
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

Pedro Miguel Leite
Ferreira Margarido

Distribuição de conteúdos multimédia na Web/P2P
- SeedSeer

Distribution of multimedia content through the
Web/P2P - SeedSeer





�Rather a mind opened by wonder, than one closed by belief.�

� Gerry Spence

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

Pedro Miguel Leite
Ferreira Margarido

Distribuição de conteúdos multimédia na Web/P2P
- SeedSeer

Distribution of multimedia content through the
Web/P2P - SeedSeer





Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

Pedro Miguel Leite
Ferreira Margarido

Distribuição de conteúdos multimédia na Web/P2P
- SeedSeer

Distribution of multimedia content through the
Web/P2P - SeedSeer

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor Diogo
Nuno Pereira Gomes, Professor Auxiliar do Departamento de Eletrónica, Te-
lecomunicações e Informática da Universidade de Aveiro, e do Doutor João
Paulo Silva Barraca, Professor Auxiliar Convidado do Departamento de Ele-
trónica Telecomunicações e Informática da Universidade de Aveiro.





o júri / the jury

presidente / president Prof. Doutor Joaquim João Estrela Ribeiro Silvestre Madeira
Professor Auxiliar do Departamento de Electronica Telecomunicações e Informática da Universi-
dade de Aveiro

vogais / examiners committee Prof. Doutor Pedro Alexandre Ferreira dos Santos Almeida
Professor Auxiliar do Departamento de Comunicação e Arte da Universidade de Aveiro

Prof. Doutor Diogo Nuno Pereira Gomes
Professor Auxiliar do Departamento de Electronica Telecomunicações e Informática da Universi-
dade de Aveiro





agradecimentos /
acknowledgements

There are a number of people without whom this thesis might have never seen
the light of day and to whom I am greatly indebted. I would like to thank my
advisors, my family and my friends for all the patience while this thesis was still
being developed and written. I cannot stress enough how their efforts to keep
me focused to finish this thesis were hard on their part and how discussions
with them led this work further day by day. Dealing with my own expectations
of what SeedSeer should have been was certainly what took me so long to
finish this thesis, I have to thank so much to everyone that pulled me out of
this deadlock several times. Lastly, I want to thank my "online friends"that in
this past year have been with me everyday and whose support kept me going.
There’s nothing I value more than privacy, while I avoided being specific, I
believe that everyone who was important to me while this thesis was being
developed knows exactly how thankful I am for having them.





Palavras Chave HTML, WebRTC, P2P, WebSockets, BitTorrent.

Resumo Desde a criação da Internet que existem inumeras formas de partilhar fichei-
ros, mas até ao dia de hoje é discutível se alguma possa ser considerada a
melhor. A apetência do público em geral para conteúdo multimedia levou ao
aparecimento de novas plataformas de distribuição de conteúdo como o Go-
ogle Play, Netflix, Apple Store, entre outros. Estes conteúdos são distribuídos
de forma centralizada e levam a grandes custos de infra-estrutura para essas
entidades. Por outro lado, as redes P2P permitem a distribuição de conteúdos
de forma descentralizada e com baixos custos, estes contudo, exigem aplica-
ções específicas e conhecimentos técnicos, o que se torna uma barreira en-
tre o consumidor e os conteúdos que estão disponíveis nestas plataformas.
Nesta tese é desenvolvido um protótipo de uma nova solução, usando novos
standards HTML5 como WebSockets e WebRTC para introduzir uma nova
perspectiva de como os utilizadores podem partilhar e consumir conteúdo.
Em termos simples, a abordagem desta tese procura trazer a rede BitTorrent
para os Browsers usando apenas javascript, tirando partido da sua facilidade
de utilização por não exigir qualquer tipo de instalação necessária. Usando
WebRTC esta tese foca-se em como fazer crescer a rede dos Browsers de
forma descentralizada, incentivando o consumo de conteúdo em comunida-
des de utilizadores num esforço para aumentar a privacidade e resistência à
censura, assim como mitigar limitações de escala da solução. Os resultados
deste trabalho demonstram que alguns conceitos utilizados nesta tese têm
vantagens únicas que são relevantes para o público em geral, no entanto, es-
tas vêm com o custo de algumas limitações que são inerentes e devem ser
mitigadas.





Keywords HTML, WebRTC, P2P, WebSockets, BitTorrent.

Abstract Since the inception of the Internet there are a lot of ways to share files, but still
to this day it is arguable if there’s a best one. The palatability of the general
public for multimedia content created the need for new platforms of content
distribution like Google Play, Netflix, Apple Store and some others. Contents
that are distributed in a centralized way and that lead to great infrastructure
costs to these entities. On the other hand, P2P networks allow the distribu-
tion of content in a decentralized way with low costs, these however require
specific applications and technical knowledge, which is a barrier between the
consumer and the contents that are available in these platforms. In this thesis
a prototype of a new solution is developed, using upcoming HTML5 standards
like WebSockets and WebRTC to introduce a new perspective to how users
can share and consume content. In simple terms, the approach of this thesis
is to bring the BitTorrent network into the browsers using only javascript, tak-
ing advantage of its ease of use by not requiring any kind installation. Using
WebRTC this thesis focused in how to grow the browser’s network while being
decentralized, encouraging content consumption in communities of users in
an effort to increase privacy and resilience to censorship as well as mitigate
scaling limitations of the solution. Results of this research demonstrate that
some concepts used in this thesis have unique advantages that are relevant to
the general public, however they come at the cost of some inherent limitations
that should be mitigated.





Contents

Contents i

List of Figures iii

List of Tables v

Abbreviations vii

1 Introduction 1
1.1 Evolution of Peer-to-Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Removal of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Document outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art 7
2.1 Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

WebSockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
WebRTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Chat Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
IRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
XMPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 File Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
BitTorrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Gnutella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Proposed Solution 33
3.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

BitTorrent Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
WebRTC Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Heterogeneous Peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Chrome App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Identity-based Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

i



SeedSeer Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SeedSeer Supernode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Overview of the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Implementation 43
4.1 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

WebSocket Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
BitTorrent Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 WebSockets Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Packet validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Adding content & Swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 WebRTC Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Supernode Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Results 55
5.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Performance, Limitations and Tests . . . . . . . . . . . . . . . . . . . . . . . 64

Client Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Supernode limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Delay on DHT Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusions 81
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 83

ii



List of Figures

1.1 Centralized vs. Decentralized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 WebSocket Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Communication flow of XHR, SSE and WebSocket. . . . . . . . . . . . . . . . . 8
2.3 Architecture of WebRTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 WebRTC JSEP Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 WebRTC Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 XMPP Client and Server Communication . . . . . . . . . . . . . . . . . . . . . 16
2.7 BitTorrent Client joining the swarm. . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 BitTorrent Client downloading pieces. . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9 How WebTorrent connects to BitTorrent . . . . . . . . . . . . . . . . . . . . . . 27
2.10 Searching and Requesting a File in Gnutella v0.4. . . . . . . . . . . . . . . . . . 30
2.11 Searching and Requesting a File in Gnutella v0.6 . . . . . . . . . . . . . . . . . . 31

3.1 BitTorrent Discovery Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Four peers connected to a Supernode. . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 SeedSeer Client Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 SeedSeer Supernode Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Overview from the point of view of a SuperNode. . . . . . . . . . . . . . . . . . 40
3.6 Different swarms under a SuperNode. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Supernode Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 JSTorrent running in Seedseer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Supernode User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Peer User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 HTML5 Video on a peer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Showing content available to download on a peer. . . . . . . . . . . . . . . . . . 50
4.7 Example with Hidden Peers option enabled. . . . . . . . . . . . . . . . . . . . . . 54

5.1 Referrers and Browsers used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Platform used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Age and Gender of the respondents. . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Education Level by Gender. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

iii



5.5 Country of the Respondents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Country of the Respondents (excluding Portugal). . . . . . . . . . . . . . . . . . 59
5.7 Type of Content Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.8 Consumption of Live Content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.9 Consumption of Live Content from Respondents that consume Streaming vs P2P. 60
5.10 Prefered content, Traditional vedios vs Live Streaming. . . . . . . . . . . . . . . 61
5.11 Prefered content, Mainstream vs Personalized. . . . . . . . . . . . . . . . . . . . 61
5.12 Social Tool contribution for content enhancement. . . . . . . . . . . . . . . . . . 62
5.13 Importance of Privacy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.14 Notice of Content Censorship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.15 Importance of censorship resilience. . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.16 Network Diagram of the setup used for testing. . . . . . . . . . . . . . . . . . . . 64
5.17 Local client loading of peers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.18 Client loading of peers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.19 Client loading of peers by Internet page loaders. . . . . . . . . . . . . . . . . . . 67
5.20 WebRTC Transfer with a 512 bytes chuck size on UDP. . . . . . . . . . . . . . . 68
5.21 WebRTC Transfer with a 512 bytes chuck size on TCP. . . . . . . . . . . . . . . 68
5.22 WebRTC Transfer with a 1024 bytes chuck size on TCP. . . . . . . . . . . . . . 69
5.23 WebRTC Transfer with a 8192 bytes chuck size on TCP. . . . . . . . . . . . . . 69
5.24 WebRTC Transfer with a 16384 bytes chuck size on TCP. . . . . . . . . . . . . . 70
5.25 WebRTC Transfer with a 65536 bytes chuck size on TCP. . . . . . . . . . . . . . 70
5.26 BitTorrent transfers of 4 linux distros. . . . . . . . . . . . . . . . . . . . . . . . . 70
5.27 Spectrum of load times of the Ramp test with 3400 users. . . . . . . . . . . . . . 72
5.28 Load times and Errors of the Ramp test with 3400 users. . . . . . . . . . . . . . 72
5.29 Open requests and Transferred Data of the Ramp test with 3400 users. . . . . . 73
5.30 Spectrum of load times of the Ramp test with 4000 users. . . . . . . . . . . . . . 74
5.31 Load times and hits per second of the Ramp test with 4000 users. . . . . . . . . 74
5.32 Open requests and Transferred Data of the Ramp test with 4000 users. . . . . . 75
5.33 Spectrum of load times of the Load Test with 3400 users. . . . . . . . . . . . . . 76
5.34 Load times and hits per second of the Load Test with 3400 users. . . . . . . . . 76
5.35 Open requests and Transferred Data of the Load Test with 3400 users. . . . . . 77
5.36 Error Rate on the Load Test with 3400 users. . . . . . . . . . . . . . . . . . . . . 77
5.37 Transferred Data of the Bandwidth Test. . . . . . . . . . . . . . . . . . . . . . . 78
5.38 Delay of DHT Requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

iv



List of Tables

2.1 WebTorrent Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Download data per user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

v





Abbreviations

API Application Program Interface

BBS Bulletin Board System

BLOB Binary Large Object

BT BitTorrent

CDN Content Delivery Network

DHT Distributed Hash Table

DMCA Digital Millennium Copyright Act

DNS Domain Name System

FAQ Frequently Asked Questions

HTTP Hypertext Transfer Protocol

ICE Interactive Connectivity Establishment

IETF Internet Enginerrring Task Force

IM Instant Messaging

IP Internet Protocol

IRC Internet Relay Chat

JSON JavaScript Object Notation

NAT Network Address Translation

P2P Peer-to-peer

SDP Session Description Protocol

SIP Session Initiation Protocol

STUN Session Traversal Utilities for NAT

vii



TCP Transmission Control Protocol

TLS Transport Layer Security

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

WebRTC or WRTC Web Real-Time Communications

WS WebSockets

XLM Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

viii



Chapter 1

Introduction

In the last couple of years the Internet has changed the way we communicate, from the
way we do business to the way we socialize. It’s growth has been huge to the point that,
in 2015, the Internet has 3,2 billion of estimated users worldwide [4, 2], where the Internet
penetration in developed countries is estimated to be as high as 82,2%. [2] In recent years
the Internet became more mobile, as the range of devices that connect to it continue to grow
everyday, including smartphones, tablets and Internet-of-Things devices. It has also become
more social, with the growth of Social Network Services (SNS) changing the way most people
communicate with each other and the way content is created and shared online [36, 17].

Even before the Internet was born back in 1993 file transfers were common. At that
time File Transfer Protocol (FTP) servers and Usenets (similar to Bulletin Board Systems
(BBS)) were the standard way of file sharing. Sharing files through centralized systems is
still conventional nowadays, through file sharing sites like RapidShare or Mediafire, and cloud
computing services like Google Drive or Dropbox. The use of a centralized client-server model
is widely used for file sharing despite all the innovation is decentralized solutions.

Figure 1.1: Centralized vs. Decentralized.

As shown in 1.1, centralized solutions are very different from decentralized ones at a
structural level. In general the advantages of centralized approaches are the disadvantages of
decentralized ones and vice versa. The advantages of centralized approaches rely on unified

1



control, easy update and transformation of data, efficient use of resources and an easy struc-
ture to maintain and scale. While a decentralized approach provides more redundancy, lower
costs, flexible structure, modular upgrade and high effectiveness [8, 25, 38]. The difference
between centralized and decentralized approaches can be characterized as efficiency against
effectiveness respectively.

Regarding file sharing specifically, the decade of 1990s was dominated by the client-server
model, but new decentralized solutions were developed by the end of the decade that became
known as Peer-to-Peer (P2P) [38, 39].

1.1 Evolution of Peer-to-Peer
In 1999 a pioneer service was born that started a wave of peer-to-peer (P2P) applications and
services for consumers, its name was Napster. Napster was born in July 1999 as a file sharing
service focused on music. The program was the first of its kind to allow P2P file transfers
using central servers for indexing and search functionalities. Despite its big success in a
short amount of time, several lawsuits were filled against the company regarding copyright
infringement under the US Digital Millennium Copyright Act (DMCA), law that was passed
one year early. Eventually 2 years after the lawsuits Napster filed for bankruptcy. Napster
in legal terms had a problem, it’s centralized servers were a point of failure and the court
stated that if they could detect and avoid the sharing of copyrighted contented they would
be obliged by law to do so, in court Napster stated that they had a solution that would
remove 99.4% of all copyrighted content, but the idea was regarded as “not enough” [54].
Meanwhile enthusiasts tried to continue what Napster had started, as an open-source project
named OpenNap that extended the original protocol, however it had the same exact flaw as
Napster, it had central servers that were easy targets for DMCAs. Napster’s death started
a wave of new programs and protocols trying to take it’s place, which made 2001 the year
of birth of new file sharing projects, that later became known as the 2nd Generation of P2P
[48].

One of those programs was KaZaA, developed by Sharman Networks. KaZaA used a
proprietary protocol called FastTrack that was created by the same company, this protocol
was later was adopted by other programs [30]. FastTrack was more decentralized and relied
on supernodes that were selected depending on fast network connections, high bandwidth
and quick processing capabilities. Those supernodes were responsible for handling the search
for content and coordination between supernodes.

FastTrack’s functionality is similar to Napster’s, it’s main differences lie on using supern-
odes instead of centralized servers and optimizing the search for content through it’s network
of supernodes. However, the developers wanted control on who used the network, so they
required that all nodes would have to register on a central server, removing the decentralized
aspect of FastTrack’s design and introducing a point of failure. [7]

2



Another of the protocols developed in 2001 was GNUtella. GNUtella allowed a completely
decentralized approach where all nodes are equal and where there is no central entity or central
server. As a decentralized solution, GNUtella needs to be pointed to previously known nodes
for the bootstrap, this could be done by providing a public list of nodes or scanning for nearby
LAN nodes, the bootstrap process is slow and could lead to network fragmentation, but this
happens by design when using a fully decentralized system. [39]

Comparing the two, FastTrack was a semi-centered protocol and GNUtella was decentral-
ized. Both used a similar way to do searches, while GNUtella would query all the connected
peers and those would do the query for their connected peers until this reached 7 hops, on
FastTrack a peer would query a supernode and the query would be broadcasted to all su-
pernodes and then to their connected peers for 7 hops. Hops represent the number of times
the message has been forwarded, in this case the query would cease to be forwarded after
passing through 7 nodes.

Overall FastTrack produced better results querying more than 10 times more nodes than
GNUtella, this came with the trade-off of being more aggressive to the network and handling
all the data, which was considered as acceptable given how the backbone of supernodes
created among normal users [7].

FastTrack’s backbone for routing was more stable than GNUtella’s, given that supernodes
were less prone to disconnecting and were redundant. This meant that on FastTrack, network
changes typically would not have a negative effect, while on GNUtella, losing a node would
result in being disconnected from a chain of nodes and previous search requests would be
discarded.

While the search between these two protocols were a bit different by design, the file
transfers were almost identical, both were over standard HTTP [7].

In Distributed Systems the shifts between centralized and decentralized solutions is quite
usual [18] [25], and in file sharing this is no exception. Both models have their trade-offs but
the evolution of decentralized approaches have been more significant for file sharing solutions.
After the first generation (Napster) and the second generation (GNUtella, FastTrack) some
problems still remained to be solved [50], network fragmentation, loss of search replies, weak
solutions for downloads from multiple sources, no integrity or authenticity verification and
finally scalability issues. These problems were mostly solved in the third generation with the
BitTorrent Protocol. BitTorrent is a hybrid solution that relies on centralized trackers and in
the usage of Distributed Hast Tables (DHT). Stripping itself of the need for a search system,
the BitTorrent protocol aggregates users in swarms, that group users by the content they are
downloading/uploading, solving network fragmentation problems and content pollution[41].

1.2 Removal of Content
The consumption of content has always been tied to regulatory problems, more noticeably
copyright regulation. Centralized solutions have control over the content being served as well

3



as who is consuming it, making it possible to comply with copyright law and its complex
rules. These solutions are able to limit the access to the content effectively. Solutions that
rely on user uploaded content, like Youtube, are also able to remove content at will. In spite
of this, these platforms tend to side with entities that report content for removal, which
incentivizes the abuse of the law and shifts the neutral presumption of fair use against the
uploader [40, 11, 49].

The removal of content from P2P Networks is a lot more complicated due to its decen-
tralization and lack of central control. The evolution of P2P systems was heavily influenced
by these factors, to the point that in BitTorrent there is no way to remove content from the
network. This left three options for entities that want to remove content from the network.
The first was to target torrent search engines, as BitTorrent has no search mechanism, con-
tent is usually found using third-party websites. The second was to target trackers, being
the only component in BitTorrent protocol that is centralized, by targeting trackers the users
would have to fully rely on the DHT. The third was to target individual peers, by scanning
the DHT and deanonymizing peers connected to a specific swarm [55, 9].

For both centralized or distributed solutions, the way the platform deals with the removal
of content is an important aspect that determines its success. A level of balance needs to be
achieved between complying with all regulations and the system being abused. Security-wise
the platform also needs to be able to protect itself and its users, which is a challenge for
distributed platforms as external entities attack the network as a mean to remove content.
[56, 46]

The United Nations has also been advocating against Internet censorship, which includes
protection to consumers of their rights to free expression, fair use and privacy. [35, 34] Content
removal is highly connected to censorship as a mean to surppress people and their ideas. While
content platforms have different weaknesses regarding the way content is removed from the
network, P2P solutions are believed to have the upper hand for defending these human rights.
[47, 23]

1.3 Motivation and Goals
The need for multimedia content has been growing these last years [45, 44] and that stimulated
the start of several platforms of content distribution like Apple Store, Google Play, Youtube,
Netflix, Hulu, etc. Content is distributed in a centralized way and carries high infrastructure
costs to the entity that delivers them. However, P2P networks allow the distribution of
content in a decentralized way with low costs. These networks require the use of specific
applications and technical knowledge of how to properly use them, that turns it hard for the
general user to consume the content delivered on these platforms. Due to the inclusion of
new features in HTML in its 5th revision (HTML5), an opportunity has arisen to explore the
added functionalities, which allow the creation of P2P networks and streaming of multimedia
content directly in the browser.

4



The objective of this dissertation is to take advantage of these technologies that are still in
a development phase and that will be integrated into the HTML5 standard, specifically related
to WebRTC, P2P and WebSockets to develop a P2P based multimedia file sharing solution.
The dissertation makes use of the several technologies that compose HTML5, explores the
inner-workings of the BitTorrent protocol and the development of a prototype that allows
the distribution of multimedia content using strictly a browser.

This dissertation addresses the way multimedia content is distributed, aiming for a de-
centralized solution with low costs of operation. To achieve such goal, the solution should
connect both to a BitTorrent network and to a WebRTC network in order to share multi-
media content between clients. To increase the ease of usage of this P2P application, the
solution should run strickly on a browser.

1.4 Document outline
The remainder of this document is organized as follows. Chapter 2 introduces the State of the
Art, it is divided in 2 sub-chapters, the first one focus on products and services that are related
to this dissertation objectives and the second overviews protocols that are used to achieve it.
A solution is proposed in chapter 3, presenting its specification and architecture, explaining
why some design choices were made and how it complies with the dissertation’s objectives.
Chapter 4 provides in-depth information about the solution that was developed. Chapter 5
explores the results of an online survey. The goal of this survey was to determine how users
consume content online and what they value more on the platforms they use. Furthermore,
test results about the solution are presented. Chapter 6 focuses on main conclusions from
this dissertation and some suggestions about future work that could be done if the prototype
would to be used on a production setting.

5





Chapter 2

State of the Art

Distribution of content can be achieved through multiple means. A transfer is the action of
transmitting data over a network. To transfer a file a centralized solution can be used, relying
on HTTP or FTP, it can be distributed, using P2P protocols like BitTorrent or Gnutella,
and it can also use instant messaging services. This chapter is divided in 3 parts, Web
Technologies, Chat Solutions and File Transfers. These 3 parts describe multiple protocols
and services that use them as a way to distribute content.

2.1 Web Technologies
Web technology is described as the use of mechanics that make it possible for devices to
communicate and share resources on the web. While web technologies is often regarded as
consumed in a web browser and related to HTTP, it includes not only client-side technologies
like mark-up languages (HTML, CSS, XML) and scripting languages (Javascript, WebGL,
Ajax), but also server-side technologies and frameworks like PHP, ASP, Web Services, Grunt
and Spring, and some data indexing and storing technologies like SQL and NoSQL. Web
technologies is a broad term that describes an extensive range of protocols, programming
languages and frameworks. This section outlines two different protocols WebSockets and
WebRTC.

WebSockets

Web applications and a web sites have been evolving over time, not only the technology
but also how the users use them. As browsers became more widely used, web applications
became more interactive. Interactivity requires bidirectional communications between the
client and the server. This was usually achieved by overusing HTTP to poll the server for
updates while doing upstream notifications as normal HTTP calls. This caused high overhead
and a high number of connections per client, wasting valuable resources by trying to use

7



HTTP for something it wasn’t designed to. From this need for real-time and bidirectional
communications WebSockets was born.

WebSockets was created after some discussions over a TCP-based socket API specification
in HTML5 standard in 2008. The idea was so well received, that by the end of 2009 Chrome
supported the protocol and by the end of 2011 the standard was finalized and enabled by
default on most browsers.

A WebSocket connection starts from a client, the request is called WebSocket handshake
and it is very similar to a regular HTTP request with an Upgrade header, like HTTP it
uses the port 80 and the port 443 for WebSocket connections tunneled over Transport Layer
Security (TLS). [20]

The protocol is message-oriented. After the handshake is finished and the connection is
established, text and binary data can be exchanged bidirectionally and with low latency.

Figure 2.1: WebSocket Frame.
Source: https://www.websocket.org/aboutwebsocket.html

The frames used in WebSockets are really small, which as seen in 2.1 can be from 4 to
12 bytes of overhead per message. Since the protocol also supports subprotocols, it allows
both parties to agree on a fixed message format done via JavaScript Object Notation (JSON)
encoded messages or a custom binary format. Due to these subprotocols which are specified
in message headers, it becomes easier to parse them for both the client and the server.

Figure 2.2: Communication flow of XHR, SSE and WebSocket.
Source: https://hpbn.co/websocket/

8



As seen in 2.1, with a simple comparison between HTTP, Server-Sent Events and Web-
Sockets, it is easy to understand the advantage of both the client and the server being free to
send data at any point of time while using WS when compared to the other two alternatives.

WebSocket specification also includes ping pong frames. These frames are used for keep-
alive, heart-beats, network status probing and other examples, yet aren’t exposed by the API.
It is mostly assumed that the server is responsible for requesting pongs whenever appropriate.
[20]

Websockets may also be used for broadcasting messages for all clients or sending data
from one client to another, but inherently it is a client-server protocol, which makes it less
ideal for end-to-end communications between two clients.

Despite using TCP, this API does not allow raw access to the underlying network. Several
security measures have been taken so that a multitude of errors are general enough, so that
scripts using WebSockets can not be used to scan local networks and expose users information.
[20]

WebRTC

Browsers have come to replace a lot of common applications as web applications. Those
started to tackle all kinds of functionality inside the browser and making them widely avail-
able across different platforms. However, there was a few exceptions of functionalities that
browsers didn’t seem to be able to deal with, one of those was the voice and video calling
capability. After the acquisition of On2 and GIPS by Google in 2010, Google was at a place
where they could open source royalty-free replacements as well as a media framework to go
with it. Instead of doing simply that, they decided to add a javascript integration layer for
browsers and push it as a standard at Internet Engineering Task Force (IETF) and World
Wide Web Consortium (W3C), which signaled the creation of Web Real-Time Communica-
tion (WebRTC). [29] In May 2011 the project was open-sourced [10] and picked up by several
browsers, most noticeably by Firefox and Chrome. In a nutshell WebRTC is a plugin-free so-
lution for audio and video calls in browsers, this allows multimedia communication between
different endpoints without any third-party while maintaining a high security level on all
data.

The architecture of WebRTC is shown in 2.3. WebRTC exposes 3 core components, the
transport layer, the video and audio engines and the JS API. The transport layer handles
real time communication and session handling. Video and audio engines have all codecs and
hardware optimizations, including echo cancellation, noise reduction, image enhancements,
low latency encoding and so on. And lastly, the high level JS API simplifies the use of
the other components. As shown in 2.3, the browsers override the PeerConnection API,
and are responsible for the lower level Network I/O and acquiring Audio and Video sources,
additionally web developers have the WebRTC API that can be used to access all these
functionalities using HTML5 and JS, while ignoring hardware or codec specific details.

9



Figure 2.3: Architecture of WebRTC.
Source: http://www.iwavesystems.com/webrtc-peer-to-peer-imx6

WebRTC API has 3 relevant APIs which are getUserMedia, RTCPeerConnection and
RTCDataChannel. The first, getUserMedia, is responsible for synchronized streams of media
and is where contraints are defined, including which protocols or codecs will be used. These
have to be set before a connection is established. The second, RTCPeerConnection, is the
main WebRTC component, it handles stable and efficient communication of streaming media
between peers. The third, RTCDataChannel, is responsible for real-time communication of
arbitrary data with low latency and high throughput.

It might not seem obvious at first, but establishing a P2P connection between web
browsers with bidirectional communication is rather challenging. This happens because most
machines aren’t assigned a static public IP, typically a device is under NAT and a firewall
which means there is no direct way to reach them outside of the network, from the Internet.
To solve this, WebRTC can use one of two solutions, a Session Traversal Utilities for NAT
(STUN) server or a Traversal Using Relays around NAT (TURN) server. The aim of these
servers is to reply to the device exposing their public IP and port, so that a bidirectional
communication can be done from both sides of two peers establishing a connection.

The use of a STUN or TURN server is part of a larger process called Signaling. Signaling
concerns network discovery, session creation, media metadata and codec capabilities, yet it

10



is not specified by WebRTC and web developers are free to choose what technologies and
protocols to be used for the signaling process.

Figure 2.4: WebRTC JSEP Architecture.
Source: http://www.html5rocks.com/en/tutorials/webrtc/basics/

To establish the connection a Session Description Protocol (SDP) needs to be exchanged
by both peers, the first one is called the “offer” and the second one is called the “answer”,
all the media specific metadata is also contained in SDP. This offer/answer architecture is
known as JavaScript Session Establishment Protocol (JSEP), as shown in 2.4. After the SDPs
are exchanged, both peers generate Interactive Connectivity Establishment (ICE) candidates
and send them to each other. ICE candidates are a list of possible IP addresses, ports and
protocols to be used by the other peer, after all of them are exchanged, the WebRTC tries
to choose the best one to establish the connection.

To establish a WebRTC connection the signaling process has multiple steps that are
shown in 2.5. In this example Peer A starts the process by doing requests to the STUN and
the TURN server and creating the SDP Offer, which is sent through the Signal Channel. In
the example shown in 2.5 the signal channel isn’t specified, so it can be any protocol as long
as both peers agree on it. After receiving the offer, Peer B creates the SDP Answer and
sends it to Peer A through the signal channel. Hereupon both peers start generating and
sending ICE candidates to one another, in the example Peer A sends one and Peer B sends
after that, however it can happen in multiples ways. Both peers can receive a single list of
ICE candidates which each peer will try to pick the best one and establish the WebRTC
connection, or both peers can receive multiple ICE candidates, this is known as Trickle ICE,
in this case ICE candidates are send incrementally and the WebRTC API will decide when it
has a good ICE candidate so it can establish the WebRTC connection. As network discovery

11



Figure 2.5: WebRTC Connection Diagram.
Source: https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity

takes some time, the trickle ICE method usually achieves a much faster connection time.
There are 3 types of ICE candidates: Local, reflexive and relay. Local are actual IP

addresses bound to the target device and it is the highest preferred candidate option. Re-
flexive are candidates with the public IP address given by the STUN request and are the
next preferred option. Lastly, relay are candidates with public IP address assigned by the
media relay server, that will redirect all traffic to the target device. [27] In simple terms,
local candidates are usually chosen when the device has a public IP address that is directly
accessible, reflexive candidates are the mostly chosen ones, these rely on using the STUN
server to bypass NAT and firewalls, and relay candidates are a fallback, using TURN servers
to relay the data through a third-party server when no other option is available.

After the WebRTC connection is established, RTCPeerConnection enables real-time video
and audio data to flow between both peers using the setting that were specified when establish-
ing the connection. This is also when the RTCDataChannel can be used to send application
data between the two peers, this API is similar to WebSockets API by design, its difference
lies in higher performance and lower latency, given that there is no third-party server relaying
the data like in WebSockets, but being a P2P and offering customizable delivery properties,
as the underlying transport protocols can be chosen.

Encryption is used on all WebRTC components, including the signaling for establishing
a new connection. This assures that not only the media streams are encrypted, but also all
the setup communication and all further data over data channels. This point is essential as

12



WebRTC is used for communication between browser endpoints where there is no trusted
third-party, so this makes sure that media and data can’t be tampered with or eavesdropped
en route.

Current implementations of WebRTC have revealed a lot of privacy concerns, these hap-
pen because the requests to STUN Servers return a lot of private information, like the public
and private IPs exposing that machine and the network. As this information is available to
javascript, any JS code can use WebRTC to leak this information to third-parties. This issue
became even more serious when it was noticed that the information was leaked even behind
a VPN and that these requests to STUN Servers were neither visible in the developer console
nor being blocked by the typical privacy plugins like AdBlock Plus, Disconnect or Ghostery.
Until the time that document was written, there is still no way to solve this problem except
to disable WebRTC entirely, all browsers that support WebRTC leak the information, even
in privacy (incognito) mode. 1

Sharefest

Sharefest2 project started on a “hackathon”, and the objective was simple, a serverless way
of sharing files between browsers, though the users still had to go to a URL to download the
file, no content was served from the server. The project would do the WebRTC signaling and
the peers would share the content with one another. As long as that page was open, the files
would be shared to whoever peer that joined the same page. To share content, a initial file
would have to be given, then it would create its hash and add it to the URL. As the hashes
are unique, any visitor of the said URL would download the file from the remaining peers.

The concept of the project was simple but effective. The download speed was very good
and establishing the WebRTC connections didn’t take long compared to other WebRTC
projects at the time. Sharefest only handles single files, meaning the selected file would be
hashed and be accessible by its unique URL. Sharefest had a limitation that caused network
fragmentation, due to the implementation of WebRTC being different in both supporting
browsers (Firefox and Chrome), this meant that peers would only be able to connect to each
other if they were using the same web browser.

By mid-2014 the project was abandoned, and the browser updates broke most of what
was working. Some recent tests on different browsers had several unexpected behaviors, but
none of the tests could successfully download a file from another peer.

Swarmify

Swarmify3 is a service similar to a content delivery network (CDN) solution, but instead
of using localized servers chosen by geographical proximity, it uses a structure of multiple

1https://github.com/diafygi/webrtc-ips
2https://www.sharefest.me/
3https://swarmify.com/

13



distributed servers and peers. In essence the service exchanges efficiency for effectiveness,
by reducing the load on central servers and CDNs and sharing those load requirements with
regular users that are consuming the same content.

From the perspective of a client the solution is simple, swarmify only requires the client
to add some javascript code to the site and it manages itself. After that the site will function
normally and swarmify determines how viewers of the site share content of the site automat-
ically using WebRTC Data Channels. When a regular visitor accesses a website that uses
Swarmify’s service, it connects to a WebSocket server and checks if there are nearby peers. If
there are, a WebRTC connection is established and they download static content of that page
from them, if not, the static content will be served from the website normally. The selling
point of this service is that visitors of the site help serving the site’s static content like a paid
CDN would, however, this resources come as “free” to the website’s owner. Swarmify also
focuses on video streaming, where parts of the stream might be served through data channels
from other peers, effectively reducing buffering time and bandwidth.

Swarmify works as a CDN augmentation service, as it is used in parallel to a CDN,
effectively offloading part of the bandwidth to viewers of the site. The service manages to
save costs for the site owner and potentially reduce latency.

As Swarmify uses WebRTC, it is limited to browsers that support it, and on those that do
support it the same limitation referenced on 2.1 applies, where peers can only share content
between other peers using the same web browser. Swarmify doesn’t tackle the issue where
regular viewers of the site might not want to share their resources, specially for users with
monthly data caps. Disabling WebRTC would be an option, but users would also lose all the
optimization that comes from the use of Swarmify.

Peer5

Peer54 is a serverless CDN solution created by the same developers of 2.1.
It can be compared to PeerCDN5 and Swarmify, it does similar functionalities but better.

Peer5 doesn’t try to be a CDN, but reduce the costs on 2 assets specifically, video streams and
downloads. Technologically they are more or less identical, but they assure a better service
for their peers or else, it defaults to the normal HTTP usage. It is easier to understand for
streaming services, normally a user on the site would get the stream for the server or a CDN
service, what Peer5 does is try to find if any peer on the network that is watching the same
stream, is near than the CDN/Server, if it is, it uses it instead, assuring a better service
for the user and a bandwidth save from the server perspective. Also, if the peers are mobile
devices they won’t ever try to serve content to the network, as they consider it too unreliable.

Peer5 can never deteriorate user experience and it does real-time switching between P2P
and the Server as needed, this also means that the stream will have less delay than the
original solution (without Peer5). It has some disadvantages though, users on non-compatible

4https://www.peer5.com/
5https://github.com/PeerCDN

14



WebRTC browser will use the server normally and Peer5 will be ignored if there is no peer
that can give a better service than the server, this can be especially hard if the content isn’t
popular, however, popular streams are usually the bottleneck on CDNs, so it does complement
that CDN’s weakness pretty well.

As specified on their FAQ, they don’t use BitTorrent in any way, they have a proprietary
stack designed for WebRTC and hybrid rich content delivery. That is their selling point, but
their solution is very convenient for usual downloads as they connect every user downloading
the same content and they share it between them as long as that page remains open. It is
not specified if the high reliability requirement on the peers stated for streams is used for
this type of content, as the reliability regarding delay isn’t as important for static content.

2.2 Chat Solutions
Instant Messaging (IM) has a long history and always existed in different forms since comput-
ers were connected to networks. Instant messaging is usually defined as text-based communi-
cation between two or more participants over the Internet, allowing effective communication
between recipients that are online. It differs from other solutions like e-mail because of it’s
real-time component. IM applications grew to have a wide range of functionalities, some
more typical like chat rooms, file transfers and profiles, others even having voice and video
chatting built into them. While most of the IM solutions rely in a centralized model, some
functionalities like file transfers or video chatting are done directly between the user clients.
Of all the chat solutions in the market two protocols will be explored in more detail, IRC
and XMPP.

IRC

Internet Relay Chat (IRC) was born in 1988 and was created with the intent to extend the
BBS software. IRC is an application layer protocol over TCP that uses the client-server
model, where every message has to be relayed from the server to the clients.

An IRC server can connect to other IRC servers to expand the IRC network. Users that
are connected to one of these servers can communicate with any users seamlessly indifferent
to what server they are connected to, as long as the servers are connected to each other. The
structure of an IRC network can be perceived as a tree, messages are routed like multicast,
where the same message travels only once per network link. IRC Servers only relay messages
that need to be consumed on other servers or clients connected to them, the only exception
are network state messages that are always relayed to every server.

While IRC Networks are not as widely used today, most of the chat concepts it popularized
are still in use by most real-time chat applications, like channels or chat applications being
command-oriented. Channels can be understood as groups of users, where the group is
defined by a name that starts with a number sign “#”. Channels be joined or left by users

15



and have their own set of rules. IRC also establishes a hierarchy of powers inside a channel,
where users might have different rights that affect the channel and users inside of it.

XMPP

Extensible Messaging and Presence Protocol (XMPP) is created as an open-source protocol
that seeks to standardize the usage of IM across the market. There’s several types of IM
services, but most of them are very different and rely in proprietary code. These turned out
to be incompatible between with one another, despite serving very similar core functionalities.
XMPP came to solve that as an Internet Engineering Task Force (IETF) open standard, using
XML data format and allowing simple extensions to the core protocol.

As an open standard XMPP had improved rapidly and led to its wide adoption across
different vendors. Its adoption by popular IM clients like Google Chat and Apple’s iChat
brought compatibility among them, allowing users to chat with each other even when using
different applications. XMPP uses Extensible Markup Language (XLM) “stanzas” for proto-
col communication, which essentially is a fragment of XML that is sent over a stream. This
way of structuring data let’s XMPP to be dynamic and contain more data depending on the
extensions and functionalities the server has. Through XML namespaces it is easy to trans-
port custom data in addiction to standard messages without affecting clients or servers that
don’t support the extra functionalities. Using XML is also an advantage, given its popularity
as a data exchange format that is a standard for a lot of software, which simplifies integration
with other existing solutions.

XMPP network is formed by all XMPP clients and servers that can reach each other.
While it is possible to create a private XMPP network within an internal LAN, public servers
on the otherhand are connected to each other in a big network.

Figure 2.6: XMPP Client and Server Communication

XMPP uses globally unique addresses based on the Domain Name System (DNS). This
enables all XMPP entities to be addressable to one another and deliver messages over the

16



network. Similar to e-mail, it has the user followed by the domain name, for example
“user@example.com”. As seen in 2.6 clients connect to their server, meanwhile the servers
connect to other servers for communication with external clients. As DNS is used, locating
the target server is trivial, turning the routing process easy to handle for server to server com-
munication. XMPP addresses are generated and authenticated by the owner of the domain
in question, hence the server is responsible for its user accounts. XMPP uses a client-server
architecture where the server is responsible for handling most of the complexity, these include
the authentication, message delivery and the presence information of all users within the do-
main. This allows the XMPP clients to be simple and lightweight. For communication with
external users a server-to-server model applies, which means the server delivers the message to
the responsible external server and it is therefore responsible to deliver it to the assigned user
within it’s domain. This way of dividing responsibilities keeps cross-domain communication
scalable but also flexible enough to meet the requirements of individual domains.[43]

XMPP uses long-lived TCP connections in both client-server and server-to-server com-
munications. This has the advantage of bi-directional communication, allowing the server to
push data to a client whenever needed but has the disadvantage of lower reliability, given that
disconnects take longer to detect. All of the communication channels have robust security
using Transport Layer Security (TLS), while end-to-end encryption is possible to be achieved
by the use of extensions. 6

Some extensions of XMPP also allow peer-to-peer communication between clients (as
shown in 2.6), this is typically used for direct audio and video streams as a P2P connection
provides better latency and lower server costs.

2.3 File Transfers
Peer-to-Peer applications are one of the major ways used today for file transfers over the
Internet. [44, 45] Across the three generations of P2P, the evolution of P2P solutions have
matured the protocols that are currently in use and have pinpointed the characteristics that
have determined their success. Despite 3rd generation protocols all having some kind of
hybrid compromise, these protocols have structured themselves distinctly. Two protocols will
be explored in this section, BitTorrent and Gnutella, additionally, the BitTorrent section
explores some applications that use the protocol to accomplish unique results.

BitTorrent

The BitTorrent protocol is a peer-to-peer file transfer protocol where large amounts of data
can be transferred between users, and it employs several mechanisms to encourage good
behavior on the network without enforcing it with any central entity. In the early implemen-

6https://xmpp.org/rfcs/rfc3923.html

17



tation of the BitTorrent protocol it relied on a centralized tracker, a torrent file and a swarm
of peers.

For BitTorrent all the content is divided in pieces of equal and specified size (by the
torrent file), this happens even if multiple files exist in the content. A piece can contain, for
example, multiple small files, or the end of a file and the start of another, the BT Client
only needs to assemble the files correctly when the piece is written to the disk, in transit
the client only has to handle pieces. This makes the transfer easy and standard regardless of
the number of files in the content. Every piece has the exact same size, except the last one
which has the remaining data and doesn’t fill the entire piece. The size of pieces are a power
of 2 and typically grow depending on the total size of the content, therefore the piece lenght
of a torrent should be balanced. Whilst opting for an excessive piece lenght would lead to
inefficiency, setting it too small would cause large torrent files and more overhead.[3]

BitTorrent’s file distribution system starts by loading a torrent file into a BT client,
this file is usually downloaded from a web server where some info about the content of the
torrent is given. The torrent file has no data, it is just metadata that contains names, folder
structure, sizes and hash values. The torrent file’s structure uses an encoding algorithm called
Bencode, while it isn’t a friendly format for reading, it assures uniqueness in a compact binary
format. Bencode can hold byte strings, integers, lists and dictionaries. Strings are encoded
as a key and value pair, the key has the length of the string as an integer in ASCII and
base10 format, while the string is coded in binary format, so a string is encoded as follows
“<string length>:<string data>”. For the other 3 types, bencode has an initial letter to
identify the type, “i”, “l” and “d” for integer, list and dictionary respectively, and a tailing
“e” independently of the type.
Strings
3:bob represents bob
5:alice represents alice
Integers
i133e represents 133
i0e represents 0
i-50e represents -50
Lists
l3:foo3:bare represents [“foo”,”bar”]
l3:numi20ee represents [“num”: 20]
Dictionaries
d3:foo3:bar3:numi20ee represents {“foo”: ”bar”, “num”: 20}
d5:namesl3:bob5:aliceee represents {“names”: [“bob”, “alice”]}

Listing 1: Bencode examples by data type.

Bencode allows complex structures as Lists and Dictionaries can contain all the other 4
types and the algorithm doesn’t specify any restrictions for these types. Despite not being

18



as human-readable as JSON or XML, it’s encoding and decoding is fast, holds binary data
while maintaining an acceptable low size and has no limits for integers or string lengths. [5]

The torrent’s structure is rather simple and is represented as follows:
- Announce
- Info
– Name
– Piece Length
– Pieces
– Length
– Files
— Path
— Length

Listing 2: Structure of torrent metadata.

The Announce contains a tracker or a list of trackers, the Info is a dictionary of unique
keys that contains all the metadata of the content. Inside Info there’s the Name that contains
the filename if the torrent has a single file, or the directory name if it contains multiple files
inside it. Then there’s Pieces and Piece Length, the Piece Length specifies the number of
bytes in each piece and the Pieces contain the hash of every piece by order, this is used by
the client to perform integrity checks and validate if the piece received is correct. The Length
specifies the size of the file in bytes, if the torrent has only a single file it is under Info, if
not, every object in Files will have a Length. Files only exists if the torrent has multiple
files, in this it will have an object for every file, each one has its Length and Path, the Path
has the filename but can also specify several directories under the root folder of the torrent
(that is on the Name) where the file will be located. The files are ordered, and the hashes
in the Pieces respect the order of the listed files, this is important because a single piece can
have several parts of different files. The torrent can also have other optional information,
like Comment, Created By, Creation Date, Private and much more. The Private is a boolean
that informs the client whether it should stick to the swarm given by the tracker and disable
other peer discovery methods. As the BitTorrent protocol evolved, the information stored
inside torrent files suffered some changes. BitTorrent clients can opt whether they use the
extra information and whether the client has needed capabilities to use them (e.g. for new
features).

As an example the information contained on a torrent file is presented below for a torrent
for a Linux Distro (Kali Linux7):

7https://www.kali.org/downloads/

19



{
"announce": "http://tracker.kali.org:6969/announce",

"announce-list": [ [ "http://tracker.kali.org:6969/announce"], [
"udp://tracker.kali.org:6969/announce"] ],

"comment": "kali-linux-2016.1-amd64",
"created by": "ruTorrent (PHP Class - Adrien Gibrat)",
"creation date": "1453327437",

"info": { "files": [ { "length": "2945482752", "path": [ "kali-linux-2016.1-amd64.iso" ] }, {
"length": "70", "path": [ "kali-linux-2016.1-amd64.txt.sha1sum" ] } ], "name":
"kali-linux-2016.1-amd64", "piece length": "262144", "pieces": <Binary Hashes> }

}

Listing 3: Example of a torrent metadata.

Pieces information were removed for readability and the Bencode was converted to JSON
for the same reason. The converter used for this example is present in the footnote.8

For the BitTorrent client to download the torrent it has to connect to peers that have the
content, to do this the BitTorrent Protocol uses a Tracker. A tracker is a HTTP Server that
typically responds only to 2 URLs, the announce and the scrapper. The Announce receives
the parameters from the BitTorrent client and responds with a list of peers of the requested
torrent while the Scrape is a subset of the announce, and only gives info about the number
of peers and seeds. Scrape was used in the early implementations of the BitTorrent protocol
because request were light and the client could make decisions based on it, for example,
requesting for more peers earlier than expected when the reported pool of peers/seeds is
high. Scrape was also used in the early days to check tracker data, if the request came from
a browser it would report a more user-friendly page with the same information: torrent’s
name, number of total downloads, current peers and seeds. [1]

BitTorrent was built as a hybrid solution, the tracker is the only centralized part of this
protocol, as clients connect to the tracker they inform the tracker of their current progress on
the torrent and it keeps information about it. This became useful for private trackers that
monitor their users, implement rules on download/upload ratio and have control whether the
users can continue to use the tracker or not. The protocol wasn’t made with this in mind,
the word “private” might be a bit deceiving here, as the communication between peers has
nothing private about it, if other discovery methods are used the swarms of peers are rather
public even if the private tracker will only keep track of the clients directly connected to it.

8http://marquisdegeek.com/code_bencode.php

20



The BT Client’s request to the tracker (called get-announce from now on) contains info
on the state of the torrent (status, size in bytes downloaded, uploaded and left until 100%)
and information of the client (IP, port and peerID) and finally the info_hash of the torrent.
With this info the tracker adds the client to the peer list and saves the info that it finds
relevant. Get-announce also has 4 possible events, started is when a client starts a torrent
and the tracker adds the client to the peer list, stopped is when the client stops the torrent
and it is removed from the peer list, completed is when a client finishes downloading the
content and turns from a “leecher” into a “seeder” and empty when no event is specified, this
is used when a periodic get-announce is made to the tracker. The purpose of events is to keep
the peer list fresh and updated, making it possible for the tracker to keep track of seeders,
leechers and how many peers finished the torrent. After the client’s get-announce the tracker
always replies with a response-peerlist, if successful this response contains the total number
of leechers and seeders and a peer list. Unless the torrent has a low number of peers, usually
this peer list doesn’t contain all the peers that are in the swarm. Trackers have this number
picked and only return a random number of peers for the peer list. In the early days the
default was 50, nowadays as clients don’t rely only on trackers, the default on most trackers
is 20. [41] This is an important aspect of the tracker, a client doesn’t need to connect to that
many peers to download, giving the full peer list would be create an unneeded load for the
tracker and all the peers in the swarm, without much positive return out of it. Due to this
limit some clients would “hammer” the tracker doing multiple requests so they could get a
bigger pool of peer to select from, most trackers deal with this by temporarily banning the
client’s IP which made ill-intended clients drop this and try different approaches.

As BT Protocol became more widely used, the trackers were a usual bottleneck, despite
some efforts to encourage clients to query trackers as less as possible and decrease query
frequency, this wasn’t enough. As HTTP trackers had significant overhead, in 2008 UDP
Trackers became a standard, effectively reducing the traffic by 50% and reducing CPU usage of
the trackers, the new UDP implementation made trackers more light because complex parsing
was no longer required as well as no connection handling. [22] The protocol specification for
the UDP Tracker almost identical to the HTTP specification [22, 51]. However, due to UDP
connections being easy to spoof the tracker could be used in DRDoS attacks, to prevent this
the first 2 packets exchanged set a connection ID that ensures it doesn’t happen, this can
be considered a simpler TCP handshake. [22] This connection ID is like a session cookie
in HTTP approaches, it has a 2 minute timeout and can be used in multiple get-announce
requests, if the connection ID is invalid the packets are dropped and if it expires a new one has
to be requested by the client. It is a good policy to limit the allowed request number of peers
from the tracker side to keep the size of the requests small and also avoid packets higher than
1500 bytes to avoid transport layer packet splits. As most of BitTorrent’s implementation it
allows the specification to be extended without breaking compatibility.

These concepts just mentioned are intertwined on the peers side, as the clients are decen-
tralized and totally independent, some software clients might even choose to use the protocol

21



in different ways. To keep it simple the fig. 2.7 shows generically how a client bootstraps and
is able to join its intended swarm of peers for a given torrent file:

Figure 2.7: BitTorrent Client joining the swarm.

The client first has to load a torrent file (step 1), as stated previously this file has all the
metadata needed to checksum pieces, create the empty shells of all files and information on
how to join the swarm, usually given by the tracker. This step is done by the user, that picks
a torrent file from a third-party and loads it into a BitTorrent client.

The client requests a get-announce from all the trackers that are listed in the torrent file
(step 2), by doing these requests the trackers will add the client’s info to the pool of peers
for that torrent. Then the client waits for successful response-peerlists (step 3), these lists
contain only a small number of peers which the client picks some of them and tries to connect
to them.

The next step is to shake-hand with the selected peers (step 4), the packet is simple, it
identifies the BitTorrent Protocol and contains the hash of the torrent and the peerID. If both
peers do this successfully the connection is established and data can flow in either direction.

After the client is connected to several peers, it is now part of the swarm of peers of this
specific torrent. Assuming the peers A successfully established a connection to the peer B
and the seeder C they can now trade pieces like shown in the fig. 2.8:

In this case on Figure 2.8, the peer B is a leecher, meaning it didn’t finish the torrent yet,
and C is a seeder, meaning it has already completed the torrent and it only needs to upload
the content to other peers. In this example A just started this torrent so it has no content
to trade with B, so it should request pieces to C that B doesn’t have, so it can trade and
optimize download speed, more about this will be explored below.

After the client joins the swarm of the torrent, there are only 9 types of messages peers
can exchange: Choke, unchoke, interested, not interested, have, bitfield, request, piece and

22



Figure 2.8: BitTorrent Client downloading pieces.

cancel. [22] This excludes handshakes and keepalives, that have an empty message type and
no more fields except those in the header (fields for protocol, peerID and torrent hash).

The first 4 have no payload and just define a state to the peer it is sent to. Have message
has a index of a piece that has just been downloaded successfully. Bitfield message is only
sent after handshake and contains a map of all pieces that the client has, this exposes all
pieces that the client has and which ones it is missing. Request message has the index of the
piece, a begin offset and a length specifying the length of the request, this message is used
to request sub-pieces. Piece message has the index of the piece, a begin offset and the piece
data, this is not necessarily a full piece as they can come as several sub-pieces. The cancel
message contains the same index of a piece, an offset and a length, and is used to cancel
previous requests, cancel messages are usually used in endgame mode.

Another extra type of message in nowadays bittorrent clients is the message port, this
message specifies the port used for DHT functionality.

For the file transfer itself the torrent data is divided in pieces and each piece is divided in
blocks (also called sub-pieces), traded using tit-for-tat strategy. Tit-for-tat, in short meaning
“this for that”, putting it simple terms it cooperates with the other party if they cooperate
back, this concept gets the best results in the prisoner’s dilemma [19] and achieves the best
resources utilization when compared to any other cooperative techniques known today [14].
In BitTorrent specifically tit-for-tat means that peers will reciprocate uploading to other
peers that upload to them. This concept also applies to connections, to be effective the peers
have a limited number slots for peer connections, meaning that both peers have to benefit
from that said connection, otherwise the peer might choose to connect to another peer that
gives a better payoff to the use of that connection slot. [?]

There are 2 states that are used to regulate how sub-pieces are transferred through a peer
connection, choke/unchoke and interested/not interested. Requests and subsequent transfers
will only occur if the state is interested and unchoked. When a peer establishes a connection,
it starts as not interested and choked, the peer will send interested to another peer if they
want pieces that they have, but requests will only be made if the other peer sends an unchoke.
These 2 states exist for both directions per connection, meaning that the transfer of sub-pieces
might occur in only one direction and not necessarily in both. To stop a transfer only one
of these states has to change, this is what the bittorrent protocol uses to regulate transfers

23



speed.
As a connection is established, bitfield messages are exchanged, this informs both peers

about what pieces they have. As new pieces are acquired, have messages are sent, so the
bitfield is updated. This is crucial to know what pieces other peers have and can be requested,
interestingly this also gives the client some idea of the transfers speeds of the peers it is directly
connected to, by looking at how frequent it receives have messages. Using this information
the client decides what pieces to request from others, this is important for a good performance
as the client needs a strategy to get pieces fast, as well as getting “rare” pieces so it can trade
later. Algorithms can get complex for piece selection but 4 concepts are essential: Strict
Priority, Random First Piece, Rarest First and Endgame Mode.

Strict Priority policy stands for giving priority to sub-pieces of pieces that have already
started being downloaded, this policy encourages the client to finish incomplete pieces before
starting to request new ones. Random Piece First is a policy that is used when the client has
a low amount of pieces, the client requests random pieces in hope of getting pieces quickly.
Rarest First is the general policy that is followed, where the client requests the rarest pieces
of the peers it is connected to, this policy works well because the client will always have
pieces to trade with other peers leaving pieces that are more common for later, the likelihood
of having nothing of interest to trade is therefore reduced. Endgame Mode is a policy that
is followed when all pieces have been requested and the torrent is close to being finished,
as some peers are slow and could delay significantly the ending of the torrent, these last
pieces are requested to multiple peers in hope to finish it faster, as sub-pieces arrive the
client sends cancel messages to other peers for which the sub-pieces were requested. However
it isn’t uncommon that the client receives copies of the same sub-piece which reduces the
effectiveness of the network as these sub-pieces are discarded and the bandwidth is wasted,
which is the price to pay for this policy. [14, 15]

Congestion control has always been a problem to deal with on P2P applications, this is
the case because it is hard to control bandwidth over many connections at once, which is
always the case in P2P. To help mitigate this problem the BitTorrent protocol has the choking
mechanism as a tool to control and ensure a more consistent download rate. There are a lot of
choking algorithms but some concepts remain constant. Choking algorithms follow variants
of tit-for-tat, meaning that they should reciprocate to peers that are uploading to the client.
There should be a fixed number of unchoked peers at a given time for upload (usually 4),
these are chosen as efficiently as possible to achieve good return, pieces from them as a trade,
generally the choking algorithms selects the peers with more bandwidth. As connections
need some time to optimize and stabilize speed-wise, choking and unchoking shouldn’t be
done in quick succession, this is known as “fibrillation” and should be avoided. Lastly there’s
optimistic unchoking, this ignores every metric of the peers and uploads for 30 seconds to a
random peer, optimistic unchoking has good results because the peer might try to reciprocate
in the near future, and as the selection is random it gives a chance to peers that have low
amount of pieces. Newly connected peers are also more likely to get selected by optimistic

24



unchoking. [14] [3] Choking algorithms are interesting because they value bandwidth and
make decisions based on it, the idea of having a low number of slots also achieves a better
use of resources which isn’t obvious at first. When the client is a seeder it no longer has
download rates to decide which peers to unchoke and it no longer uses a tit-for-tat strategy,
to get better value for the client’s upload 2 strategies are used, uploading to peers with the
best upload rates and uploading to peers that no other peer is uploading to. These gives
pieces to peers that have good upload rates and are able to contribute more to the swarm
and to peers that aren’t getting pieces, giving them the opportunity to have pieces to trade
and make better use of their resources. While this strategy for seeders works well, a specific
strategy for initial seeders called superseeding achieved better use of resources in that specific
case.

When the client is a seeder it no longer has download rates to decide which peers to
unchoke and it no longer uses a tit-for-tat strategy, to get better value for the client’s upload
2 strategies are used, uploading to peers with the best upload rates and uploading to peers
that no other peer is uploading to. These gives pieces to peers that have good upload rates
and are able to contribute more to the swarm and to peers that aren’t getting pieces, giving
them the opportunity to have pieces to trade and make better use of their resources. While
this strategy for seeders works well, a specific strategy for initial seeders called superseeding
achieved better use of resources in that specific case.

Superseeding is an algorithm designed for optimizing seeding when there’s only one orig-
inal seeder. When a torrent is created and shared usually there’s only a single seeder, as the
seeder has limited bandwidth it becomes a bottleneck for all peers, even when peers focus
on the rarest pieces, the seeder could upload more than 150% of the total size of the torrent
without any of the peers becoming a seed. Using Super Seed Mode the original seeder masks
itself as a regular leecher with no data and sends them have messages of rare pieces that were
never sent before, this lures the peer to request them. As the seeder will only use it’s upload
to send unique pieces that were never sent before it doesn’t waste any bandwidth, achieving
greater results than seeding normally, both in higher speed in the swarm network and faster
time to get need leechers become seeds. [3]

In 2005 one of the popular BitTorrent clients at the time, Azureus, came up with the
first implementation of trackerless torrents. This is achieved using a Distributed Hash Table
(DHT), it provides a lookup service to hashes, pairs of keys and values that is distributed
among different nodes, inherently DHT implementations are autonomous, fault tolerant and
scalable. There is no central coordination for the whole DHT network, a high number nodes
are able to join and leave the network without the routing between the nodes hardly chang-
ing, making the whole network reliable and scalable. Typically this ends up as a trade off
between efficiency and latency. [16] DHTs provide a structured key-based routing attain-
ing decentralization like Freenet and Gnutella with the efficiency and guaranteed results of
Napster, however it only supports exact-match search rather than keyword search. [13]

There are several types of DHTs, their characteristics remain similar but they differ in

25



structure, routing algorithms and performance. Azureus’s DHT implementation is based on
Kademlia, later on that same month BitTorrent, Inc came up with their own DHT imple-
mentation also based on Kademlia, known as Mainline DHT.

Kademlia is a DHT that uses UDP to interact with it’s wide range of nodes that forms an
overlay network. An overlay network is a virtual network formed of virtual links that runs on
top of the Internet. Each node is identified by a unique node ID and keeps lists of neighbor
nodes with “close” node IDs known as k-buckets, their node ID doesn’t only identify a node
uniquely, but is also used as a way of routing and key lookups. In Kademlia the distance
is calculated as the exclusive or (XOR) of 2 node IDs or a node ID and a key. This results
in nodes that are neighbors because of their random node IDs but that can be in widely
different geographic locations.

Kademlia prioritizes nodes that have been connected for a long time, this provides a
stable network and resilience to attacks, as these valid nodes typically remain connected for
a long time in the future.

As stated on chapter 1, for a P2P system to be healthy and grow in number of users,
it has to assure data integrity, high availability, good scaling for a high number of users
and discourage parasitic behavior. BitTorrent managed to achieve all of these points in an
early stage of development, however BT solution lacks certain aspects by design. To use
BitTorrent most users rely on other components for several functionalities, the most relevant
being search systems, servers for metadata files (.torrent) and moderation systems to ensure
data integrity. [41]

On the early days third-parties that were responsible to keep the trackers would also
give this service of providing torrent files and some kind of search capability. This became
less common as the protocol grew in use and legal problems became more frequent, meaning
that search engines started to give exclusively that functionality while using 3rd-party public
trackers, and public trackers became mostly donation-based, independent and avoid any data
aside from the swarms. The exception to this are private trackers, that usually have their
own trackers, provide torrent files as well as search capabilities while controlling the peers
behind a login system, relying on exclusivity of content and better performance as its sell
point. [32]

Maelstrom

The beta version of this project allows streaming directly of the BitTorrent network into the
browser9. This browser however has a built in BitTorrent client into a modded version of
Chromium, made from the BitTorrent Company itself. The intent of this project is to be
able to read websites delivered in torrent form, while completely different from the target of
this dissertation it is an interesting project and a good way to use the BitTorrent technology
as a way to serve decentralized websites in a free, open and uncensored network.

9http://blog.bittorrent.com/tag/maelstrom/

26



There is also ZeroNet10, a similar project that uses the exact same concept but uses
Bitcoin technology and is open-source.

WebTorrent

WebTorrent11 is a open-source torrent client with streaming capabilities that uses WebRTC
connections to feed content for clients unable to use UDP/TCP connections. As an overview,
it is a BitTorrent implementation over WebRTC, the solution is written in NodeJS12 and
made available to the browsers through Browserify13, making the browser clients connect to
the rest of the peers over WebRTC.

WebTorrent’s approach tries to replicate the BitTorrent protocol over WebRTC in a
way to encourage BitTorrent clients to support WebRTC connections directly, enabling any
browser to be directly connected to the BitTorrent clients without any hybrid solution between
the WebRTC and BitTorrent network.

WebTorrent solution has two types of peers, hybrid and webtorrent peers, the first is the
implementation on NodeJS with a complete BitTorrent client and WebRTC capabilities, the
second runs in the browser on Javascript and is connected only to WebRTC peers.

Figure 2.9: How WebTorrent connects to BitTorrent
Source: https://github.com/feross/webtorrent

WebTorrent is divided in 14 NodeJS modules:
Of those 14 module, 2 of them are extensions, non-standard implementations of PEX

Protocol and a way to download metadata to support downloads via magnets (without the
torrent files). On the plus side, the division on different modules eases the development of the

10https://zeronet.io/
11https://webtorrent.io/
12https://nodejs.org/en/
13http://browserify.org/

27



Module Description
webtorrent torrent client

bittorrent-dht distributed hash table client
bittorrent-peerid identify client name/version
bittorrent-protocol bittorrent protocol stream
bittorrent-swarm bittorrent connection manager
bittorrent-tracker bittorrent tracker server/client
create-torrent create .torrent files

ip-set efficient mutable ip set
load-ip-set load ip sets from local/network
magnet-uri parse magnet uris
parse-torrent parse torrent identifiers

torrent-discovery find peers via dht and tracker
ut_metadata metadata for magnet uris (ext)

ut_pex peer discovery (ext)

Table 2.1: WebTorrent Modules

project and makes it easier for multiple developers to work on the project without breaking
it. If some of the modules are good enough they might be used by other related repositories
which is one of the purposes of open source projects.

WebTorrent Hybrid Client14 uses both WebRTC and TCP/UDP, where WebRTC is used
for the WebRTC network and the TCP/UDP is used to connect to the BitTorrent network.
This app is written in NodeJS, the initial development had planned for WebTorrent’s hybrid
client to become a chrome extension, but problems with the Chrome API led for it to continue
as a NodeJS client. This client works in MacOS and Linux, but because of implementation
problems of the WebRTC dependency (wrtc15) it has no Windows support. This limitation
however is due to the usage of NodeJS libraries that are still under development and which
leads to unstable builds in the short term. These limit somewhat the usage of WebTorrent’s
Hybrid Client by new users, usually leaving it’s usage to techsavvy-only users.

WebTorrent project intents to push its BitTorrent implementation over WebRTC and en-
courage current full-fledged BitTorrent clients to implement WebRTC support using WebTor-
rent’s specification of the protocol. Remarkably the Hybrid Client isn’t very important in
the long run, as it is a tool for this early stage until BitTorrent Clients are encouraged to
implement access to the WebRTC network.

An aspect of WebTorrent project is that it started to implement a BitTorrent Client in
NodeJS and then proceeded to convert it to “pure” JavaScript through Browserify. Browser-
ify16 is a tool for compiling NodeJS code into plain JavaScript that can be run on any browser,
this is accomplished by resolving all dependency modules used by the NojeJS application and
that are then concatenated into a single self-contained file, browserify handles the conversion

14https://github.com/feross/webtorrent-hybrid
15https://github.com/js-platform/node-webrtc
16Documentation: https://github.com/substack/node-browserify

28



of NodeJS modules into browser compatible code and manages to create a negligible overhead
despite concatenation of all the code. The project’s approach have constraints, some modules
are simply impossible to browserify, others have certain libraries that have to be overloaded.
Ultimately this choice requires a lot of maintenance and a lot of bugfixing as browserified
code can misbehave, specially as sometimes parts of the code are completely different from
the NodeJS client (hybrid) to the browser client (WebRTC-only).

Most of the current uses of WebTorrent rely on consuming content that is on the Bit-
Torrent network. For this to happen, the solution requires a hybrid client to bridge the
two different networks so the content can be consumed. Without a hybrid client for a given
magnet or torrent, no content will be downloaded from the BitTorrent Network and clients
will have to rely on WebRTC-only peers (also called as “web peers”). While some discussions
point to hybrid clients serving as proxies in the meanwhile, or a need for specific BitTorrent
to WebRTC bridges, currently such solution has been implemented. Ideally the full-fledged
BitTorrent clients will support WebRTC, discarding the need for such bridges or for peers
to serve the community from goodwill and bring content to the WebRTC network. At the
time writing there has been some development on WebTorrent support as a plugin in Vuze
BitTorrent client.17

As an open-source project that has its own contributing community, WebTorrent is al-
ready used as a library for many other third-party projects and continues to grow in relevancy
among P2P solutions . As BitTorrent today dominates the P2P environment and WebTorrent
is a key project to push BitTorrent to different clients using WebRTC, some great changes
might come from this project and change the way we share data across different devices.

Gnutella

Gnutella was designed to be a P2P system based on an unstructured overlay that allows
fully decentralized sharing of files between its peers. Unstructured overlay network stands
for the way the overlay is built by establishing random connections to neighboring peers.
These have the benefit of having a low cost to build and maintain while keeping a natural
level of redundancy and a shared load among all the nodes in the network. [28] This overlay
network is used to search for content by flooding, which every peer forwards requests to all
its neighbors until a time-to-live (TTL) is attained. Gnutella has no central server, so a new
peer needs to know at least one Gnutella peer to join the network. However the protocol
doesn’t specify any particular way for a peer to bootstrap, as such the multiple possibilities
on how to bootstrap remain as a choice for the user.

Gnutella operates in a randomly assigned overlay that is formed of peers that are consid-
ered equal in all regards, and the protocol defines 5 types of messages they can exchange:

Ping - Probes other peers
17https://wiki.vuze.com/w/WebTorrent

29



Pong - Response to a ping

Query - Search request

QueryHit - Successful reply to a search request

Push - Request for download

The Ping message has no payload and is used to probe neighbor peers in the network. The
message Pong is used in response to a Ping and has information of the peer and some basic
information regarding the files this peer is sharing. The message Query is used to search
for files, this contains the search criteria and several flags that define limits to how the
message is propagated. QueryHit message is the response to a Query that is only used if
files corresponding to the search criteria were found. The message contains a list with all the
file information that corresponds to the search criteria. Finally there’s the Push message,
this contains information about the file being requested to that peer so that a download can
start. The message also contains the IP and port of the requester to where the file should
be pushed. To prevent routing loops all the messages have IDs and will be discarded if it
reaches the same peer twice.

Figure 2.10: Searching and Requesting a File in Gnutella v0.4.

The search in the Gnutella network is done by flooding, also known as constrained broad-
cast, meaning that the query is sent to all of the peer’s neighbors recursively until the TTL
reaches 0. All messages in the network have a max TTL of 7, after each message passes
through 7 peers it is no longer retransmitted. Flooding is practical for small networks but
as every request causes the peer to retransmit the request to every peer it knows, this causes
larger networks to exponentially generate more traffic making the solution inherently unscal-
able.

The evolution of the protocol in Gnutella v0.6 solved v0.4’s limitations by going towards
a superpeer-based architecture similar to what KaZaA/FastTrack had implemented. After
version 0.6 the peers are superpeers or regular peers. This added more structure to the

30



Figure 2.11: Searching and Requesting a File in Gnutella v0.6

network as superpeers are connected to each other and queries are only forwarded to regular
peers if they can handle them. Regular peers may turn into superpeers dynamically depending
on bandwidth, uptime and CPU power. This way peers are regarded due to capability and
regular peers connect to one superpeer using it as a proxy to the entire network. This version
of Gnutella also implemented DHT functionality among superpeers for searching content and
caching for pong messages, which greatly reduce the signaling traffic and overhead of the
network as a whole.

As seen in 2.11, the search became more simple and efficient by using superpeers. As
regular peers use the superpeers as proxies to the network, they use less resources. Meanwhile
superpeers are able to optimize the network by caching information and relying on a smaller
network between superpeers, making the whole architecture more stable and scalable.

31





Chapter 3

Proposed Solution

This chapter describes the proposed solution following what was explored in the previous
State of the Art chapter. With all the objectives in mind, the proposed solution is a pure
javascript implementation of a prototype capable of communicating with a BitTorrent net-
work and a WebRTC Network.

3.1 Specification
Several parts of the solution are specified in this section, as well as some of their requirements.
As the objectives for this dissertation have been laid out, some specifics of the protocols used
forced the solution to be tailored around them, affecting the design choices of the architecture.
Therefore it makes sense to define the specifications first, before laying the architecture that
was highly influenced by the former.

After this point on the document, the prototype solution of this dissertation will be
regarded as SeedSeer. The name comes from Final Fantasy XIV, SeedSeers are the authority
between elementals and humans, a bridge between both races that are regarded with great
wisdom, alike this dissertation’s solution that tries to be a bridge to the BitTorrent network
and the WebRTC Network. As the two words that form it, Seed is related to the BitTorrent
protocol meaning the uploader and Seer meaning to have vision of the future or foresight.

BitTorrent Network

To find content the BitTorrent clients can use several protocols, Local Peer Discovery (ex-
tended by BEP 261), Peer Exchange (PEX Protocol), Distributed Hash Tables (DHT) and
Trackers. Trackers were the default way BT clients use to find peers for a given content (rep-
resented by a hash), the other 3 protocols were introduced as BitTorrent protocol evolved
and grown in usage. Trackers were initially over HTTP, but as usage of BitTorrent grown
it became too costly to maintain and scale, so a UDP implementation is today the de facto

1http://bittorrent.org/beps/bep_0026.html

33



Figure 3.1: BitTorrent Discovery Protocols.

standard of today’s implementation of BitTorrent Trackers. With the growth in usage of Bit-
Torrent the use of DHTs became more popular, despite being slower than relying on trackers.
Using DHTs provided a decentralized solution that was initially used as a backup way to find
peers when trackers were unavailable, but it had become immensely favored since then, so
much that some clients today rely exclusively on DHTs to find new peers.

A connection to the BitTorrent network requires the use of either TCP or UDP. The most
interesting protocol to find peers for this solution is the DHT, given it is decentralized and
scalable, without having to rely on a tracker. While PEX and LPD are interesting protocols
to complement the peer list, both aren’t reliable for finding the first initial peers. Comparing
the use of a tracker to the DHT, the DHT scales better and is resilient to attacks while having
the trade-off of being slower than the centralized solution.

Asside from joining the swarm, BT clients use TCP and UDP for downloading and up-
loading content. This adds the requirement for SeedSeer to be able to use these protocols.

All BitTorrent clients use a configuration on how many connections it can have globally,
this limit is used only for actual active peer connections for download and upload purposes,
everything else goes out of this limit. Typically the default is around 200 connections, while
UDP requests specially for trackers or DHTs don’t count towards this limit. As SeedSeer is a
client in javascript, the number of available connections might be a limiting factor compared
to a native bittorrent client.

WebRTC Network

For a WebRTC connection to be established between two peers, a signaling phase is needed
which needs to be handled by a third party. The WebRTC standard let us consider the
choice of method or protocol to use for the signaling process. Adding to this, for a peer to

34



join the network it has to know at least one peer. This is a typical problem of a decentralized
solution, the client needs to have a defined way to bootstrap a client into the network. For
truly decentralized solutions (like Gnutella), the client can scan the internet in an effort to
find other peers, this approach is quite slow, relies on clients to run for long periods of time
and makes it impossible to bootstrap on clients behind a NAT. On the other hand using a
centralized solution goes against the objectives of this dissertation, so the approach should
be a middle ground. In summary, the WebRTC signaling has to be reliable and as close to
serverless as possible and the bootstrap process (of finding the first peer) has to be a simple
process, both for the user and from a tecnical standpoint.

The chosen solution for the signaling process is the WebSockets Protocol. WebSockets
are easy to use and are cheap on resources, to use them a HTTP server is required. As the
WebRTC signaling is done between two peers through WebSockets, the HTTP server works
as a third party, playing as a proxy between the two. As WebSockets are used for signaling,
it also becomes the ideal solution for peer discovery, before any WebRTC connection is
established.

WebRTC connections are resource expensive to start, they take relatively a long time to
establish and aren’t efficient to exchange a low number of packets. For this reason WebRTC
is used for the transfers, leaving WebSockets essentially for peer discovery and the signaling
process. By transfers, it is meant that WebRTC connections handle the data, the metadata
and individual requests for parts of the files (pieces), as the client already has an established
connection to the required peers.

Arguably WebRTC could be used for peer discovery, using WebSockets for the initial
signaling and then handling everything over WebRTC. There are two reasons not to do this.
The first is that clients become lighter, clients don’t need to be so complex or have too many
connections, most clients will be connected to the network for short periods of time and using
only a browser. So relying on a chain of peers that are totally decentralized would fail to give
a good service to most of the peers. This problem existed in earlier versions of Gnutella, with
the added complexity that when the chain of peers were broken, establishing new WebRTC
peers to de-fragment the network would be increasingly more difficult as the clients can’t
simply ping or try to connect to new peers over WebRTC like Gnutella would do, by simply
using UDP. The second reason relies on limitations on today’s solutions this dissertation
is built upon, currently the browsers have limits on how many WebRTC connections are
allowed, these are set because WebRTC connections are heavy to establish and have a lot of
overhead if we consider it for low amount of packets per peer.

As referred in 3.1, BitTorrent’s connection limit per client is typically 200, however UDP
communication doesn’t count towards this limit. Similarly, browsers have a limit of WebRTC
connections. As WebRTC will only be used for transfers it is similar to the active TCP
connections in BitTorrent clients, furthermore WebSockets are used for everything else, just
like BitTorrent uses UDP.

35



Heterogeneous Peers

The advantage of a pure javascript solution is the ease of use for new users. As no installs
are required, the client is served directly on a browser. This lowers the learning curve that
nowadays stands as a barrier for non-techsavvy users to use p2p solutions like BitTorrent
clients. However a javascript client served through a webpage has several limitations. This
would not provide most of the functionality required for SeedSeer, so to appropriately achieve
all objectives, a heterogeneous architecture was chosen.

Similarly to Gnutella, SeedSeer has two types of peers, the Supernodes and regular Nodes
(regarded as simply “peers” from now on). While in Gnutella peers can become supernodes
depending on their resources, in this solution it depends on where the client is run. Peers
run the client as a regular webpage, while supernodes run the client essentially like a browser
extension , exploring other browser resources that are unavailable to simple JS running in a
website.

There’s mainly 3 reasons in this solution for using a Supernode:

• Bootstrap

Initially a peer has to join the network, this is commonly referred as bootstrapping.
While bootstrapping is essential, not all peers require the ability to bootstrap other
peers, as most clients would be ideally lightweight, have low performance and be behind
a NAT which makes them unreachable. In SeedSeer the peers will bootstrap through
a supernode.

• UDP/TCP Capabilities

The capability to use UDP and TCP is essential for several functionalities, like
connecting to the BitTorrent network. However regular peers running javascript can’t
use these protocols directly. Using supernodes for this permits them to handle the
BitTorrent network, while bringing its content to other peer that can’t access it.

• Router for WebRCT Signaling

As referred in 3.1, a third-party is required to establish a WebRTC connection. To
avoid using an external entity, a supernode handles the routing between two peers that
want to connect using WebRTC.

Identically to most supernode architectures, each peer is only connected to one supernode.
An example is shown on fig. 3.2, the Supernode is shown as the hexagram and regular peers
as circles. All peers will always keep an active websocket connection to a supernode (shown
as normal lines). Both supernodes and peers run the exact same javascript modules, being
that the supernode has more modules to handle all the extra functionalities. This avoids
having to maintain different versions of code for both types of peers.

36



Figure 3.2: Four peers connected to a Supernode.

Chrome App

For a supernode to run in a browser there are two possibilities, it can run as an extension
or as an app. An extension typically extends the browser behavior and modifies web pages.
An app however runs with a dedicated user interface (UI) and can run in the background,
without the requirement of having a certain web page open.

The supernode implementation runs as a Chrome App, with the added benefit of having
access to the Chrome API in full. The Chrome API gives access to storage and network
capabilities, with this the supernode can manage where the content is stored and use the
network API to have access to sockets.

The peer’s code that includes the visual interface runs also within the supernode. However
as a chrome app, it has slight differences due to its UI not being exactly a webpage.

Identity-based Routing

As peers rely on supernodes for establishing WebRTC connections, identifying peers by their
IP address wouldn’t have any benefit, as they can’t connect to them directly. While supern-
odes know exactly the peers and their routing info, all communication to peers is always
focused on their identity (PeerID) or partial identity (nick). As there is no type of authen-
tication, registration of identities or even a way to assure that identities are unique between
different SNs, the same identity in a different time might refer to a different peer. Identi-
ties are randomized and don’t have a high chance for collisions to be common, if a collision
happens within a supernode, the supernode is able to solve it.

All communication in Seedseer is possible using these identities, while actual p2p con-
nections through WebRTC does expose the clients information, all the other interactions
between peers and even the indexed content uses identities for routing the messages. This
abstraction provides some privacy, as only supernodes can translate identities into the actual
clients information (like IP addresses).

37



3.2 Architecture
This section defines the proposed architecture for Seedseer in accordance, but not limited,
to the specification in the Section 3.1 above. The architecture section is divided in three
main parts, the Seedseer client that specifies the architecture of a regular peer, the Seedseer
Supernode that specifies the architecture of a supernode that also includes the previous client,
and finally an overview of the network and how several peers communicate between one
another. Lastly, some security concerns are pointed out about the architecture given the
P2P nature of the solution.

SeedSeer Client

The Seedseer client runs in a browser as a webpage and constitutes a peer in the Seedseer
network. The client in pure javascript is capable of using Websockets and WebRTC to transfer
data and consume content directly in the browser. A regular peer is limited to these two
protocols, so it will only stay connected to the WebRTC Network referred in 3.1.

Figure 3.3: SeedSeer Client Architecture.

Fig. 3.3 depicts the Seedseer client and the following four modules:

• WS Chat, responsible for handling communication between the users. Used for commu-
nication between active peers, this module is used for it’s chat functionality, command
input and notifying all peers about changes in the network (e.g. new content).

• WS Signaling, this module does the WebRTC Signaling required to establish a WebRTC
connection. This is done throughWebsockets, using the connected supernode as a proxy
between the local peer and the desired peer.

• WebRTC Transfers, manages all file transfers between peers with an active WebRTC
connection. The module can request new connections or receive requests initiated by
other peers. Connections are maintained as long as one of the connected peers is
downloading available content from the other.

38



• HTML5 Player, plays content directly in the client. As long as the content is supported,
the player can be used to play local content that being shared or content downloaded
from other peers.

The client also handles the interface that triggers all the functionalities. Some functionalities
can be disabled or used exclusively by a supernode, thus the interface is versatile as long
as it is linked to a known functionality. Although all functionalities can be used from the
interface, command input is also supported.

SeedSeer Supernode

Supernodes (SNs) are clients with extra capabilities when compared to regular peers. Despite
running pure javascript like the regular peers, the code of a supernode runs inside a Chrome
App, as referred in 3.1. Using the Chrome API, a SN has access to sockets which are able to
communicate through TCP and UDP, which unlocks the possibility to create a HTTP and
WS Server and also to use the BitTorrent protocol. Peers always connect to only one SN
through websockets, which is their gateway to the whole overlay network (as referred in 3.1).

Figure 3.4: SeedSeer Supernode Architecture.

Seedseer Supernode is composed by the Seedseer client 3.2 and also for 5 other modules:

• HTTP Server, allows the peer client to be served through HTTP. This serves webpage
with javascript code that is required for a regular peer, with it goes the configuration of
the supernode, making the client connect to the SN through Websockets after it loads.

• WS Server, websocket server that manages connected peers. This module is used for all
functionalities that require Websockets, identity routing is used outside of this module,
whereas the WS Server encapsulates the peers information.

39



• Content Index, this module that manages the known content of the network and which
peers are part of each swarm.

• SuperNode Management, responsible for aggregating all module functionalities and
how they are accessed. This is the main module of the supernode, it is responsible for
handling all SN functionalities and the BitTorrent client.

• BitTorrent Client, accesses the BitTorrent network downloading new content into the
WebRTC network. The module adds it’s interface to the DOM and is managed by the
SuperNode Management module.

Overview of the Network

A supernode is essential for regular peers to exchange content and to get access to content
in the BitTorrent network. Fig. 3.5 shows an overview of the different networks from the
point of view of a supernode. A supernode has peers connected to it through websockets,
these peers use WS to establish WebRTC connections and share content. As the supernode is
also a peer, it can also join a swarm and share content with other peers. The supernode can
also connect to other supernodes through WS, essentially for searching for content and for
establishing a proxy between peers connected to different supernodes. Lastly, the supernode
has a BitTorrent client, so it connects to the BitTorrent network to share content, being that
the main motivation is to bring content to it’s WebRTC network.

Figure 3.5: Overview from the point of view of a SuperNode.

The supernode is used to get the list of peers in a swarm and also for establishing the
connection between peers. Peers can be in several swarms sharing different content, this is all

40



handled through WebRTC and the supernode is not involved after a connection is established.
When trying to join a swarm, a request is sent to the supernode that replies with the list of
peers in the swarm. After doing so, the client can request to establish connections to those
peers, this WebRTC Signaling is also done through WS like referred in 3.1.

Figure 3.6: Different swarms under a SuperNode.

As it is depicted in fig. 3.6, peers can be in more than one swarm at once. If a peer joins
a swarm and has already a WebRTC connection to some of the peers, there is no need to
do WebRTC Signaling using the supernode, the peers just create a new datachannel without
the need to establish a new connection. The supernode is also a peer, thus it can be part of
the swarms, the only noticeable difference is that it does the WebRTC Signaling with itself
and the other peer.

41





Chapter 4

Implementation

The protocols for the integration of this architecture were introduced in the previous chapters.
This chapter describes the implementation of such an architecture, individually describing
what are the roles of each module and how they are constituted. The aim of this solution
is to connect via BitTorrent and WebRTC, sharing multimedia content stricktly through a
browser. To keep the clients light, only pure javascript is used, with no external libraries,
being the only exception the implementation of the BitTorrent client described in 4.2 that is
present in supernodes.

4.1 Bootstrap
There is no automatic way to find supernodes, the user is responsible for finding a supernode
and connect to it so the peer can bootstrap. While seedseer was being developed, a public
list with supernodes would advertised, these supernodes had DNS addresses or a static IP.
For this public list, a script would scan known IPs of machines that had supernodes running.
This was done using the the “detect.js” from that IP, if it was successful it would mean the
supernode was online and free to be used. This method also allows the a SN to report its
current load or refuse to respond if the SN is already at its max threshold of connected peers.

For peers to be able to bootstrap, the supernodes should never be behind a NAT and be
accessable directly from the Internet. As the peers only require a connection to a supernode to
bootstrap, the process is finished as a websocket connection becomes stable with a supernode.
Unlike other P2P solutions, the peer only requires this connection, further connections to
other peers are only established when the peer wants to share content and effectivelly joins
a swarm.

43



4.2 Components
As was discussed in chapter 3, the supernode is defined by several components. In fig. 4.1,
three components are colored as grey. These components use external code from github
projects, where they were then integrated into the whole solution that constitutes seedseer.
The components HTTP Server and Websocket Server are described in 4.2 and the component
BitTorrent Client is described in 4.2.

Figure 4.1: Supernode Architecture.

WebSocket Server

This component is pure javascript HTTP and WebSocket server created by Google1. Similar
to NodeJS implementations for the same service, this project provides a lightweight server
that runs as a Chrome App in Chrome, taking fully advantage of the Chrome API. To provide
this service it uses the Chrome API to have access to a TCP Server and have access to sockets.
Most of the code is kept in the HTTP.js file, while the rest are mostly basic files required
for chrome apps. As WS is a full-duplex protocol over TCP that is stripped out of HTTP, it
comes with the HTTP functionalities that could be disabled for this dissertation, but were
kept for serving client code for other users and for detecting supernodes. This project also
came with an implementation of SHA1 (in SHA1.js), which was useful for hashing content for
the WebRTC network, removing the need to take another external library implementation to
do the hashing.

The only modification done to this component was a fix for retrieving the User Agent of
browsers. As a split was being done on the “:” character, this meant that some version of
firefox were getting cut incorrectly. For example, “Mozilla/5.0 (Windows NT 6.1; WOW64;

1https://github.com/GoogleChrome/chrome-app-samples/tree/master/samples/websocket-server

44



rv:31.0) Gecko/20100101 Firefox/31.0” would incorrectly be read as “Mozilla/5.0 (Windows
NT 6.1; WOW64; rv”.

A simple fix was applied and the issue reported on the official repository. 2

BitTorrent Client

This component comes from an open-source Chrome App named JSTorrent3, that stands for
“JavaScript Torrent”. JSTorrent is a pure javascript solution that implements a BitTorrent
client over Chrome, using dependencies like Underscore, jQuery and web-server-chrome4.

This component is used in supernodes to access the BitTorrent network and download
content from it. The project is not modified, but the Supernode Management modifies some
of it’s objects in runtime so it is able to run inside of the Seedseer Chrome App.

Figure 4.2: JSTorrent running in Seedseer.

Fig. 4.2 shows JSTorrent running inside Seedseer, where buttons were redifined and the
“Quit” is changed to “Back”, that in this case returns to the regular supernode interface
while keeping the BitTorrent client running in the background.

2https://github.com/GoogleChrome/chrome-app-samples/issues/237
3https://github.com/kzahel/jstorrent
4https://github.com/kzahel/web-server-chrome

45



Code Structure

SeedSeer.js The main file responsible for most of the peer’s code.

Util.js Auxiliary functions for the peers.

SN.js The main file for the SuperNodes.

SNutil.js Auxiliary functions for the SNs. sha1.js Library for SHA1 hashing.

http.js HTTP Server over JS, WebSocket capabilities included.

launch-app.js Launcher for the BitTorrent extension.

detect.js Simple script for SuperNode detection.

Listing 4: Code Structure

For peers the code is runs minified, security-wise minified code isn’t more secure but it
does make it a bit harder to understand and being able to modify javascript code, so it was
used as principle from the start. As peer’s code was supposed to be as small as possible,
minifying the code also made sense especially in this regard.

To minify javascript code two tools were tried, JSMIN and YUI, after some tests YUI
consistently pulled smaller file sizes so it was chosen as the default minifying tool. Two
scripts can be found on the prototype code that allow all the code to be minified by this tools
respectively.

4.3 User Interface
Inspired by the previous IRC implementation and by Volafile, the structure of the Seedseer
is similar to what one would find on an IRC Application. There are no channels, every
supernode maintains one chat room where every peer can chat. As the supernodes are
running on a chrome browsers and their capabilities would be limited to the hundreds of
users per supernode, it is envisioned the supernodes to be as communities. As a service
with a limited number of users per supernode, it is compelling to keep thematic content in
a community, for peers directly connected to that supernode. This was the inspiration that
influenced the user interface conseptualized for Seedseer.

Figure 4.3 shows the default interface of a supernode. On the right side there’s the peerlist
that has all the peers currently connected to the supernode. This right side can be switched
by clicking on different options on the bottom, this list can be changed depending on the
settings in the supernode, removing default options like the Peer list or the Downloads, or
adding new functionalities.

On the top is the status bar, “Peers” are the number of total peers connected to the
supernode, “WRTC Peers” is a local variable, it states how many WebRTC connections exist

46



Figure 4.3: Supernode User Interface.

open in this client, “No. of Downloads” is the number of unique hashes of content exists in
the network, “Content” is the reported size of all the content in the network and “SNs on
Network” is how many supernodes are connected to this supernode.

Below the status bar we have the buttons bar, “Open DataCh” forces a WebRTC connec-
tion to the peer assigned, “BitTorrent” pops the BitTorrent functionalities, “Options” pops
a new window that shows the change log, a feature list, settings and a way to report bugs.
Lastly, “Choose Files” allows adding new content to the network.

On the top right corner there’s a textbox with the current peer nick, that is bound to a
peer identity, writing on this textbox and pressing enter changes the nick and peerID.

The peer UI shown in fig. 4.4 is pretty much identical to the UI of a supernode, with
two major differences, the top black bar and the “Watch” button instead of the “BitTorrent”
button. The black bar has 3 links, the first one is a link to a site that scans for supernodes5,
the second is a link to GitHub6 where users can report bugs or issues and the last one shows
the change log, a small list of features that were changed in the two to three versions.

The watch button pops a black semi-transparent layer that has the HTML5 player, shown
in fig. 4.5. This player allows the peer to watch videos or play music. The type of content
that can be played this way is hard to detect in javascript, as there is no assured way to
check if the computer that is running the peer has the required codecs or not. The ability for
the HTML5 player to work properly depends in the browser and installed codecs being used.

5http://seedseer.pt.vu/
6https://github.com/SeedSeer/SeedSeer

47



Figure 4.4: Peer User Interface.

The most noticeable difference is on videos that use the H264 codec, where Firefox doesn’t
support it for licencing reasons, while Chrome does.

The way to select content to be played was kept simple. The last content which was
interacted with, is available on the player, whether it is able to be played or not. As the
HTML5 player is a component, it’s layer can be hidden. This allows the user to start playing
a video or music, hide the player but keep hearing the audio in the background. Despite
being really simple, user feedback mentioned it as a positive aspect, specially by those that
would use it as a music player while chatting.

Every peer can add content to the network, the supernode will keep the filename, hash
and size of the content and add the original peer to the swarm list. When a peer connects
to a supernode, it gets the full list of content that is available on the network, after that
any further content that is added will be advertised on the chat room like it is seen on fig.
4.4. To see content that is available to download, a left click on “Downloads” in the right
bottom corner will switch the right side of the UI for all the filenames of the content that is
on the network, like it is shown on fig 4.6. By clicking on any of the content in this list, the
peer requests the peer list from the supernode, joins the swarm and begins downloading the
chosen content from the available peers.

48



Figure 4.5: HTML5 Video on a peer.

4.4 WebSockets Functionalities

Packet validation

Every packet that reaches a supernode is verified to check if it is well-formed. On certain
types of packets extra fields are ignored allowing extra business logic on the peers that
supernodes might not know of. Some limits should be specified to avoid possible DoS attacks
on supernodes and on peers.

Adding content & Swarms

For content to be added to the network it has to be hashed previously. To do this the peer
loads the file into memory and hashes it using SHA1’s library, the result is then sent to the
supernode along with filename and file size, if the content is new the supernode saves all info
and creates the swarm with the peer as the only seeder, if the content already exists all info
is ignored and it adds the peer into the swarm.

49



Figure 4.6: Showing content available to download on a peer.

4.5 WebRTC Functionalities
For an easy setup of multiple WebRTC connections a group of functions were crafted so it
would make the process more effortless. First there’s the functions that handle WebRTC
connections, those are NewWRTC, StartWRTC, MatchWRTC and CloseWRTC, then there
is an object that handles all signaling components that are over WebSockets, that is the
“SignalingChannel” object, and finally there are the functions that handle the data channels
themselves, those are createStatusWRTC, bindStatusWRTC and createDchanWRTC. All of
these will be extensively explained in the next sub-chapters.

Connections

For WebRTC to work the first step is on NewWRTC function, it creates a RTCPeerConnec-
tion Object with a given configuration. There are many ways to configure a RTCPeerCon-
nection object, but as this dissertation will only explore data channels, the arguments passed
to the constructor are usually the same. First is the STUN servers, STUN means “Session
Traversal Utilities for NAT” and as the name states it allows for the client to know more
about itself, as most computers today stand behind NATs, the client needs the STUN server
to know it’s own public IP so it can advertise itself so other external clients can find it even
behind a NAT. There are several STUN servers available to the public. Depending on the

50



browser being used the STUN servers used differ, using google STUN servers if it’s on chrome
or another one otherwise. The other parameters are standard, “DtlsSrtpKeyAgreement” is
set to “true” as it is the only way WebRTC works across-browsers and “RtpDataChannels”
to “true” as it is needed for data channels.

To avoid multiple connections to the same peer, the peer identity is set on the object
and the WebRTC object is assigned to a global array of WebRTC connections. After that
a SignalingChannel object is created, this object is responsible to handle all the signaling
process over WS until the connection is open and ready to use, and the required data channels
are created. A callback is also assigned to handle ICE Candidate packages.

NewWRTC is only used to create all the objects needed to WebRTC. To start the es-
tablishing process, the initiating peer uses StartWRTC function. This function handles the
creation of a SDP Offer while the peer that receives this uses the NewWRTC to create all nec-
essary objects and uses MatchWRTC to create the SDP Answer. After these are exchanged
both clients send and gather ICE Candidates until they are able to open the connection. ICE
Candidates mean Interactive Connectivity Establishment, it’s a hacky way of reporting nodes
on the network so that the other peer that is outside the network is able to use that route to
communicate. The same is done for both peers at the same time until the browser decides
that they received enough ICE Candidates to know how to communicate effectively with the
other peer. There is no need for all ICE Candidates to be able to establish the connection.
Depending on the browser being used, many strategies have been used to exchange ice can-
didates, one of the popular ones was to send only one packet with the whole ICE Candidates
that the peer was able to gather, however after many tests it was confirmed that as not every
ICE Candidate is needed, sending multiple ones as they are getting generated would reduce
the time needed to open the WebRTC connection.

In chrome, after the connection is open, the ICE Candidate callback is set to auto-destroy
itself, as further ICE Candidates aren’t needed and in some cases strangely formed ICE
Candidates would provoke odd behaviors, especially between different browsers or versions.

As a default, a data channel is created named “#status” this data channel used as a basis
for data transfers.

Transfers

To make transfers, the default #status data channel is used for direct request between two
peers, and for transfers a data channel is created with the content’s hash as the channel
name, this makes it simple to handle multiple streams of data even if they are from the same
peer and yet keep them easily organized. Creating new data channels after the connection
is open is just a matter of calling the function “createDchanWRTC” with the desired hash
of content, though it is currently requiring new SDP and ICE exchanges, it doesn’t seem to
affect the connection that is open. The transfers are done in chucks, the content is divided
in pieces a bit like BitTorrent and then are sent through its assigned data channel, when the

51



file is complete on the other end it is requested to be sent to the disk.
The transfers are uncomplicated, everything is handled in memory. At some point, chucks

are saved to the disk using Chrome API, but this is only suported on a supernode. While in
a peer the contents can only be saved to the disk when the download is completed.

The algorithm of requesting chucks to be downloaded is straightforward, it always goes
by order, if there are multiple peers if chooses a multiplier of chucks and requests them
randomly to any peer that has them. The number of chuck groups, that is similar to pieces
in BitTorrent, is set when a connection is established. While in BitTorrent this is set in the
metadata in the torrent file, in seedseer it isn’t a static value.

4.6 Commands
For ease of use, some commands are provided for both peers and supernodes. Listing 5 shows
the commands and parameters that are available in SeedSeer.
Peer Commands:
/re(load) Reloads the client and forcibly drops all connections, if the client is being loaded from the
supernode and not locally, it loads a new version of the peers code and reconnects to the supernode.
/nick <nick> Changes the nick to the one specified and renews peer identity. All routing info on
the last identity is discarded, WebRTC connections are maintained but new connections can only
be done over the new identity.
/clear Clears the chat window.
/mod <Module Name> <command> This allows the peer to interact with a given module,
this is used when the module functionality happens or is triggered on the supernode. It isn’t required
if the functionality is local or supported by the module’s UI. The command sent is module specific
and will be sent to the SN, the result of it depends on the module.

SuperNode-Only commands:

/re(load) (p) Reloads SN and reloads all connected peers, if “p” is added only peers will be
requested to reloaded.
/list Lists information on every peer directly connected to the supernode, for this the SN requests
all connected peers for their browser and geoIP information to complement identity info that the SN
already has. The info is shown like this: <order> : <nick> (<peerID>) <browser> <country>
/sw Lists all swarms and their peer lists.
/module <Module Name> (enable|disable) Supernodes can have default modules enabled,
this command allows the supernode to dynamically enable or disable modules. If a new mod is
enabled all connected peers will receive the module and can use it after that. More about this on
further chapter.

Listing 5: SeedSeer commands and parameters.

Some supernode commands behave similarly to a C&C used in a botnet, the supernode
can force peers to do certain actions. This only happens when the peers load it’s client from
the supernode directly, which is discouraged for security reasons. This functionality of loading
the client’s code from a supernode was only kept because of it’s ease to test multiple clients

52



at the same time and for it’s simplicity to load new code into the peers. This functionality
should never be used outside of a test environment.

4.7 Supernode Settings
To allow customizability to the supernodes, settings can be changed to appeal to several
different communities, supernodes can also change css and styles overall. Asside from theme
changes, there are two settings available, hidden content and hidden peers.

Hidden content is one of the options, this means that peers can’t see what content is
available and won’t be notified about new content, they will however be able to join the
swarm if they know the hash for the content. This might be useful for communities that
focus on rare content or on content that is by itself controversial.

Hidden peers is another option, the supernode can make the peerlist unavailable, as well
as not exposing peer connections, identity changes or connects/disconnects are shown. The
total number of peers is also hidden. This is hidden information is on the supernode level,
so peers have no way to request this information. Peers are still allowed to use the chat
functionality, meaning that their nicks will be visible at that time. However, similarly to
anonymous forums, as every peer is free to change identity without anyone knowing, peers
remain anonymised to a certain extent.

As the chat room isn’t P2P, they rely on the supernode to relay the messages, anonymity
is maintained as long as the supernode can be trusted. For file sharing however this isn’t the
case, as WebRTC exposes routing information.

As an example, fig. 4.7 shows a peer that joined a supernode with hidden peers option
enabled. There is no peer list and the peer doesn’t know how many peers are currently
connected, content however is visible. Only one peer talked on the chat and it seems that
different peers added content to the network, but in fact all the content was added by the same
peer. As every peer can change identity freely, the amount of peers connected is unknown.
In 4.7 there were 8 peers connected, but there is no way for the peers to get that information.

53



Figure 4.7: Example with Hidden Peers option enabled.

54



Chapter 5

Results

5.1 Survey
In this subchapter the data collected from an online survey will be presented. This survey
realised in the scope of this dissertation had two goals in mind, to better understand how
internet users consume content online and to assert from the data if the concepts applied on
seedseer seem relevant to the users.

The response rate on this survey is hard to determine due to lack of analytics from
Google Forms, so to gather data on conversion rates, this survey was posted on multiple
online communities through an URL Shortener where the following data can be examined:

Figure 5.1: Referrers and Browsers used.

To the day of writing this, the survey got 378 clicks through the URL Shortener link1. As
seen in fig. 5.1, 71,2% of the users came from Facebook, 47.1% of which came from mobile.
Other referrers like Google+, Reddit, Zwame and Twitch had very low click rates. Some of
the “unknown” referrers are presumably from people to whom the link was shared directly,
therefore leaving no referral data. 318 of the users that came through the link used Chrome
as a browser, and 37 used Firefox, being that only less than 7% used another browser.

1https://goo.gl/#analytics/goo.gl/forms/RerUjdZyidSWJIiN2/all_time

55



Figure 5.2: Platform used.

As reported above, most of these users came from mobile, 57% of all clicks through the
URL Shortener came from either Android or iOS, which isn’t surprising as 47% of the total
clicks came from the Facebook Mobile domain alone.

Based solely on the URL Shortener the conversion rate, meaning the rate between a user
completing the survey in contrast to only clicking on the survey, would be of 31%. However
the URL Shortener wasn’t used on most of the promotion in Google+, due to shortened links
being shown as unappealing and suspicious in that platform. It is unclear if the conversion
rate was actually lower or higher, but it is certain that some responses did come from Google+,
most of those from users outside of Portugal.

The survey was advertised in several sites and communities, both in Facebook and
Google+, the focus was to share the survey in communities (“groups” in Facebook) related to
Streaming, P2P or content consumption in general. In Facebook the survey was also shared
in the group of University of Aveiro and related, which is why most of the replies to this
survey are from Portugal. The same these approach was used for Reddit and YCombina-
tor, however as it was posted with a URL Shortener under a new user and both use upvote
systems, the number of clicks were almost zero, the same was repeated without the URL
Shortener, but based on the time of the posts and the survey reply timestamps it didn’t seem
like many results were obtained, if any. Lastly, the survey was also shared in an online game
(FFXIV) and during Twitch streams, while the number of clicks were low, these had very
high conversion rates.

Due to the choices stated above, the data may be a bit biased towards tech savvy users
and university students, as these two are predominant in the communities where the survey
was shared.

The survey was answered by 118 people, 94 male (79,7%) and 24 female (20,3%). To have
a better understanding of demographic of the respondents fig. 5.3 shows the age and gender
of all of them. Most of the respondents are between 18 and 25 years old on both genders, 50

56



Figure 5.3: Age and Gender of the respondents.

of them being male and 18 being female, though females have a bigger ratio in this bracket
(75% of all respondents), the second most relevant bracket is between 26 and 40 years old
with 46 people, 41 of them male and 5 female. The bracket under the age on 18 is left with 2
male respondents and the bracket between 40 and 65 years old has 1 person of each gender.
Off the 118 respondents none were above 65 years of age.

Figure 5.4: Education Level by Gender.

From the population 42 people had High School or equivalent level of education (35,3%),
42 had College Graduate level (35,3%), 30 had a Master’s Degree level (25,2%) and 5 had
Doctoral Degree level (4,2%). Fig. 5.4 shows education level by gender, the ratios between
the genders are similar, being the only major change the one between College and High School
levels, where females have a higher ratio of College level respondents (45,83%) and lower ratio

57



of High School level respondents (29,16%), while male respondents have 26,26% and 29,66%
respectively. Meaning that female respondents have a higher level education than males in
this survey. Meanwhile the ratios for Master’s degree is 25,53% for males and 20,83% for
females, and the ratio for PhDs stands on 4,23% for males and 4,16% for females.

There was one odd data point, where the answer given was “University” and it was
interpreted as “College Graduate”.

Figure 5.5: Country of the Respondents.

As expected from the way the survey was shared, the majority of the respondents are
from Portugal with 85 people, 72% of all the respondents. For better visibility fig. 5.6 shows
all respondents by country excluding Portugal so the data is easier to overview. International
respondents are very scattered and in low number, countries with more respondents are the
United States of America (6), Germany (4) and Brazil (3).

In this survey two definitions are used that might seem awkward at first, Streaming in
this survey means the consumption of content that is being constantly being received and
presented to the end user, this also includes Live Streaming content, but is not limited only by
that, also including the consumption pre-recorded or on-demand videos like Youtube videos
or more long format content delivered through a content network like Crunchyroll or Netflix.
The term P2P Content in this case is regarded as the opposite of streaming, in this case
the consumption of content after all files have been downloaded, where only P2P sources of
file downloads are being considered. There is of course a thin line between the 2 definitions,
being that for example some BitTorrent solutions offer direct streaming of content from the

58



Figure 5.6: Country of the Respondents (excluding Portugal).

P2P network mashing the two definitions into an abstraction, or that streaming sites might
offer the content to be downloaded and watched offline, however such considerations were
ignored.

Given this, the “TV, Radio, etc” is meant to be interpreted as more traditional forms of
media consumption, it was also possible for the respondent to interpret this option as the
consumption of more traditional media in online form (Live Stream in case of TV Channels
or Podcasts/Live Radio in case of Radio Channels). Originally the question only had the
first two possible answers, but as a multiple answer question a new perspective could be had
by having this option, not having any detriment on the quality of the data in my opinion.

Figure 5.7: Type of Content Consumption.

A large majority of the respondents reported consuming Streaming content (94%) while
74,6% reported consuming P2P content. 70,33% of the respondents consume P2P and Stream-
ing contents, 44,91% consume all 3 types of content and 44,06% don’t consume TV or Radio
at all, while only 5,08% (6 respondents) said they only consumed one type exclusively, of

59



those respondents 66,66% consumed only P2P (4 respondents). Of the total population only
5,08% (6 respondents) reported not using Streaming at all.

Figure 5.8: Consumption of Live Content.

The consumption of live content is rather balanced across respondents, around the same
amount of respondents are among the groups that consume more live content and not at all
(~16%), the moderate consumption of live content is also close to that range, with 13,6%
of the respondents. The rest, being where most of the respondents lie, stay in between the
neutral and lower/higher levels of consumption with 28% and 25,4% respectively.

Figure 5.9: Consumption of Live Content from Respondents that consume Streaming
vs P2P.

It was intended to assert from the data, the difference in consumption of respondents
that usually consume P2P against respondents that consume Streaming. However as it can
be seen in fig. 5.9, there is not much difference between the two groups, even more strangely,
respondents that consume P2P revealed to consume more live content than respondents that
reported to report Streaming. As Live Content is included in Streaming and the respondents
that consume P2P that consume Live Content also, inherently consume Streaming content.

60



No relevant conclusion can be made from this data, this probably has to do with most
respondent (70,33%) being consumers of both Streaming and P2P. However, respondents
that did not consume P2P did tend to a lower consumption of Live Content.

Figure 5.10: Prefered content, Traditional vedios vs Live Streaming.

40,7% of the population tend for traditional videos, 36,4% remain neutral and the rest,
22,9% tend for live streaming. This question unlike fig. 5.8, aims to understand preference
in regard to content disregarding the amount of consumption. It is clear that respondents
tend to prefer traditional videos over live streaming content. Respondents that consume
streaming tend to traditional videos, even when they also consume P2P and TV, Radio
content, Meanwhile users that exclusively consume P2P or TV, Radio remain completely
neutral in preference for the two.

Figure 5.11: Prefered content, Mainstream vs Personalized.

10,2% of the respondents tend for mainstream content, 43,2% remain neutral and 46,6%
prefer personalized content. Respondents that chose to be neutral between the two options
are in a higher number in this question when compared to fig. 5.10. Almost half of the
population tended towards the preference of personalized content among all groups, being
that respondents that consumed only P2P or only TV, Radio tended to neutral. Respondents
that consumed more live content (fig. 5.8) had a higher tendency for personalised content
than the average.

On the curious side, fig. 5.10 and fig. 5.11 show a totally different pattern, though
Live Streaming contents being usually regarded to being more personalized content than
traditional videos.

61



Figure 5.12: Social Tool contribution for content enhancement.

39% of the respondents tend towards Social Tools enhancing the consumption of content,
33% of the respondents think otherwise, while the rest 28% remain neutral. There is a slight
inclination for social tools to be considered to enhance the consumption of media, respondents
that said to prefer personalized content tended to consider that social tools were relevant,
but less so than other respondents. Respondents that prefered mainstream content (10,2%)
tended to consider social tools unimportant.

Figure 5.13: Importance of Privacy.

The majority 71,2% of the respondents consider privacy important when consuming con-
tent, 43,2% consider it very important. 22,9% are neutral and only 5,9% regard it as not an
important matter.

Figure 5.14: Notice of Content Censorship.

62



84,7% of the respondents answered that they have noticed content being deleted or cen-
sored while consuming media, while 18 (15,3%) said they didn’t.

Figure 5.15: Importance of censorship resilience.

5,3% of the respondents consider that a content platform should be hard to censor, 24,6%
remain neutral while only 10,2% consider it not important.

Those than answered “no” in fig. 5.14 remained mostly neutral in this question, asserting
that respondent that don’t notice any censorship remain neutral in regard to its relevance
while consuming content.

In conclusion, when looking at this data and comparing it with concepts that Seedseer
tries to establish, some points come in favor of the solution. Traditional videos being more
relevant over Streaming go in favor of static content in P2P, one of the strong points of
using hashed content being that it becomes easier to proliferate. Seedseer being community-
centered is a factor that is hard to take as a hard advantage, data shows a preference for
personalized content which would go in favor of it, but social tools while deemed relevant,
its relevance wasn’t overwhelming enough for me to conclude it as a clear advantage. While
Streaming content was used by 94,9% of the users, live streaming isn’t as relevant as one
would expect. This is a functionality that was not considered for seedseer and the data above
suggests it isn’t important to most users. Concerns for lack of privacy and for censorship were
highly regarded by respondents, while seedseer had these in mind ever since it’s development
days and tackles the issue multiple times, a serious comparison would have to be done as to
whether it would increase the privacy when compared to similar projects in the market. The
current WebRTC information exposure in the protocol is the main point for privacy concerns
in seedseer. On the other hand, seedseer definitely reduces the risk of censorship which can
be taken as an advantage.

This survey did not tackle the respondents opinion on performance for consuming content
or ease of use of P2P software. One of the major trade-offs of seedseer is that performance-
wise it is inherently worse than other solutions, both for being more decentralized and not
a native application, among other reasons explained in previous chapters. Whether a user
would willingly make this trade-off is hard to say, however the large majority of the users do

63



have privacy concerns. As for ease of use, it is one of the advantages of seedseer but no data
was gathered from the survey regarding its importance for users. Although it can be asserted
from the data that the majority of surveyed users do use streaming websites more than P2P
software, which could be argued that it’s ease of use is indeed a relevant factor for them.

5.2 Performance, Limitations and Tests
On this chapter several tests will be performed on how the prototype behaved in specific
situations, some tests will be performed using external tools to determine limitations of the
prototype in an effort to get to correct assertions on why they exist.

For the tests realized in this chapter the following setup was used:

Figure 5.16: Network Diagram of the setup used for testing.

The setup used for tests in this chapter is shown above in fig. 5.16. In this intranet two
computers will be used, a laptop and a desktop that are in different locations and connected
via 100Mbps Hubs. One of these hubs is connected to a router that gives access to the Internet
through cable connection with 200Mbps downstream and 20Mbps upstream. The laptop runs
a Supernode that is accessible both in the Intranet and the Internet, the supernode runs on
default on TCP port 80 with port forwarding and has a Dynamic DNS (DynDNS) configured
on the router for easier access from the Internet. Unless specified, one or multiple peer clients
run on the desktop, these are connected to the Supernode that is set up on the laptop.

To better interpret the data that follows it is relevant to keep in mind the hardware that
was used and it’s possible limitations, some of these specifications are shown below:

64



Laptop - Supernode
– CPU Intel i7-4700MQ 2.40GHz
– RAM 16GBs
– Intranet speed 100Mbps
Desktop - Peers
– CPU Intel Quad Core Q6600 2.40GHz
– RAM 2GBs
– Intranet speed 100Mbps
Internet speed
–200 Mbps Download
– 20 Mbps Upload

Listing 6: Test Bed Specifications

Notice that the Supernode running on the laptop is limited to 100Mbps for both download
and upload while in the intranet but only 100Mbps of download and 20Mbps of upload to the
Internet. Peers on the desktop have the same exact limits although the 20Mbps of upload
are shared, both the laptop and the desktop can download at 100Mbps at the same time.

Client Load

Supernodes have the capability of giving all the code needed for regular peer, though as stated
in the previous chapter this isn’t required and peers can simply establish the WebSockets
connection to a supernode. The first results are tests on the supernode capability to deliver
all files needed for the client to run. This test will have 6 different metrics, total time, average
call time, slowest call time, DOM content loading time, DOM processing time and time to
first byte. The total time is the time from the moment the request is made by the browser
to the moment the DOM finishes processing. The slowest call time is how long the slowest
resource request took.The average call time is the average time of all the resources requested
by the page. DOM content loading time is the time that event took to execute after firing,
this is contained in the DOM processing time, that is the time since the HTML is received
until the page is fully loaded. Lastly, the time to first byte is the time from when the request
started until the first byte of the webpage arrives, this metric is often relevant to identify
how reactive the server is, but doesn’t necessarily affect the final load time, as a server can
start sending the header fast but take a long time to finish the request.

The peer client constitutes a 78KB transfer of 11 requests, 10 of them are handled by the
supernode and one external call to a JS file that is used to retrieve the peer’s geolocation.
All of the tests were performed with caching disabled so it wouldn’t affect the load times
positively.

The fig. 5.17 is made of 8 client loads executed in the same computer as the supernode.
The slowest call is the JS request on the external site that takes around 400ms while the
average requests take less than 100ms. The total load times are around 450ms, which is

65



Figure 5.17: Local client loading of peers.

acceptable, having in mind that the time for the first byte is around 300ms. By the end of
the total load time everything has finished loading except the geolocation request, most of
the requests and rendering in the browser happen in parallel, therefore the delays don’t add
up to the total time. The total time does however include the websocket connection as well as
receiving the state of the supernode that is represented by the welcome message, full userlist
and downloads list (if anon mode isn’t enabled). Client loading times can be optimized if
anon mode is activated and geolocation is disabled. Compression is also an option that would
allow better loading times while sacrificing the time to the first byte by the time taken to
compress.

All javascript code is already minified for regular peers, but as all content provided by
the supernode is static and all the dynamic data comes after the client load by websocket,
pre-compression is a viable option if the client load reveals to be a bottleneck at any point.

Fig. 5.18 represents the same test as fig. 5.17, but this time the test is run on the desktop
that is on the same network. Strangely the delay significantly lower than the previous test
that was run on the local machine where the supernode was running. The difference comes
from the time to the first byte that is 110ms on average, almost 3 times faster than the
previous test, affecting the total time that averages at 380ms, 70ms less than the test ran in
the laptop. A possible reason for this is the high number of processes running on the laptop
while the tests were running that might have affected the time for the first byte on the local
chrome instance. The difference in performance from the laptop and desktop can be seen
clearly in the difference of execution times on the DOM Processing, being that on this test
the desktop took over 200ms on average while the laptop’s average lies below 150ms. In this
test as the load times were lower, which made the geolocation request actually take more

66



Figure 5.18: Client loading of peers.

time than the time to fully load the client on most of the tries.

Figure 5.19: Client loading of peers by Internet page loaders.

To test client load from the internet several pageloading sites were used. 2 3 4 5 All these
sites do a full load of the client, which is relevant to test the client loading, sites that ignored
DOM Processing or didn’t establish a websocket connection weren’t considered. The results
in fig. 5.19 reveal around 1 to 1.3 second of load time for Europe locations as well as for

2https://tools.pingdom.com/#!/d6nKkt/http://seedseer.no-ip.org/
3https://gtmetrix.com/reports/seedseer.no-ip.org/VcYeUp97
4http://www.webpagetest.org/result/160601_89_VNE/
5http://websitetest.com/ui/tests/574e72a46ac6c69c01000005

67



“websitetest.com” that is located in the US. The other locations in the US and CA obtained
load times near the 2 seconds range, the Asia location got the worst result at 5 seconds load
time.

For a javascript HTTP server running on a normal instance of chrome, these ranges of
load times are good and are close to what a normal HTTP server would achieve, specially
considering that all these tests also connected through websockets and got all the initial data
from the supernode.

Transfers

In this subchapter tests will be made to transfers using both BitTorrent and WebRTC. All
WebRTC tests were performed on the desktop with multiple peers, the BitTorrent tests were
all performed on the laptop, as the supernode is the only client that supports it. All images
shown are from the receiver’s point of view.

Figure 5.20: WebRTC Transfer with a 512 bytes chuck size on UDP.

Figure 5.21: WebRTC Transfer with a 512 bytes chuck size on TCP.

68



Both tests shown in fig. 5.20 and fig. 5.21 were executed with the same parameters
where the only change it’s that the first test uses an unreliable connection over UDP and
the second uses a reliable connection over TCP. The first test achieved a 215KB/s with a
maximum speed hit of 263KB/s while the second achieved 208KB/s and a maximum speed of
247KB/s. After multiple tests with the same settings it can be asserted that both achieve the
similar performance. The difference between the two are on packet loss situations, on TCP
the packets are retransmitted automatically and the packets are ordered. For file transfers
this is a trade-off where TCP uses more overhead and UDP needs checks on the application
level for retransmissions. The slight difference on UDP against TCP in data transfers is that
UDP is typically faster due to the reduced overhead, though on the tests performed this
wasn’t noticeable.

Figure 5.22: WebRTC Transfer with a 1024 bytes chuck size on TCP.

As we can see in fig. 5.22 the number of packets sent for requests didn’t increase much
when compared to fig. 5.21, but the download rate almost doubled. The average download
speed was 421KB/s while the maximum speed achieved was 459KB/s.

Figure 5.23: WebRTC Transfer with a 8192 bytes chuck size on TCP.

In fig. 5.23 we can see the same test as before but with a chuck with 8192 bytes of size.
The graph is rather small because the file being used finished at the end of the graph. In
this case the number of packets sent was 5 times higher into an average of 1200 packets per
second, the average speed of this test was 2821KB/s and the maximum speed was 3285KB/s.

In fig. 5.24 it is shown the graphs for twice the previous chuck size, this time with 16384
bytes the average number of packets sent per second is 2400, achieving a maximum speed of
6244KB/s reaching half of the max bandwidth of the peer with only one seeder. The average
speed was 5473KB/s managing to finish the download of the file in under a minute.

69



Figure 5.24: WebRTC Transfer with a 16384 bytes chuck size on TCP.

As it is discussed in many developer forums, this chuck size is the maximum size that
is advised by many for current chrome implementation of data channels, given the size of
chrome’s buffers for WebRTC using SCTP.

Figure 5.25: WebRTC Transfer with a 65536 bytes chuck size on TCP.

Above the advised chuck size the current seedseer’s implementation experiences random
crashes that stop the transfer, however fig. 5.25 shows one test where it successfully trans-
ferred the file in 24,43 seconds with an average speed of 10191KB/s and a maximum speed of
11571KB/s, achieving almost the total available bandwidth of the peer with only one seeder.

Figure 5.26: BitTorrent transfers of 4 linux distros.

70



Fig. 5.26 shows a test of downloading the same 2 torrents twice, one of a kali linux distro
and another of a light debian linux distro. As seen in fig. 5.26, the BT transfers have a slow
start and a slow endgame, both are to be expected due to the way the bittorrent protocol
works. In the example above no trackers were used, so finding peers with the DHT takes a
bit longer than it would simply with the usage of trackers. While active connections mature
the speed goes up and remains somewhat constant until endgame mode.

While these speeds are below the WebRTC implementation it is relevant to have in mind
that the BT implementation uses tit-for-tat and is competing for resources with other peers,
while the WebRTC implementation is rather simpler and more willing to share resources
without rewards. The average upload speed on these tests was 4KB/s, which might have
discouraged other peers to increase the client’s speed, despite most of the swarm being seeders.

Supernode limitations

For the following tests a tool called Webserver Stress Test 8 was used, in the desktop machine
the tool is limited to 4000 virtual concurrent users. While the objective of this tool is to test
the limits of the supernode, it is pertinent to make sure the machine running the stress test
software isn’t getting bottlenecked instead of the supernode being tested. The tests were
set so the desktop machine wouldn’t bottleneck on CPU performance or on trying to open
sockets, producing bad data just due to these limitations. This will test the capability of the
server to send the the peer code, the tool doesn’t emulate the browser so the results won’t
evaluate DOM Processing, run javascript or connect through websockets to the supernode.
However the tool provides useful data to understand possible limitations on the Supernode
while handling a large number of requests, clients and packet output.

Ramp Tests

A ramp test constitutes in a gradual increase of users over time until the set max number.
One minute before the test ends, the maximum number of users is reached and is maintained
for the last minute until the test ends. This type of test escalates the number of users steadily
in order to determine the maximum number of users the server can handle. By increasing
it slowly the goal of the test is to identify how many users the server can handle before
producing error messages.

In this test a supernode will be tested. Every active client requests the root page from
the supernode, that basically serves a copy of a peer client. Each client repeats this every
X number of seconds until the test is finished. In this case the amount chosen is 6 seconds.
Figures 5.27, 5.28 and 5.29 represent the first ramp test that was performed with 3400 users.

In this case the test was performed in 10 minutes with no errors, as seen in fig. 5.27
near the 5 minute mark some users experienced up to 10 seconds of delay, but most of them
remained unaffected. Fig. 5.28 shows the average delay of all active client requests, some
delay spikes can be seen after the 2 minute mark, placing the maximum average request time

71



Figure 5.27: Spectrum of load times of the Ramp test with 3400 users.

Figure 5.28: Load times and Errors of the Ramp test with 3400 users.

of this test around 700ms. Disregarding the delay spikes, the average request time scales
overtime as more clients join in gradually, the initial average time goes from around 15ms
on the initial requests to around 45ms when all the 3400 clients are active. As in this test
every client does a request every 6 seconds, this leaves the test theoretically at about 34.000
requests per minute, or 2.040.000 requests per hour, actual log data points to 278 requests
per second, or 1.002.001 requests per hour which is an acceptable number of requests for the

72



Figure 5.29: Open requests and Transferred Data of the Ramp test with 3400 users.

average 61ms reply in this ramp up test.
The spikes in the middle of the test seem abnormal, probably due to the fast increase

in bandwidth and open requests piling up, this happens between 200 to 330 seconds into
the test where open requests spike to 400 while bandwidth has downward spikes and load
times increase among a considerable amount of users. The worst data point is at 327 seconds
with 17,42% of the users taking between 3 to 5 seconds to load, however after that the data
normalizes back into 97% of the users being under 200ms of load time.

This test represents a ramp test with 4000 users in 15 minutes, where each user requested
a page load every 6 seconds. As we can see near the end of the test, in fig 5.32, the test
machine got bottlenecked waiting for local sockets, though a spike can be seen at second
730, after the first 5 minute mark and with around 1500 active users the delay for acquiring
local sockets is already above the recommended 100ms threshold, this explains the bandwidth
spike at 730 seconds when the test reaches it’s maximum set number of users and the test
machine is finally able to load the remaining virtual users. A similar pattern can be seen in
the previous test 1.

While the theoretical number of requests is higher than the previous test, the actual

than the first test despite having 600 more simultaneous users. The data compared to the
previous test is also better, less load times for most users, a lower average delay of 33ms and
less simultaneous open requests, one possible explanation for this is in the extra 5 minutes
this test had to ramp up when compared to the first, being that both the supernode and the

73

number of requests is around 274 per second, or 986.784 per hour which leaves it a bit lower



Figure 5.30: Spectrum of load times of the Ramp test with 4000 users.

Figure 5.31: Load times and hits per second of the Ramp test with 4000 users.

test machine had less stress and more time to react to the gradual load.
From the supernode point of view, the two tests induced a similar result in resources used

when the tests reached the max number of users. RAM-wise there were no relevant changes
while the tests were being performed, as for CPU usage it gauged between 7% and 14%,
being constant at 11% usage throughout most of the time.

74



Figure 5.32: Open requests and Transferred Data of the Ramp test with 4000 users.

Load Test

A Load Test constitutes in a test where a constant load of users is maintained continuously
for all the testing time. The goal of this type of test is to check if the server is able to serve
all users while being under constant load. Typically the assigned number of users is set to
an expected level or above.

This test is a constant load test, meaning that unlike a ramp up test where the users
are initiated gradually, in this test all users are active since the start and remain active until
the end of the set time. This was performed with 3400 users in 15 minutes, where each user
made a request every 6 seconds leaving the theoretical request volume at 34.000 requests per
minute, or 2.040.000 requests per hour, the same load as the first ramp test.

The test machine took 57 seconds to start all users, after that as shown in fig. 5.34 it keeps
a constant load a little above 280 page loads per second, averaging at 276 per second due to
down spikes. The test starts with high bandwidth usage and remains constant throughout
the test. Due to a little higher number of requests being made, in average the throughput is
11.749 kbit/sec, a bit higher than the previous two ramp tests. As for simultaneously open
requests as shown in fig. 5.35, the results seem similar to the previous tests but with a lot
more spikes reaching 200 to 250 simultaneous open requests. The load time average stays at
58ms, while in fig. 5.34 the load times on average are higher but don’t look much different
than the ramp tests 5.285.31. In fig. 5.33 it clearly shows that a considerable amount of users
experienced high load times when compared to fig. 5.30 from the second ramp test, despite
that thest having more simultaneous users.

Of all the 232.561 requests, 74 of those were errors, being the only test where the supern-
ode failed to reply, 27 of those occurred on second 253, 1 on second 297, 1 on second 581 and
the remaining 45 errors occurred on second 887. Looking in detail, the first 27 errors and the

75



Figure 5.33: Spectrum of load times of the Load Test with 3400 users.

Figure 5.34: Load times and hits per second of the Load Test with 3400 users.

one at 581 seconds were due to the connection being refused, the one on second 297 reported
an invalid host name and the remaining 45 errors reported an unknown http result. While
the last 45 errors are understandable due to the clients being in stress with a high spike in
requests, delay and bandwidth, it is unclear from the data if the other errors were due to a
limitation on the supernode or on the test machine. When compared to the total number of
requests, the errors don’t have much relevance.

Other load tests were performed to force errors in order to find possible bottlenecks,
however due to limits of the setup, the data was unreliable as a result of the testing machine

76



Figure 5.35: Open requests and Transferred Data of the Load Test with 3400 users.

Figure 5.36: Error Rate on the Load Test with 3400 users.

being bottlenecked on its resources before the supernode.
Similarly to the ramp tests, the usage of resources remained low. There was no relevant

changes in RAM usage, and CPU usage gauged between 8% and 14%, averaging at 12%. As
the content being served in the tests is static content and really small in size when compared
to a typical website, there is not much bandwidth usage considering the amount of users
doing requests. Though the tests above didn’t reach the point of a bottleneck, the supernode
shows to be capable to handle a high number of users and requests.

Bandwidth Test

A Bandwidth test consists in maxing the throughput of the server, in this case the supernode,
in order to perceive its max bandwidth and how the high use of bandwidth affects the use of
other resources.

To perform this test, it was set as a ramp test with gradually increasing users, where 8
users download a file from the supernode through HTTP. In this test each user downloads
the file every 7 seconds. The file chosen was a video file, an mp4 that has 11,4MB (12.006.066
bytes). The download rate is shown in fig. 5.37, but it can also be calculated by dividing the

77



size of the downloaded file by the time used to download the file.

Figure 5.37: Transferred Data of the Bandwidth Test.

As seen in fig. 5.37, the first users downloaded the files without competing for bandwidth,
meaning that they finished the download in less than 2 seconds. Gradually as users increase,
the bandwidth is divided between the users actively downloading at the time. This results in
the supernode reaching it’s maximum bandwidth, which consequently increases the average
download times for the users, as the bandwidth is divided between them. At 80 seconds
into the test, all the 8 users are active, but simultaneous downloads only start to pile up 20
seconds later. In the last minute of the test there are always open requests and the server
is in constant load to deliever them. While the values in the figure are averages, two of the
points in the graph are near the maximum speed that the supernode can achieve.

Avg. DL Time Requested Finished Errors Downloaded* Average speed
User #1 1.706,36 ms 22 21 0 252.128.709 56.288,71 kbit/s
User #2 1.688,96 ms 20 19 0 228.116.451 56.868,81 kbit/s
User #3 1.855,41 ms 17 16 0 192.098.064 51.767,15 kbit/s
User #4 2.723,30 ms 14 13 0 156.079.677 35.269,36 kbit/s
User #5 2.703,80 ms 12 11 0 132.067.419 35.523,66 kbit/s
User #6 3.150,05 ms 10 9 0 108.055.161 30.491,26 kbit/s
User #7 2.215,72 ms 8 8 0 96.049.032 43.348,85 kbit/s
User #8 2.991,57 ms 6 5 0 60.030.645 32.106,58 kbit/s

Table 5.1: Download data per user.

*Size in Bytes

Tabel 5.1 describes metrics for each user. As the test was a ramp up, the first users had
more active time, which results in more requests. As the these first users made requests while

78



the supernode was (mostly) iddle, their average download time is quite low and their average
speed is high when compared to the last users to become active. The average time and speed
is similar for the first 3 users, while the other 5 users show a much higher average time and
lower download speed. Of the latter group of users, User #7 has better metrics due to being
the only one that finished all the requests, while all the other 7 users had a download ongoing
when the test stopped.

While this test was performed the CPU usage of the supernode remained at 2%. The
upload output was at 11,35MB/s, a little shy of the 11,92MB/s maximum network limit. High
HTTP outputs of data have almost no stress on the supernode CPU-wise. As for bandwidth
output, this test concludes that bandwidth usage is not a limiting factor for the supernode
as long as it has bandwidth available.

Delay on DHT Requests

In this test there is data on the delay of DHT requests that are made by supernodes for the
BitTorrent functionality. The client supports trackers, but for this test no trackers were used
and the supernode would rely entirely on the DHT to join the peer swarm. This means that
after a torrent is loaded in the SN, connecting to peers happens only after a DHT request is
finished successfully.

Figure 5.38: Delay of DHT Requests.

This test used the current DHT implementation from the SN’s BitTorrent client, the
objective of this test was to have an idea of the order of magnitude of the delay that DHT
implementations take until the request is made until a full swarm list of peers is retrieved.
The average of this test was in the 18 second window of delay between the request being

79



made and the list being retrieved, being that the highest delay was 34 seconds. Given the
decentralized nature of this solution an average 18 second window seems a high delay but it
is an acceptable delay for file sharing solutions given that no centralized server is used and
that the DHT Network is composed of 15 to 27 million concurrent nodes. [53]

A simple Kademlia DHT implementation was also tested in early stages, this DHT imple-
mentation was supposed to be used on the SN Network for the search functionality between
supernodes. The average request under this implementation yielded worse results, usually
above 20 seconds, data from this implementation wasn’t furtherly gathered as the function-
ality isn’t used on the final prototype.

80



Chapter 6

Conclusions

It was a challenging project due to the nature of the protocols involved and their lack of
being mature as a technology, this led to a lot of headaches and hacky solutions that due to
updates on the browsers and WebRTC API, left a lot of the code with room for structural
changes. The P2P nature of the dissertation was very fun to work with, examples like
clients under diverse and distinct networks behaved inconsistently despite WebRTC typically
working behind NATs and firewalled networks, or how peers sometimes behaved differently
in a P2P environment even with the same code. These as well as working with an API that
was ever changing proved to be challenging but very educational.

The goal of this prototype at the time of its birth, from idea to its completion was to
give a new perspective to the BitTorrent, a way to turn file sharing more client-free and an
uncensored access to content, specially after all the backlash in this recent years to BitTorrent
and P2P in general. While Seedseer was being developed a multitude of similar solutions
started to show up, which shows a real need for these types of projects and validates the
approach that this dissertation followed on the subject of different and simpler ways to use
and consume content in P2P networks. The solution however begs new questions, being that
the seedseer network is more fragmented and harder to scan is a plus, but when a peer is
connected to another, the use of WebRTC raises concerns over privacy and lack of anonymity,
would users consider this aspect to be a valuable change when compared to BitTorrent? The
ease of use over a browser allows, when compared to other P2P solutions, for a potential
higher number of clients but with more limited resources and a higher rate of peers joining and
leaving the network, to what degree would this be considered an advantage or a disadvantage?
The answer to these rely on user behavior and to what extent the user values these changes
as advantages over other existing P2P solutions. This dissertation aimed for a different,
more accessible P2P solution over a browser, while knowingly sacrificing performance, this is
exactly what it achieved.

81



6.1 Future Work
There are a lot of concepts that were unpolished on the development of Seedseer, if this pro-
totype was to hit production and be used in a more serious environment a lot of obvious en-
hancements would be required. The improvements can be divided in 2 groups, improvements
that are related to how BitTorrent works and improvements into Seedseer’s core concepts.
The first are features that Seedseer can use that BitTorrent clients already use, features that
are stable and have already been proved to work successfully in the large network of nodes
that is BitTorrent as a protocol. The second are changes into the Seedseer core or architecture
to mitigate its inherent limitations.

Regarding the first group, Seedseer would achieve a greater maturity if its WebRTC trans-
fers were brought closer to the BitTorrent way of handling file transfers. Features like data
integrity verification per piece, optimization of piece requests, superseed and endgame mode,
all of these allow a better use of the network’s resources, resilience to ill intentioned peers
and assure better quality of service for regular peers in the network, using concepts that
BitTorrent has that have been proved to be successful. As for the second group, a swifter
approximation between the BitTorrent and WebRTC network would be an improvement to
make the solution more resource effective, meaning a less need for overhead or structure
changes between the 2 protocols, making so file sharing between different networks to be
as seamless as possible. The SuperNode Network would be a core step for communication
between supernodes using websockets, being the two major features, allowing content search
through a DHT and routing WebRTC signaling between peers connected to different su-
pernodes. However, limiting its range of features and maximum number of hops would be
essential to determine how well each seedseer network would scale and its size. Finally, as
seedseer’s concept relies on being available in a browser and clients should be more limited
on resources than the typical BitTorrent client, this means RAM Optimization and disk IO
usage is essential for its effective adoption by the users, this change alone determines heavily
how much content can be available on the network and be seeded effectively.

82



Bibliography

[1] Scrape - vuzewiki. https://wiki.vuze.com/w/Scrape, 2012. (accessed August 24,
2016).

[2] The world in 2015: Ict facts and figures. https://www.itu.int/en/ITU-D/

Statistics/Documents/facts/ICTFactsFigures2015.pdf, 2015. (accessed August 2,
2016).

[3] Bittorrent protocol specification v1.0. https://wiki.theory.org/

BitTorrentSpecification, 2016. (accessed July 29, 2016).

[4] Internet live stats. http://www.internetlivestats.com/internet-users/, 2016. (ac-
cessed July 29, 2016).

[5] Acorn, J. Forensics of bittorrent.

[6] Adamsky, F., Khayam, S. A., Jäger, R., and Rajarajan, M. P2p file-sharing
in hell: Exploiting bittorrent vulnerabilities to launch distributed reflective dos attacks.
In 9th USENIX Workshop on Offensive Technologies (WOOT 15) (Washington, D.C.,
Aug. 2015), USENIX Association.

[7] Aitken, D., Bligh, J., Callanan, O., Corcoran, D., and Tobin, J. Peer-to-peer
technologies and protocols. http://ntrg.cs.tcd.ie/undergrad/4ba2.02/p2p/, 2001.
(accessed July 29, 2016).

[8] Akoka, J. Centralization versus decentralization of information systems : a critical
survey.

[9] Alberty, T. The new ponzi scheme: Bittorrent & hardcore pornography.

[10] Alvestrand, H. Google release of webrtc source code. https://lists.w3.

org/Archives/Public/public-webrtc/2011May/0022.html, 2011. (accessed July 29,
2016).

[11] Bartholomew, T. B. The death of fair use in cyberspace: Youtube and the problem
with content id. 66–88.

83

https://wiki.vuze.com/w/Scrape
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
https://wiki.theory.org/BitTorrentSpecification
https://wiki.theory.org/BitTorrentSpecification
http://www.internetlivestats.com/internet-users/
http://ntrg.cs.tcd.ie/undergrad/4ba2.02/p2p/
https://lists.w3.org/Archives/Public/public-webrtc/2011May/0022.html
https://lists.w3.org/Archives/Public/public-webrtc/2011May/0022.html


[12] Bieber, J., Kenney, M., Torre, N., and Cox, L. P. An empirical study of seeders
in bittorrent. 67–70.

[13] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. Freenet: A dis-
tributed anonymous information storage and retrieval system. In INTERNATIONAL
WORKSHOP ON DESIGNING PRIVACY ENHANCING TECHNOLOGIES: DESIGN
ISSUES IN ANONYMITY AND UNOBSERVABILITY (2001), Springer-Verlag New
York, Inc., pp. 46–66.

[14] Cohen, B. Incentives build robustness in bittorrent, 2003.

[15] da Silva Rodrigues, C. K. Analyzing peer selection policies for BitTorrent multimedia
on-demand streaming systems in internet. IJCNC 6, 1 (jan 2014), 203–221.

[16] Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M. F., and Morris, R.
Designing a dht for low latency and high throughput. In Proceedings of the 1st Conference
on Symposium on Networked Systems Design and Implementation - Volume 1 (Berkeley,
CA, USA, 2004), NSDI’04, USENIX Association, pp. 7–7.

[17] danah m. boyd, and Ellison, N. B. Social network sites: Definition, history, and
scholarship. Journal of Computer-Mediated Communication 13, 1 (oct 2007), 210–230.

[18] Decker, C., Eidenbenz, R., and Wattenhofer, R. Exploring and improving
bittorrent topologies. 13-th IEEE International Conference on Peer-to-Peer Computing.

[19] Feldman, M., Lai, K., Stoica, I., and Chuang, J. Robust incentive techniques
for peer-to-peer networks. In Proceedings of the 5th ACM Conference on Electronic
Commerce (New York, NY, USA, 2004), EC ’04, ACM, pp. 102–111.

[20] Fette, I., and Melnikov, A. Rfc 6455 - the websocket protocol. https://tools.

ietf.org/html/rfc6455, 2011. (accessed July 29, 2016).

[21] Harrison, D. Peer id conventions. http://www.bittorrent.org/beps/bep_0020.

html, 2008. (accessed July 29, 2016).

[22] Harrison, D. Index of bittorrent enhancement proposals. http://www.bittorrent.

org/beps/bep_0000.html, 2012. (accessed August 22, 2016).

[23] Herrmann, M., Zhang, R., Ning, K.-C., Diaz, C., and Preneel, B. Censorship-
resistant and privacy-preserving distributed web search. In 14-th IEEE International
Conference on Peer-to-Peer Computing (sep 2014), Institute of Electrical & Electronics
Engineers (IEEE).

[24] Hickson, I., and Hyatt, D. Html 5: A vocabulary and associated apis for html
and xhtml. https://www.w3.org/TR/2008/WD-html5-20080610/single-page/, 2008.
(accessed July 29, 2016).

84

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
http://www.bittorrent.org/beps/bep_0020.html
http://www.bittorrent.org/beps/bep_0020.html
http://www.bittorrent.org/beps/bep_0000.html
http://www.bittorrent.org/beps/bep_0000.html
https://www.w3.org/TR/2008/WD-html5-20080610/single-page/


[25] Hugoson, M.-Å. Centralized versus decentralized information systems. In IFIP Ad-
vances in Information and Communication Technology. Springer Science Business Media,
2009, pp. 106–115.

[26] Johnsen, J. A., Karlsen, L. E., and Birkeland, S. S. Peer-to-peer networking
with bittorrent. 1–20.

[27] Khan, M. Stun or turn? which one to prefer; and why? https://www.

webrtc-experiment.com/docs/STUN-or-TURN.html, 2013. (accessed July 29, 2016).

[28] Leitão, J., Carvalho, N. A., Pereira, J., Oliveira, R., and Rodrigues, L.
On adding structure to unstructured overlay networks. In Handbook of Peer-to-Peer
Networking. Springer Science Business Media, oct 2009, pp. 327–365.

[29] Levent-Levi, T. What is webrtc? https://bloggeek.me/webrtc/, 2012. (accessed
July 29, 2016).

[30] Liang, J., Kumar, R., and Ross, K. W. Understanding kazaa, 2004.

[31] Liberatore, M., Erdely, R., Kerle, T., Levine, B. N., and Shields, C. Forensic
investigation of peer-to-peer file sharing networks. Digital Investigation 7 (aug 2010),
S95–S103.

[32] Meulpolder, M., D’Acunto, L., Capotă, M., Wojciechowski, M., Pouwelse,
J. A., Epema, D. H. J., and Sips, H. J. Public and private bittorrent communities: A
measurement study. In Proceedings of the 9th International Conference on Peer-to-peer
Systems (Berkeley, CA, USA, 2010), IPTPS’10, USENIX Association, pp. 10–10.

[33] Neglia, G., Presti, G. L., Zhang, H., and Towsley, D. F. A network formation
game approach to study bittorrent tit-for-tat. In Network Control and Optimization,
First EuroFGI International Conference, 2007, Avignon, France, June 5-7, 2007, Pro-
ceedings (2007), pp. 13–22.

[34] Office of the United Nations High Commissioner for Human Rights. The
promotion, protection and enjoyment of human rights on the internet, 2014.

[35] Office of the United Nations High Commissioner for Human Rights. The
right to privacy in the digital age, 2014.

[36] Perrin, A. Social media usage: 2005-2015. http://www.pewinternet.org/files/

2015/10/PI_2015-10-08_Social-Networking-Usage-2005-2015_FINAL.pdf, 2015.
(accessed August 2, 2016).

[37] Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., and Venkatara-
mani, A. Do incentives build robustness in bit torrent. In Proceedings of the 4th
USENIX Conference on Networked Systems Design &#38; Implementation (Berkeley,
CA, USA, 2007), NSDI’07, USENIX Association, pp. 1–1.

85

https://www.webrtc-experiment.com/docs/STUN-or-TURN.html
https://www.webrtc-experiment.com/docs/STUN-or-TURN.html
https://bloggeek.me/webrtc/
http://www.pewinternet.org/files/2015/10/PI_2015-10-08_Social-Networking-Usage-2005-2015_FINAL.pdf
http://www.pewinternet.org/files/2015/10/PI_2015-10-08_Social-Networking-Usage-2005-2015_FINAL.pdf


[38] Pick, R. A. Shepherd or servant: Centralization and decentralization in information
technology governance. IJMIS 19, 2 (mar 2015), 61.

[39] Portmann, M., and Seneviratne, A. Cost-effective broadcast for fully decentralized
peer-to-peer networks. Computer Communications 26, 11 (jul 2003), 1159–1167.

[40] Postigo, H. Capturing fair use for the youtube generation: The digital rights move-
ment, the electronic frontier foundation and the user-centered framing of fair use. In-
formation, Communication & Society 11, 7 (2008), 1008–1027.

[41] Pouwelse, J., Garbacki, P., Epema, D., and Sips, H. The bittorrent P2P file-
sharing system: Measurements and analysis. In Peer-to-Peer Systems IV. Springer
Science Business Media, 2005, pp. 205–216.

[42] Qiu, D., and Srikant, R. Modeling and performance analysis of bittorrent-like peer-
to-peer networks. SIGCOMM Comput. Commun. Rev. 34, 4 (Aug. 2004), 367–378.

[43] Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Core. RFC
6120, Oct. 2015.

[44] Sandvine. Global internet phenomena report africa, middle east & north america.
https://www.sandvine.com/downloads/general/global-internet-phenomena/

2015/global-internet-phenomena-africa-middle-east-and-north-america.pdf,
2015. (accessed August 24, 2016).

[45] Sandvine. Global internet phenomena report asia-pacific & europe. https:

//www.sandvine.com/downloads/general/global-internet-phenomena/2015/

global-internet-phenomena-report-apac-and-europe.pdf, 2015. (accessed August
24, 2016).

[46] Sharma, A. K., and Sharma, A. P. N. Bittorrent (peer topeer network): Antipiracy
and anonymity.

[47] Shen, H., Liu, A. X., and Zhao, L. Freeweb: P2p-assisted collaborative censorship-
resistant web browsing. 2014 43rd International Conference on Parallel Processing 0
(2013), 130–139.

[48] Steinmetz, R. Peer-to-peer systems and applications. Springer, Berlin New York, 2005.

[49] Tadlock, C. Copyright misuse, fair use, and abuse: How sports and media companies
are overreaching their copyright protection.

[50] Tucker, D. Survey of searching methods in internet peer-to-peer systems. http:

//medianet.kent.edu/surveys/IAD03F-dtucker/index.html, 2003. (accessed July
29, 2016).

86

https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-africa-middle-east-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-africa-middle-east-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-apac-and-europe.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-apac-and-europe.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-apac-and-europe.pdf
http://medianet.kent.edu/surveys/IAD03F-dtucker/index.html
http://medianet.kent.edu/surveys/IAD03F-dtucker/index.html


[51] van der Spek, O., and Norberg, A. Bittorrent udp-tracker protocol extension.
http://www.libtorrent.org/udp_tracker_protocol.html, 2016. (accessed July 29,
2016).

[52] Wang, J., Shen, R., Ullrich, C., Luo, H., and Niu, C. Resisting free-riding
behavior in bittorrent. Future Gener. Comput. Syst. 26, 8 (Oct. 2010), 1285–1299.

[53] Wang, L., and Kangasharju, J. Measuring large-scale distributed systems: case
of BitTorrent mainline DHT. In IEEE P2P 2013 Proceedings (sep 2013), Institute of
Electrical & Electronics Engineers (IEEE).

[54] Winter, A. Downloaded, 2013.

[55] Wolchok, S., and Halderman, J. A. Crawling bittorrent dhts for fun and profit.
In Proceedings of the 4th USENIX Conference on Offensive Technologies (Berkeley, CA,
USA, 2010), WOOT’10, USENIX Association, pp. 1–8.

[56] Zhang, H., Ye, L., Shi, J., Du, X., and Chen, H. H. Preventing piracy content
propagation in peer-to-peer networks. IEEE Journal on Selected Areas in Communica-
tions 31, 9 (September 2013), 105–114.

87

http://www.libtorrent.org/udp_tracker_protocol.html

	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Evolution of Peer-to-Peer
	Removal of Content
	Motivation and Goals
	Document outline

	State of the Art
	Web Technologies
	WebSockets
	WebRTC

	Chat Solutions
	IRC
	XMPP

	File Transfers
	BitTorrent
	Gnutella


	Proposed Solution
	Specification
	BitTorrent Network
	WebRTC Network
	Heterogeneous Peers
	Chrome App
	Identity-based Routing

	Architecture
	SeedSeer Client
	SeedSeer Supernode
	Overview of the Network


	Implementation
	Bootstrap
	Components
	WebSocket Server 
	BitTorrent Client 
	Code Structure

	User Interface
	WebSockets Functionalities
	Packet validation
	Adding content & Swarms

	WebRTC Functionalities
	Connections
	Transfers

	Commands
	Supernode Settings

	Results
	Survey
	Performance, Limitations and Tests
	Client Load
	Transfers
	Supernode limitations
	Delay on DHT Requests


	Conclusions
	Future Work

	Bibliography

