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resumo  
 
 

Os modelos autoregressivos de valores inteiros multivariados (MINAR) 
desempenham um papel central na análise estatística de séries temporais de 
contagem. Dentro do razoavelmente grande espectro de modelos MINAR
propostos na literatura, muito poucos focam a análise de séries de contagem 
com estrutura periódica. A análise dos processos de contagem multivariados 
apresenta muitos desafios que vão desde a especificação do modelo até à
estimação de parâmetros. Esta tese tem como objetivo dar uma contribuição 
nessa direção. Especificamente, o objetivo deste trabalho é duplo: primeiro, 
introduzimos o processo multivariado periódico de ordem um, PMINAR(1). As
propriedades probabilísticas e estatísticas do modelo são estudadas em 
detalhe. Para superar as dificuldades computacionais decorrentes da 
utilização do método da máxima verosimilhança introduzimos uma abordagem 
baseada na verosimilhança composta. O desempenho do método proposto e 
outros métodos concorrentes na estimação dos parâmetros é comparado
através de um estudo de simulação. A previsão também é abordada. Uma 
aplicação de dados reais relacionados com a análise de fogos é apresentada. 
Em segundo lugar, propomos dois modelos INAR (univariado e bivariado) com 
estrutura periódica, S-PINAR(1) e BS-PINAR(1), respetivamente. Ambos os 
modelos são baseados no operador signed thinning permitindo contagens de 
valores positivos e negativos. Apresentamos as propriedades probabilísticas 
básicas e estatísticas dos modelos periódicos. As inovações são modeladas 
através das distribuições Skellam univariada e bivariada, respetivamente.
Para avaliar o desempenho dos estimadores dos mínimos quadrados 
condicionais e da máxima verosimilhança condicional, foi realizado um estudo 
de simulação para o modelo S-PINAR(1).  
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abstract  
 

Multivariate INteger–valued AutoRegressive (MINAR) processes play a central 
role in the statistical analysis of integer-valued time series. Within the 
reasonably large spectrum of MINAR models proposed in the literature, 
however, only a few focus on the analysis of time series of count data with 
periodic structure. The analysis of multivariate counting processes presents 
many challenging problems ranging from model specification to parameter 
estimation. This thesis aims at giving a contribution towards this 
direction. Specifically, the purpose of this research is two-fold: first, we 
introduce the periodic multivariate process of order one (PMINAR(1) in short). 
The probabilistic and also the statistical properties of the model are studied in 
detail. To overcome the computational difficulties arising from the use of the 
maximum likelihood method we introduce a composite likelihood-based 
approach. The performance of the proposed method and other competitors 
methods of estimation is compared through a simulation study. Forecasting is 
also addressed. An application to a real data set related with the analysis of 
fire activity is presented. Secondly, we propose two INAR (univariate and 
bivariate) models with periodic structure, S-PINAR(1) and BS-PINAR(1), 
respectively. Both models are based on the signed thinning operator allowing 
for positive and negative counts. We examine the basic probabilistic and also 
the statistical properties of the periodic models. Innovations are modeled by 
univariate and bivariate Skellam distributions, respectively. To study the 
performance of the conditional least squares and conditional maximum 
likelihood estimators, a simulation study is conducted for the S-PINAR(1) 
model. 
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Chapter 1

Introduction

Discrete-valued time series are common in many practical situations, often as counts of events

or individuals in consecutive intervals or at consecutive points in time. The analysis of

non-negative integer-valued time series has become an important area of research in the

last decades partially because of its wide applicability, for example, in the fields of public

health and medicine (Moriña et al., 2011; Fernández-Fontelo et al., 2016), road safety (Pedeli

and Karlis, 2011), economics (Bourguignon, 2016), finance (Barreto-Souza and Bourguignon,

2015), criminology (Nastić and Ristić, 2012; Ilić, 2016) and environment (Pavlopoulos and

Karlis, 2008), among others.

The class of linear models with finite variance plays a central role in the analysis of stationary

time series. This class includes conventional ARMA(p, q) models of the form

Xt =

p∑
i=1

αiXt−i +

q∑
j=1

βjZt−j + Zt, t ∈ Z (1.1)

with αi (i = 1, . . . , p) and βj (j = 1, . . . , q) being constants, and {Zt} constitutes an inde-

pendent identically distributed (i.i.d.) sequence of random variables. However, such models

are unlikely to describe accurately time series of counts due to the discreteness of the process

since the multiplication of an integer by a real number usually results in a non-integer value.

Addressing this issue various models of discrete time series have been proposed in the litera-

1



2 Chapter 1. Introduction

ture. Discrete-valued stationary processes have been studied by Jacobs and Lewis (1978a,b,

1983). It was perhaps the first attempt to obtain a general class of simple models for discrete

variate time series. These models, referred to as DARMA models, are structurally based on the

well-known ARMA processes.

Among the most successful models for integer-valued data we mention the INARMA (INteger

AutoRegressive Moving Average) models. INARMA models are the discrete counterparts of the

conventional ARMA models, where the scalar multiplication is replaced by an appropriate thin-

ning operator. To ensure the discrete nature of the variates is preserved, {Zt} is a sequence

of integer-valued random variables (r.v.’s).

Several models dealing with the discreteness of the data have been proposed in the literature.

These models are categorized as either observation-driven or parameter-driven, a nomencla-

ture that is originally due to Cox (1981). In parameter–driven models the serial dependence

is induced by a latent variable whose distribution does not depend on the past observations

of the outcome variable. In contrast, observation–driven models induce serial dependence

by specifying the state variable explicitly as a function of past observations. MacDonald and

Zucchini (1997) and McKenzie (2003) provide an overview of the subject. Jung and Tremayne

(2011) compare and contrast a variety of time series models for counts. More recently, Davis

et al. (2016) address a plethora of diverse topics on modeling discrete-valued time series, and

in particular time series of counts. Theoretical, methodological and practical issues are pur-

sued therein.

In this work we will focus on observation-driven models that include models based on the

thinning operators, where the multiplication in the common time series models is replaced by

an appropriate thinning operator. The remainder of this chapter is organized as follows: the

first two sections review univariate and multivariate time series models for count data. In each

of the aforementioned sections, we have subdivided the section into three parts: one regarding

binomial thinning-based INAR models, another regarding signed thinning-based INAR models

and the last subsection covers other related INAR models. Periodic time series are described

in a different section. Parameter estimation and forecasting issues are also addressed. At

last, we present the outline of the thesis, stating the developed work.
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1.1 Univariate time series models for count data - a review

Many models that have been built for count time series data are based on the Steutel and van

Harn (1979) thinning operator. A survey on thinning operation for count data was provided

by Weiß (2008). Recently, Scotto et al. (2015) reviewed the literature on relevant thinning-

based models for the analysis of integer-valued time series with finite/infinite support.

1.1.1 Binomial thinning-based INAR models

The most popular thinning operator is the binomial thinning, introduced by Steutel and van

Harn (1979) to adapt the terms of self-decomposability and stability for integer-valued time

series.

Definition 1.1. (Binomial thinning operator)

Let (Yk)k∈N be a sequence of i.i.d. Bernoulli random variables with mean α ∈ [0, 1], inde-

pendent of X, a non-negative integer-valued random variable with range N0. The binomial

thinning operator α◦ is given by

α ◦X :=


X∑
k=1

Yk , X > 0

0 , X = 0

. (1.2)

Some elementary properties of the binomial thinning operator, defined above, are summarized

in Lemma 1.1. Further properties of the binomial thinning operator can be found in e.g. Silva

and Oliveira (2004), Weiß (2008) and more recently, in Turkman et al. (2014).

Lemma 1.1. (Properties of the binomial thinning operator)

Let X and Y be two random variables with support in N0, and α, β ∈ [0, 1].

1. 0 ◦X = 0,

2. 1 ◦X = X,
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3. α ◦ (β ◦X)
d
= (αβ) ◦X,

4. α ◦ (X + Y )
d
= α ◦X + α ◦ Y if the two counting sequences are independent,

5. E(α ◦X) = αE(X),

6. V ar(α ◦X) = α2V ar(X) + α(1− α)E(X),

7. Cov(α ◦X,X) = αV ar(X).

Basic properties can easily be derived using known formulas for conditional mean and variance:

E[Y ] = EX(E[Y |X]) and V ar[Y ] = V arX(E[Y |X]) + EX(V ar[Y |X]). (1.3)

The INARMA(p, q) model (p and q both non-negative) has been defined, on the basis of binomial

thinning operator of Steutel and van Harn (1979) in (1.2), through the recursion

Xt =

p∑
i=1

αi ◦Xt−i +

q∑
j=1

βj ◦ Zt−j + Zt, t ∈ Z, (1.4)

where {Zt} is an i.i.d. sequence of integer-valued r.v.’s with finite mean and variance. It is

assumed that all thinning operators are performed independently of each other and of Zt.

The INARMA models directly imitate the classical ARMA recursion. The counterpart to the

conventional AR model, in the context of INARMA models, is the INAR model, an important

sub–class of the observation–driven models. Hence, when q = 0 in equation (1.4), {Xt} is

called an INAR of order p. If p = 0, {Xt} is referred to as INteger–valued Moving Average of

order q (INMA(q) for short). The INMA models are beyond the scope of this work.

The first-order non-negative integer-valued autoregressive (INAR(1)) process is a particular

case of equation (1.4) for p = 1 and q = 0 and has received considerable attention. This

model was introduced independently by McKenzie (1985) and Al-Osh and Alzaid (1987) as a

tool for modeling and generating sequences of dependent counting processes. Many authors

have studied INAR models extensively. This is partially due to the increasing availability of

relevant data sets in various fields of applications (e.g. medicine and finance).
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A non-negative integer-valued time series {Xt} is said to follow an INAR(1) model if it satisfies

a difference equation of the form

Xt = α ◦Xt−1 + Zt, t ∈ Z, (1.5)

where parameter α ∈ [0, 1] and {Zt} is a sequence of i.i.d. non–negative integer–valued r.v.’s.

It is assumed that all thinning operators are performed independently of each other and of

Zt. The term Zt is referred to as the innovation term and must be independent of α ◦Xt−1,

and follows any discrete distribution with support N0 (in order for Xt to be counts).

The realization of the process at time t is composed by two parts, the first one clearly relates

to the previous observation, while the second one is independent and depends only on the

current time point. One can easily see that the binomial thinning operator in equation (1.5)

replaces the multiplication used for the standard AR(1) models as to ensure that only integer

values will occur. Thus, conditional on X, α ◦ X is a binomial r.v., where X denotes the

number of trials and α represents the probability of success in every trial. The condition

α < 1 is necessary and sufficient for equation (1.5) to admit a strictly stationary solution,

whose marginal law is uniquely determined by the law of the innovations according to the

INAR(∞) representation, Xt
d
=
∑∞

j=0 α
j ◦ Zt−j (Al-Osh and Alzaid, 1987). The conditions

α = 0 and α = 1 imply independence and non-stationarity for {Xt}, respectively.

Let µZ and σ2Z be the (assumed finite) mean and variance of the i.i.d. innovation Zt, then

the mean and variance of the stationary solution of INAR(1) in (1.5) are

µX = E(Xt) =
µZ

1− α
and σ2X = V ar(Xt) =

αµZ + σ2Z
1− α2

, (1.6)

respectively. The autocovariance and autocorrelation functions of a stationary INAR(1) process

{Xt} are given by the formulae

γ(k) = Cov(Xt, Xt−k) = α|k|σ2X and ρ(k) = Corr(Xt, Xt−k) = α|k|, k ∈ Z. (1.7)
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Furthermore, autocorrelation function ρ(k) decays exponentially with lag k and for k = 1,

the parameter α represents the correlation between successive time points.

INAR processes retain some of the properties of the conventional AR models while allowing

for the discreteness of the data, namely, the fact that for both models the autocorrelation

function (ACF) takes the form ρ(k) = αk for k ∈ N. Another important property of the

INAR(1) model in (1.5) is that the discrete self-decomposable (DSD) distributions are possible

marginal distributions, since the probability generating function (p.g.f.) of the INAR(1) model

satisfies

GX(s) = GX(1−α+ αs)GZ(s), (1.8)

where GZ is the p.g.f. of innovation Zt. Many important distributions, including Poisson,

generalized Poisson and the negative binomial distribution belong to this class of DSD distri-

butions (Zhu and Joe, 2003).

Different distributional forms of the innovation term Zt have been proposed but main part of

the literature have been devoted to the Poisson distribution, the simplest and most common

choice. This is partly because of the favoring property that the innovation distribution be-

longs to the same family as the marginal distribution (Al-Osh and Alzaid, 1987). For more

structural and asymptotic properties of an INAR(1) process with Poisson marginal, we refer

the reader to, e.g. Park and Oh (1997), McKenzie (2003) and Silva and Silva (2006). How-

ever, the implied equidispersion (variance equals mean) limits the applicability of the Poisson

INAR models in real data applications.

The simple Poisson INAR model can be extended to a INAR Poisson regression model by adding

covariates to both the innovation term Zt and/or the autocorrelation parameter α. The model

then takes the form

Xt = αt ◦Xt−1 + Zt,

Zt ∼ Poisson(λt),

log(λt) = v′
tβ,

log

(
αt

1− αt

)
= u′

tϕ,
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where vt and ut are vectors of covariates at time t while β and ϕ are the associated regression

coefficients. Note that the covariates for the two parts of the model must not necessarily

be the same. Using a discrete time series model with this specification, Brijs et al. (2008)

studied the effect of weather conditions on daily crash counts, a relevant issue in road safety.

For regression models based on count time series see, for instance, the books of Kedem and

Fokianos (2005) and Cameron and Trivedi (2013).

Since their introduction, INAR processes sustained various generalizations and modifications

through the work of several authors. Generalizations of the basic INAR model can be based

on either other distributional forms for innovation Zt or by replacing the binomial thinning

operator with a different thinning. We postpone details on other thinning operators and

concentrate on binomial thinning within this subsection. In practice, some discrete time

dependence count data may be overdispersed, i.e., the variance is greater than the mean mo-

tivating alternative innovation distributions from the common Poisson distribution.

The generalized Poisson model is a generalization of the Poisson distribution with an extra

parameter which reflects overdispersion. Alzaid and Al-Osh (1993) have considered discrete

time series with generalized Poisson marginals. Mixed Poisson distributions have been used

in a wide range of scientific fields, a thorough review of this family is available in Karlis and

Xekalaki (2005). Nikoloulopoulos and Karlis (2008) compared four members of the mixed

Poisson family. Only a few of them have been considered in practice, mainly due to compu-

tational problems.

INAR(1) processes with negative binomial and/or geometric marginal distribution for time se-

ries of overdispersed counts have been considered by McKenzie (1985, 1986, 2003), Alzaid and

Al-Osh (1988), Al-Osh and Aly (1992), Zhu and Joe (2006) and also by Jazi et al. (2012b).

Other distributions for the innovation term include: zero truncated Poisson (ZTP) distri-

bution (Bakouch and Ristić (2010) proposed the ZTPINAR(1) process); power series (PS)

distribution (Bourguignon and Vasconcellos (2015) introduced the PSINAR(1) model); Pois-

son–geometric (PG) distribution (Bourguignon (2016) established the PGINAR(1) process) and

Poisson–negative binomial (PNB) distribution (Jose and Mariyamma (2016) proposed the

PNBAR(1) model). The PSINAR(1) model contains, as particular cases, the Poisson INAR(1)
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model (Al-Osh and Alzaid, 1987) and the geometric INAR(1) model (Jazi et al., 2012b). The

use of innovations that come from the PS family of distributions has many advantages, this

family constitutes a flexible framework for statistical modeling of discrete data in several real-

life events (Johnson et al., 2005). The PGINAR(1) model extends the Poisson INAR(1) process

(Al-Osh and Alzaid, 1987) and the geometric INAR(1) process (Alzaid and Al-Osh, 1988).

One frequent manifestation of overdispersion is that the incidence of zero counts is greater

than expected from a Poisson model. Jazi et al. (2012a) considered an INAR(1) model with

zero inflated Poisson innovations (ZINAR(1)). Meanwhile, compound Poisson (CP) distribu-

tion for the innovations of an INAR(1) model was considered by Schweer and Weiß (2014) and

Weiß and Puig (2015). The CPINAR(1) model for time series of overdispersed counts revealed

to be appealing and comprises a number of specialized INAR(1) models within one model.

While models for overdispersed counts have been discussed intensively in the literature by

now, the opposite phenomenon, underdispersion, has received little attention. Weiß (2013)

gave a detailed survey of distribution models allowing for underdispersion. Properties were

derived and possible disadvantages of the model were highlighted.

INAR models contaminated with innovational and additive outliers were introduced and ana-

lyzed by Barczy et al. (2010, 2012) and Silva and Pereira (2015). Extensions of the INAR(1)

model into the spatial context were considered by Ghodsi et al. (2012). The study of seasonal

extensions of the INAR processes has been addressed recently by Bourguignon et al. (2016).

For higher order INAR models, two different specifications of the second-order structure can be

distinguished. In Alzaid and Al-Osh (1990), the INAR(p) process has a correlation structure

that is similar to that of an ARMA(p, p− 1) model. Du and Li (1991) proposed a process with

a correlation structure identical to that of a standard AR(p) process.

1.1.2 Signed thinning-based INAR models

In many real-life events there is a necessity for modeling the data obtained from correlated

processes which may deal with positive and negative integer values. Binomial thinning can

only be applied to count variables, i.e., to non-negative integer-valued r.v.’s as their range,
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therefore, cannot account for negative integers. Whilst models for non-negative integer-valued

time series are now abundant, there is a shortage of similar models when the time series refer

to data defined on Z, i.e., in both the positive and negative integers. Such data occur in

certain fields (e.g. finance and sports). The need for such models can also appear when

taking differences of positive integer-valued count time series.

The first model for data with range in Z was introduced by Kim and Park (2008). Their

model is based on the signed binomial thinning operator.

Definition 1.2. (Signed binomial thinning operator)

Let (Yi)i∈N be a sequence of i.i.d. Bernoulli random variables with mean |α|, independent of

X, an integer-valued r.v. with range in Z. The signed binomial thinning operator, represented

by α⊕, is defined by

α⊕X := sign(α)sign(X)

|X|∑
i=1

Yi, (1.9)

where

sign(x) =

 1 , x ≥ 0

−1 , x < 0
. (1.10)

Kim and Park (2008) defined the INARS(p) process, an integer-valued autoregressive process of

order p with signed binomial thinning operator. When X ≥ 0 and α ≥ 0, the signed binomial

thinning in (1.9) is reduced to the classic binomial thinning in (1.2). One advantage of the

INARS model is that it can handle integer-valued time series which allows for negative integer-

valued and negative correlated count data unlike the integer-valued time series models in the

previous subsection. Those are only appropriate for non-negative integer-valued time series

and can only deal with positive autocorrelations. The INARS model persists the differences

in autocorrelation structure of INAR(p) models studied by Alzaid and Al-Osh (1990) and Du

and Li (1991). Kim and Park (2008) have proven stationarity and ergodicity of the INARS(p)

process under the same condition as in the conventional AR(p) process.

For a proper time series on Z we also need to consider a distribution for the innovation

term defined on Z. The literature is limited on this subject. However, recently, discrete

distributions defined on the set of integers has attracted the attention of several researchers.
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Two ways to define distributions on Z are: the differences between two non-negative discrete

r.v.’s and the discrete version of continuous distributions on R. The main distributions on

the set Z are Poisson difference, discrete normal and discrete Laplace. The Poisson difference

distribution, also known as the Skellam distribution, is traditionally linked to Skellam (1946)

and has found applications in areas such as medicine (Karlis and Ntzoufras, 2006), sports

(Karlis and Ntzoufras, 2009) and finance (Alzaid and Omair, 2010). The special case of two

independent Poisson distributions for the case of equal means was derived by Irwin (1937)

whereas Skellam (1946) and Prékopa (1952) discussed the general case, unequal means.

Definition 1.3. (Univariate Skellam distribution)

Let θ1 > 0 and θ2 > 0 . The r.v. Z has Skellam distribution, denoted by Skellam(θ1, θ2)

if and only if Z d
= Y1−Y2 where Y1 and Y2 are two independent random variables such that

Yi ∼ Poisson(θi) for i = 1, 2.

Thus, the probability mass function (p.m.f.) of Z is a discrete distribution, defined on the

set of integer numbers Z, given by

P (Z = z) = e−(θ1+θ2)

(
θ1
θ2

)z/2

I|z|

(
2
√
θ1θ2

)
, z ∈ Z, (1.11)

where Ir(x) is the modified Bessel function of the first kind of order r defined by

Ir(x) =
(x
2

)r ∞∑
i=0

(
x2

4

)i

i!Γ(r + i+ 1)
.

The definition of the Skellam distribution can be extended to more than the simple difference

of two independent Poisson distributions. Indeed, let X1 and X2 be two independent Poisson

random variables with parameters θ1 and θ2 respectively. Let Yi = Xi + W , for i = 1, 2,

where W is a r.v. independent of X1 and X2. Thus, Z = Y1−Y2 = X1−X2 also follows a

Skellam(θ1, θ2) distribution. Alternative formulas for the p.m.f. of the Skellam distribution

stem from the work of Alzaid and Omair (2010). For basic properties of the Skellam distri-

bution, see Appendix A.
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Some other distributions defined as the difference of two discrete variables are given in Ong

et al. (2008). Kemp (1997) introduced a discrete version of normal distribution to cover

discrete data on the whole set of integers Z and, similarly, Inusah and Kozubowski (2006)

considered a discrete analogue of Laplace distribution. Kozubowski and Inusah (2006) pro-

posed a discrete version of the skew Laplace distribution as a generalization of discrete Laplace

distribution and demonstrated its importance in analysis of climatic episodes such as droughts

and floods.

Andersson and Karlis (2014) introduced a first-order model with the signed binomial thin-

ning operator assuming a specific innovation distribution, the Skellam distribution, SINARS(1)

model (first S stands for Skellam). This model is a particular case of the model in Kim and

Park (2008). Parametric inference and prediction for the model in Andersson and Karlis

(2014) are also addressed. The marginal of SINARS(1) process does not have Skellam dis-

tribution. An extension of the signed binomial thinning operator given in (1.9) was then

established by Zhang et al. (2010) and denoted the signed generalized power series thinning

operator. These authors have proposed a generalized version of the INARS(p) model in Kim

and Park (2008), the GINARS(p) process. The counting sequences have a generalized power

series as common distribution, which includes the binomial, the negative binomial, the Pois-

son, among other distributions.

Recent work by Alzaid and Omair (2012) introduced the extended binomial distribution as

an alternative to the Skellam distribution. Alzaid and Omair (2014) presented a natural

Z-extension of the INAR model, originally defined on N, the new INAR(1) model has Poisson

difference (PD) innovations (PDINAR(1)). This process can handle negative integer-valued time

series and allow for both positive and negative autocorrelation. The PDINAR(1) model is based

on the extended binomial thinning operator and has Skellam marginal distribution. Special

cases of the extended binomial thinning are: binomial thinning in (1.2) and signed binomial

thinning in (1.9). We also mention the extended Poisson distribution introduced by Bakouch

et al. (2016), the first version of the Poisson distribution over the set of all integers.

Using a slightly different version of the signed thinning operator defined by Kim and Park

(2008) in (1.9), Kachour and Truquet (2011) focused on a more general class of Z-valued
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processes denoted by SINAR(p) (Signed INAR). This modified version of the thinning operator,

also called the signed thinning operator, is defined as follows.

Definition 1.4. (Signed thinning operator)

Let (Yi)i∈N be a sequence of i.i.d. integer-valued random variables with distribution F , inde-

pendent of an integer-valued r.v. X. The signed thinning operator, denoted by F⊙, is defined

by

F ⊙X :=


sign(X)

|X|∑
i=1

Yi , X ̸= 0

0 , otherwise

(1.12)

with sign(X) as in (1.10). The sequence (Yi)i∈N is referred to as a counting sequence.

Some basic properties of the signed thinning operator are listed in Lemma 1.2. These easily

follow from the independence assumptions and the obvious identity x = sign(x)|x|, x ∈ R.

Lemma 1.2. (Properties of the signed thinning operator)

Let X,W be two random variables and Y, Ỹ two counting sequences with distribution F, F̃ ,

respectively. Assume that (X,W ), F and F̃ are independent. Consider α the mean and β the

variance of the distribution function F . Then,

1. E(F ⊙X|X) = αX,

2. V ar(F ⊙X|X) = β|X|,

3. Cov(F ⊙X, F̃ ⊙W |X,W ) = 0,

4. Cov(F ⊙X,W ) = αCov(X,W ).

Kachour and Truquet (2011) pointed out that the signed thinning operator is the natural

extension of the Steutel and van Harn (1979) operator in (1.2) to Z-valued random variables.

Moreover, for a non-negative integer-valued random variable X, the signed thinning operation

in (1.12) is the popular binomial thinning operation in (1.2). In Definition 1.4, the notation

F ⊙ X replaces the usual notation α ◦ X in binomial thinning, where α denotes the mean
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of the counting sequence. The choice for the notation F ⊙ X was motivated by the fact

that Kachour and Truquet (2011) did not fix any specific one parameter distribution for the

counting sequence (Yi)i∈N such as a Bernoulli distribution.

The SINAR model allows negative values for both the series and its autocorrelation function.

Theoretical results about stationarity and the moments of SINAR processes were given in

Kachour and Truquet (2011). The authors avoid, however, a parametric assumption for the

innovation term. Based on the preceding operator and under a parametric assumption on the

common distribution of the counting sequence of the model, Chesneau and Kachour (2012)

focus on the simplest SINAR(1) model. They also introduced a new class of distribution on

Z, denoted by Rademacher(p)-N with p ∈ (0, 1). This distribution can be interpreted as a

natural extension of the Bernoulli distribution from {0, 1} to {−1, 1}.

Definition 1.5. (Rademacher(p)-N distribution)

Let R and W be two independent random variables such that R ∼ Rademacher(p), that is,

P (R = 1) = p = 1−P (R = −1), p ∈ (0, 1)

and support(W ) ⊆ N. A r.v. X belongs to the Rademacher(p)-N class, if and only if X d
= RW .

Indeed, the Rademacher distribution is a recoding of the Bernoulli distribution, where 1 still

indicates success, but failure is coded as −1. Therefore, if random variable Y ∼ Bernoulli(p)

then r.v. R = 2Y−1 ∼ Rademacher(p). This distribution is also related with the Skellam

distribution (Chesneau et al., 2015). Let R ∼ Rademacher(p) and Z ∼ Skellam(θ1, θ2) then

the random variable Z∗ = RZ is a mixture of two Skellam random variables of the form

pSkellam(θ1, θ2) + (1−p)Skellam(θ2, θ1).

1.1.3 Other univariate thinning-based INAR models

In the previous subsections, emphasis has been given to binomial and signed thinning oper-

ators but other generalizations of the INAR(1) model are available in the literature. Several

authors have proposed modifications of the thinning operation in order to make thinning-
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based models more flexible for practical purposes. We mention other relevant cases since the

variety of counting series demands some modification in terms of the thinning operator and

marginal distribution.

The generalized thinning operator introduced by Latour (1998) allowed the counting sequences

in (1.2) to be i.i.d. integer-valued r.v.’s with finite mean and variance although not necessarily

Bernoulli-distributed. Modifying the INAR(1) recursion (1.5) accordingly leads to the general-

ized INAR(1) process denoted by GINAR(1). Furthermore, the GINAR(p) model in Latour (1998)

is the generalized counterpart of the INAR(p) model by Du and Li (1991). Special cases of

Latour’s operator can be found in Zhu and Joe (2003) (extended thinning), in Zhu and Joe

(2010) (expectation thinning) and in Weiß (2015) (binomial-Poisson thinning).

Random coefficient INAR (RCINAR) models were introduced by Zheng et al. (2006, 2007),

providing nonparametric as well as parametric methods for parameter estimation. In some

situations, the autoregressive parameter α in (1.5) may vary with time and it may be random.

For example, let Xt denote the number of terminally ill patients in the t-th month. Here, Xt

could potentially satisfy an INAR model where α ◦Xt−1 is the number of surviving patients

from the previous month and Zt stands for the newly admitted patients in the current month.

In addition, the survival rate α may be affected by various environmental factors, such as

the quality of health care, the state of health of patients, etc. and could vary randomly over

time. Another area of application could be unemployment that can be affected by factors

such as the state of the economy, productivity growth, among others. The RCINAR processes

are able to describe overdispersion. Gomes and Canto e Castro (2009) extended the con-

cept of random coefficient thinning in analogy to Latour’s generalized thinning operator. For

the particular case of the (generalized) binomial thinning, Gomes and Canto e Castro (2009)

proved that the necessary and sufficient conditions for weak stationarity are the same as those

for continuous-valued AR(1) processes.

Wang and Zhang (2011) also extended the signed binomial thinning operator in (1.9) and

developed the generalized pth-order random coefficient INAR process with signed binomial

thinning (GRCINARS(p)). Zhang et al. (2012) study the GRCINARS(1) model in detail. INAR

models based on random coefficient thinning operators have been explored by Roitershtein
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and Zhong (2013), Tang and Wang (2014), Zhao and Hu (2015) and Zhang and Wang (2015).

Using the concept of random coefficient thinning for modeling of count data time series with

a finite range, Weiß and Kim (2014) introduced a beta-binomial autoregressive model.

Ristić et al. (2009) provided a new stationary INAR(1) process with geometric marginals

(NGINAR(1)) based on the negative binomial thinning operator which contains geometric

counting series. Further properties of this model were developed by Bakouch (2010). The

motivation for time series with geometric marginal distributions is due to their major role in,

e.g., the reliability theory, medicine, and precipitation modeling, arising from the number of

machines waiting for maintenance, the number of congenital malformations, and the number

of thunderstorms in a day. Nastić et al. (2012) considered a new (combined) INAR model

of order p with geometric marginal distribution (CGINAR(p)) based on the negative binomial

thinning introduced by Ristić et al. (2009). Using the preceding thinning operator but with

negative binomial (NB) marginals, Ristić et al. (2012a) established the NBINAR(1) process and

Nastić (2014) the combined NBINAR process of order p, CNBINAR(p). Integer-valued time series

generated by mixtures of binomial and negative binomial thinning operators are considered in

Nastić and Ristić (2012) and Ristić and Nastić (2012). Meanwhile, Li et al. (2015) introduced

a first-order mixed INAR processes with zero-inflated generalized power series innovations, de-

noted by ZIMINAR(1). These innovations contain the commonly used zero-inflated Poisson

and geometric distributions. Two thinning operators were mixed, namely the binomial thin-

ning (Al-Osh and Alzaid, 1987) and the negative binomial thinning operator (Ristić et al.,

2009). An INAR(1) process with NB thinning and zero-modified geometric (ZMG) marginals

was introduced by Barreto-Souza (2015). The ZMGINAR(1) model is also able to capture un-

der/over dispersion, which sometimes is caused by deflation or inflation of zeros.

In a different approach from Kim and Park (2008), Freeland (2010) extended discrete time

series models with non-negative values to models over the integers, modifying the binomial

thinning operator to produce a stationary AR(1) model with a Skellam marginal distribution.

More specifically, the Poisson INAR(1) model is extended to a symmetric model around zero,

the true INAR (TINAR(1)). The thinning operator considered by Freeland (2010) is somewhat

delicate to work with because it is defined on two latent counts for which only the difference
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is observed. One of the main features of the TINAR(1) model is it incorporates both positive

and negative correlation. Also arising from the difference between two discrete distributions

Barreto-Souza and Bourguignon (2015) established a skew INAR(1) process on Z, denoted by

SINARZ(1), with skew discrete Laplace (SDL) marginals (Kozubowski and Inusah, 2006). This

new model is based on a modified version of the NB thinning operator introduced by Ristić

et al. (2009) but in a similar fashion as in Freeland (2010), it acts on two independent but

not necessarily identically distributed latent NGINAR(1) processes. While the TINAR(1) process

established by Freeland (2010) is symmetric, the skew INAR(1) model on Z by Barreto-Souza

and Bourguignon (2015) can accommodate skewness. The probability function of the SDL

distribution has a simple form in contrast with the Skellam distribution which involves the

modified Bessel function of the first kind. Following a similar approach in model construction

as in Freeland (2010), Bourguignon and Vasconcellos (2016) proposed the new skew INAR(1)

process, named NSINAR(1), with geometric–Poisson marginals (which are distributed as a dif-

ference between geometric and Poisson r.v.’s) and Nastić et al. (2016a) a process with the

discrete Laplace DL marginal distribution (DLINAR(1)). The thinning operator of the model

was, once again, based on the negative binomial thinning of Ristić et al. (2009). An extension

on INAR models with skew discrete Laplace marginal distributions was introduced by Djord-

jević (2016), the SDLINAR(1) model, representing a generalization of two mentioned models,

SINARZ and DLINAR.

Another contribution in modeling time series that can incorporate negative count and nega-

tive values for autocorrelation was made by Kachour and Yao (2009) based on the rounding

operator. They have presented the rounded integer-valued time series process of order one

(RINAR(1)). A more general setup has been introduced since then by Kachour (2014).

It is important to stress here the fact that all thinning operators previously mentioned depend

upon the assumption of independence across the counting variables. Extensions of binomial

thinning based on Bernoulli-distributed dependent r.v.’s were proposed by Brännäs and Hell-

ström (2001). Significant contributions on this subject can be found in Ristić et al. (2013)

and in recent works of Ilić (2016) and Nastić et al. (2017). The literature for univariate count

time series models is now quite mature.
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1.2 Multivariate time series models for count data - a review

The study of multivariate INAR-type processes for count data has become a topic of spe-

cial interest during the last years. Multivariate count data can occur in many fields such

as finance, criminology, epidemiology, etc. Special attention has been devoted to bivariate

integer-valued time series processes. In the situation where two series of counts interact and

where the evolution of one series is dependent on the other, bivariate models are the most

appropriate. These models maintain the pairing between two count variables that occur over

specific times and play a major role in the analysis of the paired correlated count data. Bi-

variate generalizations of important univariate distributions are also of continuing interest.

The generalizations can be constructed in a wide variety of ways like mixing, compounding

and trivariate reduction. The former method is a popular method of construction due to its

simplicity and ease of computationally generating samples (more details in e.g. Lai (2006)).

1.2.1 Matrix-binomial thinning-based INAR models

As in the univariate case, before defining a multivariate process, we need to define a corre-

sponding thinning operator. The definition of matrix-binomial thinning follows.

Definition 1.6. (Matrix-binomial thinning operator)

Let X = [X1 X2 . . . Xm]T be a random vector with values in Nm
0 and (m × m) matrix

A = [aij ] with entries aij ∈ [0; 1]. The matrix-binomial thinning A ◦X is a m-dimensional

random vector whose i-th component is given by

[A ◦X]i =

m∑
j=1

aij ◦Xj , i = 1, . . . ,m, (1.13)

where the operator ◦ represents the binomial thinning in (1.2). Furthermore, the counting

series of all aij ◦Xj, i, j = . . . ,m, are assumed independent.
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Franke and Subba Rao (1993) introduced a m-variate INAR(1) model (MINAR(1) for short),

based on independent binomial thinning operators, given by recursion

Xt = A ◦Xt−1 + Zt, t ∈ Z, (1.14)

for (m×m) matrix A with entries in [0; 1] and Zt an i.i.d. random vector taking values in Nm
0 .

Some properties of the thinning operator are listed in Lemma 1.3. Proofs of the properties

can be found in Franke and Subba Rao (1993).

Lemma 1.3. (Properties of the matrix-binomial thinning operator)

Let A and B be (m×m) matrices; X and Y be non-negative integer-valued random m-vectors.

1. E[A ◦X] = AE[X];

2. E[(A ◦X)(A ◦X)T ] = AE[XXT ]AT + diag(DE[X]),

where D is the variance matrix;

3. E[(A ◦X)(B ◦Y)T ] = AE[XYT ]BT ,

if the counting series A ◦X and B ◦Y are independent.

Extensions of the univariate INAR processes to the bivariate case have been introduced by

several authors. Pedeli and Karlis (2011) extended the INAR(1) model to a bivariate integer-

valued autoregressive process of order one (BINAR(1) in short), where the correlation is in-

troduced through innovation components. Let Xt and Zt be non-negative integer-valued

random 2-vectors. Let A be a (2× 2) diagonal matrix with independent elements {αj}j=1,2.

The BINAR(1) model is defined as

Xt = A ◦Xt−1 + Zt ≡

 α1 0

0 α2

 ◦

 X1,t−1

X2,t−1

+

 Z1,t

Z2,t

 , t ∈ Z, (1.15)

where A◦ is the matrix-binomial thinning defined in (1.13) and [Z1,t Z2,t]
T are assumed to be

independent N2
0-valued random pairs. All thinning operations are performed independently

of each other and of Zt.
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From the definition of the bivariate model BINAR(1) in (1.15), the j-th component is given

by Xj,t = αj ◦Xj,t−1 + Zj,t for j = 1, 2. The marginals behave like the univariate binomial

thinning operator. Dependence between the two series that comprise the BINAR(1) process

is introduced by allowing for dependence through innovation components Zj,t for j = 1, 2.

Whatever the underlying joint distribution of Zt is, Pedeli and Karlis (2011) have shown that

the covariance between the innovations of the two series at time t, totally determines the

covariance between the current value of one process and the innovations of the other process

at the same point in time t and vice versa. Two specific BINAR(1) models were introduced

by Pedeli and Karlis (2011). One model arises from the assumption the innovations follow

jointly a bivariate Poisson distribution. For a comprehensive description of the bivariate Pois-

son distribution, we refer the reader to the books of Kocherlakota and Kocherlakota (1992)

and Johnson et al. (1997). Interestingly, the generated BINAR(1) model has a stationary dis-

tribution that is itself a bivariate Poisson distribution. Moreover, the univariate processes

for each variable are simple INAR(1) processes with Poisson marginals. The BINAR(1) model

neatly generalizes the typical univariate model. The disadvantage of this particular model is

that it does not allow for over/under dispersion (the marginal distributions are Poisson) or

negative correlation, and thus lacks generality. The second model assumes a bivariate neg-

ative binomial (BVNB) distribution for the innovations. There are several representations

for the BVNB distribution in the literature. Pedeli and Karlis (2011) have considered the

distributional form followed by Marshall and Olkin (1990), Boucher et al. (2008) and Cheon

et al. (2009). This assumption allows for more flexibility than the Poisson BINAR(1) model

due to the involvement of the overdispersion parameter. However, the resulting model is not

a BINAR(1) model with negative binomial marginals but a model that effectively accounts

for overdispersion. The two distributions seem to be appropriate for modeling equidispersed

and overdispersed bivariate time series, respectively. In the bivariate setting, the role of the

innovations is significant since not only they determine the joint distribution of the two series

under consideration but also they form the unique source of cross–correlation. Pedeli and

Karlis (2011) addressed forecasting and predictions by means of the conditional forecast dis-

tribution. An application concerning road accidents (during day and night) was provided.
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Focusing on the specific case of the BINAR(1) model that arises through the assumption of

bivariate Poisson innovations, Pedeli and Karlis (2013b) considered some alternative estima-

tors for the unknown parameters of the model and examined their behavior. An extension of

the model to a BINAR(1) Poisson regression model is also discussed. Pedeli and Karlis (2013a)

then extended the BINAR model proposed in Pedeli and Karlis (2011) to the multi-dimensional

space. Again, the authors focused on two parametric cases for the multivariate INAR(1) model:

multivariate Poisson distribution and multivariate negative binomial distribution for the in-

novation processes. However, the classical definition of the multivariate Poisson distribution

(Johnson et al., 1997) was not followed, the formulation in Karlis and Meligkotsidou (2005)

seemed more convenient. In the multivariate setting, computational issues arise in parameter

estimation of the unknown parameters, the complexity of the maximum likelihood approach

augments with dimensional increase. To overcome these difficulties, the concept of compos-

ite likelihood estimation was suggested by Pedeli and Karlis (2013a) and its performance

compared with conditional maximum likelihood estimation. The term composite likelihood

originated from Lindsay (1988). Composite likelihood methods based on optimizing sums of

log-likelihoods of low-dimensional margins have been considered by many authors in recent

years; they are useful for multivariate models in which the likelihood of multivariate data

is very time-consuming. In particular, pairwise likelihood or bivariate composite likelihood

methods are based on bivariate margins. An excellent overview of composite likelihood meth-

ods can be found in Varin et al. (2011), complementing and extending the review in Varin

(2008). Other relevant references on this subject are: Cox and Reid (2004), Varin and Vidoni

(2005) and Zhao and Joe (2005).

All models proposed in Pedeli and Karlis (2011) and Pedeli and Karlis (2013a,b) rely on

a constraint: the matrix A for autocorrelation parameters is diagonal, meaning there is no

cross-correlation in the counts. The assumption of diagonality implies that correlation be-

tween the innovations is the only source of dependence between the two series Xj,t, j = 1, 2.

Removing such an assumption would imply that cross–correlation do not solely arise from the

correlation between the innovation series of the multivariate process. The MINAR(1) process

in Franke and Subba Rao (1993) relies upon a non-diagonal autoregression matrix A. This
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framework was also followed by Boudreault and Charpentier (2011) and by Pedeli and Karlis

(2013c). By allowing for an additional source of dependence, i.e., relaxing the assumption of

diagonality of the matrix A, Pedeli and Karlis (2013c) introduced full multivariate INAR(1)

process, with special emphasis on the bivariate case with bivariate Poisson innovations. In

this context, the joint distribution of {X1,t, X2,t} is a 8-parameter bivariate Hermite distri-

bution (Kemp and Papageorgiou, 1982). More insight in bivariate INAR models based on

binomial thinning operator and Poisson marginals by Nastić et al. (2016b). Due to the grow-

ing interest in zero truncated distributions, pioneer work on bivariate INAR models with zero

truncated Poisson marginal distribution has been introduced by Liu et al. (2016), extending

the univariate model in Bakouch and Ristić (2010).

Most of the bivariate INAR models investigated in the literature uses constants for the regres-

sion coefficients. Popović (2016) developed bivariate models with random coefficients, based

on binomial thinning operator with unequal parameters. Innovations are mutually indepen-

dent and distributed in a way to support the stationarity of the processes. The marginal

distribution is assumed to be geometric. Another contribution to models that comprise ran-

dom coefficients but with dependent innovations was established earlier by Popović (2015).

1.2.2 Signed matrix thinning-based INAR models

An extension of the signed thinning operator in (1.12) to the bivariate case was established

by Bulla et al. (2016). The definition of the signed matrix thinning operator follows.

Definition 1.7. (Signed matrix thinning operator)

Let X = [X1 X2]
T be an integer-valued random vector. The signed matrix thinning operator

is given by

F ⊙X :=

 F11 ⊙X1 + F12 ⊙X2

F21 ⊙X1 + F22 ⊙X2

 , (1.16)

where Fij represents the common distribution of the i.i.d. counting sequences (Y ij
k )k∈N for

any (i, j) ∈ (1, 2)× (1, 2). It is assumed that all counting sequences associated with Fij⊙ are

mutually independent.
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Bulla et al. (2016) introduced the class of bivariate signed INAR(1) processes based on the

signed matrix thinning operator in (1.16), denoted by B-SINAR(1), which is an extension

of the SINAR(1) process of Kachour and Truquet (2011) to the bivariate case. Compared

to classical bivariate INAR models, that cannot fit a time series with negative observations,

the B-SINAR models have the advantage to allow for negative values for the time series and

the autocorrelation functions. A bivariate process Xt = [X1,t X2,t]
T is called a B-SINAR(1)

process if Xt admits the following representation

Xt = F ⊙Xt−1 + Zt ≡ F ⊙

 X1,t−1

X2,t−1

+

 Z1,t

Z2,t

 , t ∈ Z, (1.17)

where Zt = [Z1,t Z2,t]
T are assumed to be independent. All counting sequences associated

with Fij⊙ are mutually independent for (i, j) ∈ (1, 2)× (1, 2).

A particular case is when F12 = F21 = 0 (assumption of diagonal autoregressive matrix)

which can be seen as a Z2-extension of the model presented in Pedeli and Karlis (2011). In

contrast to the well-known situation when the paired data are counts, i.e., observed on N2,

sometimes the data take values in Z2. While bivariate discrete distribution for non-negative

paired data are now abundant, there is a shortage of bivariate discrete distribution defined

on Z2. Bulla et al. (2015) contributed to the literature by developing the bivariate Skellam

distribution, recasting the interest on the distribution introduced by Skellam (1946).

Definition 1.8. (Bivariate Skellam distribution)

Let θ0 ≥ 0, θ1 > 0 and θ2 > 0. The bivariate random variable (X1, X2) follows a bivariate

Skellam distribution, denoted by BSkellam(θ0, θ1, θ2), if and only if

X1 ∼ Skellam(θ1, θ0) and X2 ∼ Skellam(θ2, θ0).

Thus, the joint p.m.f. of (X1, X2) is given by

P (X1 = x1, X2 = x2) = e−(θ1+θ2+θ0)θx1
1 θ

x2
2

∞∑
i=max(0,−x1,−x2)

(θ0θ1θ2)
i

(x1 + i)!(x2 + i)!i!
, (x1, x2) ∈ Z2.

(1.18)
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The mean and variance are E[Xi] = θi − θ0 and V ar[Xi] = θi + θ0 for i = 1, 2, respectively.

The covariance of X1 and X2 is θ0, and hence, θ0 is a measure of dependence between the two

r.v.’s. However, if θ0 = 0, then the two variables are independent and the bivariate Skellam

distribution reduces to the product of two independent Poisson distributions (referred to as

double Poisson). Further details on bivariate Skellam distribution in Bulla et al. (2015).

With the assumption of a diagonal matrix for autocorrelation parameters, Bulla et al. (2016)

assumed that innovations Zt are modeled through a bivariate Skellam distribution (Bulla

et al., 2015). In order to increase the flexibility of the bivariate Skellam distribution, the au-

thors proposed two alternative extensions: the inclusion of a shift parameter k = (k1, k2) and

mixtures of bivariate Skellam distributions. Many bivariate extensions of Skellam distribution

are possible, for example through copulas (Genest and Mesfioui, 2014). For an introduction to

the subject, see e.g. Nelsen (2007) and Genest and Nešlehová (2007). A family of distributions

on Z2 based on generalized trivariate reduction technique and the Rademacher distribution

(in Definition 1.5) has been explored recently by Chesneau et al. (2015).

1.2.3 Other multivariate INAR models

In the previous two subsections and references therein, focus was placed upon matrix-binomial

and signed matrix thinning-based INAR models. Due to applications concerning data of dif-

ferent nature and origin, INAR models have experienced significant modifications and general-

izations over time. In the last two decades, special attention has been devoted to multivariate

(mainly bivariate models) integer-valued time series count processes with different thinning

operators and different distributions for the underlying innovations.

General discussion on multivariate INAR processes has been covered by Latour (1997) where

the author introduced the multivariate INAR model based on generalized Steutel and van Harn

thinning operators (MGINAR(p)) as well as proof of the existence of the process. Applications

of multivariate INAR processes are also presented in Brännäs and Nordström (2000). Several

bivariate extensions of the thinned process have been considered by a number of researchers.
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Ristić et al. (2012b) discussed the bivariate INAR(1) model based on negative binomial thin-

ning operator while the time series are mutually dependent and have geometric marginal

distribution with the same mean parameters. Popović et al. (2016) proposed relaxing the

assumption about the equality of the mean parameters. The authors introduced a model

with geometric marginal distribution, but with different mean parameters and subsequently

derive the distribution of the innovation processes. Although, the structure of their model

is similar to the one presented in Ristić et al. (2012b), different marginal distributions sig-

nificantly influence on the properties of the model and particularly on the definition of the

innovation processes in order to achieve stationarity. Meanwhile, a different generalization

of the binomial thinning operator in (1.2) for the bivariate case was derived by Scotto et al.

(2014), useful to fit count data time series with a finite range of counts. This thinning op-

erator is based on the bivariate binomial distribution of type II (BVBII) (Kocherlakota and

Kocherlakota, 1992) and can account for positive or negative cross-correlation. Furthermore,

Scotto et al. (2014) introduced the bivariate binomial AR(1) model (BVBII-AR(1)).

Copula-based models can be used in order to define flexible bivariate discrete distributions

which can serve as the distribution of the innovations in the bivariate INAR model. Karlis

and Pedeli (2013) introduced copulas to create a richer alternative and allow for more flexible

bivariate distributions for the innovations making it possible to accommodate both positive

and negative correlation. Insight in modeling multivariate count data using copulas can be

found in Heinen and Rengifo (2007) and Nikoloulopoulos and Karlis (2010).

1.3 Periodic time series models

There are many applications in which model parameters need to vary periodically to ade-

quately describe the time series. This has lead to the study of the so-called periodic time

series models. In this section, we start by reviewing periodic time series in the conventional

case, i.e., continuous-valued time series. However, regarding periodically correlated integer-

valued time series, very few contributions are known.
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1.3.1 Continuous case

The class of periodic autoregressive moving average models of orders p and q with period T ,

denoted here by PARMAT (p, q), are an extension of autoregressive moving average (ARMA(p, q))

models in recursion (1.1) in the sense that they allow the parameters to vary periodically

in time. PARMA model contains an ARMA model for each season. The concept of periodically

correlated (also known as cyclostationary) processes was introduced by Gladyshev (1961,

1963) and has received much attention. Franses and Paap (2004) provided a nice overview

of the subject and Hurd and Miamee (2007) discussed the procedures to detect periodic

correlations in time series. The periodically correlated time series occur in many scientific

disciplines where the data may have significant periodic behavior in the mean and covariance

structure. Formally, a time series is called periodically correlated (PC) with period T if

the mean and covariance of the series remains the same when shifted T units of time. In

another words, the fundamental characteristic of a periodic time series {Yn} is the periodic

stationarity of the first and second moments, i.e.,

E[Yn+T ] = E[Yn] and Cov(Yn+T , Ym+T ) = Cov(Yn, Ym), (1.19)

for all integers n and m. The period T is the smallest positive integer satisfying (1.19).

When T = 1, periodically correlated time series are stationary. Since their introduction there

have been very extensive developments in the theory and applications of PC processes. A

particular example of a periodic series is a monthly time series of air temperature with its

annual cycle. The mean is clearly non-stationarity, it varies in a regular pattern depending

on the month. One way of handling such a series with ARMA modeling is by applying periodic

ARMA models, in which separate parameters are simultaneously estimated for each month of

the year. A ubiquitous problem in fitting a PARMA model to a periodic series, however, lies

with parsimony. Even very simple PARMA models can have an inordinately large number of

parameters. The PARMA model has (p + q)T autoregressive and moving-average parameters

and T additional white noise variance parameters. This parameter total can be large for even

moderate T , making some PARMA inference matters unwieldy.
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Several researchers have dealt with periodic time series models. Contributions have been

made in many fields such as: climatology [Jones and Brelsford (1967), Bloomfield et al.

(1994), Lund et al. (1995)]; economics [Parzen and Pagano (1979), Franses and Paap (2004)];

hydrology [Vecchia (1985), McLeod (1993), Hipel and McLeod (1994), Tesfaye et al. (2006)];

electrical engineering [Gardner et al. (2006)], among others.

PARMA series differ from seasonal autoregressive moving-average (SARMA) series. McLeod

(1993) demonstrated the drawbacks of forecasting a PARMA series with SARMA methods through

a real data application. The analysis of basic probabilistic properties of PARMA models as

well as statistical inference and forecasting techniques has been addressed by Basawa et al.

(2004), Shao and Ni (2004), Shao (2006), Lund et al. (2006) and, more recently, Anderson

et al. (2013). Developments on parameter estimation include e.g. Lund and Basawa (2000),

Basawa and Lund (2001) and Anderson and Meerschaert (2005). Shao (2008) suggested a ro-

bust estimation procedure for the parameters in periodic AR (PAR) models and Sarnaglia et al.

(2010) when data contains additive outliers. Using genetic algorithms, Ursu and Turkman

(2012) provided PAR model identification.

Although the periodic models have been widely studied, most of the existing studies are

confined to the univariate case. Aknouche (2007) established the causality conditions and au-

tocovariance calculations of periodic vector autoregressive models (PVAR). Ursu and Duchesne

(2009) derived the asymptotic distribution of the least square estimators of the parameters

of the PVAR models. Recent contributions to PVAR models have been made by Duchesne and

Lafaye de Micheaux (2013), Ursu and Pereau (2014) and Bentarzi and Djeddou (2014).

1.3.2 Discrete case

In contrast to the continuous case, it is worth to emphasize that the analysis of periodically

correlated series of counts has not received much attention in the literature. To our knowledge,

the first contribution in the discrete case was introduced by Monteiro et al. (2010). The so-

called Periodic INteger-valued AutoRegressive process of order one with period T (PINAR(1)T

for short), based on the binomial thinning operator with periodically varying parameter, is
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defined by the recursive equation

Xt = ϕt ◦Xt−1 + Zt, t ∈ Z, (1.20)

where ϕt = αj ∈ (0, 1) for t = j + kT ; j = 1, . . . , T and k ∈ N0. The thinning operator ◦ is

given by

ϕt ◦Xt−1
d
=

Xt−1∑
i=1

Ui,t(ϕt) (1.21)

with (Ui,t(ϕt))i∈N a periodic sequence of independent Bernoulli r.v.’s with success probability

P (Ui,t(ϕt) = 1) = ϕt. For this setting, the natural choice for the distribution of the innovation

term was Poisson distribution. Monteiro et al. (2010) assumed that innovation term Zt in

recursion (1.20) constitutes a periodic sequence of independent Poisson-distributed random

variables with mean νt = λj for t = j + kT (j = 1, . . . , T ; k ∈ N0), which are assumed to be

independent of Xt−1 and ϕt ◦Xt−1. To avoid ambiguity, T is taken as the smallest positive

integer satisfying (1.20). Basic probabilistic and statistical properties of the PINAR(1)T process

with Poisson marginal were established by Monteiro et al. (2010). The existence of an almost

surely unique non-negative integer-valued periodically stationary process satisfying equation

(1.20) was proven. Furthermore, parameter estimation was addressed through four different

methods and their performance compared. An application regarding the number of short-term

unemployed people was presented. Recently, Jia et al. (2014) provided several approaches to

estimate the parameters of the PINAR(1)T model in the presence of missing data, by employing

the idea of Andersson and Karlis (2010).

Within the bivariate setting, Monteiro et al. (2015) proposed an extension of the periodic

univariate model given in (1.20). The bivariate model is referred to as the periodic bivariate

INAR model of order one, denoted by PBINAR(1) with period T ∈ N, and has the following

form

Xt = At ◦Xt−1 + Zt ≡

 ϕ1,t 0

0 ϕ2,t

 ◦

X1,t−1

X2,t−1

+

Z1,t

Z2,t

 , t ∈ Z (1.22)

with ϕj,t = αj,i ∈ (0, 1) for t = i + kT ; i = 1, . . . , T ; k ∈ N0 and j = 1, 2. The matricial
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operation At◦ follows definition in (1.13) adapted to the periodic case, it acts as the usual

matrix multiplication keeping the properties of the binomial thinning operator (Pedeli and

Karlis, 2011). The PBINAR(1) model with period T and periodic bivariate Poisson innovations

can be viewed as a generalization to the periodic case of the model established in Pedeli and

Karlis (2011). The role of the innovations Zt is relevant since not only they determine the

joint distribution of the two series under consideration but also form the unique source of

cross–correlation. Monteiro et al. (2015) derived criteria for the existence and uniqueness of a

periodically stationary and causal process. For the bivariate setting, two specific parametric

cases for the joint distribution of the innovations of the two series were considered: bivariate

Poisson and bivariate negative binomial distributions. However, only the conditional max-

imum likelihood method was used for parameter estimation of the PBINAR(1) model with

period T . The second parametric case revealed better fit and more suitable for series display-

ing overdispersion. Issues related with forecasting were also provided. Potential application

of the proposed periodic bivariate model with period T can be found in the analysis of fire

activity (Monteiro et al., 2015).

1.4 Parameter estimation and forecasting

The important issues of estimation and forecasting in INAR-type models are discussed in

numerous papers. The most widely used estimators in the literature for the parameters of

Poisson INAR(1) processes (Al-Osh and Alzaid, 1987) are Yule-Walker (YW), conditional least

squares (CLS) (Klimko and Nelson, 1978) and conditional maximum likelihood (CML) esti-

mators. YW estimation is a traditional way for estimating parameters of an AR(p) model.

This method was also used by Du and Li (1991) in an INAR(p) model. For the unknown

parameters involved in an INAR(1) model with Poisson marginal, asymptotic distribution of

YW-type estimators were derived by Park and Oh (1997) and asymptotic properties of CLS

estimators by Freeland and McCabe (2005). However, neither proved to be more efficient

than the other to this order. Due to the fact that the conditional variance of the INAR(1)

process is not constant over time, weighted conditional least squares (WCLS) estimators seem
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an attractive alternative to consider (Monteiro et al., 2010).

Jung et al. (2005) study the performance of new types of generalized method of moments

estimators. Data generated with different innovations was considered: Poisson innovations

and negative binomial (NB) innovations. The former distribution is often used in empirical

work to capture overdispersion phenomenon. An estimation approach was proposed by Savani

and Zhigljavsky (2007) who studied a family of moment-based estimation methods, called the

power method estimators, for estimating parameters of the NB distribution.

Bu et al. (2008) have extended earlier work of Freeland and McCabe (2004a) and developed a

general framework for likelihood analysis of GINAR(p) processes with generalized thinning op-

erators and innovation distributions. The likelihood is derived using a recursive formulation

of the transition probabilities and, in a similar way as in Freeland and McCabe (2004a), the

elements of the score and the Fisher information matrix are expressed in terms of conditional

expectations.

The most common technique for constructing forecasts in conventional time series model is

to use the conditional expectation because they yield forecasts with minimum mean squared

error. However, in the context of count time series, the conditional mean may not be an in-

teger and hence it is not coherent. To preserve the integer-valued nature of data, the median

was used as a forecast of an INAR(1) model (Freeland and McCabe, 2004b). Mode forecasting

can also be used to obtain h-step ahead coherent forecasting. McCabe and Martin (2005)

explored the issue of coherent forecasting with count data models under the Bayesian frame-

work, but they too are concerned only with the first-order case. Jung and Tremayne (2006)

proposed the use of second-order INAR models in the context of forecasting low integer values

of count data. Bu and McCabe (2008) provided an interesting approach for forecasting based

on Markov chains, the forecasts of the distribution of a count series were obtained by means

of a transition matrix of the process. In recent work of McCabe et al. (2011), a new method

for producing efficient probabilistic forecasts in the INAR(p) class was provided.

To overcome computational difficulties that frequently arise in maximum likelihood (ML)

methods, Pedeli and Karlis (2013a) exploited the composite likelihood method, which is

based on the idea of constructing lower dimensional score functions that still contain enough
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information about the structure considered and are computationally less demanding. Pedeli

et al. (2015) proposed a simple saddlepoint approximation to the log-likelihood that revealed a

good performance concerning INAR(p) models with Poisson and NB innovations. The authors

have empirically proven that the estimator that maximizes the saddlepoint approximation

behaves very similarly to the ML estimator.

Concerning models with signed binomial thinning, several bootstrap approaches in the liter-

ature as distribution free alternatives were used to obtain forecasts and confidence intervals.

Kim and Park (2008) employed a modified bootstrap method to incorporate the nature of

integer-valued time series. Wang and Zhang (2011) considered three kinds of estimation

methods, namely YW, CLS and WCLS. An advantage of these methods is that they do not

require specifying the exact family of distribution for the process.

More recently, Bisaglia and Canale (2016) developed a forecasting procedure for count time

series, forecasts are produced through a non-parametric Bayesian method, which revealed ap-

pealing results. Maiti et al. (2016) explored the usefulness of the standard Box-Jenkins’ type

AR(p) process for obtaining coherent forecasting from integer-valued time series. To make the

forecasting values coherent, they have suggested the rounding operator (Kachour and Yao,

2009) on the forecasting values obtained from the estimated AR(p) model.

In general, detailed studies have been conducted not only on the formulation of models but

also on properties, estimation, tests and asymptotic distributions of model estimators for

different discrete marginal distributions. Regarding testing serial dependence in count data,

a preliminary analysis should first consider independence (Jung and Tremayne, 2003) before

fitting INAR models. A general test was derived by Sun and McCabe (2013) for independence

in the classic binomial thinning INAR model with a particular feature, the support for the

underlying arrivals process is not assumed to be known. Recent developments in tests for

time series of counts can be found in Hudecová et al. (2015) and references therein.
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1.5 Outline of the thesis

Within the reasonably large spectrum of integer-valued models proposed in the literature only

a few focus on the modeling of univariate/multivariate time series of count data with periodic

structure. Our aim in this thesis is to give a contribution towards this direction. We develop

and study time series models of first-order adequate to describe periodic time series of count

data. Focusing on the class of observation–driven models, we seek to extend integer-valued

autoregressive models to multi-dimensional space, assuming periodic time-varying parameters

and periodic sequences of innovations. Apart from the general specification of such models,

we also examined their statistical properties and proposed alternative estimation techniques.

Moreover, specific parametric cases that arise from the assumption of a particular joint distri-

bution for the innovation processes were studied in detail. Simulation studies were conducted

and forecasting discussed. Applications to modeling time series of counts through the pro-

posed models were also given.

Specifically, in Chapter 2 we generalized the results obtained by Pedeli and Karlis (2013a)

to multivariate integer-valued models of first-order with periodic structure in the wide sense,

i.e., with periodically varying mean and covariances. Throughout this chapter, the thinning

operator considered was the matrix-binomial thinning operator defined in (1.13). Our inter-

est in periodic integer-valued autoregressive models was primarily influenced by the work of

Monteiro et al. (2010, 2015) whose periodic (univariate and bivariate) INAR models were in-

troduced in recursions (1.20) and (1.22), respectively. We established the periodic m-variate

integer-valued autoregressive process, denoted by PMINAR(1), with period s in its general

matricial form, defined its basic statistical properties and proven its existence. The gener-

alization to a multivariate setting is not straightforward since many computational issues

arised especially for the estimation of the parameters. We derived Yule–Walker, conditional

maximum likelihood and composite likelihood estimators for the unknown parameters of the

proposed model and discussed their asymptotic properties. Particular attention was given

to the special case that arises from specifying multivariate negative binomial distribution for

the innovations of the PMINAR(1) process. This discrete multivariate distribution can account
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for overdispersion in contrast to the usual multivariate Poisson distribution. An important

restriction of the Poisson distribution, as well known, is that its mean and variance are equal.

However, in real-life events, the Poisson assumption is often violated, therefore this distribu-

tion is not considered in our work. To confront estimation problems due to the complexity of

the maximum likelihood, we implemented the recently popular idea of composite likelihood

approach (Varin et al., 2011). The basic advantage of this method is the replacement of the

full likelihood with a pseudo-likelihood which effectively captures the model properties while

at the same time is computationally less demanding, also used by Pedeli and Karlis (2013a).

Forecasting is also addressed. The performances of the three aforementioned estimators were

compared via a simulation experiment. Simulations were carried out in R and suitable param-

eter transformations were adopted. A real data set related with fire activity in Portugal was

used to illustrate the proposed periodic multivariate integer-valued autoregressive model of

order one for the trivariate case (m = 3) contemplating trivariate negative binomial innova-

tions. However, the models in this chapter have some limitations. Thus, because of binomial

thinning operators, all the coefficients of the models must be non-negative. Therefore, the

modeling of series with possible negative autocorrelations are excluded. Moreover, these mod-

els are defined on N, so they cannot fit a time series with negative observations nor negative

correlation.

In Chapter 3, we developed two new integer-valued autoregressive models of first-order in-

troducing time-varying parameters and sequences of innovations with periodic structure in a

new framework, regarding the thinning operator and distributions for the innovations. Both

proposed INAR models (univariate and bivariate) are based on the signed thinning operator

defined in subsections 1.1.2 and 1.2.2, adapted to the periodic case accordingly. We provided

basic notations and definitions concerning the (periodic) signed thinning operator as well as

some of its properties. Before introducing the new models, we also provided a brief descrip-

tion on the (periodic) Skellam distribution for univariate and bivariate distributions defined

on the set of integers. Extending the model in Chesneau and Kachour (2012) to the periodic

case, we introduced a new univariate signed INAR(1) process, by considering a parametric as-

sumption on the common distribution of the periodic counting sequence of the model. In this
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setting, the new signed periodic model was denoted by S-PINAR(1) with Skellam-distributed

innovation term. In contrast to traditional INAR(1) models, these models are defined in Z

allowing for negative correlation. Due to some limitations of the periodic signed thinning

(which lacks the distributive property), only the conditional moments of first and second-

order of the process were established. Regarding parameter estimation, two methods were

considered: modified conditional least squares and conditional maximum likelihood. The

conditional least squares method, first proposed by Klimko and Nelson (1978), was adapted

by Alzaid and Omair (2014) with some modifications in order to be able to estimate all pa-

rameters integrating the periodic model. In order to study the performance of the proposed

methods, an extended simulation experiment was carried out for the S-PINAR(1) model with

period s. Numerical results from the simulation study suggested that the proposed model is

suitable for practical use.

Motivated by the work of Bulla et al. (2016), we then generalized the S-PINAR(1) model to

the bivariate case. The definition and matrix representation of the bivariate model denoted

by BS-PINAR(1) with period s was presented and some statistical properties of the model were

derived. The assumption of a diagonal autoregressive matrix was made, therefore, the corre-

lation is achieved through their innovation processes, where the distribution of the innovation

processes is set a priori which consequently determines the distribution of the underlying

time series. Hence, the discrete bivariate distribution on Z2 assigned to the distribution of

the innovations was the bivariate Skellam distribution. Parameter estimation of the unknown

parameters was provided through the conditional maximum likelihood method.

Finally, main conclusions of this thesis and some challenges for future work are described in

Chapter 4.





Chapter 2

PMINAR(1) model based on the

binomial thinning operator

In this chapter, a multivariate first-order integer-valued autoregressive model with time-

varying parameters and sequences of innovations having periodic structure in the wide sense,

i.e., with periodically varying mean and covariances, is established. The model is based

upon the matrix-binomial thinning operator defined in (1.13) and aims to extend the periodic

bivariate INAR(1) model proposed in Monteiro et al. (2015) to the multi-dimensional space.

Therefore, the periodic m-variate integer-valued autoregressive process, denoted by PMINAR(1)

with period s is presented. The matricial form of the multivariate model and its basic sta-

tistical properties are defined. Yule–Walker, conditional maximum likelihood and composite

likelihood estimators for the unknown parameters of the PMINAR(1) process are derived. Par-

ticular attention was given to the special case that arises from specifying multivariate negative

binomial distribution for the innovations of the PMINAR(1) process. Furthermore, forecasting

is also addressed. The performances of the three aforementioned estimators are compared

via a simulation study. A real data set related with fire activity in Portugal is used to il-

lustrate the proposed periodic multivariate INAR(1) model for the trivariate case (m = 3)

contemplating trivariate negative binomial innovations.

35
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2.1 Definition of the PMINAR(1) model

Let {Xt} be a periodic m-variate integer-valued autoregressive process of first-order defined

by the recursion

Xt = At ◦Xt−1 + Zt, t ∈ Z, (2.1)

where Xt,Xt−1 and Zt are random ms-vectors with Xt = [X1,t X2,t . . . Xm,t]
T for t = v+ns,

v = 1, . . . , s and n ∈ N0, and Xj,t = [Xj,1+ns Xj,2+ns . . . Xj,s+ns]
T , j = 1, . . . ,m. The ms-

dimensional vector Zt = [Z1,t Z2,t . . . Zm,t]
T constitutes a periodic sequence of independent

random vectors with

Zj,t = [Zj,1+ns Zj,2+ns . . . Zj,s+ns]
T . (2.2)

The model defined in (2.1) will be referred to as the Periodic Multivariate INteger-valued

AutoRegressive model of order one (PMINAR(1) in short) with period s ∈ N. The PMINAR(1)

model admits the following matricial representation



X1,t

X2,t

...

Xm,t


=



ϕ1,t 0 · · · 0

0 ϕ2,t · · · 0

...
... . . . ...

0 0 · · · ϕm,t


◦



X1,t−1

X2,t−1

...

Xm,t−1


+



Z1,t

Z2,t

...

Zm,t


(2.3)

with ϕj,t = αj,v ∈ (0, 1) for t = v + ns; v = 1, . . . , s;n ∈ N0 and j = 1, . . . ,m. The elements

Zj,t joining the system in the interval (t− 1, t] are usually referenced to as innovations. For

each t, Zj,t is assumed to be independent of Xj,t−1 and ϕj,t◦Xj,t−1. The matrix At in equation

(2.1) is a (ms×ms) diagonal matrix, representing the periodic integer-valued autoregressive

coefficients in season v (v = 1, . . . , s):

At =



ϕ1,t 0 · · · 0

0 ϕ2,t · · · 0

...
... . . . ...

0 0 · · · ϕm,t


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where

ϕj,t =



αj,1, t = 1 + ns

αj,2, t = 2 + ns

αj,3, t = 3 + ns

...

αj,s, t = s+ ns

(2.4)

for j = 1, . . . ,m and n ∈ N0. Note that the j-th component (j = 1, . . . ,m) is

Xj,t = ϕj,t ◦Xj,t−1 + Zj,t (2.5)

with

ϕj,t ◦Xj,t−1
d
=

Xj,t−1∑
r=1

Ur,t (ϕj,t) ,

where (Ur,t(ϕj,t))r∈N is a periodic sequence of i.i.d. Bernoulli-distributed random variables

with probability of success P (Ur,t (ϕj,t) = 1) = ϕj,t = 1 − P (Ur,t (ϕj,t) = 0). The operator ◦

corresponds to the binomial thinning operator defined in (1.13).

Since the autocorrelation matrix At is diagonal, the only source of dependence between the

series Xj,t (j = 1, . . . ,m) in (2.3) is given through the vector of innovations Zt. Therefore,

the innovations will play a central role in the specification of the PMINAR(1) process.

Considering the j-th component, Xj,t = [Xj,1+ns Xj,2+ns . . . Xj,s+ns]
T of Xt and by applying

the recursive equation in (2.5) with coefficients ϕj,t in (2.4), it follows that

Xj,1+ns = αj,1 ◦Xj,1+ns−1 + Zj,1+ns = αj,1 ◦Xj,s+(n−1)s + Zj,1+ns

Xj,2+ns = αj,2 ◦Xj,1+ns + Zj,2+ns = αj,2 ◦ (αj,1 ◦Xj,s+(n−1)s + Zj,1+ns) + Zj,2+ns =

= (αj,2αj,1) ◦Xj,s+(n−1)s + αj,2 ◦ Zj,1+ns + Zj,2+ns =

=

(
2−1∏
k=0

αj,2−k

)
◦Xj,s+(n−1)s +

(
2−2∏
k=0

αj,2−k

)
◦ Zj,1+ns + Zj,2+ns

...
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Xj,s+ns =

(
s−1∏
k=0

αj,s−k

)
◦Xj,s+(n−1)s +

(
s−2∏
k=0

αj,s−k

)
◦ Zj,1+ns +

(
s−3∏
k=0

αj,s−k

)
◦ Zj,2+ns+

+ · · ·+

(
s−s∏
k=0

αj,s−k

)
◦ Zj,s−1+ns + Zj,s+ns =

=

(
s−1∏
k=0

αj,s−k

)
◦Xj,s+(n−1)s +

s−1∑
l=1

(
l−1∏
k=0

αj,s−k

)
◦ Zj,s−l+ns + Zj,s+ns.

Hence, for v = 1, . . . , s,

Xj,v+ns =

(
v−1∏
k=0

αj,v−k

)
◦Xj,s+(n−1)s +

v−1∑
l=1

(
l−1∏
k=0

αj,v−k

)
◦ Zj,v−l+ns + Zj,v+ns,

which implies that Xj,t = ϕj,t ◦Xj,t−1 +Zj,t in (2.5) with t = v+ ns; v = 1, . . . , s and n ∈ N0

admits the matricial representation



Xj,1+ns

Xj,2+ns

Xj,3+ns

...

Xj,s+ns


=



0 · · · 0 αj,1

0 · · · 0 αj,2αj,1

0 · · · 0 αj,3αj,2αj,1

...
... . . . ...

0 · · · 0
s−1∏
k=0

αj,s−k


◦



Xj,1+(n−1)s

Xj,2+(n−1)s

Xj,3+(n−1)s

...

Xj,s+(n−1)s


+

+



1 0 0 . . . 0

αj,2 1 0 . . . 0

αj,3αj,2 αj,3 1 . . . 0

...
...

... . . . ...
s−2∏
k=0

αj,s−k

s−3∏
k=0

αj,s−k

s−4∏
k=0

αj,s−k . . . 1


◦



Zj,1+ns

Zj,2+ns

Zj,3+ns

...

Zj,s+ns


.

Due to the fact that t = v + ns, then Xj,t−s = Xj,v+ns−s = Xj,v+(n−1)s (v = 1, . . . , s),

meaning the j-th component Xj,t in equation (2.5) can be replaced by

Xj,t = Aj ◦Xj,t−s +Bj ◦ Zj,t, (2.6)
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where (s× s) matrices Aj and Bj (j = 1, . . . ,m) are given by

Aj =



0 · · · 0 αj,1

0 · · · 0 αj,2αj,1

0 · · · 0 αj,3αj,2αj,1

...
... . . . ...

0 · · · 0
s−1∏
k=0

αj,s−k


(2.7)

and

Bj =



1 0 0 . . . 0

αj,2 1 0 . . . 0

αj,3αj,2 αj,3 1 . . . 0

...
...

... . . . ...
s−2∏
k=0

αj,s−k

s−3∏
k=0

αj,s−k

s−4∏
k=0

αj,s−k . . . 1


, (2.8)

respectively, with coefficients αj,v ∈ (0, 1), j = 1, . . . ,m and v = 1, . . . , s. All columns of

matrices Aj , except the last one, are null. The matrices Bj are lower triangular matrices.

Taking all m components, the PMINAR(1) model defined in (2.1) can be rewritten in the

form

Xt = Ã ◦Xt−s + B̃ ◦ Zt, (2.9)

with matricial representation



X1,t

X2,t

...

Xm,t


=



A1 0 · · · 0

0 A2 · · · 0

...
... . . . ...

0 0 · · · Am


◦



X1,t−s

X2,t−s

...

Xm,t−s


+



B1 0 · · · 0

0 B2 · · · 0

...
... . . . ...

0 0 · · · Bm


◦



Z1,t

Z2,t

...

Zm,t


.
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The (ms×ms) matrices Ã and B̃ in equation (2.9) are block-diagonal matrices

Ã =



A1 0 · · · 0

0 A2 · · · 0

...
... . . . ...

0 0 · · · Am


= diag(A1, A2, . . . , Am) (2.10)

and

B̃ =



B1 0 · · · 0

0 B2 · · · 0

...
... . . . ...

0 0 · · · Bm


= diag(B1, B2, . . . , Bm) (2.11)

with matrices Aj and Bj (j = 1, . . . ,m) in (2.7) and in (2.8), respectively. Generally, matrix

Ã has entries ajik satisfying 0 ≤ ajik < 1 and matrix B̃ has entries bjik satisfying 0 ≤ bjik ≤ 1

with i, k = 1, . . . ,ms and j = 1, . . . ,m. Notice that the j-th component in equation (2.6) can

also be written as

X∗
j,n = Aj ◦X∗

j,n−1 +Bj ◦ Z∗
j,n, (2.12)

where X∗
j,n = [Xj,1+ns Xj,2+ns . . . Xj,s+ns]

T , Z∗
j,n = [Zj,1+ns Zj,2+ns . . . Zj,s+ns]

T and also

X∗
j,n−1 =

[
Xj,1+(n−1)s Xj,2+(n−1)s . . . Xj,s+(n−1)s

]T . Hence, the corresponding periodic mul-

tivariate model is

X∗
n = Ã ◦X∗

n−1 + B̃ ◦ Z∗
n, (2.13)

where X∗
n, X∗

n−1 and Z∗
n are ms-dimensional random vectors such as

X∗
n =

[
X∗

1,n X∗
2,n . . . X∗

m,n

]T
=

= [

X∗
1,n︷ ︸︸ ︷

X1,1+ns . . . X1,s+ns . . .

X∗
m,n︷ ︸︸ ︷

Xm,1+ns . . . Xm,s+ns]
T

X∗
n−1 =

[
X∗

1,n−1 X∗
2,n−1 . . . X∗

m,n−1

]T
Z∗
n =

[
Z∗
1,n Z∗

2,n . . . Z∗
m,n

]T
.
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The model present in (2.13) is a periodic multivariate first-order integer-valued autoregressive

model regarding the cycle, where n− 1 represents the cycle preceding n.

Remark: The random vector Xt = [X1,t X2,t . . . Xm,t]
T , t = v + ns; v = 1, . . . , s;n ∈ N0

defined in (2.1) is the same as X∗
n in (2.13) because X∗

j,n = [Xj,1+ns . . . Xj,s+ns]
T = Xj,t and

also Z∗
j,n = [Zj,1+ns . . . Zj,s+ns]

T = Zj,t which leads to Zt = [Z1,t Z2,t . . . Zm,t]
T = Z∗

n.

As previously mentioned, the ms-dimensional random vector Zt with vector Zj,t in (2.2)

for t = v+ns; v = 1, . . . , s and n ∈ N0 is a periodic sequence of independent random vectors.

The innovations Zt have (assumed) finite first and second-order moments:

• Mean vector of Zt, E[Zt]:

E[Zt] = E



Z1,t

Z2,t

...

Zm,t


=



δ1,t

δ2,t
...

δm,t


= δt. (2.14)

The ms-mean vector δt with t = v + ns; v = 1, . . . , s and n ∈ N0 has m (s× 1) vectors, i.e.,

E[Zj,t] = δj,t =



λj,1

λj,2
...

λj,s


, (2.15)

for j = 1, . . . ,m. For a fixed v, each element of vector (2.15) is

E[Zj,v+ns] = λj,v. (2.16)
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• Variance-covariance matrix of Zt,
∑

Zt
(symmetric matrix):

∑
Zt

= V ar[Zt] =

=



V ar[Z1,t] Cov(Z1,t,Z2,t) · · · Cov(Z1,t,Zm,t)

Cov(Z2,t,Z1,t) V ar[Z2,t] · · · Cov(Z2,t,Zm,t)

...
... . . . ...

Cov(Zm,t,Z1,t) Cov(Zm,t,Z2,t) · · · V ar[Zm,t]


=

=



ψ11,t ψ12,t . . . ψ1m,t

ψ22,t . . . ψ2m,t

. . . ...

ψmm,t


= ψt, (2.17)

where ψjk,t, j, k = 1, . . . ,m; t = v + ns; v = 1, . . . , s;n ∈ N0 are (s× s) diagonal matrices:

ψjk,t = Cov(Zj,t,Zk,t) =



σjk,1 0 . . . 0

0 σjk,2 . . . 0

...
... . . . ...

0 0 . . . σjk,s


. (2.18)

For a fixed v, each element of the diagonal in matrix (2.18) is given by

Cov(Zj,v+ns, Zk,v+ns) = σjk,v. (2.19)

For notational simplicity, we use σ2j,t instead of σjj,t when j = k (j = 1, . . . ,m) and for

t = v + ns; v = 1, . . . , s:

ψjj,t = V ar[Zj,t] =



σ2j,1 0 . . . 0

0 σ2j,2 . . . 0

...
... . . . ...

0 0 . . . σ2j,s


. (2.20)
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For a fixed v, each element of the diagonal in matrix (2.20) is given by

V ar[Zj,v+ns] = σ2j,v. (2.21)

The (ms × ms) matrix ψt in (2.17) has m on-diagonal matrices equal to ψjj,t = V ar[Zj,t]

in (2.20) and (m − 1)m off-diagonal matrices equal to ψjk,t = Cov(Zj,t,Zk,t) in (2.18) with

j ̸= k; j, k = 1, . . . ,m.

2.2 Properties of the PMINAR(1) model

2.2.1 Strictly periodically stationary distribution

Let PMINAR(1) be the process defined in (2.9). Within this setting, it can be proven that

a strictly periodically stationary INAR process satisfying (2.9) exists based upon the results

provided in Franke and Subba Rao (1993). The existence of a periodically stationary solution

of (2.9) depends on the largest eigenvalue of the non-negative matrix Ã in (2.10), whose

coefficients αj,v ∈ (0, 1) for all components. Take the (ms × ms) block-diagonal matrix

λI − Ã, where I denotes the identity matrix as usual, then

λI − Ã = diag(C1, C2, . . . , Cm)

with (s× s) matrix Cj (j = 1, . . . ,m) defined by

Cj =



λ 0 · · · 0 −αj,1

0 λ · · · 0 −αj,2αj,1

...
... . . . ...

...

0 0 · · · λ −
s−2∏
k=0

αj,s−1−k

0 0 · · · 0 λ−
s−1∏
k=0

αj,s−k


. (2.22)
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The determinant of the matrix λI − Ã denoted by det(λI − Ã) can easily be determined

since the matrices Cj (j = 1, . . . ,m) are upper triangular matrices (Harville, 2008). The

characteristic polynomial of Ã is

det(λI − Ã) =
(
λs−1

)m m∏
j=1

(
λ−

s−1∏
k=0

αj,s−k

)
.

For convenience in notation, let
s−1∏
k=0

αj,s−k = Tj . The polynomial takes the form

det(λI − Ã) = λmsλ−m
m∏
j=1

(λ− Tj) = λms +
m∑
j=1

(−1)jβjλ
ms−j

with coefficients βj (j = 1, . . . ,m) defined as

• β1 =
m∑
j=1

Tj ,

• β2 =
m−1∑
j=1

m∑
i=j+1

TjTi,

• β3 =
m−2∑
j=1

m−1∑
i=j+1

m∑
k=i+1

TjTiTk,

...

• βm−1 =
m∑
j=1

m∏
i=1
i̸=j

Ti,

• βm =
m∏
j=1

Tj .

Let ρ be the maximal eigenvalue of Ã, then by Proposition B in Dion et al. (1995),
m∑
j=1

βj < 1

if and only if ρ < 1.

Lemma 2.1. For a fixed v (v = 1, . . . , s), αj,v ∈ (0, 1) with j = 1, . . . ,m and for t = v + ns,

0 < P (Zt = 0) < 1. Then, any solution of process {Xt}, t = v + ns and n ∈ N0 in (2.9) is

an irreducible and aperiodic Markov chain.
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Proof. Let r = [r1 r2 . . . rm]T with rj = [rj1 rj2 . . . rjs] and d = [d1 d2 . . . dm]T with

dj = [dj1 dj2 . . . djs] for each j = 1, . . . ,m.

Pr,d = P (Xt = r|Xt−s = d) = P (Ã ◦Xt−s + B̃ ◦ Zt = r|Xt−s = d) =

= P





A1 ◦X1,t−s +B1 ◦ Z1,t

A2 ◦X2,t−s +B2 ◦ Z2,t

· · ·

Am ◦Xm,t−s +Bm ◦ Zm,t


= r

∣∣∣∣∣∣∣∣∣∣∣∣∣
Xt−s = d


=

=
m∑
j=1

(
dj1∑

ij1=0

dj2∑
ij2=0

· · ·
djs∑

ijs=0

[
s∏

v=1
P (Zj,v+ns = ijv)P

(
v−1∏
k=0

αj,v−k ◦Xm,s+(n−1)s+

+
v−1∑
l=1

(
l−1∏
k=0

αj,v−k

)
◦ Zj,v−l+ns = rjv − ijv|Zj,1+ns = ij1, Zj,2+ns = ij2, . . . , Zj,s+ns = ijs

)])

≥
m∑
j=1

(
s∏

v=1
P (Zj,v+ns = rjv)P

(
v−1∏
k=0

αj,v−k ◦ djs+

+
v−1∑
l=1

(
l−1∏
k=0

αj,v−k

)
◦ Zj,v−l+ns = 0|Zj,1+ns = rj1, Zj,2+ns = rj2, . . . , Zj,s+ns = rjs

))

≥
m∑
j=1

(
s∏

v=1
P (Zj,v+ns = rjv)

(
1−

v−1∏
k=0

αj,v−k

)djs

×

×
v−1∏
k=1

P

((
v−1∏
k=0

αj,v−k

)
◦ Zj,v−l+ns = 0|Zj,1+ns = rj1, Zj,2+ns = rj2, . . . , Zj,s+ns = rjs

))

≥
m∑
j=1

(
s∏

v=1
P (Zj,v+ns = rjv)

(
1−

v−1∏
k=0

αj,v−k

)djs v−1∏
k=1

(
1−

v−1∏
k=0

αj,v−k

)rjv−k
)

> 0.

Therefore,

P0,d = P (Xt = 0|Xt−s = d) = P (Ã ◦Xt−s + B̃ ◦ Zt = 0|Xt−s = d) =

=

m∑
j=1

 s∏
v=1

P (Zj,v+ns = 0)

(
1−

v−1∏
k=0

αj,v−k

)djs
 > 0
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and similarly Pr,0 = P (Xt = r|Xt−s = 0) > 0 implying that {Xt} is irreducible.

Moreover,

P0,0 = P (Xt = 0|Xt−s = 0) = P (Ã ◦Xt−s + B̃ ◦ Zt = 0|Xt−s = 0) =

=
m∑
j=1

s∏
v=1

P (Zj,v+ns = 0) > 0,

which implies that for a fixed v (v = 1, . . . , s), process {Xt} with t = v + ns and n ∈ N0 is

an aperiodic Markov chain.

Theorem 2.1. (Strictly periodically stationary distribution)

For a fixed v (v = 1, . . . , s), let {Xt} with t = v + ns and n ∈ N0 satisfying (2.9) be an

irreducible, aperiodic Markov chain on Nm
0 . If E||Zt|| < +∞ and if the largest eigenvalue

of Ã is less than one, then there exists a strictly periodically stationary (or cyclostationary)

m-variate INAR(1) process satisfying recursion (2.9).

Proof. From Lemma 2.1, {Xt} with t = v + ns and fixed v = 1, . . . , s is an irreducible

and aperiodic Markov chain. The eigenvalues of matrix Ã are less than one (Dion et al.,

1995). Thus, by Franke and Subba Rao (1993), a strictly periodically stationary m-variate

non-negative integer-valued process satisfying the equation (2.9) exists.

The PMINAR(1) model in (2.9) can be expressed as

Xt = Ã ◦Xt−s +Rt, (2.23)

where Rt = B̃ ◦ Zt with matrix B̃ in (2.11). Let

Rt = [R1,t R2,t . . . Rm,t]
T = [B1 ◦ Z1,t B2 ◦ Z2,t . . . Bm ◦ Zm,t]

T (2.24)

with Zj,t in (2.2) for j = 1, . . . ,m. The innovation series {Rt} is a sequence of independent
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non-negative integer-valued random vectors with periodic structure:

P (Rt = k) = P
(
B̃ ◦ Zt = k

)
=

= P
(
B1 ◦ Z1,t = k1, B2 ◦ Z2,t = k2, . . . , Bm ◦ Zm,t = km

)
=

= P



Z1,1+ns = k11;α1,2 ◦ Z1,1+ns + Z1,2+ns = k12; (α1,3α1,2) ◦ Z1,1+ns + α1,3 ◦ Z1,2+ns+

+Z1,3+ns = k13; · · · ;
s−1∑
v=1

(
v−1∏
l=0

α1,s−l

)
◦ Z1,s−v+ns + Z1,s+ns = k1s; · · · ;

Zm,1+ns = km1;αm,2 ◦ Zm,1+ns + Zm,2+ns = km2; (αm,3αm,2) ◦ Zm,1+ns+

+αm,3 ◦ Zm,2+ns + Zm,3+ns = km3; · · · ;
s−1∑
v=1

(
v−1∏
l=0

αm,s−l

)
◦ Zm,s−v+ns+

+Zm,s+ns = kms



= P



Z1,1 = k11;α1,2 ◦ Z1,1 + Z1,2 = k12; (α1,3α1,2) ◦ Z1,1 + α1,3 ◦ Z1,2+

+Z1,3 = k13; · · · ;
s−1∑
v=1

(
v−1∏
l=0

α1,s−l

)
◦ Z1,s−v + Z1,s = k1s; · · · ;

Zm,1 = km1;αm,2 ◦ Zm,1 + Zm,2 = km2; (αm,3αm,2) ◦ Zm,1+

+αm,3 ◦ Zm,2 + Zm,3 = km3; · · · ;
s−1∑
v=1

(
v−1∏
l=0

αm,s−l

)
◦ Zm,s−v + Zm,s = kms



= P



Z1,1+hs = k11;α1,2 ◦ Z1,1+hs + Z1,2+hs = k12; (α1,3α1,2) ◦ Z1,1+hs + α1,3 ◦ Z1,2+hs+

+Z1,3+hs = k13; · · · ;
s−1∑
v=1

(
v−1∏
l=0

α1,s−l

)
◦ Z1,s−v+hs + Z1,s+hs = k1s; · · · ;

Zm,1+hs = km1;αm,2 ◦ Zm,1+hs + Zm,2+hs = km2; (αm,3αm,2) ◦ Zm,1+hs+

αm,3 ◦ Zm,2+hs + Zm,3+hs = km3; · · · ;
s−1∑
v=1

(
v−1∏
l=0

αm,s−l

)
◦ Zm,s−v+hs+

+Zm,s+hs = kms



= P
(
B1 ◦ Z1,h = k1, B2 ◦ Z2,h = k2, . . . , Bm ◦ Zm,h = km

)
=

= P
(
B̃ ◦ Zh = k

)
= P (Rh = k).

Next we obtain the stationary mean and the variance-covariance matrix of the process {Xt}

with t = v + ns for each season v (v = 1, . . . , s).
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2.2.2 Mean vector of cyclostationary PMINAR(1)

The properties of the matrix-binomial thinning operator established in Lemma 1.3 are useful

to the derivation of the moments of the PMINAR(1) model in (2.23). Hence, from property 1

(Lemma 1.3), the mean expectation of Rt is

E[Rt] = E[B̃ ◦ Zt] = B̃E[Zt] = B̃δt (2.25)

with matrices B̃ and δt in (2.11) and (2.14), respectively. Furthermore, for each component

j = 1, . . . ,m, the mean vector of Rj,t takes the form

E[Rj,t] = E[Bj ◦ Zj,t] = BjE[Zj,t] = Bjδj,t =

=



λj,1

λj,1αj,2 + λj,2

λj,1αj,3αj,2 + λj,2αj,3 + λj,3
...

λj,1
s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s


, (2.26)

where Bj and δj,t are defined in (2.8) and (2.15), respectively.

Let µt = E[Xt] with Xt given in equation (2.23), then

µt = E[Ã ◦Xt−s +Rt] = ÃE[Xt−s] + E[Rt].

Due to the periodically stationary distribution and from (2.25) we can write

(I − Ã)µt = B̃δt

i.e.,

µt = (I − Ã)−1B̃δt (2.27)
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with I the identity matrix as usual, matrices Ã and B̃, and vector δt in (2.10), (2.11) and

(2.14), respectively. Next we prove that I − Ã is a regular matrix and therefore, matrix

(I − Ã)−1 exists. The matrix I − Ã is a (ms×ms) block-diagonal matrix given by

I − Ã = diag(C1, C2, . . . , Cm)

with (s× s) matrix Cj (j = 1, . . . ,m) as

Cj =



1 0 · · · 0 −αj,1

0 1 · · · 0 −αj,2αj,1

...
... . . . ...

...

0 0 · · · 1 −
s−2∏
k=0

αj,s−1−k

0 0 · · · 0 1−
s−1∏
k=0

αj,s−k


.

This matrix is the same as Cj with λ = 1 defined in (2.22). The determinant of the matrix

I − Ã is easy to determine since the matrices Cj above are (s× s) upper triangular matrices

leading to obtain

det(I − Ã) =

m∏
j=1

(
1−

s−1∏
k=0

αj,s−k

)
. (2.28)

The determinant is different from zero because
s−1∏
k=0

αj,s−k is different from 1 since αj,v ∈ (0, 1)

for j = 1, . . . ,m and v = 1, . . . , s. The adjoint matrix of I − Ã is

adj(I − Ã) =


F1 0 · · · 0

0 F2 · · · 0

...
... . . . ...

0 0 · · · Fm

 .

Let det(I − Ã) in (2.28) be d and the product
m∏
r=1
r ̸=j

(
1−

s−1∏
k=0

αr,s−k

)
be d(−j) (j = 1, . . . ,m).
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The (s× s) matrix Fj (j = 1, . . . ,m) is given by

Fj =



d 0 · · · 0 αj,1d(−j)

0 d · · · 0
2−1∏
k=0

αj,2−kd(−j)

...
... . . . ...

...

0 0 · · · d
(s−1)−1∏

k=0

αj,s−1−kd(−j)

0 0 · · · 0 d(−j)


.

Since by definition, (I − Ã)−1 = 1

det(I−Ã)
adj(I − Ã), the inverse matrix of I − Ã is

(I − Ã)−1 =
1

m∏
j=1

(
1−

s−1∏
k=0

αj,s−k

)


F1 0 · · · 0

0 F2 · · · 0

...
... . . . ...

0 0 · · · Fm



=
1

d



F1 0 · · · 0

0 F2 · · · 0

...
... . . . ...

0 0 · · · Fm


=



G1 0 · · · 0

0 G2 · · · 0

...
... . . . ...

0 0 · · · Gm


,

where

Gj =
1

d
Fj =



1 0 · · · 0
d(−j)

d
αj,1

0 1 · · · 0
d(−j)

d

2−1∏
k=0

αj,2−k

...
... . . . ...

...

0 0 · · · 1
d(−j)

d

(s−1)−1∏
k=0

αj,s−1−k

0 0 · · · 0
d(−j)

d


(2.29)

is an upper triangular matrix with
d(−j)

d
=

1

1−
s−1∏
k=0

αj,s−k

for j = 1, . . . ,m.
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The ms-dimensional mean vector µt = (I − Ã)−1B̃δt with t = v + ns; v = 1, . . . , s and

n ∈ N0 defined in (2.27) takes the form

µt =



µ1,t

µ2,t

...

µm,t


=



G1 0 · · · 0

0 G2 · · · 0

...
... . . . ...

0 0 · · · Gm





B1 0 · · · 0

0 B2 · · · 0

...
... . . . ...

0 0 · · · Bm





δ1,t

δ2,t
...

δm,t


and the mean of the j-th component Xj,t:

µj,t = E [Xj,t] = GjBjδj,t =



E[Xj,1+ns]

E[Xj,2+ns]

...

E[Xj,s+ns]


, (2.30)

i.e.,

µj,t = GjBjδj,t =

=



1 0 · · · 0
d(−j)

d
αj,1

0 1 · · · 0
d(−j)

d

2−1∏
k=0

αj,2−k

...
... . . . ...

...

0 0 · · · 1
d(−j)

d

(s−1)−1∏
k=0

αj,s−1−k

0 0 · · · 0
d(−j)

d





1 0 · · · 0 0

αj,2 1 · · · 0 0

αj,3αj,2 αj,3 · · · 0 0

...
...

... . . . ...
s−2∏
k=0

αj,s−k

s−3∏
k=0

αj,s−k . . . αj,s 1





λj,1

λj,2

λj,3

...

λj,s−1

λj,s



=



λj,1 +
d(−j)

d
αj,1

(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)

λj,1αj,2 + λj,2 +
d(−j)

d

2−1∏
k=0

αj,2−k

(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)

...
d(−j)

d

(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)


.
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For each j = 1, . . . ,m and l ≥ i, let

φ
(j)
l,i =


i−1∏
k=0

αj,l−k , i ≥ 1

1 , i = 0

. (2.31)

For a fixed v (v = 1, . . . , s) and j = 1, . . . ,m, each element of vector (2.30) is given by

E[Xj,v+ns] =

v−1∑
k=0

φ
(j)
v,kλj,v−k + φ

(j)
v,v

s−(v+1)∑
i=0

φ
(j)
s,iλj,s−i

1− φ
(j)
s,s

. (2.32)

In the sequel, we adopt the convention
s−(s+1)∑

i=0
φ
(j)
s,iλj,s−i = 0. Moreover, the vector of expec-

tations in (2.30) can be written as

µj,t = GjBjδj,t =
1

1− φ
(j)
s,s



1−1∑
k=0

φ
(j)
1,kλj,1−k + φ

(j)
1,1

s−2∑
i=0

φ
(j)
s,iλj,s−i

2−1∑
k=0

φ
(j)
2,kλj,2−k + φ

(j)
2,2

s−3∑
i=0

φ
(j)
s,iλj,s−i

3−1∑
k=0

φ
(j)
3,kλj,3−k + φ

(j)
3,3

s−4∑
i=0

φ
(j)
s,iλj,s−i

...
s−1∑
k=0

φ
(j)
s,kλj,s−k + φ

(j)
s,s

s−(s+1)∑
i=0

φ
(j)
s,iλj,s−i



(2.33)

for j = 1, . . . ,m; t = v + ns; v = 1, . . . , s and n ∈ N0. Full details in Appendix B.1.
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2.2.3 Variance-covariance matrix and auto-covariance function

The variance-covariance matrix of the periodic sequence {Rt} of independent random vectors

is

∑
Rt

= V ar[Rt] = V ar[B̃ ◦ Zt] =

= V ar[E(B̃ ◦ Zt|Zt)] + E[V ar(B̃ ◦ Zt|Zt)] =

= V ar[B̃Zt] + diag(QE(Zt)) =

= B̃
∑

Zt

B̃T + diag(Qδt) =

= B̃ψtB̃
T + diag(Qδt) (2.34)

with matrices B̃, δt and ψt in (2.11), (2.14) and (2.17), respectively. The (ms×ms) variance

matrix Q = B̃(I− B̃) has entries [qjik]i,k=1,...,ms for component j = 1, . . . ,m (see property 2 of

Lemma 1.3). In this case, [qjik] = [bjik(1− bjik)] with bjik elements of matrix B̃ in (2.11). Thus

matrix Q is also block-diagonal with m (s× s) matrices Qj , i.e., Q = diag(Q1, Q2, . . . , Qm),

where

Qj =



0 0 0 . . . 0

αj,2(1− αj,2) 0 0 . . . 0

αj,3αj,2(1− αj,3αj,2) αj,3(1− αj,3) 0 . . . 0

...
...

...
. . .

...
s−2∏
k=0

αj,s−k

(
1−

s−2∏
k=0

αj,s−k

)
s−3∏
k=0

αj,s−k

(
1−

s−3∏
k=0

αj,s−k

)
s−4∏
k=0

αj,s−k

(
1−

s−4∏
k=0

αj,s−k

)
. . . 0


(2.35)

leading to

diag(Qδt) =



Q∗
1 0 · · · 0

0 Q∗
2 · · · 0

...
... . . . ...

0 0 . . . Q∗
m


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with Q∗
j = diag(Qjδj,t), matrix Qj in (2.35) and vector δj,t in (2.15) for j = 1, . . . ,m and

t = v + ns; v = 1, . . . , s and n ∈ N0. Hence

Qjδj,t =



0

αj,2(1− αj,2)λj,1

αj,3αj,2(1− αj,3αj,2)λj,1 + αj,3(1− αj,3)λj,2
...
s−2∏
k=0

αj,s−k

(
1−

s−2∏
k=0

αj,s−k

)
λj,1 +

s−3∏
k=0

αj,s−k

(
1−

s−3∏
k=0

αj,s−k

)
λj,2 +

+ . . .+ αj,s(1− αj,s)λj,s−1


we can write

Q∗
j = diag(Qjδj,t) =

=



0 0 . . . 0

0 αj,2(1− αj,2)λj,1 . . . 0

...
... . . . ...

0 0 . . .
s−1∑
l=1

s−(l−1)∏
k=0

αj,s−k

(
1−

s−(l−1)∏
k=0

αj,s−k

)
λj,l


. (2.36)

The variance-covariance matrix of Rt in (2.34) can be written as

∑
Rt

= B̃ψtB̃
T + diag(Qδt) =

=



B1ψ11,tB
T
1 +Q∗

1 B1ψ12,tB
T
2 . . . B1ψ1m,tB

T
m

B2ψ12,tB
T
1 B2ψ22,tB

T
2 +Q∗

2 . . . B2ψ2m,tB
T
m

...
... . . . ...

Bmψ1m,tB
T
1 Bmψ2m,tB

T
2 . . . Bmψmm,tB

T
m +Q∗

m


. (2.37)

Furthermore, for each component j = 1, . . . ,m,

V ar[Rj,t] = Bjψjj,tB
T
j +Q∗

j (2.38)
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and for j ̸= k, k = 1, . . . ,m,

Cov(Rj,t,Rk,t) = Bjψjk,tB
T
k , (2.39)

where matrices Bj , ψjk,t and Q∗
j are given by (2.8), (2.18) and (2.36), respectively. Based on

relation (2.31), matrix Bj in (2.11) takes the form

Bj =



1 0 0 . . . 0

φ
(j)
2,1 1 0 . . . 0

φ
(j)
3,2 φ

(j)
3,1 1 . . . 0

...
...

... . . . ...

φ
(j)
s,s−1 φ

(j)
s,s−2 φ

(j)
s,s−3 . . . 1


. (2.40)

Thus, the matrix product Bjψjj,tB
T
j in (2.38) can be simplified to

Bjψjj,tB
T
j =

=



σ2
j,1 φ

(j)
2,1σ

2
j,1 . . . φ

(j)
s,s−1σ

2
j,1

φ
(j)
2,1σ

2
j,1 (φ

(j)
2,1)

2σ2
j,1 + σ2

j,2 . . . φ
(j)
2,1φ

(j)
s,s−1σ

2
j,1 + φ

(j)
s,s−2σ

2
j,2

...
... . . . ...

φ
(j)
s,s−1σ

2
j,1 φ

(j)
2,1φ

(j)
s,s−1σ

2
j,1 + φ

(j)
s,s−2σ

2
j,2 . . .

s−1∑
k=1

(φ
(j)
s,s−k)

2σ2
j,k + σ2

j,s


(2.41)

and the covariance matrix in (2.39) be written as

Cov(Rj,t,Rk,t) = Bjψjk,tB
T
k

=


σjk,1 σjk,1φ

(k)
2,1 . . . σjk,1φ

(k)
s,s−1

φ
(j)
2,1σjk,1 φ

(j)
2,1σjk,1φ

(k)
2,1 + σjk,2 . . . φ

(j)
2,1σjk,1φ

(k)
s,s−1 + σjk,2φ

(k)
s,s−2

...
...

. . .
...

φ
(j)
s,s−1σjk,1 φ

(j)
s,s−1σjk,1φ

(k)
2,1 + φ

(j)
s,s−2σjk,2 . . . φ

(j)
s,s−1σjk,1φ

(k)
s,s−1 + φ

(j)
s,s−2σjk,2φ

(k)
s,s−2 + . . .+ σjk,s

 .
(2.42)
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Let the variance-covariance matrix of Xt be
∑

Xt
with Xt = Ã ◦Xt−s+Rt given in recursion

(2.23). Recall from (2.23) that Rt = B̃ ◦ Zt and Zt are independent of Xt−s, thus variance-

covariance matrix of Xt is given by

∑
Xt

= V ar[Xt] = V ar[Ã ◦Xt−s] + V ar[Rt] =

= V ar[E(Ã ◦Xt−s|Xt−s)] + E[V ar(Ã ◦Xt−s|Xt−s)] + V ar[Rt] =

= V ar[ÃXt−s] + E[V ar(Ã ◦Xt−s|Xt−s)] + V ar[Rt] =

= ÃV ar[Xt−s]Ã
T + diag (DE[Xt−s]) +

∑
Rt

and due to cyclostationarity, Γ(0) proves to satisfy a difference equation of the form

Γ(0) = ÃΓ(0)ÃT + diag(Dµt) +
∑

Rt

(2.43)

with matrices Ã, µt and
∑

Rt
defined in (2.10), (2.27) and (2.34), respectively. From Lemma

1.3 (property 2), matrix D in (2.43) is a (ms×ms) variance matrix, Dj = [djik] = [ajik(1−a
j
ik)]

for i, k = 1, . . . , s and j = 1, . . . ,m. From matrix Aj in (2.7) and from (2.31), matrix Dj is

given by

Dj =



0 · · · 0 φ
(j)
1,1

(
1− φ

(j)
1,1

)
0 · · · 0 φ

(j)
2,2

(
1− φ

(j)
2,2

)
0 · · · 0 φ

(j)
3,3

(
1− φ

(j)
3,3

)
...

... . . . ...

0 · · · 0 φ
(j)
s,s

(
1− φ

(j)
s,s

)


. (2.44)

We then define

diag(Dµt) =



D∗
1 0 · · · 0

0 D∗
2 · · · 0

...
... . . . ...

0 0 . . . D∗
m


,
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where D∗
j = diag(Djµj,t) with matrix Dj in (2.44) and µj,t in (2.33) (j = 1, . . . ,m), yielding

Djµj,t =



0 · · · 0 φ
(j)
1,1

(
1− φ

(j)
1,1

)
0 · · · 0 φ

(j)
2,2

(
1− φ

(j)
2,2

)
...

... . . . ...

0 · · · 0 φ
(j)
s,s

(
1− φ

(j)
s,s

)





µ1,t

µ2,t

...

µm,t


=



φ
(j)
1,1

(
1− φ

(j)
1,1

)
µm,t

φ
(j)
2,2

(
1− φ

(j)
2,2

)
µm,t

...

φ
(j)
s,s

(
1− φ

(j)
s,s

)
µm,t


i.e.,

Djµj,t =



φ
(j)
1,1

(
1− φ

(j)
1,1

) s−1∑
k=0

φ
(j)
s,kλj,s−k

1− φ
(j)
s,s

φ
(j)
2,2

(
1− φ

(j)
2,2

) s−1∑
k=0

φ
(j)
s,kλj,s−k

1− φ
(j)
s,s

...

φ
(j)
s,s

(
1− φ

(j)
s,s

) s−1∑
k=0

φ
(j)
s,kλj,s−k

1− φ
(j)
s,s



.

For each component j = 1, . . . ,m; t = v + ns; v = 1, . . . , s and n ∈ N0, we can write

D∗
j = diag(Djµj,t) =

=

s−1∑
k=0

φ
(j)
s,kλj,s−k

1− φ
(j)
s,s



φ
(j)
1,1

(
1− φ

(j)
1,1

)
0 . . . 0

0 φ
(j)
2,2

(
1− φ

(j)
2,2

)
. . . 0

...
... . . . ...

0 0 . . . φ
(j)
s,s

(
1− φ

(j)
s,s

)


. (2.45)

For j = 1, . . . ,m and j ̸= k, k = 1, . . . ,m, the variance of the j-th component Xj,t has the

following form:

V ar[Xj,t] = AjV ar[Xj,t](Aj)
T + diag (Djµj,t) + V ar[Rj,t] (2.46)
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and covariance between two different components Xj,t and Xk,t:

Cov(Xj,t,Xk,t) = As
jCov(Xj,t,Xk,t)(A

s
k)

T +
s−1∑
i=0

(
Ai

jBjψjk,t−i + (Ai
kBk)

T
)
. (2.47)

The matricial representation of the variance-covariance matrix,
∑

Xt
, follows

∑
Xt

=



V ar[X1,t] Cov(X1,t,X2,t) . . . Cov(X1,t,Xm,t)

Cov(X2,t,X1,t) V ar[X2,t] . . . Cov(X2,t,Xm,t)

...
... . . . ...

Cov(Xm,t,X1,t) Cov(Xm,t,X2,t) . . . V ar[Xm,t]



=:



∑
1,1

∑
1,2 . . .

∑
1,m∑

2,2 . . .
∑

2,m

. . . ...∑
m,m


. (2.48)

For j = 1, . . . ,m, (s× s) symmetric matrices
∑

j,j are given by

∑
j,j

= V ar[Xj,t] =

=



V ar[Xj,1+ns] Cov(Xj,1+ns, Xj,2+ns) . . . Cov(Xj,1+ns, Xj,s+ns)

V ar[Xj,2+ns] . . . Cov(Xj,2+ns, Xj,s+ns)

. . . ...

V ar[Xj,s+ns]


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with diagonal elements

V ar[Xj,v+ns] =

=
1

1−
(
φ
(j)
s,s

)2
{

v−1∑
k=0

[
φ(j)
s,sφ

(j)
v,kλj,v−k + φ

(j)
v,k

(
1− φ

(j)
v,k

)
λj,v−k +

(
φ
(j)
v,k

)2
σ2j,v−k

]
+

+

s−(v+1)∑
m=0

[
φ(j)
s,sφ

(j)
v,vφ

(j)
s,mλj,s−m + φ(j)

v,vφ
(j)
s,m

(
1− φ(j)

v,vφ
(j)
s,m

)
λj,s−m +

(
φ(j)
v,vφ

(j)
s,m

)2
σ2j,s−k

]
(2.49)

for a fixed v (v = 1, . . . , s) and off-diagonal elements

Cov(Xj,v+ns, Xj,v+ns+l) = φ
(j)
v+l,lV ar[Xj,v+ns], (2.50)

where λj,v represents the mean of Zj,v+ns in (2.16) and σ2j,v the variance in (2.21). The (s×s)

non-symmetric matrices
∑

j,k (j ̸= k; j, k = 1, . . . ,m) in (2.48) are given by

∑
j,k

= Cov(Xj,t,Xk,t) =

=


Cov(Xj,1+ns, Xk,1+ns) Cov(Xj,1+ns, Xk,2+ns) . . . Cov(Xj,1+ns, Xk,s+ns)

Cov(Xj,2+ns, Xk,1+ns) Cov(Xj,2+ns, Xk,2+ns) . . . Cov(Xj,2+ns, Xk,s+ns)

...
... . . . ...

Cov(Xj,s+ns, Xk,1+ns) Cov(Xj,s+ns, Xk,2+ns) . . . Cov(Xj,s+ns, Xk,s+ns)

 (2.51)

with diagonal elements

Cov(Xj,v+ns, Xk,v+ns) =

=
1

1− φ
(j)
s,sφ

(k)
s,s

v−1∑
i=0

φ
(j)
v,iφ

(k)
v,i σjk,v−i +

φ
(j)
v,vφ

(k)
v,v

1− φ
(j)
s,sφ

(k)
s,s

s−(v+1)∑
i=0

φ
(j)
s,iφ

(k)
s,i σjk,s−i (2.52)
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for a fixed v (v = 1, . . . , s) and off-diagonal elements

Cov(Xj,v+ns+h, Xk,v+ns) =

=
φ
(j)
v+h,h

1− φ
(j)
s,sφ

(k)
s,s

v−1∑
i=0

φ
(j)
v,iφ

(k)
v,i σjk,v−i +

φ
(j)
v+h,hφ

(j)
v,vφ

(k)
v,v

1− φ
(j)
s,sφ

(k)
s,s

s−(v+1)∑
i=0

φ
(j)
s,iφ

(k)
v,i σjk,s−i (2.53)

and

Cov(Xj,v+ns, Xk,v+ns+h) =

=
φ
(k)
v+h,h

1− φ
(j)
s,sφ

(k)
s,s

v−1∑
i=0

φ
(j)
v,iφ

(k)
v,i σjk,v−i +

φ
(k)
v+h,hφ

(j)
v,vφ

(k)
v,v

1− φ
(j)
s,sφ

(k)
s,s

s−(v+1)∑
i=0

φ
(j)
s,iφ

(k)
v,i σjk,s−i, (2.54)

where σjk,v represents the covariance between Zj,v+ns and Zk,v+ns as defined in (2.19).

Auto-covariance function with lag h

For each component j = 1, . . . ,m and positive lag h:

Cov(Xj,t,Xj,t+h) = Cov

(
Xj,t, A

h
j ◦Xj,t +

h−1∑
i=0

Ai
j ◦Rj,t+h−i

)
=

= Ah
jCov(Xj,t,Xj,t) = Ah

j V ar[Xj,t], (2.55)

Cov(Xj,t+h,Xk,t) = Ah
jCov(Xj,t,Xk,t), (2.56)

Cov(Xj,t,Xk,t+h) = Ah
kCov(Xj,t,Xk,t). (2.57)

The matricial form of Cov(Xj,t,Xj,t+h) with t = v + ns; v = 1, . . . , s and j = 1, . . . ,m is

Cov(Xj,t,Xj,t+h) =

=


Cov(Xj,1+ns, Xj,1+ns+h) Cov(Xj,1+ns, Xj,2+ns+h) . . . Cov(Xj,1+ns, Xj,s+ns+h)

Cov(Xj,2+ns, Xj,1+ns+h) Cov(Xj,2+ns, Xj,2+ns+h) . . . Cov(Xj,2+ns, Xj,s+ns+h)

...
... . . . ...

Cov(Xj,s+ns, Xj,1+ns+h) Cov(Xj,s+ns, Xj,2+ns+h) . . . Cov(Xj,s+ns, Xj,s+ns+h)

 .

(2.58)
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2.3 Estimation of the PMINAR(1) parameters

Consider a finite time series {Xj,ts, 1 ≤ t ≤ N, j = 1, . . . ,m} from the PMINAR(1) model in

(2.23), where N stands for the number of complete cycles. Without loss of generality it

is assumed that X0 = x0. The methods of Yule-Walker, conditional maximum likelihood

and composite likelihood are proposed for the estimation of the parameters of the PMINAR(1)

model. Let θ be the vector of unknown parameters

θ := (αj ,λj ,σ
2
j ,σj,k) (2.59)

with s-dimensional vectors αj ,λj ,σ
2
j and σjk (j ̸= k; j, k = 1, . . . ,m)

αj = (αj,1, . . . , αj,s) ; λj = (λj,1, . . . , λj,s) ;

σ2
j = (σ2j,1, . . . , σ

2
j,s) ; σjk = (σjk,1, . . . , σjk,s). (2.60)

Alternatively, the vector θ in (2.59) can be written as

θ := (vec(αj)
T , vec(λj)

T , vec(σ2
j )

T , vec(σjk)
T ),

i.e., vec(U) corresponds to the vector obtained by stacking the columns of U (Harville, 2008).

2.3.1 Yule-Walker estimation

Let θ̂YW be the vector of the Yule-Walker (YW) estimators for the unknown parameters in

(2.59), thus

θ̂YW := (α̂YW
j , λ̂YW

j , σ̂2,Y W
j , σ̂YW

j,k ) (2.61)

with (s× 1) vectors α̂YW
j , λ̂YW

j , σ̂2,Y W
j and σ̂YW

jk as in (2.60), respectively.

For each j (j = 1, . . . ,m) and for a fixed v (v = 1, . . . , s), we define:
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• sample mean:

Xj,v =
1

N

N−1∑
n=0

Xj,v+ns, (2.62)

• sample variance:

S2
j,v =

1

N − 1

N−1∑
n=0

(Xj,v+ns −Xj,v)
2, (2.63)

• sample autocovariance function at lag 1:

γj,v(1) = Cov(Xj,v+ns, Xj,v+1+ns) =

=



1

N − 1

N−1∑
n=0

(Xj,v+ns −Xj,v)(Xj,v+1+ns −Xj,v+1) , v = 1, . . . , s− 1

1

N − 1

N−1∑
n=0

(Xj,v+ns −Xj,v)(Xj,1+(n+1)s −X
∗
j,1) , v = s

(2.64)

with X
∗
j,1 =

1

N

N∑
n=0

Xj,1+ns,

• sample cross-covariance function at lag 1:

γjk,v(1) = Cov(Xj,v+ns, Xk,v+1+ns) =

=



1

N − 1

N−1∑
n=0

(Xj,v+ns −Xj,v)(Xk,v+1+ns −Xk,v+1) , v = 1, . . . , s− 1

1

N − 1

N−1∑
n=0

(Xj,v+ns −Xj,v)(Xk,1+(n+1)s −X
∗
k,1) , v = s

.

(2.65)

Take the mean of Xj,v+ns in (2.32) and its sample counterpart in (2.62) then

E[Xj,v+ns] = Xj,v ⇔
v−1∑
k=0

φ
(j)
v,kλj,v−k + φ(j)

v,v

s−(v+1)∑
i=0

φ
(j)
s,iλj,s−i =

(
1− φ(j)

s,s

)
Xj,v.
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The YW estimators of parameters λj are calculated through the solution of the following

system of s linear equations:



E[X1,v+ns] = Xj,1

E[X2,v+ns] = Xj,2

E[X3,v+ns] = Xj,3

...

E[Xs,v+ns] = Xj,s

⇔

⇔



λj,1 + αj,1

(
λj,2

s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
=
(
1− φ

(j)
s,s

)
Xj,1

λj,1αj,2 + λj,2 + αj,1αj,2

(
λj,3

s−4∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
=
(
1− φ

(j)
s,s

)
Xj,2

λj,1αj,3αj,2 + λj,2αj,3 + λj,3+

+
d(−j)

d

3∏
i=1

αj,i

(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
=
(
1− φ

(j)
s,s

)
Xj,3

...

λj,1
s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s =
(
1− φ

(j)
s,s

)
Xj,s

.

The matrix representation of the above system of linear equations is



1 αj,1

s−3∏
k=0

αj,s−k αj,1

s−4∏
k=0

αj,s−k · · · αj,1

αj,2 1 αj,1αj,2

s−4∏
k=0

αj,s−k · · · αj,1αj,2

αj,3αj,2 αj,3 1 · · · αj,1αj,2αj,3

...
...

...
. . .

...
s−2∏
k=0

αj,s−k

s−3∏
k=0

αj,s−k

s−4∏
k=0

αj,s−k · · · 1





λj,1

λj,2

λj,3

...

λj,s


=
(
1− φ

(j)
s,s

)


Xj,1

Xj,2

Xj,3

...

Xj,s


thus, through equation (2.31), we can write



1 φ
(j)
1,1φ

(j)
s,s−2 φ

(j)
1,1φ

(j)
s,s−3 . . . φ

(j)
1,1

φ
(j)
2,1 1 φ

(j)
2,2φ

(j)
s,s−3 . . . φ

(j)
2,2

φ
(j)
3,2 φ

(j)
3,1 1 . . . φ

(j)
3,3

...
...

... . . . ...

φ
(j)
s,s−1 φ

(j)
s,s−2 φ

(j)
s,s−3 . . . 1





λj,1

λj,2

λj,3
...

λj,s


=
(
1− φ(j)

s,s

)


Xj,1

Xj,2

Xj,3

...

Xj,s


,
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where Wjδj,t =
(
1− φ

(j)
s,s

)
Xj,v, for j = 1, . . . ,m; v = 1, . . . , s, with δj,t in (2.15) and

Wj =



1 φ
(j)
1,1φ

(j)
s,s−2 φ

(j)
1,1φ

(j)
s,s−3 . . . φ

(j)
1,1

φ
(j)
2,1 1 φ

(j)
2,2φ

(1)
s,s−3 . . . φ

(j)
2,2

φ
(j)
3,2 φ

(j)
3,1 1 . . . φ

(j)
3,3

...
...

... . . . ...

φ
(j)
s,s−1 φ

(j)
s,s−2 φ

(j)
s,s−3 . . . 1


.

Taking all m components we obtain



W1 0 0 . . . 0

0 W2 0 . . . 0

0 0 W3 . . . 0

...
...

... . . . ...

0 0 0 . . . Wm





δ1,t

δ2,t

δ3,t
...

δm,t


=



(
1− φ

(1)
s,s

)
X1,v(

1− φ
(2)
s,s

)
X2,v(

1− φ
(3)
s,s

)
X3,v

...(
1− φ

(m)
s,s

)
Xm,v


.

Rewriting the system Wδt = Y with δt in (2.14) yields δ̂t = Ŵ−1Ŷ , i.e.,



δ̂1,t

δ̂2,t

δ̂3,t
...

δ̂m,t


=



Ŵ1 0 0 . . . 0

0 Ŵ2 0 . . . 0

0 0 Ŵ3 . . . 0

...
...

... . . . ...

0 0 0 . . . Ŵm



−1 

(
1− φ̂

(1)
s,s

)
X1,v(

1− φ̂
(2)
s,s

)
X2,v(

1− φ̂
(3)
s,s

)
X3,v

...(
1− φ̂

(m)
s,s

)
Xm,v


.

Let T represent a (p× p) matrix and S a (q× q) matrix. The (p+ q)× (p+ q) block-diagonal

matrix

 T 0

0 S

 is nonsingular if and only if both T and S are nonsingular (Harville, 2008).

Moreover, if T and S are nonsingular, then it can be easily verified that

 T 0

0 S


−1

=

 T−1 0

0 S−1

 .
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In our particular case, the inverse matrix is



Ŵ1 0 0 . . . 0

0 Ŵ2 0 . . . 0

0 0 Ŵ3 . . . 0

...
...

... . . . ...

0 0 0 . . . Ŵm



−1

=



(Ŵ1)
−1 0 0 . . . 0

0 (Ŵ2)
−1 0 . . . 0

0 0 (Ŵ3)
−1 . . . 0

...
...

... . . . ...

0 0 0 . . . (Ŵm)−1


with

(Ŵj)
−1 =

1

1−
s−1∏
k=0

α̂j,s−k



1 0 0 . . . 0 −α̂j,1

−α̂j,2 1 0 . . . 0 0

0 −α̂j,3 1 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . −α̂j,s 1


.

Recalling equations (2.15) and (2.31), the estimator for parameters δj,t takes the form

δ̂j,t = (Ŵj)
−1
(
1− φ̂(j)

s,s

)
Xj,v ⇔

⇔



λ̂j,1

λ̂j,2

λ̂j,3
...

λ̂j,s


=



1 0 0 . . . 0 −α̂j,1

−α̂j,2 1 0 . . . 0 0

0 −α̂j,3 1 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . −α̂j,s 1





Xj,1

Xj,2

Xj,3

...

Xj,s


.

We summarize the YW estimators of λj = (λj,1, λj,2, . . . , λj,s), λ̂YW
j,v , as

λ̂YW
j,v =

 Xj,v − α̂YW
j,v Xj,s , v = 1

Xj,v − α̂YW
j,v Xj,v−1 , v = 2, 3, . . . , s

, (2.66)
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where Xj,v (j = 1, . . . ,m) is the sample mean defined in (2.62). Notice that estimators λ̂YW
j,v

depend upon estimators α̂YW
j,v . Let lag h = 1 and from relation (2.55), we obtain

γj,t(1) = Ajγj,t(0). (2.67)

This relation is sufficient to derive estimators for parameters αj = (αj,1, αj,2, . . . , αj,s) for each

j (j = 1, . . . ,m) because matrix Aj in (2.7) contemplates all parameters αj,v (v = 1, . . . , s).

The (s × s) matrices γj,t(1) and γj,t(0) in relation (2.67) can be obtained from (2.58) by

replacing lag h with one and zero, respectively. Therefore,

γj,v+ns(1) = Cov(Xj,v+ns, Xj,v+ns+1) =

=


Cov(Xj,1+ns, Xj,2+ns) Cov(Xj,1+ns, Xj,3+ns) . . . Cov(Xj,1+ns, Xj,1+ns)

Cov(Xj,2+ns, Xj,2+ns) Cov(Xj,2+ns, Xj,3+ns) . . . Cov(Xj,2+ns, Xj,1+ns)

...
... . . . ...

Cov(Xj,s+ns, Xj,2+ns) Cov(Xj,s+ns, Xj,3+ns) . . . Cov(Xj,s+ns, Xj,1+ns)


and

Ajγj,v+ns(0) =

=


αj,1Cov(Xj,1+ns, Xj,s+ns) αj,1Cov(Xj,2+ns, Xj,s+ns) . . . αj,1V ar[Xj,s+ns]

αj,2αj,1Cov(Xj,1+ns, Xj,s+ns) αj,2αj,1Cov(Xj,2+ns, Xj,s+ns) . . . αj,2αj,1V ar[Xj,s+ns]

...
...

. . .
...

αj,s . . . αj,1Cov(Xj,1+ns, Xj,s+ns) αj,s . . . αj,1Cov(Xj,2+ns, Xj,s+ns) . . . αj,s . . . αj,1V ar[Xj,s+ns]

 .

Furthermore, from relation (2.67):

αj,1V ar[Xj,s+ns] = Cov(Xj,1+ns, Xj,1+ns) ⇔ αj,1 =
V ar[Xj,1+ns]

V ar[Xj,s+ns]

αj,2αj,1V ar[Xj,s+ns] = Cov(Xj,2+ns, Xj,1+ns) ⇔ αj,2 =
Cov(Xj,2+ns, Xj,1+ns)

V ar[Xj,1+ns]

...

αj,s =
Cov(Xj,s+ns, Xj,s−1+ns)

V ar[Xj,s−1+ns]
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Taking the corresponding empirical counterparts, we resume the YW estimators of parameters

αj = (αj,1, αj,2, . . . , αj,s) , α̂YW
j,v , as

α̂YW
j,v =



S2
j,v

S2
j,s

, v = 1

γj,v−1(1)

S2
j,v−1

, v = 2, 3, . . . , s

, (2.68)

where S2
j,v is the sample variance in (2.63) and γj,v(1) the sample auto-covariance function in

(2.64) for component j = 1, . . . ,m. YW estimators of parameters σ2
j = (σ2j,1, σ

2
j,2, . . . , σ

2
j,s),

σ̂2,Y W
j,v , can be calculated through sample variance in (2.63) and of σjk = (σjk,1, σjk,2, . . . , σjk,s),

σ̂YW
jk,v , through sample cross-covariance in (2.65).

2.3.2 Conditional maximum likelihood estimation

Let θ be the vector of unknown parameters in (2.59). The joint probability function of the

vector of innovations Zj,t with j = 1, . . . ,m; t = v + ns and v = 1, . . . , s follows the periodic

discrete m-variate distribution

P (Z1,v+ns = z1, Z2,v+ns = z2, . . . , Zm,v+ns = zm) = h(z1, z2, . . . , zm). (2.69)

The transition probabilities for the PMINAR(1) model can be expressed as the convolution of

m binomials with parameters (xj,v−1+ns, αj,v) for v = 1, . . . , s with probability mass function

fj(rj) = C
xj,v−1+ns
rj α

rj
j,v(1− αj,v)

xj,v−1+ns−rj , j = 1, . . . ,m, (2.70)

and the discrete multivariate distribution defined in (2.69). Thus, the conditional density is

the multiple sum

pv(xv+ns|xv−1+ns) = P (Xv+ns = xv+ns|Xv−1+ns = xv−1+ns) =

= P (X1,v+ns = x1,v+ns, . . . , Xm,v+ns = xm,v+ns|Xv−1+ns = xv−1+ns) =
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=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

P (α1,v ◦X1,v−1+ns = r1, . . . , αm,v ◦Xm,v−1+ns = rm|Xv−1+ns = xv−1+ns)×

× P (Z1,v+ns = x1,v+ns − r1, . . . , Zm,v+ns = xm,v+ns − rm) =

=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

f1(r1)f2(r2) . . . fm(rm) h(x1,v+ns − r1, x2,v+ns − r2, . . . , xm,v+ns − rm)

(2.71)

with gj = min(xj,v+ns, xj,v−1+ns), j = 1, . . . ,m; v = 1, . . . , s and n ∈ N0. The conditional

likelihood function is given by

L(θ|x) =
N−1∏
n=0

s∏
v=1

P (Xv+ns = xv+ns|Xv−1+ns = xv−1+ns) =

=

N−1∏
n=0

s∏
v=1

pv(xv+ns|xv−1+ns). (2.72)

The conditional maximum likelihood (CML) estimator, θ̂CML, of the vector of unknown

parameters θ in (2.59) is obtained by maximizing L(θ|x) which is equivalent to maximizing

the conditional log-likelihood

C(θ) = ln(L(θ|x)) =
N−1∑
n=0

s∑
v=1

ln (pv(xv+ns|xv−1+ns))

with transition probabilities pv(xv+ns|xv−1+ns) in equation (2.71). The first-order partial

derivatives of function C(θ) are obtained through

∂

∂θ
C(θ) =

N−1∑
n=0

s∑
v=1

∂

∂θ
pv(xv+ns|xv−1+ns)

pv(xv+ns|xv−1+ns)
,

when a particular joint distribution for the innovation process in (2.69) is assumed.
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2.3.3 Composite likelihood estimation

For multivariate processes, the number of parameters can be quite large and for periodic multi-

variate processes even larger, the inflation of parameters is due to season v (v = 1, . . . , s) with

s representing the period. Computational issues often arise when applying the conditional

maximum likelihood approach, the complexity of the method augments with dimensional

increase. To overcome the limitations in computing the exact likelihood, Lindsay (1988) pro-

posed the composite likelihood as a pseudo-likelihood for inference. The pseudo-likelihood

may take various forms such as combinations of likelihoods for small subsets of the data or

combinations of conditional likelihoods. Pairwise likelihood is one special case of a composite

likelihood, in which the pseudo-likelihood is defined as the product of the bivariate likelihood

of all possible pairs of observations. A general discussion of pairwise likelihood can be found

in Cox and Reid (2004) and Davis and Yau (2011).

Composite likelihood methods based on optimizing sums of log-likelihoods of low-dimensional

margins have become popular in recent years; they are useful for multivariate models in which

the likelihood of multivariate data is very time-consuming. The methodology has drawn con-

siderable attention in a broad range of applied disciplines in which complex data structures

arise (Varin, 2008). An excellent overview of composite likelihood methods can be found in

Varin et al. (2011), complementing and extending the review made by Varin (2008). This

concept of estimation has also been used by Pedeli and Karlis (2013a). Composite likelihood

inherits many of the good properties of inference based on the full likelihood function, but

is more easily implemented with high-dimensional data sets. Analogues of the Akaike infor-

mation criteria for model selection can be derived in the framework of composite likelihoods,

having a similar form, see e.g. Varin and Vidoni (2005) and Ng and Joe (2014). Pairwise

likelihood or bivariate composite likelihood methods are based on bivariate margins. The

bivariate marginal log-likelihood function between two random elements, say Xa and Xb, is

defined as

lab(θ;xa,xb) =
1

Ns

N−1∑
n=0

s∑
v=1

logfXa,Xb
(xa,v+ns, xb,v+ns|xa,v−1+ns, xb,v−1+ns;θ), (2.73)
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where θ is the vector of unknown parameters in (2.59) and function

fXa,Xb
(xa,v+ns, xb,v+ns|xa,v−1+ns, xb,v−1+ns;θ) =

=

g1∑
ka=0

g2∑
kb=0

 xa,v−1+ns

xa,v+ns − ka

α
xa,v+ns−ka
a,v (1− αa,v)

xa,v−1+ns−xa,v+ns+ka ×

×

 xb,v−1+ns

xb,v+ns − ka

α
xb,v+ns−kb
b,v (1− αb,v)

xb,v−1+ns−xb,v+ns+kb × hRa,Rb
(ka, kb) (2.74)

with g1 = min(xa,v+ns, xa,v−1+ns) and g2 = min(xb,v+ns, xb,v−1+ns). The bivariate function

hRa,Rb
(ka, kb) represents the bivariate marginal probability density function between the cor-

responding innovation terms Ra and Rb. The composite log-likelihood function, cl(θ;xa,xb),

then arises as the sum of all bivariate log-likelihood functions, i.e.,

cl(θ;xa,xb) =

m−1∑
a=1

m∑
b=a+1

wab lab(θ;xa,xb), (2.75)

where wab is a constant weight for lab. Typically, the weights are chosen in order to eliminate

distant pairs of observations, which should be less informative Varin and Vidoni (2005).

For sake of simplicity, it is common to set wab = 1, 1 ≤ a ≤ b ≤ m. Further details

on weighting of bivariate margins in pairwise likelihood in Joe and Lee (2009). Asymptotic

results and computational aspects of construction of, and inference from, composite likelihood

are available from Varin et al. (2011).

2.4 PMINAR(1) Process with MVNB Innovations

This section is devoted to the PMINAR(1) model in (2.23) with a specific multivariate distribu-

tion for the innovations. Recall the assumption of diagonality of the autocorrelation matrix,

thus correlation between the innovations is the only source of dependence between the series

Xj,t (j = 1, . . . ,m). Therefore, the choice of the joint distribution for the ms-dimensional

random vector of innovations Zj,t with t = v + ns; v = 1, . . . , s and j = 1, . . . ,m is quite
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relevant since it determines the properties of the underlying process. Monteiro et al. (2015)

generalized the bivariate model proposed by Pedeli and Karlis (2011) to the periodic case by

assuming periodic bivariate sequences of innovations. Two different distributional forms of

the innovations have been proposed in both papers: bivariate Poisson and bivariate negative

binomial. Much attention has been devoted to the Poisson distribution for the innovation

process. However, implying equidispersion (mean equals variance) in real-life events may not

reflect the true nature of the data, limiting the applicability of the Poisson distribution. In

the periodic bivariate case, Monteiro et al. (2015) has shown the bivariate negative binomial

distribution for the underlying innovations series allows for more flexibility, due to the in-

volvement of the overdispersion parameter, than the same model with Poisson innovations.

Thus, in the sequel, the distribution of the innovation processes is assumed to be periodic

multivariate negative binomial (MVNB) distribution, which can account for overdispersion

(variance exceeds mean), a common feature in real data applications.

2.4.1 Multivariate negative binomial distribution and basic properties

For a fixed v (v = 1, . . . , s), let λ̃v = [λ1,v λ2,v . . . λm,v]
T with positive λj,v (j = 1, . . . ,m)

and positive dispersion parameter βv. Let Zj,t with t = v + ns be random variables having

the Poisson distribution with mean ηλj,v, where η is a r.v. which represents an unobserved

heterogeneity that follows a Gamma (β−1
v , β−1

v ) distribution. In the aforementioned set-

ting, the innovations Zj,t follow a multivariate negative binomial distribution, denoted by

MVNB(λ̃v, βv). Hence, the joint probability mass function in (2.69) now takes the form

h(z1, z2, . . . , zm) = P (Z1,v+ns = z1, Z2,v+ns = z2, . . . , Zm,v+ns = zm) =

=
Γ
(
β−1
v +

∑m
j=1 zj

)
Γ(β−1

v )

(
β−1
v

β−1
v +

∑m
j=1 λj,v

)β−1
v
β−1

v +

m∑
j=1

λj,v

−
∑m

j=1 zj m∏
j=1

λ
zj
j,v

zj !
(2.76)

for (z1, z2, . . . , zm) ∈ Nm
0 .
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Notice the marginal distribution of Zj,t is univariate negative binomial with parameters β−1
v

and pj,v (j = 1, . . . ,m; v = 1, . . . , s) given by

pj,v =
β−1
v

λj,v + β−1
v
. (2.77)

The multivariate negative binomial distribution defined in (2.76) has also been used by Mar-

shall and Olkin (1990), Boucher et al. (2008), Cheon et al. (2009) and more recently, by Pedeli

and Karlis (2011, 2013a).

As previously mentioned, the innovation process {Zt}, t = v+ns; v = 1, . . . , s and n ∈ N0 is

generally defined as a periodic sequence of independent random vectors with mean E[Zt] = δt

in (2.14) and variance-covariance matrix
∑

Zt
= ψt in (2.17). Thus, with the specification of

a MVNB distribution for the innovation process {Zt}:

E[Zj,v+ns] = β−1
v

1− pj,v
pj,v

= λj,v, (2.78)

V ar[Zj,v+ns] = σ2j,v = β−1
v

1− pj,v
p2j,v

= λj,v(1 + βvλj,v), (2.79)

Cov(Zj,v+ns, Zk,v+ns) = σjk,v = βvλj,vλk,v (2.80)

for a fixed v (v = 1, . . . , s), j ̸= k; j, k = 1, . . . ,m and probability pj,v defined in (2.77). The

mean of Zj,v+ns in (2.78) is equal to (2.16). The variance and covariance of Zj,v+ns in (2.21)

and (2.19), now with MVNB innovations, take the form in (2.79) and (2.80), respectively.

Hence, V ar[Zj,v+ns] exceeds E[Zj,v+ns], this setting clearly accounts for overdispersion. For

each season v, the covariance between two components defined in (2.80) is always positive.

Using the above specification for the joint distribution of the innovation process {Zt} in

(2.76), we can now define a PMINAR(1) model with MVNB innovations. The vector of expec-

tations µj,t (j = 1, . . . ,m) defined in (2.33) has the same elements as equation (2.32) because

E[Zj,v+ns] = λj,v in (2.78), i.e.,

E[Xj,v+ns] =

v−1∑
k=0

φ
(j)
v,kλj,v−k + φ

(j)
v,v

s−(v+1)∑
i=0

φ
(j)
s,iλj,s−i

1− φ
(j)
s,s

(2.81)
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for a fixed v (v = 1, . . . , s). From (2.78) and (2.79), the variance-covariance matrix
∑

Xt
in

(2.48) has symmetric matrices
∑

j,j (j = 1, . . . ,m) with diagonal elements equal to

V ar[Xj,v+ns] =

=
1

1−
(
φ
(j)
s,s

)2
{

v−1∑
k=0

[
φ(j)
s,sφ

(j)
v,kλj,v−k + φ

(j)
v,k

(
1− φ

(j)
v,k

)
λj,v−k +

+
(
φ
(j)
v,k

)2
λj,v−k(1 + βv−kλj,v−k)

]
+

s−(v+1)∑
m=0

[
φ(j)
s,sφ

(j)
v,vφ

(j)
s,mλj,s−m +

+ φ(j)
v,vφ

(j)
s,m

(
1− φ(j)

v,vφ
(j)
s,m

)
λj,s−m +

(
φ(j)
v,vφ

(j)
s,m

)2
λj,s−k(1 + βs−kλj,s−k)

]}
(2.82)

and off-diagonal elements equal to

Cov(Xj,v+ns, Xj,v+ns+l) = φ
(j)
v+l,lV ar[Xj,v+ns].

2.4.2 Parameter estimation with MVNB innovations

For the PMINAR(1) model with multivariate negative binomial innovations, the vector of un-

known parameters θ in (2.59) is a (2m+ 1)s-dimensional vector as

θ := (α1, . . . ,αm,λ1, . . . ,λm,β) (2.83)

with s-dimensional vectors

αj = (αj,1, . . . , αj,s) ; λj = (λj,1, . . . , λj,s) ; β = (β1, . . . , βs), j = 1, . . . ,m. (2.84)

2.4.2.1 Yule-Walker estimation

The Yule-Walker (YW) estimator of the vector of the (2m + 1)s unknown parameters in

(2.83) is θ̂YW := (α̂YW
1 , . . . , α̂YW

m , λ̂YW
1 , . . . , λ̂YW

m , β̂YW ). The YW estimators λ̂YW
j,v and

α̂YW
j,v (j = 1, . . . ,m) for parameters λj,v in λj and αj,v in αj from (2.84), are defined in (2.66)
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and in (2.68), respectively. The YW estimator for parameter βv, β̂YW
v (v = 1, . . . , s), follows

from equations (2.52) and (2.80),

Cov(Xj,v+ns, Xk,v+ns) =

=
1

1− φ
(j)
s,sφ

(k)
s,s

v−1∑
i=0

φ
(j)
v,iφ

(k)
v,i βvλj,v−iλk,v−i +

φ
(j)
v,vφ

(k)
v,v

1− φ
(j)
s,sφ

(k)
s,s

s−(v+1)∑
i=0

φ
(j)
s,iφ

(k)
s,i βvλj,s−iλk,s−i

then

βv =

(
1− φ

(j)
s,sφ

(k)
s,s

)
Cov(Xj,v+ns, Xk,v+ns)

v−1∑
i=0

φ
(j)
v,iφ

(k)
v,i λj,v−iλk,v−i + φ

(j)
v,vφ

(k)
v,v

s−(v+1)∑
i=0

φ
(j)
s,iφ

(k)
s,i λj,s−iλk,s−i

.

The sample equivalent of Cov(Xj,v+ns, Xk,v+ns) expressed in (2.65) yields the YW estimator

for parameter βv

β̂YW
v =

(
1− φ̂

(j)
s,sφ̂

(k)
s,s

)
γjk,v(0)

v−1∑
i=0

φ̂
(j)
v,i φ̂

(k)
v,i λ̂j,v−iλ̂k,v−i + φ̂

(j)
v,vφ̂

(k)
v,v

s−(v+1)∑
i=0

φ̂
(j)
s,i φ̂

(k)
s,i λ̂j,s−iλ̂k,s−i

, (2.85)

for v = 1, . . . , s and j ̸= k; j, k = 1, . . . ,m.

2.4.2.2 Conditional maximum likelihood estimation

The conditional maximum likelihood (CML) estimator of the vector of the (2m + 1)s un-

known parameters in (2.83) is θ̂CML := (α̂CML
1 , . . . , α̂CML

m , λ̂CML
1 , . . . , λ̂CML

m , β̂CML). Thus

assuming MVNB innovations, the conditional density defined in (2.71) takes the form

pv(xv+ns|xv−1+ns) =

=
g1∑

r1=0

g2∑
r2=0

. . .
gm∑

rm=0

(
m∏
j=1

fj(rj)

)
h(x1,v+ns − r1, x2,v+ns − r2, . . . , xm,v+ns − rm) =



2.4 PMINAR(1) Process with MVNB Innovations 75

=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

 m∏
j=1

fj(rj)

 Γ
(
β−1
v +

∑m
j=1(xj,v+ns − rj)

)
Γ(β−1

v )

(
β−1
v

β−1
v +

∑m
j=1 λj,v

)β−1
v

×

×

β−1
v +

m∑
j=1

λj,v

−
∑m

j=1(xj,v+ns−rj)
m∏
j=1

λ
(xj,v+ns−rj)
j,v

(xj,v+ns − rj)!
(2.86)

with gj = min(xj,v−1+ns, xj,v+ns) and fj(rj) in (2.70) for j = 1, . . . ,m. The conditional

log-likelihood function is given by

C(θ) = ln(L(θ|x)) =
N−1∑
n=0

s∑
v=1

ln (pv(xv+ns|xv−1+ns)) (2.87)

with transition probabilities pv(xv+ns|xv−1+ns) defined in equation (2.86). Hence, the first-

order partial derivatives of the conditional log-likelihood C(θ) in (2.87) are obtained through

∂

∂θ
C(θ) =

N−1∑
n=0

s∑
v=1

∂

∂θ
pv(xv+ns|xv−1+ns)

pv(xv+ns|xv−1+ns)
. (2.88)

For a fixed v (v = 1, . . . , s), let the vector of unknown parameters be

ηv = (α1,v, . . . , αm,v, λ1,v, . . . , λm,v, βv). (2.89)

The first-order partial derivatives of function pv(xv+ns|xv−1+ns) (pv for short) in (2.86) with

respect to the autocorrelation coefficients αj,v (j = 1, . . . ,m) are:

∂pv
∂α1,v

=
x1,v−1+ns

1− α1,v
[pv(xv+ns − (1, 0, . . . , 0)|xv−1+ns − (1, 0, . . . , 0))− pv(xv+ns|xv−1+ns)] ,

∂pv
∂α2,v

=
x2,v−1+ns

1− α2,v
[pv(xv+ns − (0, 1, . . . , 0)|xv−1+ns − (0, 1, . . . , 0))− pv(xv+ns|xv−1+ns)] ,

...
∂pv
∂αm,v

=
xm,v−1+ns

1− αm,v
[pv(xv+ns − (0, 0, . . . , 1)|xv−1+ns − (0, 0, . . . , 1))− pv(xv+ns|xv−1+ns)] .
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Partial derivatives of function pv with respect to the parameters λj,v (j = 1, . . . ,m) and βv,

regarding the multivariate function h(z1, z2, . . . , zm) defined in (2.76) are:

∂pv(xv+ns|xv−1+ns)

∂λj,v
=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

 m∏
j=1

fj(rj)

 zj
λj,v

−

β−1
v +

m∑
j=1

zj

×

×

β−1
v +

m∑
j=1

λj,v

−1h(z1, z2, . . . , zm) (2.90)

and

∂pv(xv+ns|xv−1+ns)

∂βv
=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

 m∏
j=1

fj(rj)

β−2
v

ψ (β−1
v

)
− ψ

β−1
v +

m∑
j=1

zj

+

+ ln

1 + βv

m∑
j=1

λj,v

+
1

β−1
v +

∑m
j=1 λj,v

− 1

h(z1, z2, . . . , zm) (2.91)

with zj = xj,v+ns − rj , j = 1, . . . ,m. For w ̸= v, v = 1, . . . , s: ∂pv(xv+ns|xv−1+ns)

∂ηw
= 0.

First-order partial derivatives of the transition probability function pv(xv+ns|xv−1+ns) are

available in Appendix B.2.

Differentiating the conditional log-likelihood function C(θ) in (2.87) partially with respect

to all (2m + 1)s parameters and setting the derivatives in (2.88) to zero, we obtain the fol-

lowing system of first-order partial derivatives:



∂C(θ)

∂αj,v
= 0, j = 1, 2, . . . ,m

∂C(θ)

∂λj,v
= 0, j = 1, 2, . . . ,m

∂C(θ)

∂βv
= 0

(v = 1, . . . , s),
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i.e., 

N−1∏
n=0

x1,v−1+ns

1− α1,v

(
pv(xv+ns − (1, 0, . . . , 0)|xv−1+ns − (1, 0, . . . , 0))

pv(xv+ns|xv−1+ns)
− 1

)
= 0

N−1∏
n=0

x2,v−1+ns

1− α2,v

(
pv(xv+ns − (0, 1, . . . , 0)|xv−1+ns − (0, 1, . . . , 0))

pv(xv+ns|xv−1+ns)
− 1

)
= 0

...
N−1∏
n=0

xm,v−1+ns

1− αm,v

(
pv(xv+ns − (0, 0, . . . , 1)|xv−1+ns − (0, 0, . . . , 1))

pv(xv+ns|xv−1+ns)
− 1

)
= 0

N−1∏
n=0

1

pv(xv+ns|xv−1+ns)

∂pv(xv+ns|xv−1+ns)

∂λ1,v
= 0

N−1∏
n=0

1

pv(xv+ns|xv−1+ns)

∂pv(xv+ns|xv−1+ns)

∂λ2,v
= 0

...
N−1∏
n=0

1

pv(xv+ns|xv−1+ns)

∂pv(xv+ns|xv−1+ns)

∂λm,v
= 0

N−1∏
n=0

1

pv(xv+ns|xv−1+ns)

∂pv(xv+ns|xv−1+ns)

∂βv
= 0

with ∂pv(xv+ns|xv−1+ns)

∂λj,v
(j = 1, 2, . . . ,m) in (2.90) and ∂pv(xv+ns|xv−1+ns)

∂βv
in (2.91).

The above system of equations does not provide explicit CML estimators for the parame-

ters. However, they can be numerically obtained by using common statistical packages in

R. Asymptotic properties of the CML estimator θ̂CML of θ are given below. Results from

Billingsley (1961) are applied.

Theorem 2.2. The conditional maximum likelihood estimator θ̂CML of θ is asymptotically

normal
√
N(θ̂CML − θ)

d→ N(0, I−1(θ))

where I(θ) represents the Fisher information matrix

I =


M1 0 · · · 0

0 M2 · · · 0

...
... . . . ...

0 0 · · · Ms


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with matrices Mv (v = 1, . . . , s) given by



−E
[
∂2C(θ)
∂α2

1,v

]
· · · −E

[
∂2C(θ)

∂α1,v∂αm,v

]
−E

[
∂2C(θ)

∂α1,v∂λ1,v

]
· · · −E

[
∂2C(θ)

∂α1,v∂λm,v

]
−E

[
∂2C(θ)

∂α1,v∂βv

]
... . . . ...

...
...

...
...

−E
[

∂2C(θ)
∂αm,v∂α1,v

]
· · · −E

[
∂2C(θ)
∂α2

m,v

]
−E

[
∂2C(θ)

∂αm,v∂λ1,v

]
· · · −E

[
∂2C(θ)

∂αm,v∂λm,v

]
−E

[
∂2C(θ)

∂αm,v∂βv

]
−E

[
∂2C(θ)

∂λ1,v∂α1,v

]
· · · −E

[
∂2C(θ)

∂λ1,v∂αm,v

]
−E

[
∂2C(θ)
∂λ2

1,v

]
· · · −E

[
∂2C(θ)

∂λ1,v∂λm,v

]
−E

[
∂2C(θ)
∂λ1,v∂βv

]
...

...
...

... . . . ...
...

−E
[

∂2C(θ)
∂λm,v∂α1,v

]
· · · −E

[
∂2C(θ)

∂λm,v∂αm,v

]
−E

[
∂2C(θ)

∂λm,v∂λ1,v

]
· · · −E

[
∂2C(θ)
∂λ2

m,v

]
−E

[
∂2C(θ)

∂λm,v∂βv

]
−E

[
∂2C(θ)

∂βv∂α1,v

]
· · · −E

[
∂2C(θ)

∂βv∂αm,v

]
−E

[
∂2C(θ)
∂βv∂λ1,v

]
· · · −E

[
∂2C(θ)

∂βv∂λm,v

]
−E

[
∂2C(θ)
∂β2

v

]



.

Proof. This theorem is a particular case of theorem 2.2 in Billingsley (1961). For each season

v (v = 1, . . . , s), pv(·|·) is the transition probabilities in (2.86) of the PMINAR(1) model, there-

fore the regularity conditions in Billingsley’s Theorem 2.2 are satisfied. We postpone those

assumptions to the Appendix B.3.

2.4.2.3 Composite likelihood estimation

The composite likelihood (CL) estimator of the vector of the (2m+1)s unknown parameters

in (2.83) is θ̂CL := (α̂CL
1 , . . . , α̂CL

m , λ̂CL
1 , . . . , λ̂CL

m , β̂CL). The bivariate marginal log-likelihood

function between two random elements Xa and Xb can be defined as

lab(θ;xa,xb) =
1

Ns

N−1∑
n=0

s∑
v=1

logfXa,Xb
(xa,v+ns, xb,v+ns|xa,v−1+ns, xb,v−1+ns;θ),

where the corresponding bivariate marginal probability density with bivariate negative bino-

mial innovations is given by (2.74). The bivariate distribution between the innovation terms

Za and Zb, hZa,Zb
(ka, kb), is a particular case (m = 2) of the multivariate negative binomial
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distribution in (2.76), therefore,

fXa,Xb
(xa,v+ns, xb,v+ns|xa,v−1+ns, xb,v−1+ns;θ) =

=

g1∑
ka=0

g2∑
kb=0

 xa,v−1+ns

xa,v+ns − ka

α
xa,v+ns−ka
a,v (1− αa,v)

xa,v−1+ns−xa,v+ns+ka ×

×

 xb,v−1+ns

xb,v+ns − kb

α
xb,v+ns−kb
b,v (1− αb,v)

xb,v−1+ns−xb,v+ns+kb ×
Γ
(
β−1
v + ka + kb

)
Γ(β−1

v )
×

×

(
β−1
v

β−1
v + λa,v + λb,v

)β−1
v (

β−1
v + λa,v + λb,v

)−(ka+kb) λ
ka
a,v

ka!

λkbb,v
kb!

(2.92)

with g1 = min(xa,v+ns, xa,v−1+ns) and g2 = min(xb,v+ns, xb,v−1+ns). The composite log-

likelihood function cl(θ;xa,xb) is comprised of all the bivariate log-likelihood functions

cl(θ;xa,xb) =

m−1∑
a=1

m∑
b=a+1

wab lab(θ;xa,xb), (2.93)

where wa,b is a constant weight for lab.

2.5 Forecasting

We consider the forecasting of future values Xt+h (t = v + ns; v = 1, . . . , s) of the periodic

MINAR(1) process, given past observations through time t = v + ns for v = 1, . . . , s. Let

h = u + ls for u = 1, . . . , s throughout this section. Due to the definition of the model and

by iterating equation (2.5), the j-th component Xj,t can be expressed as

Xj,t
d
=

(
n−1∏
i=0

ϕj,t−i

)
◦Xj,t−n +

n−1∑
k=1

(
k−1∏
i=0

ϕj,t−i

)
◦ Zj,t−k + Zj,t

with ϕj,t defined in (2.4) and Zj,t in (2.2). Then

Xj,t
d
= ζ

(j)
t,n ◦Xj,t−n +

n−1∑
k=0

ζ
(j)
t,k ◦ Zj,t−k, (2.94)
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where, for t ≥ i

ζt,i :=


i−1∏
k=0

ϕt−k , i > 0

1 , i = 0

and also ζt,i := ζt,v(ζs,s)
l for i = v + ls; v = 1, . . . , s, leading to

Xj,v+ns+h
d
= ζ

(j)
v+ns+h,h ◦Xj,v+ns +

h−1∑
k=0

ζ
(j)
v+ns+h,k ◦ Zj,v+ns+h−k.

Since h = u+ ls for u = 1, . . . , s, it follows that

Xj,v+ns+h
d
= ζ

(j)
v+u+(n+l)s,u+ls ◦Xj,v+ns +

u+ls−1∑
k=1

ζ
(j)
v+u+(n+l)s,k ◦ Zj,v+u+(n+l)s−k

d
= ζ

(j)
v+u,u

(
ζ(j)s,s

)l
◦Xj,v+ns + Yj,v+u+ls

with

Yj,v+u+ls =
v−1∑
k=0

ζ
(j)
v+u,k ◦ Zj,v+u+ns−k +

l−1∑
w=0

s−1∑
k=0

ζ
(j)
v+u+(n+l)s,k+u+ws ◦ Zj,v+(n+l−w)s−k.

One way to generate the h-step ahead prediction is to employ the mean, median or mode of

the predictive distribution of Xv+ns+h|Xv+ns as a point forecast. The median and mode are

considered as coherent predictions (integer-valued) but the mean is not. The h-step ahead

point predictor that minimizes the mean square error (MSE) is given by

X̂j,v+ns+h = E[Xj,v+ns+h|Xj,v+ns]

= E

[
ζ
(j)
v+u,u

(
ζ(j)s,s

)l
◦Xj,v+ns|Xj,v+ns

]
+ E[Yj,v+u+ls], (2.95)

where

E[Yj,v+u+ls] = E

[
v−1∑
k=0

ζ
(j)
v+u,k ◦ Zj,v+u+ns−k +

l−1∑
w=0

s−1∑
k=0

ζ
(j)
v+u+(n+l)s,k+u+ws ◦ Zj,v+(n+l−w)s−k

]
=

=

v−1∑
k=0

ζ
(j)
v+u,kλj,v+u−k +

l−1∑
w=0

s−1∑
k=0

ζ
(j)
v+u+(n+l)s,k+u+wsλj,v+(n+l−w)s−k (2.96)
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with E[Zj,v+ns] = λj,v in (2.16). For the particular case, h = 1, the one-step ahead predictive

function is

pv(xv+1+ns|xv+ns) =

=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

 m∏
j=1

fj(rj)

h(x1,v+1+ns − r1, x2,v+1+ns − r2, . . . , xm,v+1+ns − rm)

(2.97)

with gj = min(xj,v+ns, xj,v+1+ns), j = 1, . . . ,m and MVNB distribution defined in (2.76)

takes the form

h(x1,v+1+ns − r1, x2,v+1+ns − r2, . . . , xm,v+1+ns − rm) =

=
Γ
(
β−1
v +

∑m
j=1(xj,v+1+ns − rj)

)
Γ(β−1

v )

(
β−1
v

β−1
v +

∑m
j=1 λj,v

)β−1
v

×

×

β−1
v +

m∑
j=1

λj,v

−
∑m

j=1(xj,v+1+ns−rj)
m∏
j=1

λ
(xj,v+1+ns−rj)
j,v

(xj,v+1+ns − rj)!
.

Furthermore, from equations (2.81) and (2.96), the one-step ahead predictor of Xj,v+ns+1

takes the form

X̂j,v+1+ns = E[Xj,v+1+ns|Xj,v+ns]

=

v∑
k=0

φ
(j)
v+1,kλj,v+1−k + φ

(j)
v+1,v+1

s−(v+2)∑
i=0

φ
(j)
s,iλj,s−i

1− φ
(j)
s,s

+

+

v−1∑
k=0

ζ
(j)
v+1,kλj,v+1−k +

l−1∑
w=0

s−1∑
k=0

ζ
(j)
v+1+(n+l)s,k+1+wsλj,v+(n+l−w)s−k. (2.98)

In order to evaluate the prediction performance given by the mean, median or mode of the

predictive distribution, Monteiro et al. (2015) has considered the square root of the mean

squared error (RMSE), the mean absolute error (MAE) or the loss function everything or

nothing (LFEN).
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2.6 Simulation study

The Yule-Walker (YW), conditional maximum likelihood (CML) and composite likelihood

(CL) estimators of the PMINAR(1) model were compared through a simulation experiment for

m = 3 (trivariate) and with periodic trivariate negative binomial innovations. The choice

for this dimension is due to the complexity of the model and also because a real data appli-

cation with three series is presented in the following section. Hence, a simulation study in

the trivariate context is suitable. The simulation study was carried out in R using the optim

function for the optimization of the likelihood functions and adopting convenient parameter

transformations. See Appendix D.1 for R functions concerning the data generation and esti-

mation in the present scenario.

Count series were generated assuming the innovation process {Zt} follows jointly a periodic

trivariate negative binomial distribution with parameters (λ1,λ2,λ3,β). We have set period

s = 4, thus the vector of unknown parameters θ in (2.83) is θ := (α1,α2,α3,λ1,λ2,λ3,β)

with αj = (αj,1, αj,2, αj,3, αj,4), λj = (λj,1, λj,2, λj,3, λj,4) for j = 1, 2, 3 and β = (β1, β2, β3, β4),

leading to a total of 28 parameters. This simulation study contemplates the following set of pa-

rameters: α1 = (0.53, 0.75, 0.62, 0.83), α2 = (0.72, 0.85, 0.56, 0.91), α3 = (0.83, 0.60, 0.41, 0.58)

and λ1 = (4, 2, 3, 5), λ2 = (5, 3, 1.2, 2), λ3 = (3, 1.6, 2, 4) and β = (1.6, 0.9, 1.8, 1.2). Three

alternative samples sizes where considered, in particular, n = 400, 1000, 2000. Since n = sN

then we have N = 100, 250, 500 complete cycles. For each experiment we conducted 200

independent replications.

The simulated data sets that produced YW estimates in an inadmissible range were disre-

garded and iterations were continued till reaching the specified number of 200 replications per

experiment. The tendency of the YW method to produce inadmissible estimates was greater

for smaller sample sizes. YW estimates were used as initial values in numerical routines for

the optimization procedure of CML and CL methods. Comparison of the YW, CML and CL

estimators was made in terms of the mean square error (MSE) and the biases of the produced

estimates. Tables 2.1-2.3 summarize the estimates of the parameters of the periodic trivariate

INAR(1) model with trivariate negative binomial innovations and includes MSE in parenthesis.
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Table 2.1: YW, CML and CL estimates for αj = (αj,1, αj,2, αj,3, αj,4) with j = 1, 2, 3. Mean square error in parenthesis.

n =400 n =1000 n =2000
(αj,1, αj,2, αj,3, αj,4) YW CML CL YW CML CL YW CML CL
(0.53, 0.75, 0.62, 0.83)

α̂1,1 0.521 0.531 0.531 0.528 0.531 0.531 0.528 0.529 0.529
(0.0018) (5.1×10−7) (0.0002) (0.0001) (0.00002) (0.00004) (0.0001) (0.00002) (0.00003)

α̂1,2 0.746 0.752 0.751 0.750 0.751 0.751 0.752 0.749 0.748
(0.0001) (0.00005) (0.0008) (0.0006) (0.0009) (0.0009) (0.0001) (0.00002) (0.00003)

α̂1,3 0.608 0.618 0.617 0.617 0.621 0.620 0.615 0.620 0.619
(0.0004) (0.0026) (0.00002) (0.0074) (0.0011) (0.0013) (0.0005) (0.00006) (0.00006)

α̂1,4 0.789 0.833 0.832 0.826 0.830 0.830 0.825 0.830 0.830
(0.0111) (0.0007) (0.0006) (0.0020) (0.00002) (0.00001) (0.0011) (0.00007) (0.00006)

(0.72, 0.85, 0.56, 0.91)

α̂2,1 0.717 0.718 0.717 0.739 0.719 0.719 0.740 0.720 0.720
(0.0027) (0.00002) (0.0038) (0.0001) (0.00003) (0.00002) (0.0010) (7.5×10−6) (0.00006)

α̂2,2 0.845 0.854 0.852 0.845 0.851 0.851 0.849 0.851 0.850
(0.0001) (0.0008) (0.00003) (0.0002) (0.00002) (0.00002) (0.0004) (0.00003) (0.00003)

α̂2,3 0.552 0.559 0.560 0.559 0.559 0.559 0.561 0.560 0.560
(0.0002) (0.0025) (0.00009) (0.0006) (0.00007) (0.00007) (0.0002) (0.00004) (0.00002)

α̂2,4 0.894 0.910 0.910 0.910 0.910 0.911 0.906 0.909 0.910
(0.0105) (0.0001) (0.0002) (0.0003) (0.0003) (0.0003) (0.0001) (0.00001) (0.00002)

(0.83, 0.60, 0.41, 0.58)

α̂3,1 0.823 0.832 0.832 0.832 0.831 0.831 0.830 0.830 0.830
(0.0071) (0.0005) (0.0013) (0.0001) (0.00006) (0.0001) (0.0003) (0.00001) (0.00003)

α̂3,2 0.596 0.603 0.603 0.601 0.600 0.600 0.599 0.601 0.602
(0.0011) (0.0008) (0.0020) (0.0020) (0.00002) (0.0004) (0.0001) (0.0003) (0.0004)

α̂3,3 0.391 0.411 0.410 0.411 0.409 0.409 0.407 0.411 0.411
(0.0002) (0.0001) (0.0009) (0.0004) (0.0037) (0.0040) (0.0001) (8.2×10−6) (0.00002)

α̂3,4 0.545 0.587 0.588 0.566 0.580 0.580 0.578 0.580 0.580
(0.0002) (0.0020) (0.0046) (0.0155) (0.0003) (0.0003) (0.0028) (0.0027) (0.0028)
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Table 2.2: YW, CML and CL estimates for λj = (λj,1, λj,2, λj,3, λj,4) with j = 1, 2, 3. Mean square error in parenthesis.

n =400 n =1000 n =2000
(λj,1, λj,2, λj,3, λj,4) YW CML CL YW CML CL YW CML CL

(4, 2, 3, 5)

λ̂1,1 4.182 3.909 3.927 3.986 3.981 3.988 3.995 3.999 4.033
(0.5357) (0.7701) (0.1028) (0.0556) (0.0012) (0.0059) (0.0651) (0.0164) (0.0179)

λ̂1,2 2.011 2.008 2.012 2.001 1.997 2.005 1.977 2.009 2.007
(0.0109) (0.0829) (0.2645) (0.0396) (0.1528) (0.1499) (0.1510) (0.0042) (0.0057)

λ̂1,3 3.146 3.024 3.027 3.078 2.980 2.984 3.063 2.978 2.986
(0.3970) (1.1090) (0.0103) (0.7042) (0.0499) (0.0576) (0.0712) (0.0520) (0.0502)

λ̂1,4 5.289 5.059 5.067 5.011 5.027 5.031 5.031 4.983 4.997
(2.2418) (0.3154) (0.0003) (0.0153) (0.1633) (0.1761) (0.2178) (0.0196) (0.0157)

(5, 3, 1.2, 2)

λ̂2,1 5.243 4.924 4.954 4.965 5.010 5.022 4.965 5.005 5.042
(0.2664) (1.0982) (0.2708) (0.0958) (0.0391) (0.0247) (0.6790) (0.0912) (0.1081)

λ̂2,2 3.071 3.005 3.017 3.040 2.970 2.986 3.009 3.005 3.008
(0.0299) (0.2824) (0.0124) (0.0196) (0.4746) (0.4608) (0.1941) (0.00002) (0.00003)

λ̂2,3 1.324 1.220 1.215 1.221 1.196 1.201 1.203 1.188 1.184
(0.0097) (0.2301) (0.0309) (0.0902) (0.0027) (0.0021) (0.0170) (0.0161) (0.0156)

λ̂2,4 2.110 2.026 2.029 1.986 1.992 1.993 2.027 1.998 2.001
(1.0020) (0.1524) (0.0143) (0.1429) (0.1044) (0.0899) (0.0002) (0.0004) (0.0007)

(3, 1.6, 2, 4)

λ̂3,1 3.061 2.929 2.942 2.950 2.986 2.994 2.989 2.992 3.017
(0.5619) (1.0935) (0.0318) (0.0083) (0.0073) (0.0019) (0.0397) (0.0444) (0.0507)

λ̂3,2 1.619 1.587 1.590 1.591 1.587 1.592 1.598 1.606 1.601
(0.0149) (0.0922) (0.0391) (0.0788) (0.0901) (0.0764) (0.0521) (0.0797) (0.0956)

λ̂3,3 2.150 2.004 2.008 2.027 2.006 2.003 2.036 1.987 1.989
(0.0057) (0.4347) (0.2044) (0.0127) (0.0425) (0.0500) (0.0002) (0.0250) (0.0204)

λ̂3,4 4.167 4.009 4.015 4.039 3.981 3.978 4.001 3.997 4.001
(0.1478) (0.3033) (0.2086) (0.1328) (0.1158) (0.0882) (0.0289) (0.0594) (0.0582)
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Table 2.3: YW, CML and CL estimates for β = (β1, β2, β3, β4). Mean square error in parenthesis.

n =400 n =1000 n =2000
(β1, β2, β3, β4) YW CML CL YW CML CL YW CML CL

(1.6, 0.9, 1.8, 1.2)

β̂1 1.085 1.607 1.609 1.201 1.607 1.614 1.175 1.599 1.611
(0.0128) (0.0646) (0.2239) (0.0984) (0.0085) (0.02105) (0.0001) (0.0026) (0.0007)

β̂2 1.481 0.915 0.902 1.529 0.903 0.903 1.554 0.895 0.897
(0.3959) (0.0055) (0.1054) (0.4486) (0.0106) (0.0137) (0.1550) (0.0007) (1.2×10−7)

β̂3 2.668 1.844 1.814 2.826 1.839 1.832 2.880 1.793 1.798
(0.1454) (0.9795) (0.5293) (0.3356) (0.5068) (0.6481) (0.0224) (0.0025) (0.0031)

β̂4 1.045 1.227 1.231 1.139 1.196 1.205 1.128 1.203 1.202
(0.9726) (0.0607) (0.1194) (0.5961) (0.0083) (0.0051) (0.3896) (0.0085) (0.0115)
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Specifically, Table 2.1 reports the estimates for autocorrelation parameters αj (j = 1, 2, 3),

where small MSE’s characterize all estimates of (α1,α2,α3). The performance of the esti-

mators λ̂j (j = 1, 2, 3) in Table 2.2 and estimator β̂ in Table 2.3, is slightly worse. The YW

estimator does not perform well for all the parameters involved in the model, revealing to be

a not so good estimator for the dispersion parameter β. The estimates obtained by adopting

either the CML or the CL method are very close to the real parameter values, even in the

case of a moderate sample size (n = 400). For larger samples (n = 1000 and n = 2000), both

estimators seem to perform well and in a similar way.

Graphical inspection is given through the boxplots of the biases of the produced estimates.

Figures 2.1-2.3 display boxplots of the biases of the estimates for αj = (αj,1, αj,2, αj,3, αj,4),

with j = 1, 2, 3. Figures 2.4-2.7 refer to the boxplots of the biases of the estimates for

the parameters regarding the trivariate negative binomial distributed innovation process

λj = (λj,1, λj,2, λj,3, λj,4), j = 1, 2, 3, and β = (β1, β2, β3, β4), respectively. The effect of

sample size on the behavior of the estimators can be seen in Figures 2.1-2.7. As expected,

increasing the sample size improves the performance of all estimators in terms of both loca-

tion (median closer to zero) and dispersion (narrower interquartile ranges). Small and not

definite differences are observed between CML and CL methods, regarding both location and

dispersion. Therefore, this indicates the superiority of CML and CL estimators over the YW

estimator.

Closing this section, it is worth mentioning that numerical maximization of the conditional

maximum likelihood was very time consuming. The composite likelihood method was sug-

gested in order to overcome the computational difficulties of the conditional maximum like-

lihood approach in multivariate models. The CL method requires significantly less time for

the optimization of the likelihood function without obvious losses in precision.
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Figure 2.1: Boxplots for the biases of the YW, CML and CL estimates of the parameter
α1 = (α1,1, α1,2, α1,3, α1,4). From left to right, the first three boxplots display the biases of
α̂1,1 for the three methods with n = 400, 1000, 2000. The same information follows for α̂1,2,
α̂1,3 and α̂1,4, respectively.
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Figure 2.2: Boxplots for the biases of the YW, CML and CL estimates of the parameter
α2 = (α2,1, α2,2, α2,3, α2,4). From left to right, the first three boxplots display the biases of
α̂2,1 for the three methods with n = 400, 1000, 2000. The same information follows for α̂2,2,
α̂2,3 and α̂2,4, respectively.
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Figure 2.3: Boxplots for the biases of the YW, CML and CL estimates of the parameter
α3 = (α3,1, α3,2, α3,3, α3,4). From left to right, the first three boxplots display the biases of
α̂3,1 for the three methods with n = 400, 1000, 2000. The same information follows for α̂3,2,
α̂3,3 and α̂3,4, respectively.
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Figure 2.4: Boxplots for the biases of the YW, CML and CL estimates of the parameter
λ1 = (λ1,1, λ1,2, λ1,3, λ1,4). From left to right, the first three boxplots display the biases of
λ̂1,1 for the three methods with n = 400, 1000, 2000. The same information follows for λ̂1,2,
λ̂1,3 and λ̂1,4, respectively.
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Figure 2.5: Boxplots for the biases of the YW, CML and CL estimates of the parameter
λ2 = (λ2,1, λ2,2, λ2,3, λ2,4). From left to right, the first three boxplots display the biases of
λ̂2,1 for the three methods with n = 400, 1000, 2000. The same information follows for λ̂2,2,
λ̂2,3 and λ̂2,4, respectively.
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Figure 2.6: Boxplots for the biases of the YW, CML and CL estimates of the parameter
λ3 = (λ3,1, λ3,2, λ3,3, λ3,4). From left to right, the first three boxplots display the biases of
λ̂3,1 for the three methods with n = 400, 1000, 2000. The same information follows for λ̂3,2,
λ̂3,3 and λ̂3,4, respectively.
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Figure 2.7: Boxplots for the biases of the YW, CML and CL estimates of the parameter
β = (β1, β2, β3, β4). From left to right, the first three boxplots display the biases of β̂1 for
the three methods with n = 400, 1000, 2000. The same information follows for β̂2, β̂3 and β̂4,
respectively.
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2.7 Application

This section illustrates the PMINAR(1) model with a trivariate real environmental data set.

The data refers to the number of fires collected in three counties in Portugal, namely Aveiro,

Coimbra and Faro, during 30 years, from 1981 to 2010. The data are monthly observations

based on the mean of daily fires in those counties. This collection of fires can be seen in

Figure 2.8. The number of fires in Faro is higher than in the other two counties. Creating

appropriate time series models for handling multiple time series together is of great interest.

In fact, forest fires is a major problem in many countries, as they are a threat not only to

forests but also to people and their surroundings. In Europe, Portugal is the country with

Figure 2.8: Number of monthly fires in Aveiro, Coimbra and Faro counties in Portugal.
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the highest number of forest fires per unit surface and per number of inhabitants (San-Miguel

and Camia (2009)). Fire frequency is markedly different from north to south and from east

to west (Nunes, 2012). The distribution of fires across the year follows a regular pattern,

strongly influenced by seasonal variations of temperature and rainfall. Hence, it is expected

to find the highest number of fires in the summer season, with a peak in July/August and

the lowest number of fires in the rainy season. The sample autocorrelation function (ACF)

in Figure 2.9 reveals a periodic pattern of 12 months.

Figure 2.9: Sample ACF for the number of monthly fires in Aveiro, Coimbra and Faro counties
in Portugal.
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The mean values and standard deviation (sd) of the number of fires per month are shown in

Figure 2.10 and cross-correlations in Figure 2.11. In the three counties, most months have

variance greater than the mean, implying overdispersion. The innovation series plays an im-

portant role in the specification of the periodic trivariate INAR(1) process being responsible

for both the introduction of dependence and the determination of the joint distribution of

the three series. The distribution for the innovations was assumed to be trivariate negative

Figure 2.10: Sample mean and standard deviation for the number of monthly fires in the
Aveiro, Coimbra and Faro counties in Portugal.
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binomial, which only allows for non-negative correlation as established in (2.80). However,

Figure 2.11 displays a slight negative cross-correlation (-0.18) in August between Aveiro and

Coimbra. The counties of Coimbra and Faro also have a small negative cross-correlation in

August (-0.25), September (-0.17) and October (-0.22). The significance of these correlations

was tested and the null hypothesis was not rejected for the usual significance levels. The

periodic trivariate INAR(1) model with period s = 12 and trivariate negative binomial in-

novations is appropriate for series displaying overdispersion. For this particular application,

the Yule-Walker estimates are non-admissible for some months, hence are not presented. We

were aware this could happen. Table 2.4 summarizes the CML and CL estimates and the

corresponding standard errors (SE) obtained by fitting the periodic trivariate INAR(1) model

with period s = 12 and trivariate negative binomial innovations. The SE were calculated nu-

merically from the Hessian matrix during the optimization procedure in R. For some months,

the estimates from both methods (CML and CL) are very close, however this does not always

happen. Some loss of efficiency is noticed when the CL method is employed but we have to

remember that the CL is an approximate likelihood, leading to inevitable losses. The CL

method could be regarded as a satisfactory approach for the estimation of the unknown pa-

rameters of the PMINAR(1) process, especially when other alternatives are not available. The

CL estimates could also be used to initialize the CML method. Some estimates of the auto-

correlation parameters in Table 2.4 are not significant, namely for the months of February,

March and November, suggesting that in those months the number of fires is being mainly

modeled through the innovation process.
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Figure 2.11: Sample cross-correlations for the number of monthly fires in the Aveiro, Coimbra
and Faro counties in Portugal.
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Table 2.4: CML and CL estimates from fitting the periodic trivariate INAR(1) model with trivariate negative binomial innovations.
Standard errors in parenthesis.

Conditonal maximum likelihood (CML) Composite likelihood (CL)
Aveiro Coimbra Faro Aveiro Coimbra Faro

α1 λ1 α2 λ2 α3 λ3 β α1 λ1 α2 λ2 α3 λ3 β

January 0.0313 3.0149 0.3408 4.1279 0.1502 2.4818 2.5052 0.1861 2.6684 0.6528 3.8223 0.1065 2.7870 2.4862
(0.0987) (0.9819) (0.2676) (1.3166) (0.0747) (0.8337) (0.7762) (0.0610) (0.5379) (0.1516) (0.7472) (0.0629) (0.5944) (0.4834)

February 0.4226 6.0551 4.48 ×10−06 9.2665 0.2298 3.0056 2.1378 0.4866 5.9225 4.49 ×10−06 9.4738 0.2549 2.9024 2.1950
(0.1467) (1.7365) (0.1598) (2.6106) (0.0936) (0.9017) (0.6091) (0.0998) (1.0455) (0.0764) (1.5841) (0.0627) (0.5427) (0.3848)

March 0.1903 10.7851 0.0002 7.8996 0.2748 5.8071 1.7431 0.3822 9.7927 0.0001 8.1526 0.2233 6.1628 1.6039
(0.0666) (1.9262) (0.0605) (1.9016) (0.0394) (4.6350) (0.0738) (0.0823) (1.5034) (0.0764) (1.2357) (0.0923) (0.9605) (0.2695)

April 0.0640 10.0523 0.1181 7.1002 0.6095 5.7017 1.9305 0.2057 8.4738 0.1689 6.8685 0.6720 5.5386 2.0476
(0.0810) (2.7908) (0.0866) (1.9802) (0.0761) (1.5806) (0.5550) (0.0531) (1.5144) (0.0647) (1.2316) (0.0512) (0.9673) (0.3673)

May 0.3971 7.9989 0.3601 11.2745 0.3379 17.1677 1.6314 0.4920 7.1231 0.3962 11.2488 0.3836 17.3825 1.7389
(0.0805) (2.1025) (0.1091) (2.8277) (0.0957) (4.1738) (0.4200) (0.0489) (1.1816) (0.0832) (1.7882) (0.0749) (2.6518) (0.2761)

June 0.6404 11.0332 0.3038 19.0123 0.6179 37.2652 0.5579 0.6682 10.6394 0.3994 17.9422 0.6269 37.8833 0.5826
(0.0672) (1.7962) (0.1027) (3.0644) (0.0675) (5.3732) (0.1474) (0.0465) (1.1180) (0.0795) (1.9484) (0.0582) (3.4789) (0.0919)

July 0.6279 14.0669 0.6355 12.3922 0.8027 42.5129 0.2732 0.7129 12.4433 0.7159 10.3999 0.7947 43.9054 0.3377
(0.0666) (1.9262) (0.0605) (1.9016) (0.0394) (4.6350) (0.0738) (0.0453) (1.2294) (0.0401) (1.1979) (0.0344) (3.4417) (0.0557)

August 0.8420 5.8303 0.6361 5.2994 0.5572 22.4300 0.4406 0.8720 5.2137 0.6372 5.1134 0.5210 26.1427 0.5385
(0.0341) (1.1656) (0.0371) (1.1825) (0.0278) (3.5681) (0.1377) (0.0489) (0.0832) (2.6518) (0.2761) (1.1816) (1.7882) (0.0749)

September 0.7054 2.9515 0.4135 2.7881 0.3676 22.8409 0.8308 0.7024 2.9245 0.3240 4.6880 0.3795 24.0514 1.1132
(0.0290) (0.8889) (0.0324) (0.8136) (0.0424) (4.8063) (0.2584) (0.0202) (0.6069) (0.0288) (0.8400) (0.0291) (3.6009) (0.2401)

October 0.0627 8.1248 0.1199 3.8122 0.3735 7.3728 1.0098 0.1848 5.5172 0.1266 3.8764 0.3625 7.6962 1.3280
(0.0816) (2.4112) (0.0433) (0.9217) (0.0226) (1.6954) (0.3349) (0.0314) (1.0664) (0.0316) (0.7093) (0.0176) (1.4996) (0.3525)

November 0.0031 3.3325 1.82 ×10−06 2.3665 0.0598 5.1057 4.6627 0.0039 3.3398 2.54 ×10−07 2.4160 0.0165 5.1300 4.4599
(0.0271) (1.3696) (0.0952) (1.0082) (0.0206) (2.1023) (2.0003) (0.0095) (0.7971) (0.0029) (0.5784) (0.0031) (1.5148) (0.8463)

December 0.5496 1.1012 0.0262 1.2712 0.1625 2.9611 5.7266 0.5275 1.2056 0.1065 1.0983 0.1738 3.0610 6.6444
(0.0706) (0.5441) (0.0856) (0.6244) (0.0577) (1.3738) (2.0903) (0.0537) (0.3905) (0.0515) (0.3518) (0.0462) (0.9420) (1.6083)





Chapter 3

Periodic INAR(1) models based on

the signed thinning operator

The class of INAR models, based on the binomial thinning operator introduced by Steutel

and van Harn (1979), only applies to non-negative integer-valued time series. The binomial

thinning operator defined in (1.2) has been generalized in a number of different ways. Kim

and Park (2008) introduced the signed binomial thinning operator given in (1.9), allowing

time series with negative values, the so-called Z-valued time series. Kachour and Truquet

(2011) established a slightly different signed thinning operator in (1.12) also allowing for neg-

ative values both for the series and its autocorrelation function. Recently, Bulla et al. (2016)

proposed an extension of the preceding signed thinning operator to the bivariate case defined

in (1.16).

In this chapter, we introduce two new first-order integer-valued autoregressive models with

time-varying parameters and sequences of innovations with periodic structure. Both models

are based on the signed thinning operator defined in the univariate case by Kachour and

Truquet (2011) in (1.12) and in the bivariate case by Bulla et al. (2016) in (1.16) adapted to

the periodic case, accordingly. Basic notations and definitions concerning the periodic signed

thinning operator are established as well as some of its properties. Emphasis will be placed on

101
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models with innovations following Skellam distribution (Skellam, 1946) and bivariate Skellam

distribution (Bulla et al., 2015), respectively. Therefore, a brief description of the periodic

Skellam distribution for both univariate and bivariate distributions defined on the whole set

of integers is also provided.

In extending the model proposed by Chesneau and Kachour (2012) to the periodic case, we

introduce a univariate signed periodic INAR(1) process (S-PINAR(1) for short) with period s,

by considering a parametric assumption on the common distribution of the periodic counting

sequence of the model. The properties of the S-PINAR(1) model with period s are discussed.

We focus on a specific parametric case which arises under the assumption of periodic Skellam-

distributed innovation. Regarding parameter estimation, two methods are considered: condi-

tional least squares and conditional maximum likelihood. The performance of the proposed

estimation methods for the S-PINAR(1) model is accomplished through a simulation study.

Within the bivariate setting, the work of Bulla et al. (2016) has motivated a new periodic

bivariate model. The generalization of the previous signed model with period s to the bi-

variate case is denoted by BS-PINAR(1). Several statistical properties of this periodic model

are derived. The assumption of a diagonal autoregressive matrix is made, thus the correla-

tion is achieved through their innovation processes, where the distribution of the innovation

processes is set a priori which consequently determines the distribution of the underlying

time series. Hence, the discrete bivariate distribution on Z2 assigned to the distribution of

the innovations is the periodic bivariate Skellam distribution. Parameter estimation of the

unknown parameters of the BS-PINAR(1) model with period s is provided through conditional

maximum likelihood method.

3.1 The periodic signed thinning operator

Basic notations and definitions concerning the periodic signed thinning operator for both

univariate and bivariate cases are established.
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3.1.1 Univariate case

The definition of the signed thinning operator introduced by Kachour and Truquet (2011) is

given in (1.12) and its properties in Lemma 1.2. In the periodic case, the signed thinning

operator is defined by

Ft ⊙X :=


sign(X)

|X|∑
i=1

Ui,t(ϕt) , X ̸= 0

0 , otherwise

(3.1)

with sign(X) as in (1.10) and where Ft represents the common distribution of the periodic

sequence of i.i.d. counting sequences (Ui,t(ϕt))i∈N. All counting sequences associated to the

operator Ft⊙ are mutually independent.

We consider that Ft, the distribution of the periodic sequence of i.i.d. random variables

(Ui,t(ϕt))i∈N, has probability mass function given by

P (U1,t(ϕt) = a) =


(1− ϕt)

2, a = −1

2ϕt(1− ϕt), a = 0

ϕ2t , a = 1

, (3.2)

with ϕt = αv ∈ (0, 1) for t = v+ns; v = 1, . . . , s and n ∈ N0. Without the periodic structure,

Chesneau and Kachour (2012) have also made use of this common distribution. Note that,

for a fixed v, the random variable

Ui,t(ϕt) = Ut(ϕt)
d
= Rt(ϕt)− 1, Rt(ϕt) ∼ Bin(2, ϕt) (3.3)

and

P

(
k∑

i=1

Ui,t(ϕt) = l

)
= P

(
R

(k)
t (ϕt) = k + l

)
, l ∈ {−k, . . . , k},

where

R
(k)
t (ϕt) =

k∑
i=1

Ri,t(ϕt), R
(k)
t (ϕt) ∼ Bin(2k, ϕt), k ∈ N. (3.4)
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Then, for x ∈ Z\{0} and y ∈ Z, the conditional probability function of the periodic signed

thinning operator Ft⊙ defined in (3.1) is

P (Ft ⊙X = y|X = x) = P

sign(x) |x|∑
i=1

Ui,t(ϕt) = y

 =

= P
(
R

|x|
t (ϕt)− |x| = sign(x) · y

)
= P

(
R

|x|
t (ϕt) = |x|+ sign(x) · y

)
=

= C
2|x|
|x|+sign(x)·yα

|x|+sign(x)·y
v (1− αv)

|x|−sign(x)·y, y ∈ {−|x|, . . . , |x|} (3.5)

with mean value

E[Ft ⊙X|X] = (2αv − 1)X (3.6)

and variance

V ar[Ft ⊙X|X] = 2αv(1− αv)|X| (3.7)

for t = v + ns, v = 1, . . . , s and n ∈ N0.

Probability generating function

For sake of simplicity, let Ui,t(ϕt) = Ut(ϕt) = Ut and Ri,t(ϕt) = Rt(ϕt) = Rt then Ut
d
= Rt − 1

where Rt ∼ Bin(2, ϕt) for ϕt = αv, t = v+ns; v = 1, . . . , s and n ∈ N0. We denote by GRt(r)

the probability generating function (p.g.f.) of the well known Binomial-distributed random

variable

GRt(r) = (1− αv + αvr)
2,

thus

GUt(r) = E
[
rUt
]
= E

[
rRt−1

]
=

1

r
GRt(r) =

(1− αv + αvr)
2

r
. (3.8)
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Let W1 = Ft ⊙X. From (3.1), the p.g.f. takes the form

GW1(r) = E
[
rW1

]
= E

[
rFt⊙X

]
= E

[
E
[
rFt⊙X |X

]]
=

= E

r X∑
i=1

Ui,t

1{X>0}

+ E

r−−X∑
i=1

Ui,t

1{X<0}

 =

= E
[
1{X>0}(GUt(r))

X
]
+ E

[
1{X<0}(G−Ut(r))

−X
]
=

= GX(GUt(r))1{X>0} +G−X(G−Ut(r))1{X<0} =

= GX(GUt(r))1{X>0} +GX

(
G−1

Ut

(
r−1
))

1{X<0} (3.9)

with GUt(r) defined above in equation (3.8).

Let W2 = Ft ⊙W1 = Ft ⊙ (Ft ⊙X), the probability generating function is

GW2(r) = E
[
rW2

]
= E

[
rFt⊙W1

]
= E

[
E
[
rFt⊙W1 |W1

]]
=

= GW1(GUt(r))1{W1>0} +GW1

(
G−1

Ut

(
r−1
))

1{W1<0}

and from equation (3.9), it follows that

GW2(r) =
[
GX(GUt(GUt(r)))1{X>0} +GX

(
G−1

Ut

(
G−1

Ut
(r)
))

1{X<0}
]

1{W1>0}+

+
[
GX

(
GUt

(
G−1

Ut

(
r−1
)))

1{X>0} +GX

(
G−1

Ut

(
GUt

(
r−1
)))

1{X<0}
]

1{W1<0}.

The generalization to p consecutive signed operators depends on whether p is odd or even.

However, the correspondent p.g.f. of Wp will have 2p (p ∈ N) terms, where

Wp = Ft ⊙Wp−1 = Ft ⊙ (Ft ⊙Wp−2) = Ft ⊙ (Ft ⊙ (. . . (Ft ⊙X))).

Remark: The periodic signed thinning operator Ft⊙ lacks the distributive property, i.e.,

Ft ⊙ (X1 +X2)
d
̸= Ft ⊙X1 + Ft ⊙X2. (3.10)
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3.1.2 Bivariate case

Bulla et al. (2016) introduced the so-called signed matrix thinning operator as an extension

of the signed thinning operator in (1.12) for the bivariate case. For the periodic bivariate

case, the signed matrix thinning operator is defined by

Ft ⊙X :=

 F11,t ⊙X1 + F12,t ⊙X2

F21,t ⊙X1 + F22,t ⊙X2

 , (3.11)

where X = [X1 X2]
T is an integer-valued random vector and Fij,t represents the common

distribution of the periodic sequence of i.i.d. counting sequences for (i, j) ∈ (1, 2)× (1, 2). It

is assumed that all counting sequences associated with Fij,t⊙ are mutually independent.

In this work, the particular case F12,t⊙ = F21,t⊙ = 0 (assumption of diagonal matrix) will be

of interest. Similarly to the univariate case in (3.2), we consider that Fj,t, the distribution of

the periodic sequence of i.i.d. r.v.’s (Uk,t(ϕj,t))k∈N, has probability mass function given by

P (U1,t(ϕj,t) = a) =


(1− ϕj,t)

2 , a = −1

2ϕj,t(1− ϕj,t) , a = 0

ϕ2j,t , a = 1

, (3.12)

with ϕj,t = αj,v ∈ (0, 1) for j = 1, 2; t = v + ns; v = 1, . . . , s and n ∈ N0. Note that, for a

fixed v (v = 1, . . . , s), the random variables

Ui,t(ϕj,t) = Ut(ϕj,t)
d
= Rt(ϕj,t)− 1, Rt(ϕj,t) ∼ Bin(2, ϕj,t), j = 1, 2

and

P

(
k∑

i=1

Ui,t(ϕj,t) = l

)
= P

(
R

(k)
t (ϕj,t) = k + l

)
, l ∈ {−k, . . . , k},

where

R
(k)
t (ϕj,t) =

k∑
i=1

Ri,t(ϕj,t), R
(k)
t (ϕj,t) ∼ Bin(2k, ϕj,t), k ∈ N. (3.13)
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Let xj ∈ Z\{0} and yj ∈ Z for j = 1, 2, the conditional probability function takes the form

P (Fj,t ⊙Xj = yj |Xj = xj) = P

sign(xj) |xj |∑
i=1

Ui,t(ϕj,t) = yj

 =

= P
(
R

(|xj |)
t (ϕj,t) = |xj |+ sign(xj) · yj

)
=

= C
2|xj |
|xj |+sign(xj)·yjα

|xj |+sign(xj)·yj
j,v (1− αj,v)

|xj |−sign(xj)·yj , yj ∈ {−|xj |, . . . , |xj |}.

Moreover, for t = v+ ns, v = 1, . . . , s and n ∈ N0, mean value and variance are, respectively,

E[Fj,t ⊙Xj |Xj ] = (2αj,v − 1)Xj (3.14)

and

V ar[Fj,t ⊙Xj |Xj ] = 2αj,v(1− αj,v)|Xj |, j = 1, 2. (3.15)

3.2 The periodic Skellam distribution

The Skellam distribution is traditionally linked to Skellam (1946). A brief description of the

Skellam distribution and the bivariate Skellam distribution adapted to the periodic case is

presented. Basic properties of these periodic distributions are also given, namely, finite first

and second-order moments as well as the probability generating function (p.g.f.).

3.2.1 Univariate case

The univariate Skellam distribution, without periodic structure, was given in Definition 1.3.

For the periodic case, the definition follows.
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Definition 3.1. (Periodic univariate Skellam distribution)

Let {Zt}, t = v + ns; v = 1, . . . , s and n ∈ N0 be a periodic sequence of random variables.

For a fixed v (v = 1, . . . , s), let λv > 0 and τv > 0. The periodic s-dimensional r.v. Zt follows

a periodic Skellam distribution, denoted by Skellam(λv, τv), if and only if

Zv+ns
d
= Yv+ns −Wv+ns,

where Yv+ns and Wv+ns are two independent random variables such that Yv+ns ∼ Poisson(λv)

and Wv+ns ∼ Poisson(τv).

Thus, the probability mass function is given by

P (Zv+ns = z) = e−(λv+τv)λzv

∞∑
i=max(0,−z)

(λvτv)
i

i!(i+ z)!
, z ∈ Z. (3.16)

The random vector Zt has finite first and second-order moments. The mean of Zt, t = v+ns

for a fixed v (v = 1, . . . , s), is

ξv = E[Zv+ns] = E[Yv+ns −Wv+ns] = λv − τv. (3.17)

Due to the independence of the r.v.’s Yv+ns and Wv+ns, the variance of Zt for t = v+ns with

a fixed v is

σ2v = V ar[Zv+ns] = V ar[Yv+ns −Wv+ns] = λv + τv. (3.18)

The p.g.f. of Zv+ns is GZv+ns(r) = exp{−(λv + τv) + λvr + τv/r}, v = 1, . . . , s.

3.2.2 Bivariate case

The bivariate Skellam distribution, without periodic structure, has been proposed by Bulla

et al. (2015) and is given in Definition 1.8. For the periodic case, the definition of the bivariate

distribution follows.
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Definition 3.2. (Periodic bivariate Skellam distribution)

Let Zt = [Z1,t Z2,t]
T , t = v+ns; v = 1, . . . , s and n ∈ N0 be a periodic 2s-dimensional random

vector. For a fixed v (v = 1, . . . , s), let

 Z1,v+ns = Y1,v+ns −Bv+ns

Z2,v+ns = Y2,v+ns −Bv+ns

,

where Yj,v+ns (j = 1, 2) and Bv+ns are three independent Poisson-distributed variables with

parameters λj,v > 0 (j = 1, 2) and τv ≥ 0, respectively. The random vector Zt follows a

periodic bivariate Skellam distribution, denoted BiSkellam(τv, λ1,v, λ2,v), if and only if

Z1,v+ns ∼ Skellam(λ1,v, τv) and Z2,v+ns ∼ Skellam(λ2,v, τv).

Thus, the joint probability mass function is given by

P (Z1,v+ns = z1, Z2,v+ns = z2) =

= e−(λ1,v+λ2,v+τv)λz11,vλ
z2
2,v

∞∑
i=max(0,−z1,−z2)

(λ1,vλ2,vτv)
i

i!(i+ z1)!(i+ z2)!
, (z1, z2) ∈ Z2. (3.19)

The mean vector of Zt is

E[Zt] = E

 Z1,t

Z2,t

 =

 δ1,t

δ2,t

 = δt. (3.20)

Each s-vector δj,t (j = 1, 2) with t = v + ns; v = 1, . . . , s and n ∈ N0 is given by

E[Zj,t] = δj,t =

[
ξj,1 ξj,2 . . . ξj,s

]T
. (3.21)
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For a fixed v, each element of vector (3.21) is

ξj,v = E[Zj,v+ns] = λj,v − τv. (3.22)

The variance-covariance matrix of Zt is given by

∑
Zt

= V ar[Zt] =

 V ar[Z1,t] Cov(Z1,t, Z2,t)

Cov(Z2,t, Z1,t) V ar[Z2,t]

 =

 ψ11,t ψ12,t

ψ21,t ψ22,t

 = ψt, (3.23)

where ψjj,t for j = 1, 2; t = v + ns; v = 1, . . . , s and n ∈ N0 are (s× s) diagonal matrices

ψjj,t = V ar[Zt] =



σ2j,1 0 . . . 0

0 σ2j,2 . . . 0

...
... . . . ...

0 0 . . . σ2j,s


(3.24)

and for j ̸= k (j, k = 1, 2), the matrix ψjk,t takes the form

ψjk,t = Cov(Zj,t, Zk,t) =



σjk,1 0 . . . 0

0 σjk,2 . . . 0

...
... . . . ...

0 0 . . . σjk,s


. (3.25)

For a fixed v, each element of the diagonal in matrix (3.24) is given by

σ2j,v = V ar[Zj,v+ns] = λj,v + τv. (3.26)

and for matrix (3.25) by

σjk,v = Cov(Zj,v+ns, Zk,v+ns) = Cov(Bv+ns, Bv+ns) = V ar[Bv+ns] = τv. (3.27)
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3.3 The univariate periodic model: S-PINAR(1)

The integer-valued autoregressive models with binomial thinning operators have non-negative

coefficients. Thus modeling of series with possible negative autocorrelations are excluded.

Moreover, those models defined on N cannot fit a time series with negative observations. Mo-

tivated by the work of Chesneau and Kachour (2012), we extend their univariate model with

signed thinning operator to the periodic case, introducing the signed periodic INAR(1) process

(S-PINAR(1) for short) with period s. A parametric assumption on the common distribution

of the periodic counting sequence of the model is made. Emphasis is placed upon a specific

parametric case that arises under the assumption of periodic Skellam-distributed innovation.

In contrast to traditional INAR(1) models, these models are defined in Z allowing for negative

integer values and negative correlation. The properties of the S-PINAR(1) model with period

s are discussed. Regarding parameter estimation, two methods are considered: conditional

least squares and conditional maximum likelihood. The performance of the proposed estima-

tion methods for the S-PINAR(1) model with period s is accomplished and compared through

a simulation study.

3.3.1 Definition and basic properties

Let {Xt} be a periodic integer-valued autoregressive process of first-order defined by the

recursion

Xt = Ft ⊙Xt−1 + Zt, t ∈ Z, (3.28)

where Xt, Xt−1 and Zt are random s-vectors for t = v + ns; v = 1, . . . , s and n ∈ N0. The

random vector Zt = [Z1+ns Z2+ns . . . Zs+ns]
T represents a periodic sequence of independent

random variables. The model defined in equation (3.28) will be referred to as S-PINAR(1)

for Signed Periodic INteger-valued AutoRegressive model of order one with period s ∈ N. For

each t, the innovation term Zt in recursion (3.28) is assumed to be independent of Xt−1 and
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Ft ⊙Xt−1. Writing the periodic signed thinning operator in (3.1) as

Ft⊙ =



f1⊙, t = 1 + ns

f2⊙, t = 2 + ns

...

fs⊙, t = s+ ns

, (3.29)

the periodic model in (3.28) can have the form

Xv+ns = fv ⊙Xv−1+ns + Zv+ns, (3.30)

where fv ⊙Xv−1+ns = sign(Xv−1+ns)
|Xv−1+ns|∑

i=1
Ui,t(ϕt) with Ui,t(ϕt) as defined in (3.3).

We assume the innovation term Zt in the S-PINAR(1) model proposed in (3.28) follows the

periodic Skellam distribution with parameters λv and τv established in Definition 3.1 with

p.m.f. given by equation (3.16). Therefore, for a fixed v (v = 1, . . . , s) the first and second-

order moments of Zv+ns are defined in (3.17) and (3.18), respectively.

Some distributional properties of the S-PINAR(1) process in recursion (3.28) with Skellam-

distributed innovation are derived, namely the conditional moments of first and second-order

of the model. Hence, from (3.6) and (3.17)

E[Xv+ns|Xv−1+ns] = E[fv ⊙Xv−1+ns + Zv+ns|Xv−1+ns] =

= (2αv − 1)Xv−1+ns + λv − τv (3.31)

and from equations (3.7) and (3.18),

V ar[Xv+ns|Xv−1+ns] = V ar[fv ⊙Xv−1+ns + Zv+ns|Xv−1+ns] =

= 2αv(1− αv)|Xv−1+ns|+ λv + τv. (3.32)
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Recall the periodic signed thinning operator given in (3.1) lacks the distributive property in

(3.10) which limits the development of other properties concerning the S-PINAR(1) process

with period s. For a fixed value of v = 1, . . . , s, the process {Xt} with t = v+ns is a Markov

chain with transition probability function

pv(b|a) = P (Xv+ns = b|Xv−1+ns = a) =

=

|a|∑
l=−|a|

P

sign(a) |a|∑
i=1

Ui,t(ϕt) = l

× P (Zv+ns = b− l) =

=

|a|∑
l=−|a|

P
(
R

(|a|)
t (ϕt) = |a|+ sign(a) · l

)
× P (Zv+ns = b− l) =

=

|a|∑
l=−|a|

{
C

2|a|
|a|+sign(a)·lα

|a|+sign(a)·l
v (1− αv)

|a|−sign(a)·l ×

× e−(λv+τv)λb−l
v

∞∑
i=max(0,−(b−l))

(λvτv)
i

i!(i+ b− l)!

 , (3.33)

where the f.m.p. of R(|a|)
t and Zv+ns can be found in (3.4) and (3.16), respectively.

3.3.2 Parameter estimation of the S-PINAR(1) model

This subsection is devoted to parameter estimation of the S-PINAR(1) process with pe-

riod s under the parametric assumption previously mentioned. Lets us assume we have

(X0, X1, . . . , XNs) observations from the S-PINAR(1) process with Skellam-distributed inno-

vations. Two estimation methods are proposed to estimate the parameters of the model:

conditional least squares and conditional maximum likelihood. For the S-PINAR(1) model
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with period s, the vector of unknown parameters θ has 3s parameters, i.e.,

θ := (α,λ, τ ) (3.34)

with α = (α1, . . . , αs), λ = (λ1, . . . , λs) and τ = (τ1, . . . , τs).

3.3.2.1 Conditional least squares estimation

The conditional least squares (CLS) estimator of the vector of the unknown parameters in

(3.34) is θ̂CLS := (α̂CLS , λ̂CLS , τ̂CLS). The estimation procedure that follows was proposed

by Klimko and Nelson (1978). The CLS estimators of θ are obtained by minimizing the

criterion function S1(θ) given by

S1(θ) =

N−1∑
n=0

s∑
v=1

(Xv+ns − E[Xv+ns|Xv−1+ns])
2 =

=

N−1∑
n=0

s∑
v=1

(Xv+ns − (2αv − 1)Xv−1+ns − λv + τv)
2 .

It is clear that differentiating S1(θ) with respect to λv and τv and equating the resulting

expressions to zero, the same equation is obtained. For these parameters, direct CLS esti-

mators are not available. The conditional least squares method was adapted by Alzaid and

Omair (2014) with some modifications in order to be able to estimate all parameters integrat-

ing the model. Hence, in order to estimate λv and τv using the CLS method, the following

reparametrization is needed

 ξv = λv − τv

σ2v = λv + τv

, v = 1, . . . , s. (3.35)

Estimators for all parameters of the S-PINAR(1) process, i.e., αv, ξv and σ2v are obtained in a

two step procedure as described below.
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First step - estimates for αv and ξv (v = 1, . . . , s):

Consider the conditional mean prediction error

e1,v+ns = Xv+ns − E[Xv+ns|Xv−1+ns] =

= Xv+ns − (2αv − 1)Xv−1+ns − ξv, (3.36)

where conditional first-order moment E[Xv+ns|Xv−1+ns] is defined in (3.31). The CLS esti-

mators of αv and ξv are derived by minimizing the criterion function

S2(θ) =

N−1∑
n=0

s∑
v=1

e21,v+ns =

N−1∑
n=0

s∑
v=1

(Xv+ns − (2αv − 1)Xv−1+ns − ξv)
2 .

After differentiating S2(θ) with respect to parameters αv and ξv, the following system of

equations arises



∂S2(θ)

∂αv
=

N−1∑
n=0

(Xv+ns − (2αv − 1)Xv−1+ns − ξv)Xv−1+ns = 0

∂S2(θ)

∂ξv
=

N−1∑
n=0

(Xv+ns − (2αv − 1)Xv−1+ns − ξv) = 0

and consequently, for v = 1, . . . , s, the CLS estimators are



α̂CLS
v =

1

2


N

N−1∑
n=0

Xv+nsXv−1+ns −
N−1∑
n=0

Xv+ns

N−1∑
n=0

Xv−1+ns

N
N−1∑
n=0

X2
v−1+ns −

(
N−1∑
n=0

Xv−1+ns

)2 + 1



ξ̂CLS
v =

1

N

(
N−1∑
n=0

Xv+ns − (2α̂CLS
v − 1)

N−1∑
n=0

Xv−1+ns

)
. (3.37)
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Second step - estimate for σ2v (v = 1, . . . , s):

The conditional variance prediction error has been used by Alzaid and Omair (2014) to obtain

the CLS estimator for the variance parameter. Thus in the periodic case, the conditional

variance prediction error is defined by

e2,v+ns = (Xv+ns −E[Xv+ns|Xv−1+ns])
2 − V ar[Xv+ns|Xv−1+ns] =

= e21,v+ns − 2αv(1− αv)|Xv−1+ns| − σ2v (3.38)

with conditional moments E[Xv+ns|Xv−1+ns] and V ar[Xv+ns|Xv−1+ns] in equations (3.31)

and (3.32), respectively. The conditional mean prediction error (e1,v+ns) is derived in the

first step of the estimation procedure from (3.36). The equation
N−1∑
n=0

e2,v+ns = 0 yields a

direct estimator for σ2v by solving the nonlinear equation

N−1∑
n=0

(
ê21,v+ns − 2α̂CLS

v (1− α̂CLS
v )|Xv−1+ns| − σ2v

)
= 0,

i.e.,

σ̂2v =
1

N

N−1∑
n=0

(
ê21,v+ns − 2α̂CLS

v (1− α̂CLS
v )|Xv−1+ns|

)
, (3.39)

where ê1,v+ns = Xv+ns− (2α̂CLS
v −1)Xv−1+ns− ξ̂CLS

v with CLS estimators α̂CLS
v and ξ̂CLS

v in

(3.37). After estimating σ2v through (3.39), the CLS estimators of λv and τv from reparametriza-

tion (3.35) take the form


λ̂CLS
v =

1

2

(
σ̂2,CLS
v + ξ̂CLS

v

)

τ̂CLS
v =

1

2

(
σ̂2,CLS
v − ξ̂CLS

v

) , v = 1, . . . , s. (3.40)

Alzaid and Omair (2014) have also considered an alternative method for estimating the vari-

ance in the second step and compared both estimators.
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3.3.2.2 Conditional maximum likelihood estimation

The conditional maximum likelihood (CML) estimator of the vector of the unknown param-

eters in (3.34) is θ̂CML := (α̂CML, λ̂CML, τ̂CML). The conditional log-likelihood function is

given by

C(θ) = ln(L(θ|x)) =
N−1∑
n=0

s∑
v=1

ln (pv(xv+ns|xv−1+ns)) , (3.41)

where pv(b|a) has the expression given in (3.33) by replacing a = xv−1+ns and b = xv+ns.

Differentiating the conditional log-likelihood function in equation (3.41) with respect to the

parameters αv, λv and τv (v = 1, . . . , s) in (3.34), the system of first-order partial derivatives

follows



∂C(θ)

∂αv
= 0

∂C(θ)

∂λv
= 0

∂C(θ)

∂τv
= 0

⇔



N−1∑
n=0

∂

∂αv
pv(xv+ns|xv−1+ns)

pv(xv+ns|xv−1+ns)
= 0

N−1∑
n=0

∂

∂λv
pv(xv+ns|xv−1+ns)

pv(xv+ns|xv−1+ns)
= 0

N−1∑
n=0

∂

∂τv
pv(xv+ns|xv−1+ns)

pv(xv+ns|xv−1+ns)
= 0

, v = 1, . . . , s,

i.e., 

N−1∑
n=0

2|xv−1+ns|
1− αv

(
pv(xv+ns − 1|xv−1+ns − 1)

pv(xv+ns|xv−1+ns)
− 1

)
= 0

N−1∑
n=0

pv(xv+ns − 1|xv−1+ns)

pv(xv+ns|xv−1+ns)
= N

N−1∑
n=0

pv(xv+ns + 1|xv−1+ns)

pv(xv+ns|xv−1+ns)
= N

, v = 1, . . . , s.

First-order partial derivatives of transition probability function pv(xv+ns|xv−1+ns) are avail-

able in Appendix C.1. Numerical maximization can be obtained with standard statistical

packages in R.
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3.3.3 Simulation study

In order to provide an idea about the relative merits of each method (CLS and CML) used

in parameter estimation of the S-PINAR(1) model with period s and Skellam-distributed in-

novation term, a simulation study is conducted. To generate count data from the periodic

univariate model proposed in (3.28), we have set period s = 4, thus the vector of unknown

parameters in (3.34) is θ = (α,λ, τ ) = (α1, α2, α3, α4, λ1, λ2, λ3, λ4, τ1, τ2, τ3τ4). Several com-

binations of values for parameters α,λ and τ are available in Table 3.1. Three sets: Set 1,

Set 2 and Set 3 are displayed. Each set has been subdivided into settings A and B, where

parameter α = (α1, α2, α3, α4) is fixed. Hence in Table 3.1, the different scenarios will be

referred to as Set 1A, Set 1B, Set 2A, Set 2B, Set 3A and Set 3B. For Set 1, values for αv

(v = 1, 2, 3, 4) are above and below 0.5. For both settings (A and B), different values for λ

are considered while parameter τ remains the same. Regarding Set 2, values for αv are all

below 0.5 and both parameters λ and τ take different values. For Set 3, values for αv are

all above 0.5, parameter λ is fixed but parameter τ assumes different values. The choice for

certain values of parameters λ and τ arise from the fact that λv − τv represents the mean of

Zv+ns given in (3.17).

Table 3.1: Parameters: α = (α1, α2, α3, α4), λ = (λ1, λ2, λ3, λ4) and τ = (τ1, τ2, τ3, τ4).

A: α = (0.60, 0.40, 0.75, 0.30) ; λ = (2, 1, 6, 5) ; τ = (4, 5, 3, 1)

Set 1
B: α = (0.60, 0.40, 0.75, 0.30) ; λ = (5, 2, 1, 6) ; τ = (4, 5, 3, 1)

A: α = (0.20, 0.45, 0.10, 0.30) ; λ = (2, 1, 6, 5) ; τ = (4, 5, 3, 1)

Set 2
B: α = (0.20, 0.45, 0.10, 0.30) ; λ = (5, 2, 1, 6) ; τ = (2, 1, 4, 3)

A: α = (0.75, 0.62, 0.51, 0.86) ; λ = (4, 5, 3, 1) ; τ = (1, 3, 2, 4)

Set 3
B: α = (0.75, 0.62, 0.51, 0.86) ; λ = (4, 5, 3, 1) ; τ = (2, 1, 4, 3)
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Three sample sizes are contemplated in this simulation study: n = 4N = 200, 800, 2000, i.e.,

N = 50, 200, 500 cycles. For a fixed set of parameters in Table 3.1, 1000 independent replica-

tions of the S-PINAR(1) process have been generated. The results from the simulation study

for three scenarios, Set 1A, Set 2A and Set 3A, are summarized through Tables 3.2-3.4 and

Figures 3.1-3.6. The results (tables and figures) for the remaining scenarios (Set 1B, Set 2B

and Set 3B) are displayed in Appendix C.2. All simulation and estimation procedures were

realized through functions written in R and available in Appendix D.2.

Tables 3.2-3.4 report the average parameter estimates for the three mentioned sets. To facil-

itate comparison between the CLS and CML methods and the aforementioned sample sizes,

the mean square error (MSE) was computed and included in parenthesis below each estimate.

According to Tables 3.2-3.4, parameter estimates in both cases are very close, because both

methods give consistent estimates of the parameters. Nevertheless, the autoregressive pa-

rameters α appear to be less biased. For smaller samples, the CLS method seems to have a

better performance in estimating the parameters. Computationally, there is extra work with

the CML method. The accuracy of all estimation improves as the length of the time series

increases. When length increases from N = 50 to N = 200, the improvement of accuracy is

more obvious than when length increases from N = 200 to N = 500.

The bias of the produced estimates were used to quantify their quality. The boxplots of the

bias for different combinations of parameters in Set 1A, Set 2A and Set 3A are in Figures

3.1-3.6. These figures also show the effect of sample size on the behavior of CLS and CML

estimators. No matter the sample size, the difference between CLS and CML is small and

becomes even smaller when the length of time series increases. The estimates for parameter

λ seem slightly worse when parameter α has all values above 0.5 (Set 3A). The estimates for

parameter τ seem slightly worse when parameter α has all values below 0.5 (Set 2A). Fur-

thermore, Figures 3.1-3.6 reveal that estimates of λ and τ componentwise tend to be biased

to the left which implies that both estimation methods have a tendency to underestimate

λ and τ , mainly in the case of small sample sizes. Regarding parameter α, where αv are

below 0.5 (Set 2A), it can also be observed that both methods produce slightly overestimated

estimates, componentwise. As expected, both bias and skewness approach zero as sample size
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increases. Overall, the difference between the two approaches will vanish when the length of

time series increases.

Table 3.2: CLS and CML estimates for θ = (α,λ, τ ) in Set 1A. MSE in parenthesis.

N = 50 N = 200 N = 500
CLS CML CLS CML CLS CML

α = (0.60, 0.40, 0.75, 0.30)

α̂1 0.599 0.600 0.601 0.600 0.600 0.601
(0.0003) (0.0006) (0.0002) (0.0015) (0.0006) (0.0004)

α̂2 0.407 0.406 0.399 0.402 0.401 0.402
(0.0113) (0.0001) (0.0007) (0.0036) (0.0002) (0.0001)

α̂3 0.749 0.750 0.747 0.751 0.751 0.750
(0.0160) (0.0116) (0.0001) (0.0028) (0.0007) (0.0001)

α̂4 0.302 0.297 0.301 0.300 0.300 0.299
(0.0003) (0.0095) (0.0010) (0.0002) (0.0001) (0.0002)

λ = (2, 1, 6, 5)

λ̂1 1.915 1.880 1.963 1.982 1.994 2.000
(0.1013) (0.8744) (0.0048) (0.0774) (0.0001) (0.0319)

λ̂2 1.001 0.895 0.963 0.975 0.989 0.998
(0.6518) (0.5694) (0.0099) (0.0357) (0.0358) (0.0542)

λ̂3 5.806 5.810 5.910 5.987 5.985 5.999
(0.0948) (0.1168) (0.1250) (0.0944) (0.1330) (0.1804)

λ̂4 4.964 4.936 4.952 4.960 4.975 4.977
(0.4467) (0.3806) (0.0203) (0.2504) (0.0012) (0.0220)

τ = (4, 5, 3, 1)

τ̂1 3.893 3.880 3.965 3.970 3.991 3.998
(1.0386) (0.9610) (0.0930) (0.0106) (0.1715) (0.0027)

τ̂2 4.977 4.868 4.967 4.968 4.987 4.995
(0.7353) ( 1.2057) (0.0203) (0.1526) (0.0397) (0.0037)

τ̂3 2.812 2.834 2.937 2.970 2.984 2.987
(1.0748) ( 0.3680) (0.0517) (0.0001) (0.0200) (0.0295)

τ̂4 1.002 0.915 0.959 0.961 0.981 0.977
(0.4951) (0.6673) (0.0111) (0.2119) (0.0225) (0.0019)
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Table 3.3: CLS and CML estimates for θ = (α,λ, τ ) in Set 2A. MSE in parenthesis.

N = 50 N = 200 N = 500
CLS CML CLS CML CLS CML

α = (0.20, 0.45, 0.10, 0.30)

α̂1 0.199 0.201 0.201 0.200 0.199 0.200
(0.0047) (0.0031) (0.0020) (0.0003) (0.0014) (0.0001)

α̂2 0.455 0.453 0.451 0.451 0.449 0.450
(0.0002) (0.0014) (0.0035) (0.0021) (0.0011) (0.0004)

α̂3 0.115 0.108 0.100 0.101 0.099 0.101
(0.0054) (0.0004) (0.0040) (0.0002) (0.0017) (0.0006)

α̂4 0.305 0.304 0.300 0.300 0.300 0.300
(0.0121) (0.0001) (0.0001) (0.0013) (0.0007) (0.0001)

λ = (2, 1, 6, 5)

λ̂1 1.883 1.855 1.973 1.959 1.987 1.985
(0.2336) (0.0185) (0.0705) (0.0135) (0.1523) (0.0421)

λ̂2 1.047 0.886 0.970 0.964 0.989 0.983
(0.6237) (1.0923) (0.0235) (0.2988) (0.0252) (0.0511)

λ̂3 5.814 5.909 5.936 5.959 5.964 5.992
(0.0004) (0.0588) (0.0523) (0.5441) (0.0001) (0.0281)

λ̂4 4.981 4.803 4.962 4.934 4.974 4.963
(1.7878) (1.6886) (0.1190) (0.5135) (0.0652) (0.1936)

τ = (4, 5, 3, 1)

τ̂1 3.890 3.853 3.976 3.961 3.986 3.987
(0.6893) (0.5806) (0.0014) (0.0439) (0.1394) (0.0361)

τ̂2 4.984 4.854 4.971 4.955 5.000 4.978
(0.9576) (2.0269) (0.2442) (0.0650) (0.1503) (0.0064)

τ̂3 2.708 2.841 2.933 2.948 2.973 2.984
(0.2179) (0.0098) (0.5292) (0.4945) (0.0160) (0.0002)

τ̂4 1.054 0.832 0.978 0.930 0.975 0.961
(0.0616) (0.4011) (0.2080) (0.0057) (0.2973) (0.0700)
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Table 3.4: CLS and CML estimates for θ = (α,λ, τ ) in Set 3A. MSE in parenthesis.

N = 50 N = 200 N = 500
CLS CML CLS CML CLS CML

α = (0.75, 0.62, 0.51, 0.86)

α̂1 0.749 0.752 0.750 0.750 0.750 0.750
(0.0005) (0.0023) (0.0003) (0.0015) (0.0003) (0.0001)

α̂2 0.620 0.620 0.620 0.621 0.619 0.620
(0.0008) (0.0146) (0.0017) (0.0024) (0.0013) (0.0002)

α̂3 0.507 0.510 0.510 0.511 0.511 0.511
(0.0011) (0.0126) (0.0003) (0.0001) (0.0019) (0.0001)

α̂4 0.857 0.858 0.860 0.860 0.861 0.859
(0.0003) (0.0058) (0.0002) (0.0003) (0.0002) (0.0004)

λ = (4, 5, 3, 1)

λ̂1 3.990 3.922 3.993 3.980 3.996 3.990
(0.0367) (0.0687) (0.0102) (0.0042) (0.0201) (0.0585)

λ̂2 4.801 4.840 4.963 4.949 4.983 4.971
(1.3727) (0.5495) (0.0098) (0.0311) (0.0340) (0.0925)

λ̂3 2.852 2.932 2.972 2.982 2.982 2.994
(0.4910) (0.0041) (0.0086) (0.0026) (0.0223) (0.0521)

λ̂4 0.956 0.907 0.969 0.963 0.984 0.981
(0.0891) (0.0723) (0.0019) (0.0982) (0.0002) (0.0867)

τ = (1, 3, 2, 4)

τ̂1 1.000 0.896 1.001 0.969 0.997 0.986
(0.2271) (0.0954) (0.0128) (0.0003) (0.1242) (0.0113)

τ̂2 2.803 2.845 2.957 2.956 2.979 2.975
(0.5236) (0.4166) (0.0197) (0.0427) (0.0248) (0.2250)

τ̂3 1.843 1.925 1.958 1.989 1.979 2.005
(0.2197) (0.0357) (0.0213) (0.0062) (0.1071) (0.0328)

τ̂4 3.938 3.904 3.964 3.960 3.988 3.980
(0.0365) (0.0559) (0.0017) (0.0193) (0.0156) (0.0165)
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Figure 3.1: Boxplots for the biases of the CLS and CML estimates of parameter α in Set 1A
for n = 4N = 200, 800, 2000.
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λv τv

Figure 3.2: Boxplots for the biases of the CLS and CML estimates of parameters λ and τ in
Set 1A for n = 4N = 200, 800, 2000.
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Figure 3.3: Boxplots for the biases of the CLS and CML estimates of parameter α in Set 2A
for n = 4N = 200, 800, 2000.
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λv τv

Figure 3.4: Boxplots for the biases of the CLS and CML estimates of parameters λ and τ in
Set 2A for n = 4N = 200, 800, 2000.
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Figure 3.5: Boxplots for the biases of the CLS and CML estimates of parameter α in Set 3A
for n = 4N = 200, 800, 2000.
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λv τv

Figure 3.6: Boxplots for the biases of the CLS and CML estimates of parameters λ and τ in
Set 3A for n = 4N = 200, 800, 2000.
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3.4 The bivariate periodic model: BS-PINAR(1)

Bulla et al. (2016) introduced the class of bivariate signed INAR(1) processes, which is an

extension of the SINAR(1) process of Kachour and Truquet (2011) to the bivariate case, based

on the signed matrix thinning operator in (1.12). Therefore, motivated by Bulla et al. (2016),

we generalize the S-PINAR(1) model with period s to the bivariate case. The definition

and matrix representation of the bivariate model, denoted by BS-PINAR(1) with period s,

is presented and some statistical properties of the model are derived. The assumption of a

diagonal autoregressive matrix is made, which can be seen as a Z2-extension of the model

presented in Pedeli and Karlis (2011), here with periodic structure. The correlation is achieved

through their innovation processes. The discrete bivariate distribution on Z2 considered for

the distribution of the innovations is the periodic bivariate Skellam distribution established

previously in Definition 3.2. Parameter estimation of the unknown parameters is provided

through the conditional maximum likelihood method.

3.4.1 Definition and basic properties

Let {Xt} be a periodic bivariate integer-valued autoregressive process of first-order defined

by the recursion

Xt = Ft ⊙Xt−1 + Zt, t ∈ Z, (3.42)

where Xt,Xt−1 and Zt are random 2s-vectors. The vector Xt = [X1,t X2,t]
T for t = v + ns,

v = 1, . . . , s and n ∈ N0 has components Xj,t = [Xj,1+ns Xj,2+ns . . . Xj,s+ns]
T for j = 1, 2.

The vector Zt = [Z1,t Z2,t]
T represents a periodic sequence of independent random vectors.

The model defined by recursion (3.42) will be referred to as BS-PINAR(1) for Bivariate Signed

Periodic INteger-valued AutoRegressive model of order one with period s ∈ N and is based on

the periodic signed matrix thinning operator in (3.11). The BS-PINAR(1) model admits the
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following matricial representation

 X1,t

X2,t

 =

 F1,t 0

0 F2,t

⊙

 X1,t−1

X2,t−1

+

 Z1,t

Z2,t

 , t ∈ Z, (3.43)

where t = v + ns; v = 1, . . . , s and n ∈ N0. Each component of the bivariate model in (3.43)

admits the representation of a periodic univariate S-PINAR(1) process as in equation (3.28),

i.e.,

Xj,t = Fj,t ⊙Xj,t−1 + Zj,t, j = 1, 2 (3.44)

with

Fj,t ⊙Xj,t−1
d
= sign(Xj,t−1)

|Xj,t−1|∑
i=1

Ui,t(ϕj,t),

where Fj,t represents the common distribution of the periodic sequence of i.i.d. counting

sequences defined in (3.12) for any j ∈ {1, 2}. All counting sequences associated to the

operators Fj,t⊙ are mutually independent. Furthermore, for each t, Zj,t is assumed to be

independent of Xj,t−1 and Fj,t ⊙Xj,t−1, j = 1, 2.

We assume the innovations series of the BS-PINAR(1) model in (3.43) jointly follow the periodic

bivariate Skellam distribution established in Definition 3.2 with p.m.f. given by equation

(3.19). For a fixed v (v = 1, . . . , s) the first and second-order moments of Zj,v+ns (j = 1, 2)

are defined in (3.22) and (3.26), respectively. The covariance between Zj,v+ns and Zk,v+ns

(j ̸= k) is given in (3.27).

Expressions for conditional mean and variance of the BS-PINAR(1) model with period s are

derived. From equations (3.14) and (3.22)

E[Xj,v+ns|Xj,v−1+ns] = (2αj,v − 1)Xj,v−1+ns + λj,v − τv (3.45)

and from (3.15) and (3.26),

V ar[Xj,v+ns|Xj,v−1+ns] = 2αj,v(1− αj,v)|Xj,v−1+ns|+ λj,v + τv. (3.46)
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3.4.2 Parameter estimation of the BS-PINAR(1) model

Consider a finite time series (X1, . . . ,XNs) from the BS-PINAR(1) process with periodic bi-

variate Skellam-distributed innovations, where N represents the number of complete cycles.

Without loss of generality it is assumed X0 = x0. The conditional maximum likelihood

method is proposed to estimate the parameters of this bivariate model. The vector of un-

known parameters θ has 5s parameters, i.e.,

θ := (α1,α2,λ1,λ2, τ ) (3.47)

with αj = (αj,1, . . . , αj,s), λj = (λj,1, . . . , λj,s) and τ = (τ1, . . . , τs), j = 1, 2. Hence, the con-

ditional maximum likelihood (CML) estimator of the vector of the (5s) unknown parameters

in (3.47) is θ̂CML := (α̂CML
1 , α̂CML

2 , λ̂CML
1 , λ̂CML

2 , τ̂CML). The conditional log-likelihood

function is given by

C(θ) = ln(L(θ|x)) =
N−1∑
n=0

s∑
v=1

ln (pv(xv+ns|xv−1+ns)) (3.48)

with conditional density

pv(xv+ns|xv−1+ns) = P (Xv+ns = xv+ns|Xv−1+ns = xv−1+ns) =

= P (X1,v+ns = x1,v+ns, X2,v+ns = x2,v+ns|X1,v−1+ns = x1,v−1+ns, X2,v−1+ns = x2,v−1+ns).

(3.49)

For simplicity, let (x1,v−1+ns, x2,v−1+ns) = (a, b) and (x1,v+ns, x2,v+ns) = (c, d). Then the

transition probability function in (3.49) takes the form

pv(xv+ns|xv−1+ns) =

= P (X1,v+ns = c,X2,v+ns = d|X1,v−1+ns = a,X2,v−1+ns = b) =

=

|a|∑
k1=−|a|

|b|∑
k2=−|b|

P

sign(a) |a|∑
i=1

Ui,t(ϕ1,t) = k1

P

sign(b) |b|∑
i=1

Ui,t(ϕ2,t) = k2

×
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× P (Z1,v+ns = c− k1, Z2,v+ns = d− k2) =

=

|a|∑
k1=−|a|

|b|∑
k2=−|b|

P
(
R

(|a|)
t (ϕ1,t) = |a|+ sign(a) · k1

)
P
(
R

(|b|)
t (ϕ2,t) = |b|+ sign(b) · k2

)
×

× P (Z1,v+ns = c− k1, Z2,v+ns = d− k2) =

=

|a|∑
k1=−|a|

|b|∑
k2=−|b|

{
C

2|a|
|a|+sign(a)·k1α

|a|+sign(a)·k1
1,v (1− α1,v)

|a|−sign(a)·k1×

× C
2|b|
|b|+sign(b)·k2α

|b|+sign(b)·k2
2,v (1− α2,v)

|b|−sign(b)·k2×

× e−(λ1,v+λ2,v+τv)λc−k1
1,v λd−k2

2,v

∞∑
i=max(0,−(c−k1),−(d−k2)

(λ1,vλ2,vτv)
i

i!(i+ c− k1)!(i+ d− k2)!

 .

(3.50)

Differentiating the conditional log-likelihood function in (3.48) with respect to the 5s param-

eters, the system of first-order partial derivatives follows



∂C(θ)

∂αj,v
= 0, j = 1, 2

∂C(θ)

∂λj,v
= 0, j = 1, 2; v = 1, . . . , s,

∂C(θ)

∂τv
= 0

i.e.,
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

N−1∏
n=0

2|x1,v−1+ns|
1− α1,v

(
pv(xv+ns − (1, 0)|xv−1+ns − (1, 0))

pv(xv+ns|xv−1+ns)
− 1

)
= 0

N−1∏
n=0

2|x2,v−1+ns|
1− α2,v

(
pv(xv+ns − (0, 1)|xv−1+ns − (0, 1))

pv(xv+ns|xv−1+ns)
− 1

)
= 0

N−1∏
n=0

pv(xv+ns − (1, 0)|xv−1+ns)

pv(xv+ns|xv−1+ns)
= N

N−1∏
n=0

pv(xv+ns − (0, 1)|xv−1+ns)

pv(xv+ns|xv−1+ns)
= N

N−1∏
n=0

pv(xv+ns + (1, 1)|xv−1+ns)

pv(xv+ns|xv−1+ns)
= N

for v = 1, . . . , s. First-order partial derivatives are omitted, however they are calculated in

the similar way as in the univariate case (see Appendix C.1). Numerical maximization is

straightforward with standard statistical packages in R.





Chapter 4

Conclusions and future challenges

The aim of this thesis is to provide contributions to the analysis of count time series with

periodic structure. The main focus is on the definition and study of time series for count

data with periodic time-varying parameters and periodic sequences of innovations. For this

purpose, we focused on a particular type of processes for count time series, namely the inte-

ger–valued autoregressive (INAR) process of order one.

In Chapter 2, we introduced the periodic multivariate integer-valued process of order one

(PMINAR(1) for short) with period s based on the matrix-binomial thinning operator. Apart

from the general specification of the periodic multivariate process, the probabilistic and also

the statistical properties of the model were studied in detail. Furthermore, the constraint of

diagonality of the matrix of autocorrelation parameters was considered. Thus, the correla-

tion between the innovation series of the periodic multivariate process was the only source

of cross–correlation. A specific parametric case that arises under the assumption of a multi-

variate negative binomial distribution for the innovations of the process was assumed. The

former specification of the PMINAR(1) process has the useful property that it can effectively ac-

count for overdispersion (variance exceeds mean). Deviations from the equidispersed settings

often occur in real-life events. Concerning parameter estimation of the PMINAR(1) process,

three methods were proposed, namely, Yule–Walker, conditional maximum likelihood and

135
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composite likelihood. The computational complexity of the maximum likelihood approach

augments with dimensional increase. To overcome the computational difficulties arising from

that method, composite likelihood-based approach was suggested. The loss of efficiency due

to the replacement of the full likelihood with a pseudo–likelihood was investigated. Hence,

the performance of the proposed method and other competitors methods of estimation was

compared through a simulation study. Although very demanding computationally, the con-

ditional maximum likelihood method proved to outperform the other methods, thus the dif-

ferences to the composite likelihood method were small. The composite likelihood method

revealed to be computationally more convenient and impressively less time–consuming than

the maximum likelihood method. After addressing one-step ahead forecasts, the proposed

multivariate model with periodic structure and multivariate negative binomial distribution

for the innovations series was applied to a real data set related with the analysis of fire activ-

ity. This application was made to a particular trivariate real data series regarding the number

of monthly fires (period s = 12) in three counties in Portugal, namely Aveiro, Coimbra and

Faro, during 30 years (1981− 2010). Additionally, the composite likelihood approach seemed

satisfactory although some loss of efficiency was noticed but considered acceptable.

One topic for future work regarding the specification of a PMINAR(1) process could be removing

the constraint of diagonality of the matrix of autocorrelation parameters. However, similar

to what happens with conventional PAR models, PMINAR models can have an extremely large

number of parameters increased with period s. The development of procedures for dimen-

sionality reduction continues to be an interesting subject to be studied in this context. A

common feature in real data applications is times series exhibiting overdispersion, therefore

other distributions for the innovations series might also be of interest.

In Chapter 3, our attention was turned to periodic INAR(1) models based on a different

type of thinning operator, the signed thinning operator, adapted accordingly to the periodic

case. These models can handle integer-valued time series which allow for negative integer-

valued and negative correlated count data unlike the integer-valued time series models in

Chapter 2. Those models were only appropriate for non-negative integer-valued time series



137

and could only deal with positive autocorrelations. Pursing our goal, two first-order INAR

(univariate and bivariate) models with periodic structure were introduced, allowing for posi-

tive and negative counts, S-PINAR(1) and BS-PINAR(1), respectively. Basic probabilistic and

also statistical properties of the periodic models were provided. A drawback of the signed

thinning operator was the fact that the distributive property did not hold. This enabled us

from writing the periodic process recursively as in Chapter 2 and therefore, obtaining the

cycle-stationary distribution. This issue, however, is worth further exploration.

Particular emphasis was given to innovations modeled by univariate and bivariate Skellam

distributions defined on the set of integers, respectively. The interest in the Skellam distri-

bution or Poisson difference distribution has been recast. There are few discrete distributions

defined in Z. On the other hand, bivariate Skellam distribution is quite recent and appealing

for models with innovations series defined in the Z2 context. To study the performance of the

conditional least squares and conditional maximum likelihood estimators, a simulation study

was conducted for the S-PINAR(1) model with period s. A modification of the traditional

conditional least squares method was made through a two step procedure in order to provide

estimators for all parameters involved in the periodic univariate model. The proposed estima-

tion methods were compared through an extended simulation experiment contemplating six

different combinations of the parameters. For each set of parameters and for each sample size,

1000 independent replicates were simulated from the S-PINAR(1) model. Numerical results

from the simulation study suggested that the proposed model is suitable for practical use.

However, this is an issue we would like to explore in future work considering the application

of the univariate model to real data time series exhibiting periodic structure.

Regarding periodic models based on the signed thinning operator, an important subject to

investigate in further research, is the forecasting distribution of these models.
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Auxiliary results of Chapter 1

Univariate Skellam distribution

In Definition 1.3, if Z ∼ Skellam(θ1, θ2) then the probability mass function (p.m.f.) is

P (Z = z) = e−(θ1+θ2)

(
θ1
θ2

)z/2

I|z|

(
2
√
θ1θ2

)
, z ∈ Z,

where Ir(x) is the modified Bessel function of the first kind of order r defined by

Ir(x) =
(x
2

)r ∞∑
i=0

(
x2

4

)i

i!Γ(r + i+ 1)
. (A.1)

The mean and the variance are, respectively, E[Z] = θ1 − θ2 and V ar[Z] = θ1 + θ2. Clearly,

the variance exceeds the mean, i.e., V ar[Z] ≥ |E[Z]|. The distribution is symmetric only

when θ1 = θ2 (case discussed by Irwin (1937)).

The probability generating function is given by

GZ(s) = E
[
sZ
]
= e−(θ1+θ2)+θ1s+θ2/s.
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A new representation of the Skellam (Poisson difference) distribution by replacing the Bessel

function in (A.1) was established in Alzaid and Omair (2010). Hence, an alternative formula

for the p.m.f. of the Skellam distribution is

P (Z = z) = e−(θ1+θ2)θz1

∞∑
i=0

(θ1θ2)
i

i!(i+ z)!
, z ∈ Z. (A.2)

For large values of the sum θ1 + θ2, the distribution can be sufficiently approximated by the

normal distribution. If θ2 = 0, the distribution tends to a Poisson distribution and if θ1 = 0,

tends to the negative of a Poisson distribution. The Skellam distribution is unimodal. The

sum and the difference of two Skellam r.v.’s also follow the same distribution.

Note that Skellam distribution is not necessarily the distribution of the difference of two

uncorrelated Poisson r.v.’s (Karlis and Ntzoufras, 2006). This implies that we can derive the

Skellam distribution as the difference of other distributions as well. Further details in Alzaid

and Omair (2010).
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Auxiliary results of Chapter 2

B.1 Proof of equation (2.32)

Let t = 1 + ns, then

E[Xj,1+ns] =

= λj,1 +
d(−1)

d
αj,1

(
λj,1

s−2∏
k=0

αj,s−k + λj,2

s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
=

= λj,1 +
αj,1

1−
s−1∏
k=0

αj,s−k

(
λj,1

s−2∏
k=0

αj,s−k + λj,2

s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
=

=

λj,1

(
1−

s−1∏
k=0

αj,s−k

)
+ αj,1

(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
1−

s−1∏
k=0

αj,s−k

=

=

λj,1 − λj,1
s−1∏
k=0

αj,s−k + λj,1
s−1∏
k=0

αj,s−k + αj,1

(
λj,2

s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
1−

s−1∏
k=0

αj,s−k

=

=

λj,1 + αj,1

(
λj,2

s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
1−

s−1∏
k=0

αj,s−k

.
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Attending to relation (2.31), it follows that

λj,s−1αj,s + · · ·+ λj,2

s−3∏
k=0

αj,s−k =

s−2∑
i=1

(
λj,s−i

i−1∏
k=0

αj,s−k

)
=

s−2∑
i=1

λj,s−iφ
(1)
s,i

thus

E[Xj,1+ns] =

λj,1 + αj,1

(
λj,s + λj,s−1αj,s + · · ·+ λj,2

s−3∏
k=0

αj,s−k

)
1−

s−1∏
k=0

αj,s−k

=

=

λj,1 + αj,1

(
λj,s +

s−2∑
i=1

φ
(j)
s,iλj,s−i

)
1−

s−1∏
k=0

αj,s−k

=

=

1−1∑
k=0

φ
(j)
1,kλj,1−k + φ

(j)
1,1

s−2∑
i=0

φ
(j)
s,iλj,s−i

1− φ
(j)
s,s

.

Let t = 2 + ns, then

E[Xj,2+ns] =

= λj,1αj,2 + λj,2 +
d(−j)

d

2−1∏
k=0

αj,2−k

(
λj,1

s−2∏
k=0

αj,s−k + λj,2

s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)

=

(λj,1αj,2 + λj,2)

(
1−

s−1∏
k=0

αj,s−k

)
+ αj,2αj,1

(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s

)
1−

s−1∏
k=0

αj,s−k

=

λj,1αj,2 + λj,2 − λj,1αj,2

s−1∏
k=0

αj,s−k − λj,2
s−1∏
k=0

αj,s−k

1−
s−1∏
k=0

αj,s−k

+

+

αj,2αj,1

(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
1−

s−1∏
k=0

αj,s−k

=
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=

λj,1αj,2 + λj,2 − λj,1αj,2

s−1∏
k=0

αj,s−k − λj,2
s−1∏
k=0

αj,s−k + λj,1αj,2

s−1∏
k=0

αj,s−k + λj,2
s−1∏
k=0

αj,s−k

1−
s−1∏
k=0

αj,s−k

+

+

αj,2αj,1

(
λj,3

s−4∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
1−

s−1∏
k=0

αj,s−k

=

=

λj,1αj,2 + λj,2 + αj,2αj,1

(
λj,3

s−4∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
1−

s−1∏
k=0

αj,s−k

,

yielding

E[Xj,2+ns] =

λj,2 + αj,2λj,1 + αj,1αj,2

s−3∑
i=0

φ
(j)
s,iλj,s−i

1−
s−1∏
k=0

αj,s−k

=

=

2−1∑
k=0

φ
(j)
2,kλj,2−k + φ

(j)
2,2

s−3∑
i=0

φ
(j)
s,iλj,s−i

1− φ
(j)
s,s

.

Let t = 3 + ns, then

E[Xj,3+ns] = λj,1αj,3αj,2 + λj,2αj,3 + λj,3 +
d(−j)

d

3−1∏
k=0

αj,3−k ×

×
(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
=

=

3−1∑
k=0

φ
(j)
3,kλj,3−k + φ

(j)
3,3

s−4∑
i=0

φ
(j)
s,iλj,s−i

1− φ
(j)
s,s

,

and likewise until t = s+ ns:
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E[Xj,s+ns] =
d(−j)

d

(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
=

=

λj,1
s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

1−
s−1∏
k=0

αj,s−k

=

=

λj,s + λj,s−1αj,s + · · ·+ λj,2
s−3∏
k=0

αj,s−k + λj,1
s−2∏
k=0

αj,s−k

1− φ
(j)
s,s

=

=

s−1∑
k=0

φ
(j)
s,kλj,s−k + φ

(j)
s,s

s−(s+1)∑
i=0

φ
(j)
s,iλj,s−i

1− φ
(j)
s,s

.

Hence, for j = 1, . . . ,m and v = 1, . . . , s:

E[Xj,v+ns] =

v−1∑
k=0

φ
(j)
v,kλj,v−k + φ

(j)
v,v

s−(v+1)∑
i=0

φ
(j)
s,iλj,s−i

1− φ
(j)
s,s

with convention
s−(s+1)∑

i=0
φ
(j)
s,iλj,s−i = 0.
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B.2 First-order partial derivatives of the transition probability

function

For convenience, let xj,v−1+ns = aj and xj,v+ns = bj for j = 1, . . . ,m, hence a = (a1, . . . , am)

and b = (b1, . . . , bm). The binomial distribution in (2.70) can be written as

fj(rj) = C
aj
rj α

rj
j,v(1− αj,v)

aj−rj (v = 1, . . . , s).

Moreover, the transition probability function pv(xv+ns|xv−1+ns) in (2.86) takes the form

pv(xv+ns|xv−1+ns) = pv(b|a) =

=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

 m∏
j=1

fj(rj)

h(b1 − r1, b2 − r2, . . . , bm − rm). (B.1)

Recall the vector of unknown parameters in (2.89), i.e., ηv = (α1,v, . . . , αm,v, λ1,v, . . . , λm,v, βv).

For a fixed v (v = 1, . . . , s), the first-order partial derivative of function pv(b|a) in (B.1) with

respect to parameter α1,v is

∂

∂α1,v
pv(b|a) =

=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

Ca1
r1

(
r1α

r1−1
1,v (1− α1,v)

a1−r1 − (a1 − r1)α
r1
1,v(1− α1,v)

a1−r1−1
)
×

× f2(r2) . . . fm(rm) h(b1 − r1, b2 − r2, . . . , bm − rm) =

=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

(
r1
α1,v

− a1 − r1
1− α1,v

) m∏
j=1

fj(rj) h(b1 − r1, b2 − r2, . . . , bm − rm) =

=

g1∑
r1=1

g2∑
r2=0

. . .

gm∑
rm=0

(
r1

α1,v(1− α1,v)
− a1

1− α1,v

) m∏
j=1

fj(rj)h(b1 − r1, b2 − r2, . . . , bm − rm) =

=

g1∑
r1=1

g2∑
r2=0

. . .

gm∑
rm=0

r1
α1,v(1− α1,v)

m∏
j=1

fj(rj) h(b1 − r1, b2 − r2, . . . , bm − rm)︸ ︷︷ ︸
I

−

− a1
1− α1,v

pv(b|a),
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where

I =
g1∑

r1=1

g2∑
r2=0

. . .

gm∑
rm=0

r1C
a1
r1 α

r1−1
1,v (1− α1,v)

a1−r1−1f2(r2) . . . fm(rm)×

× h(b1 − r1, b2 − r2, . . . , bm − rm) =

=

g1∑
r1=1

g2∑
r2=0

. . .

gm∑
rm=0

a1!

(r1 − 1)!(a1 − r1)!
αr1−1
1,v (1− α1,v)

a1−r1−1f2(r2) . . . fm(rm)×

× h(b1 − r1, b2 − r2, . . . , bm − rm) =

=

g1∑
r1=1

g2∑
r2=0

. . .

gm∑
rm=0

a1(a1 − 1)!

(r1 − 1)!(a1 − 1− (r1 − 1))!

(
αr1−1
1,v (1− α1,v)

a1−1−(r1−1) +

+ αr1
1,v(1− α1,v)

a1−r1−1
)
f2(r2) . . . fm(rm) h(b1 − r1, b2 − r2, . . . , bm − rm).

Notice that

αr1−1
1,v (1− α1,v)

a1−r1−1 = αr1
1,v(1− α1,v)

a1−r1
(
α−1
1,v + (1− α1,v)

−1
)
=

= αr1−1
1,v (1− α1,v)

a1−1−(r1−1) + αr1
1,v(1− α1,v)

a1−r1−1

because

α−1
1,v(1− α1,v)

−1 =
1

α1,v(1− α1,v)
=

1− α1,v + α1,v

α1,v(1− α1,v)
=

1

α1,v
+

1

1− α1,v
= α−1

1,v + (1− α1,v)
−1.

Then

I =
g1∑

r1=1

g2∑
r2=0

. . .

gm∑
rm=0

a1C
a1−1
r1−1

(
αr1−1
1,v (1− α1,v)

a1−1−(r1−1) +

+ αr1−1+1
1,v (1− α1,v)

a1−1−(r1−1)−1
)
f2(r2) . . . fm(rm)×

× h(b1 − 1− (r1 − 1), b2 − r2, . . . , bm − rm) =

=

g1∑
i=0

g2∑
r2=0

. . .

gm∑
rm=0

a1C
a1−1
i

(
αi
1,v(1− α1,v)

a1−1−i + αi+1
1,v (1− α1,v)

a1−1−i−1
)
×

× f2(r2) . . . fm(rm) h(b1 − 1− i, b2 − r2, . . . , bm − rm) =
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=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

a1C
a1−1
r1

(
αr1
1,v(1− α1,v)

a1−1−r1 + αr1+1
1,v (1− α1,v)

a1−1−r1−1
)
×

× f2(r2) . . . fm(rm) h(b1 − 1− r1, b2 − r2, . . . , bm − rm) =

=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

a1
1− α1,v

Ca1−1
r1 αr1

1,v(1− α1,v)
a1−1−r1 f2(r2) . . . fm(rm)×

× h(b1 − 1− r1, b2 − r2, . . . , bm − rm) =

=
a1

1− α1,v
pv(b− (1, 0, . . . , 0)|a− (1, 0, . . . , 0))

leading to

∂

∂α1,v
pv(b|a) =

a1
1− α1,v

[pv(b− (1, 0, . . . , 0)|a− (1, 0, . . . , 0))− pv(b|a)] .

Replacing a = (a1, . . . , am) with aj = xj,v−1+ns and b = (b1, . . . , bm) with bj = xj,v+ns for

j = 1, . . . ,m, we obtain

∂

∂α1,v
pv(xj,v+ns|xj,v−1+ns) =

=
x1,v−1+ns

1− α1,v
[pv(xj,v+ns − (1, 0, . . . , 0)|xj,v−1+ns − (1, 0, . . . , 0))− pv(xj,v+ns|xj,v−1+ns)] ,

and in a similar way regarding the other partial derivatives with respect to α2,v, . . . , αm,v:

∂

∂α2,v
pv(xj,v+ns|xj,v−1+ns) =

=
x2,v−1+ns

1− α2,v
[pv(xj,v+ns − (0, 1, . . . , 0)|xj,v−1+ns − (0, 1, . . . , 0))− pv(xj,v+ns|xj,v−1+ns)] ,

...
∂

∂αm,v
pv(xj,v+ns|xj,v−1+ns) =

=
xm,v−1+ns

1− αm,v
[pv(xj,v+ns − (0, 0, . . . , 1)|xj,v−1+ns − (0, 0, . . . , 1))− pv(xj,v+ns|xj,v−1+ns)]

for v = 1, . . . , s. The first-order partial derivatives of function pv(b|a) concerning the remain-

ing parameters (λ1,v, . . . , λm,v, βv) integrating vector (2.89) follow shortly. Those parameters

are from the MVNB distribution h(z1, z2, . . . , zm) established in (2.76). Taking advantage of
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the well-known property eln[h(z1,z2,...,zm)], the log-function ln[h(z1, z2, . . . , zm)] takes the form

ln[h(z1, z2, . . . , zm)] =

= ln Γ

β−1
v +

m∑
j=1

zj

− ln Γ(β−1
v ) +

m∑
j=1

zj ln(λj,v)−
m∑
j=1

ln(zj !)−

− β−1
v ln(βv)−

β−1
v +

m∑
j=1

zj

 ln

β−1
v +

m∑
j=1

λj,v

 . (B.2)

Therefore, the first-order partial derivatives of function h(z1, z2, . . . , zm) with respect to the

parameters (λ1,v, . . . , λm,v, βv) can be obtained through

∂

∂λj,v
h(z1, z2, . . . , zm) =

∂

∂λj,v
eln[h(z1,z2,...,zm)] =

= eln[h(z1,z2,...,zm)] ∂

∂λj,v
ln[h(z1, z2, . . . , zm)] =

= h(z1, z2, . . . , zm)
∂

∂λj,v
ln[h(z1, z2, . . . , zm)]

with v = 1, . . . , s and j = 1, . . . ,m, and likewise for the dispersion parameter, βv. On

differentiating the function ln[h(z1, z2, . . . , zm)] in (B.2), the partial derivatives are

∂

∂λj,v
ln[h(z1, z2, . . . , zm)] =

zj
λj,v

−

(
β−1
v +

m∑
j=1

zj

)(
β−1
v +

m∑
j=1

λj,v

)−1

and

∂

∂βv
ln[h(z1, z2, . . . , zm)] = −β−2

v ψ

(
β−1
v +

m∑
j=1

zj

)
+ β−2

v ψ
(
β−1
v

)
+

+ β−2
v ln(βv)− β−2

v + β−2
v ln

(
β−1
v +

m∑
j=1

λj,v

)
+

β−2
v

β−1
v +

∑m
j=1 λj,v

=

= β−2
v ψ

(
β−1
v

)
− β−2

v ψ

(
β−1
v +

m∑
j=1

zj

)
+
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+ β−2
v

[
ln(βv)− 1 + ln

(
1 + βv

∑m
j=1 λj,v

βv

)
+

1

β−1
v +

∑m
j=1 λj,v

]
=

= β−2
v

ψ (β−1
v

)
− ψ

(
β−1
v +

m∑
j=1

zj

)
+ ln

(
1 + βv

m∑
j=1

λj,v

)
+

1

β−1
v +

m∑
j=1

λj,v

− 1


i.e.,

∂

∂λj,v
h(z1, . . . , zm) =

 zj
λj,v

−

β−1
v +

m∑
j=1

zj

β−1
v +

m∑
j=1

λj,v

−1h(z1, . . . , zm) (B.3)

and

∂

∂βv
h(z1, . . . , zm) = β−2

v

ψ (β−1
v

)
− ψ

β−1
v +

m∑
j=1

zj

+ ln

1 + βv

m∑
j=1

λj,v

+

+
1

β−1
v +

∑m
j=1 λj,v

− 1

]
h(z1, . . . , zm). (B.4)

Furthermore,

∂

∂λj,v
pv(xj,v+ns|xj,v−1+ns) =

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

 m∏
j=1

fj(rj)

 ∂

∂λj,v
h(z1, z2, . . . , zm)

and

∂

∂βv
pv(xj,v+ns|xj,v−1+ns) =

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

 m∏
j=1

fj(rj)

 ∂

∂βv
h(z1, z2, . . . , zm),

where zj = xj,v+ns − rj (j = 1, . . . ,m) and the first-order partial derivatives of function

h(z1, z2, . . . , zm) are expressed in (B.3) and (B.4), respectively.

Remark: The digamma function, ψ, is defined as the logarithmic derivative of the gamma

function ψ(x) =
d

dx
ln[Γ(x)] = Γ′(x)

Γ(x)
.
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B.3 Assumptions of Billingsley’s theorem

For a fixed v (v = 1, . . . , s), let the vector of parameters from the innovation process be

ξv = (λ1,v, λ2,v, . . . , λm,v, βv) = (ξ1,v, ξ2,v, . . . , ξm,v, ξm+1,v) ∈ B.

(C1) The set {a : P (Zv+ns = a) = f(a, ξv)} does not depend on ξv;

(C2) E[Z3
v+ns] <∞;

(C3) f(a, ξv) is three times continuously differentiable on the set of parameters B;

(C4) For any ξv ∈ B, there exists a neighbourhood U of ξv such that
∞∑
a=0

sup
ξv∈U

f(a, ξv) <∞ ,

∞∑
a=0

sup
ξv∈U

∣∣∣∣ ∂

∂ξu,v
f(a, ξv)

∣∣∣∣ <∞, u = 1, . . . ,m+ 1,

∞∑
a=0

sup
ξv∈U

∣∣∣∣ ∂2

∂ξu,v∂ξw,v
f(a, ξv)

∣∣∣∣ <∞, u, w = 1, . . . ,m+ 1;

(C5) For any ξv ∈ B there exists a neighbourhood U of ξv and increasing sequences ψu(n),

ψu,w(n), ψu,w,y(n), n ≥ 0 such that for all ξv ∈ B and all a ≤ n with nonvanishing

f(a, ξv)∣∣∣∣ ∂

∂ξu,v
f(a, ξv)

∣∣∣∣ ≤ ψu(n) f(a, ξv),

∣∣∣∣ ∂2

∂ξu,v∂ξw,v
f(a, ξv)

∣∣∣∣ ≤ ψu,w(n) f(a, ξv),

∣∣∣∣ ∂3

∂ξu,v∂ξw,v∂ξy,v
f(a, ξv)

∣∣∣∣ ≤ ψu,w,y(n) f(a, ξv), u,w, y = 1, . . . ,m+ 1;

and also concerning the cyclostationary distribution of Xt, with t = v + ns:
E[ψ3

u(Xv)] <∞, E[Xvψu,w(Xv+1)] <∞,

E[ψu(Xv)ψu,w(Xv+1)] <∞, E[ψu,w,y(Xv)] <∞;

(C6) The Fisher information matrix, I(θ), is nonsingular.
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Auxiliary results of Chapter 3

C.1 First-order partial derivatives of the transition probability

function

The transition probability function in (3.33) has the expression

pv(b|a) =
|a|∑

l=−|a|

P
(
R

(|a|)
t (ϕt) = |a|+ sign(a) · l

)
P (Zv+ns = b− l) =

=

|a|∑
l=−|a|

Ke−(λv+τv)λb−l
v

∞∑
k=max(0,−(b−l))

λkvτ
k
v

k!(k + b− l)!

 =

=

|a|∑
l=−|a|

K e−(λv+τv) Q(ηv, b− l), (C.1)

where a = xv−1+ns, b = xv+ns and K = C
2|a|
|a|+sign(a)·lα

|a|+sign(a)·l
v (1 − αv)

|a|−sign(a)·l. For any

c ∈ Z and ηv = (λv, τv) ∈ [0,∞[×[0,∞[, the auxiliary function Q is defined as

Q(ηv, c) =
∞∑

k=max(0,−c)

λk+c
v τkv

k!(k + c)!
. (C.2)
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First-order partial derivatives of auxiliary function Q(ηv, c) in (C.2):

∂

∂λv
Q(ηv, c) =

∞∑
k=0

τkv (k + c)λk+c−1
v

k!(k + c)(k + c− 1)!
=

∞∑
k=0

τkv λ
k+c−1
v

k!(k + c− 1)!
= Q(ηv, c− 1)

and

∂

∂τv
Q(ηv, c) =

∞∑
k=1

kτk−1
v λk+c

v

k(k − 1)!(k + c)!
=

∞∑
i=0

τ ivλ
i+c+1
v

i!(i+ c+ 1)!
= Q(ηv, c+ 1).

First-order partial derivatives of transition probability function pv(b|a) in (C.1) with respect

to parameters λv and τv:

∂

∂λv
pv(b|a) = −pv(b|a) +

|a|∑
l=−|a|

K e−(λv+τv) ∂

∂λv
Q(ηv, b− l)

= −pv(b|a) +
|a|∑

l=−|a|

K e−(λv+τv) Q(ηv, b− l − 1)

= −pv(b|a) + pv(b− 1|a), v = 1, . . . , s;

∂

∂λw
pv(b|a) = 0, w ̸= v, v = 1, . . . , s

and

∂

∂τv
pv(b|a) = −pv(b|a) +

|a|∑
l=−|a|

K e−(λv+τv) ∂Q(ηv, b− l)

∂τv
=

= −pv(b|a) +
|a|∑

l=−|a|

K e−(λv+τv) Q(ηv, b− l + 1) =

= −pv(b|a) + pv(b+ 1|a), v = 1, . . . , s;

∂

∂τw
pv(b|a) = 0, w ̸= v, v = 1, . . . , s.
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First-order partial derivatives of transition probability function pv(b|a) in (C.1) with respect

to parameter αv:

∂

∂αv
pv(b|a) =

|a|∑
l=−|a|

C
2|a|
|a|+sign(a)·l

(
(|a|+ sign(a) · l)α|a|+sign(a)·l−1

v (1− αv)
|a|−sign(a)·l−

− (|a| − sign(a) · l)(1− αv)
|a|−sign(a)·l−1α|a|+sign(a)·l

v

)
P (Zv+ns = b− l) =

=

|a|∑
l=−|a|

K

(
|a|+ sign(a) · l

αv
− |a| − sign(a) · l

1− αv

)
P (Zv+ns = b− l) =

=

|a|∑
l=−|a|

K

(
|a|+ sign(a) · l
αv(1− αv)

− 2|a|
1− αv

)
P (Zv+ns = b− l) =

=

|a|∑
l=−|a|

K
|a|+ sign(a) · l
αv(1− αv)

P (Zv+ns = b− l)− 2|a|
1− αv

|a|∑
l=−|a|

KP (Zv+ns = b− l) =

=

|a|∑
l=−|a|

K
|a|+ sign(a) · l
αv(1− αv)

P (Zv+ns = b− l)

︸ ︷︷ ︸
A

− 2|a|
1− αv

pv(b|a),

where

A =

|a|∑
l=−|a|

K
|a|+ sign(a) · l
αv(1− αv)

P (Zv+ns = b− l) =

=

|a|∑
l=−|a|

C
2|a|
|a|+sign(a)·lα

|a|+sign(a)·l−1
v (1− αv)

|a|−sign(a)·l−1(|a|+ sign(a) · l) P (Zv+ns = b− l) =

=

|a|∑
l=−|a|

(2|a|)! α|a|+sign(a)·l−1
v (1− αv)

|a|−sign(a)·l−1

(|a|+ sign(a) · l − 1)!(|a| − sign(a) · l)!
P (Zv+ns = b− l) =

=

|a|∑
l=−|a|

2|a|(2|a| − 1)!

(|a|+ sign(a) · l − 1)!(2|a| − 1− (|a|+ sign(a) · l − 1))!
×

×
(
α|a|+sign(a)·l−1
v (1− αv)

2|a|−1−(|a|+sign(a)·l−1) + α|a|+sign(a)·l
v (1− αv)

2|a|−|a|+sign(a)·l−1
)

×

× P (Zv+ns = b− l) =
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=

|a|∑
l=−|a|

2|a|C2|a|−1
|a|+sign(a)·l−1

(
α|a|+sign(a)·l−1
v (1− αv)

2|a|−1−(|a|+sign(a)·l−1)+

+ α|a|+sign(a)·l−1+1
v (1− αv)

2|a|−1−(|a|+sign(a)·l−1)−1
)
P (Zv+ns = b− 1− (l − 1)) =

=

|a|∑
l=−|a|

2|a|C2|a|−1
|a|+sign(a)·l

(
α|a|+sign(a)·l
v (1− αv)

2|a|−1−|a|+sign(a)·l+

+ α|a|+sign(a)·l+1
v (1− αv)

2|a|−1−|a|+sign(a)·l−1
)
P (Zv+ns = b− 1− l) =

=

|a|∑
l=−|a|

2|a|
1− αv

C
2|a|−1
|a|+sign(a)·lα

|a|+sign(a)·l
v (1− αv)

2|a|−1−|a|+sign(a)·lP (Zv+ns = b− 1− l) =

=
2|a|

1− αv
pv(b− 1|a− 1).

Hence,

∂

∂αv
pv(b|a) =

2|a|
1− αv

[pv(b− 1|a− 1)− pv(b|a)] , v = 1, . . . , s;

∂

∂αw
pv(b|a) = 0, w ̸= v, v = 1, . . . , s.
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C.2 Simulation study - Tables and Figures for Set 1B, Set 2B

and Set 3B

Table C.1: CLS and CML estimates for θ = (α,λ, τ ) in Set 1B. MSE in parenthesis.

N = 50 N = 200 N = 500
CLS CML CLS CML CLS CML

α = (0.60, 0.40, 0.75, 0.30)

α̂1 0.596 0.599 0.602 0.600 0.598 0.600
(0.0221) (0.0278) (0.0010) (0.0001) (0.0002) (0.0002)

α̂2 0.402 0.404 0.400 0.401 0.400 0.401
(0.0045) (0.0020) (0.0022) (0.0010) (0.0001) (0.0002)

α̂3 0.752 0.752 0.748 0.750 0.751 0.750
(0.0055) (0.0002) (0.0003) (0.0011) (0.0003) (0.0002)

α̂4 0.291 0.302 0.300 0.300 0.300 0.300
(0.0133) (0.0010) (0.0009) (0.0002) (0.0026) (0.0001)

λ = (5, 2, 1, 6)

λ̂1 4.890 4.851 4.961 4.960 5.013 4.999
(1.2441) (0.0203) (0.0015) (0.4656) (0.1746) (0.0104)

λ̂2 1.879 1.827 1.969 1.961 1.993 1.978
(0.2489) (0.4645) (0.1178) (0.1671) (0.2582) (0.0618)

λ̂3 0.969 0.944 0.953 0.970 0.994 0.989
(0.0504) (0.2910) (0.0344) (0.2480) (0.0006) (0.0005)

λ̂4 6.062 5.972 5.994 5.967 5.971 5.983
( 0.7703) (0.2740) (0.3578) (0.2704) (0.0002) (0.0006)

τ = (4, 5, 3, 1)

τ̂1 3.849 3.822 3.989 3.956 3.996 4.006
(0.1385) (1.7209) (0.0965) (1.1438) (0.3113) (0.0099)

τ̂2 4.882 4.878 4.972 4.972 4.990 4.983
(0.1419) (0.0579) (0.0426) (0.1829) (0.1108) (0.0084)

τ̂3 2.944 2.930 2.968 2.970 2.995 2.987
(0.1213) (1.0097) (0.0001) (0.0152) (0.0050) (0.0053)

τ̂4 1.134 0.922 0.980 0.958 0.970 0.981
(0.1173) (0.0522) (0.0209) (0.0380) (0.0535) (0.0184)
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Table C.2: CLS and CML estimates for θ = (α,λ, τ ) in Set 2B. MSE in parenthesis.

N = 50 N = 200 N = 500
CLS CML CLS CML CLS CML

α = (0.20, 0.45, 0.10, 0.30)

α̂1 0.201 0.198 0.200 0.199 0.200 0.200
(0.0010) (0.0007) (0.0044) (0.0001) (0.0002) (0.0004)

α̂2 0.451 0.451 0.450 0.449 0.451 0.449
(0.0064) (0.0040) (0.0007) (0.0009) (0.0001) (0.0005)

α̂3 0.110 0.105 0.100 0.099 0.100 0.100
(0.0022) (0.0011) (0.0017) (0.0003) (0.0001) (0.0002)

α̂4 0.302 0.301 0.301 0.300 0.302 0.301
(0.0202) (0.0028) (0.0014) (0.0014) (0.0003) (0.0006)

λ = (5, 2, 1, 6)

λ̂1 4.966 4.868 4.976 5.001 5.003 5.012
(1.4272) (0.4976) (0.4260) (0.0528) (0.0095) (0.4522)

λ̂2 1.917 1.937 1.979 1.974 1.981 1.981
(0.2015) (0.2534) (0.0710) (0.2369) (0.0834) (0.0286)

λ̂3 0.942 0.894 0.978 0.974 0.994 0.992
(0.0393) (0.3031) (0.0604) (0.1032) (0.0512) (0.0034)

λ̂4 5.799 5.828 5.965 5.944 5.979 5.978
(0.9201) (0.1717) (0.3392) (0.0079) (0.1061) (0.0019)

τ = (2, 1, 4, 3)

τ̂1 1.966 1.849 1.985 1.988 2.007 2.002
(1.4475) (0.3664) (0.0453) (0.0042) (0.0261) (0.1342)

τ̂2 0.932 0.929 0.976 0.970 0.985 0.983
(0.0052) (0.3645) (0.0008) (0.1674) (0.1286) (0.0728)

τ̂3 3.945 3.896 3.988 3.981 3.997 3.996
(0.1780) (0.6659) (0.1507) (0.1789) (0.0033) (0.0031)

τ̂4 2.796 2.826 2.953 2.945 2.957 2.970
(0.0266) (0.8391) (0.1803) (0.1891) (0.1254) (0.0103)
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Table C.3: CLS and CML estimates for θ = (α,λ, τ ) in Set 3B. MSE in parenthesis.

N = 50 N = 200 N = 500
CLS CML CLS CML CLS CML

α = (0.75, 0.62, 0.51, 0.86)

α̂1 0.747 0.750 0.750 0.751 0.750 0.751
(0.0059) (0.0025) (0.0047 ) (0.0007) (0.0001) (0.0009)

α̂2 0.620 0.619 0.618 0.620 0.620 0.620
(0.0005) (0.0064) (0.0004) (0.0021) (0.0002) (0.0006)

α̂3 0.502 0.505 0.508 0.508 0.510 0.508
(0.0109) (0.0037) (0.0001) (0.0008) (0.0005) (0.0009)

α̂4 0.860 0.858 0.859 0.860 0.860 0.860
(0.0003) (0.0015) (0.0027) (0.0001) (0.0003) (0.0002)

λ = (4, 5, 3, 1)

λ̂1 3.908 3.874 3.963 3.980 3.986 3.999
(0.0877) (0.7006) (0.0417) (0.0002) (0.0072) (0.0012)

λ̂2 4.991 4.898 4.953 4.950 4.981 4.967
(0.8363) (0.0014) (0.0622) (0.0181) (0.0303) (0.0780)

λ̂3 2.893 2.858 2.985 2.959 2.983 2.974
(0.3084) (1.9967) (0.0191) (0.6133) (0.0214) (0.0066)

λ̂4 0.932 0.941 0.976 0.987 0.996 0.999
(0.2119) (0.9387) (0.0636) (0.0019) (0.0030) (0.0009)

τ = (2, 1, 4, 3)

τ̂1 1.922 1.879 1.961 1.982 1.981 1.997
(0.0288) (0.0695) (0.4861) (0.0074) (0.0216) (0.1217)

τ̂2 0.967 0.912 0.952 0.953 0.985 0.973
(0.2418) (0.3462) (0.2008) (0.0015) (0.0299) (0.1177)

τ̂3 3.819 3.838 3.978 3.943 3.988 3.958
(0.2147) (1.0893) (0.1076) (0.1036) (0.0808) (0.0905)

τ̂4 2.923 2.947 2.980 2.993 2.998 3.003
(0.4280) (0.3441) (0.0246) (0.0018) (0.0001) (0.0109)
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Figure C.1: Boxplots for the biases of the CLS and CML estimates of parameter α in Set 1B
for n = 4N = 200, 800, 2000.
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λv τv

Figure C.2: Boxplots for the biases of the CLS and CML estimates of parameters λ and τ in
Set 1B for n = 4N = 200, 800, 2000.
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Figure C.3: Boxplots for the biases of the CLS and CML estimates of parameter α in Set 2B
for n = 4N = 200, 800, 2000.
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λv τv

Figure C.4: Boxplots for the biases of the CLS and CML estimates of parameters λ and τ in
Set 2B for n = 4N = 200, 800, 2000.
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Figure C.5: Boxplots for the biases of the CLS and CML estimates of parameter α in Set 3B
for n = 4N = 200, 800, 2000.
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λv τv

Figure C.6: Boxplots for the biases of the CLS and CML estimates of parameters λ and τ in
Set 3B for n = 4N = 200, 800, 2000.





Appendix D

R codes

D.1 R functions related to Chapter 2

#######################################################

## Generate t r i v a r i a t e nega t i v e b inomia l innova t ions ##

#######################################################

gera_binomNeg <− function (num, bet , lam1 , lam2 , lam3 ){

niu <− rgamma(num, shape=1/bet , r a t e=1/bet ) ;

L1 <− niu*lam1 ;

L2 <− niu*lam2 ;

L3 <− niu*lam3 ;

z1 <− rpois (num, L1 ) ;

z2 <− rpois (num, L2 ) ;

z3 <− rpois (num, L3 ) ;

return (array (cbind ( z1 , z2 , z3 ) , dim=c (num, 3 ) ) )

} ## end func t i on
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#####################################

## Generate PMINAR(1) − t r i v a r i a t e ##

#####################################

gera_i na rTr i <− function (n , s , N, a l f a , lamb , betta ){

# s − nº per iod s

# N − nº c y c l e s

# n − nº observ t o t a l , n=sN

# a l f a , lamb − matrix s by 3 ; b e t t a − vec t o r

nobs <− 3* (n+1);

x <− array ( rep (0 , nobs ) , dim=c (n +1 ,3)) ;

x [ 1 , 1 ] <− 3 ; ## i n i t i a l observ . : x0=c ( , , )

x [ 1 , 2 ] <− 6 ; ## 1º v ( season v =1 , . . . , s )

x [ 1 , 3 ] <− 4 ; ## 2º j ( component )

a l f a_matx <− array (0 , dim=c ( (N)*s , 3 ) ) ;

lamb_matx <− array (0 , dim=c ( (N)*s , 3 ) ) ;

for ( j in 1 : 3 ) {

a l f a_matx [ , j ] <− rep ( a l f a [ , j ] ,N) ;

lamb_matx [ , j ] <− rep ( lamb [ , j ] ,N)

} ## end fo r

a l f a_aux <− array (0 , dim=c ( s*N+1 ,3)) ;

a l f a_aux [ 2 : ( s*N+1) , ] <− a l f a_matx ;

lamb_aux <− array (0 , dim=c ( s*N+1 ,3)) ;

lamb_aux [ 2 : (N*s +1) , ] <− lamb_matx ;

betaa_vec <− rep ( betta , N) ;

betaa_aux <− array (0 , dim=c ( s*N+1 ,1)) ;

betaa_aux [ 2 : (N*s +1)] <− betaa_vec ;

for ( v in 2 : ( n+1)){

inov_NBtri <− gera_binomNeg (1 , betaa_aux [ v ] ,

lamb_aux [ v , 1 ] , lamb_aux [ v , 2 ] , lamb_aux [ v , 3 ] ) ;
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for ( j in 1 : 3 ) {

binom <− rbinom (1 , x [ v−1, j ] , a l f a_aux [ v , j ] ) ;

x [ v , j ] <− binom + inov_NBtri [ 1 , j ]

} ## end fo r

} ## end fo r

return ( x [ ( 2 : ( n +1) ) , ] )

} ## end func t i on

####################################

## Function f o r a d m i s s i b l e va l u e s ##

####################################

fun_a l f a <− function ( a l faC ){

a l l ( ( a l faC > 0) & ( a l faC < 1))

} ## end func t i on

fun_lamb <− function ( lambC){

a l l ( lambC > 0)

} ## end func t i on

######################

## Product − a lphas ##

######################

mult_a l f a <− function ( a l f a s , m, i ){

i f ( i ==0){ ## i − nº f a c t o r s

phi <− 1

} else {

a l f <− a l f a s [ (m−i +1):m] ;

phi <− prod ( a l f )

} ## end i f



168 Appendix D. R codes

return ( phi )

} ## end func t i on

#############################

## Estimation : Yule−Walker ##

#############################

est im_YW <− function (n , s , N, X){

s_mu0 <− array (0 , dim=c ( s , 3 ) ) ;

s_var0 <− array (0 , dim=c ( s , 3 ) ) ;

for ( j in 1 : 3 ) {

for ( v in 1 : s ){

s_mu0 [ v , j ] <− mean(X[ v+s* ( 0 : (N−1)) , j ] ) ;

s_var0 [ v , j ] <− var (X[ v+s* ( 0 : (N−1)) , j ] )

} ## end fo r

} ## end fo r

s_gama0 <− array (0 , dim=c ( s , 3 ) ) ;

for ( j in 1 : 3 ) {

for ( v in 1 : ( s −1)){

s_gama0 [ v , j ] <− cov (X[ v+s* ( 0 : (N−1)) , j ] ,X[ v+1+s* ( 0 : (N−1)) , j ] )

} ## end fo r

s_gama0 [ s , j ] <− cov (X[ s+s* ( 0 : (N−2)) , j ] ,X[1+ s+s* ( 0 : (N−2)) , j ] )

} ## end fo r

alfaYW0 <− array (0 , dim=c ( s , 3 ) ) ;

for ( j in 1 : 3 ) {

alfaYW0 [ 1 , j ] <− s_gama0 [ s , j ] /s_var0 [ s , j ] ;

for ( v in 2 : s ){

alfaYW0 [ v , j ] <− s_gama0 [ ( v−1) , j ] /s_var0 [ ( v−1) , j ]

} ## end fo r

} ## end fo r
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lambdaYW0 <− array (0 , dim=c ( s , 3 ) ) ;

for ( j in 1 : 3 ) {

lambdaYW0[ 1 , j ] <− s_mu0[ 1 , j ]− alfaYW0 [ 1 , j ] *s_mu0 [ s , j ] ;

for ( v in 2 : s ){

lambdaYW0 [ v , j ] <− s_mu0 [ v , j ]− alfaYW0 [ v , j ] *s_mu0 [ ( v−1) , j ]

} ## end fo r

} ## end fo r

phi1 <− mult_a l f a ( alfaYW0 [ , 1 ] , s , s ) ;

phi2 <− mult_a l f a ( alfaYW0 [ , 2 ] , s , s ) ;

phi3 <− mult_a l f a ( alfaYW0 [ , 3 ] , s , s ) ;

betaYW0 <− rep (0 , s ) ;

numer1 <− (1−phi1*phi2 )*cov (X[1+ s* ( 0 : (N−1) ) , 1 ] ,X[1+ s* ( 0 : (N−1 ) ) , 2 ] ) ;

d1a <− mult_a l f a ( alfaYW0 [ , 1 ] , 1 , 0 ) *mult_a l f a ( alfaYW0 [ , 2 ] , 1 , 0 ) *

lambdaYW0 [ 1 , 1 ] *lambdaYW0 [ 1 , 2 ] ;

const1 <− mult_a l f a ( alfaYW0 [ , 1 ] , 1 , 1 ) *mult_a l f a ( alfaYW0 [ , 2 ] , 1 , 1 ) ;

soma11 <− 0 ;

for ( i in 0 : 2 ) {

d1b <− mult_a l f a ( alfaYW0 [ , 1 ] , 4 , i )*mult_a l f a ( alfaYW0 [ , 2 ] , 4 , i )*

lambdaYW0[4− i , 1 ] *lambdaYW0[4− i , 2 ] ;

soma11 <− soma11+d1b

} ## end fo r

betaYW0 [ 1 ] <− numer1/ ( d1a+(const1*soma11 ) ) ;

numer2 <− (1−phi1*phi2 )*cov (X[2+ s* ( 0 : (N−1) ) , 1 ] ,X[2+ s* ( 0 : (N−1 ) ) , 2 ] ) ;

soma21 <− 0 ;

for ( i in 0 : 1 ) {

d2a<−mult_a l f a ( alfaYW0 [ , 1 ] , 2 , i )*mult_a l f a ( alfaYW0 [ , 2 ] , 2 , i )*

lambdaYW0[2− i , 1 ] *lambdaYW0[2− i , 2 ] ;

soma21<−soma21+d2a

} ## end fo r
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const2 <− mult_a l f a ( alfaYW0 [ , 1 ] , 2 , 2 ) *mult_a l f a ( alfaYW0 [ , 2 ] , 2 , 2 ) ;

soma22 <− 0 ;

for ( i in 0 : 1 ) {

d2b <− mult_a l f a ( alfaYW0 [ , 1 ] , 4 , i )*mult_a l f a ( alfaYW0 [ , 2 ] , 4 , i )*

lambdaYW0[4− i , 1 ] *lambdaYW0[4− i , 2 ] ;

soma22 <− soma22+d2b

} ## end fo r

betaYW0 [ 2 ] <− numer2/ ( soma21+(const2*soma22 ) ) ;

numer3 <− (1−phi1*phi2 )*cov (X[3+ s* ( 0 : (N−1) ) , 1 ] ,X[3+ s* ( 0 : (N−1 ) ) , 2 ] ) ;

soma31 <− 0 ;

for ( i in 0 : 2 ) {

d3a <− mult_a l f a ( alfaYW0 [ , 1 ] , 3 , i )*mult_a l f a ( alfaYW0 [ , 2 ] , 3 , i )*

lambdaYW0[3− i , 1 ] *lambdaYW0[3− i , 2 ] ;

soma31 <− soma31+d3a

} ## end fo r

const3 <− mult_a l f a ( alfaYW0 [ , 1 ] , 3 , 3 ) *mult_a l f a ( alfaYW0 [ , 2 ] , 3 , 3 ) ;

d3b <− mult_a l f a ( alfaYW0 [ , 1 ] , 4 , 0 ) *mult_a l f a ( alfaYW0 [ , 2 ] , 4 , 0 ) *

lambdaYW0 [ 4 , 1 ] *lambdaYW0 [ 4 , 2 ] ;

betaYW0 [ 3 ] <− numer3/ ( soma31+(const3*d3b ) ) ;

numer4 <− (1−phi1*phi2 )*cov (X[4+ s* ( 0 : (N−1) ) , 1 ] ,X[4+ s* ( 0 : (N−1 ) ) , 2 ] ) ;

soma4 <− 0 ;

for ( i in 0 : 3 ) {

d4 <− mult_a l f a ( alfaYW0 [ , 1 ] , 4 , i )*mult_a l f a ( alfaYW0 [ , 2 ] , 4 , i )*

lambdaYW0[4− i , 1 ] *lambdaYW0[4− i , 2 ] ;

soma4 <− soma4+d4

} ## end fo r

betaYW0 [ 4 ] <− numer4/soma4 ;

i f ( fun_a l f a ( alfaYW0 )& fun_lamb (lambdaYW0)){

alfaYW0 <− alfaYW0 ;
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lambdaYW0 <− lambdaYW0 ;

betaYW0 <− betaYW0

} else {

alfaYW0 <− array (NA, dim=c ( s , 3 ) ) ;

lambdaYW0 <− array (NA, dim=c ( s , 3 ) ) ;

betaYW0 <− rep (NA, s )

} ## end i f

param_e s t <− array (cbind ( alfaYW0 , lambdaYW0 , betaYW0) , dim=c ( s , 7 ) )

return ( param_e s t )

} ## end func t i on

########################################################

## Functions f o r c o n d i t i o n a l maximum l i k e l i h o o d (CML) ##

########################################################

################################

## T r i v a r i a t e NB d i s t r i b u t i o n ##

################################

p t r i_NB <− function (Z , L1 , L2 , L3 , bb){

b <− 1/ (bb ) ; ## b=1/ be ta

z1 <− Z [ 1 ] ;

z2 <− Z [ 2 ] ;

z3 <− Z [ 3 ] ;

n <− length ( z1 ) ;

logbivNB <− vector ( length=n ) ;

for ( k in 1 : n){

sumpar <− L1+L2+L3+b ;

parc_tau <− lgamma( z1 [ k]+z2 [ k]+z3 [ k]+b)−lgamma(b)−

lgamma( z1 [ k]+1)−lgamma( z2 [ k]+1)−lgamma( z3 [ k ]+1) ;
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logbivNB [ k ] <− parc_tau+z1 [ k ] *log (L1)+z2 [ k ] *log (L2)+z3 [ k ] *

log (L3)+b*log (b)−( z1 [ k]+z2 [ k]+z3 [ k]+b)*log ( sumpar )

} ## fim do fo r

return (exp( logbivNB ) )

} ## end func t i on

######################

## Trans i t ion prob . ##

######################

prob_t rans <− function ( xt_1 , xt , pars_v ){

# xt_1 , x t matr ices wi th 3 columns each

# pars_v =( a l f 1 , a l f 2 , a l f 3 , lam1 , lam2 , lam2 , b e t ) one season

dimen <− dim( xt ) ;

d1 <− dimen [ 1 ] ;

prob <− rep (0 , d1 ) ;

i f ( fun_a l f a ( pars_v [ 1 : 3 ] )& fun_lamb ( pars_v [ 4 : 7 ] ) ) {

for ( v in 1 : d1 ){

soma <− 0 ;

for ( r1 in 0 :min( xt_1 [ v , 1 ] , xt [ v , 1 ] ) ) {

bin1 <− dbinom( r1 , xt_1 [ v , 1 ] , pars_v [ 1 ] ) ;

for ( r2 in 0 :min( xt_1 [ v , 2 ] , xt [ v , 2 ] ) ) {

bin2 <− dbinom( r2 , xt_1 [ v , 2 ] , pars_v [ 2 ] ) ;

for ( r3 in 0 :min( xt_1 [ v , 3 ] , xt [ v , 3 ] ) ) {

bin3 <− dbinom( r3 , xt_1 [ v , 3 ] , pars_v [ 3 ] ) ;

t1 <− xt [ v ,1]− r1 ;

t2 <− xt [ v ,2]− r2 ;

t3 <− xt [ v ,3]− r3 ;

negbin <− p t r i_NB(c ( t1 , t2 , t3 ) , pars_v [ 4 ] ,

pars_v [ 5 ] , pars_v [ 6 ] , pars_v [ 7 ] ) ;
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soma <− soma + bin1*bin2*bin3*negbin

} ## end fo r

} ## end f o r

} ## end fo r

prob [ v ] <− soma ;

} ## end fo r

} ## end i f

return ( prob )

} ## end func t i on

#####################################

## CM Log− l i k e l i h o o d f o r v =1 , . . . , s ##

#####################################

l o g l i k_v <− function ( pars_v , v , s , N, X){

# pars_v =( a l f 1 , a l f 2 , a l f 3 , lam1 , lam2 , lam2 , b e t )

l ogk <− 0 ;

i f ( v==1){

xt_1 <− X[ v−1+s* ( 1 : (N−1 ) ) , ] ;

xt <− X[ v+s* ( 1 : (N−1)) , ]

} else {

xt_1 <− X[ v−1+s* ( 0 : (N−1 ) ) , ] ;

xt <− X[ v+s* ( 0 : (N−1)) , ]

} ## end i f

l ogk <− l ogk + sum( log ( prob_t rans ( xt_1 , xt , pars_v ) ) ) ;

logk <− −l ogk

return ( logk )

} ## end func t i on



174 Appendix D. R codes

#####################

## Estimation : CML ##

#####################

estimCML_N1 <− function (X, param7 ){

pars_CML_N1 <− array (0 ,dim=c ( 4 , 7 ) ) ;

for ( v in 1 : s ){

resN1 <− optim(par=param7 [ v , ] , f=l o g l i k_v , v=v , X=X,

method=”BFGS” ) ;

pars_CML_N1 [ v , ] <− resN1$par

} ## end fo r

return ( pars_CML_N1)

} ## end func t i on

#############################################

## Functions f o r composi te l i k e l i h o o d (CL) ##

#############################################

###############################

## Biva r i a t e NB d i s t r i b u t i o n ##

###############################

pbiv_NB <− function (Z , L1 , L2 , bb){

b <− 1/ (bb ) ; ## b=1/ be ta

z1 <− Z [ , 1 ] ;

z2 <− Z [ , 2 ] ;

n <− length ( z1 ) ;

logbivNB <− vector ( length=n ) ;

for ( k in 1 : n){

sumpar <− L1+L2+b ;

parc_tau <− lgamma( z1 [ k]+z2 [ k]+b)−lgamma(b)−

lgamma( z1 [ k]+1)−lgamma( z2 [ k ]+1) ;
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logbivNB [ k ] <− parc_tau+z1 [ k ] *log (L1)+z2 [ k ] *log (L2)+

b*log (b)−( z1 [ k]+z2 [ k]+b)*log ( sumpar )

} ## fim do fo r

return (exp( logbivNB ) )

} ## end func t i on

############################################

## Composite Log− l i k e l i h o o d f o r v =1 , . . . , s ##

############################################

c l o g l i k_v <− function ( theta , v , X, s , N){

i f ( v==1){

xtminus1 <− X[ v−1+s* ( 1 : (N−1 ) ) , ] ;

xt <− X[ v+s* ( 1 : (N−1)) , ]

} else {

xtminus1 <− X[ v−1+s* ( 0 : (N−1 ) ) , ] ;

xt <− X[ v+s* ( 0 : (N−1)) , ]

} ## end i f

xtminus1_1 <− xtminus1 [ , 1 ] ;

xtminus1_2 <− xtminus1 [ , 2 ] ;

xtminus1_3 <− xtminus1 [ , 3 ] ;

xt1<− xt [ , 1 ] ;

d1 <− length ( xt1 ) ;

xt2 <− xt [ , 2 ] ;

xt3 <− xt [ , 3 ] ;

a lp1 <− theta [ 1 ] ;

a lp2 <− theta [ 2 ] ;

a lp3 <− theta [ 3 ] ;

lm1 <− theta [ 4 ] ;

lm2 <− theta [ 5 ] ;
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lm3 <− theta [ 6 ] ;

betaa <− theta [ 7 ] ;

p1 <− NULL; p2 <− NULL; p3 <− NULL;

for ( v in 2 : d1 ){

k12 <− rep ( 0 : xt1 [ v ] , each=xt2 [ v ]+1) ;

s12 <− rep ( 0 : xt2 [ v ] , xt1 [ v ]+1) ;

k13 <− rep ( 0 : xt1 [ v ] , each=xt3 [ v ]+1) ;

s13 <− rep ( 0 : xt3 [ v ] , xt1 [ v ]+1) ;

k23 <− rep ( 0 : xt2 [ v ] , each=xt3 [ v ]+1) ;

s23 <− rep ( 0 : xt3 [ v ] , xt2 [ v ]+1) ;

f 1 <− dbinom( xt1 [ v]−k12 , xtminus1_1 [ v ] , a lp1 ) ;

f 2 <− dbinom( xt2 [ v]−s12 , xtminus1_2 [ v ] , a lp2 ) ;

z12 <− matrix (c ( k12 , s12 ) , ncol=2);

f12 <− pbiv_NB( z12 , lm1 , lm2 , betaa ) ;

f 3 <− dbinom( xt1 [ v]−k13 , xtminus1_1 [ v ] , a lp1 ) ;

f 4 <− dbinom( xt3 [ v]−s13 , xtminus1_3 [ v ] , a lp3 ) ;

z13 <− matrix (c ( k13 , s13 ) , ncol=2);

f13 <− pbiv_NB( z13 , lm1 , lm3 , betaa ) ;

f 5 <− dbinom( xt2 [ v]−k23 , xtminus1_2 [ v ] , a lp2 ) ;

f 6 <− dbinom( xt3 [ v]−s23 , xtminus1_3 [ v ] , a lp3 ) ;

z23 <− matrix (c ( k23 , s23 ) , ncol=2);

f23 <− pbiv_NB( z23 , lm2 , lm3 , betaa ) ;

p1 <− c ( p1 ,sum( f 1* f 2* f 12 ) ) ;

p2 <− c ( p2 ,sum( f 3* f 4* f 13 ) ) ;

p3 <− c ( p3 ,sum( f 5* f 6* f 23 ) )

} ## end fo r

soma <− sum( log ( p1)+log ( p2)+log ( p3 ) , na .rm=T) ;

return(−soma )

} ## end func t i on
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##################################

## Parameters : unconst to cons t ##

##################################

param_c l <− function ( parvect ){

A1 <− exp( parvect [ 1 ] ) /(1+exp( parvect [ 1 ] ) ) ;

A2 <− exp( parvect [ 2 ] ) /(1+exp( parvect [ 2 ] ) ) ;

A3 <− exp( parvect [ 3 ] ) /(1+exp( parvect [ 3 ] ) ) ;

L1 <− exp( parvect [ 4 ] ) ;

L2 <− exp( parvect [ 5 ] ) ;

L3 <− exp( parvect [ 6 ] ) ;

b e t i <− exp( parvect [ 7 ] ) ;

params <− c (A1 , A2 , A3 , L1 , L2 , L3 , b e t i ) ;

return ( params )

} ## end func t i on

##################################

## Parameters : cons t to unconst ##

##################################

param_c l_inv <− function ( params ){

A1i <− log ( params [ 1 ] /(1−params [ 1 ] ) ) ;

A2i <− log ( params [ 2 ] /(1−params [ 2 ] ) ) ;

A3i <− log ( params [ 3 ] /(1−params [ 3 ] ) ) ;

L1i <− log ( params [ 4 ] ) ;

L2i <− log ( params [ 5 ] ) ;

L3i <− log ( params [ 6 ] ) ;

b e t i i <− log ( params [ 7 ] ) ;

parvect <− c ( A1i , A2i , A3i , L1i , L2i , L3i , b e t i i ) ;

return ( parvect )

} ## end func t i on
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###########################################

## Aux i l i a r y func t i on f o r composi te logL ##

###########################################

c l o g l i k_unconst <− function ( parvect , v , X, N){

pars <− param_c l ( parvect ) ;

r e s i <− c l o g l i k_v ( pars , v , X, s , N) ;

return ( r e s i )

} ## end func t i on

####################

## Estimation : CL ##

####################

estimComp_N1 <− function (X, par7 ){

pars_Comp_N1 <− array (0 ,dim=c ( 4 , 7 ) ) ;

parvect <− array (0 ,dim=c ( 4 , 7 ) ) ;

for ( v in 1 : s ){

parvect [ v , ] <− param_c l_inv ( par7 [ v , ] ) ;

resC_N1 <− optim(par=parvect [ v , ] , f=c l o g l i k_unconst , v=v ,

X=X, method = ”BFGS” ) ;

paramvect <− resC_N1$par ;

pars_Comp_N1 [ v , ] <− param_c l ( paramvect )

} ## end fo r

return ( pars_Comp_N1)

} ## end func t i on

###################################################################
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D.2 R functions related to Chapter 3

######################################

## Generate S−PINAR(1) ( u n i v a r i a t e ) ##

######################################

gera_i na rS ign <− function (n , s , N, a l faS , lambS , tauS ){

# s − nº per iod s

# N − nº c y c l e s

# n − nº observ t o t a l ; n=sN

# al faS , lambS , tauS − v e c t o r s

nobs <− n+1;

x <− rep (0 , nobs ) ;

part1_th in <− rep (0 , nobs ) ;

part2_inov <− rep (0 , nobs ) ;

a l f a_matx <− array (0 ,dim=c (n , 1 ) ) ;

lamb_matx <− array (0 ,dim=c (n , 1 ) ) ;

for ( j in 1 : 1 ) {

a l f a_matx [ , j ] <− rep ( a l f a S [ , j ] ,N) ;

lamb_matx [ , j ] <− rep ( lambS [ , j ] ,N)

} ## end fo r

a l f a_aux <− array (0 ,dim=c (n +1 ,1)) ;

lamb_aux <− array (0 ,dim=c (n +1 ,1)) ;

a l f a_aux [ 2 : ( n+1) , ] <− a l f a_matx ;

lamb_aux [ 2 : ( n+1) , ] <− lamb_matx ;

tau_vec <− rep ( tauS , N) ;

tau_aux <− array (0 ,dim=c (n +1 ,1)) ;

tau_aux [ 2 : ( n+1) ,1 ] <− tau_vec ;

x [ 1 ] <− −3;
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for ( v in 2 : ( n+1)){

part1_th in [ v ] <− sign ( x [ v−1])* (rbinom (1 , 2*abs ( x [ v−1]) ,

a l f a_aux [ v ,1 ]) −abs ( x [ v−1 ] ) ) ;

part2_inov [ v ] <− r ske l l am (1 , lamb_aux [ v , 1 ] , tau_aux [ v , 1 ] ) ;

x [ v ] <− part1_th in [ v ] + part2_inov [ v ]

} ## end fo r

return ( x [ 2 : ( n+1)])

} ## end func t i on

####################################

## Function f o r a d m i s s i b l e va l u e s ##

####################################

fun_a l f a <− function ( a l faC ){

a l l ( ( a l faC > 0) & ( a l faC < 1))

} ## end func t i on

fun_lamb <− function ( lambC){

a l l ( lambC > 0)

} ## end func t i on

#################################################

## Estimation : c o n d i t i o n a l l e a s t squares (CLS) ##

#################################################

estimCLS_Skellam <− function (X, s , N){

d <− length (X) ;

aux <− rep (0 , d+1);

aux [ 2 : ( d+1)] <− X;

aux1 <− rep (0 , d ) ;

aux1 [ 2 : d ] <− X[ 2 : d ] ;
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Ni <− rep (N, s ) ;

Ni [ 1 ] <− N−1;

## Step 1 : parameters a l f a_LS and k s i_LS

########################################

a l f a_LS <− rep (0 , s ) ;

k s i_LS <− rep (0 , s ) ;

part <− array (0 ,dim=c ( s , 4 ) ) ;

for ( v in 1 : s ){

part [ v , 2 ] <− sum( aux1 [ v+s* ( 0 : (N−1 ) ) ] ) ;

part [ v , 4 ] <− sum( aux [ v+s* ( 0 : (N−1 ) ) ] ) ;

part [ v , 3 ] <− sum( aux [ v+s* ( 0 : (N−1 ) ) ]^2 ) ;

part [ v , 1 ] <− sum( aux [ v+1+s* ( 0 : (N−1)) ]*aux [ v+s* ( 0 : (N−1) ) ] )

} ## end fo r

for ( v in 1 : s ){

num <− Ni [ v ] *part [ v ,1]− part [ v , 2 ] *part [ v , 4 ] ;

den <− Ni [ v ] *part [ v ,3 ] −( part [ v , 4 ] ) ^ 2 ;

a l f a_LS [ v ] <− (num/den+1)/ 2 ;

k s i_LS [ v ] <− ( part [ v ,2 ] −(2* a l f a_LS [ v]−1)*part [ v , 4 ] ) /Ni [ v ]

} ## end fo r

## Step 2 : parameters sigma2_LS , lamb_LS and tau_LS

###################################################

sigma2_LS <− rep (0 , s ) ;

lamb_LS <− rep (0 , s ) ;

tau_LS <− rep (0 , s ) ;

meanpred_e r r o r <− rep (0 , d ) ; ## mean p r e d i c t i o n error

aux_k s i <− rep ( k s i_LS ,N) ;

for ( v in 1 : s ){

meanpred_e r r o r [ v+s* ( 0 : (N−1)) ] <− aux1 [ v+s* ( 0 : (N−1))]−(2* a l f a_LS [ v]−1)*

aux [ v+s* ( 0 : (N−1)) ] − aux_k s i [ v+s* ( 0 : (N−1 ) ) ] ;
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sigma2_LS [ v ] <− (sum( ( meanpred_e r r o r [ v+s* ( 0 : (N−1))]^2))−2* a l f a_LS [ v ] *

(1− a l f a_LS [ v ] ) *sum(abs ( aux [ v+s* ( 0 : (N−1 ) ) ] ) ) )/Ni [ v ] ;

lamb_LS [ v ] <− ( sigma2_LS [ v]+ k s i_LS [ v ] ) / 2 ;

tau_LS [ v ] <− ( sigma2_LS [ v]− k s i_LS [ v ] ) /2

} ## end fo r

i f ( fun_a l f a ( a l f a_LS) & fun_lamb ( lamb_LS) & fun_lamb ( tau_LS)){

a l f a_LS <− a l f a_LS ;

lamb_LS <− lamb_LS ;

tau_LS <− tau_LS

} else {

a l f a_LS <− rep (NA, s ) ;

lamb_LS <− rep (NA, s ) ;

tau_LS <− rep (NA, s )

} ## end i f

parvect <− cbind ( a l f a_LS , lamb_LS , tau_LS ) ;

return ( parvect )

} ## end func t i on

########################################################

## Functions f o r c o n d i t i o n a l maximum l i k e l i h o o d (CML) ##

########################################################

######################

## Trans i t ion prob . ##

######################

prob_t rans<−function ( xt_1 , xt , pars_v ){

# xt_1 , x t − v e c t o r s ; pars_v =(a l faS , lambS , tauS ) one season

d1 <− length ( xt ) ;

prob <− rep (0 , d1 ) ;



D.2 R functions related to Chapter 3 183

a <− 0 ;

b <− 0 ;

i f ( fun_a l f a ( pars_v [ 1 ] )& fun_lamb ( pars_v [ 2 : 3 ] ) ) {

for ( v in 1 : d1 ){

soma <− 0 ;

a <− xt_1 [ v ] ;

b <− xt [ v ] ;

for ( r in (−abs ( a ) ) : abs ( a ) ){

binMod <− dbinom(abs ( a)+sign ( a )*r , 2*abs ( a ) , pars_v [ 1 ] ) ;

s k e l <− dskel lam (b−r , pars_v [ 2 ] , pars_v [ 3 ] ) ;

soma <− soma + binMod* s k e l

} ## end fo r

prob [ v ] <− soma

} ## end fo r

} ## end i f

return ( prob )

} ## end func t i on

#####################################

## CM Log− l i k e l i h o o d f o r v =1 , . . . , s ##

#####################################

l o g l i k_S <− function ( pars_v , v , s , N, X){

# pars_v =(a l faS , lambS , tauS )

l ogk <− 0 ;

i f ( v==1){

xt_1 <− X[ v−1+s* ( 1 : (N−1 ) ) ] ;

xt <− X[ v+s* ( 1 : (N−1)) ]

} else {

xt_1<−X[ v−1+s* ( 0 : (N−1 ) ) ] ;
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xt<−X[ v+s* ( 0 : (N−1)) ]

} ## end i f

l ogk <− l ogk + sum( log ( prob_t rans ( xt_1 , xt , pars_v ) ) ) ;

logk <− −l ogk ;

return ( logk )

} ## end func t i on

#####################

## Estimation : CML ##

#####################

estimCML_S1 <− function (X, parvec ){

pars_CML_S1 <− array (0 ,dim=c ( 4 , 3 ) ) ;

for ( v in 1 : s ){

r e s u l t_S1 <− optim(par=parvec [ v , ] , f=l o g l i k_S , v=v ,

X=X, method = ”BFGS” ) ;

pars_CML_S1 [ v , ] <− r e s u l t_S1$par

} ## end fo r

return ( pars_CML_S1 )

} ## end func t i on

###################################################################
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