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Palavras-chave Logística, Carregamento de Mercadoria, Posicionamento 3D de Volumes, 
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Resumo Com a crescente necessidade de transporte de mercadoria como resultado da 
globalização económica, é importante o melhoramento dos processos e 
procedimentos das operações logísticas como o carregamento e 
descarregamento de mercadoria, por forma às corporações aumentarem a sua 
vantagem competitiva e rentabilidade. 
Esta dissertação explora e apresenta dois temas relacionados com processos 
logísticos: Posicionamento de volumes e tecnologias de deteção para 
monitorização de mercadorias. Uma heurística foi desenvolvida para atribuição 
e posicionamento 3D de volumes dentro de contentores seguindo uma 
estratégia de colocação que produz soluções verticalmente estáveis e com um 
alto grau de compactação. Desenvolveram-se dois protótipos usando tecnologia 
de deteção capaz de medição de volumes, varrimento por laser e visão 
estereoscópica por computador, como fundação para um sistema para 
monitorizar o carregamento e descarregamento de mercadorias. Estes sistemas 
pretendem providenciar assistência para os operadores logísticos na aplicação 
de normas e identificação de potenciais problemas. 
Os resultados obtidos pela heurística são promissores, mostrando que um 
conjunto de simples regras de posicionamento de caixas consegue obter uma 
boa percentagem de ocupação de volume do contentor. Ambos os protótipos de 
deteção apresentaram bons resultados nos testes de laboratório, com o 
protótipo de visão estereoscópica provando ser o mais preciso e fiável para 
potencial desenvolvimento em uma aplicação a ser instalada em contentores. 
Esta dissertação conclui com observações acerca de futuros melhoramentos e 
desenvolvimentos para o trabalho implementado. 





  

  

Keywords Logistics, Cargo Loading, 3D Volume Placement, Laser Rangefinder, Computer 
Stereo Vision 

Abstract With the ever necessity of cargo transportation as the results of economic 
globalization, it is important to improve the processes and procedures of logistic 
operations such as cargo loading and unloading, in order for corporations to 
increase their competitive advantage and profitability. 
This dissertation explores and presents two subjects related with logistic 
processes: Volume placement and sensing technologies for cargo monitoring. A 
heuristic was developed for 3D volume assignment and placement inside 
containers following a positioning strategy that produces vertically stable 
solutions with a high degree of compactness. Two prototypes using sensing 
technology capable of volume measurement, laser range finding and computer 
stereo vision, were developed as a foundation for a system for monitoring the 
loading and unloading of cargo. These systems aim to provide assistance to 
logistic operators on the application of standards and identification of potential 
issues. 
The obtained results on the heuristic are promising, showing that a simple set of 
rules for placement of boxes can achieve a good occupation percentage of the 
container’s volume. Both sensing prototypes showed good results on lab tests 
with the stereo vision prototype proving to be the most accurate and reliable for 
potential further developments into an application to be installed in containers. 
This dissertation concludes with remarks regarding future improvements and 
developments for the implemented work. 
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1 

1. Introduction 

It comes as no surprise that logistics has played an important role throughout history. 

From sailing the sea to distant lands, waging war or commercial transactions, good logistics 

was often a key factor in the success of the outcome. Cultural expressions such as “those 

who go to the sea, get ready on land” (Portuguese proverb) illustrate the impact that logistics 

had on shaping cultures and civilizations. 

Nowadays, logistics plays a significant role in creating competitive advantage for 

business organizations, and it is by recognizing its importance as a differentiating factor in 

the market, that companies can provide a better value to their customers than their 

competitors, which in turn result in an increase of business profitability. 

More specifically, logistics management is the process of planning the procurement, 

movement and storage of equipment, materials or supplies and its associated information 

through the company in a way that maximizes the current and future profitability by fulfilling 

cost-effective orders [1]. In other words, logistics management is the integrator and 

coordinator of all logistic activities (fleet management, inventory management, 

warehousing, order fulfillment, etc.) from the point of origin (raw supplies) to the point of 

consumption (customer) meeting the customer’s requirements. 

Cases of successful logistics management include IKEA, a multinational designer of 

furniture, that specialized in ready-to-assemble furniture that is designed so that the customer 

can assemble the final product at home. This means that transportation costs can go lower 

since items take less space during transportation, which in turn allows for a higher volume 

of goods to be transported. Parallel to these operations are powerful information systems that 

manage the inventory of each warehouse through sale projections, making sure that stocks 

are refilled with the exact amount of supplies. This cuts on lost sales and at the same time 

makes sure that excessive items are not ordered from the suppliers. 

Another example is Walmart, an American multinational retail corporation, that 

instituted cross-docking at their warehouses, i.e., inventory moves directly from an arriving 

truck to a departing one. This allows products to spend less time at the warehouse and instead 

be readily available at the stores, cutting on potential lost sales. All these operations rely on 

information systems with a centralized database, the information is then shared with 
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suppliers so that stock is easily refilled. Palletization also improves the process by allowing 

the cargo capacity of the trucks to be utilized more efficiently. 

Therefore, as seen by these examples, increasing the effectiveness of logistics 

operations can lead to a better execution of activities by the company, which in turn, directly 

translates into an increase of profits. 

 

1.1. Framework 

A key element in logistics is the transportation system. Transportation is what connects 

the different activities and directly influences the whole performance of the logistic system 

such as having an impact on reducing the operation’s cost and promoting the service quality. 

Palletization has been used reduce transportation and warehousing costs by packing the 

cargo inside pallets (which are easier to handle) providing a better integration with the other 

logistic activities. However, cargo loading and space optimization (being a real time 

problem) is a task of higher complexity since cargo can have different dimensions and be of 

different types. This has led companies to rely on trial and error methods or rules of thumb, 

based on their cumulative practical years of experience. Methods like these, which are not 

standard or even not well defined, often require time to reallocate or replace cargo within 

the container space until it is organized in a secure and stable position. These kind of 

processes are of utmost importance to an industry which is heavily influenced by fuel prices, 

since the time spent on loading the cargo and its efficiency, dictates how many transports 

can be done per working day, directly impacting the overall costs. Therefore, the 

implementation of well-defined methods that solve this problem is of critical importance to 

transport carriers looking to improve their services. 

 

1.2. Motivation 

In Europe during 2014, logistics costs accounted for 960 billion euros where 

transportation costs occupy an astonishing 44%, with a total transport of 18.6 billion tons 

being done mainly by road (Figure 1.1) [2]. 
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Figure 1.1: European logistics costs ratio and transport tonnages (Adapted from: [2]) 

Allied to these statistics is the increasing concern with carbon dioxide emissions. More 

than ever before, countries are required to reduce and control their pollution rates to develop 

and protect a sustainable environment. The broad public is more aware of these 

environmental concerns and a company that provides solutions with this in mind might 

capture that advantage. 

On the other hand, these statistics highlight the importance of development and 

investment in transportation where the majority of the costs are concentrated. The 

improvement of processes executed in this field, more specifically the cargo loading and 

unloading process, can lead to the increase of efficiency and therefore reduce the costs 

involved. 
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1.3. Problem Statement 

This dissertation focus on two subjects: 

 Development of sensing methods to monitor a cargo container. 

Logistic operators often require information on the available space inside a 

cargo container to better evaluate the efficiency of operations (cargo loading 

and transportation) or detect potential problems. Thus, sensing technology 

capable of measuring volumes and retrieve the cargo geometry can fulfill 

such task. 

 Improve the loading and volume utilization of a cargo container. 

Traditional cargo loading processes don’t often provide the best usage of the 

container’s volume. Therefore, a heuristic for cargo loading can play a role 

in improving the process. 

Two systems designed for the measurement of volumes are presented and a heuristic is 

proposed to improve the process of loading/unloading a container. 

 

1.4. Objectives 

The central objective of this dissertation is to contribute to a better efficiency of cargo 

loading and unloading processes in transportation – crucial operations in the logistic chain – 

by resorting to the incorporation of information systems and sensing technology. 

The specific objectives are the following: 

 To formulate a 3D representation model for the loading of goods into a confined 

space as per the Container Loading Problem [3] definition. 

 To develop a heuristic capable of solving a predefined subset of the Container 

Loading Problem and evaluate its results. 

 To present the concept and design of 3D cargo volume representation 

techniques focusing on two frequently used approaches: 

o Stereo vision; 

o Laser range finding. 

This work can be of relevance for logistic operators that seek a better efficiency for 

their operational processes by: on one hand, an improvement of the loading and unloading 
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of cargo from trucks or containers; on the other hand, an application of a measurement 

system that can monitor the cargo loading/unloading during critical processes, so that the 

operator has an extended control over their operations. 

 

1.5. Methodology 

Research was conducted on the available academic literature and market solutions in 

order to select the potential technologies and approaches that fit the necessary requirements.  

Empirical and simulation approaches were used to experimentally acquire data to 

validate the feasibility of the designed solutions.  

Development was performed using a sequential model (as shown in Figure 1.2).  

 

Figure 1.2: Development cycle (modified waterfall model) 

This model provided a well-defined structure of steps for the development cycle, 

allowing to backtrack one phase if irregularities were detected, or additional features were 

required to be implemented. 

During the design phase, simple models were constructed based on real environments 

and then simulated in order to test the application of the identified operations along with the 

associated constraints. 

A prototyping approach was used during the implementation phase. Prototypes were 

build and improved through an iterative process of trial and error using the experimentally 

acquired data in controlled lab conditions, constructed to approximate real life scenarios. 

Analysis

Design

Implementation

Verification

• Identification of the operations necessary to be 

executed. 

• Identification of associated constraints. 

• Logical and physical architecture. 

• Hardware and/or software. 

• Prototyping. 

• Testing and evaluation of 

the solution. 
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Iterative prototyping allowed to detect problems and correct or minimize their effect, making 

the implementation more resilient at each step. 

1.6. Structure 

The organization of this dissertation goes as follows: in section 2, a state of the art 

review of the literature and available market solutions will be conducted focusing on 

describing the principles and characteristics of the solutions; section 3 describes the concepts 

and designing aspects of the implemented solutions; section 4 describes the software 

implementation of the developed volume measuring sensing systems; section 5 presents the 

implementation of an heuristic for cargo loading and volume assignment; section 6 presents 

and discusses the results obtained by the developed solutions; finally, section 7 concludes 

this dissertation and includes potential remarks for potential future work under the explored 

subject. 
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2. State of the Art 

This section will present an overview of the principles behind the methods that provide 

measurement of volumes and 3D reconstruction. Heuristics and approaches available on 

volume assignment (solving the Container Loading Problem) are also reviewed. An 

overview of some available market sensors and cargo optimizing software (loading and 

packing) is also presented. 

 

2.1. Literature Review 

Relevant academic literature on sensing technology and volume assignment approaches 

were reviewed. Only literature written in English or Portuguese and publicly available or 

accessed through the University of Aveiro’s library was considered. 

 

2.1.1. Sensing Methods 

There is a wide variety of 3D range finding methods. A possible classification for some 

of the most relevant in the industry, is proposed by Sansoni et al. [4] according to their 

measuring characteristics and is shown in Table 2.1. 

Table 2.1: Classification of ranging methods (Source: [4]) 

 Triangulation Time delay Active Passive 

Laser triangulation X  X  

Structured light X  X  

Stereo Vision X   X 

Time-of-flight  X X  

Interferometry  X X  

 

Methods are classified as active if a controlled light source (such as a laser) is used as 

the method to retrieve the ranging information, and as passive if a direct light source is not 

used for the measurement procedure, i.e., the method infers the distance using indirect light 

sources (such as ambient light). 

These methods are also considered direct, i.e., the output of their operation is raw range 

data (distances) with no extra information required about the target being measured. 
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2.1.1.1. Laser Range Finding Approaches 

Distance measurement using laser methods can be divided into three categories: 

triangulation, time-of-flight and interferometry. Amann et al. [5] do a review of the common 

laser range finding techniques used in the industry.  

Laser pulse time-of-flight distance measuring systems measures the round trip time of 

a light pulse emission (commonly a laser) and the return from the reflection upon hitting the 

target object which is then translated to a distance. An implementation of such a system uses 

a focal plane scanning (Figure 2.1) which allows to 3D map an entire surface (without 

mechanically drive the system to measure different points of the surface) by using a matrix 

of different detectors where each covers a small fraction of the field of view illuminated by 

the laser. 

 

Figure 2.1: Schematic of a laser system with focal plane scanning (Source: [5]) 

Error in these systems can arise from noise sources, such as the electronic circuitry or 

background radiation, which induce time jitter which ultimately settles the maximum 

capable precision of the system. However, the advantage of a time-of-flight system comes 

from its high precision and the fact that it uses the same direct path from the target and back 

to the sensor, which allows for a more compact design when compared with other solutions 

such as the optical triangulation method. 

Laser phase-shift range finding works by modulating the optical power (laser) with a 

constant reference frequency and then measure the difference in phase obtained by the 

received reflection from the target, which is translated into the distance. This method allows 

measurements of 1 millimeter of resolution or less. 
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Figure 2.2: Laser phase-shift rangefinder schematic (Source: [6]) 

Electrical crosstalk between the transmitter and receiver is one of the major sources of 

error with these systems. However, this influence cannot be totally removed with 

conventional shielding techniques, which is why this is the factor that determines the 

accuracy of the system at a given modulation frequency. 

Distance measuring with phase-shifting is, however, a high accurate method for ranges 

up to 20 meters. A photodiode with a large area can increase the field of view of the sensor, 

allowing the laser to be scanned by micro mirrors making the system more compact and 

potentially reduce its costs of implementation. 

Optical triangulation is done using a setup of a light source (an emitter such as a laser), 

a photo sensor (receptor) and an appropriate geometry (as exemplified in Figure 2.3) where 

the receptor can detect the light reflected by the target off the light source in order to 3D map 

the object. Based on the position of the detected pixels and the geometry of the system, 

distances can be measured to target objects. Danko [7] also proposes a similar solution where 

in order to improve the pixel detection conversion to distances, experimental data is taken 

and fitted through a proper function. 

 

Figure 2.3: Example geometry for triangulation with color information (Source: [5]) 

The main source of error on this system is due to speckle noise. This phenomenon 

happens when diffusion occurs at the surface of the target object, which in turn results in the 



Object Grouping in Limited Spaces 

10 

scattering of the laser reflections. The system then needs to calculate the centroid of the 

detected pixels from the various reflections which results in uncertainty in the detected 

position. This method relies on a good geometric design in order to obtain the best resolution. 

It should also be noted that this method is low cost and easy to implement. 

 

2.1.1.2. Stereo Vision 

Stereo vision is a method used to create an illusion of depth by using two images taken 

from different positions and triangulating distances to targets, making it possible to 

reconstruct 3D environments. For this operation, the following condition must hold: pictures 

should be taken at the same instant, i.e., the target object/scenery must not move or change 

between shots. 

Mrovlje and Vrančić [8] use two pictures from two horizontally aligned cameras to 

determine the distance between the camera set and a target object (Figure 2.4), by calculating 

the horizontal pixel disparity (of the object) between both pictures. The process begins by 

selecting an object to be identified and then the algorithm detects the same object on the 

second picture (searching for minimum pixel difference) to determine the pixel disparity. 

The distance is then calculated using triangulation, proving to be highly accurate. 

Mahammed et al. [9] use the same principle, however, to improve the distance calculation, 

experimental data is used to determine a fitting function that better relates the pixel disparity 

and distance to the target object (in the same way as proposed by Danko [7] for the 

triangulation using a laser). Both authors require absolute parallelism of the camera’s optical 

axis. 

 

Figure 2.4: Stereo triangulation (Source: [8]) 
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Masuda et al. [10] address the parallelism condition by converting the taken images 

into parallel images using image rectification. This process is done through calibration of 

the cameras using their intrinsic and extrinsic parameters. The distance is then calculated 

using the pixel disparity principle and triangulation. The same process of stereo rectification 

is employed by Miura el al. [11]. 

The biggest challenge in stereo vision is solving the correspondence problem, i.e., 

matching a feature in one picture to the same feature in the second picture. This requires 

using complex and computationally intensive algorithms to extract features and do the 

matching. Feature extraction also requires sufficient variation of intensity, otherwise 

potential features of interest might not be detected and correctly extracted for disparity 

calculation. Nonetheless, stereo vision provides highly accurate measurements and only 

requires 2 cameras which makes it physically easy to implement. 

 

2.1.1.3. Other Approaches 

Aside from the traditional depth measurement methods, there are other approaches such 

as the structured light method. Jia et al. [12] describe the method: a laser emits a known 

pattern (typically using infrared light) into a scene where the target object resides, a camera 

then captures the distortion pattern and correlates it against a reference pattern to infer the 

distance through triangulation (Figure 2.5). 

 

Figure 2.5: Structured light method (Source: [12]) 

Ambient light (or other external sources) and improper calibration of the system are the 

two main sources of error for this system. Even though the laser emits in the infrared 

spectrum, ambient light is a source of infrared noise that needs to be filtered. On the other 

hand, calibration errors are due to improper calculation of the camera intrinsic parameters 
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that are not always possible to properly determine. These sensors can typically only measure 

on a limited range. 

Alhwarin et al. [13] propose an improvement to the method by combining two sensors 

in order to apply the stereoscopic principle. This works by calculating the disparity between 

the depth data obtained from both sensors (after stereo rectification), allowing for 

triangulation methods to determine objects whose properties made them hard to detect (such 

as transparent, reflective or absorptive materials). 

Another relevant technology is time-of-flight cameras. Hansard et al. [14] describe the 

principle of depth measurement. An infrared wave is emitted to a target object and a sensor 

detects the reflected infrared component. The distance is determined by measuring the phase 

difference between the emitted signal and the reflected response. 

 

Figure 2.6: Time-of-flight camera measurement principle (Source: [14]) 

There are two methods to detect phase shifts as described by Li [15]: 

 Pulsed modulation 

 Continuous-wave modulation 

In pulsed modulation the object is illuminated for a brief period of time and the 

reflected signal is sampled (at every pixel) by 2 out-of-phase samples. The accumulated 

electric charges during each of the 2 samples are then measured and used to determine the 

distance to the object.  

For continuous-wave modulation the system takes 4 samples each one with a 90-

degree phase delay from each other. The distance is then calculated from the phase angle 

between the illumination and reflection. 

The measurement accuracy is limited by the emitter’s power capability which might 

also suffer from added noise from ambient light. Another problem is motion blur for cases 

where either the target or the system is moving. 
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2.1.1.4. Volume Measurement and 3D Reconstruction Methods 

From the distance points generated by the sensor system, volume and 3D reconstruction 

can be obtained through different methods. Zhang et al. [16] show two methods of simple 

implementation: 

 Meshed surface is a technique that reconstructs the surface of the target object 

using interpolation methods such as the Delaunay triangulation. The volume is 

then calculated by summing the individual volumes of each projected triangle 

of the reconstructed surface to a defined plane. 

 Isolated points method relies on the having a large amount of measurement 

points with no middle gaps (points where the measurement was inconclusive). 

Zhang et al. [16] showed that in this case each point can be regarded as the top 

of a truncated 3D pyramid, and the volume can be obtained by calculating each 

top to a reference plane. 

With enough measurement points, both methods can achieve a good estimation of the 

target volume, however, the isolated points method is computationally less intensive and 

trivial to implement than the meshed surface, which might be a conclusive factor when 

deciding which method to implement.  

Xiang and Zhou [17] describe an algorithm for 3D reconstruction to be used by indoor 

mobile robots. This algorithm takes the range measurements from the laser system and does 

the initial processing in 2D, comparing each measurement line in order to match them into 

surfaces. This surface reconstruction technique could then be applied in the meshed surface 

method for calculating the volume of a target scan. 

Morris et al. [18] and Matos [19] propose 3D reconstruction for navigational purposes 

by using an occupancy grid. A grid of cells is generated from the available space where 

measurements were taken, then the measurement properties are calculated and assigned to 

each cell in the grid, resulting in a 3D or 2D (depending on the application) representation 

of the field of view of the sensor system. This solution requires a balance between the 

number of generated cells and computational power required to process all the cells, leading 

to a compromise in the precision the system can get. 

Dias et al. [20] [21] show an approach to create 3D models by combining the range 

information (for the geometry) with digital photographs (for the textures). This process is 
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done by computing a texture map for the model by linking the texture of the photos with the 

range data (which has been previously processed by using a 2D Delaunay triangulation to 

create the surfaces), allowing to achieve photo-realistic 3D models of real scenes. 

Miura et al. [11] do 3D reconstruction using the information from a stereoscopic system 

by doing an area-based correspondence matching from the points measured by both cameras, 

the camera parameters are then used to calculate the 3D points of the reconstruction. 

 

2.1.1.5. Comparison of 3D ranging techniques 

Each ranging method has strengths and weaknesses as identified by Sansoni et al. [4] 

and shown in Table 2.2. 

Table 2.2: Comparison of ranging methods (Source: [4], slightly adapted) 

Methods Strength Weakness 

Laser triangulation Simple implementation; 

High tolerance to ambient noise; 

High acquisition of range data; 

Low cost. 

Limited measurement range; 

Loss of range information due to 

dead zones due to positional 

(system and target object) 

constraints. 

Structured light High acquisition of range data. Limited measurement range; 

Computationally complex; 

Loss of range information due to 

dead zones due to positional 

(system and target object) 

constraints; 

Sensible to ambient noise. 

Stereo vision Simple implementation; 

High accuracy; 

Low cost. 

Computationally intensive; 

Sensible to ambient noise. 

Time-of-flight Large measurement range; 

High tolerance to ambient noise. 

Low accuracy at close ranges; 

High cost. 

Interferometry High accuracy. Range data dependent on targets 

with good positional 

characteristics (flat surfaces); 

High cost. 
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The volume measurement and 3D reconstruction methods can be applied on the range 

data obtained from these ranging methods, with running times being generally associated 

with the quantity of necessary data to reconstruct the surface of the object. 

Simplicity of implementation and cost are two factors that have high importance on the 

development of systems to be used on logistic applications (such as cargo management), 

therefore, laser triangulation and stereo vision were the two selected methods for two 

prototype systems detailed under this dissertation. 

 

2.1.2. Container Loading Problem 

In the literature, the Container Loading Problem (CLP) [3] can be interpreted as a 

geometric assignment problem, where small objects (boxes) are put inside a bigger 

container. This can be expressed by considering that cuboid (boxes and containers) objects 

are defined by a geometry comprising a length, a width and a height: 

 ⋃ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑏𝑜𝑥𝑒𝑠𝑖
⊆ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝑁

𝑖=1

 (2.1) 

This problem is considered NP-hard which means that it can’t be solved in polynomial 

time, therefore, heuristics are often the only viable option to produce solutions within 

reasonable running times [22]. 

When the set of cargo to be loaded in the container is comprised of only identical boxes, 

it is said to be homogeneous, if it has many different types of boxes it is strongly 

heterogeneous, and if it has only a limited set of boxes it is weakly heterogeneous [23]. When 

enough containers are available to accommodate all cargo, the loading problem is defined as 

of the input minimization type, since the objective is to minimize the number of required 

containers. On the other hand, problems where there are a limited number of containers that 

can only pack a subset of the available cargo, are defined as of the output maximization type, 

since the objective is to maximize the volume usage of the available containers and pack 

them with as much relevant cargo as possible [3]. 

Wang et al. [22] show a heuristic using a tertiary tree structure to dynamically 

decompose the available space into subspaces that are then filled with the best calculated 

type of boxes. At each box placement, the remaining space is divided into three regions, then 
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each region is filled with a new box, repeating the division process until the whole container 

is filled (this being a recursive process, it is stopped at a certain amount of steps due to the 

known dimensions of the boxes). This algorithm was designed to work with no constraints 

and a set of weekly heterogeneous cargo. 

Moura and Oliveira [24] propose a solution using a constructive algorithm along with 

the Greedy Randomized Adaptive Search Procedure meta-heuristic to improve the solution 

performance, where it first builds a solution and then uses local search to improve the output. 

This algorithm works by building layers of boxes (transversal walls where the depth is 

defined by the first box put on the layer). These boxes are selected by computing all types 

of boxes considering all possible orientations and then selecting the best box and respective 

orientation that better fills the space. Free spaces are then filled by selecting the best box 

type. The algorithm was developed considering only orientation, cargo stability and volume 

constraints, obtaining results by using a set of weakly heterogeneous cargo with small 

runtimes, as reported during the computational tests done by the authors. Parreño et al. [25] 

also developed a similar solution, with the first set being done by a constructive heuristic 

algorithm that places boxes and calculates the maximal-spaces that are left after the 

placement (akin to the Wang et al. [22] method of volume region division). 

Gehring and Bortfeldt [23] developed a genetic algorithm that works by generating a 

set of disjunctive towers of boxes which are then arranged on the container’s floor in order 

to better occupy the available volume. The towers are first generated by a greedy algorithm 

that tends to minimize the free space on each tower, then the genetic algorithm calculates 

which tower bases provide the best cover of the area of the container’s floor, maximizing 

the total value of the packed boxes. This cycle is repeated several times with various 

combinations being generated, at the end of the execution the best generated solution is used. 

This algorithm considers the orientation, stacking, total weight, stability and balance 

constraints, being suitable for problems where simple stability requirements are sufficient, 

and stronger when working with a strongly heterogeneous set of cargo. Araújo and Pinheiro 

[26] also propose a solution using a genetic algorithm. First it uses a wall building algorithm 

to maximize the used space, then the genetic algorithm calculates the best weight distribution 

of the selected cargo.  

Bortfeldt and Wäscher [3] identified that most of the available literature is focused on 

a few subsets of the CLP, such as having few or no constraints on the loading of cargo, as in 
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minimizing the number of used containers when in packing a weakly heterogeneous set of 

cargo, or packing a set of cargo with one or move variable dimensions while minimizing the 

available volume in the container. This reveals that there is still room for more research to 

be done especially with multi-constraint systems. 

 

2.2. Market Solutions 

There is a wide variety of sensors for 3D reconstruction, as well as cargo planning 

software. Some of the most relevant and popular sensors are presented along with their 

hardware characteristics. Cargo planning software available in the market are also presented 

and their features described. 

 

2.2.1. Range Finding for 3D Reconstruction 

For laser range finding solutions there are some sensors worthy of mentioning due to 

their application, such as the Velodyne HDL-64E LiDAR (shown in Figure 2.7) used on 

the Google Self-Driving Car Project. This time-of-flight sensor was designed for obstacle 

detection and navigation of vehicles, it has 64 laser channels that allow for a 360º horizontal 

and 26.8º vertical field of view, it can generate up to 2.2 million points per second achieving 

an accuracy below 2 centimeters and has a range of 120 meters [27]. The price of a unit is 

around $75000 [28]. 

 

Figure 2.7: Velodyne HDL-64E S3 (Source: [27]) 

Another time-of-flight sensor is the Sick LMS 200 (Figure 2.8) used by the ATLAS 

Project on the ATLASCAR. It has a wide range of applications from determining volumes 
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to vehicle navigation, a scanning angle of 180º and a range of 10 meters [29]. The price of 

this sensor rounds about $6000 [30]. 

 

Figure 2.8: Sick LMS200 (Source: [29]) 

A highly popular sensor is the Kinect 1st generation (Figure 2.9) by Microsoft, a 

structured light sensor developed to be used on consoles but also adopted by the robotics 

community for various projects. This sensor has a measuring range up to 3.5 meters with 57º 

horizontal and 43º vertical field of view, and an error inferior to 4 centimeters [31]. This 

model is out of production after the launch of a new version. 

 

Figure 2.9: Kinect 1 (Source: [32]) 

The new iteration, Kinect 2nd generation (Figure 2.10), is a time-of-flight camera with 

a similar range as the first generation for the same applications, however it has 70º horizontal 

and 60º vertical field of view [31]. This sensor is priced at $100 [33]. 
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Figure 2.10: Kinect 2 (Source: [34]) 

Bumblebee2 (Figure 2.11) by Point Grey, is a stereo camera sensor that was used by 

Princeton University in the DARPA Urban Challenge. This sensor has a range up to 60 

meters, outputting 640x480 images at 48 frames per second and having a 100º of field of 

view [35]. A unit costs $1895 [36]. 

 

Figure 2.11: Bumblebee2 (Source: [37]) 

Another interesting stereo camera sensor is the ZED Stereo Camera (Figure 2.12) 

developed by Stereolabs (and currently partnering with NVIDIA for inclusion of its stereo 

sensing technology into vehicles). This sensor was designed to work both indoors and 

outdoors, having a range up to 20 meters with configurable depth image output, an angle of 

110º field of view and a price of $449 per unit [38]. 

 

Figure 2.12: ZED Stereo Camera (Source: [38]) 
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Intel RealSense R200 (Figure 2.13) is also a stereo camera sensor developed by Intel. 

Built for 3D measurement of environments both outdoors and indoors, this camera has a 

range up to 5 meters and a field of view of 59º (for depth perception) [39] [40]. This sensor 

uses infrared cameras and an infrared projector to illuminate the scene to facilitate the image 

capture. It is currently available in the market for $99 [41]. 

 

Figure 2.13: Intel RealSense R200 (Source: [39]) 

 

2.2.2. Container Loading and Planning 

There is an extensive offer of cargo planners and packers in the market, with most of 

them offering the same features. However, given their commercial nature, the principles 

behind their algorithms are not revealed which makes it harder to compare the different 

software. Nonetheless, a list of some of these commercially available software will be 

presented focusing on some of the differentiating factors between solutions. This list is 

partially based on the selection done by Sarwar [42]. 

Single Container Packing by 3DBinPacking is an online service that provides packing 

simulations for boxes into containers. The software takes the dimensions of the boxes and 

the container, and creates a 3D representation of the optimal assignment of the boxes and a 

step by step loading diagram. It also provides a list of the boxes that can’t be loaded (after 

the container reaches its volume capacity) and the packing statistics. This service is available 

from $15 to $1500 per month depending on the number of server requests required [43].  

CargoWiz by Softtruck provides the standard loading optimization as well as more 

features such as allowing the user to set various loading constraints; orientation, stacking 

limits, loading priorities and total weight limits. It also provides cost calculation per package 

being shipped. A single license is available for $747 [44]. 

Cargo Optimizer by Dreamsofts Optimization allows to optimize cargo loading 

providing support for interlock patterns (loading patterns that promote cargo and container 
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stability) as well as the weight distribution graph of the loaded container. The software is 

available as a license or full version with the cheapest being a €39 yearly license [45]. 

CubeMaster by Logen Solutions provides load optimization with constraints such as 

stacking, orientation and weight, with the option of providing loading/unloading sequences. 

It is available as an online service or standalone software, with the online version being 

priced as $49 per month [46]. 

Packer3d by Packer 3d has interesting features such as the ability to load container 

from the side (instead of from the bottom, this is useful for containers whose door is on the 

side) and along with the common constraints (orientation, stacking, etc.) it adds the ability 

to define goods as temperature sensitive which makes the algorithm pack them the furthest 

away possible from the doors. The software is available as a standalone license or online 

service, with the service costing €120 per month [47]. 
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3. Concepts and Design 

Providing full cargo management control is a complex endeavor due to the many factors 

and constraints associated with the logistic environments. Two important logistic subsets of 

activities were selected as the focus of this dissertation: 

 Cargo Planning 

This process deals with the cargo assignment to containers (that can also be 

pallets) in order to improve the efficiency of the logistic operations by 

providing the operators with a system to help making a decision of which 

cargo to transport. 

 Sensing Methods 

Used during loading or unloading of the cargo to monitor and verify that the 

process is being conducted according to the planned assignment (executed 

during the cargo planning phase), standards or laws are being applied, as well 

as monitoring the status of the cargo for potential issues. 

The necessity of incorporation of both activities is explicit when considering that the 

logistic operator after being tasked with the selection of cargo that should be processed into 

transportation (usually aided by decision support systems), is often blind to the execution 

processes occurring during transportation (while the cargo being loaded or with the vehicles 

already on the road). Therefore, sensing systems can play role in providing up to date 

information on the state of the transportation processes making it easier for the operator to 

evaluate the performance of the chain of activates as well as reacting faster to new 

opportunities or hazards that might occur during these processes. 

This section will cover the concepts and designing aspects of solutions developed under 

these two components. 

 

3.1. Cargo Planning 

Cargo shipment planning (Figure 3.1) is necessary in order to perform the assignment 

of goods to the available methods of transportation. To perform a subset of this task, a 

heuristic for volume assignment of containers was developed and implemented. 
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Figure 3.1: General planning process 

The developed heuristic functions as a decision support system to aid the logistic 

operator improving the performance of cargo loading processes. 

 

3.1.1. Considered Scenarios 

In a typical logistic scenario, a logistic operator is faced with the task of selecting which 

cargo (boxes or pallets) need to be processed into transportation (containers or trucks). 

Therefore, the developed heuristic considers two main cases based on challenges faced by 

the operators. These cases are (as exemplified by Figure 3.2): 

 Pallet assembling: boxes are assigned to pallets (in this case a pallet is a 

container) producing a packing pattern. 

 Cargo loading: pallets (viewed as cargo and grouped as bundles) need to be 

assigned to a container producing a loading pattern. 

Input data

• Available cargo

• Cargo information

• Aditional factors

Cargo Planning

• Constraints

• Assignment process

Output Pattern

• Loading sequence

• Graphical output

• Loading pattern

• Packing pattern
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Figure 3.2: Pallet assembling and Cargo loading formulations 

A packing pattern is a geometric assignment that is constructed when the focus is to 

maximize the occupied space in smaller volumes such as a pallet, while at the same time 

holding the physical constraints associated with such problems (stability, weight, etc.). 

A loading pattern are obtained by trying to maximize the value (such as profit, priority, 

etc.) of transporting goods of larger scale (such as pallets being loaded into a cargo area of 

a truck or a container). Only non-stackable cargo units are considered for the generation of 

these patterns (this is the typical case of standard pallets, stackable solutions might however 

be applied in certain logistic environments). 
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3.1.2. Definitions and Geometric Model 

 

Figure 3.3: 3D problem representation 

The representation model (Figure 3.3) consists of the following elements: 

 Boxes (also referred to as cargo): three dimensional objects that fill containers. 

 Containers: three dimensional objects that contain cargo. Containers can be of 

two types: 

1. Pallets: hold boxes. 

2. Cargo Containers: hold pallets (viewed as cargo). 

Throughout this dissertation both boxes and containers are always assumed to be 

cuboid, i.e., closed three dimensional objects composed of six rectangular faces joined at 

right angles [48]. 

 

3.1.2.1. Pallet Assembling 

Formally, the 𝑡-th box type, 𝑔𝑡, exemplified by Figure 3.4, is an entity characterized by 

the 3D geometry information of a box: 

 

Figure 3.4: Box type 
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 𝑔𝑡 = (𝑙𝑡, 𝑤𝑡, ℎ𝑡) (3.1) 

 

With 

𝑡 ∈ {1,2, … }  ⊂ ℕ 

𝑙𝑡, 𝑤𝑡, ℎ𝑡 ∈ ℝ>0 

Where 

𝑙𝑡 – length 

𝑤𝑡 – width 

ℎ𝑡 – height 
 

 

The 𝑛-th container type entity, 𝑔𝑛
∗ , exemplified by Figure 3.5, characterizes the 

geometry and maximum weight supported by the container. 

 

Figure 3.5: Container type 

 𝑔𝑛
∗ = (𝐿𝑛, 𝑊𝑛, 𝐻𝑛, 𝜔𝑚𝑎𝑥,𝑛) (3.2) 

 

With 

𝑛 ∈ {1,2, … }  ⊂ ℕ 

𝐿𝑛, 𝑊𝑛, 𝐻𝑛, 𝜔𝑚𝑎𝑥,𝑛 ∈ ℝ>0 

Where 

𝐿𝑛 – length 

𝑊𝑛 – width 

𝐻𝑛 – height 

𝜔𝑚𝑎𝑥,𝑛 – maximum weight supported 
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The instantiation of a box type produces a particular 𝑖-th box, 𝐵𝑖, that can be represented 

as follows: 

 𝐵𝑖 = (𝑔𝑡, 𝜔𝑖) (3.3) 

 

With 

𝑖 ∈ {1,2, … } ⊂ ℕ 

𝜔𝑖 ∈ ℝ>0 

Where 

𝑔𝑡 – geometry of the box (box type) 

𝜔𝑖 – weight 
 

 

Each 𝑖-th instance has an associated pose, 𝑝𝑖, in relation to the container (in this case a 

pallet as exemplified by Figure 3.6) where it is placed. 

 

Figure 3.6: Box pose 

 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 , 𝜃𝑖) (3.4) 

 

With 

𝑖 ∈  {1,2, … } ⊂ ℕ 

𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 ∈ ℝ>0 

𝜃𝑖 ∈  {0°, 90°} 
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Where 

𝑥𝑖 – position along 𝑋 axis 

𝑦𝑖 – position along 𝑌 axis 

𝑧𝑖 – position along 𝑍 axis 

𝜃𝑖 – azimuthal angle 
 

In order to store the information of different boxes and respective poses, a payload 

entity, 𝜓𝑗, is defined as set of pairs of boxes and their poses inside the pallet. 

 

Figure 3.7: Payload 

 𝜓𝑗 = {(𝐵𝑖, 𝑝𝑖)} (3.5) 

 

With 

𝑗 ∈  {1,2, … } ⊂ ℕ 

Where 

𝐵𝑖 – instantiation of a box 

𝑝𝑖 – pose of the box 
 

 

From the universe of possible pairs of boxes and poses, only those that are contiguous 

constitute elements of suitable payloads to be assigned to pallets. 

Pallets, 𝑃𝑗, are containers that hold boxes (in their poses, i.e., the payload) and are 

formally described as: 
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Figure 3.8: Pallet 

 𝑃𝑗 = (𝑔𝑛
∗ , 𝜓𝑗) (3.6) 

 

With 

𝑗 ∈  {1,2, … } ⊂ ℕ 

Where 

𝑔𝑛
∗  – geometry of the container (container type) 

𝜓𝑗 – payload assigned to the pallet 
 

 

Each pallet has its own individual payload, therefore, the assignment of the 𝑗-th payload 

to the 𝑗-th pallet requires the payload to follow two geometric conditions: 

1. Boxes are placed entirely within the container limits. 

 
Considering a payload 𝜓𝑗 with boxes 𝐵𝑖 whose box type is 𝑔𝑡, assigned to 

a pallet 𝑃𝑗 whose container type is 𝑔𝑛
∗ : 

 

 

∀(𝐵𝑖,𝑝𝑖) ∈ 𝜓𝑗  ∧  𝑖 ∈ [1,2, … , 𝑁]  ⊂ ℕ: 

𝑥𝑖 + 𝑙𝑡 ≤ 𝐿𝑛 

𝑦𝑖 + 𝑤𝑡 ≤ 𝑊𝑛 

𝑧𝑖 + ℎ𝑡 ≤ 𝐻𝑛 

(3.7) 
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2. Boxes don’t overlap. 

 

Considering a payload 𝜓𝑗 with boxes 𝐵𝑖 whose box type is 𝑔𝑡. The Region 

𝑅𝜚𝑖
 occupied by 𝜚𝑖 = (𝐵𝑖, 𝑝𝑖) ∈ 𝜓𝑗 is: 

𝑅𝜚𝑖
=  {(𝑥, 𝑦, 𝑧): 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖 + 𝑙𝑡 ∧ 𝑦𝑖 ≤ 𝑦 ≤ 𝑦𝑖 + 𝑤𝑡 ∧ 𝑧𝑖 ≤ 𝑧 ≤ 𝑧𝑖 + ℎ𝑡} 

 

 
Therefore, ∀𝜚𝑖,𝜚𝑠

 ∈ 𝜌𝑗 ∧ 𝜚𝑖 ≠ 𝜚𝑠: 

𝑅𝜚𝑖
∩ 𝑅𝜚𝑠

= ∅ 
(3.8) 

As a consequence of these two conditions: 

 The sum of the volume of the boxes inside the pallet is less or equal to the 

volume of the pallet. 

 
Considering a payload 𝜓𝑗 with boxes 𝐵𝑖 whose box type is 𝑔𝑡, assigned 

to a pallet 𝑃𝑗 whose container type is 𝑔𝑛
∗ : 

 

 ∑ 𝑙𝑡𝑤𝑡ℎ𝑡

𝑁

𝑡=1

= ∑ 𝑣𝑡

𝑁

𝑡=1

≤ 𝐿𝑛𝑊𝑛𝐻𝑛 = 𝑉𝑛 (3.9) 

 

Where 

𝑣𝑡 – volume of a box 

𝑉𝑛 – volume of the container (pallet) 

𝑁 – number of assigned boxes 
 

 

 

3.1.2.2. Cargo Loading 

A cargo pose entity, 𝑝𝑗
∗, exemplified by Figure 3.9, contains the positional information 

of pallets (viewed as cargo) when assigned to a cargo container. Since pallets are assumed 

to be non-stackable, the model only needs to work in two dimensions. 
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Figure 3.9: Cargo pose 

 𝑝𝑗
∗ = (𝑥𝑗 , 𝑦𝑗 , 𝜃𝑗) (3.10) 

 

With 

𝑗 ∈  {1,2, … } ⊂ ℕ 

Where 

𝑥𝑗 – position along 𝑋 axis 

𝑦𝑗 – position along 𝑌 axis 

𝜃𝑗  – azimuthal angle 
 

 

A bundle, 𝐷𝑟, is a group of pallets bound together and is defined as: 

 

Figure 3.10: Bundle 
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 𝐷𝑟 = ({𝑃𝑗}, 𝜇𝑟 , 𝜆𝑟) (3.11) 

 

With 

𝑟 ∈ {1,2, … }  ⊂ ℕ 

𝜇𝑟 ∈ [0,1] 

𝜆𝑟 ∈ ℝ≥0 

Where 

𝑃𝑗 – pallet from the set of assigned pallets 

𝜇𝑟 – bundle individual priority 

𝜆𝑟 – value from the cost function (logistic importance) 
 

 

A cargo payload, 𝜓∗, is the entity that associates pallets from bundles and their pose 

inside the cargo container. 

 

Figure 3.11: Cargo payload 

 𝜓∗ = {(𝑃𝑗 , 𝑝𝑗
∗)}, 𝑃𝑗  ∈ 𝐷𝑟 (3.12) 

 

Where 

𝑃𝑗 – pallet assigned to the bundle 

𝑝𝑗
∗ – pose of the pallet 

 

 

The cargo container, 𝐶, holds the assigned pallets from the selected bundles according 

to a specific layout given by the cargo payload pose. 
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Figure 3.12: Cargo container 

 𝐶 = (𝑔𝑛
∗ , {𝐷𝑟}, 𝜓∗, 𝑐) (3.13) 

 

With 

𝑐 ∈ {1,2, … }  ⊂ ℕ 

Where 

𝑔𝑛
∗  – geometry of the container (container type) 

𝐷𝑟 – bundle from the set of assigned bundles 

𝜓∗ – cargo pose 

𝑐 – capacity (number of pallets allowed into the container) 
 

 

Like the previous case of assignment of boxes into pallets, assigning pallets into cargo 

containers needs to fulfill two geometric conditions. However, given the simplification made 

to the model (due to pallets being non-stackable) these conditions can be rewritten as: 

1. Pallets are placed entirely within the cargo container limits. 

 

Considering a cargo payload 𝜓∗ with pallets 𝑃𝑗 (belonging to the assigned 

bundles 𝐷𝑟) whose container type is 𝑔𝑘
∗ , assigned to a cargo container 𝐶 

whose container type is 𝑔𝑛
∗ : 

 

 

∀
(𝑃𝑗,𝑝𝑗

∗)
 ∈ 𝜓∗ ∧  𝑗 ∈ [1,2, … , 𝑐]  ⊂ ℕ: 

𝑥𝑗 + 𝐿𝑗 ≤ 𝐿𝑛 

(3.14) 
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𝑦𝑗 + 𝑊𝑗 ≤ 𝑊𝑛 

2. Pallets don’t overlap. 

 

Considering a cargo payload 𝜓∗ with pallets 𝑃𝑗 (belonging to the assigned 

bundles 𝐷𝑟) whose container type is 𝑔𝑘
∗ . The Region 𝑅𝜚𝑗

∗ occupied by 

𝜚𝑗
∗ = (𝑃𝑗 , 𝑝𝑗

∗) ∈ 𝜓∗ is: 

𝑅𝜚𝑗
∗ =  {(𝑥, 𝑦): 𝑥𝑗 ≤ 𝑥 ≤ 𝑥𝑗 + 𝐿𝑘 ∧ 𝑦𝑗 ≤ 𝑦 ≤ 𝑦𝑗 + 𝑊𝑘} 

 

 

Therefore, ∀𝜚𝑗
∗,𝜚𝑓

∗  ∈ 𝜓∗ ∧ 𝜚𝑗
∗ ≠ 𝜚𝑓

∗ : 

𝑅𝜚𝑗
∗ ∩ 𝑅𝜚𝑓

∗ = ∅ 
(3.15) 

As a consequence of these two conditions: 

 The sum of area of the pallets is less or equal to the total area of the container. 

 

Considering a cargo payload 𝜓∗ with pallets 𝑃𝑗 (belonging to the assigned 

bundles 𝐷𝑟) whose container type is 𝑔𝑘
∗ , assigned to a cargo container 𝐶 

whose container type is 𝑔𝑛
∗ : 

 

 

 ∑ 𝑙𝑡𝑤𝑡

𝑐

𝑘=1

= ∑ 𝑎𝑘

𝑐

𝑘=1

≤ 𝐿𝑛𝑊𝑛 = 𝐴 (3.16) 

 

Where 

𝑎𝑘 – area of each pallet 

𝐴 – total area of the cargo container 
 

 

 

3.1.2.3. Data Structure 

These entities and their relationships are implemented into a data structure whose class 

diagram is shown in Figure 3.13. 
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Figure 3.13: Class diagram 

The following list describes the additional derived elements necessary for the software 

implementation. 

box type 

/volume (𝑣𝑡) – calculated from the geometry 

container type 

/volume (𝑉𝑛) – calculated from the geometry 

pallet 

/weight (𝜔𝑗) – calculated from all assigned weights in the payload 

/volume (𝑣𝑡) – calculated from all the assigned volumes 
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bundle 

/quantity (𝑞𝑟) – number of assigned pallets to the bundle 

/volume (𝑣𝑟) – sum of volumes from the assigned pallets 

/weight (𝜔𝑟) – Sum of weights from the assigned pallets 

/logistic importance (𝜆𝑟) – Calculated from ratios (described in 3.1.3) 

cargo container 

/volume (𝑣) – sum of volumes from the assigned bundles 

/weight (𝜔) – Sum of weights from the assigned bundles 

 

3.1.3. Logistic Importance (Cost Function) 

In order to give meaning to the optimization, bundles have an associated variable that 

can be interpreted as a priority, i.e., a higher value dictates a higher priority in the positioning 

of the bundle inside the container (e. g. in trucks or containers there is a sequence for 

loading/unloading where a high priority bundle will be closer to the door). This variable is 

given by a function that translates the relevant factors involved in the system that is being 

optimized into a specific numerical value. 

This function takes into consideration three major ratios that were considered to have 

the biggest impact in the selection criteria. These ratios are: 

 Percentage of container capacity used by a bundle 𝐷𝑟: 

𝑄𝐷𝑟
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑖𝑛 𝑏𝑢𝑛𝑑𝑙𝑒 𝐷𝑟

𝑝𝑎𝑙𝑙𝑒𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟
=

𝑞𝑟

𝑐
 

This gives relevance to bundles that have the highest number of assigned 

pallets. It is assumed that the number of pallets assigned to a bundle is never 

greater than the capacity of the container. 

This ratio is used for maximizing the cargo container capacity usage.  

 Individual priority of a bundle 𝐷𝑟:  

𝜇𝑟 ∈  [0,1] 

Given the different nature of each bundle (which is related to time constraints, 

client affiliation, etc.), it is often the case that some bundles have higher 
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priority than others. This is a normalized variable that translates this 

individual priority. 

This factor is used for maximizing the individual bundle priority. 

 Percentage of occupied volume by a bundle 𝐷𝑟:  

𝑉𝐷𝑟
=

𝑠𝑢𝑚 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑛𝑑𝑙𝑒 𝐷𝑟  𝑝𝑎𝑙𝑙𝑒𝑡𝑠

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟
=

𝑣𝑟

𝑉𝑛
 

This gives relevance to bundles whose assigned pallets have the higher ratio 

of occupied volume, providing the best overall volume occupation of the 

cargo container. 

This ratio is used for maximizing the occupied volume of the container. 

Therefore, the logistic importance function is represented as the following equation: 

 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 = 𝜆𝑟 = 𝛼𝑄𝐷𝑟
+ 𝛽𝜇𝑟 + 𝛾𝑉𝐷𝑟

+ 𝛿𝑥 (3.17) 

Where 𝛼, 𝛽, 𝛾 and 𝛿 are relevance coefficients and 𝑥 is an open normalized variable 

that can translate additional ratios or factors that are not declared explicitly (e.g. fuel spent, 

route’s parameters, etc.). 

It should be noted that Equation (3.17) is only an example constructed in order to 

provide realistic scenarios for the executions, however given the modularity of the 

implementation, this function can be replaced with any other function that better applies to 

other simulated environments. 

 

3.1.4. Constraints 

Constraints are physical or logistical limitations that influence the assignment of boxes 

to containers in addition to the geometric conditions of the model. They can be considered 

as hard or soft constraints. Hard constraints must always be respected where soft constraints 

can be hold but there is room for flexibility in cases where they can’t be maintained [3]. 

For the Pallet assembling scenario, the following constraints are considered: 

 Weight limits: containers (pallets in this case) have a limit of physically 

supported weight. 
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 Stability: whenever stacking boxes the structure must be able to hold without 

boxes falling from the assigned position (due to gravity or external forces), i.e., 

the vertical center of gravity of the pallet must be in the middle or below the 

vertical geometric center. 

 Orientation constraints: boxes will require to have a specific orientation, i.e., a 

determined face will always face downwards and only rotate along the vertical 

axis of the container. 

For the Cargo loading scenario, the following constraints are considered: 

 Weight limits: containers have a limit of possible weight that can be loaded. 

 Weight distribution: cargo distribution is important to maintain stability and 

should be as uniform as possible along the container. 

 Loading priorities: established by the Last In First Out nature of the container 

loading process and often related with vehicle routing, cargo have loading 

priorities to meet the routing criteria. 

 Complete-shipment constraints: cargo is organized in bundles that require to be 

shipped together or not at all, which means that these bundles must be 

considered as a whole when assigning them to containers. 

 

3.1.5. Dimensions and Loading Layout 

A loading pattern is represented according to a loading layout (Figure 3.14). Each 

possible layout depends on factors such as the container’s dimensions and type of cargo 

loaded. 

A standard ‘euro truck’ has 13.6m of length, 2.45m of width and 2.5m of height [49]. 

These dimensions allow a total of 32 or 33 standard euro pallets loaded depending on the 

type of cargo. A euro pallet has 1.2m of length and 0.8m of width [50] with variable height 

limited only by the height of the container where it is placed. 
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Figure 3.14: Common “euro truck” layouts - (a) 33 pallets, (b) 33 pallets, (c) 32 pallets 

The implementation in this dissertation will consider only the layout (𝑎) given its 

popularity in the logistics bundling sector. The layout is always filled from top to bottom, 

left to right. 

 

3.1.6. 0/1 Knapsack Problem 

The Knapsack Problem is allegorically presented as the thief problem. A thief breaks 

into a house holding a knapsack that has limited weight capacity. Inside the house there are 

various objects each having different weights and associated values (all known by the thief 

and represented in Figure 3.15). The problem is then set: which items should the thief take 

so that value (profit) can be maximized while not exceeding the weight capacity of the 

knapsack? 

 

Figure 3.15: The Knapsack Problem (Source: [51]) 
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Formally, this problem is described as a combinatorial optimization problem that seeks 

to find the best solution to a given container with a fixed capacity (maximum allowed 

weight) and a set of items with an associated weight and value, which items should be picked 

in order to maximize the sum of the value without exceeding the given capacity of the 

container. 

A common variation of this problem is the 0/1 Knapsack Problem (0/1 KSP) which can 

be defined as [51] [52]: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑣𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖 ≤ 𝑊

𝑛

𝑖=1

 𝑎𝑛𝑑 𝑥𝑖 ∈ {0,1}. 

(3.18) 

Each item 𝑖 (from 1 to 𝑛) has a weight 𝑤𝑖 and a value 𝑣𝑖, and  𝑥𝑖 is a binary variable 

that is equal to 1 if the item is selected to be loaded into the container or 0 otherwise. The 

container has a maximum weight capacity of 𝑊. 

A dynamic programming approach can be implemented for the 0/1 KSP assuming that 

all 𝑤𝑖 and 𝑊 are positive integers. Defining 𝑚[𝑖, 𝑤] as the maximum value that can be 

obtained with the first 𝑖 items that fit into the container with capacity 𝑤, the algorithm starts 

with the following conditions: 

 𝑚[0, 𝑤] = 0          (no items are included in the container) 

 𝑚[𝑖, 0] = 0    (the container has capacity 0 therefore no items fit in it) 

Then, the solution is calculated recursively [52]: 

 𝑚[𝑖, 𝑤] = 𝑚[𝑖 − 1, 𝑤] 𝑖𝑓 𝑤𝑖 > 𝑤               (else can’t fit the item) 

 𝑚[𝑖, 𝑤] = 𝑚𝑎𝑥 (
𝑚[𝑖 − 1, 𝑤],

𝑚[𝑖 − 1, 𝑤 − 𝑤𝑖] + 𝑣𝑖
)  𝑖𝑓 𝑤𝑖 ≤ 𝑤     

(don′t use the item)
(use the item)

 

The goal is to find the maximal value 𝑚[𝑛, 𝑊] of the items allowed into the container. 

The implemented approach has a complexity of 𝑂(𝑛𝑊). Further implementation 

details, including the pseudocode, are available in Annex B. 

The 0/1 KSP algorithm excels at providing optimization in one dimension, which makes 

it a viable choice to be used as a mechanism to select optimized combinations of items from 

a list of all potential candidates. 
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3.2. Sensing Methods 

Even though there are various methods that can be used to implement a volume 

measurement system, there are two that are the focus of this dissertation: 

 Laser Rangefinder (LRF) with optical triangulation. 

 Computer Stereo Vision (SV). 

Two (prototype) systems using these methods were implemented at the Department of 

Electronics, Telecommunications and Informatics of the University of Aveiro. 

 

3.2.1. Requirements 

The sensing systems developed under this work are seen as proof of concept and had to 

fulfill specific requirements. Functional requirements: 

 The system shall calculate the distance from a reference point (itself) to a target 

object (point in space, usually a box or any of its features). 

 The system shall calculate the occupied/available volume. 

 The software shall output a 3D visualization of the occupied/free volume. 

Non-functional requirements include: 

 The software shall be multi-platform. 

 The system shall be low-cost. 

 The physical dimensions of the sensors shall be reduced (to minimize 

interference with the physical loading/unloading of cargo). 

 The process execution time shall be reduced or within a reasonable time. 

 

3.2.2. Laser Rangefinder 

The first approach considered was a laser rangefinder system using optical 

triangulation. This is a low-cost and easy to implement approach that provides a reliable 

distance reading that is then used to estimate the volume of target objects. 

The developed system (Figure 3.16) is composed of a camera and a laser mounted in a 

servo mechanism able to provide pan and tilt rotations. 
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Figure 3.16: LRF system overview 

This system uses mono-computer vision and triangulation to calculate the distance 

between the system to the target point. The measuring approach was based on Danko [53]. 

 

Figure 3.17: LRF with triangulation (based on [53]) 

A laser at a distance ℎ (also called baseline) and aligned with the optical axis of the 

camera is projected to a target (Figure 3.17), the resulting reflected beam is then captured in 

the focal plane of camera which is translated into a representation of the laser dot along the 

vertical axis of the image. This vertical distance is then used to calculate the distance 𝐷 to 

the target, as given by the following equation: 

 𝐷 = 𝑓(ℎ, 𝜃) =  
ℎ

tan(𝜃)
 (3.19) 
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With 𝜃 being the optical axis angle which is given by the distance in pixels from the 

laser dot to the center of the focal plane.  

A frame is a two dimensional entity captured from the camera, with a width (𝑤𝑓) and 

height (ℎ𝑓) which are measured along the horizontal and vertical axis, respectively. Both 

dimensions represent a number of pixels. Along the vertical axis there is also the maximum 

vertical field of view (𝜃0), therefore each pixel corresponds to a fraction of this angle: 

 ∆𝜃 =  
𝜃0

ℎ𝑓
  (3.20) 

The error of measurement of this system can be calculated using the propagation of 

error method [54]. 

 ∆𝐷 =  |
𝜕𝑓

𝜕𝜃
| ∆𝜃 + |

𝜕𝑓

𝜕ℎ
| ∆ℎ =  

ℎ

sin(𝜃)2
∆𝜃 +  

1

tan(𝜃)
 ∆ℎ (3.21) 

Equation (3.21) can then be represented in a graph (as shown in Figure 3.18) to better 

understand the variation of the measurement error. 
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Figure 3.18: LRF error variation for values below 10% of the distance and Δh = 0 

The error increases with the distance if there are angle mismatches (i.e. incorrect 

recognition of the pixels that represent the laser dot), with the highest variation permitted 

being at shorter ranges. It is possible to have an increased range of permitted variation by 

increasing the value of ℎ. This can be seen in the additional graphs available in Annex A.i.  

Most cameras have a restricted vertical field of view which affects the ability of the 

system to take measurements at short ranges, creating a dead zone where measurements can’t 

be made. Having a larger ℎ aggravates this condition since it also increases the area of the 

dead zone assuming that the field of view of the camera is kept the same. 

Figure 3.18 considers ∆ℎ = 0 since ℎ is a constant, i.e., the camera and the laser are 

always static in relation to each other, even when the system moves to measure different 

points in space. Ideally, measurements are supposed to take place in stable environments (a 

stopped truck or non-moving container), however, unpredictable events such as metal 
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dilatation due to heat exposure or destructive vibrations can introduce an additional error in 

the measurement as seen in Figure 3.19. 

 

Figure 3.19: LFR error variation for values below 10% of the distance with Δh ≠ 0 

A small variation of ℎ can severely impact the measurement reliability of the system. 

This is even more noticeable at greater distances as it can be seen in the graphs available in 

Annex A.i. To be able to reduce this impact, cameras would be required to have a higher 

resolution, which in turn makes them more expensive. 

It should be noted that the actual error might be higher due to optical aberrations, the 

most frequent ones being radial distortions such as barrel or pincushion distortions. Many of 

these effects can be corrected through software at the expense of additional processing and 

potential cropping of the frames, which will result in a narrower field of view along both the 

vertical and horizontal dimensions. 
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In order to reduce the angle mismatches due to incorrect pixel recognition, curve fitting 

is done on a set of experimentally acquired data within the range of the distance of the 

measurements. In this case the data can be fitted with a simple linear regression (for small 

angles as shown by Danko [53]) with 𝜃 being given by the following equation: 

 𝜃 = ∆𝜃 ∗ ℎ𝑖 + 𝛿  (3.22) 

With ℎ𝑖 being the number of vertical pixels from the center of the image to the center 

of mass of the visible target (laser dot) and 𝛿 being an offset to compensate for eventual 

alignment errors. 

 

3.2.3. Computer Stereo Vision 

The second system uses stereo vision to triangulate the distance to the object as an 

alternative that allows to have a bigger baseline. 

This system (Figure 3.20) uses two aligned parallel cameras that take dual captures 

from the environment and then calculate the distance to common points of interest (detected 

features) which are then displayed in a three dimensional representation.  

 

Figure 3.20: SV system overview 

From the two acquired images, the system matches the same feature (box corner) 

calculating its horizontal disparity (in reference to the optical axis of each camera) which is 
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the key element in determining the distance from the set to the object. This measuring 

approach was based on Mrovlje and Vrančić [8]. 

 

Figure 3.21: Stereo vision with two cameras (based on [8]) 

Assuming the two cameras are identical (same intrinsic parameters) and the point of 

interest is between the two optical axis of the set as shown in Figure 3.21, the distance 𝐷 

between the set and the target object is given by the following equation [8]: 

 𝐷 = 𝑓(𝐵, 𝑥) =
𝐵𝑥0

2 tan (
𝜑0

2 ) (𝑥1 + 𝑥2)
 (3.23) 

Where 𝐵 (baseline) is the distance between the two cameras, 𝜑0 is the horizontal view 

angle, 𝑥0 is the width in pixels of the captured image, 𝑥1 and 𝑥2 are the horizontal distances 

in pixels from the optical axis to the same relevant feature in both the left and right camera 

frames, respectively. It is worth to note that the horizontal disparity between the captured 

images to the feature is given by the component 𝑥 = (𝑥1 + 𝑥2), also referred as pixel 

disparity, which is the element that allows to calculate the distance to the object. 
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If these geometric assumptions are not met, then the mathematical formulations would 

be different, and were not considered in this dissertation for this system’s design. 

The measurement error of this system can then be calculated in a similar fashion as the 

previous system by using the propagation of error method. 

 ∆𝐷 =  |
𝜕𝑓

𝜕𝐵
| ∆𝐵 + |

𝜕𝑓

𝜕𝑥
| ∆𝑥 =  

𝐵𝑥0

2 tan (
𝜑0

2 ) 𝑥2
∆𝑥 +  

𝑥0

2 tan (
𝜑0

2 ) 𝑥
 ∆𝐵  (3.24) 

Equation (3.24) can be used to plot a graph showing the evolution of the error along 

with the distance and horizontal disparity. 

 

Figure 3.22: SV error variation for values below 10% of the distance and ΔB = 0 

Unlike the previous system, this case allows 𝐵 to take a higher value since both cameras 

are always in a fixed position (no rotations required), this translates in a lower error variation 

as shown in Figure 3.22 when compared to the LRF sensor. Annex A.ii contains further 
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graphs with different baselines showing how bigger baselines provide lower errors with 

greater distances. 

Figure 3.22 considers 𝛥𝐵 =  0 since B is a constant, i.e., cameras are fixed to the 

measurement locations inside the container. However, for the same reasons as the previous 

system, an additional source of error can be introduced if the baseline suffers any change. 

 

Figure 3.23: SV error variation for values below 10% of the distance and ΔB ≠ 0 

The stereo vision method is more tolerant of small baseline variations (unlike the LRF 

system), which is more noticeable with higher baselines even for greater distances as seen 

in the additional graphs available in Annex A.ii. 

Equation (3.23) can likewise be approximated using curve fitting (using data obtained 

experimentally) which allows the system to provide better results, permitting some tolerance 

to differences of alignment between the cameras or other potential detection errors. In this 
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case the power law is the best fit for the input data, with the equation taking the following 

form [9]: 

 𝐷 = 𝑘𝑥𝑧 (3.25) 

Where 𝑥 = (𝑥1 + 𝑥2) with 𝑘 and 𝑧 being constants that are obtained from the 

experimental data. 

By converting this distance to Cartesian coordinates (using simple trigonometry) and 

knowing that each distance is related to a corner of the box and the container’s dimensions, 

the system can produce a three-dimensional representation of the visual input. 
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4. Sensing Systems for Cargo Management 

This section will present the assumptions and software implemented on each of the two 

designed systems. These systems were implemented in a smaller scale than the target 

environment, which is a truck cargo space or a container. Both systems were designed to 

measure non-stackable large volumes (such as pallets). 

 

4.1. Laser Rangefinder Prototype 

The first prototype (developed under the supervision of Professor A. Manuel de 

Oliveira Duarte and Professor Pedro Fonseca) is based on a laser triangulation method, and 

provides a 3D scan of the inside of the container along with an estimation of the occupied 

volume. 

 

4.1.1. Assumptions 

This system works under the following assumptions: 

 The parallelism between the camera optical axis and the laser must hold, 

although as previously shown, there is room for some tolerance of alignment 

errors. 

 The laser is always at a known position in relation to the camera (for this 

prototype the laser is below the camera and aligned with the center of the optical 

axis). 

 The laser dot is always expected to be the brightest element detected. 

 Boxes (used as a representation of pallets in the target environment) are loaded 

sequentially. 

 There are no gaps between boxes. 

 

4.1.2. Software Implementation 

The implementation of this system is modularized and consists of three main 

components: 
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These modules cooperate to execute the following activity diagram (Figure 4.1) which 

shows the overall functionality of the system. 

• Generation of a two-dimensional grid of
points.

• Each point is defined by a tuple of angles
𝛼𝑖 , 𝛽𝑖 horizontal and vertical, respectively.

Point Grid Generation

• Measurement of the distance to the target
(point of the grid).

• Distances are stored as polar coordinates.

LRF Distance 
Estimation

• Conversion of measured distances to Cartesian
coordinates.

• Display of the result.

3D Drawing
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Figure 4.1: LRF system activity diagram 

Each module was designed and implemented independently which means that they can 

operate in different machines (in cases where distributed computing is more advantageous) 

using a communication protocol that properly provides the required data input for each 

module. 

A grid of points (𝛼𝑖, 𝛽𝑖) is generated in order to cover the measured space. Each point 

represents a position where the system will move and make a measurement. 
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Figure 4.2: Grid Generation and Measurement Procedure 

This grid is generated by dividing the total system’s field of view (considering the 

rotation) by a number of user defined columns and rows, with the measurement points being 

the intersection between both. 

Given the predictability of the position of the laser due to the geometry of the system 

(as previously shown in Figure 3.17), it is possible to infer the region in the frame that the 

laser dot will be. This allows the frame to be processed only on the region of interest. 

 

Figure 4.3: Original frame (left) and Frame with Regions of Interest (right) 

These regions of interest vary with the position of the laser in relation to the camera. 

For this prototype, the laser is below the camera which means that it is expected that the 

laser dot will always be detected in the bottom half of the frame. This can be seen by the 

yellow region which is the first being selected as seen in Figure 4.3, after this selection a 

smaller region can be extrapolated since the laser is aligned with the center of the optical 

axis, therefore the laser will be located in a section of the middle of the frame (blue region). 
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This region can vary in width if there is an alignment error, however it is expected that this 

region is much smaller than the whole half frame (yellow region).  

After this process, the smaller selected region is processed in order to find the brightest 

pixel, which corresponds to the laser dot, and retrieve its vertical distance to the center ℎ𝑖 

(measured in pixels) as necessary for the Equation (3.22). This detection process is 

exemplified by the activity diagram in Figure 4.4. 

 

Figure 4.4: LRF detection algorithm 

Based on the measurement angles (𝛼𝑖, 𝛽𝑖) from the grid and their associated measured 

distances (in polar coordinates), the drawing module converts the input to Cartesian 

coordinates (correcting the center of the axis, otherwise the representation would be upside 

down since the original axis has its center on the camera system). The drawing is done from 

left to write with each point’s closest neighbors forming a rectangle section that is drawn, 

and at the same time its volume is calculated. Each section is compared with the next one 
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and if their position (along one or more axis planes) is within a small configurable threshold 

value, then the algorithm interprets both as part of the same surface, making adjustments so 

that their positions match while drawing. The total volume is the sum of each section’s 

volume and the result is then displayed to the user (as shown in Figure 4.5).  

This volume estimation method is similar to the isolated points method presented by 

Zhang et al. [16], but assuming each point as the top of a parallelepiped given the cubic 

nature of the measured boxes. However, this system 3D reconstruction functionality was 

initially developed without being aware of previous approaches. 

 

Figure 4.5: Example output with input data (red dots) 

 

4.2. Computer Stereo Vision Prototype 

The second prototype (developed under the supervision of Professor A. Manuel de 

Oliveira Duarte) uses stereo vision for distance measurements. 

 

4.2.1. Assumptions 

This system works under the following assumptions: 

 The parallelism between both camera’s optical axis must be maintained (with 

some tolerance if curve fitting is used). 

 Boxes must have a certain degree of contrasting colors to the background (this 

is a software implementation limitation that will be detailed further along). 

 The visible face of the box is always normal to the camera’s optical axis. 
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 Boxes are non-stackable (this is a limitation to simulate the fact that in the target 

environment pallets are considered to be non-stackable) and are loaded 

sequentially and packed next to each other (no gaps along the container’s 

length). 

4.2.2. Software Implementation 

The implementation of this system consists of three main modules: 

 

 

These modules execute the following activity diagram shown in Figure 4.6. 

• Acquisition of an image from both cameras.

• Detection of the same feature (box corner)
in both images.

Feature Detection

• Measurement of the distance to the target
(detected feature – box corner).

• Conversion to Cartesian coordinates.

Distance Estimation

• Representation of the result.3D Drawing
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Figure 4.6: Stereo System Activity Diagram 
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The process begins by subtracting the background (frame without a box) from the active 

frame (frame with a box), which isolates the target object (box) making it easier to detect its 

relevant features (corners). This starts by taking a frame of the background and then a frame 

with the object as exemplified in Figure 4.7. 

 

Figure 4.7: Frame with object (left) and background frame (right) 

The subtraction of both frames is then smoothed with a filter to further eliminate rogue 

elements that might still be visible (Figure 4.8). 

 

Figure 4.8: Result after subtraction and smoothing 

With this result a threshold is applied in order to create a binary mask with the object’s 

shape. Morphological operations of closing and opening are applied to filter smaller isolated 

concentrations of pixels (Figure 4.9). 
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Figure 4.9: After threshold (left) and after morphological operations (right) results 

Finally, this mask is multiplied to the original frame with the object, and the corners 

are determined (Figure 4.10). 

 

Figure 4.10: Detected object (green rectangle) and detected corners (red) 

Detecting the corners of the box can be done using known corner detectors algorithms 

(such as Harris Corner Detection), however such algorithms are often complex and take 

considerable amount of computational resources. To mitigate this issue, a simple method 

was implemented based on the geometry of the system and the foreseeable shape of the box 

as seen by the camera. 
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Figure 4.11: Geometric shape as viewed by the system 

The system’s optical axis must be parallel, however, they don’t need to be parallel to 

the container’s 𝐿𝑒𝑛𝑔𝑡ℎ 𝑥 𝑊𝑖𝑑𝑡ℎ plane, in this prototype they were positioned with an angle 

that allows to capture as much space possible of the container’s space. Due to this geometry, 

the cameras capture the frontal face of the box as a trapezoid (as seen in Figure 4.11). The 

resulting image (which can be interpreted as a 2-dimensional array since it is an intensity 

image when in grayscale) after the application of the mask (as previously shown in Figure 

4.9) assumes the value 0 for regions where the background was removed, and intensity 

values correspondent to the isolated object. This image is searched first starting on the top 

(represented in Figure 4.11 by 1st search space): for each 𝑥, 𝑦 is searched for the first value 

that is different than 0 (𝑚𝑖𝑛(𝑥)), and the last value different from 0 (𝑚𝑎𝑥(𝑥)), these are the 

positions of the top corners. The same procedure is executed for the 2nd search space. 

This searching procedure is easy to implement and requires very little running time, 

however it is not as robust as formal corner detector algorithms, since it requires the masks 

to be properly detected, therefore this solution is only useful for systems that have limited 

processing power or specific task problems like the ones being tested with this prototype. 

Either way, given the modularity of the system, a formal corner detector algorithm can be 

integrated into the system for more complex detection problems. 
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After the detection of the corners on both frames (left and right), disparity can be 

calculated and the distance to the object estimated using Equation (3.25). After converting 

each distance to Cartesian coordinates (using the geometry of the system as shown in Figure 

3.20) a 3D representation is generated (Figure 4.12). 

The volume estimation is still inspired by the isolated points method presented by 

Zhang et al. [16] using parallelepipeds, which makes it faster since it is only processing the 

corner’s coordinates and the container’s dimensions. 

 

Figure 4.12: Stereo system output 

It is worth to note that feature detection can be simplified by reducing the number of 

corners needed to reconstruct the cargo. This is due to the target environment where this 

system is designed to operate (typically a truck’s cargo space or a container) being usually 

loaded with non-stackable cargo according to a specific layout. Given that the system knows 

the container dimensions and the shape of the layout being used, it is only necessary to detect 

the interior corners of the cargo, i.e., the ones not adjacent to the container’s walls, since 

those can be inferred from the geometry. The developed system uses this approach to reduce 

the processing time required to produce a 3D output. 
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5. Heuristic for Volume Loading 

This section will detail the implementation of the developed heuristic for volume 

assignment under the two considered scenarios (previously detailed in 3.1.1): 

 Pallet assembling 

 Cargo loading 

 

5.1. Assumptions 

The model implemented by this heuristic works under the following assumptions: 

 Boxes, pallets and cargo containers are cuboid. 

 Boxes have similar form factors to pallets. 

 Boxes are placed in a parallel horizontal plane to the pallet. 

 Boxes and pallets have only two possible rotation degrees (0º or 90º). In the 

case of boxes, one of the faces with the biggest area needs to always be facing 

downwards. Pallets are non-stackable and rotation is dependent on their position 

on the loading layout. 

 

5.2. Implementation 

The implemented heuristic is composed of two complementary parts. The first part 

deals with volume assignment and placement in a 3D environment (pallet); The second part 

deals with non-stackable volume assignment into containers (truck’s cargo space). 

 

5.2.1. Pallet Assembling 

Packing patterns are bound by the weight limit and orientation constraints (only two 

horizontal rotation degrees are permitted).  

Due to its heuristic nature, this process will find practical local solutions for the loading 

of boxes into pallets. 

This heuristic was implemented to work with a weakly heterogeneous set of cargo, i.e., 

only a few cargo types are considered for the execution. This translates the fact that since 
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 Definition of the cargo container parameters. 

 Generation of a random number of boxes from a 

limited set of types. 

 Selection of the best set of boxes that don’t exceed 

the weight limit of the container. 

 The 0/1 KSP algorithm is used as the selector. 

 Recursively run through the set and building 

‘towers’ and ‘walls’ of boxes along the container. 

the palletization of goods is used in logistics activities, boxes tend to have similar dimensions 

(form factors) that better fit the pallet, allowing for a maximization of its volume usage. 

Each box is assumed to always have one of the faces with the biggest area facing down, 

allowing only rotations along the vertical axis.  

Figure 5.1 shows the flow of steps followed by the execution and assignment process. 

 

Figure 5.1: Volume assignment implementation flow 

A random number of boxes are generated from a limited set of types with random 

weights associated to each individual box. Boxes with bigger contact area with the container 

floor are always heavier than smaller ones. This is important to create a gradient of weight 

during placement. 

The generated set of boxes is then passed through a selection process using the 0/1 KSP 

algorithm that maximizes the sum of volume of the selected boxes while keeping the sum of 

weights equal or under the pallet container defined limit. 

The selected boxes are placed according to the diagram represented by Figure 5.2. 

Recursive placement

Boxes selection

Cargo container and 
boxes generation
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Figure 5.2: Volume placement implementation 

The heuristic starts by selecting a box with the biggest volume and whose type has the 

most number of copies (this being the criteria for the selection of boxes to be placed on the 

container’s floor). 

After each box placed on the floor, the heuristic defines the volume on top of the box 

as a smaller container and discard all boxes bigger than its the dimensions and have higher 

density than the previous box, creating a small subset of boxes that fit inside this container. 

For vertical placement, the heuristic uses a recursive method that always selects the 

biggest box available (in terms of bottom contact area) from the previous subset of boxes, 

recalling itself for placing new boxes on top of the previously placed one and repeating the 

process for adjacent spaces, narrowing the subset of boxes even further by continuously 

discarding denser and bigger boxes than the dimensions of each smaller container created.  
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After the placement of all possible boxes, the remaining that haven’t been placed are 

rotated 90º and used to fill free spaces left were they might fit by using the same recursive 

approach. 

Boxes with higher weight are always placed first with the consequent boxes on top 

always being lighter (lower weight and density) than the previously placed ones. This 

guarantees the vertical stability of each ascending tower by having the vertical center of mass 

in the middle or below the tower’s height. The vertical center of mass of the resulting packing 

pattern is approximated by calculating the average center of mass from all the towers. 

 

5.2.1.1. Tower and Layer Building 

The heuristic places boxes by making ‘towers’ that together form layers (or ‘walls’) of 

boxes. This placement strategy is inspired on Moura and Oliveira [24] and Gehring and 

Bortfeldt [23]. The following sequence of images illustrates the placement process.  

 

 

Figure 5.3: Placement strategy - 1 
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The first box placed defines the maximum width of the layer and initiates its 

construction. After the placement of a box (Figure 5.3), the heuristic regards the top volume 

as a smaller container and proceeds to place the biggest box available (in terms of contact 

surface area) in the space. This process is done recursively until there is no more viable 

vertical space. 

 

 

Figure 5.4: Placement strategy - 2 

Since this is a recursive process, each placed box is a layer even if it is on top of another 

box, which in that case is referred to as an intern layer of the smaller container (Figure 5.4). 

After the box placement, the heuristic verifies if there is space for a new intern layer and 

places a new box. 
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Figure 5.5: Placement strategy - 3 

When the ‘tower’ is completed, the construction of the layer is resumed (Figure 5.5) by 

placing a new box. This process is repeated (‘tower’ building recursion) until no more boxes 

(with the current orientation) can be placed, tagging the remaining space as free (Figure 5.6). 
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Figure 5.6: Placement strategy - 4 

As it was the case with the intern layer on top of a box, if there is still space left in the 

container, a new layer is started by placing a new box (Figure 5.7) and repeating the whole 

process until the container is full or no more layers can be created due to boxes not fitting. 
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Figure 5.7: Placement strategy - 5 

When no more layers can be created, the heuristic rotates by 90º all the boxes left and 

cycles through the tagged free spaces re-applying the recursive placement strategy as before. 

This heuristic provides compact placement by prioritizing the selection of boxes that 

match the width of the layer, with the strongest point being the vertical placement (‘tower’ 

building). 

The adoption of this strategy stems from the fact that it simplifies the placement by 

removing the vertical dimension and making it a 2D (area) assignment problem (as 

visualized by the top view on the previous figures). This means that boxes can be placed 

according to the area they occupy either on the floor or on top of another box and use the 

vertical dimension only for checking up if the box fits or not. 

 

5.2.2. Cargo Loading 

Loading patterns for pallets assigned to containers (such as a truck) are bounded by the 

complete-shipment (refer to constraints in 3.1.3), loading priorities (given by the logistic 

importance), weight limit and weight distribution constraints. This process is simplified to 

2D since pallets are assumed to be non-stackable. 

Two sub scenarios were considered for the generation of loading patterns: 

1. The complete-shipment, loading priorities and weight limits constraints as hard 

constraints and the weight distribution as a soft constraint. 
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 Definition of the cargo container parameters. 

 Generation of bundles with random parameters. 

 Selection of the bundles with best set of parameters. 

 The 0/1 KSP algorithm is used as the selector. 

 Representation of the output (selected bundles). 

 Sort bundles according to their priority (2-steps 

process). 

 Sort assigned pallets in order to provide the best 

weight distribution. 

This translates a common scenario in transport and logistics companies where 

bundle’s pallets often need to be loaded together to optimize the 

pickup/delivery route. In this case the weight is distributed the best as 

possible within each bundle. However, due to the uncertain nature of the 

weight of each bundle, this means that a uniform weight distribution is not 

always guaranteed. 

2. The weight distribution and weight limits as hard constraints. 

In this scenario the weight must be distributed uniformly across the container 

as best as possible. This means that bundles might need to be broken and 

pallets placed individually. 

In order to simulate the process for the scenarios, bundles are generated with a random 

number pallets assigned and a logistic importance value calculated from the given function 

(previously detailed in 3.1.3). Since all bundles can be viewed as independent and unique, 

the 0/1 KSP algorithm is used to determine if a bundle should be selected or not. This allows 

to calculate which bundles maximize the sum of the value of the logistic importance while 

keeping the total number of pallets within the allowed capacity. This process is described by 

Figure 5.8. 

 

Figure 5.8: Bundle assignment implementation flow 

Iterative Placement

Bundle sorting and 
weight distribution

Bundle selection

Cargo container and 
bundle generation
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The bundle selection is done in two steps: 

1. Selection by weight (weight limit). 

This step selects the bundles that ensure that the weight limit of the container 

is not violated. 

2. Selection by logistic importance (priority). 

This second step picks from the bundles previously selected, those that 

maximize the sum of value of logistic importance. 

In cases where the container still has free space after the application of these two steps, 

the process is repeated using the bundles that were not selected along with the available 

weight and space left in the container from the first pass. 

It is worth to note that the selection is done (using the 0/1 KSP algorithm) in the first 

step with the physical weight of each bundle as the weight and the logistic importance as the 

value (according to the nomenclature used in 3.1.6), with the maximum capacity of the 

container being its weight limit. In the second step, the number of pallets is the weight and 

the logistic importance is the value. In this case, the maximum capacity of the container is 

the maximum number of pallets permitted by the loading layout. 

 

5.2.2.1. Weight Distribution 

To ensure the container stability of the loading pattern, the cargo needs to be positioned 

in order to provide a weight distribution as uniform as possible along both the longitudinal 

and transversal dimensions. 

A chessboard matrix (Figure 5.9) is implemented, for individual bundles, by positioning 

heavy and light weights alternatively. Each pair of pallets positioned transversally 

constitutes a container section. 
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Figure 5.9: Chessboard weight matrix 

This method of weight distribution guarantees the stability of the container, however, 

due to the unpredictable range of weights that can be part of a bundle, in larger distributions 

there is the possibility of multiple weights being very similar which would result in these 

weights being matched near the end of the distribution. These matching weights are instead 

positioned in the middle of the container (as exemplified by Figure 5.10), resulting in a better 

distribution. 

 

Figure 5.10: Chessboard weight matrix with matching cases 

To evaluate the stability obtained by the chessboard weight matrix, the weight influence 

between adjacent sections is calculated using an approximation given by the following 

equation: 
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 Ω𝑖 =
𝑤𝑖−1

2
+ 𝑤𝑖 +

𝑤𝑖+1

2
 (5.1) 

For the transversal section 𝑖, its real weight Ω𝑖 (weight considering the influence from 

the adjacent sections) is calculated with 𝑤𝑖 as the weight of the current transversal section 

(with both pallet’s weight summed together), 𝑤𝑖−1 as the weight of the previous adjacent 

section and 𝑤𝑖+1 as the weight of the next adjacent section. For the extremity sections, it is 

considered as if the container formed a ring, i.e., the value for the first section uses the 

influence of the next section and the last section, the same principle applies to the last section. 

This allows to consider the influence of the extremity sections without them introducing a 

constant value proportional to their weight. 

This approximation tries to incorporate the influence of weight between sections in a 

simplistic way, in order to have a rough idea of the stability of the distribution. 

The instability factor of the distribution is then given by: 

 𝐼 = ∑ |Ω𝑖 −
1

𝑁
∑ Ω𝑗

𝑁

𝑗=1

|

𝑁

𝑖=1

 (5.2) 

Where 𝑁 is the number of sections of the container.  

The value of the instability factor is used as a comparison tool between weight 

distributions, where a smaller 𝐼 translates a better distribution. 
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6. Results and Discussion 

In this section the results obtained with the heuristic for volume assignment and sensing 

systems will be presented and discussed. 

 

6.1. Heuristic 

Executions of this heuristic were conducted to evaluate the output solutions provided 

in both considered scenarios (pallet assembling and cargo loading). These tests reflect 

possible real world cases where the heuristic would operate. 

 

6.1.1. Data Structure Example 

To validate the representation capabilities of the data structure developed in 3.1.2, a 

simple example will be demonstrated. 

A box type represented by Figure 6.1 and its properties in Table 6.1 is considered. 

 

Figure 6.1: Box type 

Table 6.1: Box properties 

Dimensions (meters) 

(l x w x h) 
Weight (weight units) 

0.8 x 0.6 x 0.6 1 

 

The box is then paced into a pallet, with the dimensions of 1.2 x 0.8 x 1 meters, as 

shown in Figure 6.2. 
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Figure 6.2: Box placement into a pallet 

The heuristic produces a placement list (payload) for this pallet as shown in Table 6.2. 

Table 6.2: Placement list (payload) 

x 

(meters) 

y 

(meters) 

z 

(meters) 
box type 

weight 

(weight units) 

azimuthal angle 

(binary value) 

0 0 0 1 1 0 

 

This pallet is then assigned to a bundle and results in the following data shown in Table 

6.3. 

Table 6.3: Bundle 

pallets 

(*) 

weight 

(weight units) 

volume 

(𝒎𝟑) 

logistic 

importance (**) 

1 1 0.288 0,0794 

*structure array: the number represents the quantity of pallets on each 

bundle. The structure also contains information about 

the weight, volume, box types and a placement list like 

the one presented in Table 6.2 for each pallet. 

**the bundle individual priority is not directly stored but it is used to 

calculate the value of logistic importance along with other parameters 

detailed in 3.1.3. 
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The bundle is then assigned to a cargo container and the pallet placed inside as shown 

in Figure 6.3. The cargo container has the dimensions of 3.2 x 2.4 x 1.5 meters and a capacity 

of 8 pallets. 

 

Figure 6.3: 2D cargo placement 

Once again, the heuristic produces a layout placement list (cargo payload) as shown in 

Table 6.4. 

Table 6.4: Layout placement list (cargo payload) 

x 

(meters) 

y 

(meters) 
bundle number (*) 

azimuthal angle 

(binary value) 

pallet weight 

(weight units) 

0 0 1 0 1 

*the bundle number represents the bundle with the row number of 

the table being the pallet. 

Using the information from Table 6.4 (cargo payload) and Table 6.2 (payload) along 

with the associated entities, it is possible to produce a 3D representation of the loaded cargo 

container as shown in Figure 6.4. 
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Figure 6.4: 3D cargo placement 

 

6.1.2. Pallet Assembling 

In this scenario, it is considered that the problem faced is of the output maximization 

type, where there is only one container (pallet) whose volume needs to be maximized while 

having a set of available boxes larger than the volume of the container.  

To produce packing patterns, a container of 1.2m length, 0.8m width and 1m of height 

was defined, allowing a maximum of 20 weight units (these are abstract units that represent 

weight). 

First, a simple scenario is constructed using only one type of box with a well-defined 

form factor as represented in Figure 6.5. 
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Figure 6.5: 1-box type 

This box type has the following characteristics as shown in Table 6.5. 

Table 6.5: Execution parameters (input data) 

Number of boxes 
Dimensions (meters) 

(l x w x h) 

Weight range (weight units) 

(min-max) 

10 0.2 x 0.2 x 0.2 0.15-0.5 

 

Ten cubic boxes were generated with random weights picked from a range of 0.15 to 

0.5 weight units. 

Applying the developed heuristic to this input data produced the following packing 

pattern (Figure 6.6). 

 

Figure 6.6: Packing pattern (1-box type) 

According to the placement strategy implemented (explained in 5.2.1) the first box 

placed defined the layer width. Boxes are placed on top of the first one using a recursive 
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placement strategy until no more boxes can fit, at this point the heuristic continues with the 

construction of the layer by positioning the next box on the base and repeating the recursive 

top placement. 

It is also worth to note that the vertical center of mass (0.44m) is below the middle of 

the pallet height, resulting in a vertically stable packing pattern. 

Another test scenario considered is to generate enough boxes of this type to completely 

fill the container. The resulting packing pattern is shown in Figure 6.7. 

 

Figure 6.7: Packing pattern (full 1-box type) 

This scenario now shows the multiple layers constructed until the container was 

completely full (or no more boxes could be fit in the available spaces, which might happen 

in cases where there are more boxes with different box types). The same conclusions about 

the vertical stability can be taken as in the previous test scenario. 

A standard scenario is now considered using a weakly heterogeneous set of cargo. 

Three box types were defined and are represented as shown in Figure 6.8. 
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Figure 6.8: 3-box types 

These boxes have the following characteristics as shown in Table 6.6. 

Table 6.6: Box types characteristics 

Box type 
Dimensions (meters) 

(l x w x h) 

Weight range (weight units) 

(min-max) 

1 0.5 x 0.4 x 0.2 0.4-0.5 

2 0.4 x 0.4 x 0.3 0.3-0.4 

3 0.4 x 0.2 x 0.1 0.009-0.01 

The number of boxes of each type is generated randomly (from a range of 6 to 15) as 

well as the weight associated (from within the defined weight range).  

An example of a packing pattern obtained with this heuristic is shown in Figure 6.9. A 

total of 35 boxes were selected by the 0/1 KSP algorithm as having a sum of weight less or 

equal to the maximum supported by the pallet. Then the heuristic selected from these boxes 

according to the placement strategy to generate the packing pattern. The input data along 

with the outputs for this example can be seen at Annex C.i as well as further examples. 
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Figure 6.9: Packing pattern (3-box types) 

This packing pattern obtained the following results shown in Table 6.7. 

Table 6.7: Packing pattern statistics (3-box-types) 

Container 

volume (𝒎𝟑) 

Volume used 

(𝒎𝟑) 

Volume usage 

(%) 

Weight 

(weight units) 

Number of 

boxes used 

Number of 

boxes left out 

Box usage 

(%) 

0.96 0.86 90 6.86 28 7 80 

 

This is the typical scenario that the heuristic was developed for: having a weakly 

heterogeneous set of cargo with form factors similar to the pallet. 

The high percentage of volume usage reflect the placement strategy employed by this 

heuristic that favors compact solutions, however, given the randomness associated with the 

generation of the number of boxes, the percentages can vary slightly.  

Once again, since boxes with higher weight are always placed bellow, this packing 

pattern is vertically stable (vertical center of mass is located below the middle of the pallet’s 

height), i.e., boxes won’t fall after being placed. 

To test the limits of this heuristic, a scenario with a strong heterogeneous set of cargo 

was constructed, generating 30 boxes with random dimensions ranging from 0.1 to 0.5 

meters (each dimension) and weights equal to the bottom surface area of each box. 

The heuristic produced the following solution (Figure 6.10). 
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Figure 6.10: Packing pattern (30-box types) 

This packing pattern obtained the results shown in Table 6.8. 

Table 6.8: Packing pattern statistic (30-box types) 

Container 

volume (𝒎𝟑) 

Volume used 

(𝒎𝟑) 

Volume usage 

(%) 

Weight 

(weight units) 

Number of 

boxes used 

Number of 

boxes left out 

Box usage 

(%) 

0.96 0.723 75.31 2.31 21 9 70 

 

This extreme scenario shows that the placement strategy of the heuristic is still valid, 

which can be seen by the two layers and towers constructed and vertical stability, however, 

since boxes now have a wide variety of form factors, placement is not as compact as the 

previous cases. 

As it is, the heuristic produces satisfactory results when the assumptions of the 

developed model are met, however, an improvement on the placement strategy would be to 

construct the layers along the horizontal plane while keeping the tower building process. 

This would allow to better fill the container floor while pushing the free spaces to the top of 

the container, making it also easier to implement horizontal weight distribution. 

While these test scenarios were conducted only for one pallet, the heuristic is designed 

to work with multiple pallets constructing solutions sequentially while there are pallets and 

boxes available. 
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6.1.3. Cargo Loading 

This scenario will translate a case where the operator has only one truck available, and 

the number of bundles to be loaded exceeds the capacity of the truck. 

As an example execution, 10 bundles were generated with a random number of pallets 

assigned from a range of 1 to 10. Packing patterns for each pallet (which have the dimensions 

of 1.2 x 0.8 x 2.0 meters) use the box types described in Figure 6.11 and Table 6.9. 

 

Figure 6.11: 6-box types 

Table 6.9: 6-box types characteristics 

Box type 
Dimensions (meters) 

(l x w x h) 

Weight range (weight units) 

(min-max) 

1 0.6 x 0.4 x 0.2 0.09-0.3 

2 0.6 x 0.4 x 0.4 0.35-0.5 

3 0.2 x 0.2 x 0.2 0.005-0.01 

4 0.5 x 0.4 x 0.2 0.08-0.29 

5 0.4 x 0.4 x 0.3 0.09-0.3 

6 0.4 x 0.2 x 0.1 0.005-0.01 

 

For each pallet, the generation algorithm picks 3 of the 6 box types randomly (with the 

possibility of repetitions) and instantiates 20 boxes for each selected type. The instantiated 

boxes are then used by the heuristic to produce a packing pattern per pallet. This generation 

strategy is done in order to obtain potentially unique packing patterns. 
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The logistic importance of each bundle is calculated according to the Equation (3.17) 

(as detailed in 3.1.3) with the coefficients being assumed as 𝛼 = 0.5, 𝛽 = 0.1, 𝛾 = 0.4 and 

𝛿 = 0. These coefficients favor the selection of bundles with a higher number of assigned 

pallets and higher potential occupation of the container volume. The bundle priority 𝜇𝑟 is 

generated randomly and the other elements are calculated per pallet according to the statistics 

of the generated packing pattern. 

The container has dimensions of 13.6 x 2.45 x 2.5 meters, a capacity of 33 pallets (as 

defined by the chosen layout) and a maximum weight of 320 weight units.  

Additional output data from this execution can be seen at Annex C.ii. A practical case 

study using this heuristic can also be seen at Annex D. 

Table 6.10 shows the generated bundles and their characteristics. 

Table 6.10: Generated bundles 

bundle pallets 
weight 

(weight units) 

volume 

(𝒎𝟑) 

logistic 

importance 

1 2 15,94 3,84 0,0944 

2 3 23,30 5,28 0,0732 

3 5 37,39 9,46 0,1636 

4 5 41,58 9,28 0,1538 

5 6 50,79 11,36 0,2130 

6 6 44,79 11,02 0,2425 

7 7 56,12 13,12 0,2474 

8 7 55,34 13,20 0,2499 

9 7 56,28 12,86 0,1984 

10 9 69,18 16,38 0,2292 

 

The heuristic then selected the bundles which maximize the value of logistic importance 

while keeping the weight and capacity equal or below the maximums supported. 

The selected bundles are shown in Table 6.11. 

Table 6.11: Selected bundles 

bundle 

(previous id) 
pallets 

weight 

(weight units) 

volume 

(𝒎𝟑) 

logistic 

importance 
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1 (1) 2 15,94 3,84 0,0944 

2 (3) 5 37,39 9,46 0,1636 

3 (5) 6 50,79 11,36 0,2130 

4 (6) 6 44,79 11,02 0,2425 

5 (7) 7 56,12 13,12 0,2474 

6 (8) 7 55,34 13,20 0,2499 

 

For the first scenario, the generated loading pattern based on loading priorities from the 

selected bundles is shown in Figure 6.12 and its statistics in Table 6.12. 

 

Figure 6.12: Loading pattern and weight distribution 

Table 6.12: Loading pattern output statistics 

Usable container 

volume (*) (𝒎𝟑) 

Volume used 

(𝒎𝟑) 

Volume usage 

(%) 

Weight 

(weight units) 

63.36 62 97.85 260.37 

*usable volume that the pallets can occupy within the 

container’s volume due to the pallet’s dimensions. 

The selected bundles are organized from the lowest priority (farthest from the door) to 

highest priority. This priority is given by the value of the logistic importance of each bundle. 
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Figure 6.13:Longitudinal and transversal weight distribution (efficient) 

This loading pattern guarantees the maximum efficiency according to the 

pickup/delivery route, sacrificing some of the container stability as seen by the oscillating 

weights around the average which is translated by value of the 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟. 

Nonetheless, the 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 value is still low which is a result of the distribution 

being executed according to the chessboard matrix strategy, allowing for a stable transversal 

distribution as shown by the graphs in Figure 6.13. 

As expected from the coefficients used for the logistic importance function, the 0/1 KSP 

algorithm selected bundles that yielded a high percentage of occupied volume while keeping 

the weight under the maximum allowed (as seen in Table 6.12). 

Using the data structure developed for this model (detailed in 3.1.2.3) and implemented 

in a linear database, it is possible to produce a 3D representation of the loading pattern 

(Figure 6.14) in order to give the operator a global perception of the loading pattern. 



Object Grouping in Limited Spaces 

90 

 

Figure 6.14: 3D loading pattern (efficient) 

Additionally, pallets can be accessed and represented individually by using their 

number as search parameter. For example, Figure 6.15 shows pallet 31 whose packing 

pattern was retrieved from the database. 

 

Figure 6.15: Packing pattern (pallet 31) 
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For the second scenario, the previously generated bundles are broken and pallets are 

placed individually as shown by Figure 6.16: 

 

Figure 6.16:Loading pattern with uniform weight distribution 

The bundle’s pallets were reorganized in order to achieve a uniform weight distribution 

as best as possible (Figure 6.17). 

 

Figure 6.17:Longitudinal and transversal weight distribution (uniform) 
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This loading pattern guarantees maximum stability (of both dimensions) of the 

container (due to the chessboard matrix distribution with the similar weights reallocated to 

the center) as it can be seen by comparing the obtained 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 value with the 

previous distribution which is higher than the obtained by this one. However, this is achieved 

at the expense of the integrity of each bundle. 

This scenario can be considered in cases where there is only one bundle that completely 

fills the container, or when the container stability needs to be maintained during a specific 

type journey such as long distance transportation (after which the cargo can be unloaded and 

reorganized back into the more efficient loading pattern). 

Once again, using the data structure in the database it is also possible to represent this 

loading pattern in 3D as shown in Figure 6.18. 

 

Figure 6.18: 3D loading pattern (uniform) 

While these test scenarios considered only one cargo container, the heuristic is designed 

to operate with multiple trucks, providing loading patterns sequentially while there are trucks 

and pallets available. 
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6.2. Sensing Systems 

To evaluate the performance of the developed sensing systems, the prototypes were 

tested in lab conditions were the containers and boxes used were of smaller size compared 

to the target environment (truck’s cargo space with pallets). These measurements were done 

as a proof of concept.  

 

6.2.1. Laser Rangefinder Prototype 

A small container with 0.36 meters of height, 0.37 meters of width and 0.42 meters of 

length was used as the environment for the tests. The following table shows the obtained 

results on the measurement of a box with 0.29 meters of height, 0.20 meters of width and 

0.14 meters of length, for 2 different sets of generated grid points. The system was located 

in the top corner facing the reader (top left corner of the 𝑊𝑖𝑑𝑡ℎ 𝑥 𝐻𝑒𝑖𝑔ℎ𝑡 plane) and had a 

baseline of 0.1 meters. 

Table 6.13: LRF prototype results 

3D Plot 
Grid Dimensions 

(rows x columns) 

Measured 

Volume (𝒎𝟑) 

Actual 

Volume 

(𝒎𝟑) 

Error (%) 

 

5 x 3 

(24 points) 

0.004 0.008 50 

 

6 x 6 

(49 points) 

0.007 0.008 12.5 
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As shown in Table 6.13, increasing the number of measurement points increases 

accuracy by reducing the area of dead zones between points. However, with less points it is 

still possible to have an idea of the position of the object, which might in some cases be a 

good tradeoff to have a higher measurement error (i.e. cases where only a rough shape is 

necessary to be visualized). This error is due to the reconstruction method being partial, i.e., 

the box volume is being calculated section by section as long as there are enough points in 

its surface.  

The number of frames taken is equal to the number of points in the grid, which means 

that a lower error comes at the cost of overall processing time. An improved solution would 

be to create a grid of point with variable density, where more measurement points would be 

concentrated on regions where a significate difference of measurement is present, allowing 

for a more precise volume reconstruction around the edges of the box as well as potentially 

reducing the number of processed points, since less points would be required as long as no 

significant variation was detected. 

Another important aspect is the stability of the mechanical support that this system 

relies on (servomechanism) which might pose additional difficulties in moving 

environments (for example a truck’s cargo area). However, this LRF system has the 

advantage of being easy to implement and is capable of operating in the dark (unlike other 

systems that require external light sources). 

 

6.2.2. Computer Stereo Vision Prototype 

To validate this system, two measurements were taken on a container with the 

dimensions 0.50 x 0.58 x 0.38 (width x length x height) in meters. The first box had the 

dimensions of 0.35 x 0.22 x 0.19 and the second box had 0.27 x 0.22 x 0.14, both in meters. 

The cameras were positioned on the top middle of the 𝑊𝑖𝑑𝑡ℎ 𝑥 𝐻𝑒𝑖𝑔ℎ𝑡 plane and had a 

baseline of 0.2 meters. 
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Table 6.14: Stereo vision prototype results 

3D Plot 

Measured 

Volume 

(𝒎𝟑) 

Actual 

Volume 

(𝒎𝟑) 

Error (%) 

 

0.0166 0.0146 13.6 

 

9.02x10−3 8.91x10−3 12.3 

 

As shown by Table 6.14, both cases have a low error. This is expected from a stereo 

system since it is capable of recognizing the whole relevant surfaces of the box allowing for 

a full reconstruction of the volume. This system also requires less input data (frames taken 

per target) than the previous LRF prototype, which makes it output the results faster. 

However, this system still has limitations such as requiring sufficient ambient light 

(from an external source) to illuminate the scene while being sensitive to excess light which 

can input noise during the color differentiation of each box (the subtraction of background 

phase). During measurements, ambient light had to be controlled through experimental 

adjustment until a sufficient and not intrusive value (i.e. an intensity value that would 

introduce noise in the measurement) was reached. 

An improvement to deal with the ambient light issue is to execute edge detection for 

the identification of boxes (along with a formal corner detection algorithm) instead of the 
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color/intensity subtraction method. This is a more complex and computationally intensive 

approach than the method used, however it would provide a more robust method of box 

detection. 

The system physical stability is not as critical since there are no moving parts and the 

whole structure is firmly attached to the container. Additionally, stereo rectification can be 

implemented to fully compensate for alignment errors for more problematic environments. 
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7. Conclusions and Future Work 

In this dissertation, a state of the art review of the available literature in sensing 

technology for volume measurement and reconstruction, cargo planning and volume 

assignment approaches as well as market available solutions was conducted, while focusing 

on their working principles and characteristics. 

A heuristic was designed and implemented, producing solutions for two logistic 

scenarios:  

1. Pallet assembling 

Packing patterns are produced using a volume placement strategy (walls and 

towers building) that promotes compactness and vertically stable pallets with 

a weakly heterogeneous set of boxes. 

2. Cargo loading 

A cost function was devised using some of the important factors for logistic 

operators. The calculated output of this function was then used as the 

selecting criteria for the 0/1 KSP algorithm, allowing for the generation of 

optimal loading patterns according to the considered constraints. 

Both scenarios were integrated using a data structure developed to model this logistic 

process, allowing for an easy representation in 2D or 3D of the output produced by the 

heuristic. 

Tests conducted on the heuristic revealed its correct functionality according to the 

assumptions made for the developed model and implemented approaches. 

When it comes to sensing technology and volume reconstruction, two prototypes were 

designed and developed using two different approaches as proof of concept: 

1. Laser rangefinder prototype 

A robust approach (independent of ambient light since it has its own light 

source) in stable environments, that scans the indicated volume with a 

reconstruction error dependent on the number of measurement points defined 

(each point requiring a frame to be taken and processed). 
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2. Computer Stereo Vision prototype 

An approach less robust (ambient light dependency) but with a high 

reconstruction precision that is more physically stable and needs less frames 

to be processed. 

Both prototypes obtained satisfactory results on the executed tests, with the most 

promising approach being the Computer Stereo Vision that with further development can 

become a robust solution to be tested in real world environments such as a truck’s cargo 

area. 

 

7.1. Future Work 

Future improvements on this work would include: 

Heuristic 

 Implementing a horizontal layer construction along with the current tower 

building recursive method to better fill the base of the pallet. 

This could be implemented by calculating which boxes can better fill the 

container’s floor and position as many full layers as the number of boxes 

allow. The result could then be viewed as a small container (since the bottom 

is filled with layers of boxes) were the tower building strategy could be 

applied to place the remaining boxes. 

 Implement horizontal weight distribution to improve on the overall pallet 

stability. 

By having a horizontal layer placement strategy, the selection of boxes to 

be placed could be done so that it alternates heavy and light weights, 

creating a chessboard matrix of weights. 

 Further develop the placement heuristic by improving the selection criteria of 

placed boxes and overhaul results with backtracking search and repositioning. 

An immediate improvement would be to pre-calculate which box types 

would better occupy the pallet’s volume. Using this calculation and the 

number of boxes of each type, the heuristic could prioritize the selection of 

said boxes, in order to potentially improve the volume usage. 
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Sensing technology 

 Devising and implementing a variable density grid of measurement points for 

the LRF prototype, in order to reduce the number of frames taken while 

maintaining or improving the reconstruction precision (for academic purposes 

or for implementation in stable environments). 

This could be achieved by taking an initial snapshot of the volume being 

measured and perform edge detection, then the grid could be set up so that 

the system would take more measurements along the computed edge’s 

positions and less in other places. 

 Implementing an edge detection method for boxes recognition along with a 

corner detection algorithm, in order to improve the robustness of the SV 

prototype against the ambient light. 

Possibly with Canny edge detection and Harris corner detector algorithm 

fine-tuned or even adapted for the target environments. 

 Implement stereo rectification for the SV system. 

Either applying available algorithms or delve into further epipolar geometry 

to implement a more specialized solution. 
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Annexes 

 

A. Triangulation Error Graphs 

This annex presents complimentary graphs and discussion on the measurement errors 

tolerated by the sensing systems. All graphs will only show error values below 10% of the 

considered distance of measurement.  

 

A.i. Laser rangefinder 

In 3.2.2, discussion is held on how increasing the baseline reduces the measurement 

errors. A series of graphs for different baselines and distances is shown to support this claim. 

 

Figure 0.1: LFR error variation - 1 
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Figure 0.2: LFR error variation - 2 
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Figure 0.3: LFR error variation - 3 

Comparing Figure 3.18 (page 45) with Figure 0.1, the increase of 10cm in the baseline 

resulted in a wider range of tolerated error variation. The same conclusion can be taken from 

wider baselines as shown in Figure 0.2 and Figure 0.3. 

All the previous figures consider a static baseline, i.e., no error is introduced by 

variations of 𝛥ℎ. However, as seen by Figure 3.19 (page 46), a small error in the baseline 

can impact the measurement reliability of the system. Figure 0.4 shows this impact at a 

greater distance. 
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Figure 0.4: LFR error variation - 4 

As it can be seen, at greater distances the impact is even more noticeable as the error 

variation permitted is even smaller, with 𝛥𝜃 taking values only achievable by having a high 

resolution camera. 

 

A.ii. Stereo Vision 

In 3.2.3, like the previous system, graphs where shown with the evolution of the 

measurement error. The following graphs are complimentary to the discussion held in the 

section. 
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Figure 0.5: SV error variation - 1 
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Figure 0.6: SV error variation - 2 

When comparing Figure 0.5 and Figure 0.6, it can be seen that a bigger baseline reduces 

the measurement error for greater distances.  

Both graphs consider no error introduced by baseline variations 𝛥𝐵, however as 

previously seen in Figure 3.23 (page 50) this system is better prepared for this sort of error 

especially with bigger baselines. The next set of graphs further illustrate this claim. 
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Figure 0.7: SV error variation - 3 

As it can be seen by Figure 0.7, a bigger baseline increases even further the tolerance 

margin for eventual errors.  
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B. 0/1 Knapsack Problem Algorithm 

A dynamic programing approach of the 0/ KSP can be implemented as shown by the 

following pseudo code (adapted from [51]): 

 // Input: 

 // weights (array w) 
 // values (array v) 
 // knapsack capacity (W) 
  

 // define/calculate the number of elements (n) 
  

 for j from 0 to W do: 
     m[0, j] := 0 

  

 for i from 1 to n do: 
     for j from 0 to W do: 
         if w[i-1] > j then: 
             m[i, j] := m[i-1, j] 

         else: 
             m[i, j] := max(m[i-1, j], m[i-1, j-w(i-1)] + v[i-1]) 

 return m[n,W] //best  

 

To find the elements which the sum yields the maximum value of 𝑚[𝑛, 𝑊] (as defined 

in 3.1.6) the process is backtracked: 

// Input: 

// weights (array w) 

// calculated solution table (𝑚[𝑖, 𝑤])  
// maximum value found (best)  
// number of elements (n) 
// knapsack capacity (W)  
 

while best > 0 do: 
    while m[n,W] == best do: 
        n = n - 1 
    end 
    W = W - w(n) 
    n = n - 1 
    best = m[n,W] 
    selected_items(n+1) = 1 // the index of the item is put to 1 
end 

return selected_items  

 

B.i. Application Example 

A knapsack with a total weight capacity of 𝑊 =  7 has to be filled with a combination 

of items with the best sum of value possible. The items available are the following: 
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Table B.1: Input values 

item (n) weight (w) value (v) 

1 1 1 

2 3 4 

3 4 5 

4 5 7 

 

The search procedure begins with a construction of a table for the values of 𝑛 and the 

range values of 𝑤. The first column is filled with zeros. The table is then filled from left to 

right, top to bottom according to the conditions shown in 3.1.6.  

Table B.2: 0/1 KSP results table 

   weight range 

n v w 0 1 2 3 4 5 6 7 

1 1 1 0 1 1 1 1 1 1 1 

2 4 3 0 1 1 4* 5 5 5 5 

3 5 4 0 1 1 4 5 6 6 9* 

4 7 5 0 1 1 4 5 7 8 9 

 

The best sum of value reached is 9. To find which items are selected, the table is 

backtracked by finding which items contributed for the best value combination. This 

backtracking is done from bottom up, right to left. In this example the backtracked values 

are marked by ‘*’ and correspond to the items 2 and 3. 
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C. Generated Data for the Heuristic and Examples 

 

C.i. Pallet Assembling 

In 6.1.2, a scenario using 3-box types was presented as the standard application of the 

heuristic. The following tables show the randomly generated boxes (as selected by the 0/1 

KSP) and the boxes left out after the placement. 

Table C.3: Generated input data 

box type weight (weight units) 

1 0,475 

1 0,484 

1 0,417 

1 0,49 

1 0,411 

1 0,475 

1 0,473 

1 0,472 

1 0,413 

2 0,345 

2 0,351 

2 0,353 

2 0,386 

2 0,368 

2 0,381 

2 0,353 

2 0,396 

2 0,307 

2 0,354 

2 0,328 

2 0,348 
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2 0,368 

2 0,321 

2 0,361 

3 0,009 

3 0,01 

3 0,009 

3 0,009 

3 0,01 

3 0,009 

3 0,009 

3 0,009 

3 0,009 

3 0,009 

3 0,01 

 

Table C.4: Boxes left out of the placement 

box type weight (weight units) 

1 0,417 

1 0,411 

1 0,472 

1 0,413 

2 0,307 

2 0,328 

2 0,321 

 

The following table shows the box placement list generated by the heuristic, for the 

example at hand, as stored in the database. 
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Table C.5: Placement list generated by the heuristic 

x 

(meters) 

y 

(meters) 

z 

(meters) 

box type weight 

(weight units) 

azimuthal angle 

(binary value) 

0 0 0 2 0,396 0 

0 0 0,3 2 0,386 0 

0 0 0,6 2 0,381 0 

0 0 0,9 3 0,01 0 

0 0,2 0,9 3 0,01 0 

0,4 0 0 2 0,368 0 

0,4 0 0,3 2 0,361 0 

0,4 0 0,6 2 0,354 0 

0,4 0 0,9 3 0,01 0 

0,4 0,2 0,9 3 0,009 0 

0,8 0 0 2 0,368 0 

0,8 0 0,3 2 0,353 0 

0,8 0 0,6 2 0,353 0 

0,8 0 0,9 3 0,009 0 

0,8 0,2 0,9 3 0,009 0 

0 0,4 0 1 0,49 0 

0 0,4 0,2 1 0,484 0 

0 0,4 0,4 1 0,475 0 

0 0,4 0,6 1 0,475 0 

0 0,4 0,8 1 0,473 0 

0,5 0,4 0 2 0,351 0 

0,5 0,4 0,3 2 0,348 0 

0,5 0,4 0,6 2 0,345 0 

0,5 0,4 0,9 3 0,009 0 

0,5 0,6 0,9 3 0,009 0 

0,9 0,4 0 3 0,009 1 

0,9 0,4 0,1 3 0,009 1 

0,9 0,4 0,2 3 0,009 1 
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C.i.1. Other examples 

Using the same 3-box type set as the standard case in 6.1.2, some extra examples of 

outputs are shown along with their statistics, to further illustrate the heuristic procedure. 

 

Figure 0.8: Example - 1 

Table C.6: Statistics - 1 

Container 

volume (𝒎𝟑) 

Volume used 

(𝒎𝟑) 

Volume usage 

(%) 

Weight 

(weight units) 

Number of 

boxes used 

Number of 

boxes left out 

Box usage 

(%) 

0.96 0.84 87.5 7.98 30 4 88.24 

 

 

Figure 0.9: Example - 2 
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Table C.7: Statistics - 2 

Container 

volume (𝒎𝟑) 

Volume used 

(𝒎𝟑) 

Volume usage 

(%) 

Weight 

(weight units) 

Number of 

boxes used 

Number of 

boxes left out 

Box usage 

(%) 

0.96 0.92 95.93 7.06 35 38 47.95 

 

 

Figure 0.10: Example - 3 

Table C.8: Statistics - 3 

Container 

volume (𝒎𝟑) 

Volume used 

(𝒎𝟑) 

Volume usage 

(%) 

Weight 

(weight units) 

Number of 

boxes used 

Number of 

boxes left out 

Box usage 

(%) 

0.96 0.96 100 7.872 35 0 100 

 

C.ii. Cargo Loading 

In 6.1.3, an example of cargo loading (along with pallet assembling) was presented. 

The following tables the placement list of the pallets in both presented weigh distribution 

scenarios. 

Table C.9: Bundle layout placement (loading priorities) 

x 

(meters) 

y 

(meters) 
bundle number 

azimuthal angle 

(binary value) 

pallet weight 

(weight units) 

0 0 1 0 8,06 

1,2 0 1 0 7,88 

0 0,8 2 0 9,03 

1,2 0,8 2 0 6,43 
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0 1,6 2 0 6,93 

1,2 1,6 2 0 7,56 

0 2,4 2 0 7,44 

1,2 2,4 3 0 8,91 

0 3,2 3 0 8,67 

1,2 3,2 3 0 8,07 

0 4 3 0 8,21 

1,2 4 3 0 8,66 

0 4,8 3 0 8,27 

1,2 4,8 4 0 4,91 

0 5,6 4 0 7,19 

1,2 5,6 4 0 9,24 

0 6,4 4 0 8,13 

1,2 6,4 4 0 7,47 

0 7,2 4 0 7,85 

1,2 7,2 5 0 8,91 

0 8 5 0 8,54 

1,2 8 5 0 6,85 

0 8,8 5 0 7,66 

1,2 8,8 5 0 8,17 

0 9,6 5 0 8,04 

1,2 9,6 5 0 7,95 

0 10,4 6 0 8,65 

1,2 10,4 6 0 6,48 

0 11,2 6 0 7,67 

1,2 11,2 6 0 8,28 

0 12 6 1 8,20 

0,8 12 6 1 7,95 

1,6 12 6 1 8,11 
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Table C.10: Bundle layout placement (uniform weight distribution) 

x 

(meters) 

y 

(meters) 
bundle number 

azimuthal angle 

(binary value) 

pallet weight 

(weight units) 

0 0 4 0 9,24 

1,2 0 2 0 6,43 

0 0,8 5 0 6,85 

1,2 0,8 5 0 8,91 

0 1,6 3 0 8,67 

1,2 1,6 4 0 7,19 

0 2,4 4 0 7,47 

1,2 2,4 6 0 8,65 

0 3,2 6 0 8,28 

1,2 3,2 5 0 7,66 

0 4 4 0 7,85 

1,2 4 3 0 8,21 

0 4,8 5 0 8,17 

1,2 4,8 5 0 7,95 

0 5,6 5 0 8,04 

1,2 5,6 6 0 8,11 

0 6,4 1 0 8,06 

1,2 6,4 3 0 8,07 

0 7,2 4 0 8,13 

1,2 7,2 6 0 7,95 

0 8 1 0 7,88 

1,2 8 6 0 8,20 

0 8,8 3 0 8,27 

1,2 8,8 6 0 7,67 

0 9,6 2 0 7,56 

1,2 9,6 5 0 8,54 

0 10,4 3 0 8,66 

1,2 10,4 2 0 7,44 

0 11,2 2 0 6,93 
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1,2 11,2 3 0 8,91 

0 12 6 1 6,48 

0,8 12 2 1 9,03 

1,6 12 4 1 4,91 
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D. Practical Case Study 

A logistic operator has a warehouse in Aveiro where cargo freights (sets of boxes) are 

received from different clients to palletize and send to their destination. On a given day, the 

operator has an empty truck that goes from Aveiro to another warehouse in Lisbon. At this 

time, the operator has boxes from different clients that have to be transported to Lisbon, 

however, the total cargo exceeds the capacity of the truck. The operator is then confronted 

with the decision of selecting which cargo of which clients should be prioritized for 

transportation in this truck so that it maximizes the logistic importance function, 𝜆𝑟. 

To perform this task, the operator employs the heuristic developed in this document to 

assemble the pallets for the clients and select which ones to load into the truck. 

The operator knows that all their clients use specific box formats which are represented 

by Figure 6.11 (page 86) with their dimensions in Table 6.9 (page 86). 

The amount of boxes per client is then showed in Table D.11. 

Table D.11: Boxes per client 

client number of boxes 

1 45 

2 74 

3 175 

4 179 

5 218 

6 184 

7 253 

8 270 

9 256 

10 305 

 

To palletize these boxes, the operator uses pallets of 1.2 x 0.8 x 2.0 meters (length x 

width x height), that then are loaded into the truck whose cargo space has 13.6 x 2.45 x 2.5 

meters. The truck has a capacity of 33 pallets and supports up to 320 weight units, and is 

typically loaded using the layout (𝑎) shown in Figure 3.14 (page 40). 
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Palletization is done according to the heuristic for pallet assembling (described in 

5.2.1). Figure 0.11 shows a pallet assembled for client 8 (packing pattern) as an example of 

the output it provides. 

 

Figure 0.11: Assembled pallet from client 8 

The heuristic produces compact and vertically stable packing patterns for all pallets that 

the operator can easily use as a guiding tool to do the physical assembly. 

After all pallets are assembled, they are grouped into bundles according to the client 

they belong to. These bundles are shown in Table D.12. 
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Table D.12: Bundles 

client pallets 
weight 

(weight units) 

volume 

(𝒎𝟑) 

logistic 

importance 

1 2 16,36 3,76 0,0741 

2 2 15,48 3,55 0,1235 

3 3 25,73 5,28 0,0843 

4 4 31,85 7,52 0,1921 

5 5 38,09 9,20 0,1703 

6 6 51,40 11,28 0,1819 

7 7 58,48 12,75 0,1784 

8 8 64,69 14,85 0,2650 

9 9 73,45 17,12 0,2382 

10 10 82,06 18,74 0,2512 

 

The logistic importance value (described in 3.1.3) is calculated using the same 

coefficients as the case presented in 6.1.3. 

Having this information, the heuristic selects which bundles should be loaded that 

maximize the value of logistic importance (i.e., higher profit). Table D.13 shows the selected 

bundles. 

Table D.13: Selected bundles (clients) 

client bundle pallets 
weight 

(weight units) 

volume 

(𝒎𝟑) 

logistic 

importance 

1 1 2 16,36 3,76 0,0741 

3 2 3 25,73 5,28 0,0843 

2 3 2 15,48 3,55 0,1235 

5 4 5 38,09 9,20 0,1703 

4 5 4 31,85 7,52 0,1921 

9 6 9 73,45 17,12 0,2382 

8 7 8 64,69 14,85 0,2650 
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The heuristic proceeds to produce a loading pattern for these selected bundles. Figure 

0.12 shows how pallets should be loaded into the truck, and Table D.14 show the statistics 

obtained by this pattern. 

 

Figure 0.12: Loading pattern (efficient) 

Table D.14: Selection statistics 

Usable container 

volume (𝒎𝟑) 

Volume used 

(𝒎𝟑) 

Volume usage 

(%) 

Weight 

(weight units) 

63.36 61.28 96.72 265.65 

 

The operator can also view the loading pattern in 3D to better perceive the final result 

of the loaded truck. Figure 0.13 shows the 3D loading pattern. 
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Figure 0.13: 3D loading pattern (efficient) 

Additionally, the operator can view the weight distribution of this loading pattern and 

evaluate its stability. Figure 0.14 shows the longitudinal and transversal weight distribution 

of this load. 

 

Figure 0.14: Weight distribution (efficient) 
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The 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 value provides the operator a tool to evaluate the stability of the cargo 

(detailed in 5.2.2.1). 

If this cargo was instead going abroad, for example to Hamburg, German national laws 

impose the distribution of weight of the cargo uniformly across the cargo space for trucks 

entering the country. The heuristic can output a loading pattern that tries to distribute the 

weight in order to obtain a uniform distribution. However, this operation is done at the 

expense of the integrity of the bundles, which would require the truck to be unloaded at an 

intermediary warehouse (inside the country) to revert back to the efficient loading pattern.  

Figure 0.15 shows the uniform loading pattern. 

 

Figure 0.15: Loading pattern (uniform) 

Like previously, this pattern can be viewed in 3D (as shown in Figure 0.16). 
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Figure 0.16: 3D Loading pattern (uniform) 

The weight distribution is also presented to the operator (as shown in Figure 0.17). 

 

Figure 0.17: Weight distribution (uniform) 
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