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Resumo Conectividade representa uma grande necessidade da população desde
o início dos tempos. As pessoas têm, logo à partida, um desejo de
estarem ligadas entre si e ao resto do mundo. Tal não mudou nos tem-
pos actuais, especialmente na era das novas tecnologias onde conectar-
se com alguém está apenas a uns cliques de distância. Do ponto de
vista de engenheiros da área das telecomunicações, este rápido desen-
volvimento nas comunicações sem �os tem sido especialmente mar-
cante.
Devido a esta constante necessidade de comunicação, as VANETs (Ve-
hicular Ad-Hoc Networks) atraem actualmente um interesse signi�ca-
tivo. Esse interesse deve-se ao facto de as redes veiculares não só
poderem ser usadas para uma condução potencialmente mais segura,
como também poderem proporcionar aos passageiros o acesso à Inter-
net.
As redes veiculares têm características especí�cas face a outro tipo de
redes, tais como o número elevado de veículos ou nós, rotas impre-
visíveis e a constante perda de conectividade entre os mesmos, rev-
elando vários desa�os que propõem estudos para os solucionar. A
solução encontrada para a conectividade intermitente prende-se com o
uso de DTNs (Delay-Tolerant Networks) cuja arquitectura assegura a
entrega de informação mesmo quando não há conhecimento do per-
curso completo que esta deve percorrer.

Esta Dissertação de Mestrado foca-se no estudo da disseminação de
conteúdo não-urgente via uso de DTNs, assegurando que esta mesma
disseminação é feita no menor espaço de tempo possível e com o mín-
imo congestionamento possível na rede. Actualmente, embora a en-
trega de informação já seja efectuada na rede num espaço de tempo
satisfatório, as estratégias implementadas forçam um congestiona-
mento (overhead) considerável na rede. Para combater este efeito, foi
desenvolvida uma estratégia de disseminação através do uso de Bloom

Filters, uma estrutura de dados capaz de eliminar a maior parte dos
acessos desnecessários à memória, assegurando a um nó a existência
de um pacote especí�co, com uma certa probabilidade, de entre toda
a informação que os seus vizinhos contêm.

Esta estratégia foi implementada no software de DTNs mOVERS Em-
ulator, desenvolvido pelo Instituto de Telecomunicações de Aveiro (IT)
e pela Veniam® e posteriormente testada no mesmo. O emulador uti-
lizado simula uma rede veicular com base em informação recolhida da
rede veicular da cidade do Porto.
Após análise dos resultados obtidos, foi concluído que a nova estratégia
de disseminação proposta, denominada FILTER, cumpriu o principal
objectivo proposto, nomeadamente, a redução do overhead na rede
veicular, com uma pequena perda de taxa de entrega da informação.
Para trabalho futuro, é aconselhável realizar um estudo mais extenso
em métodos relacionados com utilidade da informação para optimizar
essa mesma taxa de entrega.





Abstract Connectivity represents one of people's great needs since the beginning
of times. From the start, people have a desire to be connected to each
other and to the rest of the world. Such has not changed in modern
times, especially in the era of new technologies where connecting with
someone is only a few clicks away. From the point of view of engineers
in the area of telecommunications, this fast development in wireless
communications has been especially outstanding.

Due to this constant need for communication, VANETs (Vehicular Ad-
Hoc Networks) are currently attracting signi�cant attention. Such at-
tention is due to the fact that vehicular networks may be used for, not
only potentially safer driving, they also provide its users with Internet
access.
Vehicular Networks have speci�c characteristics when compared to
other types of networks, such as the high number of vehicles or nodes,
unpredictable routes and the constant loss of connectivity between
these nodes, thus revealing several challenges which propose studies
to solve them. The solution found for the intermittent connectivity
involves the use of DTNs (Delay-Tolerant Networks) whose architec-
ture ensures the delivery of information even without knowledge of the
whole path it must travel.

This Masters Dissertation focuses on the study of non-urgent con-
tent dissemination through the use of DTNs, ensuring that this same
dissemination is done within the shortest time frame and with the min-
imum congestion possible in the network. Currently, though the infor-
mation delivery is already performed in the network with a satisfactory
time frame, the implemented strategies force considerable congestion
in the network. To overcome this e�ect, a dissemination strategy was
developed through the use of Bloom Filters, a data structure capable
of eliminating most of the unnecessary access to memory, by ensuring
a node the existence of a speci�c packet, with a certain probability,
from among all the information its neighbours contain.

This strategy was implemented in the DTN software mOVERS, devel-
oped by Instituto de Telecomunicações in Aveiro (IT) and Veniam®

and posteriorly tested in the same emulator. The emulator used simu-
lates a vehicular network with information gathered from the vehicular
network in the city of Porto.

After the analysis of the obtained results, it was concluded that the
new proposed dissemination strategy, named FILTER, has ful�lled its
primary objective, namely, the reduction of the vehicular network's
overhead, with a small loss in the delivery rate of the information.
For future work, it is advisable to perform a more extensive study
in methods related to the information's usefulness to a neighbour to
optimize such delivery rate.
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Chapter 1

Introduction

This document was developed in the scope of the Masters Dissertation in Electronics
and Telecommunications Engineering in the Department of Electronics, Telecommunica-
tions and Informatics at the Universidade de Aveiro, with the theme of "Content Distribution
in Vehicular Networks".

In this chapter, both context and motivation for this Dissertation are presented, along with
its objectives and contributions. It also briefly describes this document’s structure.

1.1 Context and Motivation

Since very early on, the act of communicating with one another has always been of vital
importance in society. However, the evolution in communication, specifically in Telecommu-
nications, has grown at a particularly fast pace, to the point that we now have more things
connected to the Internet than the number of people in the world. And that number is ex-
pected to keep growing until, at least, 2020 [1].

The automotive market is growing slowly but steadily and it is expected to see more than
100 million passenger cars by 2018 [2]. Such advancement in automotive technology is due to
electronics playing a major role, offering constant innovations, from the well-known Global
Positioning System (GPS) and automatic parking to advanced safety features, energy effi-
ciency and new information and entertainment services.

As a result of these two growing markets, and since users enjoy being connected and able
to access content at any time, it is expected in the future to have all vehicles becoming nodes
in the network, having early access to non-urgent content such as weather reports or road
traffic, as well as emergency content such as traffic accidents. Current testing and prod-
uct trials are already suggesting vehicle-to-vehicle communications to reduce the chance of
collisions [3]. Veniam® [4], along with the University of Aveiro, University of Porto and the
Instituto de Telecomunicações (IT), lead to the implementation of the largest vehicular net-
work, worldwide, with over 600 vehicles (buses, garbage trucks, taxis, among others) and a
fixed infrastructure, located in the city of Oporto.

Communication between vehicles imposes challenges due to the high mobility of the
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nodes (vehicles) and the dispersion of the same. As a result, vehicular ad-hoc networks must
use mechanisms capable of tolerating intermittent connectivity and long delay. The type
of architecture capable of transmitting information reliably in this environment has already
been developed and is called Delay-Tolerant Network (DTN) [5].

The purpose for using these networks composed of moving vehicles is to have all of these
nodes working together, sharing content among each other by sending to their neighboring
vehicles information that they do not have. Figure 1.1 illustrates a typical VANET. All the ve-
hicles within range of the infrastructure receive information that is then shared among all
neighboring vehicles within range.

Figure 1.1: VANET Architecture

Due to the challenges associated with a highly mobile network, there are limitations as
to the kind of information to be sent. Preferred services should be those that do not require
immediate transmission nor a constantly stable end-to-end path, such as tourism-related in-
formation, advertisements and sensory data (non-urgent content). Another type of preferred
services are those that must have a higher priority in transmission, such as emergency ser-
vices (urgent content). However, while disseminating this information, other challenges have
to be faced. Depending on the algorithm responsible for deciding how to distribute content
among the nodes, extra information regarding control may need to be sent along with the
actual data in order to ensure that packets are being distributed with maximum efficiency.
This control information is called the overhead and, if the algorithm is heavily focused on
controlling how the information is distributed, the network may end up "clogged" with in-
formation unrelated to what the destination nodes want. Therefore, a content dissemination
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strategy must be able to distribute content to the highest number of nodes possible in the
least amount of time while minimizing the network overhead.

This is the framework of this Dissertation. Focused on using DTNs for disseminating non-
urgent information while ensuring the minimum amount of control packets possible. In order
to do so, a DTN solution developed by IT and Veniam® named mobile Opportunistic Vehicu-
lar Emulator for Real Scenarios (mOVERS) is used in a simulator called mOVERS Emulator in
order to analyze the effects of a dissemination strategy with reduced overhead in a Vehicular
Ad-Hoc Network.

1.2 Objectives and Contributions

The main purpose of this Dissertation is the study and implementation of a content dis-
semination strategy through a vehicular ad-hoc network with minimum network overhead.
As such, the objectives are as follows:

• Survey of related work;

• Study of the existent platforms of development;

• Statistical analysis of the real vehicular network;

• Study of previously implemented content dissemination strategies;

• Design and implementation of a strategy focused on reducing network overhead;

• Tests and analysis of the implemented strategy.

This Dissertation has provided the following contributions:

• While studying previously obtained data from the vehicular network, a statistical anal-
ysis of this data allowed for proper understanding of which timeframes of study would
be more relevant;

• Real experiments were performed with previously implemented content distribution
strategies to more easily understand the vehicles’ behaviour in the network.

• A new content distribution strategy with reduced network overhead has been proposed,
implemented and evaluated. A new module and some global modifications were made
to the mOVERS emulator;

• A paper with this approach is being prepared to be submitted in an international con-
ference.
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1.3 Document Structure

• Chapter 1 - Introduction: Contextualizes the Dissertation, presenting its motivation,
proposed objectives and document structure;

• Chapter 2 - State of the Art: Provides an overview of the main concepts of Vehicular
Ad-hoc Networks, Delay-Tolerant Networks and a survey on previously created content
dissemination strategies;

• Chapter 3 - Content Distribution Strategy: Provides the scope of the previously imple-
mented dissemination schemes and presents the proposed distribution strategy;

• Chapter 4 - Integration and Development: Describes the design and implementation
of the aforementioned strategy in the development platform for posterior evaluation;

• Chapter 5 - Tests and Results: Describes the several evaluated scenarios and its results,
along with its evaluation and discussion;

• Chapter 6 - Conclusions and Future Work: Discusses the conclusions of the developed
work and proposes future improvements for continued research;

1.4 Summary

This chapter presented the motivation for this Dissertation, as well as its primary objec-
tives and a brief description of its document structure. The next chapter will provide the
reader with a range of general information regarding Vehicular Ad-Hoc Networks and Delay-
Tolerant Networks.
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Chapter 2

State of the Art

2.1 Chapter Description

This chapter provides insight in the topics of relevance regarding the work developed, pur-
suing this degree, using published literature. The organization of this chapter is as follows.

Section 2.2 presents the basic concept and definition of a VANET and its characteristics,
as well as its architecture, challenges and applications.

Section 2.3 introduces the concept of a DTN, its architecture and applications.
Section 2.4 clarifies the concept of using a DTN in a VANET, henceforth called Vehicular

Delay-Tolerant Network (VDTN)s, as well as its applications.
Section 2.5 describes several content distribution solutions used in many different projects.

After a small survey on peer-to-peer schemes, a more focused study on Bloom Filters is pro-
vided.

Section 2.6 depicts a set of network, VANET and DTN simulators, used to evaluate network
and routing protocols of networks.

Section 2.7 summarizes this full chapter.

2.2 Vehicular Ad-Hoc Networks

2.2.1 Definition

Due to the growth in both the automotive industry and wireless technology industry [1][2],
these advances have led to a new class of wireless networks called Vehicular Ad-Hoc Networks,
also known as VANETs. This type of networks is formed by a set of moving vehicles equipped
with wireless interfaces, enabling communication among each other and with the infrastruc-
ture used in this network.

These vehicles, from now on referred to as nodes, have to be equipped with On-Board
Units (OBUs), to communicate with each other or with the infrastructure via fixed equipments
placed on the roads called Road Side Units (RSUs). In a VANET, since OBUs are mobile nodes,
they are responsible for the dissemination of information throughout the network. On the
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other hand, RSUs are fixed nodes, responsible for allowing access to outer networks.
As a result, communication can be classified in a VANET in two different types: commu-

nication between nearby vehicles (Vehicle-to-Vehicle (V2V)) and between vehicles and the
infrastructure (Vehicle-to-Infrastructure (V2I)).

2.2.2 Characteristics

Vehicular Networks are a type of Mobile Ad-Hoc Networks (MANETs) but have inherent
characteristics that distinguish them from other types of mobile networks [6].

• Unlimited Transmission Power: Since nodes are vehicles, they have the capability to
supply continuous power to computing and communication devices.

• Higher Computational Capacity: Due to the mentioned unlimited power, the nodes
can afford significant computing, communication and sensing capabilities.

• Predictable Mobility: Vehicles tend to have, to an extent, predictable movement due
to being constrained by roads. Currently available technologies, such as GPS, already
have roadway information available and, given the road trajectory as well as average
and current speeds of a vehicle, it is possible to predict the future position of a node.

2.2.3 Challenges

Vehicular Ad-Hoc Networks are capable of supporting a diverse range of applications and
services. Therefore, they require effective resource management strategies. However, since
VANETs are different from other mobile networks, the challenges inherent to them require
specific strategies. The challenges of Vehicular Ad-Hoc Networks are as follows [6][7]:

• Potentially Large Scale: Vehicular Networks can extend over the entire road network,
including many participants, potentially extending around the globe.

• Dynamic Topology/High Mobility: Although the nodes’ movement is somewhat re-
stricted to roads and allow route prediction to an extent, vehicles move at varying speeds,
especially in urban areas, leading to a constantly changing topology.

• Intermittent Connectivity: Due to the two above-mentioned challenges, link connec-
tivity also changes frequently in VANETs. Especially when considering highways, where
the density of vehicles is lower when compared to urban areas.

• Heterogeneity of Applications: VANETs must be capable of providing a wide range of
road safety and informative applications. Road safety applications, being emergency
content, require low delay and high priority. On the other hand, informative applica-
tions require better throughput and higher resource utilization but can afford higher
delay. Devising an approach to ensure both services in a highly dynamic environment
is necessary.
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2.2.4 Equipment

The constant enhancements in wireless technologies have already allowed real imple-
mentations of VANETs by equipping vehicles and roads with the appropriate equipment. A
VANET’s architecture uses three main components: an OBU, Application Unit (AU) and RSU
[8].

The OBU is a device mounted on-board a vehicle and is used to communicate with other
OBUs or RSUs. It is equipped with a Central Processing Unit (CPU) for command process-
ing, a read/write memory for information storage and retrieval, a user interface and a net-
work device for wireless communications, using the Wireless Access for Vehicular Environ-
ments (WAVE) technology. They can also be equipped with other interfaces, such as Wireless
Fidelity (Wi-Fi) or Cellular.

The AU is responsible for executing applications, making use of the OBU’s communica-
tion capabilities. These components can be connected through a wireless or wired interface
and, therefore, this unit can be a dedicated device for safety applications or a personal device,
such as a smartphone.

The RSU is a fixed device, typically along the road side or in dedicated locations, such as
a parking lot. It is also equipped with network devices, using WAVE and can also be equipped
with other interfaces for the purpose of communicating with the infrastructure. These units
are responsible for extending the range of the network, disseminating information to the
OBUs and running safety applications, acting as an information source.

Figure 2.1 shows examples of these devices.

(a) OBU (b) RSU

Figure 2.1: On-Board and Road Side Units
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2.2.5 WAVE Protocol

In order to address the specific needs of VANETs, Institute of Electrical and Electronics En-
gineers (IEEE) developed standards for Wireless Access in Vehicular Environments, the WAVE
Protocol, specifically designed for communications between nodes in Vehicular Networks.
These standards are composed by the IEEE 802.11p and the IEEE 1609.X family [9].

IEEE 802.11p

Due to the several requirements imposed by vehicular networks, IEEE developed 802.11p,
a standard capable of working in vehicular environments by providing a set of functions and
services which can be used in high speed environments, where the physical layer properties
change rapidly and communications have short duration. In this manner, there is no need to
join a Basic Service System (BSS)) to exchange messages (unlike the traditional IEEE 802.11).
Moreover, this protocol also defines the interface functions and signaling, controlled by the
Medium Access Control (MAC) layer [10].

1609.X

The 1609.X family is composed of four trial use standards, each one specifying different
services and applications provided by the protocol. These standards are described below:

• IEEE 1609.1: Provides a resource manager to the WAVE architecture, defining the key
elements of the VANET, namely services, interfaces, data storage formats and command
message formats for the interaction between network equipments;

• IEEE 1609.2: Defines secure message formats, the circumstances for using them and
how to process them;

• IEEE 1609.3: Defines the network and transport layer services, including addressing
and routing, to support secure WAVE data exchange;

• IEEE 1609.4: Provides enhancements to the IEEE 802.11 MAC layer to support multi-
channel operations.

As observed in Figure 2.2 below, IEEE 802.11p is used in the physical and MAC layers while
the 1609.X family deals with all the upper layers and the MAC layer as well.
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Figure 2.2: WAVE Stack [11].

2.2.6 Dissemination of Information

Most applications in VANETs involve transmitting data between the network’s nodes, both
OBUs and RSUs. Since VANETs operate in environments where node density and connectiv-
ity intermittency can vary, these networks require routing algorithms that ensure correct data
dissemination. As observed in Figure 2.3, data dissemination can be classified according to
the number of hops that a message has to travel, single-hop or multi-hop.

Data dissemination using single-hop is usually implemented with broadcast on the MAC
layer. Vehicle A sends information to all neighbours within its range. In this case, Vehicle B is
out of vehicle A’s range and, therefore, cannot receive the information.

Data dissemination using multi-hop is more similar to VANETs with data being transmit-
ted in several hops, using intermediate vehicles to receive and then send the message to the
next node. Through this method, Vehicle B can now receive Vehicle A’s message by using Ve-
hicle C as an intermediary.

Both these systems can be combined in a hybrid variant. For example, information could
be sent using multi-hop to the nearest RSU which would then use single-hop to share the in-
formation with passing vehicles.

Data can also be disseminated, taking into account the number of destinations, being
classified as unicast, multicast or broadcast. Data dissemination in unicast involves only one
sender and one receiver. Most messages disseminated in unicast are related to entertainment
applications, such as Internet access, games, videos, among others [12].
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Figure 2.3: Single-Hop and Multi-Hop Data Dissemination [6].

Data dissemination in multicast involves one sender and several receivers. Safety appli-
cations can be used in this context. For example, only vehicles within the radius of a traffic
accident require such information, making those nodes a multicast group.

Data dissemination in broadcast involves one or more senders sending their data to all
vehicles within their range. This is the context of our work in this Dissertation.

2.3 Delay-Tolerant Networks

2.3.1 Definition

Delay-Tolerant Networks, labeled DTNs, are defined by NASA as "a computer networking
model and a system of rules for transmitting information when the delay and potential for
disruption or data loss is significant" [13]. This type of network was created, primarily to
extend terrestrial Internet capabilities, allowing for space communications, an environment
subject to frequent communication intermittency, long delays and high error rates.

Since this type of network protocol was developed, taking such environments into ac-
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count, DTNs are far more flexible and can adapt to other extreme environments other than
space. Upon publishing of this architecture’s first draft [14], the authors aimed to use the DTN
architecture in Earth’s wireless networks for opportunistic routing.

2.3.2 Architecture

Store-Carry-and-Forward Mechanism

DTNs are characterized for their ability to provide communication between entities when
connectivity is poor due to the network’s environment. In order to ensure that a reliable link
is provided between nodes, the issues of high error rate, long delays and intermittent connec-
tivity need to be addressed. The mechanism which allows DTNs to perform in such environ-
ments is called the Store-Carry-and-Forward mechanism. DTNs, therefore, receive the data,
store it and are only able to forward it when communication is available.

Depending on the type of network where DTNs are used, communication can be unavail-
able to a node for a considerable amount of time (hours or days). Moreover, if the communi-
cation link disrupts during transmission of information, such information must still be stored
in the sender node for posterior retransmission. As a result, nodes need to be equipped with
hard drives for storage purposes.

In conclusion, the Store-Carry-and-Forward mechanism is the answer to intermittent con-
nectivity. An illustration of this mechanism is provided in Figure 2.4.

Figure 2.4: Store-Carry-and-Forward Mechanism [15].

Overlay Architecture

In order to include the Store-Carry-and-Forward mechanism in the network, the DTN ar-
chitecture adds a new layer between the Application and Transport Layers. According to [14],
the bundle layer is responsible for employing persistent storage as a countermeasure to in-
termittent connectivity, as well as the Store-Carry-and-Forward mechanism. It also includes
other functionalities, such as optional end-to-end acknowledgment, diagnostic and manage-
ment features and a basic security model to prevent infrastructure’s unauthorized use. Figure
2.5 represents the OSI Model with the Bundle Layer integrated.

11



Figure 2.5: DTN Protocol Stack [15].

A DTN can use several different protocols for data delivery, from TCP/IP protocol to raw
Ethernet and serial lines. Since each protocol has its own conventions and semantics, the
DTN Architecture includes a Convergence Layer Adapter, or CLA, responsible for providing
all the functions required to carry DTN data bundles to their corresponding protocol.

As observed in Figure 2.6, the DTN Architecture’s central element is the Bundle Forwarder,
responsible for forwarding bundles between storage, the CLA and the applications, depend-
ing on the decisions made by routing algorithms. Aside from bundles, this forwarder also
exchanges directives used by the management entity, the applications or the routing algo-
rithm.

Figure 2.6: Bundle Forwarder Architecture [16].
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2.4 Vehicular Delay-Tolerant Networks

Vehicular networks are self-organized by vehicles, responsible for routing packets to each
other. However, due to the vehicles’ high mobility and intermittent connectivity, network
partition is a common occurrence in VANETs, especially when node density is sparse. As a
result, it is not easy to establish a robust end-to-end path between a packet’s source node and
destination node, even though most VANET projects assume there is one.

On the other hand, DTNs use a communication protocol that already assumes there is
no end-to-end path between source and destination and accept the notion of a frequently-
partitioned network.

The characteristics of DTNs make them suitable for VANETs. As such, vehicular networks
can be treated as delay-tolerant networks and will, henceforth, be called Vehicular Delay-
Tolerant Networks or VDTNs.

2.4.1 Applications

VDTNs have a wide range of applications and in [17], a survey was conducted, listing some
of those uses for vehicular networks, those being the following:

• Notification of Traffic Conditions: Sending warnings to vehicles regarding traffic jams
to optimize traffic flow;

• Weather Reports: Warning drivers about bad conditions of the road, due to fog, ice or
wind, for example;

• Advertisements: Enabling tourists access to relevant information, multimedia files,
parking spots, among others;

• Internet Access: Also for entertainment purposes, i.e., enabling users access to e-mail
or web browsing.

2.4.2 Vehicular Delay-Tolerant Network Projects

From early developments focused on developing the WAVE Protocol to current field trials
using real-life VANET implementations, a great deal of effort has already been invested in ve-
hicular networks’ systems around the world and these trials continue to this day. In [17][18],
surveys on vehicular network projects have already been conducted.

The following subsections will describe a number of those Research & Development projects
as well as their main characteristics.

NoW - Network on Wheels

Network on Wheels (NoW) is a German joint project founded by several automobile man-
ufacturers and supported by the Federal Ministry of Education and Research [19]. This project
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supports the integration of both safety and non-safety applications in a communication sys-
tem, providing an open platform for a broad spectrum of applications.

PreVENT

PreVENT is a European Union sponsored project to contribute to road safety by devel-
oping and testing safety applications [20]. This project evaluated preventive safety measures
in several different situations such as measuring safe following distance, safe speed driving,
collision mitigation, among others.

KioskNet

The KioskNet project is a system developed by the University of Waterloo, designed to
provide low cost Internet access to rural areas (kiosks) in developing countries [21]. Only a
few services were provided, namely e-mail, web browsing, telemedicine, among a few others.

Due to the limitations of the area, these kiosks have no permanent Internet connection
and, therefore, a bus and DTN protocols provide a gateway between the kiosks and a neigh-
boring town. The user applications generate bundles, kept in storage until the bus passes by,
collecting them and later delivering them to an Internet gateway, as observed in Figure 2.7.

Figure 2.7: KioskNet Schematic, based on [21].

COOPERS

Cooperative Systems for Intelligent Road Safety (COOPERS) focused on developing telem-
atics applications on the road infrastructure in order to create a "Cooperative Traffic Manage-
ment" between vehicle and infrastructure. The goal of the project was to enhance road safety
using traffic information obtained through road sensors. It demonstrated results at major Eu-
ropean motorways with high-density traffic [6][22].
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CarTel

CarTel is a mobile sensor computing system designed to collect and deliver data from sen-
sors located in vehicles [23]. Each sensor is responsible for gathering readings and delivering
them to a central point that stores the data into a database for further analysis. This project
runs on a small scale in Boston and Seattle, having been deployed in six cars to analyze com-
mute times, metropolitan Wi-Fi deployments and automotive diagnostics.

Drive-Thru Internet

The Drive-Thru Internet project provides Internet access to vehicles by exploiting inter-
mittent connectivity to road access points. In order to enable useful communications, even
in cases of extreme intermittent connectivity, an intermediary proxy is introduced in the fixed
road stations, "shielding" a certain application’s clients and servers from the intermittent con-
nectivity [24].

DieselNet

Simulators often assume variables such as the On-Board Units’ power consumption, mo-
bility routes, communication radius, among others. As a result, simulation can differ greatly
from a real-life implementation. The DieselNet project was designed to overcome simulation-
related problems of mobile networks and is composed of three major components: the vehic-
ular network, nomadic throwboxes and an outdoor mesh network [25].

The vehicular network is comprised of 40 buses travelling across urban and rural areas,
covering an area of 150 square miles. Throwboxes are nodes acting as relays to create extra
contact opportunities. Though they often remain stationary, they can be placed anywhere on
the network, providing flexibility to node connectivity. The mesh network is composed of 26
Wi-Fi access points, providing a direct connection to the local infrastructure.

Given that the testbed covers such a large region with different environments, this testbed
provides a rich environment to study many aspects of vehicular networks, such as routing,
system and application design and power management.

2.5 Content Distribution Approaches

In most vehicular network projects, the driving force of effort and development has been
related to safety applications, providing a safer environment for the users to drive in. How-
ever, as those applications are developed and tested, new interests arise, regarding entertain-
ment applications, capable of delivering multimedia files, software updates, tourist informa-
tion, among others.

In VANETs, the concept of Content Distribution fits the following scenario. The original
information is uploaded to the Internet server. Vehicles passing by the infrastructure, an RSU
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or other access point, can download the information when there is appropriate connectivity.
Afterwards, the vehicles with this information can disseminate it to nearby vehicles they come
into contact with. In this manner, content is distributed throughout the entire network.

To overcome the short contact duration with the infrastructure, peer-to-peer technology
can help due to its native characteristic of partitioning the information and distributing it
amongst peers through file swarming [26]. Mario Gerla et al. [27] conducted a survey on
content distribution schemes that have proven useful in vehicular networks and the follow-
ing subsections will describe their characteristics, in order to determine which strategy could
prove most useful in decreasing a vehicular network’s overhead.

2.5.1 Peer-to-Peer Schemes

SPAWN

Swarming Protocol For Vehicular Ad-Hoc Wireless Networks (SPAWN), follows the same
structure as a Peer-to-Peer (P2P) swarming protocol. Peers download pieces of a file from
the infrastructure and then share the pieces amongst themselves. Figure 2.8 illustrates how a
vehicle obtains content in the SPAWN strategy.

Figure 2.8: SPAWN Scheme, based on [28].

In step 1, the vehicle has entered the range of the RSU. In step 2, the OBU receives data
from the RSU. In step 3, the vehicle is still within range and, as such, receives more content.
In step 4, the vehicle is out of range of the infrastructure. In steps 5 and 6, the OBU is within
range of other OBUs and start exchanging pieces of the downloaded file. Preliminary results of
this scheme tested a random packet distribution whenever a car comes into range of a neigh-
bour. Although SPAWN uses additional packets to control whether or not information should
be sent, those were used for location-awareness of vehicles interested in receiving the pack-
ets, a type of strategy that has already been implemented extensively in several projects.
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CarTorrent

According to [29], CarTorrent is another content distribution scheme similar to P2P file
swarming which can be seen as an improvement to the SPAWN Protocol. This scheme incor-
porates Ad-Hoc On-Demand Distance Vector (AODV) routing to aid the vehicles in perform-
ing peer discovery and multi-hop message transmission, as well as allowing the vehicles to
collect information about the file pieces. In this manner, in CarTorrent, the vehicles are capa-
ble of determining which is the rarest file piece in the network and the closest node that holds
it in storage. This is yet another example of a location-awareness strategy.

RoadCast

In [30], a P2P content distribution scheme is proposed, based on increasing chances of
obtaining the most popular content. By having nodes announce how popular certain content
is, RoadCast ensures that the most popular content is delivered with higher probability. This
method could prove useful in ensuring dissemination in slower experiments, as file popular-
ity becomes more evident over time.

MDDV

Hao Wu et. al. [31] proposed a Mobility-Centric Data Dissemination (MDDV) algorithm
based on geographical positioning. However, this algorithm is primarily used for V2V com-
munications, that is, only OBUs would be considered. Moreover, since this algorithm sends
packets based on geographical position of the OBUs rather than their content, it goes against
the intended aim of this Dissertation.

REDEC

REceiver-based solution with video transmission DECoupled (REDEC) is a content distri-
bution scheme thought specifically for video streaming. Its algorithm considers that a vehicle
can be in one of four different states: non-relay, scheduled, relay or scheduled relay. A non-
relay node does not broadcast packets and is only potentially interested in receiving them. A
relay node actively broadcasts packets and receives them. A scheduled/scheduled relay node
has received a control packet and is deciding if it will broadcast data packets or not. However,
a scheduled relay node will forward packets even while in that decision process.

This category selection is meant to decrease network overhead by limiting the number of
nodes capable of sending control packets. However, the percentage of nodes actively partici-
pating in controlling packet broadcasting, when data is to be disseminated, is always inferior
to 20%. Given that the aim of this Dissertation is not to limit already-implemented strategies
but to attempt to improve them, control packets are a key component of the vehicular net-
work of study. As a result, this is not a preferred content distribution strategy.
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PYRAMID

In PYRAMID, the OBUs resort to determining relevant content in neighboring vehicles by
using probabilistic data structures to get an approximation of the neighbours’ content [32].
The authors developed two mechanisms in order to do so: Task Prioritization and Content
Reconciliation. The first one aims to identify the best vehicle to establish communication
with and the second one uses a membership test to identify redundant content.

In this manner, the authors use two sets of "granularity" to approximate a node’s desired
content, Coarse Granularity for determining a neighbor’s content through a probabilistic data
structure and Fine Granularity to identify redundant information, as shown in Figure 2.9.

Figure 2.9: PYRAMID Abstraction of Contents [32].

The coarse granularity involves summarizing a neighbor’s content by announcing to a
neighbor which packets would be more useful to him. Although some risk in such a strategy
would be expected, such risk is greatly decreased thanks to the fine granularity. The identifi-
cation of redundant packets was tested with several strategies, one of which involves using a
Bloom Filter, a data structure that is able to identify redundant packets with certainty.

The use of a structure to summarize content could be used to announce the contents of a
vehicle to its neighbours, possibly improving the network’s overhead. As such, the following
subsection will provide the reader with a survey on content distribution strategies that have
used Bloom Filters.
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2.5.2 Bloom Filter Schemes

Bloom Filters are not a recent data structure and, even in the field of Vehicular Communi-
cations, they are not a novelty, either. The work in [33] has performed an extensive study on
the use of Bloom Filters in Ad-Hoc Networks and the following subsections will describe their
characteristics.

B-SUB

Yaxiong Zhao et al. proposed establishing Human Network (HUNET)s through wireless
devices, such as smartphones, carried by moving users. Through this network, users are able
to forward specific messages to other users, according to their interests. In this manner, de-
vices don’t perform any addressing or routing tasks but merely forward the message to bro-
kers, responsible for content matching [34]. Bloom Filters are used to encode users’ interests,
consuming far less memory than other methods. Although it is not a vehicular network, this
principle could also be applied in it given that HUNETs are composed of moving users. Figure
2.10 illustrates an example of a human network.

Figure 2.10: Example of a HUNET [34].
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Extended ODMRP

On-Demand Multicast Routing Protocol (ODMRP) is a protocol for routing multicast and
unicast traffic throughout Ad-Hoc Networks [35]. In [36], an extended version of ODMRP
is suggested for data dissemination in content-based subscriptions. The authors proposed
a Bloom Filter-based event dissemination system where messages are aggregated and sum-
marized into a Bloom Filter and later sent to the most appropriate multicast group. Given the
constraints of mobile networks, it is important in a real life network to send packets as quickly
as possible. Through this manner, this could also be applicable to the control messages of a
vehicular network, consequently decreasing the size of the control messages required for pos-
terior data dissemination.

OSNR

Message Forwarding can be done in a network by taking advantage of other people’s mo-
bile devices. Iain Parris et al. [37] noted that performing this Social Network Routing enables
a user to send messages via other users’ smartphones and can therefore broadcast these net-
works, introducing privacy concerns. As such, an Obfuscated Social Network Routing (OSNR)
protocol was designed, which uses a Bloom Filter to protect a user’s friend list by encoding
it rather than leaving it in plain text. This further strengthens the use of a Bloom Filter in a
vehicular network. Not only does the encoding provide a smaller control packet size, it also
hides its information, which could prove useful if sensitive data were to be exchanged be-
tween nodes.

BLooGo

BLOOm filter based GOssip algorithm for wireless NDN is an algorithm that allows nodes
to send and receive messages without any prior knowledge of the network [38]. A node can de-
cide whether to forward packets or not based solely on information about neighboring nodes
encoded in a packet as a Bloom Filter. If a receiver of this information has all of its neigh-
bours with the same content, the receiver knows it should not forward messages. Likewise, if
a neighbor does not contain such information, messages are to be sent. Figure 2.11 illustrates
this algorithm. This can be, potentially, the best approximation of this Dissertation’s study.
Through the use of a Bloom Filter, control messages become shorter and nodes will still be
able to send content based on this approximate data.
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Figure 2.11: BlooGo Scheme, based on [38].

When vehicle A requests content, vehicles B, C and D will only forward that request to
neighboring nodes if these vehicles do not contain such information. If either B, C or D have
the requested information, they simply send it to A. If not, only B should forward A’s request
since it is the only vehicle that can reach a node that is not within A’s range.

2.6 Vehicular Networks’ Simulators

Before implementing new routing algorithms in a real-life vehicular network, those must
be developed and tested in platforms that approximate reality as closely as possible. In this
section, several simulators for general networks will be described and, furthermore, VANET
and DTN simulators, built specifically for vehicular networks, with the aid of extensive vehic-
ular network studies performed by [18] and [39], in order to emphasize that the number of
solutions for network simulation are plentiful.

2.6.1 General Simulators

NS-2/NS-3

The Network Simulator (NS) NS-2 first appeared in 1989 as a network simulator with sig-
nificant transport, routing and multicast capabilities. However, although it was able to simu-
late multiple radio interfaces, its wireless channel models were unrealistic and radio prop-
agation was biased. Moreover, it only supported bi-directional or omni-directional signal
propagation. Due to these shortcomings, NS-2 proved to have limited scalability, consum-
ing excessive CPU and memory and was, thus, discontinued.

As a replacement for NS-2, an improved simulator named NS-3 was developed. Just like
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the previous version, this simulator is written in C++, albeit with much shorter coding. NS-3
started by having only a few hundred lines as opposed to NS-2’s 300,000 lines. Furthermore,
this simulator contains proper support to simulate larger networks.

GlomoSim/QualNet

Global Mobile Information System Simulator was developed in California, using Parsec
and Java and was mainly targeted for wireless network simulation. It had the distinct trait
of separating the network into modules, each one running as a different process, hence re-
ducing the CPU load and allowing for higher scalability. Unlike NS-2, GlomoSim supported a
far more extensive number of nodes and was able to support several different protocols and
wireless technologies.

After Parsec stopped working on freeware software, QualNet was developed as a commer-
cial version of GlomoSim. It is a C++ written simulator and contains a powerful 3D visual-
ization tool as well as its own Network Analyzer. It is capable of simulating different types of
networks, including MANETs.

NetSim

In [40], NetSim is described as an object-oriented architectural simulator. Written in C#,
this network simulator can form a variety of computer networks, whether they be sensor net-
works, cellular, LTE, military, among others. NetSim as a simulator, brings several benefits. Its
core language provides developers with easier programming, since C# does not require mem-
ory clean-up; its architectural accuracy makes it so that each class object is seen as a physical
component of a machine and each public method as a communication line and, finally, due
to accuracy, it is a highly flexible simulator since changing a component in the network only
requires creating a new object in the code and overriding the old object’s methods.

Unfortunately, all these benefits come with a cost in the actual network simulation. The
added methods, dynamic objects and garbage clean-up generate additional overhead, ergo,
the same simulation achieves different results when compared to other simulators.

2.6.2 VANET Simulators

In order to perform an accurate simulation of a vehicular network, network simulators
need to be coupled with mobility models to simulate node mobility. The following simulators
are some examples of this collaboration.

VanetMobiSim

VanetMobiSim is a simulator that includes many road elements’ behaviour in order to
more closely simulate a real road traffic scenario, namely stop signs, traffic lights and pedes-
trians. Although it is capable of using several different algorithms to determine the most vi-
able path between source and destination, the data generated by this simulator cannot be
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inserted in a network simulator. As a result, VANET simulation can only be achieved by using
this simulator along with another, making it somewhat impractical to work with.

VANETsim

According to [41], VANETsim was developed primarily for studying security and privacy
concepts in VANETs. Programmed in Java, VANETsim contains a very powerful GUI, which
provides the user with a map editor, allowing the user to visualize simulations in maps created
from scratch or in an imported map of a real location, so as to study real-life vehicle behaviour
as closely as possible. Moreover, it enables the deployment of infrastructure. However, since
the main aimed use for this simulator is security rather than content distribution, it is not an
appropriate development platform.

TraNs

Traffic and Network Simulator is a VANET simulator based in Java, which integrates net-
work and mobility simulators, such as Simulation Urban MObility (SUMO) [42] and NS-2 to
simulate a VANET’s behaviour. This simulator can be used in two different ways, depend-
ing on the need [43]. The network-centric method can be used to evaluate communication
protocols that do not influence node mobility, such as the dissemination of non-urgent infor-
mation. Secondly, the application-centric method can be used to evaluate applications that
influence node mobility, such as safety-related applications. Unfortunately, this simulator has
not been maintained since 2008 and, as such, was not considered.

NCTUns

National Chao Tung University Network Simulator is a C++ written simulator with a unique
characteristic. Rather than using a traffic simulator and a network simulator in conjunction
(much like TraNs), NCTUns couples both these simulators into a single module. It is also
capable of simulating multiple wireless interfaces, supports the IEEE 802.11p and WAVE stan-
dards and implements directional, bi-directional and rotating signal propagation. However,
while most network simulators allow multiple TCP/IP versions in the same simulator, NC-
TUns only allows for one single version. Furthermore, the networks are only scalable to a
certain limit; NCTUns can only withstand simulations with up to 4096 nodes in one simula-
tion. Despite the lack of scalability, over four thousand nodes is still a considerable network
but, to prevent future mishaps due to this constraint, this simulator was not considered as a
development platform.
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2.6.3 DTN Simulators

Regardless of the VANET simulator used, in order to implement and analyze a routing
protocol developed specifically for a delay-tolerant network, a network simulator with that
scenario implemented needs to be used, ergo, a DTN simulator.

DTN Simulator

In [44], the proposed DTN simulator was developed to evaluate routing algorithms in
delay-tolerant networks. It is a discrete event simulator, written in Java capable of storing-
and-forwarding messages for long periods of time, while sustaining network disconnection
and link failures. This simulator also includes in its code, information expected to exist in a
real-life scenario, namely, a limited storage size for each vehicle and limited bandwidth and
delay during communication links.

The ONE

The Opportunistic Network Environment is another Java-based simulator with the main
objective of evaluating routing algorithms in DTN scenarios [45]. However, while most simu-
lators focus only on routing simulation, The ONE comes with additional capabilities such as
its own visualization and analysis modules, statistical reporting, interfaces for importing and
exporting mobility traces, events and messages, energy consumption data, among others. In-
cluded within it are also six different routing protocols, three mobility models and application
support.

Despite the availability of these DTN simulators, it was decided not to use any of them.
The DTN emulator available in our group, mOVERS, is based on the same code that is running
in the real RSU and OBU boards, and any extension to the emulator is an extension to the
real equipments, just requiring a compilation of the changes to the boards. Moreover, this
solution is capable of using real data as a mobility pattern to simulate moving vehicles, and
the real connectivity between vehicles, during these 24h, is also available to be used in the
emulator. Since a 24 hour dataset on the pattern of moving vehicles already existed and no
other DTN emulator could properly mimic this behaviour, mOVERS was ultimately chosen as
the development platform for this Dissertation.

2.7 Summary

This chapter has provided the reader with a range of general information regarding Vehic-
ular Ad-Hoc Networks, based on the literature. On a general scale, the basic concept of VANET
was presented, along with its characteristics, main challenges and potential applications. On
a technical scale, the reader was familiarized with a VANET’s equipment, communication pro-
tocol, architecture and scope of dissemination.

Furthermore, the concept of Delay-Tolerant Networks was also provided, as well as its
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architecture and applications. Finally, joining these two concepts, the notion of VDTN was
elucidated along with its wide range of benefits and potential applications in the real world.

Moreover, a study on content distribution approaches was also provided with particular
attention to projects which used Bloom Filters, a data structure which has proven useful in
several projects, due to its coding and summarizing capabilities. Following that, a study on
Network, VANET and DTN Simulators was presented, not only enlightening on the existence
of many different types of simulators, each one with its own characteristics, but also enhanc-
ing the need for a simulator that can actively reproduce the unique traits of a DTN scenario,
in order to study a proper content distribution scheme for said scenario.

The next chapter will discuss the DTN emulator used in the scope of this Dissertation. De-
spite the wide array of already-available simulators, mOVERS, a DTN emulator developed in
a joint effort by IT and Veniam®, was used. This emulator will be described in the following
chapter.
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Chapter 3

mOVERS Module Description

3.1 Chapter Description

The main goal of this Dissertation is to develop a content dissemination strategy with min-
imum overhead possible using DTN communication in a VANET, ergo, in a Vehicular Delay-
Tolerant Network. In order to do so, it is important to study the platform where a proper
solution will be integrated and tests will be performed.

The chosen platform is called mOVERS, also known as mobile Opportunistic Vehicular
Emulator for Real Scenarios. This chapter will describe the different modules of this emulator
in detail, as well as the already-implemented content distribution strategies.
The organization of this chapter is as follows.

Section 3.2 presents mOVERS, giving a general description as well as delving into each of
its modules, describing their function in the experiments’ emulation.

Section 3.3 discusses the already implemented dissemination strategies, along with their
advantages and disadvantages.

Section 3.4 summarizes this full chapter.

3.2 mOVERS

A partnership between IT and Veniam® started the development of a new implementation
of DTN software, designed to operate in the VANET located in the city of Oporto, Portugal. It
was developed in C/C++ programming language and supports vehicle communications, us-
ing the WAVE and 802.11p protocols. It is also capable of using the Wi-Fi and IEEE 802.11a/b/g
protocols.

mOVERS is built using the same code in each emulated vehicle as the one in the real
boards in OBUs and RSUs. It considers a modular architecture, as observed in Figure 3.1.
It is composed by six main modules, each one with its own unique tasks: API Management,
Communication, Logging, Neighboring, Storage and Routing. Modules work with each other
through IPC sockets and nodes trade information with others through UDP ports. The follow-
ing subsections will describe each module separately, for further clarity.
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Figure 3.1: mOVERS Architecture [46].

3.2.1 API Management Module

Through this module, mOVERS nodes are capable of interacting with external applica-
tions. For testing purposes, some APIs are included in mOVERS, namely mOVERSPing, mOVER-
SSendString, mOVERSRecvString, mOVERSSendFile, mOVERSInBox, mOVERSMonitor and
mOVERSCollectMonitor. To separate the Application module interactions from the rest of
the network’s elements, this module creates an abstraction layer to send or receive mOVERS
packets to/from the API.

3.2.2 Communication Module

Both the RX and Socket modules are within the Communication module, since they both
work together to process data exchanged between nodes. The RX module is constantly check-
ing if the UDP socket has received any data to forward to a node. When data is in the socket,
the RX module is responsible for analyzing the data’s flags and forwards the packet to the
Neighboring module or to the Routing module, depending on whether the information is a
neighboring control packet or a data packet. If the UDP socket contains a neighboring control
packet, the Neighboring module will then be responsible for using it to update information
related to the node’s neighbours. If it contains a data packet, the RX module will identify the
packet as an ACK (Acknowledgement), ADV (Advertisement) or Data packet, and forward it to
the Routing module for further handling.

The Socket module manages the access to the UDP socket and acts as the abstraction layer
to send/receive packets between neighbor nodes.
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3.2.3 Logging Module

This module is built within the Routing module, since all its methods are called by the
Routing handling methods. However, its importance in content distribution simulation high-
lights it and detaches it as a unique module, as well. The Logging module is responsible for
keeping a record of data obtained through the experiments. During a mOVERS experiment, a
log file is generated per machine emulated (OBUs and RSUs) and is updated per timestamp
with relevant information. The variables of relevance stored for further analysis are as follows:

• node_eid: Identifier of the node where information was generated;

• timestamp: UNIX timestamp of the registered entry;

• packets_stored_total: Total number of packets stored by a node since the beginning of
the emulation experiment;

• packets_transmitted_total: Total number of files transmitted by a node since the begin-
ning of the emulation experiment;

• packets_stored_per_timestamp: Number of packets stored every two seconds;

• packets_transmitted_per_timestamp: Number of packets transmitted every two sec-
onds;

• packets_listened_per_timestamp: Number of packets heard in the wireless medium ev-
ery two seconds;

• packets_recv_good_per_timestamp: Number of new packets stored by a node every two
seconds;

• packets_recv_bad_per_timestamp: number of already known packets stored by a node
every two seconds;

• control_packets_number_per_timestamp: number of advertisement packets transmit-
ted every two seconds;

• control_packets_size_per_timestamp: Total size of advertisement packets transmitted
every two seconds.

Once a mOVERS simulation ends, the Logging module returns, as an end result, a CSV file
with all the above variables’ values per timestamp to be posteriorly treated in MATLAB for
statistical analysis.
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3.2.4 Neighboring Module

This is the module responsible for discovering a node’s neighbours. Depending on the in-
terface used, neighbours are treated as four different types: Wi-Fi, WAVE, Ethernet and Static.
The former three are neighbours which use that specific communication protocol and the lat-
ter applies to a neighbour with a predefined static route. In a VANET, typically, WAVE neigh-
bours are the OBUs and RSUs, Wi-Fi neighbours are sensors, and Ethernet/Static neighbours
stand for the RSUs in the core server in the infrastructure network. Figure 3.2 illustrates the
four types of neighbours that this module is capable of handling.

Figure 3.2: Neighbour Types

Throughout an emulation, this module is constantly searching for new neighbours. When-
ever a node announces its presence to its neighbours, those update their internal structures
with information regarding the new neighbour, namely its IP address, Endpoint Identifier
(EID), type (OBU or RSU), communication port and RSSI.

3.2.5 Storage Module

This module is responsible for the nodes’ packet storing, that is, for holding the data pack-
ets along with information required to forward them to a neighbour. Generally speaking, its
most crucial methods involve pushing and pulling (storing and receiving) a packet from stor-
age; peeking a packet to query for its destination EID, serviceID or expiration time; delet-
ing from storage and querying for a specific packet’s existence in storage. This module also
contains two sub-modules, StorageRAM and StorageDisk. StorageRAM implements five in-
memory information tables for fast querying, those being as follows:

• Expiry Table: Packets ordered by time remaining until expiration;

• Own Table: Packets ordered by serviceID, not meant for forwarding to other nodes;

• NoData Table: Packets ordered by expiry time, known in network but no data is stored;

• Hash Table: Packets ordered by its identifier.
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StorageDisk has several functions: manages the packet storage on disk, performs read
and write operations to obtain packets and uses the StorageRAM tables to optimize its perfor-
mance. Figure 3.3 illustrates this module’s organization.

Packets to be forwarded are always organized in the first table, ensuring that the packet
with the lowest lifetime is always picked, preventing packet starvation.

Figure 3.3: Storage Module Organization, based on [46].

3.2.6 Routing Module

The Routing module is the core module, responsible for handling received packets, de-
ciding which packets to forward and to which neighbour they should be sent to. Once the
RX module determines which type a packet belongs to (ACK, ADV or Data), it must be sent
to an appropriate neighbour. mOVERS uses a hybrid solution by routing packets per Neigh-
bour and per Packet: in order to send a packet, a node checks for neighbours in the area,
chooses one and selects the packets that should be sent to this neighbour. In order to opti-
mize the "Routing per Neighbour" operations, four neighbour types were considered when a
node needs to select one, as observed in Figure 3.4.

Figure 3.4: Routing per Neighbour, based on [46].
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Since, for all simulations performed in the scope of this Dissertation, only OBUs and RSUs
were considered, Wi-Fi Endpoints and Servers will not be considered. The most important
methods in this module for treating information are the ACKHandler, responsible for han-
dling acknowledgement packets; the ADVHandler, for treating advertisement packets and,
finally, the PKTHandler, for handling data packets.

This module also contains two sub-modules named RoutingRSU and RoutingOBU and
are used to handle sent and received packets. These two sub-modules include the above-
mentioned methods, the ACK, ADV and packet handlers and invoke each one, according to
the packet being handled.

3.3 Current Distribution Strategies

In order to select the right data to be sent and therefore, achieve a high delivery ratio,
a content distribution strategy to select the right data to forward to a node’s neighbours is
a suitable approach. Some Content Distribution strategies have already been implemented
prior to this Dissertation. These strategies are named LNHF (Least Number of Hops First),
LRBF (Local Rarest Bundle First) and LRGF (Local Rarest Generation First). The following
sub-sections will explain each strategy in a broad scope but can be studied in further detail in
[16].

3.3.1 Least Number of Hops First

This strategy aims to order a node’s packets by the number of nodes it has traveled. Due
to the Store-Carry-and-Forward mechanism, when a node receives a data packet, it stores it,
carries it and forwards it once neighbours are within the vehicle’s range. Once a neighbour
receives a packet, it updates its internal information by incrementing the packet’s number of
hops. As a result, this content distribution approach is based on directly associating a packet’s
number of hops with the number of neighbours that contain this packet. The higher the num-
ber of hops of a packet, the higher the likelihood of this specific packet being stored in other
nodes.

On another hand, since a packet’s number of hops in an RSU is always zero, a second pa-
rameter is also added; the number of transmissions. Since the sender node creates a copy of
the packet to forward, this node can count the number of copies it creates and, by extension,
the number of transmissions. The higher the number of copies, the higher the likelihood of
this specific packet being stored in other nodes.

As a result, LNHF is a content distribution strategy that selects a packet based on the num-
ber of hops in OBUs and on the number of transmissions in RSUs. Figure 3.5 summarizes the
nodes’ behaviour when sending or receiving a packet with this strategy.
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Figure 3.5: Least Number of Hops Strategy, based on [16].

During transmission, when a node finds a neighbour, if the node itself is an OBU, it will
find the packet with the lowest number of hops and, if it is an RSU, lowest number of transmis-
sions. After incrementing that variable, the packet is forwarded and the list is sorted. During
reception, if the receiver node has the packet, it will update that packet’s number of hops if
the received number is higher. However, if it does not contain the packet, it increments the
number of hops in the received packet, stores it and the list is sorted.

Tests performed with this strategy have proven that a slight increase in overhead is present
in the network due to the addition of two new fields to order the packets to be sent. Moreover,
due to the lack of control packets, the amount of data packets that the network transmits is
more constant, as opposed to other strategies which limit the transmission decision. How-
ever, the delivery ratio is smaller.

3.3.2 Local Rarest Bundle First

The previous strategy focused on implementing the minimum control data possible so as
not to significantly increase the network overhead. This strategy, on the other hand, focuses
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on using a control packet to influence the decision on which packets to be forwarded next by
implementing knowledge on the neighbours’ storage content. The design is similar to torrent
schemes since it finds the rarest piece, the rarest packet amongst neighboring nodes and for-
wards it. As such, every time a node is to send packets, it has knowledge on each neighbour’s
storage. It is in this strategy that Advertisement Packets are used.

Advertisement packets are a type of control packets used in this strategy to share infor-
mation regarding a node’s storage content, specifically it shares the identifier of the node, its
files and the packets (pieces) of each file that the node contains. Figure 3.6 showcases this
strategy’s Advertisement Packet structure.

Figure 3.6: LRBF’s Advertisement Packet Structure [16].

As a result, LRBF is a content distribution strategy based on selecting the rarest packet
among neighboring nodes by analyzing the neighbours’ storage content, information received
through a control packet sent by the neighbours themselves. Figure 3.7 summarizes the nodes’
behaviour when sending or receiving an advertisement packet with this strategy.

Figure 3.7: Local Rarest Bundle First Strategy - ADV Packets, based on [16].

34



During transmission of an advertisement packet, the sender node gathers information
about his own storage, specifically, file identifiers, total number of packets that compose each
file and the number of packets that the node contains per file. After collecting this informa-
tion, the packet is built and sent in broadcast to all neighbours at that point in time. During
reception, the receiver node identifies the content stored by that specific sender and updates
the number of nodes associated to each packet in an internal structure. Afterwards, the packet
list is re-sorted to ensure that the most lacking packet is the first one to be peeked during data
transmission.

Once an Advertisement packet has been received, the receiver node is able to transmit
data packets with knowledge of which packet is most needed by its neighbours. Figure 3.8
summarizes the nodes’ behaviour when sending or receiving data packets with this strategy.

Figure 3.8: Local Rarest Bundle First Strategy - Data Packets, based on [16].

During transmission, as soon as a neighbour enters the sender node’s range, it will select
the most lacking packet (information derived from advertisement packets), increment the
number of times it was transmitted and send it. Afterwards, it will sort its internal structures,
since a new node contains what was then the most lacking packet. During reception, if the
receiver node already contains the packet it received, the number of neighbours that contain
this packet is updated and the internal structure is re-sorted. However, if it does not contain
the packet, the packet is added to the internal structure responsible for monitoring the num-
ber of neighbours. The packet is then stored in Storage and the list is re-sorted.
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When compared to LNHF, this strategy is costly in terms of network resources consump-
tion and, by extension, network overhead due to the introduction of an additional packet to
be forwarded, prior to data packet forwarding. Although previous testing has proven that this
additional information leads to a higher delivery rate, it also introduces a considerable net-
work overhead, which increases as the size of the advertisement packet increases. Moreover,
the higher the frequency at which these packets are sent, the higher the network overhead
as well. On the other hand, packet transmission decreases overtime since the advertisement
packets limit transmission.

3.3.3 Local Rarest Generation First

This strategy is similar to the previous one except that, rather than focusing on a single
"rarest packet", this approach focuses on finding the "rarest group of packets" while, at the
same time, it implements network coding to reduce rebroadcast. This was achieved by split-
ting a file into several blocks and assuming Random Linear Network Coding (RLNC) in the
packets. In this manner, packets are identified as belonging to the same generation if they
belong to the same block. Furthermore, upon packet reception, packets can only be decoded
if enough packets of the same generation comprise a block. Intermediary nodes are only ca-
pable of forwarding coded packets that were coded by other nodes and can only generate
its own coded packets once it has decoded a complete block of packets. This strategy also
requires an internal structure, this time to associate the collected information with the gener-
ations stored, in order to identify if a generation (a file) has been completely received or not.

This methodology was used with the aim of decreasing the network overhead because,
although advertisement packets are still present in this strategy, they no longer advertise all
storage content of a node but rather information regarding content blocks and number of
coded packets per block (rank). Moreover, with network coding, sending specific packets is
not required to recover the original decoded packets, but merely a number of packets in the
same generation. Figure 3.9 showcases this strategy’s Advertisement Packet structure.

Figure 3.9: LRGF’s Advertisement Packet Structure [16].

As a result, LRGF is a content distribution strategy based on selecting the rarest group
of packets among neighboring nodes by analyzing the neighbours’ blocks of coded packets.
Figure 3.10 summarizes the nodes’ behaviour when sending or receiving an advertisement
packet with this strategy.
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Figure 3.10: Local Rarest Generation First Strategy - ADV Packets, based on [16].

During transmission of an advertisement packet in LRGF, much like LRBF, the sender node
collects information regarding its own storage content. However, this time, it will collect file
identifiers and, for each file, the number of blocks and number of coded packets within each
block, thereby potentially reducing the size of the advertisement packet. Once all this infor-
mation is collected, the advertisement packet is created and sent in broadcast to all neigh-
bours within the sender node’s range. During reception, after identifying the sender node
and each file, it will identify each block and rank and update the information it contains on
each file. Afterwards, the storage is sorted to ensure that the first packets to be sent are part of
the most lacking generation.

Once an Advertisement packet has been received, the receiver node is able to transmit
the coded packets it contains with knowledge of which packets are most needed by its neigh-
bours. All of this while ensuring that the advertisement packets do not transmit as much
information as when compared to the LRBF strategy. Figure 3.11 summarizes the nodes’ be-
haviour when sending or receiving data packets with this strategy.
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Figure 3.11: Local Rarest Generation First Strategy - Data Packets, based on [16].

During transmission, when the sender node has at least one neighbour lacking a coded
packet from a generation that the node has, it will identify the most lacking generation (infor-
mation derived from advertisement packets) and select one of the coded packets at random.
Then, it will increase the number of transmissions of that coded packet and send it in broad-
cast. Since a packet was transmitted, the internal structures are updated. During reception, if
the receiver node has decoded the block associated with the received packet, nothing is done.
If the block is not decoded and there is no entry of this packet in the internal structures, the
packet’s generation is added to it. Afterwards, the coded packet is stored and the block and
rank associated with it are updated. Once a node has collected a number of coded packets
that equal the block’s size, additional coded packets will be generated to emulate coding.
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3.4 Packet Structure

The mOVERS implementation does not strictly follow the specifications of the Bundle
Layer. Therefore, for consistency purposes, the packets used in this development platform
will be referred to as mOVERS packets. The structure of a mOVERS packet is as shown below:

• mOVERSHeader

– Version: The emulator version;

– ServiceID: Neighbour Discovery or Content Distribution service;

– Source and Destination EIDs: Identifying a packet’s end-to-end path;

– Destination Information: Node type, for example;

– Previous EID: The previous holder of the packet;

– Hash: Packet’s identifier;

– Expiry Date: Time of creation and lifetime of the packet;

– Data Length: Size of the packet’s data;

– Options Length: Variable options imposed by user (yet not added in emulator);

– Priority:

– Number of Neighbours: Number of nodes containing this packet;

– Flag: Identifier of the packet’s type;

– File Identifier: Used with previously implemented content distribution strategies. Iden-
tifies the file to which the packet corresponds to;

– Total Packets of File: Used with previously implemented content distribution strategies.
Identifies the number of packets that compose the file;

– Block Identifier: Used with previously implemented content distribution strategies. Iden-
tifies the block to which the packet corresponds to;

– Block Size: Used with previously implemented content distribution strategies. Indicates
the size of the block;

– Generation Size: Used with previously implemented content distribution strategies. Iden-
tifies the current rank of the associated block.

• Data
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3.5 Emulation Procedures

Finally, now that all modules of the mOVERS emulator have been introduced and studied,
it is also important to grasp how all the modules operate. mOVERS is a multi-thread software
to avoid race hazards (when the program does not run in the order intended). Figure 3.12
illustrates the emulation procedure when running mOVERS.

Figure 3.12: Emulation Procedures, based on [16].

Before launching all the threads of each module, a configuration file specifying socket
port, communication interfaces, storage path and capacity, logging path and version of con-
tent distribution strategy is analyzed. Only after reading this file, the modules are initialized,
launching a thread. Once all threads are launched, mOVERS runs until an external signal is
sent.
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3.6 Summary

Despite several VANET and DTN simulators exist, their use is not fully optimized for han-
dling the unique traits of a vehicular network. As a result, a specialized solution has been
developed for DTNs in VANETs, called mOVERS, mobile Opportunistic Vehicular Emulator
for Real Scenarios was used.

Working as the development platform for this Dissertation, mOVERS is the DTN imple-
mentation that was used to develop the proposed content distribution strategy. The follow-
ing chapter will clarify the problem that this Dissertation adresses along with the proposed
content distribution strategy to solve it.
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Chapter 4

Bloom Filter based Content Dissemination

4.1 Chapter Description

The main goal of this Dissertation is to develop a content dissemination strategy with
minimum overhead possible using DTN communication in a VANET, that is, in a Vehicular
Delay-Tolerant Network. In order to do so, understanding the inner workings of the devel-
opment platform to be used was crucial to this Dissertation. Likewise, studying the already
implemented dissemination strategies’ advantages and disadvantages was required to grasp
the possible improvements that could be added to the content dissemination mechanism.

This chapter provides insight on the problem to be addressed and the proposed solution
for it, clarifying the solution’s concept, variety of implementations and applications. After-
wards, it develops on the changes to the emulator and functions required to develop and
integrate this solution.

The organization of this chapter is as follows.
Section 4.2 describes the problem that this work aims to solve, namely designing a content

distribution strategy to decrease the network overhead.
Section 4.3 describes the proposed strategy to establish low congestion during a vehicular

network experiment, the main concept, the different types of said strategy, generic routing
process and its potential applications.

Section 4.4 describes the main modifications performed on the mOVERS emulator in or-
der to implement the proposed content distribution strategy.

Section 4.5 summarizes this full chapter.

4.2 Problem Statement

Since VANETs and DTNs are characterized by intermittent connectivity and potentially
long delays, certain mechanisms are mandatory to ensure safe data transfer. For DTN ap-
plications, the Store-Carry-Forward mechanism is used, having nodes storing the packets,
carrying them and only transmitting them when the proper opportunity arises.
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In VANETs, such a decision can be based on information about the nodes, much like pre-
vious content distribution schemes where packet information or neighbour information was
disseminated before the data packet itself. This is called Opportunistic Forwarding, which
consists of deciding which packet to send, based on information exchanged between vehicles
about their storage content [47].

Depending on the algorithm, opportunistic forwarding can be faced with some challenges.
For example, at the beginning of a VANET scenario, there may not be enough historical infor-
mation to provide a decision on which packet to send. Other situation would be where the
environment is so dynamic and in constant change that algorithms such as route prediction
could not be used.

To surpass these scenarios’ circumstances, Epidemic Forwarding can be a better alterna-
tive. This type of routing mechanism does not decide how to route the packet based on ex-
ternal information, such as vehicles’ content or sensor data. Instead, packets are constantly
being sent and will, therefore, eventually reach the destination [48]. The major issue of this
routing mechanism is handling the redundant packets to avoid network overhead.

The already implemented content distribution strategies follow Opportunistic Forwarding
and, to ensure the proposed strategy focuses on decreasing network overhead, the proposed
solution will also follow such methodology. Therefore, the sender nodes must be able to de-
termine which packets to forward based on information from neighbours.

Within this context, this Dissertation aims to, having prior knowledge of other content
distribution schemes deployed in other projects, propose a content distribution strategy with
the main objective of decreasing the network’s overhead. As a result, this methodology fol-
lows Opportunistic Forwarding. It is worth emphasizing that DTN routing strategies have
been previously tested in previous works and that the main target of this research is content
dissemination, specifically, video dissemination among nodes.

4.3 Proposed Solution

Due to previous content distribution strategies relying heavily on control packets’ infor-
mation, the network can suffer from network overhead, not only due to the amount of adver-
tisement packets being sent but also due to their size. A previous strategy implemented on
mOVERS emulator, LRBF, could potentially result in nodes sending an exceedingly large ad-
vertisement packet, depending on the amount of packets that node contained in its storage.

A thorough survey of the literature on Content Distribution Schemes suggests that a Bloom
Filter could be used to reduce the overhead associated with these advertisement packets. Al-
though not many works state more than a few sentences about Bloom Filters, all of them seem
to come to a consensus that Bloom Filters are a good alternative when it comes to reducing
the size of an exchanged vector of values. As such, to decrease the network overhead, the pro-
posed solution is a dissemination mechanism using a Bloom Filter. Moreover, a Bloom Filter
offers space advantage when compared to other data structures (hash tables and binary trees,
for example) since it does not store the actual packets, as well as time advantage, due to its
fast membership querying.
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4.3.1 Bloom Filter

A bloom filter is a space-efficient randomized data structure used to represent a set in
order to test membership queries. Bloom filters can cause false positives, but the amount
of space saved often outweigh this drawback when the probability of a false positive is suffi-
ciently low.

This data structure dates back to 1970 for usage in database applications, but it has gained
appeal in other areas such as networking [49].

Concept of Standard Bloom Filters

As previously mentioned, a Bloom Filter is a data structure used to represent a set and to
test whether an element belongs to that set. It is similar to a hash table, except it does not
store the actual values but rather hashes them in an array of bits. An example of a Bloom Fil-
ter can be seen below in Figure 4.1 along with a description of how a Bloom Filter works.

Figure 4.1: Bloom Filter example [49].

In mathematical terms, a Bloom Filter represents a set S = {x1,x2,...,xn} of n elements in
an array of m bits, all initialized at 0. For hashing the elements, the Bloom Filter also uses m
independent hash functions to cover the bit array’s range. Each element x ∈ S is hashed m
times with each hash indicating the location of one bit. That bit is then set to 1 in the array. To
check if an item y belongs to S, that item is also hashed m times and the corresponding bits
are checked. If all of those bits are set to 1 in the array, the element is either in the set or the
filter generated a false positive. However, if even a single bit of hashed item y is not set to 1
in the array, the item cannot be in the set. In Figure 4.1, it can be observed that element y1

cannot belong in the set since one of its bits is set to 0, while y2 either belongs to the set or the
filter has generated a false positive.
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Provided that the probability of a false positive is small enough, the benefits outweigh the
risks. Assuming that the hash functions are random, the false positive rate (p) for an array of
size m, number of elements n and number of hash functions k of a Bloom Filter is described
in the equation 4.1 [50].

p =
(

1−
(
1− 1

m

)kn
)k

'
(
1−e

−kn
m

)k = (
1−p

)k (4.1)

Solving the equation for k, the correlation between the optimal number of hash functions
with bit array size and number of elements to minimize false positive rate is given in the equa-
tion 4.2.

p =
(

1

2

)k

= (0.6185)
m
n (4.2)

Types of Bloom Filters

Since Bloom Filters date back to nearly 50 years, several changes have been made to the
original concept, depending on the intended use. This section will describe the different types
of bloom filters, and ultimately provide a brief summary of the benefits and drawbacks of each
one [49].

Compressed Bloom Filters
When both sender and receiver have memory resources but the packet size is a critical fac-

tor during the transmission, a compressed bloom filter improves the performance of the stan-
dard bloom filter by increasing the decompressed storage size of a bloom filter while main-
taining the bit transmission size constant [51].

While in the standard bloom filter, an optimal number of hash functions is calculated
given the size of the array and number of elements to be inserted, this type of filter optimizes
the number of hash functions given the size of the compressed data to be transmitted. As
such, the new false positive rate equation is as shown in equation 4.3.

φk = (0.6185)
m
n (4.3)

where φ is the probability of each entry in the array to be set at 1.

Counting Bloom Filters
This improvement to the standard bloom filter involves the possibility of deleting an el-

ement from the bit array. Insertion of elements is a process of hashing the elements a given
number of times and setting the resulting bits to 1. However, deletion is not as straightfor-
ward.

In a Counting Bloom Filter, each entry is not a bit but a counter. Therefore, whenever an
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element is inserted, certain counters will be incremented. As a result, deletion is a matter of
decreasing the resulting counters in the array. To avoid counter overflow, Fan et. al. [52] has
proven that 4 bits per counter serves for most applications.

The probability that the ith counter overflows by reaching the value 16 in an array of size
m is as given in equation 4.4.

P (max (c(i )) ≥ 16) ≤ 1.37×10−15 ×m (4.4)

In practice, when using a counting bloom filter, if an overflow occurs, an option is to leave
the counter at its maximum level, generating a false negative if a counter reaches zero when
it should not.

Space Code Bloom Filters
This bloom filter extends the standard’s capabilities by allowing several sets of elements,

enabling the bloom filter to count the number of occurences of an element, consuming fewer
memory resources.

This type of bloom filter can be implemented by using several groups of hash functions.
Insertion of an element begins by randomly selecting a group of hash functions and the re-
sulting bits are set in the bit array. Querying for membership, however, requires two stages
and therefore is more complex.

In the first stage for membership query, the number of hash groups matched by the ele-
ment are selected. In the second stage, a likelihood estimation is calculated to estimate the
number of times that an element is in the set. This results in more computing and bit size
when compared to the standard bloom filter.

Attenuated Bloom Filters
This type of bloom filter uses a bi-dimensional array of bits where each row is a standard

bloom filter. Element insertion involves using some form of control information. In [53], the
number of hops was used to determine which row to insert the element in, for example. The
element is then inserted in that row and all the other rows that follow.

The querying process is a simple iteration over the array, but the result is a tuple where
the first value indicates whether the element may be present in the filter or not at all, and the
second value indicates the several rows where the element is.

Dynamic Bloom Filters
In order to adapt bloom filters to even more scalable environments, this type creates a

new bloom filter each time the false positive rate threshold of the previous filter is reached.
Dynamic bloom filters require two new variables: s, the number of bloom filters in a matrix,
and nr, the number of elements inserted in a bloom filter.

Element insertion has two stages. Firstly, it checks which is the current bloom filter being
used in the matrix. Secondly, it checks if the number of elements in that bloom filter has not
reached its maximum capacity. Given these two operations, the element is then inserted.

Querying for membership is almost equal to the standard bloom filter. By checking which
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bloom filter in the matrix has the bits of that element set to 1, if even one filter confirms this
comparison, the element belongs in that matrix. Otherwise, it does not. These filters lose to
other types in terms of array size and querying speed but, because filters can always be cre-
ated, the growth is theoretically infinite.

Scope Decay Bloom Filters
This type of bloom filter detaches itself from all the others since this particular one can

track time on when an element has been in the set. This filter has a probability associated
with past membership of an element.

It is equal to the standard bloom filter, both in bit array structure to represent the set,
group of hash functions and insertion of elements. It is only different in two ways: it contains
a method to partially remove information from the bloom filter and a new method to query
for membership. Partial removal involves instructing the filter to set some bits to 0, simu-
lating a situation where an element once belonged to it. Query membership does not check
if all resulting bits of an element are set to 1, but checks the number of bits set to 1, ranging
from 0 (is not in the filter) to the number of k hash functions (probably is in the set at present).

Summary of Bloom Filters
The following table summarizes the types of bloom filters, as well as their benefits and

drawbacks for easier comparison.

Type Advantages Drawbacks

Standard Bloom Filter - -

Compressed Bloom Filter
Smaller size

(when compressed)
Bigger size

(when decompressed)

Counting Bloom Filter
Deletion method

Counting number of elements
Bigger size

Space Code Bloom Filter
Deletion method

Counting number of elements
Higher false
positive rate

Attenuated Bloom Filter
Weighted value

upon query
Bigger size

Dynamic Bloom Filter Scalable filter
Bigger size

More operations

Scope Decay Bloom Filter Time tracking
Existence of

False Negative Rate

Table 4.1: Types of Bloom Filters

48



Since the emulator used has never had a bloom filter structure inserted in it, for algorithm
testing purposes, we have chosen to implement the standard bloom filter, which offers a di-
rect advantage, efficiency in approximating content using only bits.

Applications

According to [49], there are four types of network-related bloom filters:

• Network Collaboration: Bloom Filters can summarize content to facilitate node col-
laboration in networks. One example would be to check for similar content in moving
nodes in a VANET;

• Resource Routing: Bloom Filters allow the use of probabilistic algorithms for locating
resources. For example, web caching can be implemented with the aid of a Bloom Filter
to significantly reduce the disk write workload, saving cache space on disk and increas-
ing the cache hit rates [54];

• Packet Routing: Bloom Filters can simplify packet routing protocols, potentially speed-
ing up the process;

• Infrastructure Measurement: Bloom Filters can provide a useful tool for analysis in the
infrastructure related to, for example, sensor data.

The theme that unifies these applications is that a Bloom Filter offers a succinct way of
representing a list of items. To separate the potential uses of Bloom Filters in four categories
can be seen as a loose categorization, since some applications may fit in more than one cate-
gory.

Dissemination Strategy using Bloom Filter

In order to perform a forwarding decision, nodes can use control information from other
nodes, advertising some relevant data before sending the actual data packets. These control
packets would normally contain one or more fields, depending on the dissemination strategy.
However, it comes as a trade-off. The more control information being sent, the bigger the
advertisement packet and the bigger network overhead.

Using a standard bloom filter, the only information this control packet will contain in its
payload is the bit array with the hashed packets from the sender node. However, because
the number of hash functions and inserted number of elements is required, the header of the
packet will include that information.

The sender node will create the bloom filter by establishing the number of packets to be
inserted, calculating the appropriate size of the bit table, number of hash functions and false
positive probability. Once the sender node has created the bloom filter, it inserts its elements
in the filter. Afterwards, the bit array is encapsulated into a buffer and sent in a packet with a
header containing relevant information about the bloom filter. As a result, the advertisement
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packet is constructed and then sent in broadcast to its neighbours. The Figure 4.2 shows the
procedure for sending an advertisement packet.

Figure 4.2: Procedure for sending an advertisement packet.

Once the receiver node has received the advertisement packet, it will decapsulate the
packet, obtaining the bit array. However, the bit array by itself cannot be used to query el-
ements for membership in a bloom filter. Therefore, the receiver node must also obtain the
number of hash functions and number of elements in the bit array, thereby "re-assembling"
the filter on the receiver node’s side.

Once the receiver node has recreated the sender node’s bloom filter, it will query its own
packets for membership. If the receiver node contains at least one packet that is not present
in the sender node’s bloom filter, the receiver node can broadcast data packets. The Figure 4.3
shows the procedure for receiving an advertisement packet.

Figure 4.3: Procedure for receiving an advertisement packet.

4.3.2 Congestion Control

Congestion control is a major issue in vehicular networks due to their characteristics. Due
to intermittent connectivity, packets can remain in a node’s storage for extended periods of
time, waiting for a transmission opportunity. As a result, upon contact, once a node under-
stands that its neighbour requires packets, it must know which packets to send. However, to
prevent nodes from never being sent, constantly being at the "bottom" of the storage, a con-
trol method is required.
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Concept

To improve this fairness in a VANET scenario, some authors have investigated utility-based
forwarding [32][55][56] where the general approach is using a utility function to assign a cer-
tain data rate, depending on how useful the packets are in the algorithm. However, in a
VANET, utility is assigned not to a data rate but to a data packet.

As such, when implementing congestion control through the use of utility functions, the
node must calculate a certain utility value for each packet when a transmission opportunity
arises.

Utility-based Routing Control

Once a node receives an advertisement packet and queries the membership of its own
packets to the neighbour’s bloom filter, this node is authorized to send packets. Using a utility
function, the packets it contains in its storage are assigned, each, a utility value based on a
function and then sorted from highest utility value to lowest. That utility value, uTX(p) ∈ [0,1],
corresponds to the utility of transmitting this data packet at this point in time.

According to [56], a possible, simple utility function would be as shown in Equation 4.5,
where a full file in a dissemination experiment has a certain number of file packets or seg-
ments and utility would, therefore, represent the percentage of the transmitted file.

uTX
(
p

)= "number of file segments"

"total file segments"
(4.5)

In mOVERS, in order to facilitate the packet forwarding decision, the nodes contain an
internal structure listing the packets and information associated to them, one of which is the
utility value.

Upon bloom filter comparison, if a neighbour does not contain all files of the sender node,
that is, if the sender node has any packet that the neighbour does not have, the sender node
is able to send data packets. Once data packets are clear to be sent, the utility is calculated for
each packet, based on the number of packets that the sender node has, and the packets are
sent accordingly. After the contact, the storage is then re-sorted, considering the number of
transmissions as the tie-breaker.

The end result before data transfer is a node clear to send packets to its neighbour with
the guarantee that it will peek the packets of the highest utility to the neighbour during the
transmission period.

4.4 mOVERS Integration

In order to implement the proposed content distribution strategy in the mOVERS soft-
ware, several steps needed to be taken. For purposes of strategy testing and analysis, this is
the crucial stage of this Dissertation. The following sub-section will describe the global modi-
fications required to implement the proposed solution, as well as a description of the changes
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implemented in the Routing module (and consequently, HandlerFILTER). Afterwards, a de-
scription of the implemented code and the consequential dissemination process will be pro-
vided through the use of flowcharts.

It is worth noting that the mOVERS’ code as an emulator is equal to the mOVERS’ code that
is in the real OBUs and RSUs of the vehicular network. In this manner, it only takes compiling
the code inside the boards for it to be tested in a real network.

4.4.1 Global Modifications

As illustrated in Figure 4.4, the Handler module is considered as a separate module from
Routing. However, this is merely for purposes of illustration of the changes made to mOVERS.
Ultimately, the Handler module is part of the Routing module. An auxiliary sub-module was
added in the Handler module named FILTER. The Handler module contains all content dis-
tribution schemes and is now divided in 4 different ones: LNHF, LRBF and LRGF, which have
been previously mentioned and FILTER, which contains the proposed content distribution
scheme in this Dissertation. Both the Routing module and the mOVERS support library also
suffered some changes, in order to handle the packets received from the HandlerFILTER func-
tions.

Figure 4.4: mOVERS Architecture (additions in blue, modifications in red), based on [16].

In the following sections, the changes made to the mOVERS Emulator to support the pro-
posed content distribution scheme will be explained in further detail.
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mOVERS Support Library

Along with the mOVERS software, the emulator has a support library called libmOVERS,
which defines a few specifications and has a few functions to be used by applications. The key
functionality of this library is the structure of the mOVERS packet header.

In order to integrate the proposed content distribution strategy, this header was modified
by adding the following fields:

• tableSize: The size of the bloom filter;

• numberOfElements: The number of elements in a neighbour’s Bloom Filter;

• hashFunctions: The number of hash functions used for the creation of a neighbour’s
Bloom Filter;

• seed: Value that ensures a constant behaviour of the hash functions;

• desiredFPP: The intended False Positive Probability of the neighbour’s Bloom Filter.

4.4.2 Bloom Filter Strategy

In order to implement the proposed solution, a new class of objects was created, named
HandlerFILTER. The Routing module creates an object of this class to perform content dis-
semination decisions. Alongside it, a previously implemented inner class called Node is also
created. Each object Node contains a packet associated to it along with a hash identifier. For
the purpose of this strategy, the class Node uses the following members: hash, fileID, nTx and
utility. All content distribution packets have associated to them a hash, a correspondence to
a file, a number of transmissions and a utility. In this class, the most relevant methods are
the bloomFilterTransmission and the bloomFilterReception, responsible for instructing the
machines on how to handle the transmission and reception of advertisement packets involv-
ing Bloom Filters.

The following sub-sections will further explain how the dissemination process is deployed
in mOVERS.

Bloom Filter Structure

The implemented bloom filter is a class containing a structure with the following mem-
bers: bitTable, numberOfHashFunctions, tableSize, numberOfElements, seed and desiredFPP.
All of these members are initialized as zero and are filled when a bloom filter is created. The
main methods involved in creating a bloom filter, filling these members are computeOpti-
malParameters, effectiveFPP, insert, contains, hashing and saltGenerator.

Whenever a new filter is to be created, some parameters need to be set a priori. Those are
the number of elements, the false positive probability and the seed. The number of elements
to be inserted is predetermined as the number of packets a node has in storage. The false
positive probability needs only to be initialized, since its actual value will be computed after

53



the elements’ insertion in the filter through the effectiveFPP method. Finally, an initial seed is
selected, also for initialization. Once the number of hashing functions required for the filter
is calculated, a corresponding number of random seeds is gathered to be used.

The computeOptimalParameters method will find the optimal minimum number of hash
functions and minimum size of the bit table required, taking into account the number of el-
ements to be inserted, through the use of Equation 4.1. The following algorithm will provide
a brief explanation on the calculations performed (the number of iterations was deemed ap-
propriate after experimentation).

Algorithm 1 Optimal Parameters
1: procedure BEGIN

2: while iterator < 1000 do
3: numberHashes = iterator
4: Calculate minSize
5: if size < minSize then
6: Assign current minimum as minimum size of table
7: Assign current number of hashes as minimum number of hashes

8: iterator++
9: if size < minSize then

10: size = minSize
11: else if size > maxSize then
12: size = maxSize
13: if nHashes < minHashes then
14: nHashes = minHashes
15: else if nHashes > maxHashes then
16: nHashes = maxHashes

The end result of the algorithm is the number of hash functions and table size to be used in
the bloom filter. It is worth noting that the initialized size is the maximum value permissible
by the program, so that it can constantly decrease until a minimum is discovered.

Both the hashing and saltGenerator methods are associated with the operations required
to turn a packet’s identifier into a bit to be inserted in a certain place in the bit table. The
salt generator is responsible for generating different random seeds from a predetermined set
so that a single hash function (present in the hashing method) can generate unique bloom
filter instances when inserting an element into the array. The hash function used was the AP
Hash Function suggested by Arash Partow in [57], which applies a hybrid rotative and additive
hashing algorithm. The following equations are an algebraic description of the hash function:

h1i(mi) = h1i-1(mi-1)⊕ (h1i-1(mi-1) ¿ 7)⊕mi ⊕ (h1i-1(mi-1) À 3 (4.6)

h2i(mi) = h2i-1(mi-1)⊕K max ⊕ (h2i-1(mi-1) ¿ 11)⊕mi ⊕ (h2i-1(mi-1) À 5) (4.7)
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H(m) =
n−1∑
i=0

hi(mi) =
{

h1(mi), if n is even,

h2(mi), if n is odd,
(4.8)

Essentially, each packet hash (8 bits) to be inserted in the filter will have an even number
of specific bits, determined through left and right shifts a number of times, combined, until
a single bit remains. As a result, this hash function decreases the size of the packet identifier
further and further until only a single bit remains to be inserted in the filter. The number
of resulting bits to be inserted in the filter is dependent on the number of salts, that is, the
number of times a packet identifier must go through this process.

Finally, both the insert and contains methods work similarly by sending a packet’s iden-
tifier through the hashing function a number of times (indicated by the salt generator) and
filling the respective bits in the bit table. In the contains method, if a single bit inserted is dif-
ferent from the one already inserted there, the method returns false and, since the presence
of the packet is inexistent in the filter (within reason of a false positive probability), it returns
false; otherwise, it returns true. The following algorithms will provide a brief explanation on
the insertion and querying of a packet in the bit table.

Algorithm 2 Insertion Algorithm
1: procedure BEGIN

2: for salt=firstSalt to salt=lastSalt do
3: Reinterpret packetHash through hash function
4: bitIndex = packetHash % tableSize
5: bit = bitIndex % 8
6: Assign bit to the bit table

7: Increment number of elements in the filter

Algorithm 3 Query Algorithm
1: procedure BEGIN

2: for salt=firstSalt to salt=lastSalt do
3: Reinterpret packetHash through hash function
4: bitIndex = packetHash % tableSize
5: bit = bitIndex % 8
6: Assign bit to the bit table
7: if Inserted bit != Current bit then return false

return true
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Beginning and End of Dissemination

Whenever a node wants to send advertisement and/or data packets, there are flags that
must be set to true to allow so. For broadcasting advertisement packets, the flag is2sendAdv
is, in the beginning of dissemination, set to false in OBUs and set to true in RSUs. When this
flag is enabled, a node is capable of sending advertisement packets to its neighbours. For
broadcasting data packets, the flag returnPacketFlag is set as false in both RSUs and OBUs
and, when enabled, allows nodes to exchange data packets.

As a result, when mOVERS starts running an experiment, only RSUs are allowed to send
advertisement packets to OBUs and no machine is able to transmit data packets. RSUs are
periodically sharing the Bloom Filter created by them. When an OBU that has no content
is within range of an RSU, it receives this advertisement packet and knows that the RSU has
content to be received. Therefore, it updates its flags and is able to broadcast advertisement
packets.

The RSU, in return, receives an empty Bloom Filter from the OBU and, by extension, knows
that the neighbour has no content that the RSU contains. Therefore, the RSU changes its flags’
value to enable the broadcast of data packets.

The end of a node’s dissemination process happens each time a node has no neighbours
or if the neighbours’ content proves to be equal to the sender’s node. In such a situation, the
flag enabling the broadcast of data packets is set to false. Figures 4.5 and 4.6 illustrate this
procedure.

Figure 4.5: mOVERS Start of Dissemination
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Figure 4.6: mOVERS End of Dissemination

Advertisement Packet Forwarding

This content distribution strategy relies on using Bloom Filters as a form of summarizing
a node’s storage contents in order to decrease the size of advertisement packets and, there-
fore, the network’s overhead. As such, the information in this packet will be fundamentally
different from previous strategies involving the use of a control packet. The only data that
will be introduced in the advertisement packet as payload will be the bloom filter’s bit array,
already with the information of the sender node inserted into it. However, in order to use
functions of comparison and hashing, the receiver must be able to replicate the whole filter
and its properties, not just the bit array. Therefore, the header of the advertisement packet
will contain necessary information for such effect. The structure of the advertisement packet
is as observed in Figure 4.7.

Figure 4.7: HandlerFILTER Advertisement Packet Structure

In order to understand the procedures for advertisement packet forwarding, a flowchart
is presented in Figure 4.8. If the flag is2sendAdv is set to true, advertisement packets are to be
sent. As such, an advertisement packet containing the node’s bloom filter needs to be built,
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using the bloomFilterTransmission method. This method starts by obtaining the number of
projected elements that are to be inserted into the Bloom Filter. That number is always the
number of packets that a node currently has in its storage. The false positive probability de-
sired is also requested as an initial value for optimal parameter calculation. That is only an
initial value. The actual false positive probability is computed using Equation 4.1.

Once these parameters are set, the node calculates the optimal table size and number of
hash functions that the filter must have, in order to fulfill the first set of parameters. Once
these parameters are created, the node will iterate its storage for each of its packet’s identifier
and insert it into the filter. Filter insertion happens by grabbing the packet identifier and hash
it a number of times equal to the number of hash functions chosen as optimal parameter.
Each bit resulting from each hashing will then fill a bit of the created array. Once the filter is
complete with all the inserted elements as bits in the array, the header is filled with the rele-
vant information to recreate the filter and the payload is filled with the bit table. Afterwards,
the advertisement packet is sent by broadcast and Logging methods record the number of
sent advertisement packets as well as the size of each packet.

The sending of advertisement packets is controlled by a thread that is invoked in a random
periodical way between a minimum and a maximum value, MIN_CONT_ADV_PERIOD and
MAX_CONT_ADV_PERIOD, respectively, until a cleaning signal is sent.
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Figure 4.8: Advertisement Packet Forwarding Flowchart

59



Advertisement Packet Reception

In order to understand the procedures for advertisement packet reception, a flowchart is
presented in Figure 4.9. Upon reception of a bloom filter-based advertisement packet, the re-
ceiver node must first confirm if the neighbour contains relevant information to it. For that,
it must replicate the neighbour’s filter. Firstly, the receiver node extracts relevant informa-
tion to the filter from the packet header, namely the number of elements, the false positive
probability and the seed of the neighbour’s filter. As a result, the receiver can now replicate
the sender’s bloom filter. However, this filter is created with an empty bit table since nothing
was inserted. Secondly, the bit table is then extracted from the payload and acts as part of the
created filter. The end result is a replica of the sender’s bloom filter in the receiver node. The
following algorithm will provide a brief explanation on replicating a neighbour’s bloom filter.

Algorithm 4 Bloom Filter Replica Algorithm
1: procedure BEGIN

2: Received advertisement packet
3: Retrieve neighbour’s bit table from Payload
4: Obtain neighbour’s initial parameters and used seeds from header
5: Build empty filter with neighbour’s parameters
6: Replace calculated seeds with neighbour’s seeds
7: Copy neighbour’s bit table to empty filter

Finally, the receiver node must insert its own elements into the filter and verify if there is at
least one of the neighbour’s elements that does not match the receiver’s packets. This compar-
ison operation is performed in bloomFilterReception using the method contains mentioned
in Algorithm 3. The receiver node iterates its storage for each of its packet’s identifier, hashes
it a number of times equal to the number of Hash Functions used (also extracted from the
packet’s header) and inserts it into the filter, using the method. This method will return false
if even a single bit that is to be set at ’1’ is set at ’0’. Such will mean that the receiver node con-
tains at least one packet that the sender does not have (within likelihood of a false positive).

Given this situation, the receiver updates its flags to enable broadcast of advertisement
packets as well as data packets, since it has both received its first advertisement packet and
has established that there is need for its content.
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Figure 4.9: Advertisement Packet Reception Flowchart

Utility Field

As previously mentioned in Section 4.3.3.2, a utility function can be as simple as Equation
4.5, establishing that the more complete a file is, the more relevant this node’s contents are to
its neighbours. A new member was added to the class Node named utility. In this manner,
each data packet always has a utility value attached to it.

Furthermore, some simple methods were added to handle and update the utility values
of the packets in a node’s storage. Those methods are addUtility, updateUtility and setN-
odeUtility. addUtility is the main method handling utility of packets. It is invoked each time
a new packet is stored in a node and each time an advertisement packet is received. If a new
packet is associated to a new file, it calculates its utility value and invokes setNodeUtility to
associate that value to the packet’s data structure. If it is from an already known file, then all
packets corresponding to such file are updated. Therefore, updateUtility is invoked. Upon
advertisement packet reception, all packets’ utility is re-calculated for potential data packet
broadcasting.
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Data Packet Forwarding

The flowchart in Figure 4.10 illustrates how data packet forwarding operates in mOVERS.
The strategy used here is analogous to LRBF’s data packet forwarding. If the sender node has
only OBUs as neighbours and contains packets in storage, it will peek the first hash, repre-
senting the first packet to be loaded from storage. If no hash is found, the associated Node
must be deleted. After the hash is retrieved, the corresponding packet is sent in broadcast
and the number of transmissions of such packet is incremented. Then, the storage is sorted
since the number of transmissions is considered a tie-breaker if utility is equal. At the end,
Logging methods will keep information on transmitted packets.

Data Packet Reception

The flowchart in Figure 4.11 illustrates how data packet reception operates in mOVERS.
Much like data packet transmission, the strategy is very similar to LRBF. Since dissemination
is a downloading process, only OBUs are considered as receiver nodes. If the packet was re-
ceived from a WAVE interface, the packet’s hop list is updated with the ID of the receiver. Upon
packet reception, if there was no prior knowledge of that packet, a Node is associated to it, re-
garding packet utility, number of transmissions, among other information. However, if the
associated node already existed in the receiver, the corresponding Node’s number of neigh-
bours is updated. Afterwards, the packet is stored (only if it was not already) and the Logging
records information regarding stored packets.
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Figure 4.10: Data Packet Forwarding Flowchart
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Figure 4.11: Data Packet Reception Flowchart
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4.5 Summary

This chapter focused on describing the implementation of the proposed content distri-
bution strategy. From the theoretical notions on Bloom Filters to Utility-based congestion
control, all the main points of this Dissertation were covered. After such, integration of said
strategy was described, from the global modifications required in mOVERS to the bloom filter
and utility algorithm. The following chapter will provide the reader with the results obtained
from mOVERS and discussions based on statistical analysis.
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Chapter 5

Tests and Results

5.1 Chapter Description

Once designed and implemented, the content distribution strategy needs to be evaluated
in the development platform mOVERS already described in Chapter 3. As such, this chapter
presents the equipment used in the evaluation, the evaluated scenarios and the main results
obtained in them.

This chapter is organized as follows.
Section 5.2 will describe the specifications of the equipment used for the development of

this Dissertation.
Section 5.3 will provide a global spectrum of the vehicular network, outlining the scenario

in which real data was obtained for emulation purposes.
Section 5.4 will present the Bloom Filter’s performance when used in the proposed content

distribution strategy.
Section 5.5 will present the main results achieved after a set of experiments performed in

the mOVERS software.
Section 5.6 summarizes this full chapter.

5.2 Equipment

The content distribution strategy was developed and modified in a personal laptop. How-
ever, the emulator was then uploaded to a different computer that ultimately ran the content
dissemination experiments. The specifications of the machine that ran mOVERS are as de-
scribed in Table 5.1.

Operating System 64-bit Ubuntu 14.04 LTS
Processor Intel® Xeon® CPU E5620 @ 2.40 GHz x8
RAM 12 GB

Table 5.1: Machine used to run mOVERS.
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Due to the heavy computational power required to run mOVERS along with the long em-
ulation time, a Virtual Machine was used within the server mentioned in 5.1. This Virtual Ma-
chine was configured using VMware Workstation 12 Player and was accessed via command
line to run the tests. It is noteworthy that this server would share its resources with other pro-
cesses that may occur. As such, all performance metrics regarding the machine must not be
seen as absolute, since these will vary, each time the same experiment is carried.

5.3 Vehicular Network Scenario

The city of Oporto is home to a vehicular network, interconnected to Porto Digital’s fiber
network [58] that has been central in projects with the University of Aveiro, University of Porto,
IT and Veniam®. In order to better understand the network topology and nodes’ behaviour,
two 24-hour data collections have been provided, one of October 31st, 2014 and one of Febru-
ary 13th, 2015. For statistical analysis purposes, only the most recent data was selected. Figure
5.1 shows the area covered by the vehicular network’s infrastructure.

Figure 5.1: Oporto’s vehicular Network, created using [59].

The 24-hour collection used in the mOVERS tests contain information on the location of
all the RSUs and more along the coast of Portugal. However, since the emulator is quite heavy
in resource consumption on the machine that is running it, a smaller number of RSUs was
used in the simulations. An analysis of the RSUs’ location shows that the optimal location
to test content distribution algorithms while, at the same time, limiting their number, is an
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area centered around São Bento and Aliados, as shown in Figure 5.1 with a circle. Despite
the limitation of the number of machines, strategy evaluation is not compromised since the
nodes’ behaviour is most focused around the chosen area and contacts are far more sparse
away from that area.

Based on a study of the Oporto network’s vehicle routes by [16], two timeframes were se-
lected to evaluate the proposed routing algorithm. Those are the 6h-10h timeframe, which is
denominated as the Rush Hour and the 10h-14h timeframe, designated as Non-Rush Hour.
Furthermore, though the vehicular network contains data on over 300 OBUs and 50 RSUs,
the emulator is incapable of emulating such a high number of nodes or an excessively high
congested network, leading to a potential Virtual Machine shutdown. As a result, both tests
were run with 18 RSUs and Rush Hour and Non-Rush Hour’s OBUs numbered 161 and 133,
respectively. Moreover, messages are only sent whenever the RSSI signal is, at least, 15 dBm.

5.4 Bloom Filter Performance

To ensure that the bloom filter has a proper behaviour, its false positive probability was
logged during a 4-hour experiment between 6:00 AM and 10:00 AM, the timeframe of most
vehicle density due to rush hour. Figure 5.2 illustrates the evolution of the false positive prob-
ability of the bloom filters created throughout the experiment.

Figure 5.2: Bloom Filter’s False Positive Probability
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As observed, throughout all timestamps of the experiment, the false positive probability
rarely exceeds 1%, making it a reliable data structure to act as a routing decision maker for
this content distribution strategy. The following section will provide results of the tests made
with this strategy in the mOVERS software.

In order to ensure that there was no decisive factor that greatly changed the filter’s perfor-
mance, a script named bloom_filter_example was used to test proper behaviour of both the
functions of insertion and containment as well as its response, depending on the seeds used.
Given that the filter uses a single hash function with different seeds, the effect of the seed pa-
rameter in the filter is merely to add "garbage" to the function, so that a single hash function
can behave like multiple hash functions, hashing each bit in a different place in the filter. Re-
gardless of the seed used, the filters obtained always show the same false positive probability
and proper insertion and containment functionalities.

5.5 mOVERS Emulator Tests

A content distribution strategy based on a Bloom Filter has been implemented and eval-
uated via mOVERS. For comparison purposes, our Filter strategy will be evaluated next to the
strategy that had the best delivery ratio up to date, LRBF (Local Rarest Bundle First) as well as
LRGF (Local Rarest Generation First), a first attempt at limiting network overhead.

All experiments considered the dissemination of a 75 MB file divided in 2256 packets of 32
KB each, and were run 3 times. The results, whenever possible, represent the mean and 95%
confidence levels. It is worth pointing out that the mOVERS emulator has a very long running
time. Each content dissemination strategy test takes 20 hours to complete, making mOVERS
impractical for a large number of content distribution emulation tests. This heavy resource
consumption is due to the fact that each machine (OBU and RSU) is run as a separate process
within the server running mOVERS. As such, a single server has to run nearly 200 machines
at the same time. As a result, running more tests to obtain more robust confidence intervals
was not possible.

5.5.1 Rush Hour

This is the timeframe between 6:00 AM and 10:00 AM, the period of highest vehicle den-
sity. As such, this is the most important timeframe to perform tests, due to the vehicles’ high
mobility, in establishing an ideal DTN scenario to test our content distribution strategy. The
following subsections will showcase several metrics used to verify the robustness of the pro-
posed solution.
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File Distribution

File Distribution is associated with the evolution of metrics regarding the percentage of
packet delivery to the network, that is, how much was downloaded in the network. Such is
obtained by illustrating the number of unique packets stored per OBU per hour in percentage.
Figure 5.3 illustrates the evolution of our strategy, when compared to LRBF and LRGF.

Figure 5.3: Percentage of File in Network

The results clearly show that both LRBF and LRGF are slightly superior in terms of deliv-
ery rate. LRBF has the highest delivery rate, primarily due to the fact that all nodes know the
complete information of all of the neighbours’ packets, being the upper bound for delivery
ratio. LRGF limits that knowledge by having the nodes know information regarding only the
rarest block of packets. When that information is even more summarized, in this case, be-
ing a "mathematical approximation", coupled with a basic utility function for storage sorting,
FILTER’s behaviour becomes slower. Not only there is less specifications in the advertisement
packets sent, the nature of the utility function makes it so that, as certain packets become
more useful, others end up remaining at the "bottom" of the storage and may never be sent,
leading to the small loss in file distribution of 3-6%. However, such loss is a trade-off, since
the algorithm becomes highly efficient in overhead size, as it will be proven in subsequent
subsections.

After considering a 95% confidence interval, it can be seen that previous strategies fall
within the potential interval of the proposed strategy during most of the dissemination pro-
cess.
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Progress Rate

Progress Rate is the metric that determines how fast the full content is being disseminated
to the nodes. Figure 5.4 showcases this metric by showing the progress as the number of nodes
that achieve the complete file every 10 minutes.

Figure 5.4: Progress Rate

The progress rate shows that LRBF and LRGF are faster in the second and third hours when
downloading the complete file, yet its speed greatly decreases as the experiment continues.
Such is due to the nature of the algorithm, greatly limiting transmission when most of the
content has been downloaded. At that point in time, nodes are only looking for specific rarest
packets in the network to complete the file.

On the other hand, FILTER is definitely slower in its download progress since most of its
downloads are achieved in the third and fourth hours. This is attributed to the basic utility
function used as the sorting function for the storage. Due to the nature of the utility function,
all packets have roughly the same utility in the beginning and can, therefore, be disseminated
equally. As such, there is no clear, optimized form of packet sorting to ensure delivery of only
specific packets to ensure file completion at the first half of the experiment, and the nodes
take a longer period of time to complete the file. Moreover, although it only surpassed 1%
once, the false positive probability has shown that, roughly, during the first hour, the false
positive probability is much greater than during the rest of the experiment, which can also be
a factor, since it could cause repeated packets to be transmitted.

However, as vehicles slowly obtain packets and files start gaining priority, the algorithm
quickly speeds up in the last two hours and achieves a good delivery ratio. However, because
the progress rate is slower, despite all nodes having obtained roughly 95% of the file, a much
lower amount of vehicles actually obtained the remaining 5%, completing the file. The fol-
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lowing subsection will provide information on the number of vehicles that actually achieved
the full 100% of content in the network.

Vehicles with Full Content

This subsection will provide the reader with insight on the number of vehicles that were
actually able to obtain 100% of the information in the network. Such can be analyzed in Figure
5.5.

Figure 5.5: Number of OBUs with all content

Strategy Average (h) C.I. (95%)
LRBF 1.54 ±0.14
LRGF 1.85 ±0.14

FILTER 2.55 ±0.18

Table 5.2: Statistics of Number of Vehicles with Full Content.

As derived from the Progress Rate, due to the lack of information regarding the packets
when sending an advertisement packet, along with the fact that the utility function causes
some packets to always remain at the "bottom" of the storage, a much lower amount of vehi-
cles end up achieving 100% of the information.

Number of Advertisements

Advertisement periodicity is a random value chosen between 5 and 10 seconds, by de-
fault. This and the following subsections have the purpose of evaluating the impact of the
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advertisement packets in the network. Mainly, how effective FILTER is in reducing advertise-
ment packet overhead in the network. Figures 5.6 and 5.7 show the number of advertisement
packets present in the network during the experiment.

Figure 5.6: Number of transmitted advertisement packets (per timestamp)

Figure 5.7: Number of transmitted advertisement packets (per hour)
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Although a difference exists between the number of advertisement packets sent between
the three strategies, the average number of advertisement packets sent rounds 28 thousand
packets per hour. It was not expected that the strategy would have an influence on the number
of advertisement packets themselves and this metric served to corroborate this fact.

Size of Advertisements

Figures 5.8 and 5.9 illustrate the size of the transmitted advertisement packets in the net-
work during the experiment. Figure 5.8 shows that during the first two hours, LRBF shows
a larger overhead than in the remaining two hours, which is to be expected since most of
the dissemination process for LRBF occurs in the first half of the experiment. LRGF shows a
similar behaviour, only with lower overhead than LRBF. FILTER, on the other hand, remains
roughly constant in the size of its advertisements since, ultimately, it is only transmitting bits
in the advertisement packet’s payload, leading to a much lower network overhead.

Such statement is even more evident by observing Figure 5.9. During the first two hours,
LRBF reaches nearly 60 MB of network overhead, which is too high for a vehicular network
aiming to disseminate a 75 MB file. Even though it greatly decreases in the second half of the
experiment, the average size of its advertisement packets reaches 31 MB. On the other hand,
FILTER evidences that the size of the advertisement packets increases over time, which is as
expected, since the progress rate showed that most of the dissemination process happens in
the latter half of the experiment. However, even if the vehicles contain more packets over
time, the size of the advertisements does not change as significantly as with LRBF, culminat-
ing with an average overhead of 13 MB, less than half of LRBF’s overhead. LRGF, the initial
solution to the overhead, stands as a middle ground, with an average overhead of 21 MB.

Furthermore, given that the exact same experiment was run multiple times, the variation
in both the number and size of sent advertisement packets is minimal, as seen in Table 5.3.

Figure 5.8: Size of transmitted advertisement packets (per timestamp)
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Figure 5.9: Size of transmitted advertisement packets (per hour)

FILTER Strategy C.I. (95%)
Number ±0.03

Size ±0.01

Table 5.3: Rush Hour Advertisement Packet Statistics.

Server Performance Metrics

Finally, Table 5.4 resumes the physical performance of the server that runs the mOVERS
emulator. Three metrics are presented and ascertain the machine’s correct behaviour.

Strategy CPU(%) CPU std(%) Load Load std RAM(%) RAM std(%)
LRBF 10.1 8.2 1.2 1.0 46 7.6
LRGF 8.2 2.9 2.5 0.8 46.7 7.1

FILTER 27 4.9 5.9 1.9 35.8 9.8

Table 5.4: Computational Performance in Rush Hour.

A Bloom Filter is able to transmit the same information without consuming as much mem-
ory as the other two strategies, since all the information is coded into bits. However, it is very
demanding in computational resources due to the heavy hashing of the packets required. As
a result, it consumes far more processor effort and cores of the running machine, due to the
amount of bloom filters and, consequently, the great amount of hashing calculations required
per bloom filter per packet.
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5.5.2 Non-Rush Hour

This is the timeframe between 10:00 AM and 14:00 PM, a period of lower vehicle density.
Despite not as relevant a timeframe as the previous one, the following analysis aims to verify if
the behaviour of the nodes in transmitting advertisement and data packets is, at least, similar.
The following subsections will showcase the same metrics as before in the previous section.

File Distribution

Given that the metrics for evaluation are equal to the previous timeframe of study, this
subsection will present once again an overview of how much information was effectively
transmitted to the network’s vehicles. Figure 5.10 illustrates the evolution of the FILTER strat-
egy, when compared to LRBF and LRGF.

Figure 5.10: Percentage of File in Network

When compared to the Rush Hour timeframe, although LRBF still remains the superior
content distribution strategy in terms of delivery rate, it is worth noting that both the LRGF
and FILTER algorithms approach the same delivery rate more closely. Since the proposed dis-
semination algorithm remains the same, regardless of the studied timeframe or number of
nodes in the network, the reason for the small discrepancy in delivery rate can, once again, be
attributed to the storage sorting algorithm present as a Utility Function. Despite the network
being more sparse, during the first hour, the network nodes are able to receive more packets
than in the Rush Hour. This is due to the fact that during this timeframe, OBUs show a travel-
ing route passing from parking lots to the city center, increasing the number of contacts with
RSUs, increasing the delivery rate to the network.

Nevertheless, the network’s delivery rate differs by such a small percentage (lower than
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2%) that the proposed content distribution strategy is to be a preferred option, as it shall be
shown in the subsequent subsections.

Much like the Rush Hour’s experiment, the 95% confidence interval of the proposed strat-
egy includes the previous strategies’ performance, further strengthening the fact that this
strategy approaches previous strategies closely.

Progress Rate

This is the metrics that illustrates how fast content is disseminated to the network’s vehi-
cles at a given time. Figure 5.11 showcases such metrics.

Figure 5.11: Progress Rate

It is again shown that LRBF is capable of disseminating most of its information in the first
half of the experiment. This is, again, attributed to the intelligence present in the algorithm
that reassures only specific packets are to be transferred. LRGF follows the same pattern al-
beit at a slightly slower rate. FILTER, on the other hand, once the first hour passes and some
packets are transferred, its progress rate remains fairly constant, ranging only from 10% to
20%. Yet, the file is distributed in the network with nearly the same performance as LRBF.
This can be attributed to the smaller number of vehicles present in the network, leading to a
lower number of contacts and, by extension, a smaller network. Since the same number of
RSUs was used to distribute information to a lower number of OBUs, the full network receives
content faster.

The conclusion derived in the Rush Hour is not to be neglected, nonetheless. The first
hour has very slow dissemination due to two possible factors, the utility function’s simplicity
and the false positive probability during that time. As a result, as seen in the following sub-
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section, a much lower number of vehicles will be able to receive all the information in the
network.

Vehicles with Full Content

This subsection will, once again, provide the reader with insight on the number of vehicles
that were able to receive 100% of the information in the network. Due to the utility function’s
nature, some packets will always remain in the "bottom" of the storage and only the nodes
that received those packets early on will be able to receive all content. Such can be analyzed
in Figure 5.12.

Figure 5.12: Number of OBUs with all content

Strategy Average (h) C.I. (95%)
LRBF 1.36 ±0.14
LRGF 1.40 ±0.14

FILTER 2.49 ±0.21

Table 5.5: Statistics of Number of Vehicles with Full Content.

As derived from the Progress Rate, since vehicles receive 100% of the information at a
much lower rate, when compared to other strategies, once packets have a certain utility value
associated to them, some packets inevitably end up never being a priority during file trans-
mission. As such, a much lower amount of vehicles end up achieving 100% of the information.
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Number of Advertisements

Advertisement packets are the main source of study for this Dissertation. As such, the
same metrics previously used for them are also present in the Non-Rush Hour timeframe.
Figures 5.13 and 5.14 provide to the reader the number of advertisement packets present in
the network during this timeframe.

Figure 5.13: Number of transmitted advertisement packets (per timestamp)

Figure 5.14: Number of transmitted advertisement packets (per hour)
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It is evidenced that the number of advertisement packets remains quite similar between
all three strategies. However, the small decrease in vehicles does have a clear effect on this dis-
semination, since the average number of advertisements now rounds 24 thousand packets as
opposed to the Rush Hour’s 28 thousand packets. Such is not unexpected since the slight de-
crease in vehicle density also implies a slight decrease in contacts with both the infrastructure
and other neighboring vehicles.

Size of Advertisements

This is the metric that evidences the biggest impact on using Bloom Filters to disseminate
control packets in the network. Figures 5.15 and 5.16 emphasize this fact by highlighting the
size of the transmitted advertisement packets in the network, during this timeframe.

When analyzing the results obtained from the Non-Rush Hour experiment and compar-
ing them with the Rush-Hour one, it is clear that the behaviour of the whole network is highly
similar when transmitting advertisement packets. Figure 5.15 shows that during the first two
hours, LRBF shows yet again a larger overhead in the remaining two hours, due to most of the
dissemination process occurring in the first half of the experiment. Nevertheless, it is slightly
smaller since not a single timestamp sees over 120kbps of advertisement files transmitted.
FILTER, on the other hand, remains constant in advertisement packets’ size since the payload
of such packets will always contain bits codifying the storage contents of a node. Such leads
to lower network overload. Likewise, LRGF aso evidences good practice in lowering overhead,
although its advertisement packets are larger than FILTER’s.

Figure 5.9 further corroborates this statement. During the first two hours, LRBF reaches
up to 50 MB of network overhead. Albeit smaller than during the Rush Hour experiment, it
has to be taken into account that the number of vehicles is also slightly smaller. Its adver-
tising nature makes it so that most nodes rarely send advertisements due to having received
the contents of its neighbours. The average size of its advertisement packets reaches approx-
imately 26-27 MB.

LRGF’s attempt at lowering overhead proves successful. While following the same be-
haviour as LRBF, the average size of the overhead throughout the experiment is approximately
18 MB.

FILTER still evidences that the size of the advertisement packets increases over time, which
is logical since the progress rate showed that most of the dissemination process happens
in the latter half of the experiment. The size of the advertisement packets, however, is still
smaller than LRBF and LRGF, reaching an approximate 12 MB, which is still less than half of
LRBF’s overhead and a third less of LRGF’s.

Furthermore, given that the exact same experiment was run multiple times, the variation
in both the number and size of sent advertisement packets is minimal, as seen in Table 5.6.
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Figure 5.15: Size of transmitted advertisement packets (per timestamp)

Figure 5.16: Size of transmitted advertisement packets (per hour)

FILTER Strategy C.I. (95%)
Number ±0.04

Size ±0.02

Table 5.6: Non-Rush Hour Advertisement Packet Statistics.
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Server Performance Metrics

Finally, Table 5.7 resumes the physical performance of the server that runs the mOVERS
emulator when simulating the vehicular network during the Non-Rush Hour timeframe. The
same three metrics are presented to ascertain the machine’s correct behaviour.

Strategy CPU(%) CPU std(%) Load Load std RAM(%) RAM std(%)
LRBF 6.0 4.5 1.1 0.9 41.0 7.6
LRGF 12.5 5.1 2.1 0.4 51.2 2.3

FILTER 24.5 8.4 4.5 1.5 33.5 5.9

Table 5.7: Computational Performance in Non Rush Hour.

By comparison with the Rush Hour, all content distribution strategies ran properly in the
mOVERS emulator, with no overconsumption of the running machine’s resources. Compar-
ing the two strategies themselves, the previously established correlation maintains. FILTER
consumes more CPU and machine cores than LRBF and LRGF, once again, due to the na-
ture of the algorithm, such as, the heavy hashing operations derived from it. However, it uses
less RAM memory since it does not require constant access to internal structures to gather
detailed information about the packets. Instead, to fill the Bloom Filter, it merely uses their
identifier, therefore, leading to lower memory consumption. Once again, the increase in re-
source consumption is a trade-off to ensure lower overhead present in the network.

5.6 Summary

This chapter’s focus was on the analysis of the obtained results and posterior evaluation
of the same, once the implementation, detailed in Chapter 4, was finalized in mOVERS Emu-
lator. In order to evaluate the behaviour of the vehicular network when performing a content
distribution service using Bloom Filters, the Bloom Filter itself was subjected to a test in the
time period of most vehicular density to verify its robustness. Furthermore, a previously im-
plemented strategy was used for comparison purposes and tests were run in different time
periods to perform such evaluation.

The results obtained in both the Rush Hour and Non-Rush Hour tests have proven that
LRBF is still a strategy unmatched in delivery rate, thanks to the intelligence built in its rout-
ing algorithm that provides all vehicles with full knowledge of its neighbours’ information in
storage. However, FILTER has proven a strategy capable of delivering closely the same per-
centage of information to the network while, at the same time, decreasing the network’s over-
head considerably.

As such, the use of a Bloom Filter in a vehicular network has proven its benefits and should
be a strategy to further optimize as future work.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The unique characteristics of VANETs such as intermittent connectivity and high mobility
make it a network suitable for DTN mechanisms, specifically, due to their SCF (Store-Carry-
and-Forward) mechanism trait. The potential of VANETs for non-urgent content distribution
(tourist information, multimedia files, among others), while maintaining a low network over-
head was the main motivation factor for the development of this Dissertation.

The main aim of this Dissertation was the study of a content distribution strategy with
potential for decreasing a vehicular network’s overhead, its implementation in the chosen
platform for development and posterior evaluation of the obtained results. Several content
distribution strategies were studied, specially several using a data structure considered op-
timal for summarizing content, named Bloom Filter. As such, a strategy named FILTER was
developed for mOVERS emulator.

This strategy was defined based on pre-existing literature. Bloom Filters have been used
several times in vehicular networks. FILTER is a strategy that uses a Bloom Filter to advertise
a vehicle’s storage content by encapsulating it within a control packet and broadcasting it to
all of a vehicle’s neighbours. This control packet adds overhead to the network since it is not
the actual content required by the vehicles.

Several challenges arose during the development of this Dissertation, most of which were
related to the analysis of the emulator’s code in order to properly understand all the proce-
dures when running a mOVERS test as well as to the implementation of the strategy itself.

In order to test the behaviour of the proposed content distribution strategy, the mOVERS
emulator was used to implement the code required to test such strategy. Two preferred sce-
narios were chosen based on pre-existing literature in order to evaluate the impact of the
Bloom Filter-based strategy on the vehicular network of Oporto: the Rush Hour and the Non-
Rush Hour.

After evaluating the data obtained from the tests, several conclusions were derived. LRBF
provides the upper bound for delivery ratio, since the nodes will have knowledge of the com-
plete information of all the packets in each neighbouring node. However, the high amount of
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information transmitted in the control packets cause the network to have a considerably high
network overhead. FILTER, the strategy chosen in the scope of this Dissertation, has proven to
be able to attenuate such network overhead by sending storage content information of each
vehicle, coded into bits, leading to a lower control packet size and ultimately, lower network
overhead. This strategy only failed in fully mimicking the delivery rate of LRBF by roughly 2%.
Such must be seen as the trade-off to lower the network’s overhead.

It was concluded that, in order to attempt to improve the delivery rate of this strategy, the
function used to re-order the storage content (labeled Utility Function) should be further im-
proved to ensure a faster packet distribution in the first half of the tests run, since most of the
dissemination with the proposed strategy occurs in the latter half.

6.2 Future Work

The field of Content Distribution has not been fully exploited yet and, as such, has yet
many topics worthy of evaluation. Future studies in this area should include the following
improvements:

• mOVERS Emulator Performance: The emulator used can be highly unstable when at-
tempting to perform a test that requires a high number of nodes in a highly dense net-
work. Moreover, the emulator is run on a server that requires resource sharing, leading
to a potential abrupt shutdown. Given that mOVERS requires a high amount of time to
emulate a given number of nodes that may require further decrease, the reason for this
instability should be assessed in the code and solved for emulator robustness.

• Standard Filter Optimization: Previous content distribution strategies ensured a de-
crease in overhead during the experiment by making the vehicles announce their fully
completed storage as a shorter message. The current implementation of the filter al-
ways builds a bit table with the number of packets coded into it. A future optimiza-
tion would be making the nodes announce their fully completed storage by sending a
shorter message, as well.

• New Filter Types: In the scope of this Dissertation, a standard filter was used to test
the network for decreased overhead. However, other types of filters could be used to
further optimize the network overhead and add extra functionalities to the network,
such as tracking the presence of specific packets in nodes through time.

• Utility Function Study: A study on several utility functions should be performed to
assess the most suitable method to ensure enhanced packet distribution and, conse-
quently, an enhanced delivery rate when transmission is validated by the control pack-
ets.

• Real World Evaluation: Both the proposed and the previously implemented content
distribution strategies have only been tested in the emulator with data from the vehic-
ular network mobility. In the future, tests in the real equipments, OBUs and RSUs, will
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be performed to evaluate the strategies’ performance on a real life network. This will
require the compilation of mOVERS to the boards within a controlled laboratory envi-
ronment, and then a real evaluation in the real ’uncontrolled’ network.
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Appendix A

How to run tests on mOVERS Emulator

The following appendix serves as a guide on how to run a DTN scenario test in the mOVERS
emulator directly in a machine.

A.1 Compiling

Once within the folder of the mOVERS emulator, change the location to libhelix/src and
compile the mOVERS’ libraries with the command sudo make clean all install. This com-
mand does not need to be run every time a test is run. Only whenever the libraries are
changed, for example, if new members are added to the header of the packets (information
located in the libraries).

Afterwards change the location to mOVERS/build and generate a Makefile for compil-
ing, using the command sudo cmake -DEMULATOR=ON ../src and compile using sudo make
clean all emugui. This will generate binary files in the folder mOVERS/bin that must be then
moved to the server that will be running the emulator. It is not advisable to run this emulator
in a personal laptop due to the heavy consumption of resources inherent to this emulator.

A.2 Execution and Monitoring

The mOVERS execution is done using the script startEMU. However, some fields within
will have to be changed depending on the test being run.

• Dataset: The field for choosing which mobility pattern to analyze. Choice is either 2 or
3, standing for the dataset collected in October 31st, 2014 or February 13th, 2015;

• Initial and Final Time: The timeframe must be set by changing the fields ti and tf to the
corresponding UNIX timestamps.

During mOVERS execution, the behaviour of the OBUs and RSUs can be monitored by
the user by changing the location to the folder mOVERS/scripts/nohup_files. The nohup_-
emugui.out allows the user to confirm the correct timeframe of execution set by the user.
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Moreover, each OBU and RSU generates an .out file in this location where the user can choose
to "tail" a file to monitor the machine’s behaviour during the experiment, using the command
tail -f nohup_**u_id.out, where "**u" can be an obu or rsu and the id is the corresponding
number of the machine.

A.3 Logging

The files for posterior analysis in MATLAB can be found in mOVERS/logs/datasetx where
x stands for the chosen dataset (2 or 3). Those files must then be transferred to the machine
running MATLAB.
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