hinder their potential applications in several technological areas. Therefore, 

nonstoichiometric multicomponent compositions have been developed in order to 

improve the properties of LS2 glass-ceramics. For instance, the addition of Al2O3 and 

K2O to the stoichiometric composition enhanced the chemical durability of the 

glasses.
53,191,192,214

 Several other constituents such as ZnO, ZrO2, CaO, V2O5, etc., have 

also been added to improve the properties of the final materials.
1,215,216

 P2O5 has been 

introduced as nucleating agent playing an important role in phase formation and 

crystallization of LS2 glass-ceramics.
138,217

 In addition, Beall and Echeverria
218,219

 

suggested that the SiO2/Li2O ratio is also a key success factor in the formation of the 

main crystal phase in a LS2 glass ceramic system. 

The multicomponent LS2 based glass-ceramics exhibit promising thermal, 

chemical and mechanical properties and have been pointed out as potential candidates 

for various structural and functional applications (e.g. all-ceramic dental restorations, 

ceramic composites or ceramic-metal sealing).
1,142,143,202,220–223

 But the crystal phase 

formation from multicomponent glasses is more complex than in the binary Li2OSiO2 

system. Moreover, the crystalline nature of the glass-ceramic products is largely 

affected by the type and amount of oxides present in the glass composition, including 

the nucleating agents such as P2O5, ZrO2 or TiO2.
1,139,141,151

 

During the crystallization process of non-stoichiometric LS2 glass compositions, 

several authors suggested that lithium metasilicate (LiSi2O3, hereafter named LS) 

precedes LS2 formation
141,200,224

 in contrast to what was observed in the stoichiometric 
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composition.
141,211

 In particular, the crystallization process of non-stoichiometric LS2 

glass compositions occurs in two stages: (1) LS crystallizes in the glass at lower 

temperatures (in the range of 650–700 ºC), and (2) LS reacts with SiO2 to form LS2 at 

higher temperatures.
139,200

 The mechanism of this behaviour was explained in our 

previous paper.
225

 

The properties of the glass-ceramics depend upon the type of phases precipitated 

from the glasses, the extent of crystallization, crystal morphology, crystal size and 

aspect ratio. All these features are, in turn, dependent upon the composition of the 

parent glass (including the addition of nucleating agents) and thermal treatment.
1,226

 

Therefore, determining the parameters that control the mechanisms of nucleation and 

growth processes (e.g. kinetic parameters) is of major importance to obtain materials 

with the desired properties.
1,226

 Although kinetic aspects of crystal growth have been 

extensively investigated in the simple non-stoichiometric Li2OSiO2 binary system, 

150,227
 the crystallization kinetics in non-stoichiometric multicomponent LS2 glasses still 

needs to be studied. 

The aim of the present work was to investigate the influences of SiO2/Li2O molar 

ratio (2.62 and 2.92) and of the added amount of P2O5 (1 mol%) on the structure and 

crystallization behaviour of non-stoichiometric multicomponent lithium silicate glasses 

based on the system Li2OK2OAl2O3SiO2 under non-isothermal conditions. 

3.5.2 Experimental procedure 

3.5.2.1 Synthesis 

Four experimental compositions (Table 3.5.1) belonging to Li2O‒K2O‒Al2O3‒

SiO2‒(P2O5) system were prepared. Potassium from K2O was used for charge 

compensating when Al2O3 partially replaces SiO2 in the binary Li2O‒SiO2 system, while 

P2O5 was incorporated as a nucleating agent. Powders of technical grade SiO2 and 

reagent grade Li2CO3, K2CO3, Al2O3 and (NH4)2HPO4 were used as precursors; all 

having a of purity > 99%. Batch compositions of 100 g were prepared by homogenously 

mixing the powdered raw materials in a ball mill, followed by calcination at 1073 K 

(800 ºC) for 1 h. Pt crucibles were used to melt the compositions at 1823 K (1550 ºC) 

for 1 h in air. Bulk (monolithic) glasses were prepared by pouring the melt on a bronze 

mould and allowed to cool at ambient temperature. Glasses were not subjected to 



118 
 
 

annealing in order to avoid any pre-nucleation and crystallization. The glass-ceramics 

(GCs) were prepared from small pieces of the bulk glasses by heating them first to a 

temperature of 823 K (550 ºC) for 1 h at 10 K min
−1

 in air (for nucleation) followed by 

heat treatment to temperatures between 873 K (600 ºC), and 1173 K (900 ºC) for 1 h at 

intervals of 100 K. 

Table 3.5.1 Compositions of the experimental glasses and the compositions calculated from the 

NMR spectra in parenthesis (in mol %) 

 Li2O K2O Al2O3 SiO2 P2O5 SiO2/Li2O 

G24 24.0 (26.0) 3.0 (2.9) 3.0 (2.9) 70.0 (68.1) 0.0 (0.0) 2.9 (2.6) 

G24P 24.0 (23.4) 2.5 (2.5) 2.5 (2.5) 70.0 (70.5) 1.0 (1.0) 2.9 (3.0) 

G26 26.0 (28.7) 3.0 (2.9) 3.0 (2.9) 68.0 (65.5) 0.0 (0.0) 2.6 (2.3) 

G26P 26.0 (26.8) 2.5 (2.5) 2.5 (2.5) 68.0 (67.3) 1.0 (1.0) 2.6 (2.5) 

3.5.2.2 Characterization 

The network structure of the glasses was investigation by magic angle spinning 

nuclear magnetic resonance spectroscopy (MAS-NMR, Bruker ASX 400). All samples 

were crushed to fine powders and characterized in a 400 MHz (9.4 T) spectrometer 

working at Larmor frequencies of 79.5, 104.3 and 161.9 MHz and were excited by 90º, 

45º and 10º pulses for 
29

Si, 
27

Al and 
31

P nuclei respectively. 4 mm rotors for 
27

Al and 

31
P nuclei, and 7 mm rotors for 

29
Si, were used. The MAS frequencies were 5, 14 and 12 

kHz for 
29

Si, 
27

Al and 
31

P nuclei respectively. The obtained spectra were deconvoluted 

using DMFIT program.
228

 Fourier transform infrared spectroscopy (FTIR, model 

Mattson Galaxy S-7000) was carried out in the range of 300–1400 cm
−1

 with a 

resolution of 4 cm
−1

 on glass powders prepared by crushing the bulk glass. Samples for 

FTIR were prepared by mixing 1/150 (by weight) portion of the sample with KBr and 

hand pressed to obtain pellets. 

Differential thermal analysis (DTA, Netzsch STA 409 EP, Germany) was carried 

out on all glass compositions obtained by crushing the bulk glass to particle sizes 

between 500−1000 μm (collected by sieving). DTA experiments were carried out in air 

from ambient temperature to ~1173 K (900 ºC) at heating rates α = 10, 15, 20 and 25 K 

min
−1

 using ~330 mg of sample in an Alumina crucible, with α-Alumina powder as 

reference material. The previously DTA-calibration is done using α-alumina pre-

calcined at 1600°C in both crucibles and for each used heating rate. The results obtained 
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are then used to calibrate the DTA apparatus by comparison with an internal standard 

and to make the correction of the DTA-baseline curves using a polynomial function. 

Microstructures of both glass and crystallized samples were recorded using 

scanning electron microscope (SEM, SU-70, Hitachi, Japan) and Stereo Microscope 

(Leica EZ4 HD). For which samples were polished and etched using 2 vol. % 

hydrofluoric acid for 60 s. Crystalline phase in the samples was identified by X-ray 

diffraction (XRD, Rigaku Geigerflex D/Mac, C Series, Japan) using Cu Kα radiation 

with 2θ varying from 10−60º at steps of 0.02 s
−1

. 

Densities of all bulk glasses were measured employing Archimedes principle by 

immersing the samples in ethylene glycol solution. 

3.5.3 Results 

All glass compositions were suitable for easy casting after melting for 1 h at 1823 

K (1550 ºC), resulting in homogeneous and transparent bubble free glasses. The 

amorphous nature of the as-cast glasses was confirmed by XRD (Figure 3.5.1). 

Considering the high melting temperature, at which the lighter elements are prone to 

volatilization (such as Li in the current compositions), the determined weight losses 

upon melting the glasses were less than 0.2%. Such values are negligible, being within 

the limits of experimental errors.
8
 

 

Figure 3.5.1 X-ray diffractograms of non-annealed bulk glasses. 
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3.5.3.1 MAS-NMR and FTIR spectroscopy 

The deconvoluted
 29

Si NMR spectra into three components of Q2, Q3 and Q4 units 

are presented in Figure 3.5.2. Similarly, the deconvoluted 
31

P NMR spectra into two 

components of Q0(P) and Q1(P) are presented in Figure 3.5.3. The corresponding NMR 

parameters of simulations and the relative amounts of each species are presented in 

Table 3.5.2. Due to the large amounts of network modifiers available to charge 

compensate (AlO4/2)
− 

tetrahedra, the 
27

Al NMR spectra (Figure 3.5.4) for all the glasses 

exhibit only a single peak at ~58 ppm, which corresponds to Al
IV

 species. The chemical 

shift was obtained by fitting a single line shape using Czejeck distribution,
156

 and the 

corresponding quadrupolar coupling constant (CQ) was 4.4 MHz.  

 

Figure 3.5.2 
29

Si NMR spectra and simulated lines of Initial glasses. 
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Figure 3.5.3 
31

P NMR spectra and simulated lines of initial glasses. 

 

 

Figure 3.5.4 
27

Al NMR spectra initial glasses: (a) normalized spectra, and (b) spectra and 

simulated line for G24. 
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Table 3.5.2 NMR Parameters from simulation 

    G24 G24P G26 G26P 

29
Si 

Q2 

δiso 
(ppm) 

‒79.2 ‒80.0 ‒78.3 ‒81.2 

FWHM 7.1 5.7 6.2 11.4 

Amount (%) 2.7 1.7 3.1 9.5 

Q3 

δiso 
(ppm) 

‒91.4 ‒92.3 ‒90.5 ‒91.3 

FWHM 14.4 14.2 15.7 12.8 

Amount (%) 71.0 58.9 81.6 56.4 

Q4 

δiso 
(ppm) 

‒103.5 ‒104.9 ‒103.9 ‒102.9 

FWHM 12.6 13.6 11.8 14.0 

Amount (%) 26.3 39.4 15.3 34.1 

31
P 

Q0(P) 

δiso (ppm) 
‒ 9.2 ‒ 9.1 

FWHM ‒ 5.1 ‒ 5.2 

Amount (%) ‒ 83.1 ‒ 82.7 

Q1(P) 

δiso (ppm) 
‒ ‒0.1 ‒ 0.0 

FWHM ‒ 8.8 ‒ 9.0 

Amount (%) ‒ 16.9 ‒ 17.3 
δiso: Isotropic Chemical Shift 

FWHM: Full width at half maximum 

The FTIR spectra of the experimental glasses (Figure 3.5.5) show three 

absorption peaks at positions ~470, ~775 and ~1050 cm
‒1

,  which correspond to the 

TO1, TO2 and TO3 modes of vibrations, respectively.
114

 Due to very small variations in 

the chemical compositions of the studied glasses, there are no noticeable differences in 

the spectra. 

 

Figure 3.5.5 FTIR spectra of initial glasses. 
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3.5.3.2 Thermal analysis and crystallization kinetics 

Figure 3.5.6 shows the DTA curves of all glasses performed at 20 K min
1

 in air, 

while Table 3.5.3 presents the values of the thermal parameters obtained for these 

glasses. It can be observed that there are no significant changes in the glass transition 

region with variation in the composition. However, with increasing Li content (from 

G24 to G26) the peak crystallization temperature (Tp), which corresponds to LS phase 

shifts to lower values of temperature. The addition of P2O5 to both G24P and G26P 

glasses further stimulated the crystallization events (Tp) to occur at lower temperatures, 

while a second crystallization peak was also observed for these P2O5-containing 

compositions (Figure 3.5.6). This second peak can only be partially observed because 

the DTA experiment was run only up to 900 ºC. Further, this crystallization peak 

corresponds to LS2 according to our previous studies.
225

 Therefore, in the current study, 

only the first peak, which corresponds to LS phase, was studied for crystallization 

kinetics for all glasses.  

 

Figure 3.5.6 DTA of glass compositions at  = 20 K min
−1

. 
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Table 3.5.3 Properties of the glasses 

  G24 G24P G26 G26P 

Density (g cm
‒3

) 2.366 2.347 2.375 2.358 

Molar volume (cm
3
 mol

‒1
) 24.432 24.810 24.048 24.405 

Oxygen density (g cm
‒3

) 1.149 1.151 1.154 1.157 

NBO% (%) 27.3 27.1 29.9 29.7 

Tg (ºC) 481 477 475 482 

Tc (ºC) 712 606 692 684 

Tp (ºC) 820 651 793 720 

T (ºC) 231 129 217 202 

 

In the present study, two kinetic models were used to evaluate kinetic parameters 

of the glasses: (1) Kissinger’s Model 
229

 and (2) Matusita’s Model 
230

. The activation 

energy for crystallization (Ec) can be calculated using the Kissinger’s equation given by 

 ln
𝛽

𝑇𝑝2
= −

𝐸𝑐
𝑅𝑇𝑝

+ 𝑐𝑜𝑛𝑠𝑡. Eq. (3.5-1) 

Where β is the heating rate, Tp is the peak crystallization temperature and R is gas 

constant. Plotting the variation of ln (β/Tp
2
) as a function 1000/RTp allows us to obtain a 

straight line, with slope equal to the activation energy of crystallization, Ec (in kJ 

mol
1

). The Avrami parameter n can be determined by a method proposed by Augis and 

Bennett 
231

 given by the equation 

 𝑛 =
2.5

∆𝑇𝐹𝑊𝐻𝑀

𝑅𝑇𝑝
2

𝐸𝑐
 Eq. (3.5-2) 

Where, TFWHM if full width at half maximum of the DTA exothermic peak and Ec 

is the activation energy as obtained from Eq (1). In Matusita’s method, an equation 

relating crystallized volume fraction (x) with changing temperature (T) at a constant 

heating rate (β) is used to evaluate activation energy Ec. The equation is given by, 

 ln[− ln(1 − 𝑥)] = −𝑛′ ln 𝛽 − 1.052 𝑚 
𝐸𝑐
𝑅𝑇

+ 𝑐𝑜𝑛𝑠𝑡. Eq. (3.5-3) 

Here m gives the dimensionality of crystal growth (an equivalent of Avrami’s 

parameter n). And n’ is the information of nucleation process: if n’ = m + 1 no nuclei 

are present in the glass and if n’ = m sufficient number of nuclei are present in the glass. 
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The crystallized volume fraction was estimated from the DTA curves using the 

fraction of area under exothermic peak. To calculate this, the exothermic peaks obtained 

from DTA were integrated and then the integrated data was normalized to unity to give 

crystallized fraction. Figure 3.5.7 shows the volume fraction of crystallized phase for 

the experimental glasses without (a, c), and with added P2O5 (b, d), respectively. All 

curves exhibit a sigmoid type variation with temperature. The crystallized volume 

fraction slightly increases at the beginning and at the end of the non-isothermal 

crystallization process (as evidenced by the low slopes in the initial and final branches 

of the curves in shown Figure 3.5.7) suggesting that the reaction proceeds slowly at 

these stages. On the contrary, the main segment of the curve features a higher slope 

indicating a faster reaction. Accordingly, the crystallization reaction can be divided into 

three stages: (1) nucleation starts from the amorphous matrix slowly; (2) the increasing 

surface of contact between amorphous matrix and crystal nuclei leads to a sharp 

increase in crystallized fraction, indicating a steady crystallization reaction stage; (3) the 

interface between crystallized phase and amorphous matrix decreases as a result of 

nuclei coalesce 
232–235

. 

 

Figure 3.5.7 Evolution of crystallised fraction x with temperature for the experimental glasses 

obtained from DTA and using different heating rates (  = 10, 15, 20 and 25 K min
1

): (a) G24, 

(b) G24P, (c) G26 and (d) G26P. 
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In the case of Matusita’s method, from Eq. (3.5-3), for each composition at a 

particular temperature, the variation of ln [ln (1x)] vs. ln β give four points 

(corresponding to four heat treatments) which were fitted with a straight line whose 

slope gave n’. To calculate n’ for each composition, at least four temperatures were 

chosen except for G26P: only three could be chosen due its narrow and distinctly 

separated peaks. The plots of [ln (1x)] vs. 1.052 m/RT are straight lines whose 

slopes enable to extract the values of activation energy Ec. The value m = n’ was chosen 

for all the compositions. In Kissinger’s method, the variation of ln (β/Tp
2
) as a function 

1000/RTp gave four points which were fitted with a straight line whose slope gave the 

activation energy for crystallization. All the kinetic parameters obtained from both 

methods are summarised in Table 3.5.4. 

Table 3.5.4 Kinetic parameters from Kissinger’s and Matusita's method 

 Kissinger Method  Matusita Method 

 Ec (kJ mol 
1

) R
2
 n  Ec (kJ mol 

1
) m 

G24 155 ± 24 0.93 1.45 ± 0.06  185 ± 09 1.20 ± 0.07 

G24P 121 ± 06 0.99 1.84 ± 0.44  085 ± 15 1.35 ± 0.55 

G26 141 ± 06 0.99 1.72 ± 0.11  166 ± 08 1.43 ± 0.03 

G26P 111 ± 11 0.97 5.32 ± 1.58  125 ± 07 6.44 ± 0.68 

 

Figure 3.5.8 SEM images of non-annealed bulk glasses G24 and G24P. 

G24(a)

G24P(b)

1 µm
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3.5.3.3 Microstructure and phase content 

 

Figure 3.5.9 X-ray diffraction patterns of glasses crystallized at different temperatures as 

indicated in (a) for: (a) G24, (b) G24P, (c) G26 and (d) G26P. (LS2: lithium disilicate, Li2Si2O5, 

ICDD 010704856; LS: lithium metasilicate. Li2SiO3, ICDD 010700330; C: cristobalite, 

SiO2, ICDD 000110695). ; LP: lithium orthophosphate, Li3PO4, ICCD 00150760). 
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Figure 3.5.8 shows as an example of microstructure of non-annealed bulk glasses 

of composition G24 and G24P. Samples showed drop-let like liquid-liquid phase 

separation of sizes ranging between few tens to 180 nm. The addition of P2O5 increased 

the extent of phase separation. The crystalline phase evolution in glasses heat treated at 

various temperatures shows that LS (ICDD 010700330) was the first crystalline 

phase formed in all the glass–ceramics (Error! Reference source not found.). LS was 

lready significantly evident in G24P and G26P at 600 ºC (Error! Reference source not 

found.b and d, respectively), while only small peaks could be observed for G24 and 

G26 (Error! Reference source not found.a and c, respectively). In the absence of P2O5, 

S remained as single phase for glass all compositions heat treated at all temperatures and 

the peaks are more intense in comparison to those observed for P2O5-containing 

compositions. On the other hand, LS2 (ICDD 010704856) was formed after heat 

treating P2O5-containing compositions at 800 ºC, but the intensity of LS2 peaks was 

much lower for G26P (only traces) in comparison to that observed for G24P. Moreover, 

the presence of cristobalite (ICDD 000110695) was also observed in G26P, but this 

phase was dissolved at 900 ºC. Both G24P and G26P featured monomineral LS2 

composition at 900 ºC. ºC. At this temperature, both G24P and G26P seemed to feature 

mono-mineral LS2 composition, but detailed analysis of the XRD pattern revealed the 

presence of very small peaks of lithium orthophosphate (LP, Li3PO4, ICCD 

00150760). 
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Figure 3.5.10 X-ray patterns of glasses G24P and G26P heat treated for 1 h at 900 ºC (the stars 

show the main peaks for LP (lithium orthophosphate, Li3PO4, ICCD 00150760). 

Figure 3.5.11 shows SEM images of glasses heat treated at 700 ºC for 1 h. P2O5-

free compositions exhibit the presence of spherulites of LS phase (Figure 3.5.11a and 

c), the size of which are larger for the lower SiO2/Li2O molar ratio in agreement with 

the intensities of the respective XRD peaks. The insert (Figure 3.5.11e) shows a higher 

magnification detail of the spherulite-like area of sample G24, revealing the 

morphology of LS crystals. The addition of P2O5 led to a higher degree of crystallization 

(Figure 3.5.11b and d). Glasses G24P and G26P are featured by sub-micrometre LS 

crystals but their sizes tend to increase with decreasing SiO2/Li2O molar ratio. 

3.5.3.4 Other properties 

The density is one of the tools that reveals the degree of structural changes in 

glass network with composition .
236

 The values of density (ρ) for the glasses presented 

in Table 3.5.3 are very close, being slightly smaller for P2O5-containing compositions. 

Based on the density data, the molar volume (Vm) and the oxygen density (ρO) values of 

the glasses were calculated by, 

 𝑉𝑚 =
𝑀

𝜌
 Eq. (3.5-4) 

20 22 24 26 28 30

2 (º)

G24P

G26P
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And, 𝜌𝑂 =
𝑀𝑂 (𝑋𝐿𝑖2𝑂 + 𝑋𝐾2𝑂 + 3𝑋𝐴𝑙2𝑂3 + 2𝑋𝑆𝑖𝑂2 + 5𝑋𝑃2𝑂5)

𝑉𝑚
 Eq. (3.5-5) 

Where, M and ρ are molecular weight and density of the glass, MO is the 

molecular weight of oxygen and X is the molar fraction of each oxide component 

present in each glass; these values are also presented in Table 3.5.3. In order to evaluate 

the network polymerization of the glasses, the percentage of non-bridging oxygens 

(NBO%) was calculated from the chemical compositions using the following equation: 

 

 

𝑁𝐵𝑂% =
2 × ([𝐿𝑖2𝑂] + [𝐾2𝑂] − [𝐴𝑙2𝑂3])

[𝐿𝑖2𝑂] + [𝐾2𝑂] + 3[𝐴𝑙2𝑂3] + 2[𝑆𝑖𝑂2] + 3[𝑃2𝑂5]
 

Eq. (3.5-6) 

Here, the quantities represented in square brackets are molar concentrations of 

each oxide. In the above formula, the terminal oxygens which are doubly bonded to 

phosphorus tetrahedra are not taken into account. The values for NBO% are presented in 

Table 3.5.4 show a significant variation with changing the content of Li2O and a small 

variation with addition of P2O5. 

 

Figure 3.5.11 SEM images of bulk glasses heat treated at 700 ºC for 1 h: (a) G24, (b) G24P, (c) 

G26 and (d) G26P. The insert (e) shows a higher magnification detail of the spherulite-like area 

of sample G24.   

1 mm 1 µm

G24(a) G24P(b)

1 mm 1 µm

G26

(c)

G26P

(d)

50 µm

(e)
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Figure 3.5.12 Optical images of bulk glasses heat treated for 1 h: (a) G24700ºC (b) 

G26700ºC, (c) G24800ºC and (d) G26800ºC. 

3.5.4 Discussion 

3.5.4.1 Structure of the glasses 

The structure of the glass as interpreted by the NMR and FTIR spectra represent 

the liquid structure at the fictive temperature. Further, this structure changes by 

changing the fictive temperature where the glass relaxes to a new equilibrium structure 

giving rise to a new distribution of Qn units, through speciation reaction 
237

. Although, it 

must be noted that, in reality the glass structure does not precisely correspond to the 

liquid structure at any temperature. The concept of fictive temperature gives a 

simplified view of the glass structure 
238

. Based on the 
29

Si and 
31

P NMR spectra, the 

chemical composition of the glasses could be estimated by considering the relative 

distribution of Qn and Qn(P) units. By assuming the proportions of SiO2, Al2O3, P2O5 and 

K2O to be same as the original composition (in Table 3.5.1) the amount of Li2O can be 

calculated from the Qn and Qn(P) distributions. This assumption is justified by the fact 

that majority of the weight losses in the compositions as the current ones (which was 

negligible) are only associated to the Li2O evaporation. Accordingly, the chemical 

compositions obtained from these calculations are presented in Table 3.5.1. The results 

show that for the samples G24, G26 and G26P there is an average underestimation of 
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~1.7 % of SiO2 whereas, for the sample G24P there is an overestimation of 0.5% of 

SiO2. While the overestimation of the SiO2 is expected due the evaporation losses of 

Li2O, the underestimation could be a result of either (a) short spin–lattice relaxation 

times of 60 s employed in the 
29

Si NMR experiments, which are probably insufficient 

for complete relaxation of the Q4 sites or (b) inconsistencies in the deconvolution of 
29

Si 

NMR spectra.  

According to the 
27

Al NMR spectra, the Al units are in tetrahedral coordination. 

Therefore, each Al tetrahedron should be connected to four neighbouring units. 

However, it is well known that Al–O–Al type linkages are prohibited in aluminosilicate 

glass networks, this phenomenon is known by Loewenstein’s Rule 
165–167

; where each 

Al unit would be coordinated to four Si units forming Al–O–Si type linkages. These Al–

O–Si type linkages can be probed by 
29

Si NMR spectroscopy. When a Qn unit is 

coordinated to Al unit forming Qn (1Al) units, its chemical shift is de-shielded by ~5 

ppm 
154

. In the current glasses, the chemical shift of Q4 units is about ‒104 ppm, which 

is about 5 ppm higher than the expected value for a Q4 unit. Moreover, there is no de-

shielding effect for Q2 and Q3 units. This suggests that Al units are specifically 

coordinated to Q4 units. Nevertheless, according to the composition, assuming the 

existence of only Q4 (1Al) type units, the number of the expected units from the 

composition were calculated. Compositions show some differences in the NMR-Q4 

values and calculated-Q4 (1Al) values which are: ‒23, 38, ‒57, 16 (in %) for G24, G24P, 

G26 and G26P respectively. Therefore, in the glasses G24 and G26, additional units 

such as Q4 (2Al) and Q4 (3Al) are expected to account for the discrepancy. These units 

would have chemical shifts values overlapping Q3 peak. This explains the relatively 

larger underestimation of SiO2 in G24 and G26 compositions. Therefore, the small 

differences in the compositions calculated from the NMR spectroscopy could be due to 

small discrepancies in the deconvolution. Additionally, the short spin–lattice relaxation 

time of 
29

Si MAS-NMR experiments could also play a minor role. This analysis is in 

agreement with our earlier studies 
144,193,239

.  

Further, we want to comment on a former study 
151

 with similar compositions as 

the current ones where, a broadening of the 
27

Al peak was observed when K2O is 

removed from the compositions. Though this broadening was explained differently in 

the original paper, now we have the strong indication that this effect is due to the 

quadrupolar interaction associated with the increased electric field strength on the 
27

Al 
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nucleus when Li
+1

 ion acts as charge compensator 
240

. 
27

Al NMR spectra of the 

compositions from this past study, were deconvoluted similar to the current 

compositions, and gave the values of CQ to be about 4.0 MHz and 5.2 MHz for 

compositions with and without K2O respectively. Therefore, the larger CQ of 5.2 MHz is 

due to Li
+1

 ion acting as charge compensator. Therefore, in the current compositions, 

the values of CQ which were about 4.4 MHz explains that most of the K2O is associated 

to Al2O3 specifically playing the role of charge compensation. 

It could be noticed that the addition of P2O5 to the glass compositions G24 and 

G26 results in substitution of one Al tetrahedron with two P tetrahedra. The outcome of 

this substitution leads to the replacement of 4 bridging oxygens with 6 bridging 

oxygens. Consequently, the net effect of adding P2O5 to the glass compositions G24 and 

G26 resulted in the slight decrease of NBO content (Table 3.5.3). Moreover, 
31

P NMR 

spectra show (Table 3.5.2) that about 80% of P2O5 exists in the glass network as 

orthophosphate (Q0(P), PO4
‒3

) and the rest as pyrophosphate (Q1(P), P2O7
‒4

) anions. Both 

these phosphate units are highly depolymerized with two to three NBOs associated with 

them. Consequently, these phosphate units preferably draw Li
+
 ions towards them and 

make the silicate network more polymerized. This phenomenon can be seen in the 
29

Si 

NMR spectra where, P2O5 addition leads to the increase of the Q4 peak. Therefore, 

adding P2O5 to the glass compositions not only polymerizes the entire glass network 

but, preferentially polymerizes the silicate network to a greater extent. Moreover, the 

substitution of one Al tetrahedron with two P tetrahedra in G24 and G26 resulted in the 

increase of the molar volume (Table 3.5.3). This is an expected result because the 

network tetrahedra build the glass network and P2O5 addition leads to increased number 

of network tetrahedra. Conversely, moving from compositions G24 to G26 and G24P to 

G26P resulted in the decrease of the molar volume. This is also an expected result 

because the network tetrahedra in this case are replaced by network modifiers, which 

leads to the breaking down of the glass network 
8
. Further, from the density values of 

the glasses, it can be observed that the addition of P2O5 led to a decrease in the density 

of the glass. This behaviour is due to lower molecular weight of P2O5 (142 g mol
‒1

) 

compared to the combined weight of K2O + Al2O3 (196 g mol
‒1

); additionally, the 

increase in the molar volumes due to the addition of P2O5 also contributes to the 

decrease of the density values (Table 3.5.3). The values of the oxygen density however 

follow a continuous increase from along the line G24 ‒ G24P ‒ G26 ‒ G26P. 
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Figure 3.5.8 presents the microstructures of non-annealed bulk glasses of 

compositions G24 and G24P; they reveal homogenous droplet-like liquid–liquid phase 

segregation (LLPS) throughout the whole samples. The LLPS occurs in liquid systems 

when compositions move are away from the stoichiometry and go into the immiscibility 

dome. In Li2O–SiO2 liquid system, this immiscibility is a metastable type phase 

separation 
53,183

. In the current composition droplets varied from a few tens to about 180 

nm and the addition of P2O5 resulted in the increase of LLPS. One of reasons for the 

increased LLPS in P2O5 containing composition could be due to Li
+
 ions preferably 

diffuse towards phosphate groups and contribute to an overall increase in degree of 

polymerization of the silicate network. This shifts the silicate composition to the centre 

of the immiscibility dome and results in the increased LLPS. The fundamental principle 

leading to increased LLPS due to P2O5 addition is still not very clear and is a subject of 

future studies. 

3.5.4.2 Crystallization of glasses 

The activation energies of crystallization for G24 and G26 decreased with 

decreasing of SiO2/Li2O ratio according to both Kissinger’s and Matusita’s methods 

(Table 3.5.4). From NMR results it can be seen that the K
+
 ions are associated to Al 

tetrahedra playing the role of charge compensators. Therefore, Li
+
 ions acting as 

modifiers, and having greater mobility then the rest of the atomic species, would 

strongly influence the kinetics. Hence, going from the composition G24 to G26 resulted 

in decreased activation energies of crystallization due to increased amount of Li
+
 ions; 

this increased amount of Li
+
 ions could also be inferred from the increased NBO% 

(Table 3.5.3). This argument is in accordance with the XRD results (Figure 3.5.9) 

where G26 shows stronger diffraction peaks than G24, when both G24 and G26 were 

heat treated at 700 ºC for 1 h. This kind of discussion should equally hold valid when 

going from the composition G24P to G26P where, one could find an increase NBO% 

(Table 3.5.3) and corresponding increase in the intensity of X-ray diffraction peaks 

(Figure 3.5.9). However, the trends in the activation energies calculated from 

Kissinger’s and Matusita’s methods do not agree with each other. Going from the 

composition G24P to G26P Kissinger’s model shows a decrease in activation energies 

(in agreement with the earlier discussion), whereas Matusita’s model shows an increase 

in the activation energies. This inconsistency could be a result of the broad 

crystallization peak of G24P, which seems to be probably a convolution of two 
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crystallization peaks. Therefore, the simpler Kissinger’s model which only relies on 

peak crystallization temperature appears to be more reliable for the current analysis. In 

the case of glasses doped with P2O5, the activation energies were decreased to lower 

values (Table 3.5.4) from G24 to G24P and from G26 to G26P. This decrease is due to 

the fact that P2O5 acts as a nucleating agent (Figure 3.5.11) and its addition creates 

more nucleation sites thus decreasing the activation energy and favouring the 

crystallization at lower temperature. 

Changes of Avrami parameter n are also observed with the variation of glass 

composition (Table 3.5.4). Composition G24 exhibits the lowest value of n, suggesting 

that this glass is more prone to surface crystallisation. However, n increased with 

decreasing SiO2/Li2O ratio, suggesting that in G26 there would be a slight preference to 

bulk crystallisation mechanism over the surface mechanism. Although the differences in 

n values between G24 and G26 are not significant, the surface crystallisation would be 

still the dominant mechanism; this is confirmed by optical microscopy (Figure 3.5.12). 

Further, the results for n values also show that addition of P2O5 to glass G24 did not 

change significantly the crystallization mechanism since it resulted in only a small 

variation in n. The low value of n for G24P even in the presence of nucleating agent is 

probably again due to the broad crystallization peak (Figure 3.5.6) that has likely 

resulted from the convolution of two crystallization peaks. Since the Avrami parameter 

from both Kissinger’s as well as Matusita’s methods relies on the broadness and shape 

of the peak respectively, the exact Avrami parameter could not be determined for this 

sample. The two overlapping peaks suggests two crystallization mechanisms probably 

resulting from the more extensive phase segregation in the glass as seen by SEM 

(Figure 3.5.8). This phase segregation would result in P2O5-rich and P2O5-poor regions 

averaging the Avrami parameter to less than 2; this hypothesis has to be studied in 

greater detail. On the contrary, the higher n values obtained for G26P hint that bulk 

crystallization is the dominant crystallization mechanism, while DTA shows a strong, 

sharp and symmetric crystallization peak (Figure 3.5.6). The SEM results (Figure 

3.5.11) show that both G24P and G26P exhibit higher nucleation rates confirming the 

role of P2O5 as nucleating agent. 

The results from both XRD (Figure 3.5.9) and crystallization kinetics (Table 

3.5.4) suggest that the crystallization events are favoured in P2O5–containing glasses 

with the LS formed at earlier stages being readily transformed into LS2 at the higher 
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temperatures ( 800 ºC). The transformation from LS to LS2 in G24P and G26P occurs at 

temperatures above 700 and 800 ºC, respectively. This result is in accordance with the 

thermodynamic analysis carried out in Section 3.4 where, at temperatures lower than 

800 ºC, the examined compositions always showed a preferential crystallization of LS 

phase for two reasons: (1) LS being thermodynamically stable at temperatures lower 

than 800 ºC and (2) Al2O3 and B2O3 were specifically associated to Q4 units lowering 

the kinetics of LS2 crystallization. These same arguments do hold in the case of current 

glass compositions. However, since the current compositions are shifted more towards 

higher Li side, the LS phase would be stable at temperatures much higher than 800 ºC. 

In this case, the LS phase was actually stable even at 900 ºC for both G24 and G26. 

Howbeit, adding P2O5 to these compositions shifted the silicate network’s composition 

to SiO2 rich side where, LS would be a stable only at lower temperatures leading to the 

formation of LS2 at higher temperatures. 

3.5.4.3 Mechanism of P2O5 as nucleating agent 

The current study clearly shows that P2O5 acts as a nucleating agent. However, the 

exact mechanism behind this role is still not clear and there seems to be some 

controversy associated with this issue. As the current authors perceive, there are 

basically two schools of thought explaining the mechanism: 

1. During initial stages of crystallization Li3PO4 nucleates and acts as epitaxial centres 

for the heterogeneous nucleation of LS and LS2. 

2. P2O5 induces phase separation and the crystal nucleation occurs at the interface of 

phase segregated regions. 

The first mechanism is supported by the work of Headley and Loehman
241

 who 

experimentally showed the proof for this mechanism; although GCs are not 

conventionally prepared by the method they have used. The second mechanism is 

supported by more recent work by Bischoff et al.
200

 Their experimental results showed 

that the phosphate species exist in a highly disordered state, even after the 

crystallization of LS. Their findings are clearly in line with experimental results 

gathered in the current paper, which enable drawing similar conclusions. The XRD 

(Figure 3.5.9 & Figure 3.5.10) results for G24P and G26P confirmed the absence of LP 

phase below 800 ºC. This shows that the formation of crystalline LS in the presence of 
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P2O5 cannot be explained by a heterogeneous nucleation processes through epitaxy from 

previously precipitated LP phase, but probably a heterogeneous nucleation at the 

interface of an amorphous LP phase and the glass matrix. 

Although the second explanation seems to be in a better accordance with the 

experimental results, it is in complete contradiction to what we have understood so far 

about crystal nucleation of glasses in last 3 decades. The role of phase separation on 

crystal nucleation has been extensively studied in the literature for binary systems, and 

proved with rigorous experimentation that phase segregated boundaries cannot act as 

heterogeneous sites for crystal nucleation.
132,152,176

 Therefore, the issue of whether or 

not phase segregated boundaries act as heterogeneous nucleation sites though have been 

resolved for binary systems, it is still an open problem when dealing with 

multicomponent systems. One very likely explanation that would not contradict with 

our previous knowledge could be: the addition of P2O5 alters the thermodynamics of 

liquid phase in such a way that, for example, it enhances the driving force for the 

crystallization of LS or LS2, causing increased homogenous crystal nucleation rates. 

Therefore, studying the liquid (or glass) structure in much greater detail would provide 

deeper insights into the crystal nucleation mechanism. An atomistic approach using 

statistical mechanics could be an answer to the problems related to crystal nucleation.
242

 

Therefore, studies as the current one are extremely essential and help us come up better 

hypotheses. 
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Abstract 

In this Section a new model is derived to determine the distribution of silicate 

units in binary glasses (or liquids). The model is based on statistical mechanics and 

assumes grand canonical ensemble of silicate units which exchange energy and network 

modifiers from the reservoir. This model complements experimental techniques, which 

measure short range order in glasses such as NMR spectroscopy. The model has 

potential in calculating the amounts of liquid-liquid phase segregation and crystal 

nucleation, and it can be easily extended to more complicated compositions. The 

structural relaxation of the glass as probed by NMR spectroscopy is also reported, where 

the model could find its usefulness. 
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3.6.1 Introduction 

In binary alkali (R
+1

; R ∈ {Li, Na, K, Rb, Cs}) or alkaline earth (Ŕ
+2
; Ŕ ∈ {Mg, 

Ca, Sr, Ba}) silicate glasses (or liquids), silicates form tetrahedral structures that are 

connected to each other by corner sharing.
9
 The oxygens in these glasses exist in three 

forms, namely: (1) free oxygens (FOs, O
‒2

), (2) non-bridging oxygens (NBOs, O
‒1

) and 

(3) bridging oxygens (BOs, O
0
). Though, at lower concentrations of R2O (or ŔO), the 

amount of FOs in the composition is negligible.
243,244

 Providentially, these compositions 

are of interest to the glass science because of their glass forming ability. The BOs and 

NBOs are present on the corners of silicate tetrahedra where, the BOs act as connectors 

between two tetrahedra, while the NBOs terminate the connectivity of a given 

tetrahedron. Therefore, depending upon the number of NBOs and BOs on a given 

silicate tetrahedron, the tetrahedron can be classified by Qn notation where, n ∈ {[0, 4] 

∩ ℕ} is the number of BOs on a given silicate tetrahedron. 

Studies on the distribution of Qn units are ubiquitous in the field of silicate based 

glasses. Techniques such as nuclear magnetic resonance (NMR) and Raman 

spectroscopies are routinely employed to assess the distribution of structural units. Also, 

there are many mathematical models that theoretically address this issue to gain 

fundamental understanding of this distribution. The binary model presumes only two 

types of Qn units at each composition without taking account of the speciation reaction 

Eq. (3.6-1); therefore, it only describes the distribution that corresponds only to 

crystalline silicates but not glasses. A pure statistical model based on binomial 

distribution was suggested, supposing a completely random distribution of BOs and 

NBOs.
11

 However, this model does not take into account the temperature effects. 

Further, Brandriss et al.
237

 suggested a thermodynamic model to take temperature 

effects into consideration. In this model, equilibrium constants (kn) are experimentally 

measured by assuming a speciation reaction (R1) and using the van’t Hoff equation ΔHn 

is calculated as shown below, 

 2Qn ↔ Qn‒1 + Qn+1 ΔHn Eq. (3.6-1) 

 𝑘𝑛(𝑇) =
[𝑄𝑛+1][𝑄𝑛−1]

[𝑄𝑛]2
𝛤  
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 𝜕 ln 𝑘𝑛(𝑇)

𝜕𝑇
=
∆𝐻𝑛
𝑅𝑇2

 
 

 ∆𝐻𝑛
𝑅

=
ln 𝑘𝑛(𝑇2) − ln 𝑘𝑛(𝑇1)

(
1
𝑇1
−
1
𝑇2
)

 
 

Where, Γ ≈ 1 corresponds to a function of activity coefficients. By measuring kn at 

any two different temperatures by NMR or Raman spectroscopy, ΔHn is evaluated, and 

using the value of ΔHn, kn at other temperatures could be calculated. Another 

thermodynamic model of associated solutions was proposed, which employs rigorous 

thermodynamic theory of affinity.
13–15,245

 This model uses Gibbs free energy of 

formation for all the crystalline compounds formed in a particular glass system. 

Nevertheless, all these models use either pure statistics or macroscopic thermodynamics 

and therefore have their own limitations. A statistical mechanical model was proposed 

by Mauro
238

 for the glass systems having a single network modifier and multiple 

network formers. This model is based on non-central hypergeometric distribution 

where, the bias is weighted by Boltzmann factors. The model provides a mathematical 

description for the distribution network modifiers among various network formers; 

however, it does not address the problem of Qn distribution. 

Therefore, in this paper we introduce a new statistical mechanical model for 

binary silicate glass systems in order to address the problem of Qn distribution from a 

fundamental standpoint. The model assumes presence of no FOs. The model has a huge 

technological importance and has a potential to deal with some of the open problems in 

the field of glass science such as liquid-liquid phase segregation (LLPS), crystal 

nucleation and structural relaxation. 

3.6.2 Formulation of the model 

3.6.2.1 Defining silicate units 

As described in the introduction, silicate units are defined by the Qn notation 

based on the number of BO(s) that surround a given Si atom. However, there have been 

number of suggestions from NMR spectroscopy that in glass compositions, silicate units 

can be further described by considering the next-nearest neighbors.
16,246,247

 Based on 

this new description, the units can be defined as: Q4
ijkl

 (35), Q3
ijk

 (20), Q2
ij
 (10), Q1

i
 (4) 
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and Q0 (1), where i, j, k, l ∈ {[1, 4] ∩ ℕ}. For example, a Q3
334

 unit would have three 

BOs, out of which, two are connected to Q3 units and one is connected to a Q4 unit 

(Figure 3.6.1). According to this new definition, there would be 70 different types of 

silicate units, from all the combinations of the superscripts as listed in Table 3.6.1. 

Howbeit, in this paper we introduce a new Sn
m
 notation that is more suitable for the 

derivation of the model; where, n ∈ {[0, 4] ∩ ℕ} while m ∈ {[1, m (n)] ∩ ℕ}. Here n 

has same meaning as in Q notation, corresponding to the internal structure of the unit, 

i.e. the amount of alkali or alkaline metal ions present in it. While m corresponds to the 

external structure, i.e. the types of units a given silicate unit is connected to, and m maps 

a particular combination of ijkl of a Q notation. A comparison between Q notation and S 

notation is shown in Table 3.6.1. In this paper, both notations are used interchangeably 

according to the convenience (Figure 3.6.1). We also define different types of BOs in 

the glass by Oij notation, where Oij is a BO connecting Qi and Qj (i, j ∈ {[1, 4] ∩ ℕ}) 

units together. 

Table 3.6.1 Comparison between Q and S notation and constants associated to network 

connectivity 

 No.  Sn
m

 Qn
ij...

  (4, 3)n
m
 (4, 2)n

m
 (4, 1)n

m
 (3, 2)n

m
 (3, 1)n

m
 (2, 1)n

m
 

Units of Q4
ijkl

 

1 S4
1
 Q4

4444
 0 0 0 0 0 0 

2 S4
2
 Q4

3444
 1 0 0 0 0 0 

3 S4
3
 Q4

3344
 2 0 0 0 0 0 

4 S4
4
 Q4

3334
 3 0 0 0 0 0 

5 S4
5
 Q4

3333
 4 0 0 0 0 0 

6 S4
6
 Q4

2444
 0 1 0 0 0 0 

7 S4
7
 Q4

2344
 1 1 0 0 0 0 

8 S4
8
 Q4

2334
 2 1 0 0 0 0 

9 S4
9
 Q4

2333
 3 1 0 0 0 0 

10 S4
10

 Q4
2244

 0 2 0 0 0 0 

11 S4
11

 Q4
2234

 1 2 0 0 0 0 

12 S4
12

 Q4
2233

 2 2 0 0 0 0 

13 S4
13

 Q4
2224

 0 3 0 0 0 0 

14 S4
14

 Q4
2223

 1 3 0 0 0 0 

15 S4
15

 Q4
2222

 0 4 1 0 0 0 

16 S4
16

 Q4
1444

 0 0 1 0 0 0 
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17 S4
17

 Q4
1344

 1 0 1 0 0 0 

18 S4
18

 Q4
1334

 2 0 1 0 0 0 

19 S4
19

 Q4
1333

 3 0 1 0 0 0 

20 S4
20

 Q4
1244

 0 1 1 0 0 0 

21 S4
21

 Q4
1234

 1 1 1 0 0 0 

22 S4
22

 Q4
1233

 2 1 1 0 0 0 

23 S4
23

 Q4
1224

 0 2 1 0 0 0 

24 S4
24

 Q4
1223

 1 2 1 0 0 0 

25 S4
25

 Q4
1222

 0 3 1 0 0 0 

26 S4
26

 Q4
1144

 0 0 2 0 0 0 

27 S4
27

 Q4
1134

 1 0 2 0 0 0 

28 S4
28

 Q4
1133

 2 0 2 0 0 0 

29 S4
29

 Q4
1124

 0 1 2 0 0 0 

30 S4
30

 Q4
1123

 1 1 2 0 0 0 

31 S4
31

 Q4
1122

 0 2 2 0 0 0 

32 S4
32

 Q4
1114

 0 0 3 0 0 0 

33 S4
33

 Q4
1113

 1 0 3 0 0 0 

34 S4
34

 Q4
1112

 0 1 3 0 0 0 

35 S4
35

 Q4
1111

 0 0 4 0 0 0 

Units of Q3
ijk

 

36 S3
1
 Q3

444
 -3 0 0 0 0 0 

37 S3
2
 Q3

344
 -2 0 0 0 0 0 

38 S3
3
 Q3

334
 -1 0 0 0 0 0 

39 S3
4
 Q3

333
 0 0 0 0 0 0 

40 S3
5
 Q3

244
 -2 0 0 1 0 0 

41 S3
6
 Q3

234
 -1 0 0 1 0 0 

42 S3
7
 Q3

233
 0 0 0 1 0 0 

43 S3
8
 Q3

224
 -1 0 0 2 0 0 

44 S3
9
 Q3

223
 0 0 0 2 0 0 

45 S3
10

 Q3
222

 0 0 0 3 0 0 

46 S3
11

 Q3
144

 -2 0 0 0 1 0 

47 S3
12

 Q3
134

 -1 0 0 0 1 0 

48 S3
13

 Q3
133

 0 0 0 0 1 0 

49 S3
14

 Q3
124

 -1 0 0 1 1 0 

50 S3
15

 Q3
123

 0 0 0 1 1 0 
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51 S3
16

 Q3
122

 0 0 0 2 1 0 

52 S3
17

 Q3
114

 -1 0 0 0 2 0 

53 S3
18

 Q3
113

 0 0 0 0 2 0 

54 S3
19

 Q3
112

 0 0 0 1 2 0 

55 S3
20

 Q3
111

 0 0 0 0 3 0 

Units of Q2
ij
 

56 S2
1
 Q2

44
 0 -2 0 0 0 0 

57 S2
2
 Q2

34
 0 -1 0 -1 0 0 

58 S2
3
 Q2

33
 0 0 0 -2 0 0 

59 S2
4
 Q2

24
 0 -1 0 0 0 0 

60 S2
5
 Q2

23
 0 0 0 -1 0 0 

61 S2
6
 Q2

22
 0 0 0 0 0 0 

62 S2
7
 Q2

14
 0 -1 0 0 0 1 

63 S2
8
 Q2

13
 0 0 0 -1 0 1 

64 S2
9
 Q2

12
 0 0 0 0 0 1 

65 S2
10

 Q2
11

 0 0 0 0 0 2 

Units of Q1
i
 

66 S1
1
 Q1

4
 0 0 -1 0 0 0 

67 S1
2
 Q1

3
 0 0 0 0 -1 0 

68 S1
3
 Q1

2
 0 0 0 0 0 1 

69 S1
4
 Q1

1
 0 0 0 0 0 0 

Units of Q0 

70 S0
1
 Q0 0 0 0 0 0 0 

3.6.2.2 Statistical treatment 

Consider a liquid of either alkali (R
+1
) or alkaline earth (Ŕ

+2
) silicate composition 

given by, 

R2O or ŔO: x 

SiO2: 1 

Here, the amount of SiO2 is scaled to unity and the addition of the network 

modifiers is given by the variable x; where x ∈ [0, 2], which corresponds to R2O% ∈ [0, 

2/3]. If, Pn
m
 is probability (or fraction) of occurrence of a Sn

m
 microstate, then the 
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constraints Eq. (3.6-2) to Eq. (3.6-4) must hold; which are constraints corresponding to 

the amounts of SiO2, energy and R2O or ŔO respectively. 

 ∑𝑃𝑛
𝑚

𝑛,𝑚

= 1 
Eq. (3.6-2) 

 ∑𝐸𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 〈𝐸〉 
Eq. (3.6-3) 

 ∑𝑛𝑃𝑛
𝑚

𝑛,𝑚

= 2[2 − 〈𝑥〉] = 〈𝑁𝐵𝑂〉 Eq. (3.6-4) 

Where, En
m
 is the energy of a given Sn

m
 microstate while 〈E〉, 〈x〉 and 〈NBO〉 ∈ [0, 

4] are the expected values of energy, composition and the amount of BOs for a given 

ensemble. Additionally, because Sn
m
 notation takes into consideration the network 

linkages with its neighbors, there would be 10 more additional internal constraints 

connecting the probabilities of different Sn
m
 microstates corresponding to the 10 

different types of BOs (Oij). The equations are presented in the appendix (Section 

3.6.4.1) and they take the form given by the Eq. (3.6-5). 

 ∑(𝑖, 𝑗)𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 0 
Eq. (3.6-5) 

The coefficients (i, j)n
m
 represent the number of network connections between Qi 

and Qj silicate units originating from a given Sn
m
 unit. The following examples illustrate 

the physical meaning of these coefficients, 

 The value of (3, 2)3
8
, which corresponds to the microstate S3

8
 (or Q3

224
) would 

be 2 because there are two 3→2 connections. 

 The value of (4, 3)3
1
, which corresponds to the microstate S3

1
 (or Q3

444
) would 

be -3 because there are three 3→4 connections; and the negative sign implies 

the reversal of the originating direction. 

 The value of (4, 3)3
20

, which corresponds to the microstate S3
20

 (or Q3
111

) would 

be 0 because of the non-existence of any 4→3 connections. 

All the values of the coefficients (i, j)n
m
 are presented in the Table 3.6.1. 

Basically, Eq. (3.6-4) and Eq. (3.6-5) represent constraints corresponding to chemical 
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composition and network connectivity, respectively. The entropy generated by a given 

distribution of Sn
m
 microstates is given by, 

 𝑆 = −𝑘𝐵∑[𝑃𝑛
𝑚 ln 𝑃𝑛

𝑚]

𝑛,𝑚

 
Eq. (3.6-6) 

Where, kB is the Boltzmann constant. Maximizing Eq. (3.6-6) by subjecting to the 

constraints Eq. (3.6-2) to Eq. (3.6-5) using the method of Lagrange multipliers would 

yield (Section 3.6.4.2), 

 𝑃𝑛
𝑚 =

1

𝑍𝑔𝑟
𝑒
∑ (𝑖,𝑗)𝑛

𝑚 𝜇𝑖𝑗𝑖≥𝑗 +𝑛 𝜇−𝐸𝑛
𝑚

𝑘𝐵𝑇  Eq. (3.6-7) 

Where, μ and μij are the chemical potentials associated to the exchange of network 

modifiers (R
+
 or Ŕ

2+
) and network connections respectively, T is the temperature and Zgr 

is the grand canonical partition function given by, 

 𝑍𝑔𝑟 =∑𝑒
∑ (𝑖,𝑗)𝑛

𝑚 𝜇𝑖𝑗𝑖≥𝑗 +𝑛 𝜇−𝐸𝑛
𝑚

𝑘𝐵𝑇

𝑛,𝑚

 Eq. (3.6-8) 

3.6.2.3 Energy consideration and quantization 

The energy associated with a given Sn
m
 microstate would be vibrational energy.

248
 

The frequencies of the vibrational normal modes associated to a particular Sn
m
 

microstate could be obtained by appropriately choosing the interatomic potentials 

derived from quantum mechanical calculations and then solving the characteristic 

equation. If each Sn
m
 microstate has Nn

m
 number of normal modes associated to it, 

labelled by ν ∈ {[1, Nn
m
] ∩ ℕ}, then a given Sn

m
 unit can be considered to be an Nn

m
 

dimensional quantum harmonic oscillator. Consequently, we can represent the 

vibrational state of the Sn
m
 unit existing in some stationary state by a state 

vector |𝑆𝑛
𝑚(𝒌𝒏

𝒎)〉 where, kn
m

 is vector ∈ ℤ𝑁𝑛
𝑚

 in positive orthant subspace; the meaning 

of which would be apparent subsequently. When the Hamiltonian (𝐻̂) acts on the state 

vector |𝑆𝑛
𝑚(𝒌𝒏

𝒎)〉, it would yield, 

 𝐻̂ |𝑆𝑛
𝑚(𝒌)〉 = [∑(

1

2
+ 𝑘𝑛

𝑚(𝜈))ℏ𝜔𝑛
𝑚(𝜈)

𝑁𝑛
𝑚

𝜈=1

] |𝑆𝑛
𝑚(𝒌𝒏

𝒎)〉 Eq. (3.6-9) 
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Where, ℏ is the Dirac constant, kn
m
(ν) ∈ ℕ and ωn

m 
(ν) are quantum numbers and 

the angular frequency associated to the ν
th

 mode of the quantum harmonic oscillator. 

Here, the vector kn
m

 corresponds to a set of quantum numbers associated to all the 

normal modes (k(1), k(2), …  k(Nn
m
)). In the quantum mechanical framework, the 

statistical probability is given by the density operator (𝜌̂), which is based on Eq. (3.6-7) 

and would take the form, 

 𝜌̂ =
1

𝑍𝑔𝑟
𝑒

∑ 𝐼𝐽̂ 𝜇𝑖𝑗
𝐼≥𝐽

+𝑛̂ 𝜇−𝐻̂

𝑘𝐵𝑇  Eq. (3.6-10) 

Here, two new operators 𝐼𝐽̂ and 𝑛̂ are introduced; they act on the state vector |𝑆𝑛
𝑚〉 

and give Eigen values (i, j)n
m
 and n respectively. Both, 𝐼𝐽̂ and 𝑛̂ operators commutate 

with the Hamiltonian. Further, the partition function Zgr is given by, 

 𝑍𝑔𝑟 = 𝑇𝑟(𝑒

∑ 𝐼𝐽̂ 𝜇𝑖𝑗
𝐼≥𝐽

+𝑛̂ 𝜇−𝐻̂

𝑘𝐵𝑇 ) Eq. (3.6-11) 

Where Tr is the trace class. When 𝜌̂  acts on the state vector |𝑆𝑛
𝑚〉, gives the 

probability Pn
m
. 

 

𝜌̂ |𝑆𝑛
𝑚(𝒌)〉 =

1

𝑍𝑔𝑟
𝑒

∑ 𝐼𝐽̂ 𝜇𝑖𝑗
𝐼≥𝐽

+𝑛̂ 𝜇−𝐻̂

𝑘𝐵𝑇   |𝑆𝑛
𝑚(𝒌𝒏

𝒎)〉 

=
1

𝑍𝑔𝑟
𝑒

∑ (𝑖,𝑗)𝑛
𝑚 𝜇𝑖𝑗

𝑖≥𝑗
+𝑛 𝜇−∑ (

1
2
+𝑘𝑛

𝑚(𝜈))ℏ𝜔𝑛
𝑚(𝜈)

𝑁𝑛
𝑚

𝜈=1
𝑘𝐵𝑇   |𝑆𝑛

𝑚(𝒌𝒏
𝒎)〉 

Eq. (3.6-12) 

The partition function can be evaluated as, 

 

𝑍𝑔𝑟 =∑∑𝑒

∑ (𝑖,𝑗)𝑛
𝑚 𝜇𝑖𝑗

𝑖≥𝑗
+𝑛 𝜇−∑ (

1
2
+𝑘𝑛

𝑚(𝜈))ℏ𝜔𝑛
𝑚(𝜈)

𝑁𝑛
𝑚

𝜈=1
𝑘𝐵𝑇

𝒌𝒏
𝒎𝑛,𝑚

  

= ∑∑𝑒

∑ (𝑖,𝑗)𝑛
𝑚 𝜇𝑖𝑗

𝑖≥𝑗
+𝑛 𝜇

𝑘𝐵𝑇  𝑒

−∑ (
1
2
+𝑘𝑛

𝑚(𝜈))ℏ𝜔𝑛
𝑚(𝜈)

𝑁𝑛
𝑚

𝜈=1
𝑘𝐵𝑇

𝒌𝒏
𝒎𝑛,𝑚

 

Eq. (3.6-13) 
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=∑𝑒

∑ (𝑖,𝑗)𝑛
𝑚 𝜇𝑖𝑗

𝑖≥𝑗
+𝑛 𝜇

𝑘𝐵𝑇  ∏(
1

2 sinh (
ℏ𝜔𝑛

𝑚(𝜈)
2𝑘𝐵𝑇

)
)

𝑁𝑛
𝑚

𝜈=1𝑛,𝑚

 

 

=∑𝑒

∑ (𝑖,𝑗)𝑛
𝑚 𝜇𝑖𝑗

𝑖≥𝑗
+𝑛 𝜇

𝑘𝐵𝑇   𝑍𝑛
𝑚

𝑛,𝑚

 

Where, Zn
m
 is the canonical partition function associated to a given Sn

m
 microstate. 

It can also be written in terms Helmholtz free energy (Fn
m
) of the quantum harmonic 

oscillator as, 

 𝑍𝑛
𝑚 = 𝑒

−
𝐹𝑛
𝑚

𝑘𝐵𝑇 Eq. (3.6-14) 

Therefore, the probability distribution of Sn
m
 microstates is given by, 

 𝑃𝑛
𝑚 =

1

𝑍𝑔𝑟
𝑒

∑ (𝑖,𝑗)𝑛
𝑚 𝜇𝑖𝑗

𝑖≥𝑗
+𝑛 𝜇−𝐹𝑛

𝑚

𝑘𝐵𝑇  Eq. (3.6-15) 

Comparing Eq. (3.6-15) and Eq. (3.6-7), it can be noticed that, by using the semi 

quantum mechanical approach, En
m
 is changed to Fn

m
. 

3.6.2.4 Ensemble averages 

The ensemble averages for energy (〈𝐸〉), entropy (S) and composition (〈𝑁𝐵𝑂〉) are 

related to the grand partition function by, 

 〈𝐸〉 = −𝑘𝐵𝑇 ln 𝑍𝑔𝑟 + 𝑇𝑆 + 〈𝑁〉𝜇 Eq. (3.6-16) 

The entropy of the liquid is split into configurational and vibrational contributions 

given, 

 𝑆 = −𝑘𝐵∑𝑃𝑛
𝑚 𝑙𝑛 𝑃𝑛

𝑚

𝑛,𝑚

+∑𝑃𝑛
𝑚𝑆𝑛

𝑚

𝑛,𝑚

= 𝑆𝑐𝑜𝑛𝑓 + 𝑆𝑣𝑖𝑏 
Eq. (3.6-17) 

The derivations for Eq. (3.6-16) and Eq. (3.6-17) are presented in section 3.6.4.3. The 

vibrational energy and entropy of a Sn
m
 microstate is given by,

249
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𝐸𝑛
𝑚 =∑ℏ𝜔𝑛

𝑚(𝜈) [
1

2
+

1

𝑒
ℏ𝜔𝑛

𝑚(𝜈)
𝑘𝐵𝑇 − 1

]

𝑁𝑛
𝑚

𝜈=1

 

𝑆𝑛
𝑚 =

𝐸𝑛
𝑚 − 𝐹𝑛

𝑚

𝑇
 

Eq. (3.6-18) 

And, the chemical composition of the glass (from Eq. (3.6-4)) is given by, 

 𝑅2𝑂 𝑜𝑟 𝑅𝑂 (%) =
〈𝑥〉

1 + 〈𝑥〉
=
4 − 〈𝑁𝐵𝑂〉

6 − 〈𝑁𝐵𝑂〉
 

Eq. (3.6-19) 

 𝑆𝑖𝑂2(%) =
1

1 + 〈𝑥〉
=

2

6 − 〈𝑁𝐵𝑂〉
 

3.6.3 Discussion 

3.6.3.1 Generalization of the model 

The current model describes probability distribution of silicate units in a binary 

alkali or alkaline earth silicate glasses where, each microstate assumes a single 

structural configuration. However, the model can be further extended to take into 

account all structural configurations by labeling a microstate as Sn
m 

(Φ, Ω). Where, Φ 

accounts for the complete internal structure of the silicate unit, encompassing all the 

vectors from φ1 to φ4 ∈ ℝ3
 as shown in Figure 3.6.1. While Ω takes into account how 

the neighboring units are connected to a given unit, encompassing all the vectors from 

ω1 to ω4 ∈ ℝ3
 (Figure 3.6.1). Together, Φ and Ω consider all variations in the bond 

lengths and bond angles that are associated to a given silicate unit, acknowledging all 

possible structural configurations. Though, n and m have a discrete probability 

distribution, Φ and Ω could assume a continuous probability distribution. In this case, 

Eq. (3.6-2) to Eq. (3.6-4) change to, 

 ∬∑𝑃𝑛
𝑚(𝜱,𝜴)

𝑛,𝑚

𝑑𝜱𝑑 𝜴

 

𝜱,𝜴

= 1 
Eq.(3.6-20) 

 ∬∑𝐸𝑛
𝑚(𝜱,𝜴)𝑃𝑛

𝑚(𝜱,𝜴)

𝑛,𝑚

𝑑𝜱𝑑 𝜴

 

𝜱,𝜴

= 〈𝐸〉 
Eq. (3.6-21) 
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 ∬∑𝑛𝑃𝑛
𝑚(𝜱,𝜴)

𝑛,𝑚

𝑑𝜱𝑑 𝜴

 

𝜱,𝜴

= 〈𝑁𝐵𝑂〉 Eq. (3.6-22) 

 

Figure 3.6.1 Examples of silicate units and basis vectors corresponding to Φ and Ω. 

In the model derived in Section 3.6.2, Φ = ΦT where, ΦT is the associated vector 

to a silicate tetrahedron; and Ω would assume some expected value with some variance. 

Then, integrating Pn
m
 (ΦT, Ω) over the entire space of Ω would yield the value for Pn

m
 

as shown in Eq. (3.6-23). 

 𝑃𝑛 =∑𝑃𝑛
𝑚

𝑚

=∑ ∬𝑃𝑛
𝑚(𝜱𝑻, 𝜴)𝑑𝜱𝑑 𝜴

 

𝜱,𝜴𝑚

 
Eq. (3.6-23) 

It is also possible that Φ and Ω take discrete values in the case when structural 

units are confined to local minima. Consequently, the integrals over Φ and Ω 

(Eq.(3.6-20) to Eq. (3.6-22)) would be replaced with summation over all the states of 

local minima. When multi-component silicate liquid compositions are used, if the added 

components are network formers (e.g. Al2O3 or B2O3 added to silicates), then they could 

be modelled as additional network units. If units are considered to be atoms of different 

kind, then one can ignore the internal structure of the unit by dropping off n and Φ. In 

this case the model could be applicable to metallic glasses. For other oxide glasses such 
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as borate and phosphate systems, similarly, appropriate internal structures and external 

correlations should be chosen. 

3.6.3.2 LLPS and crystallization  

The introduction of Sn
m
 (or Qn

ij…
) notation as opposed to previous Qn notation is 

essential for answering questions concerning LLPS and crystallization. Because of this 

new notation, which takes into consideration the type of units that surround a given unit, 

the mixing of different units is automatically considered. Consequently, by obtaining 

probability distribution of Sn
m
 units in a given composition by the current model, the 

amount of LLPS could be calculated. This idea has been experimentally tested using the 

double quantum (DQ) NMR spectroscopy technique where, the probability distribution 

of Qn
ij…

 units was measured and the amount of LLPS was estimated.
168,246

  

Concerning crystallization, if a particular set of units, which correspond to a set of 

points in the nm‒plane (Figure 3.6.4a), undergo crystallization, then the probability 

distribution Pn
m 

(Φ, Ω), for each Sn
m 

(Φ, Ω) microstate in ΦΩ‒space, will be sharply 

peaked, and given by Dirac delta function as, 

 𝑃𝑛
𝑚(𝛷, 𝛺) = 𝛿(𝛷 − 𝛷′)  𝛿(𝛺 − 𝛺′) Eq. (3.6-24) 

Where, Φ’ and Ω’ are constants corresponding to a particular crystal structure. 

Therefore, crystallization (or crystal nucleation) of a particular set of Sn
m
 units in a 

supercooled liquid corresponds to: a collection of Sn
m 

units and sharpening of the Pn
m 

(Φ, Ω) peak in ΦΩ‒space.  

In the glass forming liquids, the time scales required to access the crystalline 

states are large. Therefore, these states can be eliminated by assuming some broad 

distribution of probabilities in ΦΩ‒space for a given Sn
m 

unit. This subject of LLPS and 

crystallization within the framework of the current model will be expounded in a 

subsequent paper. 

3.6.3.3 Structural relaxation 

In last two decades, huge advances have been made in the understanding of the 

nature of glass and structural relaxation using the potential energy landscape (PEL) 

approach.
31,39,250,251

 PEL approach uses a canonical ensemble of various structural 

configurations of large number of atoms. Our present model is fundamentally different; 
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where it employs a grand canonical ensemble of structural units that build the glass 

network and exchange network modifiers and energy from the reservoir. However, the 

problem of relaxation can be addressed in a similar way as in PEL approach using the 

concept of continuously broken ergodicity (CBE) as proposed by Mauro et al.
38

 Here, 

we consider conditional probabilities fI,J(t), which correspond to a system occupying a 

microstate J after starting in a known state I with subsequent evolution of time t; 

accounting for the actual transition rates between different states. The conditional 

probabilities would satisfy: 

 ∑𝑓𝐼,𝐽(𝑡)

𝐽

= 1 
Eq. (3.6-25) 

Where I and J are different Sn
m
 (Φ, Ω) microstates. In the limit of zero and infinite 

time evolution, the conditional probabilities reduce to Kronecker delta function (δI,J) 

and equilibrium probabilities  respectively, given by, 

 lim
𝑡→0

𝑓𝐼,𝐽(𝑡) = 𝛿𝐼,𝐽 Eq. (3.6-26) 

 lim
𝑡→∞

𝑓𝐼,𝐽(𝑡) = 𝑃𝐽 Eq. (3.6-27) 

The conditional entropy is given by, 

 𝑆𝐽(𝑡) = −𝑘𝐵∑𝑓𝐼,𝐽(𝑡) ln 𝑓𝐼,𝐽(𝑡)

𝐽

 
Eq.(3.6-28) 

The time evolution of the expected value of the configurational is calculated by, 

 〈𝑆(𝑡)〉 =∑𝑃𝐼𝑆𝐽(𝑡)

𝐼

 
Eq. (3.6-29) 

The time dependent conditional probabilities fI,J(t) can be obtained by solving 

hierarchical master equations (Eq.(3.6-30)). 

 

𝑑𝑓𝐼,𝐽(𝑡)

𝑑𝑡
= ∑𝑊𝐾→𝐽(𝑇(𝑡))𝑓𝐼,𝐾(𝑡)

𝐾≠𝐽

−∑𝑊𝐽→𝐾(𝑇(𝑡))𝑓𝐼,𝐽(𝑡)

𝐾≠𝐽

 

Eq.(3.6-30) 
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Where, WK→J and WJ→K are the associated reaction rate constants. After a time 

evolution t, the probability of the state J is given by, 

 𝑃𝐽(𝑡) =∑𝑃𝐼 𝑓𝐼,𝐽(𝑡)

𝐼

 
Eq. (3.6-31) 

The relaxation takes place over the entire phase space Γs subjected to available 

thermal energy and observational time (τobs). Here we report structural relaxation in a 

lithium silicate glass from the perspective of the current model using NMR 

spectroscopy. Figure 3.6.2 shows 1D-NMR spectra of a binary lithium silicate glass of 

composition 28% Li2O - 72% SiO2 (in moles). One spectrum was recorded on the glass 

directly quenched from the melt and the other was recorded on the glass quenched and 

then annealed at 460 ºC for 75 hours. The two spectra show clear differences indicating 

the structural relaxation. The details of the experimental procedure can be found in the 

appendix (Section 3.6.4.4).  

 

Figure 3.6.2 NMR spectra of annealed and non-annealed (as quenched) 28Li2O-72SiO2 glass, 

showing structural relaxation. Asterisks indicate spinning side bands. 

3.6.3.4 Test of the model 

In this section we show how the proposed model can be used in studying silicate 

based glasses (or liquids) in conjunction with NMR spectroscopy by using an example. 

The purpose of this section is for the illustration of the usefulness and applicability of 

the current model. 

The chemical shielding on a particular 
29

Si nucleus depends on the chemical 

environment around that nucleus. Therefore the 
29

Si isotropic chemical shift (δiso) of 

-180-160-140-120-100-80-60-40-200
29Si Chemical Shift (ppm)

Non-annealed

Annealed

* *
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nucleus would be function of all the structural parameters n, m, Φ and Ω: δiso(n, m, Φ, 

Ω). Since Φ and Ω have variance with some expected value, δiso also would have 

corresponding variance (σ
2
) and an expected value, 〈δiso〉. The variance is given by,

252
 

 𝜎(𝑛,𝑚)2 = 〈𝛿𝑖𝑠𝑜(𝑛,𝑚)
2〉 − 〈𝛿𝑖𝑠𝑜(𝑛,𝑚)〉

2 Eq. (3.6-32) 

We can assume that the variation in δiso for a given Sn
m
 unit approximated to a 

normal distribution (Figure 3.6.3, Variance in Sn
m

). This would be a component of the 

spectrum associated to a particular Sn
m
 unit; and the spectrum of the whole sample, a 

sum of individual components (Eq. (3.6-33)), is shown in Figure 3.6.3. This spectrum 

corresponds to a hypothetical composition with 28 % R2O and is generated by 

calculating the probabilities Pn
m
 in Eq. (3.6-15) by assuming some realistic values of 

Fn
m
, δiso(n, m) and σ(n, m) (the procedure is presented in section 3.6.4.5). Then the 

intensity I (δiso) of the NMR spectrum is given by, 

 𝐼(𝛿𝑖𝑠𝑜) ∝∑
𝑃𝑛
𝑚

𝜎(𝑛,𝑚)√2𝜋
𝑒
−
(𝛿𝑖𝑠𝑜−〈𝛿𝑖𝑠𝑜(𝑛,𝑚)〉)

2

2𝜎(𝑛,𝑚)2

𝑛,𝑚

 Eq. (3.6-33) 

 

Figure 3.6.3 Simulated NMR spectrum of a hypothetical composition using the current model. 

This way, using the current model, NMR spectrum of a given sample could be 

theoretically computed. Further, using the probability distribution, properties of the 

liquids can be computed. The variation of properties with temperature for specific heat, 

entropy and molar volume are presented in supplementary data (Section 3.6.4.6). In 

-140-130-120-110-100-90-80-70-60-50

Chemical Shift, δiso (ppm)

Chemical shift (δiso)

Sn
m

Variance in Sn
m

Spectrum

Qn

Sn
m

n = 2

n = 3

n = 4

28% R2O

T =733 K
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order to show relaxation behavior of silicate units of this hypothetical composition, we 

used a relatively simple concept called broken ergodicity (BE) proposed by Palmer
37

 as 

opposed to CBE discussed in the previous section. In BE, we divide the phase space Γs 

into set of non-ergodic disjoint components where, within each component internal 

ergodicity still exists. In this present example, we divided the phase space (nm‒plane, 

Figure 3.6.4a) into three components: (a) Γ1 = {S4
1
}, (b) Γ2 = {S4

2
, S3

1
} and (c) Γ3 = Γs 

∩ {S4
1
, S4

2
, S3

1
}. The reason for selecting these components is because, the structural 

units belonging to Γ1 and Γ2 exist in highly polymerized network, and therefore they 

wouldn’t have sufficient time to maintain the ergodicity during the fast quenching of the 

melt. By enforcing BE, probability distribution at some observational time (τobs) is 

obtained (Figure 3.6.4a). The NMR spectra in Figure 3.6.4b are generated by, 

1. Probability distribution at high temperature (1600 K) was obtained (which 

corresponds to t = 0). 

2. Then under the BE condition, new probability distribution at 775 K was obtained 

(which corresponds to t = τobs). 

3. Probability distribution without BE condition would yield equilibrium probability at 

775 K (corresponds to t = ∞). 

 

Figure 3.6.4 (a) Phase space in n and m showing the gradient of polymerization: decreasing 

from dark to light. (b) Relaxation of silicate structural units with time. 

The relaxation behavior simulated in Figure 3.6.4b shows characteristics similar 

to the experimental observations shown in Figure 3.6.2. Therefore, the as quenched 

glass without annealing contains a lot of memory effects which can be probed by NMR 

spectroscopy. This behavior needs to be evaluated for multiple compositions in future 

0
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studies. Using the same vibrational frequencies, the variation of probability distribution 

with composition is plotted in Figure 3.6.5. 

 

Figure 3.6.5 Variation of probability distribution with composition at 800 K. Dots represent the 

simulated data points and the lines are just connecting the points to guide the eyes. 

3.6.4 Appendix 

3.6.4.1 Network connectivity constraints 

In a given glass composition, BOs characterized by Oij must be conserved. 

Therefore Eq. (3.6-34) to Eq.(3.6-43) corresponding to 10 different Oij oxygens must 

hold. Where, p4
ijkl

, p3
ijk

, p2
ij
 and p1

i
, are the probabilities (notice lower case ‘p’ as 

opposed to upper case ‘P’ in S notation) associated with Q4
ijkl

, Q3
ijk

, Q2
ij
 and Q1

i
, units. 

The Q notation is employed here because it is easier to see the connection between right 

and left hand sides of the equations. 

O11: 𝑝1
1 = 𝑝1

1 Eq. (3.6-34) 

O12: 𝑝1
2 =∑𝑝2

1𝑗

𝑗≠1

+ 2𝑝2
11 

Eq. (3.6-35) 

O13:  

𝑝1
3 = ∑ 𝑝3

1𝑗𝑘

𝑗,𝑘≠1

+ 2∑𝑝3
11𝑘

𝑘≠1

+ 3𝑝3
111 Eq. (3.6-36) 
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O14: 𝑝1
4 = ∑ 𝑝4

1𝑗𝑘𝑙

𝑗,𝑘,𝑙≠1

+ 2 ∑ 𝑝4
11𝑘𝑙

𝑘,𝑙≠1

+ 3∑𝑝4
111𝑙

𝑙≠1

+ 4𝑝4
1111 

Eq. (3.6-37) 

O22: ∑𝑝2
2𝑗

𝑗≠2

+ 2𝑝2
22 =∑𝑝2

2𝑗

𝑗≠2

+ 2𝑝2
22 

Eq. (3.6-38) 

O23: ∑𝑝2
3𝑗

𝑗≠3

+ 2𝑝2
33 = ∑ 𝑝3

2𝑗𝑘

𝑗,𝑘≠2

+ 2∑𝑝3
22𝑘

𝑘≠2

+ 3𝑝3
222 

Eq. (3.6-39) 

O24: ∑𝑝2
4𝑗

𝑗≠4

+ 2𝑝2
44 = ∑ 𝑝4

2𝑗𝑘𝑙

𝑗,𝑘,𝑙≠2

+ 2 ∑ 𝑝4
22𝑘𝑙

𝑘,𝑙≠2

+ 3∑𝑝4
222𝑙

𝑙≠2

+ 4𝑝4
2222 

Eq.(3.6-40) 

O33: ∑ 𝑝3
3𝑗𝑘

𝑗,𝑘≠3

+ 2∑𝑝3
33𝑘

𝑘≠3

+ 3𝑝3
333 = ∑ 𝑝3

3𝑗𝑘

𝑗,𝑘≠3

+ 2∑𝑝3
33𝑘

𝑘≠3

+ 3𝑝3
333 

Eq.(3.6-41) 

O34: ∑ 𝑝3
4𝑗𝑘

𝑗,𝑘≠4

+ 2∑𝑝3
44𝑘

𝑘≠4

+ 3𝑝3
444

= ∑ 𝑝4
3𝑗𝑘𝑙

𝑗,𝑘,𝑙≠4

+ 2 ∑ 𝑝4
33𝑘𝑙

𝑘,𝑙≠4

+ 3∑𝑝4
333𝑙

𝑙≠4

+ 4𝑝4
3333 

Eq. (3.6-42) 

O44: ∑ 𝑝4
4𝑗𝑘𝑙

𝑗,𝑘,𝑙≠4

+ 2 ∑ 𝑝4
44𝑘𝑙

𝑘,𝑙≠4

+ 3∑𝑝4
444𝑙

𝑙≠4

+ 4𝑝4
4444

= ∑ 𝑝4
4𝑗𝑘𝑙

𝑗,𝑘,𝑙≠4

+ 2 ∑ 𝑝4
44𝑘𝑙

𝑘,𝑙≠4

+ 3∑𝑝4
444𝑙

𝑙≠4

+ 4𝑝4
4444 

Eq.(3.6-43) 

Eq. (3.6-34) to Eq.(3.6-43) can be represented as follows, 

 ∑(𝑖, 𝑗)𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 𝑘𝑖𝑗 Eq. (3.6-44) 

The coefficients (i, j)n
m
 are constants associated to each equation representing a 

given Oij BO. Further, according to Eq. (3.6-34) to Eq.(3.6-43) the values of (i, j)n
m
 = 0 

∀ i = j; and kij = 0 ∀ i, j. The values of the constants are presented in the Table 3.6.1. 

3.6.4.2 Derivation for the probabilities Pn
m

 

The solution given by Eq. (3.6-7) is obtained from the Lagrange function 𝓛 (Pn
m
) 

with the Lagrange multipliers α, β and γ given by 
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ℒ(𝑃𝑛
𝑚) = 𝑘𝐵∑(𝑃𝑛

𝑚 ln 𝑃𝑛
𝑚)

𝑛,𝑚

+ 𝛼 [∑𝑃𝑛
𝑚

𝑛,𝑚

− 1] + 𝛽 [∑𝐸𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

− 〈𝐸〉]

+ 𝛾 [∑𝑛𝑃𝑛
𝑚

𝑛,𝑚

− 2〈𝑁𝐵𝑂〉] +∑𝛾𝑖𝑗 [∑(𝑖, 𝑗)𝑛
𝑚𝑃𝑛

𝑚 − 𝑘𝑖𝑗
𝑛,𝑚

]

𝑖,𝑗

 

Eq. (3.6-45) 

Differentiating 𝓛 (Pn
m
) with respect to Pn

m
 would equal zero, 

𝜕ℒ(𝑃𝑛
𝑚)

𝜕𝑃𝑛
𝑚 = 𝑘𝐵(1 + ln 𝑃𝑛

𝑚) + 𝛼 + 𝛽𝐸𝑛
𝑚 + 𝛾𝑛 +∑𝛾𝑖𝑗(𝑖, 𝑗)𝑛

𝑚

𝑖,𝑗

= 0  

Rearranging, 

ln 𝑃𝑛
𝑚 = − ln 𝑍𝑔𝑟 −

𝛽𝐸𝑛
𝑚

𝑘𝐵
−
𝑛𝛾

𝑘𝐵
−
∑ (𝑖, 𝑗)𝑛

𝑚𝛾𝑖𝑗𝑖,𝑗

𝑘𝐵
 Eq. (3.6-46) 

Where, ln 𝑍𝑔𝑟 =
(𝛼+𝑘𝐵)

𝑘𝐵
 and substituting Eq. (3.6-46) in Eq. (3.6-7) 

𝑆 = −𝑘𝐵∑(−𝑃𝑛
𝑚ln 𝑍𝑔𝑟 − 𝑃𝑛

𝑚
𝛽𝐸𝑛

𝑚

𝑘𝐵
− 𝑃𝑛

𝑚
𝑛𝛾

𝑘𝐵
− 𝑃𝑛

𝑚
∑ 𝛾𝑖𝑗(𝑖, 𝑗)𝑛

𝑚
𝑖,𝑗

𝑘𝐵
)

𝑛,𝑚

  

Solving the above equation using the Eq. (3.6-2) to Eq. (3.6-5) gives, 

𝑆 = 𝑘𝐵ln 𝑍𝑔𝑟 + 𝛽〈𝐸〉 + 2𝛾〈𝑁𝐵𝑂〉 +∑𝛾𝑖𝑗𝑘𝑖𝑗
𝑖,𝑗

  

Rearranging, 

〈𝐸〉 =
1

𝛽
𝑆 −

𝑘𝐵
𝛽
ln𝑍𝑔𝑟 −

𝛾

𝛽
(2〈𝑁𝐵𝑂〉) −∑

𝛾𝑖𝑗

𝛽
𝑘𝑖𝑗

𝑖,𝑗

  

Differentiating, 

𝑑〈𝐸〉 =
1

𝛽
𝑑𝑆 −

𝑘𝐵
𝛽
𝑑 ln𝑍𝑔𝑟 −

𝛾

𝛽
𝑑(2〈𝑁𝐵𝑂〉) −∑

𝛾𝑖𝑗

𝛽
𝑑𝑘𝑖𝑗

𝑖,𝑗

  

Comparing the above equation with the fundamental thermodynamic relation 

shown in Eq. (3.6-47),
42
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𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 +∑𝜇𝑖𝑑𝑛𝑖 Eq. (3.6-47) 

Would yield,  

𝛽 =
1

𝑇
 Eq. (3.6-48) 

𝛾 = −
𝜇

𝑇
 Eq. (3.6-49) 

𝛾𝑖𝑗 = −
𝜇𝑖𝑗

𝑇
 Eq. (3.6-50) 

Therefore, substituting Eq. (3.6-47) to Eq. (3.6-50) into Eq. (3.6-46) and 

rearranging gives, 

𝑃𝑛
𝑚 =

1

𝑍𝑔𝑟
𝑒
∑ (𝑖,𝑗)𝑛

𝑚 𝜇𝑖𝑗𝑖,𝑗 +𝑛 𝜇−𝐸𝑛
𝑚

𝑘𝐵𝑇  Eq. (3.6-51) 

3.6.4.3 Entropy of the liquid 

The entropy of the liquid is given by, 

𝑆 = −𝑘𝐵 ∑ 𝑃𝑛
𝑚(𝒌) ln 𝑃𝑛

𝑚(𝒌)

𝑛,𝑚,𝒌

 
Eq. (3.6-52) 

 

𝑆 = −𝑘𝐵 ∑ 𝑃𝑛
𝑚(𝒌) [− ln𝑍𝑔𝑟 +

∑ (𝑖, 𝑗)𝑛
𝑚 𝜇𝑖𝑗𝑖≥𝑗

𝑘𝐵𝑇
+
𝑛 𝜇

𝑘𝐵𝑇
𝑛,𝑚,𝒌

−∑(
1

2
+ 𝑘(𝜈))

ℏ𝜔𝑛
𝑚(𝜈)

𝑘𝐵𝑇

 𝑁𝑛
𝑚

𝜈=1

] 

 

𝑆 = 𝑘𝐵 ln 𝑍𝑔𝑟 −
〈𝑁𝐵𝑂〉 𝜇

𝑇
+ ∑ 𝑃𝑛

𝑚(𝒌)∑(
1

2
+ 𝑘(𝜈))

ℏ𝜔𝑛
𝑚(𝜈)

𝑇

𝑁𝑛
𝑚 

𝜈=1𝑛,𝑚,𝒌

  

𝑆 = 𝑘𝐵 ln 𝑍𝑔𝑟 −
〈𝑁𝐵𝑂〉 𝜇

𝑇
+∑𝑃𝑛

𝑚∑
ℏ𝜔𝑛

𝑚(𝜈)

𝑇
[
1

2
+

1

𝑒
ℏ𝜔𝑛

𝑚(𝜈)
𝑘𝐵𝑇 − 1

]

 𝑁𝑛
𝑚

𝜈=1𝑛,𝑚
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𝑆 = 𝑘𝐵 ln 𝑍𝑔𝑟 −
〈𝑁𝐵𝑂〉 𝜇

𝑇
+∑

𝑃𝑛
𝑚𝐸𝑛

𝑚

𝑇
𝑛,𝑚

  

𝑆 = 𝑘𝐵 ln 𝑍𝑔𝑟 −
〈𝑁𝐵𝑂〉 𝜇

𝑇
+
〈𝐸〉

𝑇
  

Further, the entropy can be split into configurational and vibrational parts, 

𝑆 = 𝑘𝐵 𝑙𝑛 𝑍𝑔𝑟 −
〈𝑁𝐵𝑂〉 𝜇

𝑇
+∑

𝑃𝑛
𝑚𝐸𝑛

𝑚

𝑇
𝑛,𝑚

  

𝑆 = 𝑘𝐵 𝑙𝑛 𝑍𝑔𝑟 −
〈𝑁𝐵𝑂〉 𝜇

𝑇
+∑

𝑃𝑛
𝑚(𝐹𝑛

𝑚 + 𝑇𝑆𝑛
𝑚)

𝑇
𝑛,𝑚

  

𝑆 =∑𝑃𝑛
𝑚 [𝑘𝐵 ln 𝑍𝑔𝑟 −

∑ (𝑖, 𝑗)𝑛
𝑚 𝜇𝑖𝑗𝑖≥𝑗

𝑇
−
𝑛 𝜇

𝑇
+
𝐹𝑛
𝑚

𝑇
+ 𝑆𝑛

𝑚]

𝑛,𝑚

  

𝑆 = −𝑘𝐵∑𝑃𝑛
𝑚 [ln 𝑍𝑔𝑟 +

∑ (𝑖, 𝑗)𝑛
𝑚 𝜇𝑖𝑗𝑖≥𝑗

𝑘𝐵𝑇
+
𝑛 𝜇

𝑘𝐵𝑇
−
𝐹𝑛
𝑚

𝑘𝐵𝑇
]

𝑛,𝑚

+∑𝑃𝑛
𝑚𝑆𝑛

𝑚

𝑛,𝑚

  

𝑆 = −𝑘𝐵∑𝑃𝑛
𝑚 ln 𝑃𝑛

𝑚

𝑛,𝑚

+∑𝑃𝑛
𝑚𝑆𝑛

𝑚

𝑛,𝑚

  

𝑆 = 𝑆𝑐𝑜𝑛𝑓 + 𝑆𝑣𝑖𝑏 Eq. (3.6-53) 

3.6.4.4 Experimental procedure 

For the preparation of the glass, SiO2 and Li2CO3 with purity > 99% were 

weighed in required amounts, and mixed by ball milling then calcined at 800 ºC in 

alumina crucibles for 1 h in air. The calcined powder was crushed in a mortar and 

transferred to a Pt crucible for melting at a temperature of 1550 ºC for 1 h in air. Bulk 

(monolithic) bar shaped glasses were prepared by pouring the melt on a bronze mold. 

One sample was annealed at 460 ºC for 75 h. X-ray diffraction analysis (not shown) 

confirmed that the samples were fully amorphous. 

29
Si MAS-NMR spectra were recorded on both annealed and non-annealed glass 

samples crushed into fine powders. The NMR spectrometer (BRUKER Avance III) was 

operated at a Larmor frequency of 79.5 MHz with a 9.4 T magnetic field, using a 7 mm 

rotor rotating at 5 kHz. The samples were excited with a 90º flip angle using 900 s delay 
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time. Both spectra were obtained after Fourier Transformation of 64 scans of Free 

Induction Decays (FID). Tetramethylsilane was used as chemical shift reference at 0 

ppm. 

3.6.4.5 Details of simulation 

The NMR spectrum obtained from the annealed glass was deconvoluted using 

DMfit software
228

 for the units Q2, Q3 and Q4 using mixed Gaussian/Lorentzian line 

shapes. The amounts of the units obtained were, 6%, 66% and 28% for the units Q2, Q3 

and Q4 respectively. Using the current model, the Sn
m
 distribution was simulated by 

fitting the appropriate ωn
m
 values in order to simulate a realistic probability distribution 

that is in agreement with the experimentally measured distribution. The fitted ωn
m
 

values and the probability distributions are presented in Table 3.6.2 and Table 3.6.3 

respectively. 

Table 3.6.2 Vibrational frequencies (cm
‒1

) used for the simulation of the model. 

Sn
m
 ωn

m
(1) ωn

m
(2) ωn

m
(3) ωn

m
(4) ωn

m
(5) ωn

m
(6) ωn

m
(7) ωn

m
(8) ωn

m
(9) 

S4
1
 1190 1190 1190 990 540 540 540 330 330 

S4
2
 1200 1200 1200 1000 550 550 550 340 340 

S4
3
 1200 1200 1200 1000 550 550 550 340 340 

S4
4
 1200 1200 1200 1000 550 550 550 340 340 

S4
5
 1200 1200 1200 1000 550 550 550 340 340 

S4
6
 1200 1200 1200 1000 550 550 550 340 340 

S4
7
 1200 1200 1200 1000 550 550 550 340 340 

S4
8
 1200 1200 1200 1000 550 550 550 340 340 

S4
9
 1200 1200 1200 1000 550 550 550 340 340 

S4
10

 1200 1200 1200 1000 550 550 550 340 340 

S4
11

 1200 1200 1200 1000 550 550 550 340 340 

S4
12

 1200 1200 1200 1000 550 550 550 340 340 

S4
13

 1200 1200 1200 1000 550 550 550 340 340 

S4
14

 1200 1200 1200 1000 550 550 550 340 340 

S4
15

 1200 1200 1200 1000 550 550 550 340 340 

S4
16

 1200 1200 1200 1000 550 550 550 340 340 

S4
17

 1200 1200 1200 1000 550 550 550 340 340 

S4
18

 1200 1200 1200 1000 550 550 550 340 340 
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S4
19

 1200 1200 1200 1000 550 550 550 340 340 

S4
20

 1200 1200 1200 1000 550 550 550 340 340 

S4
21

 1200 1200 1200 1000 550 550 550 340 340 

S4
22

 1200 1200 1200 1000 550 550 550 340 340 

S4
23

 1200 1200 1200 1000 550 550 550 340 340 

S4
24

 1200 1200 1200 1000 550 550 550 340 340 

S4
25

 1200 1200 1200 1000 550 550 550 340 340 

S4
26

 1200 1200 1200 1000 550 550 550 340 340 

S4
27

 1200 1200 1200 1000 550 550 550 340 340 

S4
28

 1200 1200 1200 1000 550 550 550 340 340 

S4
29

 1200 1200 1200 1000 550 550 550 340 340 

S4
30

 1200 1200 1200 1000 550 550 550 340 340 

S4
31

 1200 1200 1200 1000 550 550 550 340 340 

S4
32

 1200 1200 1200 1000 550 550 550 340 340 

S4
33

 1200 1200 1200 1000 550 550 550 340 340 

S4
34

 1200 1200 1200 1000 550 550 550 340 340 

S4
35

 1200 1200 1200 1000 550 550 550 340 340 

S3
1
 1100 970 970 720 720 530 400 160 160 

S3
2
 1100 970 970 720 720 530 400 160 160 

S3
3
 1100 970 970 720 720 530 400 160 160 

S3
4
 1090 960 960 710 710 520 390 150 150 

S3
5
 1100 970 970 720 720 530 400 160 160 

S3
6
 1100 970 970 720 720 530 400 160 160 

S3
7
 1100 970 970 720 720 530 400 160 160 

S3
8
 1100 970 970 720 720 530 400 160 160 

S3
9
 1100 970 970 720 720 530 400 160 160 

S3
10

 1100 970 970 720 720 530 400 160 160 

S3
11

 1100 970 970 720 720 530 400 160 160 

S3
12

 1100 970 970 720 720 530 400 160 160 

S3
13

 1100 970 970 720 720 530 400 160 160 

S3
14

 1100 970 970 720 720 530 400 160 160 

S3
15

 1100 970 970 720 720 530 400 160 160 

S3
16

 1100 970 970 720 720 530 400 160 160 

S3
17

 1100 970 970 720 720 530 400 160 160 
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S3
18

 1100 970 970 720 720 530 400 160 160 

S3
19

 1100 970 970 720 720 530 400 160 160 

S3
20

 1100 970 970 720 720 530 400 160 160 

S2
1
 1070 1020 930 800 530 490 420 330 220 

S2
2
 1070 1020 930 800 530 490 420 330 220 

S2
3
 1070 1020 930 800 530 490 420 330 220 

S2
4
 1070 1020 930 800 530 490 420 330 220 

S2
5
 1070 1020 930 800 530 490 420 330 220 

S2
6
 1060 1010 920 790 520 480 410 320 210 

S2
7
 1070 1020 930 800 530 490 420 330 220 

S2
8
 1070 1020 930 800 530 490 420 330 220 

S2
9
 1070 1020 930 800 530 490 420 330 220 

S2
10

 1070 1020 930 800 530 490 420 330 220 

S1
1
 1050 1050 1000 760 760 490 410 410 300 

S1
2
 1050 1050 1000 760 760 490 410 410 300 

S1
3
 1050 1050 1000 760 760 490 410 410 300 

S1
4
 1050 1050 1000 760 760 490 410 410 300 

S0
1
 1000 1000 1000 730 730 430 400 400 400 

Table 3.6.3 Probability distributions obtained from simulation. 

Pn
m
 

 
800 K 

Equilibrium 

1600 K 

Equilibrium 

775 K 

Equilibrium 

775 K 

Broken  Ergodicity 

S4
1
 0.043886 0.058121 0.043378 0.089768 

S4
2
 0.033486 0.047046 0.032849 0.024303 

S4
3
 0.042741 0.050532 0.042276 0.032541 

S4
4
 0.054553 0.054277 0.054408 0.044558 

S4
5
 0.069630 0.058298 0.070021 0.062161 

S4
6
 0.005182 0.012706 0.004848 0.003959 

S4
7
 0.006614 0.013648 0.006239 0.005528 

S4
8
 0.008441 0.014659 0.008029 0.007833 

S4
9
 0.010774 0.015745 0.010334 0.011227 

S4
10

 0.001023 0.003686 0.000921 0.001000 
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S4
11

 0.001306 0.003959 0.001185 0.001446 

S4
12

 0.001667 0.004252 0.001525 0.002105 

S4
13

 0.000202 0.001069 0.000175 0.000274 

S4
14

 0.000258 0.001148 0.000225 0.000403 

S4
15

 0.000000 0.000003 0.000000 0.000000 

S4
16

 0.000027 0.000395 0.000022 0.000027 

S4
17

 0.000035 0.000425 0.000029 0.000040 

S4
18

 0.000044 0.000456 0.000037 0.000058 

S4
19

 0.000057 0.000490 0.000047 0.000086 

S4
20

 0.000005 0.000115 0.000004 0.000008 

S4
21

 0.000007 0.000123 0.000005 0.000011 

S4
22

 0.000009 0.000132 0.000007 0.000017 

S4
23

 0.000001 0.000033 0.000001 0.000002 

S4
24

 0.000001 0.000036 0.000001 0.000003 

S4
25

 0.000000 0.000010 0.000000 0.000001 

S4
26

 0.000000 0.000004 0.000000 0.000000 

S4
27

 0.000000 0.000004 0.000000 0.000000 

S4
28

 0.000000 0.000004 0.000000 0.000000 

S4
29

 0.000000 0.000001 0.000000 0.000000 

S4
30

 0.000000 0.000001 0.000000 0.000000 

S4
31

 0.000000 0.000000 0.000000 0.000000 

S4
32

 0.000000 0.000000 0.000000 0.000000 

S4
33

 0.000000 0.000000 0.000000 0.000000 

S4
34

 0.000000 0.000000 0.000000 0.000000 

S4
35

 0.000000 0.000000 0.000000 0.000000 

S3
1
 0.079954 0.090306 0.079263 0.062813 

S3
2
 0.102051 0.096998 0.102008 0.086767 

S3
3
 0.130255 0.104185 0.131281 0.121907 

S3
4
 0.290382 0.158398 0.299416 0.307641 

S3
5
 0.013837 0.023876 0.013164 0.013321 

S3
6
 0.017661 0.025645 0.016941 0.019147 

S3
7
 0.022542 0.027545 0.021803 0.027745 
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S3
8
 0.002395 0.006312 0.002186 0.003096 

S3
9
 0.003056 0.006780 0.002814 0.004532 

S3
10

 0.000414 0.001669 0.000363 0.000749 

S3
11

 0.000068 0.000711 0.000056 0.000091 

S3
12

 0.000087 0.000764 0.000072 0.000133 

S3
13

 0.000111 0.000821 0.000093 0.000196 

S3
14

 0.000012 0.000188 0.000009 0.000022 

S3
15

 0.000015 0.000202 0.000012 0.000033 

S3
16

 0.000002 0.000050 0.000002 0.000005 

S3
17

 0.000000 0.000006 0.000000 0.000000 

S3
18

 0.000000 0.000006 0.000000 0.000000 

S3
19

 0.000000 0.000001 0.000000 0.000000 

S3
20

 0.000000 0.000000 0.000000 0.000000 

S2
1
 0.011059 0.025301 0.010359 0.010118 

S2
2
 0.016108 0.029817 0.015246 0.016790 

S2
3
 0.023463 0.035140 0.022440 0.028198 

S2
4
 0.002184 0.007339 0.001967 0.002703 

S2
5
 0.003181 0.008650 0.002896 0.004597 

S2
6
 0.000729 0.002883 0.000641 0.001302 

S2
7
 0.000000 0.000000 0.000000 0.000000 

S2
8
 0.000000 0.000000 0.000000 0.000000 

S2
9
 0.000000 0.000000 0.000000 0.000000 

S2
10

 0.000000 0.000000 0.000000 0.000000 

S1
1
 0.000188 0.002244 0.000155 0.000254 

S1
2
 0.000294 0.002761 0.000245 0.000480 

S1
3
 0.000000 0.000000 0.000000 0.000000 

S1
4
 0.000000 0.000020 0.000000 0.000001 

S0
1
 0.000000 0.000001 0.000000 0.000000 



166 
 
 

3.6.4.6 Properties of the system 

Three properties of the system were generated by taking the glass transition to be 

at 800 K: heat capacity, entropy and molar volume (Figure 3.6.6). The molar volumes 

are calculated by the equation, 

 𝑉 =∑𝑣𝑛
𝑚(𝑇)𝑃𝑛

𝑚(𝑇)

𝑛,𝑚

 
Eq. (3.6-54) 

Where, 

 𝑣𝑛
𝑚(𝑇) = 𝛼𝑛

𝑚 + 𝛽𝑛
𝑚𝑇 

Eq. (3.6-55) 

 

And 𝛼𝑛
𝑚 and 𝛽𝑛

𝑚 take the following values, 

 αn
m

 βn
m

 

 cm
3
 cm

3
K

−1
 

S0
m

 8.29×10
−23

 8.31×10
−28

 

S1
 m

 6.90×10
−23

 6.92×10
−28

 

S2
 m

 5.94×10
−23

 5.96×10
−28

 

S3
 m

 5.08×10
−23

 5.09×10
−28

 

S4
 m

 4.40×10
−23

 4.41×10
−28

 

The molar volume is given by, 

 𝑉𝑀 = 𝑉𝑁𝐴𝑥𝑆𝑖2𝑂  

 

Figure 3.6.6 Variation of some properties with temperature according to the current model. 
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Abstract 

The current study reports on the relaxation behaviour of lithium silicate based 

glasses as probed by NMR spectroscopy. A total of four glass compositions were 

studied with the parent composition being 28Li2O‒72SiO2, and added dopants of Al and 

B. All the compositions showed significant differences in the NMR spectra of both 

annealed and non-annealed glasses demonstrating the structural relaxation behaviour. 

We extended our binary statistical mechanical model to these complex compositions in 

order to study the relaxation behaviour. By the combined use of the extended statistical 

mechanical model and broken ergodicity, we shed light on the mechanism of structural 

relaxation as understood by NMR spectroscopy. We studied the crystallization 

behaviour of the glasses and reported on the variations of the residual glass composition 

changes in the crystallization fraction. 
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3.7.1 Introduction 

Glasses are disordered materials due to the lack of periodicity in their long-range 

structures, which are formed by the cooling of molten inorganic products to a rigid 

condition without crystallization 
31,253

. From the thermodynamic point of view, glasses 

are non-equilibrium materials because their properties that are pressure, temperature and 

composition dependent 
39,254,255

 evolve as the glass continually relaxes toward its 

corresponding metastable equilibrium liquid state 
256,257

. 

Investigations into the structure−property relationships in silicate glasses are of 

great importance for understanding a broad range of magmatic processes in earth 

science and for compositional design and processing optimization of commercial 

glasses and glass-ceramics 
8,258,259

. The binary alkali and alkaline-earth silicate glasses 

have served as model systems in understanding and developing structure−property 

relationships in multicomponent silicate glasses. The structures of these binary silicate 

glasses have therefore been studied extensively in the literature over the last several 

decades, using a wide variety of spectroscopic and diffraction techniques 
258,260,261

. 
29

Si 

nuclear magnetic resonance (NMR) spectroscopy has been shown to be a unique and 

powerful tool for studying the connectivity of SiO4 tetrahedra in the structural network 

in these glasses as described by the Qn-speciation 
17,261

. In the Qn terminology Q 

represents the tetrahedral unit and n is the number of bridging oxygens (BO) atoms, i.e. 

Si−O−Si linkages, per tetrahedron 
262–264

. For silicon compounds, n varies between 0 

and 4, where Si is a central tetrahedral atom ranging from Q0, which represents 

orthosilicates SiO4
4

, Q4 (tectosilicates), Q3, Q2 and Q1 representing intermediate 

silicate structures. The Si−O−Si linkages progressively break to form non-bridging 

oxygen (NBO) upon addition of modifier alkali or alkaline-earth oxides to SiO2 such 

that Qn species are converted to Qn1 species and the network connectivity decreases.
 

11
B NMR is a useful technique in identifying the relative amounts of 4‒ and 3‒

coordinated boron labelled by the notation BIV and BIII, respectively. In glass 

compositions, both borate and silicate units undergo speciation reaction given by Eq. 

(3.7-1) and Eq. (3.7-2). 

 2𝑄𝑛 ↔ 𝑄𝑛−1 + 𝑄𝑛+1 Eq. (3.7-1) 
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𝐵𝐼𝑉 ↔ 𝐵𝐼𝐼𝐼𝑠 + 𝑁𝐵𝑂 

𝐵𝐼𝐼𝐼𝑠 + 𝑁𝐵𝑂 ↔ 𝐵𝐼𝐼𝐼𝑎 

Eq. (3.7-2) 

 

The subscripts correspond to asymmetric (a) and symmetric (s) i.e. boron with 

and without a NBO. Therefore, a given borate unit fluctuates between several structural 

states 
265

. Many researchers have dedicated their efforts on the study of structure of 

glasses in diverse systems such (e.g. silicates 
118,266–268

, borates 
269–271

, phosphates 
272,273

, 

borosilicates 
274,275

, etc.), using simple binary or complex multicomponent glass 

compositions. Our previous studies done by some of the authors also focused on 

understanding the effects of small amounts of Al and B on lithium silicate compositions 

193,239
. However, it is especially important to understand the structure relaxation 

behaviour on much more simple compositions. Moreover, it would be of great interest 

to develop a theoretical model which enables predicting the glass structure from its 

composition and temperature conditions. 

Taking into consideration the above mentioned, this paper aims to shed some light 

on the effect of Al and B on the structure and relaxation of network units and 

crystallization of lithium silicate based glasses. The glass network structures of the 

binary and the doped glass compositions were investigated by NMR, and the relaxation 

of network units was observed experimentally and studied using annealed and non-

annealed glasses. This work also aims at demonstrating the feasibility of a theoretical 

model developed by some of the current authors which allows the simulation of NMR 

spectrum for the studied glass compositions. 

3.7.2 Theoretical background 

In our previous paper 
242

 on statistics of silicate units (Sn
m
) in binary glasses with 

chemical composition xR2O‒SiO2 (x ∈ [0, 2]), the probability (Pn
m
) of occurrence of a 

particular Sn
m
 units at given temperature (T) is given by the formula, 

 𝑃𝑛
𝑚 =

1

𝑍𝑔𝑟
𝑒
∑ (𝑖,𝑗)𝑛

𝑚 𝜇𝑖𝑗𝑗>𝑖 +𝑛 𝜇−𝐹𝑛
𝑚

𝑘𝐵𝑇  Eq. (3.7-3) 

Where, n is the number of bridging oxygens (BOs) on a given silicate tetrahedron, 

m corresponds to a particular combination of neighbouring silicate units, (i, j)n
m
 are the 

parameters associated to the network connectivity, μ and μij with chemical potentials 

associated to exchanges in BOs and network connectivity respectively, Fn
m
 is the 
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Helmholtz free energy associated to a particular Sn
m
 unit, kB is the Boltzmann’s constant 

and Zgr is the grand canonical partition function given by, 

 𝑍𝑔𝑟 =∑𝑒
∑ (𝑖,𝑗)𝑛

𝑚 𝜇𝑖𝑗𝑗>𝑖 +𝑛 𝜇−𝐹𝑛
𝑚

𝑘𝐵𝑇

𝑛,𝑚

 Eq. (3.7-4) 

Under a given initial conditions of temperature and composition of glasses, a 

probability distribution of various silicate units is obtained. If each Sn
m
 is assigned an 

associated expected value of chemical shift with some variance, the NMR spectrum of 

that composition can be simulated. We also reported on the relaxation behaviour 

observed experimentally and explained the theoretical basis using the concept of broken 

ergodicity. In this paper, we expand these ideas to multicomponent glass systems 

containing Al and B. 

3.7.3 Experimental procedure 

Table 3.7.1 Batch compositions of the glasses in mol% 

 G GAl GB GAlB 

Li2O 28.0 27.7 27.7 27.4 

SiO2 72.0 71.3 71.3 70.6 

Al2O3 0.0 1.0 0.0 1.0 

B2O3 0.0 0.0 1.0 1.0 

A binary lithium silicate glass with composition 28Li2O72SiO2 (mol%), labelled 

as G, and three doped compositions containing Al2O3 and/or B2O3 were synthesized by 

melt quenching technique using SiO2, Li2CO3, Al2O3 and H3BO3 precursors in the form 

of powders (all with purity > 99%). Table 3.7.1 presents the detailed compositions of 

the experimental glasses. The powders were homogenously mixed in a ball mill and 

calcined at 800 ºC for 1 h. Calcined powders were further mixed for homogeneity using 

mortar–pestle and transferred to platinum crucibles for melting at the temperature of 

1550 ºC for 1 h in air. Bulk (monolithic) bar shaped glasses were prepared by pouring 

the melt on a bronze mould. One sample of each composition was annealed
‡
 at 460 ºC 

                                                           
‡
 The word ‘annealing’ used in the current Section (3.7) does not exactly correspond to annealing used in 

traditional glass science where, a glass sample is heated to a temperature where viscosity is ~10
13

 Poise to 

relieve stresses. Throughout this Section the word ‘annealing’ corresponds to establishing ergodicity at a 

specified temperature. 
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for 75 h. The thermal parameters of the experimental glasses were determined by 

differential thermal analysis (DTA, Perkin-Elmer DTA-7) by heating 35–40 mg of glass 

powders (<75 μm) at 10 K min
1

 in high purity, open alumina crucibles under a nitrogen 

flow. The onset method was used to determine the glass transition temperature (Tg) and 

the estimated uncertainty is ±5 ºC. Microstructures of glasses were examined by optical 

microscopy (Stereo Microscope with LED and HD Camera LEICA EZ4HD, Germany, 

using LAS V4.0 software) and scanning electron microscopy (SEM; SU-70, Hitachi, 

Tokyo, Japan). Samples for microscopy were prepared by grinding, polishing, and 

etching for 60 s using 2 vol.% hydrofluoric acid. Crystalline phases present in the glass-

ceramics were examined by X-ray diffraction (XRD; Rigaku Geigerflex D/Mac, C 

Series, Tokyo, Japan) using Cu K radiation with 2 varying from 10º to 60º steps for 

0.02 s
1

. The density (ρ) of annealed glass samples was measured by Archimedes' 

method using ethylene glycol as the immersion liquid. Three samples of each glass were 

measured and the standard deviation was recorded. 

29
Si MAS-NMR spectra were recorded on both annealed and non-annealed glasses 

of compositions G, GAl and GB crushed into fine powders. The NMR spectrometer 

(BRUKER Avance III) was operated at a Larmor frequency of 79.5 MHz with a 9.4 T 

magnetic field, using a 7 mm rotor rotating at 5 kHz. The samples were excited with a 

90º flip angle using 900 s delay time. Both spectra were obtained after Fourier 

Transformation of 64 scans of Free Induction Decays (FID). Tetramethylsilane was 

used as chemical shift reference at 0 ppm. 
11

B MAS-NMR spectra were recorded on 

both annealed and non-annealed glasses of compositions GB and GAl-B crushed into fine 

powders. The NMR spectrometer (BRUKER Avance III) was operated at a Larmor 

frequency of 256.8 MHz with a 18.8 T magnetic field, using a 3.2 mm rotor rotating at 

20 kHz. The samples were excited with an 18º flip angle using 10 s delay time. Boric 

acid was used as chemical shift reference. 
27

Al MAS-NMR spectra were recorded on 

both annealed and non-annealed glasses of compositions GAl and GAl-B crushed into fine 

powders. The NMR spectrometer (BRUKER Avance III) was operated at a Larmor 

frequency of 104.2 MHz with a 9.4 T magnetic field, using a 4 mm rotor rotating at 12.5 

kHz in HXY mode double. The samples were excited with an 18º flip angle using 2 s 

delay time. A 0.1M Al(NO3)3 solution was used as chemical shift reference. The NMR 

spectra were deconvoluted using the DMfit software 
228

. 
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3.7.4 Results 

All glass compositions were suitable for easy casting after 1 h of melting at 1550 

ºC, resulting in homogeneous and transparent bubble free glasses. The amorphous 

nature of the as-cast glasses was confirmed by XRD analysis (not presented). All 

experimental glasses were transparent to naked eyes suggesting absence of visible 

liquid-liquid phase segregation (LLPS). However, the SEM images of the as-cast non-

annealed bulk glasses clearly demonstrated the formation of droplet-like zones 

embedded in glass matrix similarly to reported elsewhere 
142,193

.  

3.7.4.1 NMR 

Figure 3.7.1 shows the 
29

Si NMR spectra of both annealed and non-annealed 

experimental glasses. There are clear differences between both annealed and non-

annealed samples (Figure 3.7.1a‒c). In order to identify the relative amounts of each Qn 

unit, the spectra were deconvoluted using three Gaussian/Lorentzian line shapes 

corresponding to three units: Q2, Q3 and Q4; an example is shown in Figure 3.7.1f. The 

spectra were deconvoluted such that the relative quantities of each unit account for the 

chemical composition of the glass. The parameters of NMR deconvolution and relative 

amounts of each unit are presented in Table 3.7.4. In all the glasses, the presence Q2 is a 

result of speciation reaction Eq. (3.7-1); otherwise only Q3 and Q4 are expected 

according to the chemical composition of the experimental glasses. In both annealed 

and non-annealed samples, the degree of speciation Eq. (3.7-1) decreases in the 

following way: G > GB > GAl. Further, annealing of the glasses resulted in an increase 

and a decrease of speciation in G and GAl and GB, respectively. 
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Figure 3.7.1 (a)‒(e) 
29

Si NMR spectra and (f) an example of deconvolution. 

Figure 3.7.2 shows the 
11

B NMR spectra of both annealed and non-annealed 

experimental glasses. Each spectrum shows two peaks corresponding to two types of B 

units: BIII and BIV. All the spectra were deconvoluted using two line shapes: (1) with 

second-order quadrupolar effects corresponding to BIII and (2) with Gaussian/Lorentzian 

corresponding to BIV. The parameters of NMR deconvolution and relative amount of 

each unit are presented in Table 3.7.5. According to the values of quadrupolar coupling 

constant (CQ) and asymmetry parameter (η), the BIII can be assigned to asymmetric three 

coordinated boron with a NBO 
276

. In the annealed glasses, changing the composition 

from GB to GAl-B did not cause significant changes in the relative amounts of B species 

(Figure 3.7.2c). However, in both glasses, annealing treatment favoured BIV species 

(Figure 3.7.2a and b). Figure 3.7.3 shows the 
27

Al NMR spectra of both annealed and 

non-annealed experimental glasses. All the spectra have the same line shape and show 

no differences. To obtain the chemical shift value, one of the spectrum was fitted with 

Czejeck distribution model according to Neuville et al.
156

. The fitting gave a chemical 

shift value of 59.46 ppm and CQ of 5.15 MHz. This corresponds to an Al in 4-

coordination and charge compensated by a Li
+1

 ion. 

-130-120-110-100-90-80-70-60
29Si Chemical Shift, δiso (ppm)

Non-ann

Ann

(a) G

-130-120-110-100-90-80-70-60
29Si Chemical Shift, δiso (ppm)

Non-ann

Ann

(b) GAl

-130-120-110-100-90-80-70-60
29Si Chemical Shift, δiso (ppm)

Non-ann

Ann

(c) GB

-130-120-110-100-90-80-70-60
29Si Chemical Shift, δiso (ppm)

G

GAl

GB

(d) Non-Annealed

-130-120-110-100-90-80-70-60
29Si Chemical Shift, δiso (ppm)

G

GAl

GB

(e) Annealed

-130-120-110-100-90-80-70-60
29Si Chemical Shift, δiso (ppm)

Experimental
Simulated
Q4
Q3
Q2

(f) NMR deconvolution

Q3

Q2

Q4



174 
 
 

 

 

Figure 3.7.2 (a)‒(c) 
11

B NMR spectra and (d) an example of deconvolution. 

 

Figure 3.7.3 
27

Al NMR spectra of all the glasses. 

The glass characteristic temperatures such as glass transition temperature (Tg), 

onset temperature of crystallization (Tc) and temperature corresponding to maximum 

crystallization rate (Tp) were obtained from DTA thermographs (Table 3.7.2). All glass 
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compositions featured a single endothermic dip before Tc corresponding to glass 

transition region, which is approximately at 455 ºC. Accordingly, the annealed samples 

were heat-treated at 460 ºC. Glasses G and GAlB present the same value for Tc (559 ºC), 

which is lower than the values for GAl and GB (both equal to 576 ºC). The values of Tp 

follow the same trend as Tc. The values of T (= Tc  Tg) are higher for Al2O3-

containing compositions suggesting that these glasses are more stable than G and GB.  

 The density values of annealed (Figure 3.7.4, Table 3.7.2) are higher for 

compositions GAl and GAlB, which is due to the higher molecular weight of Al2O3 in 

comparison to the other oxides present in glasses, and similar trend is observed for the 

molar volume of experimental glasses. In this paper we defined a new quantity called 

“network volume” (NV), which is the volume occupied by 1 mol of network forming 

units present in the average composition of the glass. This quantity was estimated 

according to the following equation: 

 

𝑁𝑉

= 
𝐿𝑖2𝑂% 𝑀𝐿𝑖2𝑂 + 𝑆𝑖𝑂2% 𝑀𝑆𝑖𝑂2 + 𝐴𝑙2𝑂3% 𝑀𝐴𝑙2𝑂3 + 𝐵2𝑂3% 𝑀𝐵2𝑂3

𝜌 (𝑆𝑖𝑂2% +  2𝐴𝑙2𝑂3%+  2𝐵2𝑂3%)
 

Eq. (3.7-5) 

Where, M is the molar weight. The variation of NV with the composition (Figure 3.7.4, 

Table 3.7.2) suggests that the addition of Al2O3 or B2O3 to G have similar effect on the 

volume of network units and resulted in a contraction of the structure in comparison to 

the parent composition, while adding both oxides together caused even higher 

contraction effect. 

Table 3.7.2 Thermo-physical properties of the experimental glasses (errors in Tg, Tc and Tp are 

about ± 2 ºC) 

 Tg Tc Tp T  NV 

 (ºC) (ºC) (ºC) (ºC) (g cm
−3

) (cm
3
 mol

−1
) 

G 456 559 626 104 2.345 ± 0.003 30.581 ± 0.009 

GAl 458 576 649 119 2.352 ± 0.001 30.240 ± 0.002 

GB 455 576 643 107 2.345 ± 0.001 30.147 ± 0.004 

GAlB 451 559 627 121 2.358 ± 0.001 29.747 ± 0.003 
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Figure 3.7.4 Density and network volume values for the annealed glasses (the dashed lines are 

only guides for the eye). 

3.7.4.2 Microstructure and phase analysis 

Samples nucleated at 460 ºC during different times and heat-treated at optimized 

growth temperatures for 2 h revealed variations in the LLPS appearance. Figure 3.7.6 

shows the evolution of LLPS for glass composition GAl after several heat-treatments, 

demonstrating an increasing of the segregated glass fraction with increasing of 

nucleating time. Samples nucleated during longer periods of time show some 

crystallized areas as evidenced by Figure 3.7.6c.  

Figure 3.7.7 shows the micrographs of glass GAl nucleated at 460 ºC during 8 h 

revealing the loss of ergodicity (broken ergodicity phenomena) 
37

. In Figure 3.7.7b two 

types of microstructure corresponding to distinct glassy phases can be observed (regions 

A and B) as well as the border between them (indicated by the inserted arrow). Heat-

treating the nucleated samples resulted in the crystal growth. Figure 3.7.8 presents the 

aspect of glass GAl nucleated at 460 ºC for 10 h and heat-treated at 595 ºC for 2 h. Well 

dispersed crystals featuring similar shape and size can be observed.  In Figure 3.7.8b it 

is possible to see the cloudiness of the sample and crystals growing at the surface (circle 

A) and at deeper levels (circle B).  

The X-ray diffractograms for all samples isothermally treated at 800 ºC for 3 h are 

presented in Figure 3.7.9. Lithium disilicate is the main crystalline phase for all glasses. 

The presence of small amount of cristobalite is detected in G and Al2O3-containing 
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glasses, while quartz is present in B2O3-containing glasses and the intensity of its peaks 

increased with B2O3 content.  

3.7.5 Extension of the statistical mechanical model 

In this section we present an extension of the statistical mechanical model to take 

into account the presence of Al and B in the glass network. Let us consider a 

composition as given in Table 3.7.3 where, amount of lithium is given by the parameter 

x and the amounts of each network forming unit (Pn
m
) are all scaled to unity and 

becomes the first constraint given by, 

 ∑𝑃𝑛
𝑚

𝑛,𝑚

= 1 
Eq. (3.7-6) 

Now, the second set of constraints corresponds to each particular network forming 

units (Si, Al, and B) are given by, 

 ∑𝑓𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 〈𝑓〉 
Eq. (3.7-7) 

Where, f ∈ {fSi, fAl, fB…} is the fraction of each network formers (Table 3.7.3) 

corresponding to different types of atoms (Si, Al, and B). The values fn
m
 take either 1 or 

0. If the number of network formers is p, then the set represented by Eq. (3.7-7) 

contains p number of such equations. By adding all the equations of this set of equation 

will give Eq. (3.7-8), 

 ∑〈𝑓〉

𝑓

= 1 =∑𝑃𝑛
𝑚

𝑛,𝑚

 
Eq. (3.7-8) 

Therefore, together with Eq. (3.7-6) and Eq. (3.7-7) there are only p independent 

constraints. Now, we write constraint for the amount of Li2O in the chemical 

composition given by, 

 ∑(𝐶𝑁𝑛
𝑚 − 𝑛 + 𝑐𝑐𝑛

𝑚)𝑃𝑛
𝑚

𝑛,𝑚

=∑𝑟𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 〈2𝑥〉 
Eq. (3.7-9) 

Where, CNn
m
 is the coordination number of a particular network forming unit (Al, 

B
IV

 Si: 4, and B
III

: 3), n is the number of bridging oxygens and ccn
m
 corresponds to 

charge compensator on a particular network forming unit (it takes values either 0 or 1 

depending on whether it is present or not). Further, we also have energy constraint 

given by, 
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 ∑𝐸𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 〈𝐸〉 
Eq. (3.7-10) 

Next we write set of constraints related to network connectivity, given by, 

 ∑(𝑖, 𝑗)𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 0 
Eq. (3.7-11) 

Where, (i, j)n
m
 is constant associated to different bridging oxygens (Oij). The 

entropy generated by all the units is given by, 

 𝑆 = −𝑘𝐵∑𝑃𝑛
𝑚 ln(𝑃𝑛

𝑚)

𝑛,𝑚

 
Eq. (3.7-12) 

Maximizing the entropy subjected to all the constraints (Eq. (3.7-3) to Eq. (3.7-8)) 

by method of Lagrange multipliers would give the probability of each kind of unit in the 

glass network, 

 𝑃𝑛
𝑚 =

1

𝑍𝑔𝑟
𝑒
∑ (𝑖,𝑗)𝑛

𝑚𝜇𝑖𝑗𝑗>𝑖 +∑ 𝑓𝑛
𝑚𝜇𝑓𝑓 +𝑟𝑛

𝑚𝜇𝑟−𝐸𝑛
𝑚

𝑘𝐵𝑇  Eq. (3.7-13) 

The full derivation is presented in supplementary information (Section 3.7.7.1). 

Applying a semi-quantum mechanical approach, En
m
 can be changed to Fn

m
. However, 

in this paper we will keep using En
m
. By considering the network connections and NBOs 

in binary silicates, we ended up with 70 different Qn
ij...

 (or Sn
m
) types of units. In order to 

find out number of types of units when multiple network formers are used, we derive 

here a generalized formula. Consider a glass composition with ni different network 

formers (e.g. Si, Al, BIII, BIV, P etc.) where, i ∈ ℕ is the coordination number. For 

example, in a boroaluminosilicate glass, there would be 3 types of four coordinated 

units (n4 = 3, corresponding to BIV, AlIV and SiIV) and one type of three coordinated unit 

(n3 = 1, corresponding to BIII); and for the rest of value of i, ni = 0. Each of the network 

former with coordination number i can take j (∈ [0, i]) number of NBOs; therefore it can 

stay in i + 1 number of states (fully depolymerized to fully polymerized). Therefore, the 

total number of network forming units having at least one BO (by only considering 

NBOs and excluding network connectivity) is given by, 

 ∑𝑖𝑛𝑖
𝑖

 
Eq. (3.7-14) 
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By taking a particular i
th

 coordinated unit with j ‒ 1 BOs, the number of units 

(now considering both NBOs and network connectivity) is given by the following 

multicombination formula, 

 ((
∑𝑖𝑛𝑖
𝑖

𝑗 − 1

)) = (
∑𝑖𝑛𝑖
𝑖

+ 𝑗 − 2

𝑗 − 1

) Eq. (3.7-15) 

This basically gives the number of ways of choosing j ‒ 1 items from a total of 

∑ 𝑖𝑛𝑖 items with repetition. Thus, the number of units for a given type of network 

former is, 

 ∑(
∑𝑖𝑛𝑖
𝑖

+ 𝑗 − 2

𝑗 − 1

)

𝑖

𝑗=0

 Eq. (3.7-16) 

The total number of units (NU) considering all types of network formers is given 

by, 

 𝑁𝑈 =∑𝑛𝑖 [∑(
∑𝑖𝑛𝑖
𝑖

+ 𝑗 − 1

𝑗 − 1

)

𝑖

𝑗=0

]

𝑖

 Eq. (3.7-17) 

Thus, according to our derived formula, in a pure silicate system: there would be 

70 types of Si units; and in aluminosilicate system: 990 (495 types for each Al and Si 

units); and in borosilicate system: 3,094 (1,365 types for each BIV and Si units and 364 

types of BIII); in boroaluminosilicate system: 12,444 (3,876 types for each BIV, Al and 

Si units and 816 types of BIII). Hence we see that, as the complexity of the glass 

increases by adding new formers, the number of types of network forming units 

increase exponentially. Further, in binary system, by taking network connectivity into 

account, we have obtained 10 constraint equations corresponding to 10 types of 

bridging oxygens. We can derive a generalized formula to give number of constraint 

equations we can get when multiple formers are used. The number of constraint (NCC) 

equations for network connectivity is equal to number of types of BO; which is given by 

the number of ways of choosing 2 network units from the total number of network 

forming units having at least one BO (Eq. (3.7-18)) with repetition; given by, 
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𝑁𝐶𝐶 = ((
∑𝑖𝑛𝑖
𝑖

2

)) = (
∑𝑖𝑛𝑖
𝑖

+ 1

2

)

=
1

2
[∑𝑖𝑛𝑖
𝑖

] [∑𝑖𝑛𝑖
𝑖

+ 1] 

Eq. (3.7-18) 

According to this equation, the number of constraint equations for network 

connectivity in compositions of binary silicates: 10; in aluminosilicates: 36; in 

borosilicates: 66; and in boroaluminosilicates: 120. 

Table 3.7.3 Amounts of units according to the notation of the model. 

    460ºC 

 Q Amount  G GAl GB GAl‒B 

Li2O --- x  0.39 0.36 0.38 0.34 

LiAlO2 A fAl  0.00 0.03 0.00 0.03 

LiB
IV

O2 B fB4  0.00 0.00 0.02 0.02 

B
III

O3/2 C fB3  0.00 0.00 0.01 0.01 

SiO2 S fSi  1.00 0.97 0.97 0.94 

 

3.7.5.1 Calculations 

In this study we simplified the extended model in the previous section by reducing 

the number of units and network connectivity constraints based on the following 

assumptions, 

1. The compositions contain only Al‒O‒Si, B‒O‒Si and Si‒O‒Si type of bridges but 

not Al‒O‒Al or Al‒O‒B or B‒O‒B. 

2. All the Al units are present in 4-coordination without NBOs. 

3. All the BIV units are present in 4-coordination without NBOs and all the BIII units 

are present in 3-coordination with one NBO. 

4. All Si exists only as Q2, Q3 and Q4. 

The first assumption is justified because of the fact that very small amounts of 

Al2O3 and B2O3 are added in to the composition. Further, Loewenstein’s Rule prohibits 

Al–O–Al type linkages in aluminosilicate networks; and in borosilicate networks, B–O–
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Si bridges are more stable than B–O–B bridges based on energy consideration 
165–167,277

. 

The second assumption is supported by 
27

Al NMR spectra (Figure 3.7.3) of the current 

glass compositions, which shows that all Al is in 4-coordination; and the chemical shift 

of 59 ppm corresponds to Al in highly polymerized site connected to Si tetrahedra by 

corner sharing 
154,157,278

; therefore, no NBOs are present on Al tetrahedra. The third 

assumption is supported by 
11

B NMR spectra (Figure 3.7.2) of the current glass 

compositions, which shows that B is in two states: BIV and BIIIa (BIII with one NBO). 

The 
11

B chemical shift of B
IV

 unit ‒1.2 ppm corresponds to reedmergnerite like 

structural units of boron where, each B
IV

 unit is coordinated with four Si tetrahedrons 

(this also supports the first assumption) 
154,158

. Therefore, a given B unit fluctuates 

between BIV and, BIIIa according to the reaction Eq. (3.7-2) 
265

 with some probability 

taking into account the energy considerations. The fourth assumption is justified by the 

29
Si NMR spectra (Figure 3.7.1) of the current glasses which show only 3 types of 

units: Q2, Q3 and Q4. Therefore, according to these reasonable assumptions, the number 

of network units in pure silicate glasses is reduced to 31; in aluminosilicate glasses to 

80; in borosilicate glasses to 141. And, the number of constraints for network 

connectivity reduces for pure silicate to: 3; for aluminosilicate glasses to 6; for 

borosilicate glasses to 9. The calculations for the reduced number of units and 

constraints can be found in the (Section 3.7.7.2). 

Table 3.7.4 NMR parameters for 
29

Si deconvolution (errors in δiso are ± 0.5 ppm) 

   δiso (ppm)  FWHM (ppm)  Amount (%) 

   Q
2
 Q

3
 Q

4
  Q

2
 Q

3
 Q

4
  Q

2
 Q

3
 Q

4
 

N
o
n

-a
n

n
. G  ‒79.8 ‒92.3 ‒107.8  6.3 13.9 12.2  3.9 68.4 27.7 

GAl  ‒80.1 ‒92.6 ‒106.7  6.6 14.6 11.8  3.0 71.7 25.2 

GB  ‒80.5 ‒92.4 ‒107.0  6.8 13.4 12.0  4.7 65.2 30.1 

A
n

n
. 

G  ‒79.6 ‒91.2 ‒108.7  6.9 13.5 12.4  6.0 66.0 28.0 

GAl  ‒80.0 ‒91.9 ‒108.5  5.3 14.4 13.2  2.3 67.4 30.3 

GB  ‒79.2 ‒91.0 ‒109.2  5.5 13.8 13.0  4.4 67.0 28.6 

 

Therefore, based on these assumptions, the values of Pn
m
 (Eq. (3.7-10)) were 

fitted to the NMR data (Table 3.7.4 and Table 3.7.5) by adjusting En
m
 values at T = 460 

ºC (the annealing temperature). The final results for the distribution are shown in Table 

3.7.6. In the Table 3.7.6, Sn
m
 corresponds to Si tetrahedron for G, GAl and GB; An

m
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corresponds to Al and B
IV

 tetrahedra GAl and GB respectively; and Bn
m
 corresponds to 

B
III

 trigonal unit. 

Table 3.7.5 NMR parameters for 
11

B deconvolution 

  Non-Annealed  Annealed 

Boron 

Site 
 

δiso 

(ppm) 

CQ 

(MHz) 
η 

Amount 

(%) 
 

δiso 

(ppm) 

CQ 

(MHz) 
η 

Amount 

(%) 

GB           

BIV  ‒1.21 --- --- 62.3  ‒1.10 --- --- 74.0 

BIII  17.05 2.75 0.56 37.7  17.23 2.77 0.56 26.0 

GAl-B           

BIV  ‒1.22 --- --- 59.0  ‒1.15 --- --- 74.25 

BIII  16.79 2.68 0.52 41.0  17.12 2.68 0.58 25.75 

3.7.6 Discussion 

3.7.6.1 Glass Structure  

In this section, we discuss the equilibrium structure of the glass at a temperature 

of 460 ºC; this is the temperature at which all the glasses were annealed for 75 h. The 

deconvolution of NMR spectra to individual components of Q2, Q3, Q4, B
III

 and B
IV

 

(Table 3.7.4 and Table 3.7.5) gives a rough quantification for the distribution of these 

units. In all the compositions, the Q2 peak shows a 
29

Si chemical shift value of 

approximately ‒80 ppm (Table 3.7.4). However, the value of the 
29

Si chemical shift 

115,279
 associated with crystalline and glass of LS composition are ‒75 and ‒73 ppm 

respectively. Therefore, from this extra shielding we can conclude that, the Q2 units are 

connected to Q3 or Q4 units rather than to Q2 units (i.e. S2
22

 units). The simulation using 

the extended statistical mechanical model is in agreement with the experimental result 

which shows negligible amounts of S2
22

 units (Table 3.7.6). Moreover, a small FWHM 

varying between 5 to 7 ppm for the Q2 peak shows from NMR deconvolution (Table 

3.7.4) suggests that only few Q2
ij
 units are present in the glass. Again the simulation is 

in agreement with this result, showing only 4 to 5 Q2
ij
 units (Table 3.7.6). In contrast, 

the Q3 and Q4 species have a range of units ranging from 10 to 12 showing a large 

FWHM. Further, according to the simulation, significant amount of Q3 units are 
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connected to Q4 units (S3
444

, S3
344

 and S3
334

); and majority of Q4 units are connected to 

Q3 units (S4
3333

, S4
3334

 and S4
3344

). 

The Al tetrahedra connected to Q4 and Q3 units have 
27

Al NMR chemical shifts in 

the range of 52 to 64 ppm and 65 to 74 ppm respectively 
157

. The 
27

Al NMR spectra of 

current glasses (Figure 3.7.3) shows a broad peak positioned at 59.5 ppm suggests that 

Al units are connected to a range to Q3 to Q4 units on each corners. Again, this 

experimental observation is confirmed by the statistical mechanical simulation which 

shows that presence of A4
4444

, A4
3444

, A4
3344

, A4
3334

 and A4
3333

 (Table 3.7.6) for the 

sample GAl. The 
11
B chemical shift for reedmergnerite mineral is ‒1.9 ppm 

280
; in this 

crystal B
IV

 units are coordinated with Q4 Si units 
160

. In current compositions, 
11

B 

chemical shifts values for B
IV

 units were found to be ~ ‒1.2 ppm. The extra deshielding 

effect must be caused due to B
IV

 units coordinated to Q3 Si units. This is confirmed by 

the statistical mechanical simulation, which shows the presence of only A4
3444

, A4
3344

, 

A4
3334

 and A4
3333

 (Table 3.7.6) for the sample GB. Finally, the simulation shows that the 

B
III

 units are coordinated mainly to Q3 and Q4 Si units (B2
34

 and B2
33

 for the sample GB). 

In this paper, even with approximate fitting of the En
m
 values, there is a good agreement 

of statistical mechanical model and the experiments. 

The new quantity introduced in this paper called NV decreases with from G to 

GAl, G to GB and G to GAl-B (Figure 3.7.4 and Table 3.7.2). In binary Li2O‒SiO2 

glasses, the density of the system monotonically increases with Li2O % 
8
. Likewise, NV 

also increases monotonically with Li2O % (Section 3.7.7.3). This can be understood by 

a simple analogy: substituting Li2O can be considered as replacing Q4 with Q3; since Q3 

has extra one atom (Li), it would occupy larger volume. Now, if tetrahedra of Si are 

replaced by Al, the value of NV is expected to increase because, Al has larger atomic 

radii than Si; additionally it is also accompanied by a charge compensating ion. This 

may not be the case for B tetrahedra because of their smaller atomic radii; same is the 

case for trigonal B units. Table 3.7.3 shows the compositions of all the glasses with 

network forming units scaled to unity. When going from composition G to GAl, some 

tetrahedra of Si are replaced by Al and the amount of Li2O decreased: the two effects 

would result in increase and decrease in NV. When going from composition G to GB 

however, both decrement in Li2O and replacement of Si units show a further 

accentuated decrease in NV as expected. Finally, going from composition G to GAl-B 

shows a combined effect of GAl and GB. 
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Table 3.7.6 Pn
m
 distribution calculated (to 100%) from the statistical model at T = 460 ºC 

Qn
m G GAl GB Qn

m G GAl GB Qn
m G GAl GB Qn

m G GAl GB 

S4
4444 2.3 2.4 2.4 S4

344β 0.0 0.0 0.1 S3
334 16.5 14.5 14.8 S2

24 0.2 0.1 0.1 

S4
3444 3.1 3.2 3.2 S4

334β 0.0 0.0 0.1 S3
333 23.0 19.7 20.0 S2

23 0.3 0.1 0.1 

S4
3344 4.4 4.3 4.4 S4

333β 0.0 0.0 0.1 S3
244 1.4 0.9 0.9 S2

22 0.0 0.0 0.0 

S4
3334 6.1 5.9 5.9 S4

244β 0.0 0.0 0.0 S3
234 1.9 1.2 1.2 S2

4α 0.0 0.0 0.0 

S4
3333 8.5 8.0 8.0 S4

234β 0.0 0.0 0.0 S3
233 2.7 1.6 1.7 S2

3α 0.0 0.0 0.0 

S4
2444 0.4 0.3 0.3 S4

233β 0.0 0.0 0.0 S3
224 0.2 0.1 0.1 S2

2α 0.0 0.0 0.0 

S4
2344 0.6 0.4 0.4 S4

224β 0.0 0.0 0.0 S3
223 0.3 0.1 0.1 S2

αα 0.0 0.0 0.0 

S4
2334 0.8 0.6 0.6 S4

223β 0.0 0.0 0.0 S3
222 0.0 0.0 0.0 S2

4β 0.0 0.0 0.0 

S4
2333 1.2 0.8 0.8 S4

222β 0.0 0.0 0.0 S3
44α 0.0 1.9 1.4 S2

3β 0.0 0.0 0.0 

S4
2244 0.1 0.0 0.0 S4

44αβ 0.0 0.0 0.0 S3
34α 0.0 2.5 1.9 S2

2β 0.0 0.0 0.0 

S4
2234 0.1 0.1 0.1 S4

34αβ 0.0 0.0 0.0 S3
33α 0.0 3.4 2.5 S2

αβ 0.0 0.0 0.0 

S4
2233 0.2 0.1 0.1 S4

33αβ 0.0 0.0 0.0 S3
24α 0.0 0.2 0.2 S2

ββ 0.0 0.0 0.0 

S4
2224 0.0 0.0 0.0 S4

24αβ 0.0 0.0 0.0 S3
23α 0.0 0.3 0.2 A4

4444 0.0 0.1 0.1 

S4
2223 0.0 0.0 0.0 S4

23αβ 0.0 0.0 0.0 S3
22α 0.0 0.0 0.0 A4

3444 0.0 0.2 0.1 

S4
2222 0.0 0.0 0.0 S4

22αβ 0.0 0.0 0.0 S3
4αα 0.0 0.1 0.0 A4

3344 0.0 0.4 0.3 

S4
444α 0.0 0.3 0.2 S4

44ββ 0.0 0.0 0.0 S3
3αα 0.0 0.1 0.0 A4

3334 0.0 0.7 0.5 

S4
344α 0.0 0.4 0.3 S4

34ββ 0.0 0.0 0.0 S3
2αα 0.0 0.0 0.0 A4

3333 0.0 1.4 1.0 

S4
334α 0.0 0.5 0.4 S4

33ββ 0.0 0.0 0.0 S3
ααα 0.0 0.0 0.0 A4

2444 0.0 0.0 0.0 

S4
333α 0.0 0.7 0.6 S4

24ββ 0.0 0.0 0.0 S3
44β 0.0 0.0 0.2 A4

2344 0.0 0.0 0.0 

S4
244α 0.0 0.0 0.0 S4

23ββ 0.0 0.0 0.0 S3
34β 0.0 0.0 0.3 A4

2334 0.0 0.0 0.0 

S4
234α 0.0 0.1 0.0 S4

22ββ 0.0 0.0 0.0 S3
33β 0.0 0.0 0.4 A4

2333 0.0 0.0 0.0 

S4
233α 0.0 0.1 0.1 S4

4ααβ 0.0 0.0 0.0 S3
24β 0.0 0.0 0.0 A4

2244 0.0 0.0 0.0 

S4
224α 0.0 0.0 0.0 S4

3ααβ 0.0 0.0 0.0 S3
23β 0.0 0.0 0.0 A4

2234 0.0 0.0 0.0 

S4
223α 0.0 0.0 0.0 S4

2ααβ 0.0 0.0 0.0 S3
22β 0.0 0.0 0.0 A4

2233 0.0 0.0 0.0 

S4
222α 0.0 0.0 0.0 S4

4αββ 0.0 0.0 0.0 S3
4αβ 0.0 0.0 0.0 A4

2224 0.0 0.0 0.0 

S4
44αα 0.0 0.0 0.0 S4

3αββ 0.0 0.0 0.0 S3
3αβ 0.0 0.0 0.0 A4

2223 0.0 0.0 0.0 

S4
34αα 0.0 0.0 0.0 S4

2αββ 0.0 0.0 0.0 S3
2αβ 0.0 0.0 0.0 A4

2222 0.0 0.0 0.0 

S4
33αα 0.0 0.0 0.0 S4

4βββ 0.0 0.0 0.0 S3
4ββ 0.0 0.0 0.0 B2

44 0.0 0.0 0.1 

S4
24αα 0.0 0.0 0.0 S4

3βββ 0.0 0.0 0.0 S3
3ββ 0.0 0.0 0.0 B2

34 0.0 0.0 0.2 

S4
23αα 0.0 0.0 0.0 S4

2βββ 0.0 0.0 0.0 S3
2ββ 0.0 0.0 0.0 B2

33 0.0 0.0 0.4 

S4
22αα 0.0 0.0 0.0 S4

αααβ 0.0 0.0 0.0 S3
ααβ 0.0 0.0 0.0 B2

24 0.0 0.0 0.0 

S4
4ααα 0.0 0.0 0.0 S4

ααββ 0.0 0.0 0.0 S3
αββ 0.0 0.0 0.0 B2

23 0.0 0.0 0.0 

S4
3ααα 0.0 0.0 0.0 S4

αβββ 0.0 0.0 0.0 S3
βββ 0.0 0.0 0.0 B2

22 0.0 0.0 0.0 

S4
2ααα 0.0 0.0 0.0 S4

ββββ 0.0 0.0 0.0 S2
44 1.0 0.7 0.7 

 
   

S4
αααα 0.0 0.0 0.0 S3

444 8.5 7.9 8.1 S2
34 1.6 1.1 1.1 

 
   

S4
444β 0.0 0.0 0.0 S3

344 11.8 10.7 10.9 S2
33 2.6 1.7 1.8 
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3.7.6.2 Structural relaxation 

Now, we turn our attention to the relaxation behaviour of the glass structure. 

Figure 3.7.1a‒c shows the differences in the 
29

Si NMR spectra before and after 

annealing the glass at 460 ºC for the samples G, GAl and GB respectively. The spectra 

for all the samples show significant differences before and after annealing. The results 

of simple deconvolution of the spectra for the quantification of Q2, Q3 and Q4 units 

before and after annealing is presented in Table 3.7.4. The peaks not only show 

differences in the relative amounts but also, the differences are seen in the values of δiso 

and FWHM. Also, the 
11

B NMR spectra (Figure 3.7.2a and b) show significant 

differences before and after annealing. The quantification of the 
11

B NMR spectra 

(Table 3.7.5) shows that after annealing treatment the relative amounts of B
IV

 units 

increase. 

The structure of the annealed glasses can be thought of as the equilibrium 

structure of those glasses at annealing temperature of 460 ºC. Whereas, non-annealed 

glasses would not have sufficient time to relax in order to achieve equilibrium structure 

and thus have a non-equilibrium structure. This behaviour can be explained by the 

concept of broken ergodicity as proposed by Palmer 
37

. In this model, initially the 

system is brought to equilibrium at temperature T1; and the system being 

probabilistically distributed over the entire phase space. Now, the phase space is broken 

into several individual components having internal ergodicity but among the 

components, there is confinement. With this condition of broken ergodicity, the state of 

the system any other temperature T2 can be obtained. This new state represents the non-

equilibrium state of the system. In Figure 3.7.5, we simulated the 
29

Si NMR spectrum 

assuming some expected chemical shift with variance for each silicate unit for both 

annealed and non-annealed glasses of composition GB. In the case annealed glass, the 

probabilities were calculated at 460 ºC. For non-annealed glass however, broken 

ergodicity was used where, the glass was initially equilibrated at 1200 ºC and broken 

into four components: S4
4444

, S4
4444

, S3
4444

 and rest of the states. Now, probability 

distribution was calculated for each component at 460 ºC. The simulation of 
29

Si NMR 

spectra for the probability distributions for both effects are presented in Figure 3.7.5; 

resembles the experimental result Figure 3.7.1c. This simple simulation of relaxation 

using the concept of broken ergodicity illustrated the mechanism. In reality the 

behaviours of relaxation is much more complicated and must be studied using the 
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concept of continuously broken ergodicity 
38,39

. The relaxation would not only happen 

by redistribution network units but variations in bond lengths and bond angles are also 

involved. 

 

Figure 3.7.5 Simulated 
29

Si NMR spectrum of annealed and non-annealed glasses of GB 

composition. 

3.7.6.3 Crystallization 

Treatments at convenient temperature and time enable LS2 crystals grow to sizes 

visible by naked eye (Figure 3.7.8a). As crystals grow, glass samples became less 

transparent and turn cloudiness as revealed by Figure 3.7.8b, where crystals in deeper 

positions in glass volume appear blurred. This increasing in cloudiness is due to the 

increasing of LLPS. This might be explained by the compositional change which takes 

place in the glassy phase reservoir as crystal fraction increases as evidenced by Figure 

3.7.6 from (a) to (d). Although crystals had same size, the crystal fraction increased due 

to increasing number of nuclei with increasing nucleation time. The precipitation and 

growth of LS2 crystals causes the depletion of LiO2 from the glassy phase which in turn 

shifts the composition of the remaining glass to an innermost location in the 

immiscibility dome of the LiO2SiO2 phase diagram 
47,183

, resulting in the increasing of 

the LLPS. Therefore, higher nucleation promotes the formation of more LS2 crystals and 

consequent increasing of crystal fraction resulting in enhanced LLPS. 

-140-130-120-110-100-90-80-70-60
29Si Chemical shift

Non-annealed Annealed
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Figure 3.7.6 LLPS of glass GAl nucleated at 460 ºC during different times: (a) 5 h, (b) 8 h, (c) 

12 h, and (d) 15 h. All glasses were further heat-treated at 595 ºC for 2 h. The dashed circles in 

(c) show some crystallized areas. 

Each separated region presented in Figure 3.7.6 is composed by even smaller 

droplets as shown at higher magnification (Figure 3.7.7). The different morphologies of 

the two separated areas are evidenced in Figure 3.7.7b by the zones denoted by A and 

B, as well as the well delimited border between them (indicated by the arrow in Figure 

3.7.7b). The larger separated regions shown in Figure 3.7.6 remain unmixed because 

there is insufficient time for the system to equilibrate during the time of measurement 

(i.e. to reach the equilibrium conditions). If sufficient time was given to the system, the 

equilibrium status would be reached and eventually the separated phases would mix 

together. The finer droplets within these big regions appear when the glass cools down 

due to new reached equilibrium. 

200 µm

(a) (b)

(c) (d)
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Figure 3.7.7 Micrographs of glass GAl nucleated at 460 ºC during 8 h. In (b) two distinct areas 

are represented by A and B, while the arrow indicates the border between them. 

We observe glass on a time scale that is much shorter than the structural 

relaxation times. Hence, glass is non-ergodic and with the elapse of time, the ergodicity 

is restored and the glass properties reach an equilibrium value 
281

. The broken ergodicity 

that is mentioned in the previous section is also visible at a larger scale. Figure 3.7.10 

shows a schematic representation of dynamics of LLPS for different observation times. 

For an insufficient time, i.e. for t = obs, two distinct phases are visible (Figure 3.7.7a) 

and each one also presents immiscibility (Figure 3.7.7b). The separated phases within 

the larger separated ones would eventually mix for longer observation times, i.e. t = . 

 

Figure 3.7.8 Appearance of glass GAl nucleated at 460 ºC for 10 h and heat-treated at 595 ºC for 

2 h and (b) represents the same sample at higher magnification and the dashed circles show 

crystals growing at different depth levels. 

Al2O3 reduces the overall tendency of the glass to devitrify enhancing the glass 

stability 
193

, as estimated from the simple glass stability parameter T (Table 3.7.2), 

which is in accordance with the crystalline phase assemblage shown in Figure 3.7.9. In 

100 µm

(a)

5 µm

A B

(b)

3 mm

(a)

1 mm

(b)

A

B
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GAl only a very small peak of SiO2 crystalline phase (cristobalite) is visible, while B-

containing glasses exhibited the presence of two SiO2 polymorphs (quartz and 

cristobalite), showing relatively strong peaks of quartz. The precipitation of these 

phases in GB and GAlB is probably due to a less stable glassy phase and to a lowering 

viscosity promoted by the presence of B2O3 
193

. 

 

Figure 3.7.9 X-ray diffraction patterns of crystallized glasses at 800 ºC for 3 h normalized to 

the maximum peak. [LS2: lithium disilicate (Li2Si2O5, ICDD 04-009-4359); C: cristobalite 

(SiO2, ICDD 01-082-0512); Q: quartz (SiO2, ICDD 01-082-0512]. 
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Figure 3.7.10 Schematic representation of dynamics of LLPS at different observation times. 

3.7.7 Supplementary Information 

3.7.7.1 Derivation of the model 

The solution given by Eq. (3.7-13) is obtained from the Lagrange function 𝓛 (Pn
m
) 

with the Lagrange multipliers α, β, γ, {γf} and {γij} corresponding to the following 

constraints, 

∑𝑃𝑛
𝑚

𝑛,𝑚

= 1 

∑𝐸𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 〈𝐸〉 

∑𝑟𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 〈2𝑥〉 

∑𝑓𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 〈𝑓〉 

t = 

Residual glass at

crystal growth

temperature

After

cooling

down

t = obs
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Where, f ∈ {fSi, fAl, fB…} 

∑(𝑖, 𝑗)𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

= 𝑘𝑖𝑗 

ℒ(𝑃𝑛
𝑚) = 𝑘𝐵∑(𝑃𝑛

𝑚 ln 𝑃𝑛
𝑚)

𝑛,𝑚

+ 𝛼 [∑𝑃𝑛
𝑚

𝑛,𝑚

− 1] + 𝛽 [∑𝐸𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

− 〈𝐸〉]

+ 𝛾 [∑𝑟𝑛
𝑚𝑃𝑛

𝑚

𝑛,𝑚

− 〈2𝑥〉] +∑𝛾𝑓 [∑𝑓𝑛
𝑚𝑃𝑛

𝑚 − 〈𝑓〉

𝑛,𝑚

]

𝑓

+∑𝛾𝑖𝑗 [∑(𝑖, 𝑗)𝑛
𝑚𝑃𝑛

𝑚 − 𝑘𝑖𝑗
𝑛,𝑚

]

𝑖,𝑗

 

Eq. (3.7-19) 

Differentiating 𝓛 (Pn
m
) with respect to Pn

m
 would equal zero, 

𝜕ℒ(𝑃𝑛
𝑚)

𝜕𝑃𝑛
𝑚 = 𝑘𝐵(1 + ln 𝑃𝑛

𝑚) + 𝛼 + 𝛽𝐸𝑛
𝑚 + 𝛾𝑟𝑛

𝑚 +∑𝛾𝑓𝑓𝑛
𝑚

𝑓

+∑𝛾𝑖𝑗(𝑖, 𝑗)𝑛
𝑚

𝑗>𝑖

= 0 

 

Rearranging, 

ln 𝑃𝑛
𝑚 = − ln 𝑍𝑔𝑟 −

𝛽𝐸𝑛
𝑚

𝑘𝐵
−
𝑟𝑛
𝑚𝛾

𝑘𝐵
−
∑ 𝑓𝑛

𝑚𝛾𝑓𝑖,𝑗

𝑘𝐵
−
∑ (𝑖, 𝑗)𝑛

𝑚𝛾𝑖𝑗𝑖,𝑗

𝑘𝐵
 Eq. (3.7-20) 

Where, ln 𝑍𝑔𝑟 =
(𝛼+𝑘𝐵)

𝑘𝐵
 and substituting Eq. (3.7-20) in Eq. (3.7-12) 

𝑆 = −𝑘𝐵∑(−𝑃𝑛
𝑚ln 𝑍𝑔𝑟 − 𝑃𝑛

𝑚
𝛽𝐸𝑛

𝑚

𝑘𝐵
− 𝑃𝑛

𝑚
𝑟𝑛
𝑚𝛾

𝑘𝐵
− 𝑃𝑛

𝑚
∑ 𝑓𝑛

𝑚𝛾𝑓𝑓

𝑘𝐵
𝑛,𝑚

− 𝑃𝑛
𝑚
∑ (𝑖, 𝑗)𝑛

𝑚𝛾𝑖𝑗𝑗>𝑖

𝑘𝐵
) 

 

Solving using the constraint equations, 

𝑆 = 𝑘𝐵ln 𝑍𝑔𝑟 + 𝛽〈𝐸〉 + 𝛾〈2𝑥〉 +∑𝛾𝑓〈𝑓〉

𝑓

+∑𝛾𝑖𝑗𝑘𝑖𝑗
𝑗>𝑖

  

Rearranging, 

〈𝐸〉 =
1

𝛽
𝑆 −

𝑘𝐵
𝛽
ln𝑍𝑔𝑟 −

𝛾

𝛽
〈2𝑥〉 −∑

𝛾𝑓

𝛽
〈𝑓〉

𝑓

−∑
𝛾𝑖𝑗

𝛽
𝑘𝑖𝑗

𝑗>𝑖

  

Differentiating, 
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𝑑〈𝐸〉 =
1

𝛽
𝑑𝑆 −

𝑘𝐵
𝛽
𝑑 ln𝑍𝑔𝑟 −

𝛾

𝛽
𝑑〈2𝑥〉 −∑

𝛾𝑓

𝛽
𝑑〈𝑓〉

𝑓

−∑
𝛾𝑖𝑗

𝛽
𝑑𝑘𝑖𝑗

𝑗>𝑖

  

Comparing the above equation with the fundamental thermodynamic relation 

(A3),[S1] 

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 +∑𝜇𝑖𝑑𝑛𝑖 Eq. (3.7-21) 

Would yield,  

𝛽 =
1

𝑇
 Eq. (3.7-22) 

  

𝛾 = −
𝜇

𝑇
 

𝛾𝑓 = −
𝜇𝑓

𝑇
 

𝛾𝑖𝑗 = −
𝜇𝑖𝑗

𝑇
 

Eq. (3.7-23) 

Therefore, substituting Eq. (3.7-22) and Eq. (3.7-23) into Eq. (3.7-20) and 

rearranging gives, 

𝑃𝑛
𝑚 =

1

𝑍𝑔𝑟
𝑒
∑ (𝑖,𝑗)𝑛

𝑚𝜇𝑖𝑗𝑗>𝑖 +∑ 𝑓𝑛
𝑚𝜇𝑓𝑓 +𝑟𝑛

𝑚𝜇𝑟−𝐸𝑛
𝑚

𝑘𝐵𝑇  Eq. (3.7-24) 

 

3.7.7.2 Reduced number of units 

a. Composition G 

For composition G, the only units are Q2, Q3 and Q4. The number of combinations 

of neighbouring units for each is calculated by, 

Q2: ((
3
2
)) = (

3 + 2 − 1
2

) = (
4
2
) = 6 

Q3: ((
3
3
)) = (

3 + 3 − 1
3

) = (
5
3
) = 10 

Q4: ((
3
4
)) = (

3 + 4 − 1
4

) = (
6
4
) = 15 
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Total number of units is 31. Number of constraint equations is equal to number 

types of BOs Oij. Calculated by, 

Oij: ((
3
2
)) − 3 = (

3 + 2 − 1
2

) − 3 = (
4
2
) − 3 = 6 − 3 = 3 

Total number of network connectivity constraint equations is 3. 

b. Composition GAl 

For composition GAl, the only units are Q2, Q3, Q4 and Al
IV

. The number of 

combinations of neighbouring units for each is calculated by, 

Q2: ((
4
2
)) = (

4 + 2 − 1
2

) = (
5
2
) = 10 

Q3: ((
4
3
)) = (

4 + 3 − 1
3

) = (
6
3
) = 20 

Q4: ((
4
4
)) = (

4 + 4 − 1
4

) = (
7
4
) = 35 

Al
IV

: ((
3
4
)) = (

3 + 4 − 1
4

) = (
6
4
) = 15 

Total number of units is 80. Number of constraint equations is equal to number 

types of BOs Oij. Calculated by, 

Oij: ((
3
2
)) − 3 + 3 = (

3 + 2 − 1
2

) = (
4
2
) = 6 

Total number of network connectivity constraint equations is 6. 

c. Composition GB 

For composition GB, the only units are Q2, Q3, Q4, B
IV

 and B
III

. The number of 

combinations of neighbouring units for each is calculated by, 

Q2: ((
5
2
)) = (

5 + 2 − 1
2

) = (
6
2
) = 15 
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Q3: ((
5
3
)) = (

5 + 3 − 1
3

) = (
7
3
) = 35 

Q4: ((
5
4
)) = (

5 + 4 − 1
4

) = (
8
4
) = 70 

B
IV

: ((
3
4
)) = (

3 + 4 − 1
4

) = (
6
4
) = 15 

B
III

: ((
3
2
)) = (

3 + 2 − 1
2

) = (
4
2
) = 6 

Total number of units is 141. Number of constraint equations is equal to number 

types of BOs Oij. Calculated by, 

Oij: ((
3
2
)) − 3 + 3 + 3 = (

3 + 2 − 1
2

) + 3 = (
4
2
) + 3 = 6 + 3 = 9 

Total number of network connectivity constraint equations is 9. 

3.7.7.3 Network volume for binary lithium silicate 

The variation of NV for binary lithium silicate glass; the density data was taken 

from Shelby.
8
 

 

Figure 3.7.11 Variation of density and network volume with composition. 
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3.7.7.4 Differential thermal analysis 

 

Figure 3.7.12 DTA of experimental glasses 

Exo.
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Chapter 4 

 

 

 

4 Conclusions 

Then I beheld all the work of God, that a man cannot find out the work that is done 

under the sun: because though a man labour to seek it out, yet he shall not find it; yea 

further; though a wise man think to know it, yet shall he not be able to find it. 

(Ecclesiastes 8:17)
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4.1 Summary 

4.1.1 Role of manganese on the structure, crystallization and sintering of non-

stoichiometric lithium disilicate glasses 

Small additions of MnO2 to the experimental glass imparted huge changes on 

crystallization of bulk/particulate glasses and on sintering behaviour of glass powder 

compacts. The following conclusions could be drawn from the study presented in 

Section 3.2: 

1. Well-known redox equilibrium of Mn
2+

/Mn
3+

 with predominance of Mn
3+

 was 

established in Mn-doped glasses giving rise to purple colour. 

2. MAS-NMR and FTIR spectroscopy suggest a network modifier role for Mn; 

whereas relatively constant Tg values (458467 ºC), increasing Vm and decreasing 

phase separation suggest network former role. 

3. The involvement of Mn in the formation of individual molecular units in the 

interstitials of the depolymerized glass network explanation is the proposed 

conciliating view about the role of Mn in glasses. Large crystal field parameters 

(Δo, B) and the lowering trend for glass-in-glass phase separation both agree with 

this hypothesis.  

4. The lowering trend for glass-in-glass phase separation in turn lead to reduced bulk 

nucleation. Therefore Mn increased the kinetic barrier for nucleation near Tg.  

5. Oppositely, the peak crystallization temperature (TP) from DTA showed a 

decreasing trend pointing out to lower activation energy for crystallization from a 

less polymerized glass network.  

6. Sintering and crystallization occurred at lower temperatures in Mn-doped glass 

powder compacts conferring higher strength at low sintering temperatures. But the 

occurrence of foaming in Mn-doped samples at higher temperatures drastically 

reduced density and mechanical strength. 
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4.1.2 Glass structure and crystallization of Al and B containing glasses belonging 

to the Li2O‒SiO2 system 

The current study investigated the role of both Al and B on glass structure, phase 

segregation, nucleation and crystallization when added at a small concentration. The 

following are the broad conclusions that are drawn from the study presented in Section 

3.3. 

1. Al goes in to glass network in 4-fold coordination whereas B goes in as both 4- 

and 3-fold coordination. This B speciation resulted in the depolymerisation of 

glass network, increasing the percentage of NBOs. 

2. Therefore, with B substitution glasses showed decreasing viscosity, molar 

volumes, oxygen densities and glass transition temperatures. 

3. The simultaneous mixture of Al and B into the glass composition resulted in the 

increased configurational entropy. Therefore, in mixed Al and B glasses the 

increased entropy resulted in decreased driving force for LLPS. 

4. Glass GB100 exhibited highest crystal nucleation rate compared to all the other 

glasses due to fastest kinetics of LLPS, while glasses containing simultaneous 

mixture of Al and B featured the lowest crystal nucleation rate, which is 

correlated with the previous conclusion. 

5. In Al rich glasses lithium metasilicate crystallizes at initial stages and then 

transforms into LS2 at higher temperatures. However with B addition glasses 

crystallize directly into LS2. 

4.1.3 Influence of Al2O3 and B2O3 on sintering and crystallization of lithium 

silicate glass system 

The work presented in Section 3.4 is a continuation of the work reported in 

Section 3.3, which dealt with liquid-liquid phase segregation and crystal nucleation 

phenomena occurring in bulk glasses of the same compositions. The work presented in 

Section 3.4 deals with the influence of Al and B oxides on the sintering behaviour and 

crystallization of glass powders from lithium silicate glass system. The following 

conclusions can be drawn from this study: 
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1. B2O3 and Al2O3 added as dopants modify the thermodynamic equilibrium of the 

system and this change is mainly entropy driven. Increased entropy leads to a 

more stable liquid phase. 

2. B2O3 and Al2O3 also slowdown the kinetics of crystallization which is mainly 

dependent on the thermodynamic driving force and the polymerization level of the 

glass network. 

3. After initial crystallization events, the compositions become richer in dopants and 

enthalpic contributions from the dopants also have influence on the state of the 

system. 

4. Although LS2 and polymorphs of SiO2 feature greater driving force for the 

crystallization, there will be kinetic restriction for the crystallization of these 

phases and LS with small driving force crystallizes with the available Q
2
 units 

resulting in a sequence of crystallization in the order: LS, LS2 and SiO2. 

5. The sintering initiates in all the glasses at temperatures slightly above Tg and well 

sintered and dense glass-ceramics were obtained after sintering of glass powders 

at 850900 ºC for 1 h with crystalline phase assemblage dominated by LS2. 

4.1.4 The roles of P2O5 and SiO2/Li2O ratio on the network structure and 

crystallization kinetics of non-stoichiometric lithium disilicate based glasses 

The work presented in Section 3.5 revealed that in non-stoichiometric 

multicomponent Li2OK2OAl2O3SiO2 systems, both the SiO2/Li2O molar ratio and 

the addition of P2O5 play important roles in determining the crystallization behaviour 

upon heat treatment, and the crystalline phase assemblage and structure of the resulting 

glasses. From the results presented and discussed in this section, the following specific 

conclusions can be drawn:  

1. Adding P2O5 to glasses led to an overall increase in polymerization of the glass 

network. 

2. The activation energy for crystallization, Ec, decreased with increasing Li content 

further, it showed a more accentuated decrease when P2O5 is added.  
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3. The values of Avrami parameters being less than 2 for G24 and G26, are 

consistent with microstructures and evidenced the surface crystallization. 

4. The presence of P2O5 enhanced the crystallization of LS at lower temperatures 

(when compared with P2O5-free compositions) and promoted the formation of LS2 

at temperatures above 800 ºC. 

5. The enhanced formation of the crystalline phases in compositions containing P2O5 

can be explained as a result of heterogeneous nucleation at the interface of an 

amorphous LP phase and the glass matrix. 

4.1.5 Statistics of silicate units in binary glasses 

In the Section 3.6 a new model based on statistical mechanics to describe the 

distribution of various silicate units in glasses was presented. The system was 

considered to be grand canonical ensemble of silicate units which exchange energy and 

network modifiers with the reservoir. The current model could find its usefulness in 

several applications. These include, LLPS, crystal nucleation and glass relaxation. Since 

statistical mechanics uses microscopic properties to obtain macroscopic properties, 

several bulk properties of the glass can be easily calculated using the current model. 

4.1.6 Structure and thermal relaxation of network units and crystallization of 

lithium silicate based glasses doped with oxides of Al and B 

The investigation presented in Section 3.7 reports the relaxation behaviour of the 

glasses belonging to lithium silicate system by NMR spectroscopy. A statistical 

mechanical model based on the previous model presented in Section 3.6 was developed 

in order to address this issue. The structural relaxation behaviour employing the concept 

of broken ergodicity and the statistical mechanical model was simulated to shed light on 

the mechanism. The crystallization behaviour of the glasses was studied using 

microscopy and XRD. The changes in the residual glass composition with 

crystallization are reported.  
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Chapter 5 

 

 

 

5 Future Work 

And further, by these, my son, be admonished: of making many books there is no end; 

and much study is a weariness of the flesh. 

(Ecclesiastes 12:12)
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5.1 Future prospects 

The following are the potentially important future works based on the current 

thesis: 

1. In order to fully validate the Qn statistics models shown in Eq. (3.6-15) and Eq. 

(3.7-13), the vibrational frequencies of each Sn
m
 microstate must be calculated using 

quantum mechanical calculations. And the theory should be rigorously tested with 

experiments. 

2. Currently the NMR spectra is deconvoluted empirically using softwares such as 

DMfit.
228

 However, new softwares could be developed based on Qn statistics model 

presented in Eq. (3.7-13). 

3. Development of completely new nucleation theory established on the ideas 

discussed in section 3.1.3. The development of this new theory would require 

understanding nucleation based on combinatorics and topology. Further, the theory 

should be supported by large amount of experimental data. The experiments should 

involve obtaining temperature dependence of Qn distribution of binary glasses therefore; 

in-situ high temperature NMR spectroscopes would be required. 

4. The models developed for Qn speciation (Eq. (3.6-15) and Eq. (3.7-13)) do not 

address LLPS directly. Therefore the models have to be extended to address also LLPS. 

Since Eq. (3.6-15) and Eq. (3.7-13) model a glass system to be like a gas consisting of 

Qn units, the problem of LLPS should solved by understand phase separations in gas-

like systems. There are some granular systems which are considered to be as gas-like 

systems and exhibit phase separation.
282,283

 These systems might inspire developing 

models for LLPS in glass systems based on Eq. (3.6-15) and Eq. (3.7-13). 
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