
EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

A faster algorithm to compute the visibility map of a 1.5D terrain

Maarten Löffler∗ Maria Saumell† Rodrigo I. Silveira‡

Abstract

Given a 1.5D terrain, i.e., an x-monotone polygonal
line in R2 with n vertices, and 1 ≤ m ≤ n viewpoints
placed on some of the terrain vertices, we study the
problem of computing the parts of the terrain that are
visible from at least one of the viewpoints. We present
an algorithm that runs in O(n+m logm) time. This
improves over a previous algorithm recently proposed.

1 Introduction

Determining what parts of a terrain can be seen from
a set of viewpoints is a natural problem that until
recently has received little attention. Here we focus on
1.5D terrains: a terrain T is an x-monotone polygonal
line in R2 with n vertices. In addition to T , we are
also given a set P of 1 ≤ m ≤ n viewpoints on the
terrain surface, assumed for simplicity to be located on
some of the terrain vertices. Perhaps the most basic
question one can ask in this setting is: What parts of
T are visible from at least one viewpoint in P?

The particular case of m = 1, that is, when there is
only one viewpoint, has been extensively studied. The
region of the terrain visible from a single viewpoint p
is commonly known as the viewshed of p. For 1.5D
terrains, the viewshed of a point can be computed in
O(n) time by computing the visibility polygon from p.

For m > 1 viewpoints, the visibility map of P is
defined as the regions of T that are visible from at least
one viewpoint in P. Figure 1 shows an example. A
straightforward way to compute it is by computing the
viewshed from each viewpoint, and then computing
their union. This leads to O(mn) running time.

The problem of computing the visibility map for
m > 1 viewpoints in 1.5D (and 2.5D) terrains was
studied for the first time in a very recent paper [5]. In
particular, it is shown there that the visibility map of
an n-vertex 1.5D terrain with m < n viewpoints has
O(n) complexity and can be computed in O(n log n)
time. Despite this being an improvement over the
straightforward O(mn) time algorithm, it leaves open

∗Department of Computing and Information Sciences,
Utrecht University; m.loffler@uu.nl.
†Department of Mathematics, University of West Bohemia;

saumell@kma.zcu.cz.
‡Dept. de Matemática & CIDMA, Universidade de Aveiro,

and Dept. Matemàtica Aplicada II, Universitat Politècnica de
Catalunya; rodrigo.silveira@ua.pt.

Figure 1: Visibility map for three viewpoints (disks).
Visible parts shown in yellow, not visible parts black.

the intriguing question of whether the visibility map
can be computed faster.

In this note we answer this question affirmatively, by
presenting an algorithm that computes the visibility
map in O(n+m logm) time. That is, the running time
is linear on the terrain complexity (n), an important
improvement since in most of the applications that
motivate this work the number of terrain vertices is
much larger than the number of viewpoints.

Related work. To the best of our knowledge, the
visibility map for multiple viewpoints was studied for
the first time in [5]. A related problem of determining
whether at least two viewpoints above a 1.5D terrain
can see each other was studied in [1]. Other related
work on visibility for 1.5D terrains has been mostly
concerned with placing viewpoints such that all the
terrain is visible from at least one viewpoint (see e.g. [2,
4, 6] and references therein).

Notation. We denote the x- and y-coordinates of
a point p ∈ R2 by x(p) and y(p), respectively. The
terrain T is specified by a sorted list of n vertices; the
m > 1 viewpoints in P lie on some of the vertices of
T . We use T [a, c], for a, c in T and x(a) < x(c), to
denote the closed portion of the terrain between a and
c, and T (a, c) for the open portion. Similarly, we use
T [a] to denote the point on T with x = x(a) (or with
x-coordinate equal to a, if a ∈ R).

2 The algorithm

We compute the left- and right-visibility maps sepa-
rately, and then merge them. The left-visibility map
partitions T into two regions: the visible and the “in-
visible” portions of the terrain, where visible means

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/154355037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


30th European Workshop on Computational Geometry, 2014

pi

pj vl

vk
ri

rj

h

s

T [s]

q

Figure 2: Situation in Corollary 2.

visible from a viewpoint on or to the left of that point
of the terrain (thus in the left-visibility map, view-
points only see themselves and portions of the terrain
to their right). The right-visibility map is defined
analogously. Next we present the construction of the
left-visibility map (thus, visible stands for left-visible).

2.1 Preliminaries

We say that a viewpoint p1 dominates another view-
point p2 at a given x-coordinate x1 if for all p ∈ T
with x(p) ≥ x1 it holds that: if p2 sees p, then p1
also sees p. A viewpoint that, at a given x-coordinate,
is not dominated by any other viewpoint is called
non-dominated.

The algorithm uses a couple of consequences of the
so-called order claim:

Lemma 1 (Claim 2.1 in [2]) Let a, b, c, and d be
four points on T such that x(a) < x(b) < x(c) < x(d).
If a sees c and b sees d, then a sees d.

Corollary 1 Let q ∈ T be a point visible from view-
points pi and pj , with pi to the left of pj . For any
w ∈ T to the right of q, if pi does not see w, then pj
does not see w either (i.e. pi dominates pj at x(q)).

Given a viewpoint pi and a vertex vk ∈ T , the ray
with origin pi and vector −−→pivk is called a shadow ray
if: (i) pi sees vk; (ii) pi does not see the points of T
immediately to the right of vk. We use ρ(pi, vk) to
denote such ray.

The next corollary is illustrated in Figure 2.

Corollary 2 Let ri = ρ(pi, vk) and rj = ρ(pj , vl) be
two shadow rays with x(vk) < x(vl). Suppose there
exists some h ∈ T such that T (vk, h) lies below ri and
T (vl, h) lies below rj . Suppose that ri and rj cross
at a point s such that x(vl) < x(s) < x(h). Then, for
any point w ∈ T to the right of T [s], if pi does not
see w, then pj does not see w either (i.e. pi dominates
pj at x(s)).

Proof. We start by showing that pi is to the left
of pj . We first notice that rj lies below ri in the
region of the plane to the left of the vertical line
x = x(s): Otherwise, the point vl would lie above
the ray ri, contradicting the fact that T (vk, h) lies

below ri. Additionally, we have x(vk) < x(pj), since
otherwise the point vk would lie in T (vl, h) and above
the ray rj , contradicting our hypothesis. Therefore,
we conclude x(pi) < x(vk) < x(pj) and we are in the
situation illustrated in Figure 2.

If pj does not see any point q ∈ T to the right
of T [s], the result follows. Otherwise, let q be the
leftmost point in T to the right of T [s] visible from pj .
T (pi, q) lies on or below the polygonal line pisq, which,
except for its endpoints, lies below the segment piq.
Hence, q is visible from pi. We now apply Corollary 1
and conclude. �

For a fixed x-coordinate, each viewpoint can have
at most one shadow ray as in Corollary 2:

Observation 1 Given a point h ∈ T and a viewpoint
pi, there is at most one vertex vk such that T (vk, h)
is below ρ(pi, vk).

Therefore for simplicity we will use ri to denote such
ray for viewpoint pi, assuming it exists.

2.2 Description of the algorithm

The algorithm sweeps the terrain from left to right
while maintaining some information. Most notably, we
maintain a set of rays L corresponding to a (sub)set
of viewpoints that are not visible at the moment1

(possibly, L = ∅). More precisely, the set L at x = x(h)
(for h ∈ T ) is defined as
L = {ρ(pi, vk) s.t. T (vk, h) lies below ρ(pi, vk) and

pi is non-dominated at x = x(h)}.
The general idea is: If while sweeping through point

h ∈ T we have ri = ρ(pi, vk) ∈ L, then T (vk, h) lies
below ri. Then if the terrain crosses ri at some point
to the right of h, it will become visible from pi. Note
that the definition of L also requires the viewpoints
associated to the rays in L to be non-dominated, which
allows to decrease the size of L.

We also maintain some special viewpoints. If the
terrain is currently visible, we keep the leftmost visible
viewpoint, which we call primary viewpoint and denote
by pa. If the terrain is not visible, we maintain another
viewpoint, which we call secondary viewpoint and
denote by pb (see Figure 3). The secondary viewpoint
belongs to the set {pi | ri ∈ L}, and it is the viewpoint
that is more likely to become visible around the portion
of the terrain that we are examining. More precisely, if
we are sweeping through point h ∈ T , then rb is defined
as the lowest ray in L at x = x(h). When the terrain
is not visible, we define L′ = L\{rb}. Otherwise, we
set L′ = L. At any moment of the sweep, we will know
the lowermost ray in L′.

Finally, we maintain a boolean ν ∈ {0, 1} that indi-
cates whether the terrain is currently visible or not.

1Often in this section we use visible to refer to visibility from
the intersection of the sweep line and the terrain.



EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

h

Figure 3: When sweeping point h, the secondary view-
point is the one whose ray is dotted. L′ contains only
the thicker dashed rays (since the viewpoints of the
other ones are dominated).

The algorithm begins at the leftmost vertex, and
starts sweeping the terrain as explained below. For the
sake of simplicity, in the following description we as-
sume that we know at any time which is the lowermost
ray in L′ and, if ν = 0, which is the secondary view-
point. We will explain how to keep this information
updated later.

The most important events are terrain vertices: the
sweep stops at all of them. Other relevant events are
when the secondary viewpoint changes or when the
lowermost ray in L′ changes. However, we can treat
those easily: Suppose that we are about to process edge
wv and we detect, say, that the secondary viewpoint
changes at x = α, where x(w) < α < x(v). Then we
simply subdivide wv into wT [α] and T [α]v and run
two iterations of the algorithm below, each with the
appropriate secondary viewpoint.

We now explain an iteration of the algorithm. Let w
be the vertex preceding v in T . We treat the interior
of the edge wv and the vertex v separately.

Detecting visibility changes in the interior of the
edge wv. We distinguish several cases:

(i.1) ν = 0 and L = ∅. We do nothing.
(i.2) ν = 0 and L 6= ∅. We check whether the ray

rb intersects the edge wv. In the affirmative, we
compute the point of intersection and we set ν = 1
at that point. The viewpoint that was secondary,
pb, becomes the primary viewpoint, and rb is
removed from L. We continue as in (i.3) or (i.4),
depending on L being empty or not.

(i.3) ν = 1 and L = ∅. We do nothing.
(i.4) ν = 1 and L 6= ∅. We check whether the low-

ermost ray rj of L′ at [x(w), x(v)] intersects the
edge wv. If it does, we remove rj from L′ and
find the new lowermost ray of L′. Additionally, if
pj is to the left of pa, we set pa = pj . We continue
as in (i.3) or (i.4), depending on L being empty
or not.

Dealing with the vertex v. Let us first suppose that
no viewpoint lies on v. We distinguish the following
cases:

(ii.1) ν = 0. We do nothing.

(ii.2) ν = 1 and pa continues being visible right after v.
We do nothing.

(ii.3) ν = 1 and pa stops being visible right after v. We
set ν = 0, and we add ρ(pa, v) to L. Additionally,
pa becomes the secondary viewpoint.

Next, we treat the case where a viewpoint pi lies on v:

(ii.4) ν = 0. We set ν = 1 and pa = pi. If L 6= ∅,
then rb is added to L′ and the lowermost ray of
L′ becomes rb. There is no longer a secondary
viewpoint.

(ii.5) ν = 1 and pa continues being visible right after v.
We do nothing.

(ii.6) ν = 1 and pa stops being visible right after v. We
add ρ(pa, v) to L′, and update the lowermost ray
of L′. We set pa = pi.

It remains to explain the way we maintain the lower-
most ray in L′ and, if ν = 0, the secondary viewpoint.

Maintaining the lowermost ray in L′. Knowing the
lowermost ray in L′ during the whole sweep is equiva-
lent to maintaining the lower envelope of L′. We use a
modification of Bentley-Ottmann’s algorithm for line-
segment intersections [3], run on the set of rays that
at some point will be in L′. The algorithm essentially
computes the intersections between the rays in L′ as
the terrain is swept. The sweep line data structure
allows to retrieve the lowest ray in L′ at any time.

The sweep line and the event queue are implemented
using the standard data structures (i.e. a binary search
tree and a priority queue).2 Next we argue that the
overall running time of the sweep is only O(m logm).

First note that, by Observation 1, at any moment
of the sweep, L′ contains O(m) rays. Moreover, by
Corollary 2, every time the sweep line goes through
the intersection of two rays, the one corresponding to
the viewpoint more to the right becomes dominated
by the other one, so that ray will not be in L′ from
that moment on, and what is even more important, no
ray from that viewpoint will. Thus the total number
of intersections considered by the algorithm is O(m).

The other types of events are insertions and deletions
of rays. In total, we make at most m insertions to L′:
Indeed, we only add a ray in cases (ii.4) or (ii.6), and
we can charge the insertion to viewpoint pi, which is
traversed at that point by the sweep line. Analogously,
the number of deletions is O(m) as well.

Each insertion or deletion operation in the event
queue has cost O(logm), since the queue only contains
intersection events about rays that are consecutive
along the sweep line, and there can be at most m rays
intersected by the sweep line at a given time. Since the
total number of events processed is O(m), it follows

2In our case the sweep line could be represented with a
simpler structure, like a doubly-linked list, but this would not
affect the overall running time.



30th European Workshop on Computational Geometry, 2014

that the total time spent on maintaining the lower
envelope of L′ is O(m logm).

Note that, even though we have presented this sweep
line algorithm separately, it should be interleaved with
the main sweep line algorithm described previously.

Maintaining the secondary viewpoint. On top of
the updates caused by cases (i.2), (ii.3) and (ii.4),
we do the following: Every time that there is a new
secondary viewpoint or a new lowermost ray in L′, we
check whether rb intersects this lowermost ray rj . In
the affirmative, we add an event at the x-coordinate
of the intersection point. When this point is swept
by the general algorithm, if the secondary viewpoint
and the lowermost ray in L′ have not changed, then
pj becomes the new secondary viewpoint. Thus, rj
is removed from L′, and the lowermost ray in L′ is
updated. Notice that the ray corresponding to the
old secondary viewpoint is not added to L′ because it
corresponds to a viewpoint that is now dominated.

These operations are performed every time that
there is a new secondary viewpoint or a new lower-
most ray in L′. If there is a new secondary viewpoint
pb caused by event (ii.3), we associate it to the vertex
v such that rb = ρ(pb, v). If there is a new secondary
viewpoint because rb intersects the lowermost ray rj
in L′, we associate it to the old secondary viewpoint,
which becomes dominated. This shows that the sec-
ondary viewpoint changes O(n+m) times throughout
the whole algorithm. On the other hand, we already
know that the lowermost ray in L′ changes at most
O(m) times. Thus, the operations described in the
paragraph above are globally done in O(n+m) time.

2.3 Correctness and running time

The correctness of the method follows from the fact
that all changes in the terrain between visible and
invisible are detected. Corollary 1 guarantees that it
is enough to keep track of only the leftmost visible
viewpoint, which we use in (i.4) and (ii.5). Finally,
Corollary 2 shows that, whenever two rays in L cross,
one of them stops being relevant for the algorithm.
We use this property in the definition of L′.

We next analyze the running time. As seen before,
maintaining the lowermost ray in L′ at any time can be
done in O(m logm) time. Notice that the number of
insertions to L can be Θ(n), so if we instead maintained
the lowermost ray of L, our algorithm would take
O(n logm) time. For this reason we keep the secondary
viewpoint separately from the remaining rays in L.

Other than that, we spend constant time per itera-
tion. Recall that the number of iterations is bounded
by the sum of: (i) the number of vertices in T , (ii)
the number of times that there is a new non-empty
secondary viewpoint, (iii) the number of times that
there is a new non-empty lowermost ray of L′, (iv)

the number of times that we are in event (i.2) and rb
intersects wv, (v) the number of times that we are in
event (i.4) and the lowermost ray rj of L′ intersects wv.
It is not difficult to see that this adds up to O(n+m).

To conclude, we observe that the right-visibility map
can be computed analogously. We finally merge the
two maps in O(n) time and obtain the visibility map.
Note that the algorithm can be modified to output,
for each visible region, a set of viewpoints that cover
that region. We obtain the following theorem:

Theorem 2 Given a 1.5D terrain T , the visibility
map of P can be constructed in O(n+m logm) time.

Acknowledgments. We thank Michael Hoffmann for
interesting discussions on the topic of this paper. We
also thank our coauthors from [5], Ferran Hurtado, Inês
Matos, Vera Sacristán, and Frank Staals, for helpful dis-
cussions related to the problem studied. M. L. is sup-
ported by the Netherlands Organisation for Scientific Re-
search (NWO) under grant 639.021.123. M. S. is sup-
ported by the project NEXLIZ - CZ.1.07/2.3.00/30.0038,
which is co-financed by the European Social Fund and the
state budget of the Czech Republic. R. S. was funded by
Portuguese funds through CIDMA (Center for Research
and Development in Mathematics and Applications) and
FCT (Fundação para a Ciência e a Tecnologia), within
project PEst-OE/MAT/UI4106/2014, and by FCT grant
SFRH/BPD/88455/2012. In addition, R. S. was partially
supported by projects MINECO MTM2012-30951/FEDER,
Gen. Cat. DGR2009SGR1040, and by ESF EUROCORES
program EuroGIGA-ComPoSe IP04-MICINN project EUI-
EURC-2011-4306.

References

[1] B. Ben-Moshe, O. Hall-Holt, M. J. Katz, and J. S. B.
Mitchell. Computing the visibility graph of points
within a polygon. In Proc. 20th Symposium on Com-
putational Geometry, pages 27–35, 2004.

[2] B. Ben-Moshe, M. Katz, and J. Mitchell. A constant-
factor approximation algorithm for optimal 1.5D ter-
rain guarding. SIAM J. Comput., 36(6):1631–1647,
2007.

[3] J. Bentley and T. Ottmann. Algorithms for report-
ing and counting geometric intersections. Computers,
IEEE Transactions on, C-28(9):643–647, 1979.

[4] M. Gibson, G. Kanade, E. Krohn, and K. Varadara-
jan. An approximation scheme for terrain guarding.
In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, volume 5687
of LNCS, pages 140–148. Springer, 2009.

[5] F. Hurtado, M. Löffler, I. Matos, V. Sacristán,
M. Saumell, R. Silveira, and F. Staals. Terrain vis-
ibility with multiple viewpoints. In Algorithms and
Computation, volume 8283 of LNCS, pages 317–327.
Springer Berlin Heidelberg, 2013.

[6] J. King and E. Krohn. Terrain guarding is NP-hard.
SIAM J. Comput., 40(5):1316–1339, 2011.


