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Abstract

In this paper we study the fractional analogous of the Laplace-Beltrami equation and the Riesz system

studied previously by H. Leutwiler , in R3. In both cases we replace the integer derivatives by Caputo

fractional derivatives of order 0 < α < 1. We characterize the space of solutions of the fractional Laplace-

Beltrami equation, and we calculate its dimension. We establish relations between the solutions of the

fractional Laplace-Beltrami equation and the solutions of the fractional Riesz system. Some examples of

the polynomial solutions will be presented. Moreover, the behaviour of the obtained results when α = 1 is

presented, and a final remark about the consideration of Riemann-Liouville fractional derivatives instead of

Caputo fractional derivatives is made.
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1 Introduction

One of the possible extensions of the theory of classical complex analysis to higher dimensions using geo-

metric algebras is the theory of hypermonogenic functions based on the hyperbolic model. The advantage

of hypermonogenic functions is that the positive and negative powers of hypercomplex variables are included

into the theory, which is not in the monogenic case. Hence, the elementary functions can be defined simi-

larly as in the classical complex case. In [7]- [9], H. Leutwiler and S.L. Eriksson introduced hypermonogenic

and κ−hypermonogenic functions, and studied some of their properties in Clifford analysis. Hypermonogenic

functions are generalizations of the monogenic functions and the κ−monogenic functions are extensions of the

hypermonogenic functions. When κ = n − 1, a κ−hypermonogenic function is a hypermonogenic function,

and when κ = 0, a κ−hypermonogenic function is a monogenic function. In 1992 H. Leutwiler published two

papers [11,12] where he studied the connections between the solutions of the so-called hyperbolic Riesz system

and the solutions of the Laplace-Beltrami equation.

Recently, the interest in fractional calculus verified a substancial increment. Among all the possible connec-

tions that this topic can establish with several areas of mathematics, there is a lot of interest in the study of
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ordinary and partial fractional differential equations regarding their mathematical aspects and their applications

in diverse areas such as physics, chemistry, engineering, optics or quantum mechanics (see [2, 4]).

The aim of this paper is to study, in R3, the analogous of the hyperbolic Riesz system and the Laplace-

Beltrami equation for the case where the integer derivatives are replaced by the Caputo fractional derivatives.

For the sake of simplicity we restrict ourselves to the three dimensional case, however the results can be

generalized for an arbitrary dimension. We point out that there are previous works where fractional derivatives

are considered in the context of Clifford analysis (see [1, 3, 17]), however they did not consider the hyperbolic

model. This works corresponds, as far as the authors are aware, to the first connection between the theory of

hypermogenic functions and fractional calculus.

The structure of the paper reads as follows: in the Preliminary section we recall some basic facts about

hypermonogenic functions and fractional calculus, which are necessary to the development of this work. In

Section 3 we study the (α, k)-harmonic polynomial solutions of the fractional Laplace-Beltrami equation, and

we characterize the elements of the space of (α, k)-homogeneous polynomials. Moreover, we study the dimension

of this space. In the end of the section we present some examples of solutions of the fractional Laplace-Beltrami

equation. In the Section 4, we study the fractional version of the hyperbolic Riesz system. We establish relations

between the solutions of this system and the solutions obtained in Section 3 for the fractional Laplace-Beltrami

equation. We also study the dimension of the space of solutions of the hyperbolic fractional Riesz system. We

end the section presenting some examples of polynomial solutions of the fractions Ryes system. In Sections 3

and 4, the behaviour of our results when α = 1 and the connections of this particular case with the work of H.

Leutwiler will be studied. In the end of this paper we present a final remark about the possibility of consider

Riemann-Liouville fractional derivatives instead of Caputo fractional derivatives.

2 Preliminaries

Let us recall some standard facts from hyperbolic geometry, to make our point of view clear (for more details

see [5–13]). The Poincaré upper half space is a Riemannian manifold (R3
+, ds

2) with the metric

ds2 =
dx20 + dx21 + dx22

x20
,

and the Laplace-Beltrami operator on the manifold is

∆lbf = x20∆f − x0∂x0f,

which is also called the hyperbolic Laplace operator. We point out that our operator is a special case of a

Weinstein operator (see e.g. [6]). Distance in the hyperbolic upper half space may be computed as follows

(see [13]).

Lemma 2.1 The hyperbolic distance dh(x, a) between the points x and a in R3
+ is

dh(x, a) = arcosh (λ(x, a)) = ln
(
λ(x, a) +

√
λ(x, a)2 − 1

)
,

where

λ(x, a) =
|x− a|2 + |x− â|2

4x2a2
=
|x− a|2

2x2a2
+ 1 (1)

and |x− a| is the usual Euclidean distance in R3 between the points a and x.

Now, we recall the following important relation between the Euclidean and hyperbolic balls.

Proposition 2.2 (cf. [13]) The hyperbolic ball Bh (a, rh) in R3
+ with the hyperbolic center a = a0 +a1e1 +a2e2

and the radius rh is the same as the Euclidean ball with the Euclidean center

ca (rh) = a0 + a1e1 + a2 cosh rhe2

and the Euclidean radius re = a2 sinh rh.
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Another operators on R3
+ are the exterior derivative d and its adjoint d∗ (see [15]). It is easy to see that if we

consider a one form ω1 = u0dx0 +u1dx1 +u2dx2 in the upper half space, it satisfies dω1 = d∗ω1 = 0 if and only

if the component functions satisfies the so-called hyperbolic Riesz system
x0

(
∂u0
∂x0

+
∂u1
∂x1

+
∂u2
∂x2

)
− u0 = 0

∂uk
∂xj

=
∂uj
∂xk

, with k < j, k, j = 0, 1, 2
. (2)

This system is an analogy to the classical Cauchy-Riemann system on a plane and the Stein-Weiss system in

higher dimensions, which characterize harmonic 1-forms with respect to Euclidean metric. The Laplace-Beltrami

equation and the hyperbolic Riesz system alike may define not only R3
+ but also in the whole space R3. In this

case, if we have a differentiable function h, defined on the whole R3 and satisfies ∆lbh = 0, it is a standard trick

that the components of its gradient (u0, u1, u2) = ∇h satisfies the hyperbolic Riesz system. Conversely if u0,

u1 and u2 is a solution of the hyperbolic Riesz system, we may find a scalar potential h, satisfying the equation

∆lbh = 0.

Now we recall some basic facts about fractional calculus and we fix some of the notations used in the paper.

Let C∂αw denote the Caputo fractional derivative of order α > 0 with respect to the variable w (see [4])

(
C∂αwf

)
(w) =

(
In−αw Dnf

)
(w) =

1

Γ(n− α)

∫ w

0

f (n)(t)

(w − t)α−n+1
dt, (3)

where w > 0, n = [α]+1 with [α] denoting the integer part of α, and Iαw denotes the Riemann-Liouville fractional

integral of order α with respect to the variable w, i.e., (see [4])

(Iαwf) (w) =
1

Γ(α)

∫ w

0

f(t)

(w − t)1−α
dt, w > 0, α > 0.

For α = n ∈ N, the Caputo fractional derivative coincides with the standard derivative of order n. Moreover, in

(3) the function f(w) belongs to ACn[0, b]. ACn([0, b]) denotes the class of functions f , which are continuously

differentiable on the segment [0, b] up to order n−1 and f (n−1) is absolutely continuous on [0, b]. When α /∈ N0,

the Caputo fractional derivative C∂αw corresponds to the left inverse of the Riemann-Liouville fractional integral

Iαw, i.e,
(
C∂αw I

α
w f
)

(w) = f(w), with f(w) ∈ C[0, b] (see [4]). The following result characterizes the composition

of the fractional integral operator Iαw with the fractional derivative C∂αw.

Lemma 2.3 (cf. [4]) Let α ∈ R+ and n = [α] + 1. If f(w) ∈ ACn[0, b], then

(
Iαw

C∂αwf
)

(w) = f(w)−
n−1∑
k=0

f (k)(0)

k!
wk.

In particular, if 0 < α < 1 and f(w) ∈ AC[0, b], then(
Iαw

C∂αwf
)

(w) = f(w)− f(0).

For more details about fractional calculus and its basics definitions see [4], for example.

3 (α, k)-harmonic polynomial solutions for Laplace-Beltrami opera-

tor

In this section we study the null polynomial solutions of the fractional Laplace-Beltrami operator, i.e., we study

the existence of polynomial solutions of the equation

∆α
lbh(x0, x1, x2) =

(
xα0 ∆α − C∂αx0

)
h(x0, x1, x2) = 0, (4)

where ∆α =
∑2
i=0

C∂αxi
C∂αxi and 0 < α ≤ 1. If P(α,k)

(x0,x1,x2)
is the space of (α, k)-homogeneous polynomials, we

define

H(α,k) =
{
P (α,k) ∈ P(α,k)

(x0,x1,x2)
: ∆α

lbP
(α,k)(x0, x1, x2) = 0

}
,
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i.e., the space of (α, k)-harmonic polynomial solutions of the fractional Laplace-Beltrami operator. Denoting

∆α
(x0,x1)

= C∂αx1

C∂αx1
+ C∂αx0

C∂αx0
and Hα = xα0

C∂αx0

C∂αx0
− C∂αx0

, we have that ∆α
lb = xα0 ∆α

(x1,x2)
+ Hα. We

consider (α, k)-homogeneous polynomials of the form

P(α,k)
(x0,x1,x2)

=

k⊕
j=0

P(α,j)
(x1,x2)

⊗ P(α,k−j)
(x0)

,

i.e., every polynomial is in the form

P (α,k)(x0, x1, x2) =

k∑
j=0

Q
(α,k)
j (x1, x2)x

α(k−j)
0 , (5)

where Q
(α,k)
j is a (α, k)-homogeneous polynomial. These polynomials correspond bijectively to the k+ 1-tuples

of (α, k)-homogeneous polynomials, which are denoted by

−→
P (α,k)(x1, x2) =

(
Q

(α,k)
0 (x1, x2), Q

(α,k)
1 (x1, x2), . . . , Q

(α,k)
k (x1, x2)

)
.

In the next theorem we characterize the elements of P(α,k)
(x0,x1,x2)

.

Theorem 3.1 Let 0 < α ≤ 1. The equality ∆α
lbP

(α,k) = 0, with P (α,k) ∈ P(α,k)
(x0,x1,x2)

given by (5), holds if and

only if 

Q
(α,k)
0 (x1, x2) ∈ P(α,0)

(x1,x2)

Q
(α,k)
1 (x1, x2) ∈ P(α,1)

(x1,x2)

∆α
(x1,x2)

Q
(α,k)
j+1 (x1, x2) + ϕ(k − j − 1)ϕ(k − j)Q(α,k)

j−1 (x1, x2) = 0

Q
(α,k)
k−1 (x1, x2) = 0

.

where j = 1, ..., k − 1.

Proof: First we observe that for f(w) = wk, with 0 < α < 1 and k ∈ N, we have that(
C∂αwf

)
(w) =

Γ(1 + k)

Γ(1 + k − α)
wk−α =: ϕ(k)wk−α. (6)

Moreover, when k = 0 it is immediate that
(
C∂αwf

)
(w) = 0. Making straightforward calculations we arrive to

∆α
lbP

(α,k)(x0, x1, x2) =
k∑
j=0

∆α
(x1,x2)

Q
(α,k)
j (x1, x2)x

α(k−j+1)
0 +

k∑
j=0

Q
(α,k)
j (x1, x2)Hαx

α(k−j)
0 . (7)

Furthermore, we have

Hαx
α(k−j)
0 = ϕ(α(k − j)) (ϕ(α(k − j − 1))− 1))x

α(k−j−1)
0 , (8)

with j = 0, . . . , k. In particular when j = k we have Hx00 = 0, and

∆α
(x1,x2)

Q
(α,k)
0 (x1, x2) = ∆α

(x1,x2)
Q

(α,k)
1 (x1, x2) = 0. (9)

Hence immersing (8) and (9) into (7), and changing the order of summation, we get

∆α
lbP

(α,k)(x0, x1, x2)

=

k∑
j=2

∆α
(x1,x2)

Q
(α,k)
j (x1, x2)x

α(k−j+1)
0 +

k−1∑
j=0

ϕ(α(k − j)) (ϕ(α(k − j − 1))− 1) Q
(α,k)
j (x1, x2)x

α(k−j−1)
0

=

k−1∑
j=1

∆α
(x1,x2)

Q
(α,k)
j+1 (x1, x2)x

α(k−j)
0 +

k∑
j=1

ϕ(α(k − j + 1)) (ϕ(α(k − j))− 1) Q
(α,k)
j−1 (x1, x2)x

α(k−j)
0 , (10)

Ir order to (10) be equal to zero, we conclude that Q
(α,k)
k−1 (x1, x2) = 0 and

0 = ∆α
(x1,x2)

Q
(α,k)
j+1 (x1, x2) + ϕ(α(k − j + 1)) (ϕ(α(k − j))− 1) Q

(α,k)
j−1 (x1, x2) (11)

for j = 1, ..., k − 1.
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Remark 3.2 Note that in Euclidean case, i.e. when α = 1, we obtain an extra condition ∆(x1,x2)Q
(1,k)
k (x1, x2) =

0.

We now study the dimension of the space P(α,k)
(x0,x1,x2)

. The authors will like to point out that in the calculus

of the dimensions the fractional parameter α has not influence. This fact implies the result concerning to the

dimension on the spaces are equal to the correspondent ones in the case of integer derivatives. Recalling that

the dimension of the k-homogeneous polynomials with n variables is
(
n+k−1
n−1

)
(see [16]), we have

dim
(
P(α,k)
(x0,x1,x2)

)
=

(k + 1)(k + 2)

2
, dim

(
P(α,j)
(x1,x2)

)
= j + 1,

dim
(
P(α,k−j)
(x0)

)
= 1.

We have also the following decomposition

P(α,k)
(x0,x1,x2)

=

k⊕
j=0

P(α,j)
(x1,x2)

⊗ P(α,k−j)
(x0)

,

which implies that

dim
(
P(α,k)
(x0,x1,x2)

)
=

k∑
j=0

dim
(
P(α,j)
(x1,x2)

)
.

Taking into account [16] we have that the dimension of the space of (α, j)-homogeneous harmonic polynomials

in the Euclidean space

H(α,k)
(
R2
)

=
{
P (α,k) ∈ P(α,k)

(x1,x2)
: ∆α

(x1,x2)
P (α,k) = 0

}
is given by

dim
(
H(α,k)

(
R2
))

= 2, k ≥ 2.

Since Q
(α,k)
k−1 = 0 we obtain the following result from the previous relations:

Theorem 3.3 Let 0 < α ≤ 1. If k is odd then Q
(α,k)
k−1 = Q

(α,k)
k−3 = ... = Q

(α,k)
2 = Q

(α,k)
0 = 0, i.e.,

−→
P (α,k)(x1, x2) =

(
0, Q

(α,k)
1 (x1, x2), 0, Q

(α,k)
3 (x1, x2), ..., Q

(α,k)
k−2 (x1, x2), 0, Q

(α,k)
k (x1, x2)

)
,

and if k is even then Q
(α,k)
k−1 = Q

(α,k)
k−3 = ... = Q

(α,k)
3 = Q

(α,k)
1 = 0, i.e.,

−→
P (α,k)(x1, x2) =

(
Q

(α,k)
0 (x1, x2), 0, Q

(α,k)
2 (x1, x2), ..., Q

(α,k)
k−2 (x1, x2), 0, Q

(α,k)
k (x1, x2)

)
.

Moreover from (11) we can establish the following recurrence relations for computations:

• If k is odd

Q
(α,k)
1 −→ Q

(α,k)
3 −→ Q

(α,k)
5 −→ . . . −→ Q

(α,k)
k . (12)

• If k is even

Q
(α,k)
0 −→ Q

(α,k)
2 −→ Q

(α,k)
2 −→ . . . −→ Q

(α,k)
k . (13)

Taking into account the properties of the Caputo fractional derivatives described in [4] we have that the operator

∆α
(x1,x2)

is a surjection. Moreover, using the isomorphism theorem (see [14]), we can prove the following result:

Theorem 3.4 Let 0 < α ≤ 1. The operator ∆α
(x1,x2)

: P(α,k)
(x1,x2)

/H(R2)(α,k) → P(α,k−2)
(x1,x2)

is isomorphism.

From the previous theorem we obtain our result related with dimension of the space Hkα.
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Theorem 3.5 Let 0 < α ≤ 1. The dimension of the space Hkα, with 0 < α < 1, is given by:

dim
(
H(α,k)

)
=

 k + 1, (k odd)

k

2
+ 1, (k even)

.

Proof: Assume that k = 2j + 1, i.e., k is odd. It is immediate the space of (α, 1)-harmonic functions has

dimension 2. Moreover, using the recurrence relation (12), we can construct a pair of harmonic polynomials for

every P3
(x1,x2)

, P5
(x1,x2)

. We have

dim
(
H(α,k)

)
=

k−1
2∑
i=0

2 = k + 1

Now let us consider that k = 2j, i.e., k is even. In this case the dimension of space of (α, 0)-harmonic functions

is 1. Proceeding in a similar way, as it was done for the odd case, we conclude that

dim
(
H(α,k)

)
=

k
2∑
i=0

1 =
k + 2

2
,

which completes the proof.

�

Now we present some examples of polynomials of the form

P (α,k)(x0, x1, x2) =

k∑
a0,a1,a2=0
a0+a1+a2=k

βa0,a1,a2 x
a0α
0 xa1α1 xa2α2

belonging to H(α,k), for some particular values of k and 0 < α < 1 arbitrary.

Example 3.6 For k = 1 we have the following element of H(α,1)

P (α,1)(x0, x1, x2) = β(0,1,0) x
α
1 + β(0,0,1) x

α
2 . (14)

For k = 2 we have the following element of H(α,2)

P (α,2)(x0, x1, x2) = β(2,0,0) x
2α
0 −

(
ϕ(α)− 1

ϕ(α)
β(2,0,0) + β(0,0,2)

)
x2α1 + β(0,1,1) x

α
1 x

α
2 + β(0,0,2) x

2α
2 . (15)

For k = 3 we have the following element of H(α,3)

P (α,3)(x0, x1, x2) = β(2,1,0) x
2α
0 xα1 + β(2,0,1) x

2α
0 xα2 −

(
ϕ(α)

ϕ(3α)
β(0,1,2) +

ϕ(α)− 1

ϕ(3α)
β(2,1,0)

)
x3α1

−
(
ϕ(3α)

ϕ(α)
β(0,0,3) +

ϕ(α)− 1

ϕ(α)
β(2,0,1)

)
x2α1 xα2 + β(0,1,2) x

α
1 x

2α
2 + β(0,0,3) x

3α
2 . (16)

For k = 4 we have the following element of H(α,4)

P (α,4)(x0, x1, x2) = − ϕ(2α)ϕ(α)

ϕ(4α) (ϕ(3α)− 1)

(
β(2,2,0) + β(2,0,2)

)
x4α0 + β(0,0,4) x

4α
2 + β(2,2,0) x

2α
0 x2α1

−
(
β(0,1,3) +

ϕ(α)− 1

ϕ(3α)
β(2,1, 1)

)
x3α1 xα2 + β(2,1,1) x

2α
0 xα1 x

α
2 + β(2,0,2) x

2α
0 x2α2

+β(0,1,3) x
α
1 x

3α
2 −

(
ϕ(4α)ϕ(3α)

ϕ(2α)ϕ(α)
β(0,0,4) +

ϕ(α)− 1

ϕ(α)
β(2,0,2)

)
x2α1 x2α2

+

(
β(0,0,4) +

ϕ(2α) (ϕ(α)− 1)

ϕ(4α)ϕ(3α)

(
β(2,0,2) − β(2,2,0)

))
x4α1 . (17)
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Remark 3.7 If we consider α = 1 in the polynomials presented in the previous example, we obtain the polyno-

mial solutions of ∆lbf = 0, which were introduced by H. Leutwiler. More precisely, we have

P (1,1)(x0, x1, x2) = β(0,1,0) x1 + β(0,0,1) x2,

P (1,2)(x0, x1, x2) = β(2,0,0) x
2
0 − β(0,0,2) x21 + β(0,1,1) x1 x2 + β(0,0,2) x

2
2,

P (1,3)(x0, x1, x2) = β(2,1,0) x
2
0 x1 + β(2,0,1) x

2
0 x2 −

1

3
β(0,1,2) x

3
1 − 3β(0,0,3) x

2
1 x2 + β(0,1,2) x1 x

2
2 + β(0,0,3) x

3
2,

P (1,4)(x0, x1, x2) = −1

4

(
β(3,0,1) + β(2,0,2)

)
x40 + β(2,2,0) x

2
0 x

2
1 + β(2,1,1) x

2
0 x1 x2 + β(2,0,2) x

2
0 x

2
2 + β(0,0,4) x

4
1

−β(0,1,3) x31 x2 + β(0,1,3) x1 x
3
2 + β(0,0,4) x

4
2 − 6β(0,0,4) x

2
1 x

2
2.

4 (α, k)-homogeneous solutions the hyperbolic fractional Riesz sys-

tems

The aim of this section is to study the fractional analogous of the hyperbolic Riesz system (2), which we will

call hyperbolic fractional Riesz system
xα0
(
C∂αx0

u(x0, x1, x2) + C∂αx1
v(x0, x1, x2) + C∂αx2

w(x0, x1, x2)
)
− u(x0, x1, x2) = 0

C∂αx1
u(x0, x1, x2) = C∂αx0

v(x0, x1, x2),

C∂αx2
u(x0, x1, x2) = C∂αx0

w(x0, x1, x2),

C∂αx2
v(x0, x1, x2) = C∂αx1

w(x0, x1, x2).

, (18)

where C∂αxi , with i = 0, 1, 2, represents the Caputo fractional derivative (3) of order 0 < α < 1 with respect

to xi. We denote its (α, k)-homogeneous polynomial solutions by R(α,k). As it happens in the case of integer

derivatives, we can establish a relation between the solutions of (18) and the solutions of (4).

Theorem 4.1 Let 0 < α ≤ 1. If h is a solution of the fractional Laplace-Beltrami equation (4), then

u(x0, x1, x2) = C∂αx0
h(x0, x1, x2), (19)

v(x0, x1, x2) = C∂αx1
h(x0, x1, x2), (20)

w(x0, x1, x2) = C∂αx2
h(x0, x1, x2) (21)

is a solution of the hyperbolic fractional Riesz system (18). Conversely, if (u, v, w) is a solution of the hyperbolic

fractional Riesz system (18), then there exists locally a function h, satisfying the conditions (19), (20), (21) and

being a solution of the fractional Laplace Beltrami equation (4).

Proof: The proof is similar to the correspondent one in classical case (see [11,12]). Nevertheless, to make this

paper complete, we present here a sketch of the proof. The proof of the first part follows by straightforward

calculations and making use of the Fubini’s theorem to verify the last three equations of the system.

We pass now to the proof of the second part. Assume that (u, v, w) is a solution of the hyperbolic fractional

Riesz system (18), and define a function by

h(x0, x1, x2) = Iαx0
u(x0, 0, 0) + Iαx1

v(x0, x1, 0) + Iαx2
w(x0, x1, x2). (22)

It follows by direct calculations that this function gives us a potential, in fact making use of the Fubini’s

Theorem, Lemma 2.3, and (18) we get

C∂αx0
h(x0, x1, x2) = C∂αx0

Iαx0
u(x0, 0, 0) + C∂αx0

Iαx1
v(x0, x1, 0) + C∂αx0

Iαx2
w(x0, x1, x2)

= u(x0, 0, 0) + Iαx1

C∂αx0
v(x0, x1, 0)︸ ︷︷ ︸

=C∂αx1
u(x0,x1,0)

+Iαx2

C∂αx0
w(x0, x1, x2)︸ ︷︷ ︸

=C∂αx2
u(x0,x1,x2)

= u(x0, 0, 0) + Iαx1

C∂αx1
u(x0, x1, 0) + Iαx2

C∂αx2
u(x0, x1, x2)

= w(x0, 0, 0) + u(x0, x1, 0)− u(x0, 0, 0) + u(x0, x1, x2)− u(x0, x1, 0)

= u(x0, x1, x2).
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In a similar way we conclude that

C∂αx1
h(x0, x1, x2) = v(x0, x1, x2), C∂αx2

h(x0, x1, x2) = w(x0, x1, x2).

Taking into account the previous relations it follows that h of the form (22) is such that ∆lbh = 0.

�

Let us denote the set of (α, k)-homogeneous polynomial solutions of the hyperbolic fractional Riesz system by

R(α,k). This means that (u, v, w) ∈ R(α,k) if and only of (u, v, w) is a solution of the hyperbolic fractional

Riesz system and u, v and w are (α, k)-homogeneous polynomials. Let us define the mapping a mapping

Lα : Hkα → Rk−1
α by

Lαh(x0, x1, x2) =
(
C∂αx0

h(x0, x1, x2),C∂αx1
h(x0, x1, x2),C∂αx2

h(x0, x1, x2)
)
. (23)

Since this linear mapping is invertible in R3, we may deduce the following theorem:

Theorem 4.2 Let 0 < α ≤ 1. The dimension of the space

R(α,k) =
{
Lαh(x0, x1, x2) : h ∈ H(α,k+1)

}
.

is given by

dim
(
R(α,k)

)
=

 1 +
k + 1

2
, (k odd)

2 + k, (k even)
.

Proof: The proof its immediate. In fact, since the linear mapping is an isomorphism we conclude that

dim
(
R(α,k)

)
= dim

(
H(α,k+1)

)
.

Making use of Theorem 3.5 we obtain our result.

�

Now we present some examples of some elements of R(α,k), for some particular values of k and 0 < α < 1

arbitrary. In all the cases we will apply the mapping Lα to each of the polynomials obtained in Example 3.6.

Example 4.3 For k = 1, applying the mapping Lα to (14), with 0 < α ≤ 1, we obtain the following expressions

to R(α,1) = (u, v, w) ∈ R(α,1):

u(x0, x1, x2) = 0;

v(x0, x1, x2) = ϕ(α)β(0,1,0);

w(x0, x1, x2) = ϕ(α)β(0,0,1).

For k = 2, applying the mapping Lα to (15), with 0 < α ≤ 1, we obtain the following expressions to R(α,2) =

(u, v, w) ∈ R(α,2):

u(x0, x1, x2) = ϕ(2α)β(2,0,0) x
α
0 ;

v(x0, x1, x2) =
ϕ(2α) (ϕ(α)− 1)

ϕ(α)
β(2,0,0) x

α
1 − ϕ(2α)β(0,0,2) x

α
1

+β(0,1,1) ϕ(α)xα2 ;

w(x0, x1, x2) = ϕ(α)β(0,1,1) x
α
1 + ϕ(2α)β(0,0,2) x

α
2 .

For k = 3, applying the mapping Lα to (16), with 0 < α ≤ 1, we obtain the following expressions to R(α,3) =

(u, v, w) ∈ R(α,3):

u(x0, x1, x2) = ϕ(2α)β(2,1,0) x
α
0 x

α
1 + ϕ(2α)β(2,0,1) x

α
0 x

α
2 ;

v(x0, x1, x2) = ϕ(α)β(2,1,0) x
2α
0 + ϕ(α)β(0,1,2) x

2α
2

−
(
ϕ(α)β(0,1,2) + (ϕ(α)− 1) β(2,1,0)

)
x2α1

−
(
ϕ(3α)ϕ(2α)

ϕ(α)
β(0,0,3) +

ϕ(2α) (ϕ(α)− 1)

ϕ(α)
β(2,0,1)

)
xα1 x

α
2 ;

w(x0, x1, x2) = ϕ(α)β(2,0,1) x
2α
0 + ϕ(3α)β(0,0,3) x

2α
2 + ϕ(2α)β(0,1,2) x

α
1 x

α
2

−
(
ϕ(3α)β(0,0,3) + (ϕ(α)− 1) β(2,0,1)

)
x2α1 .
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For k = 4, applying the mapping Lα to (17), with 0 < α ≤ 1, we obtain the following expressions to R(α,4) =

(u, v, w) ∈ R(α,4):

u(x0, x1, x2) = −ϕ(2α)ϕ(α)

ϕ(3α)− 1

(
β(2,2,0) + β(2,0,2)

)
x3α0 + ϕ(2α)β(2,2,0) x

α
0 x

2α
1 + ϕ(2α)β(2,1,1) x

α
0 x

α
1 x

α
2

+ ϕ(2α)β(2,0,2) x
α
0 x

2α
2 ;

v(x0, x1, x2) = ϕ(2α)β(2,2,0) x
2α
0 xα1 + ϕ(α)β(2,1,1) x

2α
0 xα2

+

(
ϕ(4α)β(0,0,4) +

ϕ(2α) (ϕ(α)− 1)

ϕ(3α)

(
β(2,0,2) − β(2,2,0)

))
xα1 x

2α
2

−
(
ϕ(3α)β(0,1,3) + (ϕ(α)− 1) β(2,1,1)

)
x2α1 xα2 + ϕ(α)β(0,1,3) x

3α
2

−
(
ϕ(4α)ϕ(3α)

ϕ(α)
β(0,0,4) +

ϕ(2α) (ϕ(α)− 1)

ϕ(α)
β(2,0,2)

)
xα1 x

2α
2 ;

w(x0, x1, x2) = ϕ(α)β(2,1,1) x
2α
0 xα1 + ϕ(2α)β(2,0,2) x

2α
0 xα2 + ϕ(3α)β(0,1,3) x

α
1 x

2α
2

+ ϕ(4α)β(0,0,4) x
3α
2 −

(
ϕ(α)β(0,1,3) +

ϕ(α) (ϕ(α)− 1)

ϕ(3α)
β(2,1,1)

)
x3α1

−
(
ϕ(4α)ϕ(3α)

ϕ(α)
β(0,0,4) +

ϕ(2α) (ϕ(α)− 1)

ϕ(α)
β(2,0,2)

)
x2α1 xα2 .

Remark 4.4 If we consider α = 1 in the polynomials presented in the previous example, we obtain the polyno-

mial solutions of (2), which were introduced by H. Leutwiler. More precisely, we have

R(1,1)(x0, x1, x2) =
(
0, β(0,1,0), β(0,0,1)

)
;

R(1,2)(x0, x1, x2) =
(
2β(2,0,0) x0, −2β(0,0,2) x1 + β(0,1,1) x2, β(0,1,1) x1 + 2β(0,0,2) x2

)
;

R(1,3)(x0, x1, x2) =
(
2β(2,1,0) x0 x1 + 2β(2,0,1) x0 x2, β(2,1,0) x

2
0 − β(0,1,2) x21 + β(0,1,2) x

2
2 − 6β(0,0,3) x1 x2,

β(2,0,1) x
2
0 + 3β(0,0,3) x

2
2 + 2β(0,1,2) x1 x2 − 3β(0,0,3) β(2,0,1) x

2
1

)
;

R(1,4)(x0, x1, x2) =
(
−
(
β(2,2,0) + β(2,0,2)

)
x30 + 2β(2,2,0) x0 x

2
1 + 2β(2,1,1) x0 x1 x2 + 2β(2,0,2) x0 x

2
2,

2β(2,2,0) x
2
0 x1 + β(2,1,1) x

2
0 x2 + 4β(0,0,4) x1 x

2
2 − 3β(0,1,3) x

2
1 x2

+β(0,1,3) x
3
2 − 12β(0,0,4) x1 x

2
2,

β(2,1,1) x
2
0 x1 + 2β(2,0,2) x

2
0 x2 + 3β(0,1,3) x1 x

2
2 + 4β(0,0,4) x

3
2

−β(0,1,3) x31 − 12β(0,0,4) x
2
1 x2

)
.

To end the paper, the authors will like to point out is that the presented are exactly the same if we consider

the Riemann-Liouville fractional derivative of order 0 < α < 1, which is defined by (see [4])

(∂αwf) (w) =
1

Γ(1− α)

∂

∂w

∫ w

0

(w − t)−α f(t) dt,

where f(w) ∈ ACn[0, b]. In fact, if f(w) = wk we have that

(∂αwf) (w) =
Γ(1 + k)

Γ(1 + k − α)
wk−α =: ϕ(k)wk−α,

which coincides with property (6).
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