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Region-based approximation of probability distributions
(for visibility between imprecise points among obstacles)1
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Abstract

Let p and q be two imprecise points, given as prob-
ability density functions on R2, and let R be a set
of n line segments in R2. We study the problem of
approximating the probability that p and q can see
each other; that is, that the segment connecting p
and q does not cross any segment of R. To solve this
problem, we approximate each density function by a
weighted set of polygons; a novel approach to dealing
with probability density functions in computational
geometry.

1 Introduction

Data imprecision is an important obstacle to the ap-
plication of geometric algorithms to real-world prob-
lems. In the computational geometry literature, var-
ious models to deal with data imprecision have been
suggested. Most generally, in this paper we describe
the location of each point by a probability distribu-
tion µi (for instance by a Gaussian distribution). This
model is often not worked with directly because of the
computational difficulties arisen from its generality.

These difficulties can often be addressed by approxi-
mating the distributions by point sets. For instance,
for tracking uncertain objects a particle filter uses a
discrete set of locations to model uncertainty [11].
Löffler and Phillips [8] and Jørgenson et al. [6] dis-
cuss several geometric problems on points with prob-
ability distributions, and show how to solve them
using discrete point sets (or indecisive points) that
have guaranteed error bounds. More specifically, a
2-dimensional point set P is an ε-quantization of an
xy-monotone function F (such as a cumulative prob-
ability density function), if for every point q in the
plane the fraction of P dominated by q differs from
F (q) by at most ε.
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‡Dept. de Matemática & CIDMA, Universidade de Aveiro,
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Figure 1: Two pairs of point sets on opposite sides of a
collection of obstacles. The green points can all see each
other, whereas none of the blue points can.

Imprecise points appear naturally in many applica-
tions. They play an important role in databases [1],
machine learning [3], and sensor networks [12], where
a limited number of probes from a certain data set are
gathered, each potentially representing the true loca-
tion of a data point. Alternatively, data points may
be obtained using imprecise measurements or are the
result of inexact earlier computations.

Even though a point set may be a provably good ap-
proximation of a probability distribution, this is not
good enough in all applications. Consider, for exam-
ple, a situation where we wish to model visibility be-
tween imprecise points among obstacles. When both
points are given by a probability distribution, natu-
rally there is a probability that the two points see
each other. However, when we discretise the distribu-
tions, the choice of points may greatly influence the
resulting probability, as illustrated in Figure 1.

Instead, we may approximate distributions by re-
gions. The concept of describing an imprecise point
by a region or shape was first introduced by Guibas
et al. [4], motivated by finite coordinate precision,
and later studied extensively in a variety of set-
tings [5, 2, 9, 10, 7].

In this work we show how to use region-based ap-
proximation of point distributions to solve algorith-
mic problems on (general) imprecise points. In Sec-
tion 2 we discuss several ways to do this. In Section 3,
we focus on a geometric problem for which previous
point-based methods do not work well: visibility com-
putations between imprecise points.1

1This is an extended abstract of a presentation given at
EuroCG 2014. It has been made public for the benefit of the
community and should be considered a preprint rather than a
formally reviewed paper. Thus, this work is expected to appear
in a conference with formal proceedings and/or in a journal.
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Figure 2: A Gaussian distribution, given by isolines at ε
levels. (a) Approximation by polygons. (b) Approxima-
tion by quadtree.

2 Region-based approximation

Assume that an imprecise point p is given by a prob-
ability distribution µ. We wish to describe µ by a
set of weighted regions M that provide an additive
ε-approximation of the distribution: for any point in
the plane, the sum of the weights of the regions con-
taining q differs from µ(q) by at most ε.

One approach to attack this problem is to consider
the isolines of the probability density function f(·).
These are the curves where f(·) is exactly kε, for
some integer k, and they separate the plane into re-
gions where f(·) has a value between iε and (i+ 1)ε.
Note that if we could take the regions formed by the
isolines, and give each of them a weight of ε, they
would form a valid ε-approximation of f . However,
the isolines are not generally polygonal. Instead, we
note that if we take any polygons that stay between
two consecutive isolines, and use these as polygons
with weight ε, they are guaranteed to form a 2ε-
approximation. Figure 2(a) illustrates this.

Of course, the complexity of the polygons depends on
the specific distribution. In the following we focus on
Gaussian distributions, because they are natural and
likely to occur in applications.

Theorem 1 A Gaussian distribution with standard
deviation σ can be ε-approximated by O(σ−2ε−1)
polygons of total complexity O(σ−4ε−2).

Proof. The isolines of a bivariate Gaussian distribu-
tion are concentric circles that subdivide R2 into an-
nuli, and we wish to compute a polygon that stays
within each annulus. We observe that the complex-
ity of such a polygon depends only on the relative
width of its annulus; that is, given an annulus with
inner radius r and outer radius r′, we can fit a regu-
lar dπ/ arccos r

r′ e-gon. Refer to Figure 2(a) for some
examples.

The probability density function with standard devi-
ation σ is given by the equation

f(x, y) =
1

2πσ2
e−

x2+y2

2σ2

The number of annuli depends on the height of the
peak of the function we wish to approximate, which
is at 1

2πσ2 , so we need k = 1
2πσ2ε isolines.

If we solve f(x, 0) = iε for x, we get

x =
√
−2σ2 log(2πσ2iε)

so the ith annulus has relative width

r

r′
=

√
log(2πσ2iε)

log(2πσ2(i+ 1)ε)
.

Hence, the total complexity of all polygons is

k∑
i=1

⌈
π/ arccos

√
log(2πσ2iε)

log(2πσ2(i+ 1)ε)

⌉
,

which we rather coarsely bound by k times the maxi-
mum of these terms, attained at i = k/2. We obtain:

1

2πσ2ε

⌈
π/ arccos

√
log 1/2

log(1/2 + 2πσ2ε)

⌉
.

As the argument of the arccos approaches 1, the value
approaches 0 as the square of the argument, leading
to a O( 1

σ2ε ) growth rate. The lemma follows. �

Alternatively, we may subdivide space into grid cells
and give each cell a weight depending on the value
of f . The advantage of a grid-based approach is that
the subdivision of the plane does not depend on the
actual distributions, and that squares are particularly
nice polygons. A problem with this approach is that
the resolution of the grid depends on the steepest part
of f : when the value of f varies by more than ε in
a cell, the approximation is not valid. Instead, we
may also choose to compute a non-uniform grid, for
example based on a quadtree. If we use a quadtree
to subdivide R2 until no cell is crossed by more than
one isoline, and we weigh a cell crossed by the ith iso-
line by iε, we again obtain a 2ε-approximation. Fig-
ure 2(b) illustrates this.

3 Visibility between two regions

Consider a set of obstacles R in the plane. We assume
that the obstacles are disjoint simple convex polygons
withm vertices in total. For two imprecise points with
probability distributions µ1 and µ2 we approximate
them with two sets of weighted regions M1 and M2,
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Figure 3: Left: Two polygons P1 and P2 in primary space. The
orange region is the set of lines intersecting P1 and P2 through
s1, s2, s3, s4. Right: Partition L∗ in dual space. The orange cell
corresponds to all lines in the primary space intersecting the same
four segments s1, s2, s3, s4.
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Figure 4: Left: Polygons P1 and P2 and an obstacle
in between in the primary space. Right: The “hour-
glass” shape H∗ in the dual space that corresponds to
a set H of all lines in the primary space that intersect
the obstacle.

each consisting of convex polygons. For every pair of
polygons P1 ⊂ M1 and P2 ⊂ M2, we compute the
probability that a point p1 chosen uniformly at ran-
dom from P1 can see a point p2 chosen uniformly at
random from P2. We say that two points can “see”
each other if and only if the straight line segment con-
necting them does not intersect any obstacle from R.
The probability of two points p1 = (x1, y1) ∈ P1 and
p2 = (x2, y2) ∈ P2 seeing each other can be computed
by the formula:

prob =

∫∫∫∫
v(x1, y1, x2, y2)dx1dy1dx2dy2∫∫∫∫

dx1dy1dx2dy2
, (1)

where v(x1, y1, x2, y2) is 1 if the points see each other,
and 0 otherwise.

To compute prob we consider a dual space where a
point with coordinates (α, β) corresponds to a line
y = αx − β in the primary space. We construct a
region L∗ in the dual space that corresponds to the
set L of lines that stab both P1 and P2. This region
can be partitioned into cells, each corresponding to a
set of lines that cross the same four segments of P1

and P2 (refer to Figure 3). The following follows from
the fact that each vertex of L∗ corresponds to a line
in primary space through two vertices of P1 and P2.

Lemma 2 Given two convex polygons P1 and P2 of
total size n, the complexity of partition L∗ in the dual
space that corresponds to a set of lines L that stab
P1 and P2 is O(n2).

For each obstacle h ⊂ R we construct a region H∗

in the dual space, that corresponds to the set of lines
that intersect h. H∗ has an “hour-glass” shape (refer
to Figure 4). We now compute the subdivision  L of
the dual plane resulting from overlaying the partition
L∗ and the regions H∗. Since the objects involved are
bounded by a total of O(m+ n) line segments in the
primal space,  L has complexity O((m+ n)2).

First consider the case that P1, P2 and the obsta-
cles are disjoint. We can assume that all obstacles

lie in the convex hull of P1 and P2. Then a pair of
points from P1 and P2 see each other exactly if the
line through the points does not intersect an obsta-
cle. Thus, we only need to identify the cells in  L not
intersecting any of the regions H∗, and integrate over
these cells. Details on evaluating the integral for one
cell is given in Section 4. Overall this case can be
handled in O((m+n)2) time. Next, consider the case
that P1 and P2 are disjoint but might intersect obsta-
cles. Now we need to consider the length of each line
segment from the last obstacle in P1 to the bound-
ary and from the boundary of P2 to the first obstacle.
We can annotate the cells of  L with this information
by a traversal of  L. Between neighboring cells this
information can be updated in constant time. Thus,
this case can be handled with the same asymptotic
running time as the previous case. As a third case,
consider P1 overlapping P2 but with no obstacles in
the overlap area. The computations needed remain
the same as in the case of non-overlapping P1 and P2.

Finally, we consider the general case, in which obsta-
cles might also lie in the overlap of P1 and P2. In the
cells of  L that correspond to the overlap of P1 and
P2 we now need to consider the sum of the lengths
of each line segment between boundaries of obstacles.
Again we traverse  L maintaining the ordered list of
intersected obstacle boundaries. Within a cell we use
this to compute the sum of lengths in O(m) time.

Lemma 3 Given two polygons P1 and P2 of total
size n and obstacles of total complexity m, we can
compute the probability that a pair of points drawn
uniformly at random from P1×P2 can see each other
in O(m(m+n)2) time, assuming we can compute the
necessary information within each cell.

4 Computing the probability for a single cell

For simplicity of presentation, we assume that P1 and
P2 are separable by a vertical line, and P1 and P2 are
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disjoint from R. This will allow us to write the solu-
tion in a more concise way without loss of generality.

Consider line `, given by the formula y = αx −
β, that goes through two points p1(x1, y1) ∈
P1 and p2(x2, y2) ∈ P2. In the dual space,
point `∗, corresponding to line `, has coordinates
(α, β). Substitute variables y1 and y2 in For-
mula 1 with α and β: (x1, y1, x2, y2)← (x1, α, x2, β),
where α(x1, y1, x2, y2) = y2 − y1/x2 − x1 and
β(x1, y1, x2, y2) = (x1y2 − x2y1)/(x2 − x1). We can
express the probability of two points, distributed uni-
formly at random in P1 and P2, seeing each other as

prob =

∫∫∫∫
v(x1, α, x2, β)|J |dx1dx2dαdβ∫∫∫∫

|J |dx1dx2dαdβ
, (2)

where

J = det

[
dy1
dα

dy1
dβ

dy2
dα

dy2
dβ

]
=

1

det

[
dα
dy1

dβ
dy1

dα
dy2

dβ
dy2

] = x2 − x1 .

The denominator of (2) can be written as a sum of
integrals over all cells of partition L∗ in the dual space:

∑
C⊂L∗

∫∫
C

 X2(α,β)∫
X1(α,β)

X4(α,β)∫
X3(α,β)

(x2 − x1)dx2dx1

dαdβ ,

where X1(α, β), X2(α, β), X3(α, β), and X4(α, β) are
the x-coordinates of intersections of line y = αx − β
with the boundary segments of P1 and P2.

The numerator of (2) can be written as a sum of inte-
grals over all cells of partition L∗\ ∪hH∗ in the dual:

∑
C⊂L∗\∪hH∗

∫∫
C

 X2(α,β)∫
X1(α,β)

X4(α,β)∫
X3(α,β)

(x2 − x1)dx2dx1

 dαdβ.

For more details on calculating the integrals we refer
the reader to the full version of this article.

Theorem 4 Given two convex polygons P1 and P2

of total size n and a set of obstacles of total size m,
we can compute the probability that a point p1 cho-
sen uniformly at random in P1 sees a point p2 chosen
uniformly at random in P2 in O(m(m+ n)2) time.

5 Main result

Combining Theorems 1 and 4, our main result follows:

Theorem 5 Given two imprecise points, modelled
as Gaussian distributions µ1 and µ2 with stan-
dard deviations σ1 and σ2, and n obstacles, we
can ε-approximate the probability that p and q see
each other in O(σ−21 σ−22 ε−2(σ−21 + σ−22 )ε−1((σ−21 +
σ−22 )ε−1 + n)2) time.

Proof. According to Theorem 1, we need to solve
O(σ−21 σ−22 ε−2) individual problems. For each, we
have m = O((σ−21 +σ−22 )ε−1), so using Theorem 4 we
solve them in O((σ−21 + σ−22 )ε−1((σ−21 + σ−22 )ε−1 +
n)2) time. This leads to O(σ−21 σ−22 ε−2(σ−21 +
σ−22 )ε−1((σ−21 + σ−22 )ε−1 + n)2) running time . �
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