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palavras -chave

resumo

Distribuicdo Skellam, Modelo autoregressivo de valores inteiros, Operadores
thinning, Verosimilhanga composta.

Os modelos autoregressivos de valores inteiros multivariados (MINAR)
desempenham um papel central na analise estatistica de séries temporais de
contagem. Dentro do razoavelmente grande espectro de modelos MINAR
propostos na literatura, muito poucos focam a andlise de séries de contagem
com estrutura periddica. A analise dos processos de contagem multivariados
apresenta muitos desafios que vao desde a especificagdo do modelo até a
estimacdo de pardmetros. Esta tese tem como objetivo dar uma contribuicéo
nessa direcdo. Especificamente, o objetivo deste trabalho é duplo: primeiro,
introduzimos o processo multivariado periédico de ordem um, PMINAR(1). As
propriedades probabilisticas e estatisticas do modelo sdo estudadas em
detalhe. Para superar as dificuldades computacionais decorrentes da
utilizacdo do método da maxima verosimilhang¢a introduzimos uma abordagem
baseada na verosimilhanga composta. O desempenho do método proposto e
outros métodos concorrentes na estimacdo dos parametros é comparado
através de um estudo de simulagdo. A previsdo também ¢é abordada. Uma
aplicagcéo de dados reais relacionados com a andlise de fogos é apresentada.
Em segundo lugar, propomos dois modelos INAR (univariado e bivariado) com
estrutura periddica, S-PINAR(1) e BS-PINAR(1), respetivamente. Ambos os
modelos sédo baseados no operador signed thinning permitindo contagens de
valores positivos e negativos. Apresentamos as propriedades probabilisticas
béasicas e estatisticas dos modelos periddicos. As inovag¢des sdo modeladas
através das distribuicdes Skellam univariada e bivariada, respetivamente.
Para avaliar o desempenho dos estimadores dos minimos quadrados
condicionais e da maxima verosimilhanca condicional, foi realizado um estudo
de simulacao para o modelo S-PINAR(1).






keywords

abstract

Composite likelihood, Integer-valued autoregressive models, Skellam
distrubution, Thinning operators.

Multivariate INteger—valued AutoRegressive (MINAR) processes play a central
role in the statistical analysis of integer-valued time series. Within the
reasonably large spectrum of MINAR models proposed in the literature,
however, only a few focus on the analysis of time series of count data with
periodic structure. The analysis of multivariate counting processes presents
many challenging problems ranging from model specification to parameter
estimation. This thesis aims at giving a contribution towards this
direction. Specifically, the purpose of this research is two-fold: first, we
introduce the periodic multivariate process of order one (PMINAR(Z) in short).
The probabilistic and also the statistical properties of the model are studied in
detail. To overcome the computational difficulties arising from the use of the
maximum likelihood method we introduce a composite likelihood-based
approach. The performance of the proposed method and other competitors
methods of estimation is compared through a simulation study. Forecasting is
also addressed. An application to a real data set related with the analysis of
fire activity is presented. Secondly, we propose two INAR (univariate and
bivariate) models with periodic structure, S-PINAR(1) and BS-PINAR(1),
respectively. Both models are based on the signed thinning operator allowing
for positive and negative counts. We examine the basic probabilistic and also
the statistical properties of the periodic models. Innovations are modeled by
univariate and bivariate Skellam distributions, respectively. To study the
performance of the conditional least squares and conditional maximum
likelihood estimators, a simulation study is conducted for the S-PINAR(1)
model.
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Chapter 1

Introduction

Discrete-valued time series are common in many practical situations, often as counts of events
or individuals in consecutive intervals or at consecutive points in time. The analysis of
non-negative integer-valued time series has become an important area of research in the
last decades partially because of its wide applicability, for example, in the fields of public
health and medicine (Morina et all, 2011; Ferndndez-Fontelo et al., 2016), road safety (Pedeli
and Karlig, 2011), economics (Bourguignon, 2016), finance (Barreto-Souza and Bourguignon,
2015), criminology (Nasti¢ and Ristid, 2012; [li¢, 2016) and environment (Pavlopoulos and
Karlig, 2008), among others.

The class of linear models with finite variance plays a central role in the analysis of stationary

time series. This class includes conventional ARMA(p, ¢) models of the form

P q
Xo=> aiXei+» BiZij+ %, t€L (1.1)

i=1 j=1
with o; (¢ = 1,...,p) and B (j = 1,...,q) being constants, and {Z;} constitutes an inde-
pendent identically distributed (i.i.d.) sequence of random variables. However, such models
are unlikely to describe accurately time series of counts due to the discreteness of the process
since the multiplication of an integer by a real number usually results in a non-integer value.

Addressing this issue various models of discrete time series have been proposed in the litera-
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ture. Discrete-valued stationary processes have been studied by Jacobs and Lewid (1978a,h,
1983). It was perhaps the first attempt to obtain a general class of simple models for discrete
variate time series. These models, referred to as DARMA models, are structurally based on the
well-known ARMA processes.

Among the most successful models for integer-valued data we mention the INARMA (INteger
AutoRegressive Moving Average) models. INARMA models are the discrete counterparts of the
conventional ARMA models, where the scalar multiplication is replaced by an appropriate thin-
ning operator. To ensure the discrete nature of the variates is preserved, {Z;} is a sequence
of integer-valued random variables (r.v.s).

Several models dealing with the discreteness of the data have been proposed in the literature.
These models are categorized as either observation-driven or parameter-driven, a nomencla-
ture that is originally due to Cox (1981). In parameter—driven models the serial dependence
is induced by a latent variable whose distribution does not depend on the past observations
of the outcome variable. In contrast, observation—driven models induce serial dependence
by specifying the state variable explicitly as a function of past observations. MacDonald and
Zucchini (1997) and McKenzie (2003) provide an overview of the subject. Jung and Tremayne
(2011)) compare and contrast a variety of time series models for counts. More recently, Davis
et al| (2016) address a plethora of diverse topics on modeling discrete-valued time series, and
in particular time series of counts. Theoretical, methodological and practical issues are pur-
sued therein.

In this work we will focus on observation-driven models that include models based on the
thinning operators, where the multiplication in the common time series models is replaced by
an appropriate thinning operator. The remainder of this chapter is organized as follows: the
first two sections review univariate and multivariate time series models for count data. In each
of the aforementioned sections, we have subdivided the section into three parts: one regarding
binomial thinning-based INAR models, another regarding signed thinning-based INAR models
and the last subsection covers other related INAR models. Periodic time series are described
in a different section. Parameter estimation and forecasting issues are also addressed. At

last, we present the outline of the thesis, stating the developed work.
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1.1 Univariate time series models for count data - a review

Many models that have been built for count time series data are based on the Steutel and van
Harn ([1979) thinning operator. A survey on thinning operation for count data was provided
by Weify (2008). Recently, Scotto et al| (2015) reviewed the literature on relevant thinning-

based models for the analysis of integer-valued time series with finite/infinite support.

1.1.1 Binomial thinning-based INAR models

The most popular thinning operator is the binomial thinning, introduced by Steutel and van
Harn (1979) to adapt the terms of self-decomposability and stability for integer-valued time

series.

Definition 1.1. (Binomial thinning operator)
Let (Yi)ken be a sequence of i.i.d. Bernoulli random variables with mean o € [0,1], inde-
pendent of X, a non-negative integer-valued random variable with range Ngo. The binomial

thinning operator ao is given by

X
Y. , X>0
aoX = k=1 .

0 , X =

Some elementary properties of the binomial thinning operator, defined above, are summarized
in Lemma El] Further properties of the binomial thinning operator can be found in e.g. Silva

and Oliveira (2004), Weif} (2008) and more recently, in Turkman et al| (2014).

Lemma 1.1. (Properties of the binomial thinning operator)

Let X andY be two random wvariables with support in Ny, and «, 5 € [0, 1].

1. 0o X =0,

2. 10X =X,
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3. ao(BoX)L(aB)oX,

4. ao(X+Y) LaoX+aoY if the two counting sequences are independent,
5. BlaoX) = aB(X),

6. Var(ao X) = a?Var(X) + a(l — o) E(X),

7. Cov(ao X, X) =aVar(X).
Basic properties can easily be derived using known formulas for conditional mean and variance:
E[Y]=Ex(E[Y|X]) and Var[Y]=Varx(E[Y|X])+ Ex(Var[Y|X]). (1.3)

The INARMA(p, ¢) model (p and g both non-negative) has been defined, on the basis of binomial

thinning operator of Steutel and van Harn (1979) in (E), through the recursion

P q
Xi=> aioXy i+ BjoZij+7Zi, t€Z, (1.4)
i=1 j=1
where {Z;} is an i.i.d. sequence of integer-valued r.v’s with finite mean and variance. It is
assumed that all thinning operators are performed independently of each other and of Z;.
The INARMA models directly imitate the classical ARMA recursion. The counterpart to the
conventional AR model, in the context of INARMA models, is the INAR model, an important
sub—class of the observation-driven models. Hence, when ¢ = 0 in equation (@), {X:} is
called an INAR of order p. If p = 0, {X;} is referred to as INteger—valued Moving Average of
order g (INMA(q) for short). The INMA models are beyond the scope of this work.
The first-order non-negative integer-valued autoregressive (INAR(1)) process is a particular
case of equation (Q) for p = 1 and ¢ = 0 and has received considerable attention. This
model was introduced independently by McKenzi¢ (1985) and Al-Osh and Alzaid (1987) as a
tool for modeling and generating sequences of dependent counting processes. Many authors
have studied INAR models extensively. This is partially due to the increasing availability of

relevant data sets in various fields of applications (e.g. medicine and finance).



1.1 Univariate time series models for count data - a review 5

A non-negative integer-valued time series { X;} is said to follow an INAR(1) model if it satisfies

a difference equation of the form
Xe=aoX 1+ 2, t€Z, (15)

where parameter « € [0, 1] and {Z;} is a sequence of i.i.d. non-negative integer—valued r.v’s.
It is assumed that all thinning operators are performed independently of each other and of
Z;. The term Z; is referred to as the innovation term and must be independent of oo X;_1,
and follows any discrete distribution with support Ny (in order for X; to be counts).

The realization of the process at time ¢ is composed by two parts, the first one clearly relates
to the previous observation, while the second one is independent and depends only on the
current time point. One can easily see that the binomial thinning operator in equation (@)
replaces the multiplication used for the standard AR(1) models as to ensure that only integer
values will occur. Thus, conditional on X, o o X is a binomial r.v., where X denotes the
number of trials and « represents the probability of success in every trial. The condition
«a < 1 is necessary and sufficient for equation (@) to admit a strictly stationary solution,
whose marginal law is uniquely determined by the law of the innovations according to the
INAR(00) representation, X 4 >0 o’ o Z;—; (Al-Osh and Alzaid, 1987). The conditions
a =0 and a = 1 imply independence and non-stationarity for {X;}, respectively.

Let 1z and 0% be the (assumed finite) mean and variance of the i.i.d. innovation Z;, then

the mean and variance of the stationary solution of INAR(1) in (@) are

_auz oy

Kz 2 _
and o% = Var(Xy) = a2

l—«o

x = B(X) = (L6)

respectively. The autocovariance and autocorrelation functions of a stationary INAR(1) process

{X;} are given by the formulae

v(k) = Cov(Xy, Xi—i) = &/Flo and p(k) = Corr(X,, Xo—p) = ¥, ke Z. (1.7)
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Furthermore, autocorrelation function p(k) decays exponentially with lag k& and for k£ = 1,
the parameter o represents the correlation between successive time points.

INAR processes retain some of the properties of the conventional AR models while allowing
for the discreteness of the data, namely, the fact that for both models the autocorrelation
function (ACF) takes the form p(k) = of for & € N. Another important property of the
INAR(1) model in (@) is that the discrete self-decomposable (DSD) distributions are possible
marginal distributions, since the probability generating function (p.g.f.) of the INAR(1) model
satisfies

Gx(s) =Gx(1—a+ as)Gz(s), (1.8)

where Gz is the p.g.f. of innovation Z;. Many important distributions, including Poisson,
generalized Poisson and the negative binomial distribution belong to this class of DSD distri-
butions (Zhu and Joe, 2003).

Different distributional forms of the innovation term Z; have been proposed but main part of
the literature have been devoted to the Poisson distribution, the simplest and most common
choice. This is partly because of the favoring property that the innovation distribution be-
longs to the same family as the marginal distribution (Al-Osh and Alzaid, 1987). For more
structural and asymptotic properties of an INAR(1) process with Poisson marginal, we refer
the reader to, e.g. Park and Oh ([1997), McKenzie (2003) and Silva and Silva (2006). How-
ever, the implied equidispersion (variance equals mean) limits the applicability of the Poisson
INAR models in real data applications.

The simple Poisson INAR model can be extended to a INAR Poisson regression model by adding
covariates to both the innovation term Z; and/or the autocorrelation parameter a. The model

then takes the form

Xt =ago Xy 1+ Zy,
Zy ~ Poisson(\),

lOg()\t) = V257

g oy
log(l—at> _ut¢7
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where v; and u; are vectors of covariates at time ¢ while 8 and ¢ are the associated regression
coefficients. Note that the covariates for the two parts of the model must not necessarily
be the same. Using a discrete time series model with this specification, Brijs et al| (2008)
studied the effect of weather conditions on daily crash counts, a relevant issue in road safety.
For regression models based on count time series see, for instance, the books of Kedem and
Fokianog (2005) and Cameron and Trivedi (2013).

Since their introduction, INAR processes sustained various generalizations and modifications
through the work of several authors. Generalizations of the basic INAR model can be based
on either other distributional forms for innovation Z; or by replacing the binomial thinning
operator with a different thinning. We postpone details on other thinning operators and
concentrate on binomial thinning within this subsection. In practice, some discrete time
dependence count data may be overdispersed, i.e., the variance is greater than the mean mo-
tivating alternative innovation distributions from the common Poisson distribution.

The generalized Poisson model is a generalization of the Poisson distribution with an extra
parameter which reflects overdispersion. Alzaid and Al-Osh (1993) have considered discrete
time series with generalized Poisson marginals. Mixed Poisson distributions have been used
in a wide range of scientific fields, a thorough review of this family is available in Karlis and
Xekalaki (2005). Nikoloulopoulos and Karli§ (2008) compared four members of the mixed
Poisson family. Only a few of them have been considered in practice, mainly due to compu-
tational problems.

INAR(1) processes with negative binomial and/or geometric marginal distribution for time se-
ries of overdispersed counts have been considered by McKenzi¢ (1985, 1986, 2003), Alzaid and
Al-Osh ([1988), Al-Osh and Aly (1992), Zhu and Joe (2006) and also by Jazi et al| (2012h).
Other distributions for the innovation term include: zero truncated Poisson (ZTP) distri-
bution (Bakouch and Ristid (2010) proposed the ZTPINAR(1) process); power series (PS)
distribution (Bourguignon and Vasconcellos (2015) introduced the PSINAR(1) model); Pois-
son-geometric (PG) distribution (Bourguignon (2016) established the PGINAR(1) process) and
Poisson—negative binomial (PNB) distribution (Jose and Mariyamma (2016) proposed the

PNBAR(1) model). The PSINAR(1) model contains, as particular cases, the Poisson INAR(1)
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model (Al-Osh and Alzaid, 1987) and the geometric INAR(1) model (Jazi et al), 2012b). The
use of innovations that come from the PS family of distributions has many advantages, this
family constitutes a flexible framework for statistical modeling of discrete data in several real-
life events (Johnson et al), 2005). The PGINAR(1) model extends the Poisson INAR(1) process
(Al-Osh and Alzaid, 1987) and the geometric INAR(1) process (Alzaid and Al-Osh, 1988).
One frequent manifestation of overdispersion is that the incidence of zero counts is greater
than expected from a Poisson model. Jazi et al, (20124) considered an INAR(1) model with
zero inflated Poisson innovations (ZINAR(1)). Meanwhile, compound Poisson (CP) distribu-
tion for the innovations of an INAR(1) model was considered by Schweer and Weif] (2014) and
Weifl and Puig (2015). The CPINAR(1) model for time series of overdispersed counts revealed
to be appealing and comprises a number of specialized INAR(1) models within one model.
While models for overdispersed counts have been discussed intensively in the literature by
now, the opposite phenomenon, underdispersion, has received little attention. Weifj (2013)
gave a detailed survey of distribution models allowing for underdispersion. Properties were
derived and possible disadvantages of the model were highlighted.

INAR models contaminated with innovational and additive outliers were introduced and ana-
lyzed by Barczy et al| (2010, 2012) and Silva and Pereira (2015). Extensions of the INAR(1)
model into the spatial context were considered by Ghodsi et al, (2012). The study of seasonal
extensions of the INAR processes has been addressed recently by Bourguignon et al| (2016).
For higher order INAR models, two different specifications of the second-order structure can be
distinguished. In Alzaid and Al-Osh (1990), the INAR(p) process has a correlation structure
that is similar to that of an ARMA(p,p — 1) model. Du and Li (1991) proposed a process with

a correlation structure identical to that of a standard AR(p) process.

1.1.2 Signed thinning-based INAR models

In many real-life events there is a necessity for modeling the data obtained from correlated
processes which may deal with positive and negative integer values. Binomial thinning can

only be applied to count variables, i.e., to non-negative integer-valued r.v.s as their range,
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therefore, cannot account for negative integers. Whilst models for non-negative integer-valued
time series are now abundant, there is a shortage of similar models when the time series refer
to data defined on Z, i.e., in both the positive and negative integers. Such data occur in
certain fields (e.g. finance and sports). The need for such models can also appear when
taking differences of positive integer-valued count time series.

The first model for data with range in Z was introduced by Kim and Park (2008). Their

model is based on the signed binomial thinning operator.

Definition 1.2. (Signed binomial thinning operator)
Let (Y;)ien be a sequence of i.i.d. Bernoulli random variables with mean ||, independent of
X, an integer-valued r.v. with range in Z. The signed binomial thinning operator, represented

by a®, is defined by

X
ad X = sign(a)sign(X)ZYi, (1.9)
i=1
where
1 ,2>0
sign(z) = : (1.10)
-1 ,z2z<0

Kim and Park (2008) defined the INARS(p) process, an integer-valued autoregressive process of
order p with signed binomial thinning operator. When X > 0 and « > 0, the signed binomial
thinning in (@) is reduced to the classic binomial thinning in (@) One advantage of the
INARS model is that it can handle integer-valued time series which allows for negative integer-
valued and negative correlated count data unlike the integer-valued time series models in the
previous subsection. Those are only appropriate for non-negative integer-valued time series
and can only deal with positive autocorrelations. The INARS model persists the differences
in autocorrelation structure of INAR(p) models studied by Alzaid and Al-Osh (1990) and Du
and Li (1991)). Kim and Park (2008) have proven stationarity and ergodicity of the INARS(p)
process under the same condition as in the conventional AR(p) process.

For a proper time series on Z we also need to consider a distribution for the innovation
term defined on Z. The literature is limited on this subject. However, recently, discrete

distributions defined on the set of integers has attracted the attention of several researchers.
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Two ways to define distributions on Z are: the differences between two non-negative discrete
r.v/s and the discrete version of continuous distributions on R. The main distributions on
the set Z are Poisson difference, discrete normal and discrete Laplace. The Poisson difference
distribution, also known as the Skellam distribution, is traditionally linked to Skellam| ([1946)
and has found applications in areas such as medicine (Karlis and Ntzoufrag, 2006), sports
(Karlis and Ntzoufras, 2009) and finance (|Alzaid and Omair, 2010). The special case of two
independent Poisson distributions for the case of equal means was derived by [rwin (1937)

whereas Skellam ([1946) and Prékopa (1952) discussed the general case, unequal means.

Definition 1.3. (Univariate Skellam distribution)
Let 01 > 0 and 02 > 0 . The r.v. Z has Skellam distribution, denoted by Skellam(6,602)
if and only if Z 4 Y1—Y5 where Y1 and Ys are two independent random wvariables such that

Y; ~ Poisson(0;) fori=1,2.

Thus, the probability mass function (p.m.f.) of Z is a discrete distribution, defined on the

set of integer numbers Z, given by
91 2/2
P(Z =z) = o~ (01+62) (92> I (2 0162) , 2 €1, (1.11)

where I,.(z) is the modified Bessel function of the first kind of order r defined by

The definition of the Skellam distribution can be extended to more than the simple difference
of two independent Poisson distributions. Indeed, let X; and X5 be two independent Poisson
random variables with parameters 61 and 65 respectively. Let Y; = X; + W, for i = 1,2,
where W is a r.v. independent of X; and X5. Thus, Z = Y1—Ys = X;— X5 also follows a
Skellam (61, 62) distribution. Alternative formulas for the p.m.f. of the Skellam distribution
stem from the work of Alzaid and Omaiy (2010). For basic properties of the Skellam distri-

bution, see Appendix @
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Some other distributions defined as the difference of two discrete variables are given in Ong
et al| (2008). Kemp (1997) introduced a discrete version of normal distribution to cover
discrete data on the whole set of integers Z and, similarly, [nusah and Kozubowski (2006)
considered a discrete analogue of Laplace distribution. Kozubowski and Inusah (2006) pro-
posed a discrete version of the skew Laplace distribution as a generalization of discrete Laplace
distribution and demonstrated its importance in analysis of climatic episodes such as droughts
and floods.

Andersson and Karlis (2014) introduced a first-order model with the signed binomial thin-
ning operator assuming a specific innovation distribution, the Skellam distribution, SINARS(1)
model (first S stands for Skellam). This model is a particular case of the model in Kim and
Park (2008). Parametric inference and prediction for the model in |Andersson and Karlis
(2014) are also addressed. The marginal of SINARS(1) process does not have Skellam dis-
tribution. An extension of the signed binomial thinning operator given in (@) was then
established by Zhang et al. (2010) and denoted the signed generalized power series thinning
operator. These authors have proposed a generalized version of the INARS(p) model in Kim
and Park (2008), the GINARS(p) process. The counting sequences have a generalized power
series as common distribution, which includes the binomial, the negative binomial, the Pois-
son, among other distributions.

Recent work by Alzaid and Omain (2012) introduced the extended binomial distribution as
an alternative to the Skellam distribution. Alzaid and Omain (2014) presented a natural
Z-extension of the INAR model, originally defined on N, the new INAR(1) model has Poisson
difference (PD) innovations (PDINAR(1)). This process can handle negative integer-valued time
series and allow for both positive and negative autocorrelation. The PDINAR(1) model is based
on the extended binomial thinning operator and has Skellam marginal distribution. Special
cases of the extended binomial thinning are: binomial thinning in (@) and signed binomial
thinning in (@) We also mention the extended Poisson distribution introduced by Bakouch
et al. (2016), the first version of the Poisson distribution over the set of all integers.

Using a slightly different version of the signed thinning operator defined by Kim and Park
(2008) in (@), Kachour and Truquet (2011) focused on a more general class of Z-valued
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processes denoted by SINAR(p) (Signed INAR). This modified version of the thinning operator,

also called the signed thinning operator, is defined as follows.

Definition 1.4. (Signed thinning operator)

Let (Y;)ien be a sequence of i.i.d. integer-valued random variables with distribution F', inde-
pendent of an integer-valued r.v. X. The signed thinning operator, denoted by F'®, is defined
by

sign(X Y, , X#0
FOX:= ( ); (1.12)

0 , otherwise

with sign(X) as in ) The sequence (Y;)ien is referred to as a counting sequence.

Some basic properties of the signed thinning operator are listed in Lemma @ These easily

follow from the independence assumptions and the obvious identity x = sign(z)|z|, z € R.

Lemma 1.2. (Properties of the signed thinning operator)
Let X, W be two random wvariables and Y,f/ two counting sequences with distribution F), F,
respectively. Assume that (X, W), F and F are independent. Consider o the mean and 8 the

variance of the distribution function F. Then,

1. B(Fo X|X) =aX,

2. Var(F © X|X) = p|X]|,

3. Cow(FOX,FOW|X,W)=0,

4. Cov(F & X, W) =aCov(X,W).
Kachour and Truquet (2011) pointed out that the signed thinning operator is the natural
extension of the Steutel and van Harn (1979) operator in () to Z-valued random variables.
Moreover, for a non-negative integer-valued random variable X, the signed thinning operation

in ([l.12) is the popular binomial thinning operation in (@) In Definition Q, the notation

F ® X replaces the usual notation o o X in binomial thinning, where o denotes the mean
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of the counting sequence. The choice for the notation F' ©® X was motivated by the fact
that Kachour and Truquet| (2011)) did not fix any specific one parameter distribution for the
counting sequence (Y;);en such as a Bernoulli distribution.

The SINAR model allows negative values for both the series and its autocorrelation function.
Theoretical results about stationarity and the moments of SINAR processes were given in
Kachour and Truquet] (2011). The authors avoid, however, a parametric assumption for the
innovation term. Based on the preceding operator and under a parametric assumption on the
common distribution of the counting sequence of the model, Chesneau and Kachouy (2012)
focus on the simplest SINAR(1) model. They also introduced a new class of distribution on
Z, denoted by Rademacher(p)-N with p € (0,1). This distribution can be interpreted as a

natural extension of the Bernoulli distribution from {0, 1} to {—1,1}.

Definition 1.5. (Rademacher(p)-N distribution)

Let R and W be two independent random variables such that R ~ Rademacher(p), that is,
P(R=1)=p=1-P(R=—1), pe(0,1)
and support(W) C N. A r.v. X belongs to the Rademacher(p)-N class, if and only if X L RW.

Indeed, the Rademacher distribution is a recoding of the Bernoulli distribution, where 1 still
indicates success, but failure is coded as —1. Therefore, if random variable Y ~ Bernoulli(p)
then r.v. R = 2Y—1 ~ Rademacher(p). This distribution is also related with the Skellam
distribution (Chesneau et ali, 2015). Let R ~ Rademacher(p) and Z ~ Skellam(6;,62) then
the random variable Z* = RZ is a mixture of two Skellam random variables of the form

pSkellam(61, 62) 4+ (1—p)Skellam(6o, 61).

1.1.3 Other univariate thinning-based INAR models

In the previous subsections, emphasis has been given to binomial and signed thinning oper-
ators but other generalizations of the INAR(1) model are available in the literature. Several

authors have proposed modifications of the thinning operation in order to make thinning-
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based models more flexible for practical purposes. We mention other relevant cases since the
variety of counting series demands some modification in terms of the thinning operator and
marginal distribution.

The generalized thinning operator introduced by Latour (1998) allowed the counting sequences
in (@) to be i.i.d. integer-valued r.v.’s with finite mean and variance although not necessarily
Bernoulli-distributed. Modifying the INAR(1) recursion (@) accordingly leads to the general-
ized INAR(1) process denoted by GINAR(1). Furthermore, the GINAR(p) model in Latouy (1998)
is the generalized counterpart of the INAR(p) model by Du and Li (1991). Special cases of
Latour’s operator can be found in Zhu and Joe (2003) (extended thinning), in Zhu and Joe
(2010) (expectation thinning) and in Weif} (2015) (binomial-Poisson thinning).

Random coefficient INAR (RCINAR) models were introduced by Zheng et all (2006, 2007),
providing nonparametric as well as parametric methods for parameter estimation. In some
situations, the autoregressive parameter « in (@) may vary with time and it may be random.
For example, let X; denote the number of terminally ill patients in the ¢-th month. Here, X;
could potentially satisfy an INAR model where o o X;_1 is the number of surviving patients
from the previous month and Z; stands for the newly admitted patients in the current month.
In addition, the survival rate a may be affected by various environmental factors, such as
the quality of health care, the state of health of patients, etc. and could vary randomly over
time. Another area of application could be unemployment that can be affected by factors
such as the state of the economy, productivity growth, among others. The RCINAR processes
are able to describe overdispersion. Gomes and Canto e Castrd (2009) extended the con-
cept of random coefficient thinning in analogy to Latour’s generalized thinning operator. For
the particular case of the (generalized) binomial thinning, Gomes and Canto e Castrg (2009)
proved that the necessary and sufficient conditions for weak stationarity are the same as those
for continuous-valued AR(1) processes.

Wang and Zhang (2011)) also extended the signed binomial thinning operator in () and
developed the generalized pth-order random coefficient INAR process with signed binomial
thinning (GRCINARS(p)). Zhang et al| (2012) study the GRCINARS(1) model in detail. INAR

models based on random coefficient thinning operators have been explored by Roitershtein
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|and Zhongl (l2013|), 'Tang and Wangj (l2014l), thao and Hd (|2015|) and hhang and Wané (|2015|)

Using the concept of random coefficient thinning for modeling of count data time series with

a finite range, |WeiB and Kirﬂ (|2014l) introduced a beta-binomial autoregressive model.

lRistié et alJ (lZOOd) provided a new stationary INAR(1) process with geometric marginals

(NGINAR(1)) based on the negative binomial thinning operator which contains geometric

counting series. Further properties of this model were developed by Bakouch (EOld) The

motivation for time series with geometric marginal distributions is due to their major role in,
e.g., the reliability theory, medicine, and precipitation modeling, arising from the number of

machines waiting for maintenance, the number of congenital malformations, and the number

of thunderstorms in a day. INastié et al.| (|201j) considered a new (combined) INAR model

of order p with geometric marginal distribution (CGINAR(p)) based on the negative binomial

thinning introduced by lRistié et al] (boogl) Using the preceding thinning operator but with

negative binomial (NB) marginals, tRistié et alj (l2012al) established the NBINAR(1) process and

() the combined NBINAR process of order p, CNBINAR(p). Integer-valued time series

generated by mixtures of binomial and negative binomial thinning operators are considered in

|Nastié and Ristid (IZOlj) and tRistié and Nastic”i (lZOlQI) Meanwhile, () introduced

a first-order mixed INAR processes with zero-inflated generalized power series innovations, de-

noted by ZIMINAR(1). These innovations contain the commonly used zero-inflated Poisson

and geometric distributions. Two thinning operators were mixed, namely the binomial thin-

ning (|A1—Osh and Alzaid|7 |1987|) and the negative binomial thinning operator (7

). An INAR(1) process with NB thinning and zero-modified geometric (ZMG) marginals

was introduced by tBarreto—Souza| (IQOld) The ZMGINAR(1) model is also able to capture un-

der/over dispersion, which sometimes is caused by deflation or inflation of zeros.

In a different approach from lKirn and Parkl (|2008|), tFreeland| (l‘ZOld) extended discrete time

series models with non-negative values to models over the integers, modifying the binomial
thinning operator to produce a stationary AR(1) model with a Skellam marginal distribution.
More specifically, the Poisson INAR(1) model is extended to a symmetric model around zero,

the true INAR (TINAR(1)). The thinning operator considered by () is somewhat

delicate to work with because it is defined on two latent counts for which only the difference
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is observed. One of the main features of the TINAR(1) model is it incorporates both positive
and negative correlation. Also arising from the difference between two discrete distributions
Barreto-Souza and Bourguignon (2015) established a skew INAR(1) process on Z, denoted by
SINARZ(1), with skew discrete Laplace (SDL) marginals (Kozubowski and Inusah, 2006). This
new model is based on a modified version of the NB thinning operator introduced by [Ristid
et al| (2009) but in a similar fashion as in Freeland (2010), it acts on two independent but
not necessarily identically distributed latent NGINAR(1) processes. While the TINAR(1) process
established by Freeland (2010) is symmetric, the skew INAR(1) model on Z by Barreto-Souza
and Bourguignon (2015) can accommodate skewness. The probability function of the SDL
distribution has a simple form in contrast with the Skellam distribution which involves the
modified Bessel function of the first kind. Following a similar approach in model construction
as in [Freeland (2010), Bourguignon and Vasconcellos (2016) proposed the new skew INAR(1)
process, named NSINAR(1), with geometric—Poisson marginals (which are distributed as a dif-
ference between geometric and Poisson r.v.s) and Nasti¢ et al) (2016a) a process with the
discrete Laplace DL marginal distribution (DLINAR(1)). The thinning operator of the model
was, once again, based on the negative binomial thinning of Risti¢ et al] (2009). An extension
on INAR models with skew discrete Laplace marginal distributions was introduced by Djord-
jevid (2016), the SDLINAR(1) model, representing a generalization of two mentioned models,
SINARZ and DLINAR.

Another contribution in modeling time series that can incorporate negative count and nega-
tive values for autocorrelation was made by Kachour and Yag (2009) based on the rounding
operator. They have presented the rounded integer-valued time series process of order one
(RINAR(1)). A more general setup has been introduced since then by Kachoury (2014).

It is important to stress here the fact that all thinning operators previously mentioned depend
upon the assumption of independence across the counting variables. Extensions of binomial
thinning based on Bernoulli-distributed dependent r.v.’s were proposed by Brannéds and Hell-
strom (2001). Significant contributions on this subject can be found in Ristié et al) (2013)
and in recent works of [llid (2016) and Nasti¢ et al| (2017). The literature for univariate count

time series models is now quite mature.
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1.2 Multivariate time series models for count data - a review

The study of multivariate INAR-type processes for count data has become a topic of spe-
cial interest during the last years. Multivariate count data can occur in many fields such
as finance, criminology, epidemiology, etc. Special attention has been devoted to bivariate
integer-valued time series processes. In the situation where two series of counts interact and
where the evolution of one series is dependent on the other, bivariate models are the most
appropriate. These models maintain the pairing between two count variables that occur over
specific times and play a major role in the analysis of the paired correlated count data. Bi-
variate generalizations of important univariate distributions are also of continuing interest.
The generalizations can be constructed in a wide variety of ways like mixing, compounding
and trivariate reduction. The former method is a popular method of construction due to its

simplicity and ease of computationally generating samples (more details in e.g. Lai (2006)).

1.2.1 Matrix-binomial thinning-based INAR models

As in the univariate case, before defining a multivariate process, we need to define a corre-

sponding thinning operator. The definition of matrix-binomial thinning follows.

Definition 1.6. (Matriz-binomial thinning operator)
Let X = [X1 X2 ... Xp)T be a random vector with values in NI and (m x m) matriz
A = [ai;] with entries a;; € [0;1]. The matriz-binomial thinning A o X is a m-dimensional

random vector whose i-th component is given by

[AoX];=> ajoX;, i=1,...,m, (1.13)
j=1

where the operator o represents the binomial thinning in ) Furthermore, the counting

series of all a;; 0 X, 1,5 = ..., m, are assumed independent.
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Franke and Subba Rao (1993) introduced a m-variate INAR(1) model (MINAR(1) for short),

based on independent binomial thinning operators, given by recursion
Xt =Ao Xt—l + Zt, te Z, (114)

for (m xm) matrix A with entries in [0; 1] and Z; an i.i.d. random vector taking values in Nj".
Some properties of the thinning operator are listed in Lemma B Proofs of the properties

can be found in Franke and Subba Rag (1993).

Lemma 1.3. (Properties of the matriz-binomial thinning operator)

Let A and B be (m xm) matrices; X and Y be non-negative integer-valued random m-vectors.

1. E[AoX] = AE[X];

2. B[(AoX)(AoX)T] = AE[XXT]AT + diag(DE[X]),

where D is the variance matriz;

3. E[(AoX)(BoY)"] = AEIXYT]|BT,

if the counting series Ao X and BoY are independent.

Extensions of the univariate INAR processes to the bivariate case have been introduced by
several authors. Pedeli and Karlis (2011) extended the INAR(1) model to a bivariate integer-
valued autoregressive process of order one (BINAR(1) in short), where the correlation is in-
troduced through innovation components. Let X; and Z; be non-negative integer-valued
random 2-vectors. Let A be a (2 x 2) diagonal matrix with independent elements {c;};—1 2.

The BINAR(1) model is defined as

)

Xt:AOXt_1+ZtE o ’ + N tGZ, (115)
0 Xot-1 Zay
where Ao is the matrix-binomial thinning defined in () and [Z1 Zg,t]T are assumed to be

independent Ng—valued random pairs. All thinning operations are performed independently

of each other and of Z;.
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From the definition of the bivariate model BINAR(1) in (), the j-th component is given
by X = ajo X1+ Zj; for j = 1,2. The marginals behave like the univariate binomial
thinning operator. Dependence between the two series that comprise the BINAR(1) process
is introduced by allowing for dependence through innovation components Z;; for j = 1,2.
Whatever the underlying joint distribution of Z; is, Pedeli and Karlis (2011)) have shown that
the covariance between the innovations of the two series at time ¢, totally determines the
covariance between the current value of one process and the innovations of the other process
at the same point in time ¢ and vice versa. Two specific BINAR(1) models were introduced
by Pedeli and Karlis (2011). One model arises from the assumption the innovations follow
jointly a bivariate Poisson distribution. For a comprehensive description of the bivariate Pois-
son distribution, we refer the reader to the books of Kocherlakota and Kocherlakota (11992)
and Johnson et al) (1997). Interestingly, the generated BINAR(1) model has a stationary dis-
tribution that is itself a bivariate Poisson distribution. Moreover, the univariate processes
for each variable are simple INAR(1) processes with Poisson marginals. The BINAR(1) model
neatly generalizes the typical univariate model. The disadvantage of this particular model is
that it does not allow for over/under dispersion (the marginal distributions are Poisson) or
negative correlation, and thus lacks generality. The second model assumes a bivariate neg-
ative binomial (BVNB) distribution for the innovations. There are several representations
for the BVNB distribution in the literature. Pedeli and Karlis (2011) have considered the
distributional form followed by Marshall and Olkin (1990), Boucher et al) (2008) and Cheon
et al] (2009). This assumption allows for more flexibility than the Poisson BINAR(1) model
due to the involvement of the overdispersion parameter. However, the resulting model is not
a BINAR(1) model with negative binomial marginals but a model that effectively accounts
for overdispersion. The two distributions seem to be appropriate for modeling equidispersed
and overdispersed bivariate time series, respectively. In the bivariate setting, the role of the
innovations is significant since not only they determine the joint distribution of the two series
under consideration but also they form the unique source of cross—correlation. Pedeli and
Karlis (2011)) addressed forecasting and predictions by means of the conditional forecast dis-

tribution. An application concerning road accidents (during day and night) was provided.
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Focusing on the specific case of the BINAR(1) model that arises through the assumption of
bivariate Poisson innovations, Pedeli and Karlig (2013h) considered some alternative estima-
tors for the unknown parameters of the model and examined their behavior. An extension of
the model to a BINAR(1) Poisson regression model is also discussed. Pedeli and Karlig (2013a))
then extended the BINAR model proposed in Pedeli and Karlis (2011) to the multi-dimensional
space. Again, the authors focused on two parametric cases for the multivariate INAR(1) model:
multivariate Poisson distribution and multivariate negative binomial distribution for the in-
novation processes. However, the classical definition of the multivariate Poisson distribution
(Johnson et al), 1997) was not followed, the formulation in Karlis and Meligkotsidou (2005)
seemed more convenient. In the multivariate setting, computational issues arise in parameter
estimation of the unknown parameters, the complexity of the maximum likelihood approach
augments with dimensional increase. To overcome these difficulties, the concept of compos-
ite likelihood estimation was suggested by Pedeli and Karli§ (2013a) and its performance
compared with conditional maximum likelihood estimation. The term composite likelihood
originated from Lindsay (1988). Composite likelihood methods based on optimizing sums of
log-likelihoods of low-dimensional margins have been considered by many authors in recent
years; they are useful for multivariate models in which the likelihood of multivariate data
is very time-consuming. In particular, pairwise likelihood or bivariate composite likelihood
methods are based on bivariate margins. An excellent overview of composite likelihood meth-
ods can be found in Varin et al] (2011), complementing and extending the review in Varin
(2008). Other relevant references on this subject are: Cox and Reid (2004), Varin and Vidoni
(2005) and Zhao and Joe (2005).

All models proposed in Pedeli and Karlis (2011) and Pedeli and Karlis (2013a,b) rely on
a constraint: the matrix A for autocorrelation parameters is diagonal, meaning there is no
cross-correlation in the counts. The assumption of diagonality implies that correlation be-
tween the innovations is the only source of dependence between the two series Xj;, j = 1,2.
Removing such an assumption would imply that cross—correlation do not solely arise from the
correlation between the innovation series of the multivariate process. The MINAR(1) process

in Franke and Subba Rao (1993) relies upon a non-diagonal autoregression matrix A. This
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framework was also followed by Boudreault and Charpentier] (2011)) and by Pedeli and Karlis
(2013c). By allowing for an additional source of dependence, i.e., relaxing the assumption of
diagonality of the matrix A, Pedeli and Karlis (2013c) introduced full multivariate INAR(1)
process, with special emphasis on the bivariate case with bivariate Poisson innovations. In
this context, the joint distribution of {X;, X2} is a 8-parameter bivariate Hermite distri-
bution (Kemp and Papageorgiou, [1982). More insight in bivariate INAR models based on
binomial thinning operator and Poisson marginals by Nasti¢ et al| (2016b). Due to the grow-
ing interest in zero truncated distributions, pioneer work on bivariate INAR models with zero
truncated Poisson marginal distribution has been introduced by Liu et al, (2016), extending
the univariate model in Bakouch and Ristid (2010).

Most of the bivariate INAR models investigated in the literature uses constants for the regres-
sion coefficients. Popovid (2016) developed bivariate models with random coefficients, based
on binomial thinning operator with unequal parameters. Innovations are mutually indepen-
dent and distributed in a way to support the stationarity of the processes. The marginal
distribution is assumed to be geometric. Another contribution to models that comprise ran-

dom coefficients but with dependent innovations was established earlier by Popovid (2015).

1.2.2 Signed matrix thinning-based INAR models

An extension of the signed thinning operator in () to the bivariate case was established

by Bulla et al| (2016). The definition of the signed matrix thinning operator follows.

Definition 1.7. (Signed matrixz thinning operator)
Let X = [X1 Xo]T be an integer-valued random vector. The signed matriz thinning operator
s given by
Fi10X1+ Fi20 Xy
FoX:= ) (1.16)
Fo1 © X1+ Foa © Xo
where F; represents the common distribution of the i.i.d. counting sequences (Ykij)keN for

any (i,7) € (1,2) x (1,2). It is assumed that all counting sequences associated with Fi;® are

mutually independent.
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Bulla et al| (2016) introduced the class of bivariate signed INAR(1) processes based on the
signed matrix thinning operator in (), denoted by B-SINAR(1), which is an extension
of the SINAR(1) process of Kachour and Truquet (2011) to the bivariate case. Compared
to classical bivariate INAR models, that cannot fit a time series with negative observations,
the B-SINAR models have the advantage to allow for negative values for the time series and
the autocorrelation functions. A bivariate process X; = [X1; Xa4]7 is called a B-SINAR(1)

process if X; admits the following representation

X141 Z1t
Xi=FoXy1+Z;=F 0 + , teZ, (1.17)
Xot1 Loy
where Z; = [Z1,4 Zgjt]T are assumed to be independent. All counting sequences associated

with Fj;® are mutually independent for (,7) € (1,2) x (1,2).

A particular case is when Fjo = F; = 0 (assumption of diagonal autoregressive matrix)
which can be seen as a Z2-extension of the model presented in Pedeli and Karlis (2011). In
contrast to the well-known situation when the paired data are counts, i.e., observed on N?,
sometimes the data take values in Z2. While bivariate discrete distribution for non-negative
paired data are now abundant, there is a shortage of bivariate discrete distribution defined
on Z2. Bulla et al| (2015) contributed to the literature by developing the bivariate Skellam

distribution, recasting the interest on the distribution introduced by Skellam (1946).

Definition 1.8. (Bivariate Skellam distribution)
Let 6 > 0, 01 > 0 and 03 > 0. The bivariate random variable (X1, X3) follows a bivariate

Skellam distribution, denoted by BSkellam(0y,01,02), if and only if

X1 ~ Skellam(61,60p) and Xa ~ Skellam(62,6)).

Thus, the joint p.m.f. of (X1, X3) is given by

o o 000105)
P(Xy =21, Xy = @) = e (102 400)gh1g72 > (1 —|-(’i(;'(1$22)—1- i)l (z1,2) € Z°.

i=max(0,—x1,—x2)

(1.18)
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The mean and variance are E[X;| = 0; — 0y and Var[X;] = 0; + 0y for i = 1,2, respectively.
The covariance of X7 and X5 is 0y, and hence, 0 is a measure of dependence between the two
r.v./s. However, if 6y = 0, then the two variables are independent and the bivariate Skellam
distribution reduces to the product of two independent Poisson distributions (referred to as
double Poisson). Further details on bivariate Skellam distribution in Bulla et al. (2015).

With the assumption of a diagonal matrix for autocorrelation parameters, Bulla et al| (2016)
assumed that innovations Z; are modeled through a bivariate Skellam distribution (Bulla
et all, 2015). In order to increase the flexibility of the bivariate Skellam distribution, the au-
thors proposed two alternative extensions: the inclusion of a shift parameter k = (k1, k2) and
mixtures of bivariate Skellam distributions. Many bivariate extensions of Skellam distribution
are possible, for example through copulas (Genest and Mesfioui, 2014). For an introduction to
the subject, see e.g. Nelsen (2007) and Genest and Neslehovd (2007). A family of distributions
on Z? based on generalized trivariate reduction technique and the Rademacher distribution

(in Definition @) has been explored recently by Chesneau et al) (2015).

1.2.3 Other multivariate INAR models

In the previous two subsections and references therein, focus was placed upon matrix-binomial
and signed matrix thinning-based INAR models. Due to applications concerning data of dif-
ferent nature and origin, INAR models have experienced significant modifications and general-
izations over time. In the last two decades, special attention has been devoted to multivariate
(mainly bivariate models) integer-valued time series count processes with different thinning
operators and different distributions for the underlying innovations.

General discussion on multivariate INAR processes has been covered by Latour (1997) where
the author introduced the multivariate INAR model based on generalized Steutel and van Harn
thinning operators (MGINAR(p)) as well as proof of the existence of the process. Applications
of multivariate INAR processes are also presented in Brannés and Nordstrom (2000). Several

bivariate extensions of the thinned process have been considered by a number of researchers.
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Risti¢ et al. (2012h) discussed the bivariate INAR(1) model based on negative binomial thin-
ning operator while the time series are mutually dependent and have geometric marginal
distribution with the same mean parameters. Popovi¢ et al| (2016) proposed relaxing the
assumption about the equality of the mean parameters. The authors introduced a model
with geometric marginal distribution, but with different mean parameters and subsequently
derive the distribution of the innovation processes. Although, the structure of their model
is similar to the one presented in Risti¢ et al| (2012b), different marginal distributions sig-
nificantly influence on the properties of the model and particularly on the definition of the
innovation processes in order to achieve stationarity. Meanwhile, a different generalization
of the binomial thinning operator in (@) for the bivariate case was derived by Scotto et al,
(2014), useful to fit count data time series with a finite range of counts. This thinning op-
erator is based on the bivariate binomial distribution of type II (BVBy) (Kocherlakota and
Kocherlakota, 1992) and can account for positive or negative cross-correlation. Furthermore,
Scotto et al| (2014) introduced the bivariate binomial AR(1) model (BVBy-AR(1)).

Copula-based models can be used in order to define flexible bivariate discrete distributions
which can serve as the distribution of the innovations in the bivariate INAR model. Karlis
and Pedelj (2013) introduced copulas to create a richer alternative and allow for more flexible
bivariate distributions for the innovations making it possible to accommodate both positive
and negative correlation. Insight in modeling multivariate count data using copulas can be

found in Heinen and Rengifo (2007) and Nikoloulopoulos and Karlis (2010).

1.3 Periodic time series models

There are many applications in which model parameters need to vary periodically to ade-
quately describe the time series. This has lead to the study of the so-called periodic time
series models. In this section, we start by reviewing periodic time series in the conventional
case, i.e., continuous-valued time series. However, regarding periodically correlated integer-

valued time series, very few contributions are known.
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1.3.1 Continuous case

The class of periodic autoregressive moving average models of orders p and ¢ with period T,
denoted here by PARMA7(p, q), are an extension of autoregressive moving average (ARMA(p, q))
models in recursion (Ell) in the sense that they allow the parameters to vary periodically
in time. PARMA model contains an ARMA model for each season. The concept of periodically
correlated (also known as cyclostationary) processes was introduced by Gladyshev (1961,
1963) and has received much attention. Franses and Paap (2004) provided a nice overview
of the subject and Hurd and Miameq (2007) discussed the procedures to detect periodic
correlations in time series. The periodically correlated time series occur in many scientific
disciplines where the data may have significant periodic behavior in the mean and covariance
structure. Formally, a time series is called periodically correlated (PC) with period T if
the mean and covariance of the series remains the same when shifted 7" units of time. In
another words, the fundamental characteristic of a periodic time series {Y,,} is the periodic

stationarity of the first and second moments, i.e.,
EY,+7] = E[Y,] and Cov(Yair,Ymsr) = Cov(Yy, Yin), (1.19)

for all integers n and m. The period T is the smallest positive integer satisfying ([L.19).
When T = 1, periodically correlated time series are stationary. Since their introduction there
have been very extensive developments in the theory and applications of PC processes. A
particular example of a periodic series is a monthly time series of air temperature with its
annual cycle. The mean is clearly non-stationarity, it varies in a regular pattern depending
on the month. One way of handling such a series with ARMA modeling is by applying periodic
ARMA models, in which separate parameters are simultaneously estimated for each month of
the year. A ubiquitous problem in fitting a PARMA model to a periodic series, however, lies
with parsimony. Even very simple PARMA models can have an inordinately large number of
parameters. The PARMA model has (p + ¢)T autoregressive and moving-average parameters
and T additional white noise variance parameters. This parameter total can be large for even

moderate T', making some PARMA inference matters unwieldy.



26 Chapter 1. Introduction

Several researchers have dealt with periodic time series models. Contributions have been

made in many fields such as: climatology [lJones and Brelsford| (h967|), lBloomﬁeld et all

(h994l), tLund et alJ (|19951)]; economics [lParzen and Paganol (h97€1), tFranses and Paapl (l2004l)];
hydrology [l\/ecchia| (|1985|), |McLeod| (|1993|), tHipel and McLeod| (|1994I), h‘esfaye et alJ (lZOOd)];

electrical engineering [bardner et al.| (IQOOd)], among others.

PARMA series differ from seasonal autoregressive moving-average (SARMA) series.
( ) demonstrated the drawbacks of forecasting a PARMA series with SARMA methods through

a real data application. The analysis of basic probabilistic properties of PARMA models as

well as statistical inference and forecasting techniques has been addressed by

(l2004l), bhao and Nil (l2004l), IShao| (IZOOd), ILund et alJ (IZOOd) and, more recently,

() Developments on parameter estimation include e.g. lLund and Basawa| (IQOOd),

lBasawa and Lund| (lZOO]J) and |Anderson and Meerschaertl (bOOd) Bhaol (lZOOé) suggested a ro-

bust estimation procedure for the parameters in periodic AR (PAR) models and

() when data contains additive outliers. Using genetic algorithms, |Ursu and Turkmanl

() provided PAR model identification.

Although the periodic models have been widely studied, most of the existing studies are

confined to the univariate case. |Aknouche| (l‘ZOO?I) established the causality conditions and au-

tocovariance calculations of periodic vector autoregressive models (PVAR). tUrsu and Duchesnel

() derived the asymptotic distribution of the least square estimators of the parameters

of the PVAR models. Recent contributions to PVAR models have been made by

lLafaye de Micheauxl (}2013|), tUrsu and Peread (|2014|) and tBentarzi and Djeddoul (l2014|)

1.3.2 Discrete case

In contrast to the continuous case, it is worth to emphasize that the analysis of periodically

correlated series of counts has not received much attention in the literature. To our knowledge,

the first contribution in the discrete case was introduced by IMonteiro et al.| (bOld) The so-

called Periodic INteger-valued AutoRegressive process of order one with period 7' (PINAR(1)r

for short), based on the binomial thinning operator with periodically varying parameter, is



1.3 Periodic time series models 27

defined by the recursive equation
Xt = ¢t o thl + Zt, t e Z, (120)

where ¢, = oj € (0,1) for t = j+kT; j=1,...,T and k € Nyg. The thinning operator o is

given by
Xi—1

gro Xy 2 Z Uit(¢t) (1.21)

i=1

with (U; +(¢¢))ien a periodic sequence of independent Bernoulli r.v.’s with success probability
P(U;+(¢¢) = 1) = ¢y. For this setting, the natural choice for the distribution of the innovation
term was Poisson distribution. Monteiro et al) (2010) assumed that innovation term Z; in
recursion () constitutes a periodic sequence of independent Poisson-distributed random
variables with mean vy = \j for t = j+ kT (j =1,...,T;k € Np), which are assumed to be
independent of X;_1 and ¢; o X;—1. To avoid ambiguity, T is taken as the smallest positive
integer satisfying () Basic probabilistic and statistical properties of the PINAR(1)7 process
with Poisson marginal were established by Monteiro et al| (2010). The existence of an almost
surely unique non-negative integer-valued periodically stationary process satisfying equation
() was proven. Furthermore, parameter estimation was addressed through four different
methods and their performance compared. An application regarding the number of short-term
unemployed people was presented. Recently, Jia et al, (2014) provided several approaches to
estimate the parameters of the PINAR(1)7 model in the presence of missing data, by employing
the idea of Andersson and Karli§ (2010).

Within the bivariate setting, Monteiro et al| (2015) proposed an extension of the periodic
univariate model given in () The bivariate model is referred to as the periodic bivariate
INAR model of order one, denoted by PBINAR(1) with period 7' € N, and has the following

form

0 X14— Z
X, = AyoXo 1 +7Z,= | M o |7 Y tez (1.22)

0 @24 Xot—1 Zat

with ¢j4 = «aj; € (0,1) for t =i+ kT5i = 1,...,T;k € Ny and j = 1,2. The matricial
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operation A;o follows definition in () adapted to the periodic case, it acts as the usual
matrix multiplication keeping the properties of the binomial thinning operator (Pedeli and
Karlis, 2011). The PBINAR(1) model with period 7" and periodic bivariate Poisson innovations
can be viewed as a generalization to the periodic case of the model established in Pedeli and
Karlis (2011). The role of the innovations Z; is relevant since not only they determine the
joint distribution of the two series under consideration but also form the unique source of
cross—correlation. Monteiro et al] (2015) derived criteria for the existence and uniqueness of a
periodically stationary and causal process. For the bivariate setting, two specific parametric
cases for the joint distribution of the innovations of the two series were considered: bivariate
Poisson and bivariate negative binomial distributions. However, only the conditional max-
imum likelihood method was used for parameter estimation of the PBINAR(1) model with
period T'. The second parametric case revealed better fit and more suitable for series display-
ing overdispersion. Issues related with forecasting were also provided. Potential application
of the proposed periodic bivariate model with period T" can be found in the analysis of fire

activity (Monteiro et al, 2015).

1.4 Parameter estimation and forecasting

The important issues of estimation and forecasting in INAR-type models are discussed in
numerous papers. The most widely used estimators in the literature for the parameters of
Poisson INAR(1) processes (Al-Osh and Alzaid, 1987) are Yule-Walker (YW), conditional least
squares (CLS) (Klimko and Nelson|, 1978) and conditional maximum likelihood (CML) esti-
mators. YW estimation is a traditional way for estimating parameters of an AR(p) model.
This method was also used by Du and Li (1991) in an INAR(p) model. For the unknown
parameters involved in an INAR(1) model with Poisson marginal, asymptotic distribution of
YW-type estimators were derived by Park and Oh (1997) and asymptotic properties of CLS
estimators by Freeland and McCabe (2005). However, neither proved to be more efficient
than the other to this order. Due to the fact that the conditional variance of the INAR(1)

process is not constant over time, weighted conditional least squares (WCLS) estimators seem
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an attractive alternative to consider (Monteiro et al., 2010).

Jung et al] (2005) study the performance of new types of generalized method of moments
estimators. Data generated with different innovations was considered: Poisson innovations
and negative binomial (NB) innovations. The former distribution is often used in empirical
work to capture overdispersion phenomenon. An estimation approach was proposed by Savani
and Zhigljavsky (2007) who studied a family of moment-based estimation methods, called the
power method estimators, for estimating parameters of the NB distribution.

Bu et al} (2008) have extended earlier work of Freeland and McCabe (20044) and developed a
general framework for likelihood analysis of GINAR(p) processes with generalized thinning op-
erators and innovation distributions. The likelihood is derived using a recursive formulation
of the transition probabilities and, in a similar way as in Freeland and McCabe (2004a), the
elements of the score and the Fisher information matrix are expressed in terms of conditional
expectations.

The most common technique for constructing forecasts in conventional time series model is
to use the conditional expectation because they yield forecasts with minimum mean squared
error. However, in the context of count time series, the conditional mean may not be an in-
teger and hence it is not coherent. To preserve the integer-valued nature of data, the median
was used as a forecast of an INAR(1) model (Freeland and McCabe, 2004h). Mode forecasting
can also be used to obtain h-step ahead coherent forecasting. McCabe and Martin (2005)
explored the issue of coherent forecasting with count data models under the Bayesian frame-
work, but they too are concerned only with the first-order case. Jung and Tremayne (2006)
proposed the use of second-order INAR models in the context of forecasting low integer values
of count data. Bu and McCabe (2008) provided an interesting approach for forecasting based
on Markov chains, the forecasts of the distribution of a count series were obtained by means
of a transition matrix of the process. In recent work of McCabe et al) (2011), a new method
for producing efficient probabilistic forecasts in the INAR(p) class was provided.

To overcome computational difficulties that frequently arise in maximum likelihood (ML)
methods, Pedeli and Karli§ (20134) exploited the composite likelihood method, which is

based on the idea of constructing lower dimensional score functions that still contain enough
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information about the structure considered and are computationally less demanding. [Pedeli
et al| (2015) proposed a simple saddlepoint approximation to the log-likelihood that revealed a
good performance concerning INAR(p) models with Poisson and NB innovations. The authors
have empirically proven that the estimator that maximizes the saddlepoint approximation
behaves very similarly to the ML estimator.

Concerning models with signed binomial thinning, several bootstrap approaches in the liter-
ature as distribution free alternatives were used to obtain forecasts and confidence intervals.
Kim and Park (2008) employed a modified bootstrap method to incorporate the nature of
integer-valued time series. Wang and Zhang (2011)) considered three kinds of estimation
methods, namely YW, CLS and WCLS. An advantage of these methods is that they do not
require specifying the exact family of distribution for the process.

More recently, Bisaglia and Canalg (2016) developed a forecasting procedure for count time
series, forecasts are produced through a non-parametric Bayesian method, which revealed ap-
pealing results. Maiti et al) (2016) explored the usefulness of the standard Box-Jenkins’ type
AR(p) process for obtaining coherent forecasting from integer-valued time series. To make the
forecasting values coherent, they have suggested the rounding operator (Kachour and Yao,
2009) on the forecasting values obtained from the estimated AR(p) model.

In general, detailed studies have been conducted not only on the formulation of models but
also on properties, estimation, tests and asymptotic distributions of model estimators for
different discrete marginal distributions. Regarding testing serial dependence in count data,
a preliminary analysis should first consider independence (Jung and Tremayne, 2003) before
fitting INAR models. A general test was derived by Sun and McCab¢ (2013) for independence
in the classic binomial thinning INAR model with a particular feature, the support for the
underlying arrivals process is not assumed to be known. Recent developments in tests for

time series of counts can be found in Hudecova et al| (2015) and references therein.
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1.5 OQOutline of the thesis

Within the reasonably large spectrum of integer-valued models proposed in the literature only
a few focus on the modeling of univariate/multivariate time series of count data with periodic
structure. Our aim in this thesis is to give a contribution towards this direction. We develop
and study time series models of first-order adequate to describe periodic time series of count
data. Focusing on the class of observation—driven models, we seek to extend integer-valued
autoregressive models to multi-dimensional space, assuming periodic time-varying parameters
and periodic sequences of innovations. Apart from the general specification of such models,
we also examined their statistical properties and proposed alternative estimation techniques.
Moreover, specific parametric cases that arise from the assumption of a particular joint distri-
bution for the innovation processes were studied in detail. Simulation studies were conducted
and forecasting discussed. Applications to modeling time series of counts through the pro-
posed models were also given.

Specifically, in Chapter 2 we generalized the results obtained by Pedeli and Karlis (2013a)
to multivariate integer-valued models of first-order with periodic structure in the wide sense,
i.e., with periodically varying mean and covariances. Throughout this chapter, the thinning
operator considered was the matrix-binomial thinning operator defined in () Our inter-
est in periodic integer-valued autoregressive models was primarily influenced by the work of
Monteiro et al) (2010, 2015) whose periodic (univariate and bivariate) INAR models were in-
troduced in recursions () and (), respectively. We established the periodic m-variate
integer-valued autoregressive process, denoted by PMINAR(1), with period s in its general
matricial form, defined its basic statistical properties and proven its existence. The gener-
alization to a multivariate setting is not straightforward since many computational issues
arised especially for the estimation of the parameters. We derived Yule-Walker, conditional
maximum likelihood and composite likelihood estimators for the unknown parameters of the
proposed model and discussed their asymptotic properties. Particular attention was given
to the special case that arises from specifying multivariate negative binomial distribution for

the innovations of the PMINAR(1) process. This discrete multivariate distribution can account
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for overdispersion in contrast to the usual multivariate Poisson distribution. An important
restriction of the Poisson distribution, as well known, is that its mean and variance are equal.
However, in real-life events, the Poisson assumption is often violated, therefore this distribu-
tion is not considered in our work. To confront estimation problems due to the complexity of
the maximum likelihood, we implemented the recently popular idea of composite likelihood
approach ([Varin et all, 2011). The basic advantage of this method is the replacement of the
full likelihood with a pseudo-likelihood which effectively captures the model properties while
at the same time is computationally less demanding, also used by Pedeli and Karlig (2013a).
Forecasting is also addressed. The performances of the three aforementioned estimators were
compared via a simulation experiment. Simulations were carried out in R and suitable param-
eter transformations were adopted. A real data set related with fire activity in Portugal was
used to illustrate the proposed periodic multivariate integer-valued autoregressive model of
order one for the trivariate case (m = 3) contemplating trivariate negative binomial innova-
tions. However, the models in this chapter have some limitations. Thus, because of binomial
thinning operators, all the coefficients of the models must be non-negative. Therefore, the
modeling of series with possible negative autocorrelations are excluded. Moreover, these mod-
els are defined on N, so they cannot fit a time series with negative observations nor negative
correlation.

In Chapter 3, we developed two new integer-valued autoregressive models of first-order in-
troducing time-varying parameters and sequences of innovations with periodic structure in a
new framework, regarding the thinning operator and distributions for the innovations. Both
proposed INAR models (univariate and bivariate) are based on the signed thinning operator
defined in subsections and , adapted to the periodic case accordingly. We provided
basic notations and definitions concerning the (periodic) signed thinning operator as well as
some of its properties. Before introducing the new models, we also provided a brief descrip-
tion on the (periodic) Skellam distribution for univariate and bivariate distributions defined
on the set of integers. Extending the model in Chesneau and Kachouy (2012) to the periodic
case, we introduced a new univariate signed INAR(1) process, by considering a parametric as-

sumption on the common distribution of the periodic counting sequence of the model. In this
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setting, the new signed periodic model was denoted by S-PINAR(1) with Skellam-distributed
innovation term. In contrast to traditional INAR(1) models, these models are defined in Z
allowing for negative correlation. Due to some limitations of the periodic signed thinning
(which lacks the distributive property), only the conditional moments of first and second-
order of the process were established. Regarding parameter estimation, two methods were
considered: modified conditional least squares and conditional maximum likelihood. The
conditional least squares method, first proposed by Klimko and Nelson (1978), was adapted
by Alzaid and Omaiy (2014) with some modifications in order to be able to estimate all pa-
rameters integrating the periodic model. In order to study the performance of the proposed
methods, an extended simulation experiment was carried out for the S-PINAR(1) model with
period s. Numerical results from the simulation study suggested that the proposed model is
suitable for practical use.

Motivated by the work of Bulla et al) (2016), we then generalized the S-PINAR(1) model to
the bivariate case. The definition and matrix representation of the bivariate model denoted
by BS-PINAR(1) with period s was presented and some statistical properties of the model were
derived. The assumption of a diagonal autoregressive matrix was made, therefore, the corre-
lation is achieved through their innovation processes, where the distribution of the innovation
processes is set a priori which consequently determines the distribution of the underlying
time series. Hence, the discrete bivariate distribution on Z? assigned to the distribution of
the innovations was the bivariate Skellam distribution. Parameter estimation of the unknown
parameters was provided through the conditional maximum likelihood method.

Finally, main conclusions of this thesis and some challenges for future work are described in

Chapter 4.






Chapter 2

PMINAR(1) model based on the

binomial thinning operator

In this chapter, a multivariate first-order integer-valued autoregressive model with time-
varying parameters and sequences of innovations having periodic structure in the wide sense,
i.e., with periodically varying mean and covariances, is established. The model is based
upon the matrix-binomial thinning operator defined in ([L.13) and aims to extend the periodic
bivariate INAR(1) model proposed in Monteiro et al! (2015) to the multi-dimensional space.
Therefore, the periodic m-variate integer-valued autoregressive process, denoted by PMINAR(1)
with period s is presented. The matricial form of the multivariate model and its basic sta-
tistical properties are defined. Yule-Walker, conditional maximum likelihood and composite
likelihood estimators for the unknown parameters of the PMINAR(1) process are derived. Par-
ticular attention was given to the special case that arises from specifying multivariate negative
binomial distribution for the innovations of the PMINAR(1) process. Furthermore, forecasting
is also addressed. The performances of the three aforementioned estimators are compared
via a simulation study. A real data set related with fire activity in Portugal is used to il-
lustrate the proposed periodic multivariate INAR(1) model for the trivariate case (m = 3)

contemplating trivariate negative binomial innovations.

35
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2.1 Definition of the PMINAR(1) model

Let {X;} be a periodic m-variate integer-valued autoregressive process of first-order defined
by the recursion

Xi=A0Xi 1+7Zy, t€Z, (21)

where X;, X;_1 and Z; are random ms-vectors with X; = [X1; Xa; ... Xy]? fort = v+ns,
v=1,...,sand n € Ny, and X;; = [Xj14ns Xj24ns --- Xj,s+n5]T,j =1,...,m. The ms-
dimensional vector Zy = [Z1; Zay ... Zmﬂg]T constitutes a periodic sequence of independent

random vectors with

Zji=Zj1sns Zjzins - Zjsins) - (2.2)

The model defined in (Ell) will be referred to as the Periodic Multivariate INteger-valued
AutoRegressive model of order one (PMINAR(1) in short) with period s € N. The PMINAR(1)

model admits the following matricial representation

X1t ¢ O o 0 X1 7z,
X 0 e 0 Xo 4 Z
26 | _ ¢.2,t . 2,.t 1 N 2t (2.3)
L Xm,t ] L 0 0 U ¢m,t ] L Xm,tfl i L Zm,t ]

with ¢, = a;j. € (0,1) fort =v+ns;v=1,...,s;n € Ngand j = 1,...,m. The elements
Z; joining the system in the interval (¢ — 1,¢] are usually referenced to as innovations. For
each t, Z;; is assumed to be independent of X;;_1 and ¢;;0X;;_1. The matrix A; in equation
(@) is a (ms x ms) diagonal matrix, representing the periodic integer-valued autoregressive

coefficients in season v (v =1,...,s):

¢p1e 0 - 0

" 0 ¢os - 0

0 0 - Py
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where

a1, t=14+ns
aj2, t=2+mns

Gjt = Q3, =3+ ns (2.4)

[ s, t=s5+ns

for j =1,...,m and n € Ny. Note that the j-th component (5 =1,...,m) is

Xjt=0¢ji0Xji-1+2Zj; (2.5)
with
p Xjt—1
G0 Xji1 = Y Uni(ja),
r=1

where (Urt(¢jt))ren is a periodic sequence of i.i.d. Bernoulli-distributed random variables
with probability of success P (Ut (¢) =1) = ¢j0 =1 — P (Upt (¢j) =0). The operator o
corresponds to the binomial thinning operator defined in ([L.13).

Since the autocorrelation matrix A; is diagonal, the only source of dependence between the
series X (j = 1,...,m) in (@) is given through the vector of innovations Z;. Therefore,
the innovations will play a central role in the specification of the PMINAR(1) process.
Considering the j-th component, X;; = [Xj 11ns Xj24ns --- vas+n5]T of X; and by applying

the recursive equation in (@) with coefficients ¢;; in (@), it follows that

Xjt4ns = @10 Xj14ns—1 + Zji4ns = 051 ° X op(n—1)s + Zj1+ns

Xj2tns = @2 0 Xjiins + Zj2ins = @j2 0 (51 0 Xj s (n-1)s T Zj14ns) + Zj24ns =

= (@20,1) © Xj s (n-1)s T @2 © Zjipns + Zj2ins =

2—1 2-2
= (H O‘m—k) © Xjst(n-1s + (H %2—k> © Zj4ns + Zj24ns
k=0 k=0
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s—1 s—2 s—3
Xj,s+ns = H Ajs—k | ©Ajst(n—1)s + H Qjs—k | © Zji+ns + H Qjs—k | ©Zj24nst

k=0 k=0 k=0

s—s
4+ -+ <H aj,s—k) o Zj,s—l—l—ns + Zj,s+ns =
k=0

s—1 s—1 /11
= (T s | o Xjarm-na+ 2 { I s | © Zisstns + Zissins
k=0 0

=1 \k=

Hence, forv=1,...,s,
v—1 v—1 /l-1
Xj,v+ns = H Qju—k | © Xj,s+(n—1)s + H Qjy—k | © Zj,v—l—i—ns + Zj,v+nsa
k=0 =1 \k=0

which implies that X;; = ¢;;0X;;-1 4+ Z;; in (@) witht=v+ns;v=1,...,sand n € Ny

admits the matricial representation

Xj14ns 0 -0 Q5,1 Xi14(n—1)s
Xj2+ns 0 -0 @j,2%,1 Xjot(n—1)s
Xjsins | = 0 -+ 0 «aj3aj2051 | o Xj,3+(n71)s +
s—1
| Xjstns | 0 - 0 k:UO Ojs—k L Xj,s—&-(n—l)s J
1 0 0 0 Zitims
2 1 0 0 Zj24ns
+ | aj3052 @3 1 Ol o| Zistns
s—2 s—3 s—4
[T sk Il ajsn Il @js—k 1 Zjs+ns
L k=0 k=0 k=0 1t -

Due to the fact that t = v + ns, then X;; s = Xjpins—s = Xjpymn)s (v = 1,...,5),

meaning the j-th component X;; in equation (@) can be replaced by

Xji = AjoXjis + BjoZjy, (2.6)
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where (s x s) matrices A; and B (j = 1,...,m) are given by
0o --- 0 a1
0o --- 0 Q2005 1
Aj=|0 - 0 ajzaj20a5: (2.7)
s—1
0 0 H aj,s—k
L k=0 .
and ) )
1 0 0 0
OZJ’Q 1 0 0
Bj=| aj3q aj3 1 01, (2.8)
s—2 s—3 s—4
sk Il Qs Il @jsn -0 1
L k=0 k=0 k=0 |
respectively, with coefficients o, € (0,1), 7 = 1,...,m and v = 1,...,s. All columns of

matrices A;, except the last one, are null. The matrices B; are lower triangular matrices.

Taking all m components, the PMINAR(1) model defined in (El]) can be rewritten in the

form
X;=AoX;_ s+ BolZ, (2.9)
with matricial representation
Xl,t A1 0 cee 0 Xl,t—s Bl 0 s 0 Zl,t
Xo 0 A --- 0 Xot—s 0 By --- 0 Zoy
= o + o

Xm t 0 0 e Am Xm,t—s 0 0 e Bm th
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The (ms x ms) matrices A and B in equation (@) are block-diagonal matrices

Ay o --- 0
~ 0 Ay -+ 0
A= | =diag(A1, Ay, ..., An) (2.10)
0 O A,
and i _
By O 0
~ 0 By --- 0
b= . . . :diag(BlaBQP";Bm) (211)
0O 0 --- B,

with matrices A; and B; (j =1,...,m) in (@) and in (@), respectively. Generally, matrix
A has entries agk satisfying 0 < agk < 1 and matrix B has entries bgk satisfying 0 < bjk <1
withi,k=1,...,msand j = 1,...,m. Notice that the j-th component in equation (@) can

also be written as

Xjn=Aj0Xj, 1+ BjoZj,, (2.12)
where X;,n = [Xj71+n5 Xj,2+ns Ce Xj78+ns]T, Z;,n = [ijp,.ns Zj72+n5 . Zj75+ns]T and also
X1 = [Xj,l—l—(n—l)s Xio2t(n-1)s --- Xj78+(n_1)S]T. Hence, the corresponding periodic mul-
tivariate model is

X*=AoX: | +BoZ, (2.13)

where X7, X | and Z;, are ms-dimensional random vectors such as

T

* * * * _

X'n - [ 1,n 2n Xm,n} -

Xin Xjn,n
T
= [le,l—i-ns SRR Xl,s—l—ns oo Xm,l-i—ns . -Xm,s—‘rn;}
T
* _ * * *
n—1 — [Xl,n—l X2,n—1 ce m,n—l]

Zh =25, 25, ... Zt,)"
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The model present in () is a periodic multivariate first-order integer-valued autoregressive

model regarding the cycle, where n — 1 represents the cycle preceding n.

Remark: The random vector X; = [Xi Xo; ... Xm,t]T Jgt=v+ns;v=1,...,8,n € Ny
defined in (@) is the same as X} in () because X7 = [Xj14ns --- Xjsins]” =X, and

also 2%, = [Zj14ns -~ Zjstns]| = Zjy which leads to Zy = [Zyy Zoy ... Zmy] = Zi.

As previously mentioned, the ms-dimensional random vector Z; with vector Z;; in (@)
fort=v+ns;v=1,...,sand n € Ny is a periodic sequence of independent random vectors.

The innovations Z; have (assumed) finite first and second-order moments:

o Mean vector of Z;, E[Zy]:

Zi, 01
Zs 52
Ez)=£6] " |=| " | =4 (2.14)
L Zm,t ] L 6m,t i
The ms-mean vector §; with t = v +ns;v=1,...,s and n € Ny has m (s x 1) vectors, i.e.,
Aji1
Aj2
EZj]=6e=| " |, (2.15)
| s |

for j =1,...,m. For a fixed v, each element of vector () is

E[Zjmins] = Ajo- (2.16)
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o Variance-covariance matrix of Zy, ) 5 (symmetric matrix):

Zzt =Var[Z =

Var(Z ] Cov(Z1t,Z2y) Cov(Z1t,Zmy)
B Cov(Zay,Z14) Var(Zs,] Cov(Zat, L) B
_C’ov(Zmyt, Z1:) Cov(Zpy,Zoy) Var(Zp, ] |
Vi1 Piae Yim,t
oot Yom,t
= ' = 1)y, (2.17)
L ¢mm,t ]
where ¢, j,k=1,....mit=v+ns;v=1,...,s;n € Ny are (s x s) diagonal matrices:
Ojk,1 0 0
0 Ujk’g 0
¢jk’,t = COU(Zj7t, Zk7t) = . (218)
0 0 Ojk,s
For a fixed v, each element of the diagonal in matrix (R.1§) is given by
Cov(Zjvinss Ziwtns) = Ojkp- (2.19)
For notational simplicity, we use sz‘,t instead of 0j;; when j = k (j = 1,...,m) and for
t=v+ns;v=1,...,s:
a5, 0 0
0 UJ2~2 0
bije = Var|Zj) = g (2.20)
00 o3 |
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For a fixed v, each element of the diagonal in matrix () is given by

Var(Zjyins| = 0]271]. (2.21)

The (ms x ms) matrix ¢, in () has m on-diagonal matrices equal to ¢+ = Var[Z;]
in () and (m — 1)m off-diagonal matrices equal to ¢, = Cov(Zj¢, Zy,) in () with
j#kjk=1,....,m.

2.2 Properties of the PMINAR(1) model

2.2.1 Strictly periodically stationary distribution

Let PMINAR(1) be the process defined in (@) Within this setting, it can be proven that
a strictly periodically stationary INAR process satisfying (@) exists based upon the results
provided in Franke and Subba Rag (1993). The existence of a periodically stationary solution
of (@) depends on the largest eigenvalue of the non-negative matrix A in (), whose
coefficients «;, € (0,1) for all components. Take the (ms x ms) block-diagonal matrix

A — g, where I denotes the identity matrix as usual, then
A — A = diag(Cy,Ca, ..., Ch)

with (s x s) matrix C; (j = 1,...,m) defined by

A0 0 —04],1
0O Ax -~ 0 —Qj 201
cj=|+ ¢ o . (2.22)

s—2

o0 --- X — H Ajs—1—k
k=0

s—1
00 -+ 0 A—T[ajsus
L k=0 J
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The determinant of the matrix AI — A denoted by det(A — A) can easily be determined
since the matrices C; (j = 1,...,m) are upper triangular matrices (Harville, 2008). The

characteristic polynomial of Ais

m s—1
det(\I — A) = (A7) ] (A -1I aj,s_k> :
j=1 k=0

s—1
For convenience in notation, let [] o;s—r = Tj. The polynomial takes the form
k=0

det(\I — A) = XX [ (A= Ty) = A+ ) (~1) game
j=1 i=1

with coefficients 5; (j =1,...,m) defined as
m
° 61 = Z 17]'7
j=1

m—1 m
o= >, > TT;,

j=1 i=j+1

m—2 m—1 m

Ba= > > X TiTT

J=1 i=j+1 k=i+1

m m

Bn1= > Il T
j=1i=1
1#£]

~ m
Let p be the maximal eigenvalue of A, then by Proposition B in Dion et al, (1995), > 8; <1
j=1

if and only if p < 1.

Lemma 2.1. For a fizxedv (v=1,...,s), o, € (0,1) with j=1,...,m and fort = v+ ns,
0 < P(Z; =0) < 1. Then, any solution of process {X;}, t = v+ ns and n € Ny in (@) is

an irreducible and aperiodic Markov chain.
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45
Proof. Let r = [ry ry ... 1,,]7 with r; = [rj1rje

dj:[djl djo ... djs) for each j =1,...,m.

. Tjs] and d = [dl dQ dm]T with

Pt,d:P(Xt:ﬂths:d):P(IZOXFS“‘EOZt:ﬂths:d):

AroXy4—s+BioZy,

p Az oXoi s+ BooZoy

=3
e
2
5
I
(S8

i A 0 Xm,t—s + B0 Zm,t

m dj1  dj2 djs s v—1
= Z Z Z [ P(Zj,v—i-ns:ijv)P(
7=1 \7;1=0152=0 1

H Qjy—k O Xm,s+(n—1)s+
ije=0 Lv= k=0

aj,v—k) O Zjy—l4ns = Tju — ijv|Zj,1+ns = ij].a Zj,2+ns = Z'j2a .. aZj,erns = ijs):|>

m s v—1
> Z H P(Zj,v—i—ns rj’u)P <H Qjo—k odjs+
J=1 \v= k=0

7

j24ns = T2, Ljstns = Tjs))

X
o}
~

N

v—1
( H aj,v—k) © Zj,v—l+ns = O’Zj71+ns =Tj1, Zj,2+ns = Tj2, 7Zj,s+ns = Tjs))
k=0

m s v—1 djs  y—1 v—1 Tju—k
> (PG =) (1= Tas) T (1- M) ) >0
j=1 \v=1 k=0 k=0

k=1
Therefore,

s

v—1 d;
= Z H P(Zj,v+ns = 0) (1 — H aj,vk) >0
j=1 \v=1 k=0

Poa=P(X;=0X;_s=d) = P(AoX;_ s+ BoZ =0X; s =d) =

m
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and similarly P, g = P(X; = r|X;—s =0) > 0 implying that {X;} is irreducible.

Moreover,

which implies that for a fixed v (v = 1,...,s), process {X;} with t = v 4+ ns and n € Ny is

an aperiodic Markov chain. ]

Theorem 2.1. (Strictly periodically stationary distribution)

For a fized v (v = 1,...,s), let {X;} with t = v+ ns and n € Ny satisfying (@) be an
irreducible, aperiodic Markov chain on N{'. If E||Zi|| < 400 and if the largest eigenvalue
of A is less than one, then there exists a strictly periodically stationary (or cyclostationary)

m-variate INAR(1) process satisfying recursion (@)

Proof. From Lemma @, {X;} with ¢t = v+ ns and fixed v = 1,...,s is an irreducible
and aperiodic Markov chain. The eigenvalues of matrix A are less than one (Dion et all,
1995). Thus, by Franke and Subba Rao ([1993), a strictly periodically stationary m-variate

non-negative integer-valued process satisfying the equation (@) exists. O
The PMINAR(1) model in (@) can be expressed as
X, =AoX;_ s+ Ry, (2.23)
where Ry = B o Z; with matrix B in () Let
Ri=[RitRos ... Ryy]' =[B10Z1y ByoZoy ... ByyoZys]" (2.24)

with Z;; in (@) for 7 = 1,...,m. The innovation series {R;} is a sequence of independent
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non-negative integer-valued random vectors with periodic structure:

P(Rt:@:P(EoZt:@):
=P(BioZiy=k,ByoZyy=ky,...,BpoZmy=kn)=

Z114ns = k115012 0 Z1 14ns + Z1,24ns = k125 (@1,301,2) 0 Z1 14ms + 01,3 0 Z1 24ms+

s—1 /v—1
+Z173+"5 = kiz;- - Z ( al,s—l) © Zl,s—v+ns + Zl,s-i—ns = k1s;- - ;
=0

=P Zm,1+ns = kmn1; Qm,2 © Zm,1+ns + Zm,2+ns = km2; (am,3am,2) © Zm,l—l—ns"’

s—1 /v—1
+aum,3 0 Zm,2+ns + Zm,3+ns =km3;- -3 Z < am,s—l) 0 Zim,s—v+nst
=0

+Zm,s+ns = kms

Zig =kisa120Z10 + Zi1p = ki (a13002) 0 Z11 +aq 30 Zi o+

s—1 /v—1
+Z1,3 =ki3;- Z (H al,s—l) o Zl,s—v + ZLs =kis;
_p v=1 \I=0

Zm,l = km1; am,2 © Zm,l + Zm,2 = km2; (am,3am,2) o Zm,1+

s—1 /v—1
+am,3 0 Zm,2 + Zm,3 =km3;- Z (H am,s—l) © Zm,s—v + Zm,s = kms
=0

Z114hs = k115012 0 Z1 14hs + Z1,24hs = F12; (0130012) © Z1 14hs + 01,3 © Z1 24 hst

s—1 /v—1
+Zl,3+h5 =kig;- Z ( al,sl) © Z1,57v+hs + Zl,erhs = kis;- - ;
v=1 \I=0

=r Zm,1+hs = km1; Qm,2 © Zm,1+hs + Zm,?—l—hs = kmo; (am,Bam,Z) 0 Zm, 1+hst

s—1 /v—1
Qm 3 © Zm,2+h5 + Zm,3+hs =km3; Z ( H am,sl) © Zm,sfv+hs+
v=1 \I=0

+Zm,s+hs = kms

=P(BioZyp=ki,ByoZyp =ky,...,BpoZpp =km)=

P(Eozhzg) — P(Ry = k).

Next we obtain the stationary mean and the variance-covariance matrix of the process {X;}

with ¢ = v + ns for each season v (v =1,...,s).
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2.2.2 Mean vector of cyclostationary PMINAR(1)

The properties of the matrix-binomial thinning operator established in Lemma @ are useful
to the derivation of the moments of the PMINAR(1) model in () Hence, from property 1

(Lemma @), the mean expectation of Ry is
E[R)] = E[B o Z,| = BE|Z = Bé, (2.25)

with matrices B and &; in () and (), respectively. Furthermore, for each component

Jj =1,...,m, the mean vector of R;; takes the form

E[R;i| = E[BjoZ;:] = BjE[Z;:] = Bjd;1 =

Aji1
Aj1aj2 + Ajo

= | Ajaojzaje+ Ajeais+ A3 , (2.26)

s—2 s—3
Aja T s+ X2 T sk + - + Njsm1s + Ajs
k=0 k=0

where B; and 4, are defined in (@) and (), respectively.
Let puy = E[X;] with X given in equation ()7 then
pe = E[Ao X+ Ry = AE[X,_| + E[Ry].
Due to the periodically stationary distribution and from () we can write
(I — A)p; = Bé;

ie.,

pe = (I — A)~'Bé, (2.27)
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with I the identity matrix as usual, matrices A and B, and vector & in (), () and
(), respectively. Next we prove that I — Ais a regular matrix and therefore, matrix

(I — A)~! exists. The matrix I — A is a (ms x ms) block-diagonal matrix given by

I — A =diag(Cy,Cs,...,Cp)

with (s x s) matrix C; (j =1,...,m) as
1 0 0 04371
0 1 0 —aj204;
C; =
! s—2
0 0 1 — I ajac1k
k=0
s—1
00 01— ]I o
L k=0 .

This matrix is the same as C; with A = 1 defined in () The determinant of the matrix
I—Ais easy to determine since the matrices C; above are (s x s) upper triangular matrices

leading to obtain

m s—1
det(I — A) =] (1 -11 ajvs_k> : (2.28)
j=1 k

=0

s—1

The determinant is different from zero because [] o s— is different from 1 since oy, € (0,1)
k=0

forj=1,...,mand v=1,...,s. The adjoint matrix of I — A is

0 0
~ 0 I 0

adj(I — A) =
0 0 F,,

~ m s—1
Let det(I — A) in () be d and the product [] (1 - 11 am_k> bed_; (j=1,...,m).
r=1 k=0
r#j
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The (s x s) matrix F; (j =1,...,m) is given by

d o --- 0 Oéjﬂd(,j)
2-1
0O d -+ 0 H Oéjg_kd(_j)
k=0
F; =
(s—1)—1
o o0 --- d H aj,s—l—kd(—j)
k=0
00 --- 0 di_j
Since by definition, (I — A)~! = p t(Il 5 adj(I — A), the inverse matrix of I — A is
0 0
-~ 1 0 Fy 0
-1
(I o A) T om s—1
7j=1 k=0
0 0 F,
oo 0 Gy O 0
110 K 0 0 Gy 0
= = ,
0 0 o 0 0 Gm
where _ J )
10 0 (;)a],l
d_ . 2-1
0 1 0 “S2TT ajai
. d ;o
Gi==F=| i i i (2.29)
d( ) (s—1)—1
0 0 1 H Oéj75_1_k
p k=0
0 0 0 %
. . Ay 1 .
is an upper triangular matrix with 7 = — forj=1,...,m.

S
1-— H aj’s,k
k=0
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ol

The ms-dimensional mean vector p; =

n € Ny defined in () takes the form

M Gi 0
Mot 0 Go

Il't = =
L “m,t ] L 0 0

and the mean of the j-th component X, ;:

pit = E[X;:] =G;B;jd;: =

i.e.,

i =GB =

1 0 --- 0 (dj) Q51
d o 2-1
01 --- 0 %]}:{Oaﬂ_k
di .y (s—1)—1
00 1 (Tj) T ajs1s
p k=0
(=J)
0 0 0 —
L d

d

d

d

0 By 0
0 0 By
Gm 0 0
E[X;1+4ns]
E[Xj72+n8]

E[Xj,s-l-ns]
1 0
aj72 1
Q3052 Q;j3
s—2 s—3
IT ajs—r II s
k=0 k=0

d . 5—2 s—3
) <>\j,1 [T ajs—r + N2 [T ajsi + -+ Aj s + )\j,s)
k=0 k=0

d(—j) s—2 5—3
Aj1+ =g (/\j,l [T s+ Aj2 TT @js—i+ -+ Njs—1as + >\j,5>
k=0 k=0

d o 2—1 s—2 s—3
Njacie + Mo+ T agay, </\j,1 [T ajs—k + Nj2 T ajsi + -+ Ajsm1ags + Ams)
k=0 k=0 k=0

(Ifg)_lfétst witht = v+mns; v =1,...,s and

(2.30)

Aj1
Aj,2
Aj3
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Foreach j=1,...,mand [ > 1, let

o) = (2.31)
1 =0
For a fixedv (v=1,...,s) and j = 1,...,m, each element of vector () is given by
G) s—(v+1) ()
Z‘ka ju— k"'(va Z QDSZ)\jSZ
E[Xj,v—‘,-ns] = ( ) (2'32)
1- Ps,s

—(s+1)
In the sequel, we adopt the convention Z <p(J ))\ s—i = 0. Moreover, the vector of expec-

tations in () can be written as

o) ORSC)
> PNk o1 ZO Pgi Njs—i
7=l

RS0 U) =2 G)
> 5 pNi2—k + P35 Z% Pgi Njs—i
= 1=

1
Hj,t = Gijéj,t = — (233)
l—¢

W~
W ~—

’ o) G) = ()
> PspNis—k P53 Z% Pai Njys—i
= 7=

s—1 G) (j)sf(erl) )
ZOSOS,k)‘j,s—k+<Ps,s ;) P i Njs—i

forj=1,....m; t=v+mns; v=1,...,s and n € Ny. Full details in Appendix @
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2.2.3 Variance-covariance matrix and auto-covariance function

The variance-covariance matrix of the periodic sequence {R;} of independent random vectors

is

ZRt =Var[Ry] = Var[Bo Z;] =
= Var[E(B o Z,|Z,)] + E[Var(B o Z,|Z;)] =
= Var[BZ] + diag(QE(Z,)) =
=B Zzt BT + diag(Qé,) =

= ByyB" + diag(Qé;) (2.34)

with matrices B, 8, and 1y in (), () and (), respectively. The (ms x ms) variance

matrix Q = E(I—E) has entries [qfk]i,k:h_’ms for component j = 1,...,m (see property 2 of
Lemma @) In this case, [qfk] = [b‘gk(l - b{k)] with b‘gk clements of matrix B in () Thus

matrix @ is also block-diagonal with m (s x s) matrices Q;, i.e., Q = diag(Q1,Q2,...,Qm),

where
[0 0 0 0]
Oéjﬂz(l —Oéjﬂz) 0 0 O
Q; = | @sasz(l—ajsa52) @j3(1 —aj3) 0 e 0
;72 s—2 ;73 s—3 :974 s—4 . .
IT s <1 - II aj,sfk> [T ajs—k <1 - TII Oéj,sfk) I1 &js—x (1 -1 aj,s,k) .. 0
L k=0 k=0 k=0 k=0 k=0 k=0 -
(2.35)
leading to
Qi 0 - 0
. 0 @3 0
diag(Qd:) =
0 0 @,
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with QF = diag(Q;0,,¢), matrix @; in () and vector §;; in () for j =1,...,m and
t=v+4+ns; v=1,...,s and n € Nyg. Hence

0
aja(l —aj2)Aj1

aj3052(1 — ajzaj2) A1+ ajs(l — aj3) A2

Q0 =

s—2 s—2 s$—3 s—3
[T js—r |\ 1= IT sk ) N1+ [T ajs—n (1= [T @js—i ) N2 +
k=0 k=0 k=0 k=0

oot s (= ajs)Ajs—1

we can write

Q; = diag(Q;0;:) =

0 0 . 0
0 Oéjg(l — Oéj}Q))\j}l N 0
= . : . : . (2.36)
s—1 s—(1-1) s—(1-1)
0 0 co Z Qjs—k 1-— H Qjs—k )\j,l
i =1 k=0 k=0 |
The variance-covariance matrix of Ry in () can be written as
ZRt = By BT + diag(Qd,) =
Bi1:BT + Q7 Biy12.BT .. BiimBlL
Botpyo BT Botpoo BY + Q% ... BotpoyBL
=\ _ ' . (2.37)
L BmwlmﬂfB? Bm¢2m,th v Bmwmm,tBrj;L + an i
Furthermore, for each component j =1,...,m,

Var[R;s] = Bjthj;B} + Q; (2.38)
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and for j Zk, k=1,...,m,
Cov(Rj, Rie) = Bjtja B (2.39)

where matrices Bj, ¢j+ and Q7 are given by (@), () and (), respectively. Based on

relation (), matrix Bj in () takes the form

1 0 0 0
w110 0
— () ()
Bj = ¥3.2 Y31 1 0 (2.40)
() () ()
L 905,5—1 905,5—2 905,5—3 1 h
Thus, the matrix product ijjj,tBjT in () can be simplified to
T _
BijjeBj =
[ () 2 G) 2 |
0351 ¥2,19;5,1 cee Ps,s—195,1
(4) 2 (9)y2 2 2 (4), () 2 (4) 2
31051 (p51)7051+ 075 cor P31P55-1051 T Pss_205 2
— : : . . (2.41)
-1
@ g2 0,0 2 @) 2 5,0 2,2 2
<)05,3710—’,1 QD2,1QOS,5710',1 + <)05,5720'3',2 ce kZ%(@g,g—k) Jj,k + Jj,s
and the covariance matrix in () be written as
T
Cov(Ryjt, Rit) = Bjtjk.i By,
ok, o105 TR
| ehoia ePlokaes] + o v Aol )+ o2l
L e o e ioikaes] + o) aoike oo N 1oieael )+ o) aoin el ok |

(2.42)



56 Chapter 2. PMINAR(1) model based on the binomial thinning operator

Let the variance-covariance matrix of X; be th with X; = Ao X;i_s+ Ry given in recursion
() Recall from () that R; = B o Z; and Z; are independent of X;_g, thus variance-

covariance matrix of X; is given by

ZX = Var[Xy] = Var[A o X,_,] + Var[Ry] =
t
= Var[B(Ao X, 4|X;_)] + E[Var(A o X,_|X,_,)] + Var[Ry] =
= Var[AX,_s| + E[Var(A o X;_|X;_)| + Var[Ry] =

= AVar[X;_]AT + diag (DE[X;_,]) + ZRt
and due to cyclostationarity, I'(0) proves to satisfy a difference equation of the form
_ AT(OVAT + di
1'(0) = AT(0)AT + diag(Dpt) + ZRt (2.43)
with matrices A, p; and > R, defined in (), () and (), respectively. From Lemma

B (property 2), matrix D in () is a (ms xms) variance matrix, D; = [d{k] = [agk(l —azk)]

for i,k =1,...,sand j = 1,...,m. From matrix A; in (@) and from (), matrix Dj is

given by
0 0 o) (1-41)
0 0 of)(1- )
pi=lo 0 (o) | 240
0 -0 Bl (1-¢)
We then define
Dy 0 0
' 0 Di --- 0
diagDp) = | 0|
0 O Dy,
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o7

where D} = diag(D;p;) with matrix D; in () and pj; in () (j

0 0 ) [ e | [ (1 p0) e
0 0 o) (1 - wé{%) 1t 05 (1 - sog,g) Pt
Djpje = ,
| 0 0 ol (1 - wgf)> I L et | | o¥) (1 - s@é@) Hom,t
i.e.,
B s—1 ) T
) o i Palehiah
801{1 (1 - 801{1) — ;
! -
> (pgl)g)‘j,sfk
() (1 _ L0 k=0
D= | ¥22 2,2 -
’ ¥
s—1 )
i . Z Sos{k)\_],é?*k
A (1- ) 2
i -
For each component j =1,...,m; t=v+ns; v=1,...,s and n € Ny, we can write
Dj = diag(Djp;) =
o1 o] (1-¢9)) 0 0
J by . . .
e 0 o) (1- ) 0
1 - o) :

] 0 0 W (1- ) |

1,...,m), yielding

(2.45)

For j =1,...,mand j # k,k = 1,...,m, the variance of the j-th component X;; has the

following form:

Var[X;:] = AjVar[X;(A;)" + diag (Djpjz) + Var[R;]

(2.46)
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and covariance between two different components X;; and Xy ;:
s—1

Cov(Xs, Xpp) = ASCov(X;e, Xp o) (A7) + > (ALBjthjne—i + (A4 Br)T) . (2.47)
=0

The matricial representation of the variance-covariance matrix, > x,, follows

Var(Xy ] Cov(X14,Xo) ... Cov(Xqs, X t)
B Cov(Xa ¢, X1,t) Var(Xa 4 oo Cov(Xogp, X t)
th -
Cov(Xpmt, X1t) Cov(Xpp, Xoyg) ... Var X4

211 21,2 Zl,m

_. 22,2 v ZQ,m ] (248)

For j =1,...,m, (s X s) symmetric matrices ijj are given by

Z~ =VarX;,] =
Js

VCLT‘[Xj’l_i_nS] CO'U(X]'J_HLS, Xj,2+ns) e COU(Xj’1+nS, Xj,s—f—ns)
Var[X;oins| oo Cov(Xj21ns; Xjstns)

Var[X; sins)
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with diagonal elements

Var(Xjvins) =

1
T ) S /A N
0

=
Il

:1{”
1 <<p§j2)
. z [ saen + 2 (1 ) M+ (A60) 2]

(2.49)

for a fixed v (v=1,...,s) and off-diagonal elements

Cov(Xjpins: Xjvtnstl) = ‘Pq(pzl Var[Xjvins|, (2.50)

where ), represents the mean of Z; 1, in () and ajz-m the variance in () The (s x s)
non-symmetric matrices Zj’ (j#k; j,k=1,...,m)in () are given by

Y =Cov(Xj, Xpy) =

J:k

COU(Xj,1+nS7 Xk:,l+ns) COU( 7, 1+ns, Xk 2+ns) AR COU( Jy14+ns, Xk s+ns)
COU(Xj,2+71,37 Xk,1+ns) COU( 7,24nss Xk 2+719) cee COU( 7,24nsy Xk 9+ns)

= . . . . (2.51)
COU( j,s+nss Xk 1+ns) CO'U( j,5+ns, Xy 2+ns) S COU( j,54nss X s+n5) ]

with diagonal elements
COU( J,u+ns; Xk v+ns) =
— i —(v+1)
L 0,0, e G) ),
= 5 ® Po,i Pu,i Tjk,v— it FERORO] C,OS Psi Ojk,s—i (2.52)
L — @s5ps,8 i=0 1—wsspPss im0
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for a fixed v (v=1,...,s) and off-diagonal elements

COU( j,v+ns+hs Xk: v+ns) =

90 hh @ ])h h@gji)isol()kv 8—(U+1 ( ) (k)

+ +h, ) )

= Z%z%z% ko— zJFI(pW Do Pt Tiks—i (2.53)
~PssPss =0

and

OOU( jo+nss Xk v+ns+h)

sO(k)h . v—1 (,0( )h h@gj%@v]{v s—(v+1)
+ + 3
- ﬁzwgﬂ)s&i’ 1)0']]@1) Z+ v— QOSZQO,UzO'ij 3] (254)
1 905 59088 i=0 1- 908 s‘Pss i=0

where oj,,, represents the covariance between Z; y4ns and Z, ,4ns as defined in ()

Auto-covariance function with lag h

For each component j = 1,...,m and positive lag h:

h—1
CO’U(Xj’t, Xj,t-i—h) =Cov (Xj,ta A? o Xj,t + Z A; o Rj,t+h—i> =

=0
= A?Cov(ijt, X)) = A?Var[Xj,t], (2.55)
CO'U(Xj’t+h, Xk,t) = A‘?CO’U(X]‘J, Xk’t), (256)
CO’U(Xj’t, Xk,tJrh) = AZCO'I}(XJ'¢, ch,t)- (2.57)
The matricial form of Cov(X; ¢, Xj4p) Witht =v+ns; v=1,...,sand j =1,...,mis
COU(thXj t+h) =
COU( j,14nsy Xj,1+ns+h) COU(Xj,1+nS7 Xj,2+ns+h) ce COU( 3, 14nss Xj,s+ns+h)
. COU( 7,24+ns» Xj,1+ns+h) CO’U(Xj,2+TLS7 Xj,2+ns+h) .. CO'U( 7,24ns; Xj,s+ns+h)
COU( 7,s+ns» Xj,1+7zs+h) COU( 7,s+ns» Xj,2+ns+h) .. COU( 7,s+ns» Xj,s+ns+h) ]

(2.58)
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2.3 Estimation of the PMINAR(1) parameters

Consider a finite time series {X;, 1 <t <N, j=1,...,m} from the PMINAR(1) model in
(), where N stands for the number of complete cycles. Without loss of generality it
is assumed that Xy = x¢. The methods of Yule-Walker, conditional maximum likelihood
and composite likelihood are proposed for the estimation of the parameters of the PMINAR(1)

model. Let 8 be the vector of unknown parameters

0 := (@, Aj, 0%, 0) (2.59)
with s-dimensional vectors a;, A;, 0']2 and oy, (j #kij,k=1,...,m)
a; = (O{j71, . ,Oéj7s) ) Aj = ()\j71, ey )‘j,s) N
a'jz = (O'JZ-’l, e ‘732',3) i Ok = (Ojk1s- - Ojks)- (2.60)

Alternatively, the vector 6 in () can be written as

svee(of) T vee(a) "),

)T

0 = (vec(ay)', vec(N,

i.e., vec(U) corresponds to the vector obtained by stacking the columns of U (Harville, 2008).

2.3.1 Yule-Walker estimation

Let 8YY be the vector of the Yule-Walker (YW) estimators for the unknown parameters in

(.59), thus

~ < ~2YW ~
0"V = (&)W, XYW g2 Gl (2.61)

. ~ N ~2Y ~ . .
with (s x 1) vectors a}/W, )\}/W, o W and oﬁw as in (), respectively.

For each j (j =1,...,m) and for a fixed v (v=1,...,s), we define:
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e sample mean:

| Nl
Xjﬂ) = N Z Xj,v+n5a (2.62)

n=0

e sample variance:
N—-1
1 _
2 2

SJ':U = N —1 ~ (Xj,v—i-ns - Xj,v) s (263)

e sample autocovariance function at lag 1:

’}/j,v(l) = COU(Xj,v+n87Xj,v+1+ns) =

1 N-1 o o
7]\[ 1 ZO (Xj7’U+TL8 — Xj,v)(ij—i-l—i-ns — Xj,v-‘,—l) , U= 1, cee, S — 1
n=

N-1 Zo (Xjwtns = Xjo) Xj1tninys — Xj1)  v=s
n=
(2.64)
1 N

with X, = — X ,
= ngo 1+ns

e sample cross-covariance function at lag 1:

7jk,v(1) = COU(Xj,v+n57 Xk,v+1+ns) =

1 N-1 o o
7N— 1 ZO(Xj7U+n5 _Xj,v)(Xk,v+1+ns —Xk7v+1) ,U = 1,...,8— 1
n—

1 N-1 _ ——
N _1 ZO (Xj,v+ns - Xj,v)(Xk,1+(n+1)s - Xk,l) ,U=235

(2.65)

Take the mean of X 4, in () and its sample counterpart in () then

v—1 s—(v+1)
EXjuins] = Xju & Y soff,;lAj,vfk +ol) Y PN ami = (1 - sog,Q) X
k=0 =0
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The YW estimators of parameters A; are calculated through the solution of the following

system of s linear equations:

E[Xl,v+n8] = yj,l
E[X2,0+ns] = Yj,2
E[X?),v-&-ns] = Yjﬁ ~
. E[XS,ernS] = yj’S
( ke )
Aj1 o <>\j,2 T s+ -+ X105 + >\j,s> = (1 - @s,s) X1
k=0
s—4 . —
A2+ Aj2 + o105 (Aj,s IT jsmr -+ Ajsmrajs + Am) = (1 - @gfg) Xjo2
E=0
Aj1v 302 + Njaags + Ajs+
=
di—j) o2 = @)
+— Hl @i | Aj kHO Qjs—k + Aj2 kHO Wkt o+ X1+ Ajs | = (1 - @s,s) X3
1= =i =
s—2 s—3 M)\ ~
Aja Il agsmi + X2 TT s+ + Ajsm1as + Ajs = (1 - ‘stvs) Xjs
k=0 k=0
The matrix representation of the above system of linear equations is
B s—3 s—4 ] - - - =
1 j j,8— j J,S— j ~
a‘%l k;];IO a],k . a‘]’l k];IO C:?, 4§ OZJJ )\j,l X]’,l
0,2 1 ajicge [T ajs—k 0,1005,2 Aj2 X
k=0 .
Q30052 Qa3 1 Q100 20053 )‘j73 = (1 QOE(S,z) Xj73
s—2 s—3 s—4 ~
H aj,s—k H aj,s—k H aj,s—k 1 L A]’,s _ L Xj’s .
| k=0 k=0 k=0 J
thus, through equation (), we can write
1 PV, el o Aj X1
saéj,% 1 @{%@{373 @gj,% Aj2 X2
M | | s | = (1-09) | s |
|0 W, o) Lo s | | Xjs |
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where W;d,; = (1 — go?ﬁ) Xjov,forj=1,...,m;v=1,...,s, with §;; in () and

1 e, 06y o)

(péj% 1 90%90;2_3 @é]%

Wisl el el 1 el
| o8 W, e 1]

Taking all m components we obtain

‘w0 o0 o0 1 [en] | (1-¢d) X _
0 We 0 ... 0 82t (1 - @g?s?) Xo,
0 0 Wy ... 0 oar | = | (1-¢8) X,
[0 0 0 e W | [One || (1-6) K

Rewriting the system Wé, =Y with §; in () yields 5 = W\_l?, ie.,

-—1r ]

31 Wi, 0 0 ... 0 (1-88) X1,
3o 0 W, 0 ... 0 (1-282) %o
gg,t = 0 0 Wg R 0 (1 — Ag?s) y&v
(S| L O 0O 0 . W (1 _ @g’j;)) Koo

Let T represent a (p X p) matrix and S a (¢ x ¢) matrix. The (p+¢q) x (p+ q) block-diagonal

T 0
matrix is nonsingular if and only if both 7" and S are nonsingular (Harville, 2008).
0o S

Moreover, if T' and S are nonsingular, then it can be easily verified that

-1
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In our particular case, the inverse matrix is
- -1 -
Wiy 0 0 0 (W)=t 0 0 0
0 Wy 0 0 0 (W) o 0
0 0 Ws 0 = 0 0 (Wy)? 0
0 0 0 W | 0 0 0 (W)™t |
with -~ -
1 0 0 0  —aj.
a2 1 0 0 0
= . _ 1
(Wj) t= o1 0 —aj73 1 0 0
1- H a] s—k
k=0
0 0 0 —a;s 1
Recalling equations (Ela) and (EB I ), the estimator for parameters §;; takes the form
80 = (Wy)™! <1 - @E{Q) Xjw &
A1 1 0 0 0  —d1 | | Xja
A2 a4, 1 0 0 0 X0
-~ /):j73 - 0 —6[\]',3 1 0 0 Y_]'73
Y 0 0 ais 1 || Xjs |
We summarize the YW estimators of XAj = (Aj1,j2,...,Aj5), Xﬁ’v, as
~ Y]-,v—&-WXj,s ,Uzl
N =4 r : (2.66)
Xj7v—ajﬂ‘]/[/Xj7v_1 ,1)22,3,...,8
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where X, (j =1,...,m) is the sample mean defined in () Notice that estimators Xﬁ’v

depend upon estimators 62}/3‘/ . Let lag h = 1 and from relation (), we obtain

Yjt(1) = A5 (0). (2.67)
This relation is sufficient to derive estimators for parameters a; = (o1, @52, ..., ®;) for each
J (7 =1,...,m) because matrix A; in (@) contemplates all parameters o, (v =1,...,s).

The (s x s) matrices 7;:(1) and ~;+(0) in relation () can be obtained from () by

replacing lag h with one and zero, respectively. Therefore,

7j,v+ns(1) = COU(Xj,U+n57 Xj,v+ns+1) =

COU(X]',1+7LS,X]‘72+”3) COU(Xj,1+7LS,Xj73+n3) SN COU(Xj,1+7LS,Xj71+n3)
CO@(Xj,2+nsv Xj,2+ns) CO'U(Xj,2+nsa Xj,3+ns) cee COU(Xj,2+nsa Xj,1+ns)
OO'U(Xj,s+n37 Xj,2+ns) OO'U(Xj,s+n37 Xj,3+ns) e COU(Xj,s+nSa Xj,1+ns)
and
AjVj,ernS(O) =
;,1C0v(Xj14ns, Xj,s+ns) a;j,1C00(Xj 24 ns, Xj,s4ns) e aj1Var[X; sins
a;205,1C0o0(Xj 14ns, Xj s4ns) aj2051C0v(Xj 21ns, Xj s4ns) o201V ar[Xj s4ns)
ajs ..., 1C00(Xj14ms, Xjs4ns) s 0j,1000(Xj24ms, Xjsns) oo s 051V ar[Xjsqns)

Furthermore, from relation ()

Var|X;
aj1Var[Xjsins| = Cov(Xjitns, Xji4ns) € j1 = m
7,8+ns

COU(Xj,2+nSa Xj,lJrns)
Var[XjJJrns]

Olj,gaj’lV(ZT‘[Xj’S+n5] = CO’U(X]"2+nS, Xj,1+ns) & Q2 =

o — COU(Xj,s+ns, Xj,s—lJrns)
28 Var[Xj7s_1+ns:|
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Taking the corresponding empirical counterparts, we resume the YW estimators of parameters

_ ~YW
o = (aj1,0592,...,05) , aj,’ as
(o Q2
Sj’v v=1
2 U=
Sj7s
~YW
O, = , (2.68)
Yjw-1(1)
827 ,’U:2,3,...,S
\ 7,u—1

where S]%U is the sample variance in () and 7, (1) the sample auto-covariance function in

() for component j = 1,...,m. YW estimators of parameters 0'J2 = (a§71,0J272, el 032',3)7
~2YW : : ) —
o;, . canbe calculated through sample variance in () and of o, = (i1, 0jk2,- - Tjks)s

/\YW . .
0k through sample cross-covariance in ()

2.3.2 Conditional maximum likelihood estimation

Let 8 be the vector of unknown parameters in () The joint probability function of the
vector of innovations Z;; with j =1,...,m;t=v+nsand v =1,...,s follows the periodic

discrete m-variate distribution

P(Zl,erns = 21, Z2,'U+ns =225y Zm,erns = Zm) = h(Zb 22y vy Zm) (269)

The transition probabilities for the PMINAR(1) model can be expressed as the convolution of

m binomials with parameters (z;y—14ns, @) for v =1,..., s with probability mass function
f](r]) = Cf?ﬁv_l-’_nsa;ij(]‘ - ajvv)zjm_l-‘—ns_”? ] = 1’ s, (270)

and the discrete multivariate distribution defined in () Thus, the conditional density is

the multiple sum

pv(xv—&-ns‘xv—l—&—ns) - P(XU—I—ns - XU+7’ZS’XU—1+7LS = xv—l—‘rns) -

= P(Xl,v—i-ns = T1lv+ns) - - - aXm,v—I—ns = xm,v+ns|XU—l+ns = Xv—l—i-ns) =
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g1 g2 gm
Ty« -3 Qmp © Xm,v—1+ns = Tm’XU—l—&—ns = Xv—1+ns) X

= Z Z Z P(Oél,v 0X1,v—1+ns =

r1=07r2=0 rm=0

- Zm,'quns = Tm,v+ns — Tm) =

X P(Zl,erns = T1iwv+ns —Tly--
g1 g2 gm
= Z Z ce Z fl (rl)f2(r2) ce fm(rm) h(ajl,erns —T1,22v+ns — T2y Tmutns — Tm)
7“1:0 7‘2:0 m=0
(2.71)
with ¢g; = min(z;v4ns Tjo—14ns)s J = 1,...,m; v =1,...,s and n € Nyg. The conditional

likelihood function is given by

N—-1 s

L(O]x) = H H P(Xv—i—ns = XU—I—ns’XU—l—&-ns = X’U—l-‘rns) -
n=0 v=1
N—-1 s
= H Hpv(xv+ns|xv—l+ns)- (272)
n=0 v=1

The conditional maximum likelihood (CML) estimator, §CML, of the vector of unknown

parameters 6 in () is obtained by maximizing L(@|x) which is equivalent to maximizing

the conditional log-likelihood

N—-1 s

C(0) = In(L(0x)) = Y Y In (po(XotnsXo-14ns))

n=0 v=1
with transition probabilities p,(Xyins|Xp—14ns) in equation () The first-order partial

derivatives of function C(0) are obtained through

0
N-1 s %pv(xv+ns|xy—1+ns)

70 0 - )
00 ( ) Z pv(xv+ns|xv—1+ns)

n=0 v=1

when a particular joint distribution for the innovation process in () is assumed.
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2.3.3 Composite likelihood estimation

For multivariate processes, the number of parameters can be quite large and for periodic multi-
variate processes even larger, the inflation of parameters is due to season v (v =1,...,s) with
s representing the period. Computational issues often arise when applying the conditional
maximum likelihood approach, the complexity of the method augments with dimensional
increase. To overcome the limitations in computing the exact likelihood, Lindsay| (1988) pro-
posed the composite likelihood as a pseudo-likelihood for inference. The pseudo-likelihood
may take various forms such as combinations of likelihoods for small subsets of the data or
combinations of conditional likelihoods. Pairwise likelihood is one special case of a composite
likelihood, in which the pseudo-likelihood is defined as the product of the bivariate likelihood
of all possible pairs of observations. A general discussion of pairwise likelihood can be found
in Cox and Reid (2004) and Davis and Yau (2011).

Composite likelihood methods based on optimizing sums of log-likelihoods of low-dimensional
margins have become popular in recent years; they are useful for multivariate models in which
the likelihood of multivariate data is very time-consuming. The methodology has drawn con-
siderable attention in a broad range of applied disciplines in which complex data structures
arise (Varin, 2008). An excellent overview of composite likelihood methods can be found in
Varin et al| (2011), complementing and extending the review made by Varin (2008). This
concept of estimation has also been used by Pedeli and Karlis (20134). Composite likelihood
inherits many of the good properties of inference based on the full likelihood function, but
is more easily implemented with high-dimensional data sets. Analogues of the Akaike infor-
mation criteria for model selection can be derived in the framework of composite likelihoods,
having a similar form, see e.g. Varin and Vidoni (2005) and Ng and Joe (2014). Pairwise
likelihood or bivariate composite likelihood methods are based on bivariate margins. The
bivariate marginal log-likelihood function between two random elements, say X, and X, is

defined as

N—-1 s

1
lab(e; Xa Xb) = Nis Z Z lngXa,Xb (xa,'u+ns> Ty v+ns|La,v—14+nss Lbv—14+ns; 0)7 (273)

n=0 v=1
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where 6 is the vector of unknown parameters in () and function

fXa,Xb (wa,v+nsa xb,v+ns|xa,v71+n87 Thv—1+ns; 0) =

g1 g2

Ta.v—
E E a,v—1l+ns az:ldv-!—ns*ka(l _ O[aqv)za,vflvbns_ma,v+ns+ka X
ka=0 kp= La,v+ns — ka
Lhv—1+ns zp —k
) o+ b Th oo —Th vtns+k
X ab,vv (- O‘b,v) bom s TEb s TR hRmRb(ka?kb) (2.74)
Thv+ns — ka

with g1 = min(zqv4ns; Tap—14ns) and ga = Min(Lp yins, Toy—1+ns). Lhe bivariate function
hRr,.r, (ka, kp) represents the bivariate marginal probability density function between the cor-
responding innovation terms R, and R,. The composite log-likelihood function, ¢l(0; x4, Xp),

then arises as the sum of all bivariate log-likelihood functions, i.e.,

l 0, Xaaxb Z Z Wap lab(a Xavxb) (2'75)

where wyy, is a constant weight for l,;,. Typically, the weights are chosen in order to eliminate
distant pairs of observations, which should be less informative Varin and Vidonj (2005).
For sake of simplicity, it is common to set wg = 1, 1 < a < b < m. Further details
on weighting of bivariate margins in pairwise likelihood in Joe and Lee (2009). Asymptotic
results and computational aspects of construction of, and inference from, composite likelihood

are available from Varin et al| (2011).

2.4 PMINAR(1) Process with MVNB Innovations

This section is devoted to the PMINAR(1) model in () with a specific multivariate distribu-
tion for the innovations. Recall the assumption of diagonality of the autocorrelation matrix,
thus correlation between the innovations is the only source of dependence between the series
Xt (4 =1,...,m). Therefore, the choice of the joint distribution for the ms-dimensional

random vector of innovations Z;; with t = v +ns;v = 1,...,s and j = 1,...,m is quite
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relevant since it determines the properties of the underlying process. Monteiro et al) (2015)
generalized the bivariate model proposed by Pedeli and Karlis (2011) to the periodic case by
assuming periodic bivariate sequences of innovations. Two different distributional forms of
the innovations have been proposed in both papers: bivariate Poisson and bivariate negative
binomial. Much attention has been devoted to the Poisson distribution for the innovation
process. However, implying equidispersion (mean equals variance) in real-life events may not
reflect the true nature of the data, limiting the applicability of the Poisson distribution. In
the periodic bivariate case, Monteiro et al] (2015) has shown the bivariate negative binomial
distribution for the underlying innovations series allows for more flexibility, due to the in-
volvement of the overdispersion parameter, than the same model with Poisson innovations.
Thus, in the sequel, the distribution of the innovation processes is assumed to be periodic
multivariate negative binomial (MVNB) distribution, which can account for overdispersion

(variance exceeds mean), a common feature in real data applications.

2.4.1 Multivariate negative binomial distribution and basic properties

For a fixed v (v = 1,...,5), let Ay = [A1.y Ao --- Amo]? with positive \j, (j = 1,...,m)
and positive dispersion parameter 3,. Let Z;; with ¢ = v + ns be random variables having
the Poisson distribution with mean nA;,, where 1 is a r.v. which represents an unobserved
heterogeneity that follows a Gamma (8,1, 8, !) distribution. In the aforementioned set-
ting, the innovations Z;; follow a multivariate negative binomial distribution, denoted by

MVNB(A,, 8,). Hence, the joint probability mass function in () now takes the form

h(zly 25wy Zm) = P(Zl,v-I—ns = Z1, Z2,v+ns =22y, Zm,v—l—ns = Zm) =
~ -1 =20z :
r (Bv Y Z'j) By . m T m Ay
= — - = m Bv_l + A j,v Lo (276)
L(By 1) <5v f+ Zj:l /\jvv> ; ’ gl_Il %!

for (z1, 22,...,2m) € Nj".
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Notice the marginal distribution of Z,; is univariate negative binomial with parameters 3, 1

and pj, (j=1,...,m;v=1,...,s) given by

Bt

=—"Y 2.77
)\j,v + 5171 ( )

Pjv
The multivariate negative binomial distribution defined in () has also been used by Mar-
shall and Olkin (1990), Boucher et al) (2008), Cheon et al! (2009) and more recently, by Pedeli
and Karlis (2011, 2013a).
As previously mentioned, the innovation process {Z;}, t =v+ns; v=1,...,s and n € Ny is
generally defined as a periodic sequence of independent random vectors with mean E[Z;] = d;
in () and variance-covariance matrix ), =1 in () Thus, with the specification of

a MVNB distribution for the innovation process {Z;}:

1oy
E[Zj,erns] = Bv ! & = )\j,m (278)
pj,v
_ 2 a1 lopie
VCI/I“[Zj,v+ns] = Uj,v = Py pQ = )\],U(l + BU)‘j,U)a (279)
j7v
COU(Zj,v-&-nsa Zk,v+ns) = Ojkop = BojwAkv (2.80)

forafixedv (v=1,...,s),j #k; j,k=1,...,m and probability p;, defined in () The

mean of Zj,4ns in (R.78) is equal to () The variance and covariance of Zj ,4ns in (2.21))

and (), now with MVNB innovations, take the form in (M) and (M)7 respectively.

Hence, Var[Z; yins| exceeds E[Z;,1ns|, this setting clearly accounts for overdispersion. For
each season v, the covariance between two components defined in () is always positive.

Using the above specification for the joint distribution of the innovation process {Z;} in
(), we can now define a PMINAR(1) model with MVNB innovations. The vector of expec-
tations ;¢ (j =1,...,m) defined in () has the same elements as equation () because

E[Zjins) = Njo in (R.78), e,

v—1 . . s—(v+1) )
p 0¢§fiAj,v—k + %) ZO PN s
E[X',v+n8] == = (2'81)
’ 1-f)
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for a fixed v (v =1,...,s). From (ﬁ) and (ﬁ), the variance-covariance matrix ) x, in

() has symmetric matrices », ; (j =1,...,m) with diagonal elements equal to

VCLT[ 7 v—l—ns] -

v—1

1- («ps s> {k;o

[% Yo\ N + 6 (1 907(,];1) Ajo—k +
+ (%E,];)g) Ajo—k (1 + Bo—kAjo—k) ] (Z [905 2o Ao +
+ o (1= o) Mo + () N4 Bien)| | 232)

and off-diagonal elements equal to

CO'U( Jyvtns, Xj,’l}+ns+l) (101()—i)-l ZVCL’I“[ Js v+ns]

2.4.2 Parameter estimation with MVNB innovations

For the PMINAR(1) model with multivariate negative binomial innovations, the vector of un-

known parameters 6 in () is a (2m + 1)s-dimensional vector as

0 := (alw"?am,)‘la"'aAmmg) (283)

with s-dimensional vectors

Oéj = (Oéj71,...,04j75) N >\j = ()\j,la"'7)\j,8) 5 ﬁ = (ﬂl,. . -;Bs) ] = 1,. co,m. (2.84)
2.4.2.1 Yule-Walker estimation
The Yule-Walker (YW) estimator of the vector of the (2m + 1)s unknown parameters in

() is Oyw = (&%/W,...,&%W,X%/W,...,X%W,BYW). The YW estimators /)\\}/XV and

= or parameters \;, in A; and o, , in a; from 4), are defined in 6
YW(J L,...,m) forp Ajo In Aj and oy jt ()v defined i ()
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and in (), respectively. The YW estimator for parameter (3, YW (v=1,...,s), follows

v
from equations ( E i and E a),

COU( Ju+ns; Xk v+ns) =

1 vt O G
v,0Pv,v
:W (pvl(pvzﬁv Jv— 7,>\kv Z+W Soszgpszﬁv 58— l)‘ks 7
1 —pss¥ss im0 1 —pss0ss im0

then i
(1 (ngg¢g2> CO'U( gv—l—nSan v+ns)

v—1 . —(v+1) .
;) 905;]7@) 905;’;) )\j,v—iAk,vfi + (P1(JJ1)1901()]?U Z (Pg Z)<P£; z) )‘] S— z>\k s—1

The sample equivalent of Cov(Xj y4ns, Xk v4ns) €xpressed in () yields the YW estimator

for parameter (3,

<1 - @gjgsogfs) Yikw(0)

s—(v+1)
~ k k
E : 905,], SDU i ] v— z)\k v—i SDQ(JJI)JSOS)JZ § : (ngz)@g Z)Aj s— z)\k s5—i

AYW
By

, (2.85)

forv=1,...,sand j#k;j,k=1,....m

2.4.2.2 Conditional maximum likelihood estimation

The conditional maximum likelihood (CML) estimator of the vector of the (2m + 1)s un-
known parameters in () is §CML = (afML ... ,&%ML,X?ML, . .,:\\,C;ML,BCML). Thus

assuming MVNB innovations, the conditional density defined in () takes the form

Du (Xv+ns |Xv—l+ns) =

g1 g2 gm

=D > 2 (H fi (7“;)) (ml,v-i-ns —T1,T204ns — T2+ Tmotns — Tm) =

T1 =0 T9= =0 rm—O
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o o m D (8 + Sy @gns —1)) -1 a
S Sp IR ol b 1) A (riters)

r1=07r2=0 Tm=0 j:l

— 2751 (@j0tns—T5)

X ﬁv_l + Z Aj,v H
=1 j=1

(xj vtns—Tj)

2.86
x] v+ns — j)! ( )
with g; = min(xjy—14ns, Tju4ns) and f;(r;) in () for 7 = 1,...,m. The conditional

log-likelihood function is given by

N—-1 s

C(0) = In(L(8]x)) = Z Zln (Pv(Xv4ns|Xv—14ns)) (2.87)

n=0 v=1

with transition probabilities py,(Xy+ns|Xy—1+ns) defined in equation () Hence, the first-
order partial derivatives of the conditional log-likelihood C'(8) in () are obtained through

N—-1 s
pv X’L)—‘,—TLS’X’U 1+ns)
o)=Y Y 2% — ) (2.88)
n=0 v=1 pv v+ns|dv—1+ns
For a fixed v (v=1,...,s), let the vector of unknown parameters be
Ny = (al,va- -'7am,vaA1,v>-'-7)\m,v>Bv)' (289)

The first-order partial derivatives of function py,(Xytns|Xy—1+4ns) (Pv for short) in () with

respect to the autocorrelation coefficients o, (j =1,...,m) are:

dp T1w-1
. [pv(xv+ns - (17 0,... 70)|Xv71+ns - (L 0,... ,0)) - pv(xv+n5|xv71+n8)] )
80(1,1, 1— aq .y

Op T2 v—1
= Lo Ene [pv(xv+ns - (07 1,... 70)’X1}—1+ns - (0, 1,... 70)) - pv(xv+ns|xv—l+ns)] )
8052’1, 1- a2y

Opy _ Tmu—14ns
Oam, v 1—ame

[pv(xv+ns - (07 07 ey 1)’Xv—1+ns - (07 07 ey 1)) - pv(xv+ns‘xv—1+ns)] .
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Partial derivatives of function p, with respect to the parameters A;, (j =1,...,m) and f,,

regarding the multivariate function h(z1, 22, . .., z;,) defined in () are:

g1 g2 gm m

apv(xw&n)\slxvuns Z Z Z H f] (7”]) )\Z] -1 + izﬂ
Jiv r=079=0  rm=0 \j=1 v j=1
m -1
X ﬁv_l + Z /\jﬂ, h(zl, 29, ... ,Zm) (2-90)
j=1

and

g1 92

apv(Xv—l-gs’Xv 1+ns Z Z Z H fj(r]) 61}_2 (0 (51,_1) - Bv_l + Z Zj
j=1

r1= 07’2 0 Tm—O j=1

m
1
+In|1+5, Njw | + == — 1| h(z1,22,- -, 2m) (2.91)
jzzjl Bvl +Z§n:1 )\]’U
0 _
Wlth Zj = xj,v—f—ns - Tj? j = 17‘ <oy . FOI' w 7é v, Vv = ]-,.. ., St pv(xv+ns|xv 1+ns) = O

O
First-order partial derivatives of the transition probability function py,(Xyins|Xy—14ns) are

available in Appendix @

Differentiating the conditional log-likelihood function C(8) in () partially with respect
to all (2m + 1)s parameters and setting the derivatives in () to zero, we obtain the fol-

lowing system of first-order partial derivatives:

(9C) _ i1 m
aajﬂ) ) ) ) 9
8aCA§i) :07 j — ]'727 7m (U: ]" 75)7
oc(e) _
0By
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i.e.,
( NI_—Il T1 - 14ns (pv(xv«l»ns —(L,0,...,0)[xp—14ns — (1,0,...,0)) 1) _0
n=0 1— Qg .y pv(xv-i-nslxv—l-‘rns)
Nﬁl T2,v—14+ns (pv(xv—l-ns - (O, 1,..., 0)|XU—1+ns - (0; 1,... ;O)) o 1) —0
n=0 1- a2y pv(xv+ns|xv71+ns)
NI—_Il xm,vflJrns (pv(xv+ns - (07 07 ey 1)‘X’U71+TLS - (07 07 ey 1)) _ 1> _ 0
n=0 1— aTTL,U pv(xv-l-ns‘xv—l-‘rns)

Nt 1 8pv(x1)+ns‘xu—l+ns) -0
n=0 Pv (Xv+ns|xv71+ns) (9)\1’1,

N1 1 apv(Xerns‘val«Hls) -0
n=0 pv(x1)+71,s|xv—1+ns) aAQ,v

Nt 1 8pv(xv+ns‘xv—1+ns) _ 0
n=0 Pv (xv+ns|xv71+ns) 8)\,”,1,

N1 1 apv(xv-i-ns‘xv—l-&-ns) -0
n=0 Pv (X1)+ns|xv—1+ns) 851}

Opy(x Xy Opy(x Xy
with PoCeensBomiens) 5y 5y i ([od) ang 222 tnsXeotens) 5 po
ONiw 9p.
The above system of equations does not provide explicit CML estimators for the parame-
ters. However, they can be numerically obtained by using common statistical packages in

R. Asymptotic properties of the CML estimator §CML of @ are given below. Results from

Billingsley (1961) are applied.

Theorem 2.2. The conditional mazximum likelihood estimator 5CML of 0 is asymptotically

normal

VN@cur - 0) % N(0,17(6))

where 1(0) represents the Fisher information matriz
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with matrices M, (v=1,...,s) given by

i 92C(0) 92C(6) 92C(0) 22C(0) o2ce) 1 ]

—F { 9a? } B [ﬁlmaam,u} —F {Tm,vam,u] e —FE [aaTuaAm,v} —E [aal,uaﬁv}
320(9) 320(9) 320(9) 620(9) 820(9)

-B [aam,vaal,v] e Tk [aaaw} —E {aam,ml,u} ) {aam,vmm‘v} -B {aam,vaﬁv}
92C(6) 92C(6) 920(6) 92C(6) 92C(6)

—E [am,vaal,v] N {axl,,,aam,u} —E %, e B {axl,,,axm,v} —E [axl,vaﬁu}
820(9) 320(9) 82C(6) 82C(6) 320(0)

-k {a,\m,vaal,v} e —F [a,\myvaam,v} -k {axmyvaxl,u} -EB {6,\2,,,,1,} —EB {{»\m,vaﬂv}
P2C(0) 92C(0) 92C(0) 92C(0) 92C(0)

-F [Maal,v} e B [aﬁvaam,u} —E [aﬁvaxl,v} e Tk [aﬂq,axm,} —E [ 52 }

Proof. This theorem is a particular case of theorem 2.2 in Billingsley (1961). For each season
v(v=1,...,s), py(+]-) is the transition probabilities in () of the PMINAR(1) model, there-
fore the regularity conditions in Billingsley’s Theorem 2.2 are satisfied. We postpone those

assumptions to the Appendix @ O

2.4.2.3 Composite likelihood estimation

The composite likelihood (CL) estimator of the vector of the (2m + 1)s unknown parameters
in () is 5(;,; = (afl,...,alr, XICL, e X%L, BCL). The bivariate marginal log-likelihood
function between two random elements X, and X, can be defined as

N—-1 s

lab(e; Xa, Xb) = Nis Z Z lO.nga,Xl7 (ma,ernSa Thv+ns ‘xa,v71+nsa Thy—1+ns; 0)7

n=0 v=1

where the corresponding bivariate marginal probability density with bivariate negative bino-
mial innovations is given by () The bivariate distribution between the innovation terms

Zy and Zy, hyz, z,(ka, kp), is a particular case (m = 2) of the multivariate negative binomial
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distribution in (), therefore,

fXa,Xb (xa,v+nsa xb,v+ns|xa,v71+n57 Thov—1+ns; 0) =

g1 g2 T 1+
a,v—1+ns z —k _
— § E ’ Oé(l:ll;v-,—ns a(l — aayv)za,vflﬁ»ns ma,v+n5+ka X

ka=0 kp= La,v+ns — ka

Lhy—1+ns Th ptns—k

1
b1 _ Th,v—1+ns—Tb,v+ns Tk r (ﬁv + ko + kb)
b,v (1 ab,v) X T —1
Tpvt+ns — kb (/BU )

_ B k Ky,
/81; ! — —(ka+k Aa?v )\b,v
x (51 W (B 4 Aaw + Apy) ) o Tl (2.92)

with g1 = min(Zev1ns: Tav—14ns) and go = Min(Tpyins, Thy—14ns). Lhe composite log-

likelihood function cl(0;x,,%p) is comprised of all the bivariate log-likelihood functions

cl(0;xq,Xp) Z Z Wap lap(0;Xa, Xp), (2.93)

a=1 b=a+1
where w, ;, is a constant weight for 4.
2.5 Forecasting
We consider the forecasting of future values X, (t =v+ns; v=1,...,s) of the periodic

MINAR(1) process, given past observations through time ¢ = v + ns for v = 1,...,s. Let
h =wu+ls for u=1,...,s throughout this section. Due to the definition of the model and

by iterating equation (@), the j-th component X;; can be expressed as
4 n—1 n—1 /k—1
Xt = <H ¢j,ti> 0 Xjtn + Z (H ¢j,tz‘> 0Lji+ Zjy
i=0 k=1 \i=0
with ¢;; defined in (@) and Z;; in (@) Then

X £ ¢ o X n+ZCﬁ) © Zji—k; (2.94)
k=0
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where, for ¢ > ¢

i—1
H (btfk 3 > 0

Gt =4 k=0
1 ,2=10

and also (;; := Ct,u(Cs,s)l fori=v+Is; v=1,...,s, leading to

d ~(j) § :
Xj,v+ns+h vtnsth,h © J vtns T Cv—i—ns—l—h k ] v+ns+h—k-

Since h =u + s for u =1,...,s, it follows that

u+ls—1

: 4 () , G
X],v+ns+h - Cv—i—u—i—(n—‘rl)s,u-‘rls © XvaJrns + Z Cv—i—u—l—(n-‘,—l)ch © Zjutut(ntl)s—k
k=1

d : Y/
= 15Qu,u (Cé,s)) © j,v—i—ns + Yj7v+u+l5

with

-1 s—1

v+u+ls - E Ceruk ]v+u+ns k-t § E Cerqu (n+1)s,k+utws Zj,v+(n+l—w)s—k'
w=0 k=0

One way to generate the h-step ahead prediction is to employ the mean, median or mode of
the predictive distribution of X, ps+n|Xyt+ns as a point forecast. The median and mode are
considered as coherent predictions (integer-valued) but the mean is not. The h-step ahead

point predictor that minimizes the mean square error (MSE) is given by

~

Xj,v+ns+h - E[Xj,v+ns+h|Xj,v+ns]

. N\ L
=F |:C1(1{2u,u (Cé,g) ° Xj,v+ns|Xj7v+ns} + E[Yj,v+U+ZS]a (2‘95)

where

v—1 -1 s—1
Z C’L)Jru k ],v+u+ns kT Z Z Cv—i—u—i— n+l)s,k+utws Zj,v+(n+l—w)s—k =
k=0

w=0 k=0
-1
_2 :C’U+uk J,vt+u— k+§ :
w=0

E[Y v+u+ls =K

S—

Cerqu (n+1)s, k+u+ws/\ﬂ vt(nt+l—w)s—k (296)

1
k=0
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with E[Zj y4ns] = Aje in () For the particular case, h = 1, the one-step ahead predictive

function is

Po(Xot14ns|Xotns) =

g1 g2

m
= Z Z Z H fj(Tj) h(xl,v+1+ns —T1,T2u4+14ns — T2y s Tmuo+l4+ns — Tm)

(2.97)

with g; = min(@;y4ns, Tjvti4ns), J = 1,...,m and MVNB distribution defined in ()

takes the form

h(xl,v—l-l—l-ns —T1, X2 v+14ns — T2, -« - s Tmu+l4ns — Tm) =
—1
r (51;_1 + ZT:1(xj,v+1+ns - Tj)) Bt &
= X
L6 Bt + 20 A

- ZT:l (T5,04+14ns—T5)

X /6171 + Z )\j,v H
=1 ‘

Jj=1

)\(x] v+l4ns—Tj )

(Tjvt14ns — 15)!

Furthermore, from equations (ESI) and (E9a) the one-step ahead predictor of X, nst1

takes the form

Xj,v+1+ns = E[Xj,erlJrns |Xj,v+ns]

N T )
Z %+1 k Ajo+1-k + 9%+1 v+1 ;} Ps,i Aj,s—i
— k=0 =
- o0 *
Ps,s
-1 s—1
+ Z C1)—&—1 kAjo+1-k T Z Cv+1+ n+l)s k+1+ws)\3 v+(nt+l—w)s—k- (298)
w=0 k=0

In order to evaluate the prediction performance given by the mean, median or mode of the
predictive distribution, Monteiro et al| (2015) has considered the square root of the mean
squared error (RMSE), the mean absolute error (MAE) or the loss function everything or
nothing (LFEN).
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2.6 Simulation study

The Yule-Walker (YW), conditional maximum likelihood (CML) and composite likelihood
(CL) estimators of the PMINAR(1) model were compared through a simulation experiment for
m = 3 (trivariate) and with periodic trivariate negative binomial innovations. The choice
for this dimension is due to the complexity of the model and also because a real data appli-
cation with three series is presented in the following section. Hence, a simulation study in
the trivariate context is suitable. The simulation study was carried out in R using the optim
function for the optimization of the likelihood functions and adopting convenient parameter
transformations. See Appendix @ for R functions concerning the data generation and esti-
mation in the present scenario.

Count series were generated assuming the innovation process {Z;} follows jointly a periodic
trivariate negative binomial distribution with parameters (A1, Az, A3, 3). We have set period
s = 4, thus the vector of unknown parameters € in () is 0 := (a1, a2, a3, A1, A2, A3, B)
with o = (1, @52, 053, 054), Aj = (Nj1, N2, A3, Aja) for j =1,2,3and B = (51, B2, 83, Ba),
leading to a total of 28 parameters. This simulation study contemplates the following set of pa-
rameters: a; = (0.53,0.75,0.62,0.83), o = (0.72,0.85,0.56,0.91), a3 = (0.83,0.60,0.41, 0.58)
and A1 = (4,2,3,5), A2 = (5,3,1.2,2), A3 = (3,1.6,2,4) and 3 = (1.6,0.9,1.8,1.2). Three
alternative samples sizes where considered, in particular, n = 400, 1000, 2000. Since n = sNN
then we have N = 100, 250,500 complete cycles. For each experiment we conducted 200
independent replications.

The simulated data sets that produced YW estimates in an inadmissible range were disre-
garded and iterations were continued till reaching the specified number of 200 replications per
experiment. The tendency of the YW method to produce inadmissible estimates was greater
for smaller sample sizes. YW estimates were used as initial values in numerical routines for
the optimization procedure of CML and CL methods. Comparison of the YW, CML and CL
estimators was made in terms of the mean square error (MSE) and the biases of the produced
estimates. Tables @—@ summarize the estimates of the parameters of the periodic trivariate

INAR(1) model with trivariate negative binomial innovations and includes MSE in parenthesis.



Table 2.1: YW, CML and CL estimates for a; = (a1, a2, 53, j4) with j =1,2,3. Mean square error in parenthesis.

n =400 n =1000 n =2000
(1,052,053, 054) | YW CML CL YW CML CL YW CML CL
(0.53,0.75, 0.62, 0.83)
11 0.521 0.531 0.531 0.528  0.531 0.531 0.528 0.529 0.529
(0.0018)  (5.1x10~7)  (0.0002) (0.0001)  (0.00002)  (0.00004) (0.0001)  (0.00002)  (0.00003)
G2 0.746 0.752 0.751 0.750  0.751 0.751 0.752 0.749 0.748
(0.0001)  (0.00005)  (0.0008) (0.0006)  (0.0009)  (0.0009) (0.0001)  (0.00002)  (0.00003)
13 0.608 0.618 0.617 0.617  0.621 0.620 0.615 0.620 0.619
(0.0004)  (0.0026)  (0.00002) (0.0074)  (0.0011)  (0.0013) (0.0005)  (0.00006)  (0.00006)
1.4 0.789 0.833 0.832 0.826  0.830 0.830 0.825 0.830 0.830
(0.0111)  (0.0007) (0.0006) (0.0020)  (0.00002)  (0.00001) (0.0011)  (0.00007)  (0.00006)
(0.72,0.85, 0.56, 0.91)
2.1 0.717 0.718 0.717 0.739  0.719 0.719 0.740 0.720 0.720
(0.0027)  (0.00002)  (0.0038) (0.0001)  (0.00003) (0.00002) (0.0010) (7.5x107%)  (0.00006)
G229 0.845 0.854 0.852 0.845  0.851 0.851 0.849 0.851 0.850
(0.0001)  (0.0008)  (0.00003) (0.0002)  (0.00002)  (0.00002) (0.0004)  (0.00003)  (0.00003)
Gi23 0.552 0.559 0.560 0.559  0.559 0.559 0.561 0.560 0.560
(0.0002)  (0.0025)  (0.00009) (0.0006)  (0.00007)  (0.00007) (0.0002)  (0.00004)  (0.00002)
G4 0.894 0.910 0.910 0.910  0.910 0.911 0.906 0.909 0.910
(0.0105)  (0.0001) (0.0002) (0.0003)  (0.0003)  (0.0003) (0.0001)  (0.00001)  (0.00002)
(0.83,0.60, 0.41, 0.58)
31 0.823 0.832 0.832 0.832  0.831 0.831 0.830 0.830 0.830
(0.0071)  (0.0005) (0.0013) (0.0001)  (0.00006)  (0.0001) (0.0003)  (0.00001)  (0.00003)
32 0.596 0.603 0.603 0.601  0.600 0.600 0.599 0.601 0.602
(0.0011)  (0.0008) (0.0020) (0.0020)  (0.00002)  (0.0004) (0.0001)  (0.0003) (0.0004)
33 0.391 0.411 0.410 0.411  0.409 0.409 0.407 0.411 0.411
(0.0002)  (0.0001) (0.0009) (0.0004)  (0.0037)  (0.0040) (0.0001)  (8.2x1075)  (0.00002)
3.4 0.545 0.587 0.588 0.566  0.580 0.580 0.578 0.580 0.580
(0.0002)  (0.0020) (0.0046) (0.0155)  (0.0003)  (0.0003) (0.0028)  (0.0027) (0.0028)
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Table 2.2: YW, CML and CL estimates for A; = (Aj1, Aj2, Aj 3, Aj4) with j =1,2,3. Mean square error in parenthesis.

n =400 n =1000 n =2000
(N1 N2, Ajas Aja) | YW CML CL YW CML CL YW CML CL
(4,2,3,5)
ALl 4182  3.909  3.927 3.986  3.981  3.988 3.995 3.999 4.033
(0.5357)  (0.7701)  (0.1028) (0.0556)  (0.0012)  (0.0059) (0.0651)  (0.0164)  (0.0179)
Ao 2.011  2.008  2.012 2.001 1.997  2.005 1.977 2.009 2.007
(0.0109)  (0.0829)  (0.2645) (0.0396)  (0.1528)  (0.1499) (0.1510)  (0.0042)  (0.0057)
A3 3.146  3.024  3.027 3.078 2980  2.984 3.063 2.978 2.986
(0.3970)  (1.1090)  (0.0103) (0.7042)  (0.0499)  (0.0576) (0.0712)  (0.0520)  (0.0502)
A4 5280  5.059  5.067 5011  5.027  5.031 5.031 4.983 4.997
(2.2418)  (0.3154)  (0.0003) (0.0153)  (0.1633)  (0.1761) (0.2178)  (0.0196)  (0.0157)
(5,3,1.2,2)
Ao 5.243  4.924  4.954 4965  5.010  5.022 4.965 5.005 5.042
(0.2664)  (1.0982)  (0.2708) (0.0958)  (0.0391)  (0.0247) (0.6790)  (0.0912)  (0.1081)
Aoo 3.071  3.005  3.017 3.040 2970  2.986 3.009 3.005 3.008
(0.0299)  (0.2824)  (0.0124) (0.0196)  (0.4746)  (0.4608) (0.1941)  (0.00002)  (0.00003)
A3 1.324 1220 1215 1.221 1.196  1.201 1.203 1.188 1.184
(0.0097)  (0.2301)  (0.0309) (0.0902)  (0.0027)  (0.0021) (0.0170)  (0.0161)  (0.0156)
Ao4 2.110  2.026  2.029 1.986  1.992  1.993 2.027 1.998 2.001
(1.0020)  (0.1524)  (0.0143) (0.1429)  (0.1044)  (0.0899) (0.0002)  (0.0004)  (0.0007)
(3,1.6,2,4)
A3 3.061 2929 2942 2.950 2986  2.994 2.989 2.992 3.017
(0.5619)  (1.0935)  (0.0318) (0.0083)  (0.0073)  (0.0019) (0.0397)  (0.0444)  (0.0507)
A32 1.619  1.587  1.590 1.591 1.587  1.592 1.598 1.606 1.601
(0.0149)  (0.0922)  (0.0391) (0.0788)  (0.0901)  (0.0764) (0.0521)  (0.0797)  (0.0956)
X33 2.150  2.004  2.008 2.027  2.006  2.003 2.036 1.987 1.989
(0.0057)  (0.4347)  (0.2044) (0.0127)  (0.0425)  (0.0500) (0.0002)  (0.0250)  (0.0204)
A34 4167  4.009  4.015 4.039 3981  3.978 4.001 3.997 4.001
(0.1478)  (0.3033)  (0.2086) (0.1328)  (0.1158)  (0.0882) (0.0289)  (0.0594)  (0.0582)
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Table 2.3: YW, CML and CL estimates for 3 = (51, B2, 83, f1). Mean square error in parenthesis.

n =400 n =1000 n =2000
(81, B2, B3, Ba) YW CML CL YW CML CL YW CML CL
(1.6,0.9,1.8,1.2)
il 1.085  1.607  1.609 1.201  1.607 1.614 1.175  1.599 1.611
(0.0128)  (0.0646)  (0.2239) (0.0984)  (0.0085)  (0.02105) (0.0001)  (0.0026)  (0.0007)
By 1481 0915  0.902 1.529  0.903 0.903 1.554  0.895 0.897
(0.3959)  (0.0055)  (0.1054) (0.4486)  (0.0106)  (0.0137) (0.1550)  (0.0007) (1.2x1077)
Bs 2.668  1.844  1.814 2.826  1.839 1.832 2.880  1.793 1.798
(0.1454)  (0.9795)  (0.5293) (0.3356)  (0.5068)  (0.6481) (0.0224)  (0.0025)  (0.0031)
By 1.045  1.227  1.231 1.139  1.196 1.205 1.128  1.203 1.202
(0.9726)  (0.0607) (0.1194) (0.5961)  (0.0083)  (0.0051) (0.3896)  (0.0085)  (0.0115)
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86 Chapter 2. PMINAR(1) model based on the binomial thinning operator

Specifically, Table @ reports the estimates for autocorrelation parameters o (j = 1,2,3),
where small MSE’s characterize all estimates of (a1, g, a3). The performance of the esti-
mators 5\j (j = 1,2,3) in Table @ and estimator B in Table @, is slightly worse. The YW
estimator does not perform well for all the parameters involved in the model, revealing to be
a not so good estimator for the dispersion parameter 3. The estimates obtained by adopting
either the CML or the CL method are very close to the real parameter values, even in the
case of a moderate sample size (n = 400). For larger samples (n = 1000 and n = 2000), both
estimators seem to perform well and in a similar way.

Graphical inspection is given through the boxplots of the biases of the produced estimates.
Figures @-@ display boxplots of the biases of the estimates for a; = (o1, 2, 03, 54),
with j = 1,2,3. Figures @—@ refer to the boxplots of the biases of the estimates for
the parameters regarding the trivariate negative binomial distributed innovation process
Aj = (N Aj2, N3, 054), 7 = 1,2,3, and B = (B1, 2, 83, Ba), respectively. The effect of
sample size on the behavior of the estimators can be seen in Figures @—@ As expected,
increasing the sample size improves the performance of all estimators in terms of both loca-
tion (median closer to zero) and dispersion (narrower interquartile ranges). Small and not
definite differences are observed between CML and CL methods, regarding both location and
dispersion. Therefore, this indicates the superiority of CML and CL estimators over the YW
estimator.

Closing this section, it is worth mentioning that numerical maximization of the conditional
maximum likelihood was very time consuming. The composite likelihood method was sug-
gested in order to overcome the computational difficulties of the conditional maximum like-
lihood approach in multivariate models. The CL method requires significantly less time for

the optimization of the likelihood function without obvious losses in precision.
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Figure 2.1: Boxplots for the biases of the YW, CML and CL estimates of the parameter
a; = (a1,1,01,2,013,014). From left to right, the first three boxplots display the biases of
a1 for the three methods with n = 400, 1000, 2000. The same information follows for &1 o,
a3 and aq 4, respectively.
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Figure 2.2: Boxplots for the biases of the YW, CML and CL estimates of the parameter
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Figure 2.3: Boxplots for the biases of the YW, CML and CL estimates of the parameter
as = (a3,1,032,033,034). From left to right, the first three boxplots display the biases of
a1 for the three methods with n = 400, 1000, 2000. The same information follows for &3,
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Figure 2.4: Boxplots for the biases of the YW, CML and CL estimates of the parameter
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Figure 2.5: Boxplots for the biases of the YW, CML and CL estimates of the parameter
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5\2,1 for the three methods with n = 400, 1000, 2000. The same information follows for 5\272,
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Figure 2.6: Boxplots for the biases of the YW, CML and CL estimates of the parameter
A3 = (A3,1,A32,A33,A34). From left to right, the first three boxplots display the biases of
5\3,1 for the three methods with n = 400, 1000, 2000. The same information follows for 5\372,
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Figure 2.7: Boxplots for the biases of the YW, CML and CL estimates of the parameter
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2.7 Application

This section illustrates the PMINAR(1) model with a trivariate real environmental data set.
The data refers to the number of fires collected in three counties in Portugal, namely Aveiro,
Coimbra and Faro, during 30 years, from 1981 to 2010. The data are monthly observations
based on the mean of daily fires in those counties. This collection of fires can be seen in
Figure @ The number of fires in Faro is higher than in the other two counties. Creating
appropriate time series models for handling multiple time series together is of great interest.
In fact, forest fires is a major problem in many countries, as they are a threat not only to

forests but also to people and their surroundings. In Europe, Portugal is the country with
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Figure 2.8: Number of monthly fires in Aveiro, Coimbra and Faro counties in Portugal.



2.7 Application 95

the highest number of forest fires per unit surface and per number of inhabitants (San-Miguel
and Camia (2009)). Fire frequency is markedly different from north to south and from east
to west (Nuned, 2012). The distribution of fires across the year follows a regular pattern,
strongly influenced by seasonal variations of temperature and rainfall. Hence, it is expected
to find the highest number of fires in the summer season, with a peak in July/August and
the lowest number of fires in the rainy season. The sample autocorrelation function (ACF)

in Figure @ reveals a periodic pattern of 12 months.

Aveiro

0z 04 06 08 10

1 1 1
—

1

1

1

I

T

1

1

I

T

1

1

I

T

1

1

|
_—

i

|
—
—_—

!
Py

1

1

1

|

1

1
.

I

1

1

L

Coimbra

o0&

oo 0.4
I\ 1
|
1
|
1
|
|
—
i
|
1
1
1
|
1
1
1
1
|
1
1
1
1
|
1
1
1
1
|
1
1
1
1
|
1
1
1
1
|
1
1
|
T
|
1
|
T
1
|
|
T
:
|
!
H—
1
|
1
1
1
1
|
1
1
1
1
|
1
1
1
1
|
1
1
1
1
|
1
1
1
1
|
1
!
1
!
I
1
1
1
I E—
i
1
!
|
1

g : ””””””” *”’] ”””””””” S N LLI.*lll
e e e

Figure 2.9: Sample ACF for the number of monthly fires in Aveiro, Coimbra and Faro counties
in Portugal.
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The mean values and standard deviation (sd) of the number of fires per month are shown in
Figure and cross-correlations in Figure . In the three counties, most months have
variance greater than the mean, implying overdispersion. The innovation series plays an im-
portant role in the specification of the periodic trivariate INAR(1) process being responsible
for both the introduction of dependence and the determination of the joint distribution of

the three series. The distribution for the innovations was assumed to be trivariate negative
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Figure 2.10: Sample mean and standard deviation for the number of monthly fires in the
Aveiro, Coimbra and Faro counties in Portugal.
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binomial, which only allows for non-negative correlation as established in () However,
Figure displays a slight negative cross-correlation (-0.18) in August between Aveiro and
Coimbra. The counties of Coimbra and Faro also have a small negative cross-correlation in
August (-0.25), September (-0.17) and October (-0.22). The significance of these correlations
was tested and the null hypothesis was not rejected for the usual significance levels. The
periodic trivariate INAR(1) model with period s = 12 and trivariate negative binomial in-
novations is appropriate for series displaying overdispersion. For this particular application,
the Yule-Walker estimates are non-admissible for some months, hence are not presented. We
were aware this could happen. Table @ summarizes the CML and CL estimates and the
corresponding standard errors (SE) obtained by fitting the periodic trivariate INAR(1) model
with period s = 12 and trivariate negative binomial innovations. The SE were calculated nu-
merically from the Hessian matrix during the optimization procedure in R. For some months,
the estimates from both methods (CML and CL) are very close, however this does not always
happen. Some loss of efficiency is noticed when the CL method is employed but we have to
remember that the CL is an approximate likelihood, leading to inevitable losses. The CL
method could be regarded as a satisfactory approach for the estimation of the unknown pa-
rameters of the PMINAR(1) process, especially when other alternatives are not available. The
CL estimates could also be used to initialize the CML method. Some estimates of the auto-
correlation parameters in Table @ are not significant, namely for the months of February,
March and November, suggesting that in those months the number of fires is being mainly

modeled through the innovation process.
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Figure 2.11: Sample cross-correlations for the number of monthly fires in the Aveiro, Coimbra
and Faro counties in Portugal.



Table 2.4: CML and CL estimates from fitting the periodic trivariate INAR(1) model with trivariate negative binomial innovations.
Standard errors in parenthesis.

Conditonal maximum likelihood (CML)

Composite likelihood (CL)

Aveiro Coimbra Faro Aveiro Coimbra Faro
o A1 as A2 as A3 B8 aq Al as A2 as A3 B8
January 0.0313 3.0149 0.3408 4.1279 | 0.1502 2.4818 2.5052 0.1861 2.6684 0.6528 3.8223 | 0.1065 2.7870 2.4862
(0.0987) (0.9819)  (0.2676)  (1.3166) | (0.0747) (0.8337) (0.7762) || (0.0610) (0.5379)|  (0.1516)  (0.7472) | (0.0629) (0.5944) (0.4834)
February 0.4226 6.0551| 4.48 x10796 9.2665 | 0.2298 3.0056 2.1378 0.4866 5.9225 | 4.49 x107% 9.4738 | 0.2549 2.9024 2.1950
(0.1467) (1.7365)  (0.1598)  (2.6106) | (0.0936) (0.9017) (0.6091) || (0.0998) (1.0455) |  (0.0764)  (1.5841) | (0.0627) (0.5427) (0.3848)
March 0.1903 10.7851 0.0002 7.8996 | 0.2748 5.8071 1.7431 0.3822 9.7927 0.0001 8.1526 | 0.2233 6.1628 1.6039
(0.0666) (1.9262)  (0.0605)  (1.9016) | (0.0394) (4.6350) (0.0738) || (0.0823) (1.5034) |  (0.0764)  (1.2357) | (0.0923) (0.9605) (0.2695)
April 0.0640 10.0523] 0.1181 7.1002 | 0.6095 5.7017 1.9305 || 0.2057 8.4738 0.1689 6.8685 | 0.6720 5.5386 2.0476
(0.0810) (2.7908)  (0.0866)  (1.9802) | (0.0761) (1.5806) (0.5550) || (0.0531) (1.5144) |  (0.0647)  (1.2316) | (0.0512) (0.9673) (0.3673)
May 0.3971 7.9989 0.3601 11.2745| 0.3379 17.1677 1.6314 || 0.4920 7.1231 0.3962 11.2488 | 0.3836 17.3825 1.7389
(0.0805) (2.1025)  (0.1091)  (2.8277) | (0.0957) (4.1738) (0.4200) | (0.0489) (1.1816) |  (0.0832)  (1.7882) | (0.0749) (2.6518) (0.2761)
June 0.6404 11.0332 0.3038 19.0123| 0.6179 37.2652 0.5579 0.6682 10.6394 0.3994 17.9422 1 0.6269 37.8833 0.5826
(0.0672) (1.7962)  (0.1027)  (3.0644) | (0.0675) (5.3732) (0.1474) || (0.0465) (1.1180)|  (0.0795)  (1.9484) | (0.0582) (3.4789) (0.0919)
July 0.6279 14.0669 0.6355 12.3922| 0.8027 42.5129 0.2732 0.7129 12.4433 0.7159 10.3999 | 0.7947 43.9054 0.3377
(0.0666) (1.9262)  (0.0605)  (1.9016) | (0.0394) (4.6350) (0.0738) || (0.0453) (1.2204) |  (0.0401)  (1.1979) | (0.0344) (3.4417) (0.0557)
August 0.8420 5.8303 0.6361 5.2994 | 0.5572 22.4300 0.4406 0.8720 5.2137 0.6372 5.1134 | 0.5210 26.1427 0.5385
(0.0341) (1.1656)  (0.0371)  (1.1825)| (0.0278) (3.5681) (0.1377) || (0.0489) (0.0832)|  (2.6518)  (0.2761) | (1.1816) (1.7882) (0.0749)
September | 0.7054 2.9515 0.4135 2.7881 | 0.3676 22.8409 0.8308 0.7024 2.9245 0.3240 4.6880 | 0.3795 24.0514 1.1132
(0.0200) (0.8889)  (0.0324)  (0.8136) | (0.0424) (4.8063) (0.2584) || (0.0202) (0.6069) |  (0.0288)  (0.8400) | (0.0291) (3.6009) (0.2401)
October 0.0627 8.1248 0.1199 3.8122 | 0.3735 7.3728 1.0098 0.1848 5.5172 0.1266 3.8764 | 0.3625 7.6962 1.3280
(0.0816) (2.4112)  (0.0433)  (0.9217)| (0.0226) (1.6954) (0.3349) || (0.0314) (1.0664) |  (0.0316)  (0.7093) | (0.0176) (1.4996) (0.3525)
November | 0.0031 3.3325| 1.82 x107%% 2.3665 | 0.0598 5.1057 4.6627 | 0.0039 3.3398 | 2.54 x10797 2.4160 | 0.0165 5.1300 4.4599
(0.0271) (1.3696)  (0.0952)  (1.0082) | (0.0206) (2.1023) (2.0003) || (0.0095) (0.7971) |  (0.0029)  (0.5784) | (0.0031) (1.5148) (0.8463)
December | 0.5496 1.1012 0.0262 1.2712 | 0.1625 2.9611 5.7266 0.5275 1.2056 0.1065 1.0983 | 0.1738 3.0610 6.6444
(0.0706) (0.5441)  (0.0856)  (0.6244) | (0.0577) (1.3738) (2.0903) || (0.0537) (0.3905) |  (0.0515)  (0.3518) | (0.0462) (0.9420) (1.6083)

uonyeorddy /g
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Chapter 3

Periodic INAR(1) models based on

the signed thinning operator

The class of INAR models, based on the binomial thinning operator introduced by Steutel
and van Harn ([1979), only applies to non-negative integer-valued time series. The binomial
thinning operator defined in (@) has been generalized in a number of different ways. Kim
and Park (2008) introduced the signed binomial thinning operator given in (), allowing
time series with negative values, the so-called Z-valued time series. Kachour and Truquet
(2011) established a slightly different signed thinning operator in () also allowing for neg-
ative values both for the series and its autocorrelation function. Recently, Bulla et al, (2016)
proposed an extension of the preceding signed thinning operator to the bivariate case defined
in ([L.14).

In this chapter, we introduce two new first-order integer-valued autoregressive models with
time-varying parameters and sequences of innovations with periodic structure. Both models
are based on the signed thinning operator defined in the univariate case by Kachour and
Truquet (2011) in () and in the bivariate case by Bulla et al) (2016) in () adapted to
the periodic case, accordingly. Basic notations and definitions concerning the periodic signed

thinning operator are established as well as some of its properties. Emphasis will be placed on

101
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models with innovations following Skellam distribution (Skellam, 1946) and bivariate Skellam
distribution (Bulla et al), 2015), respectively. Therefore, a brief description of the periodic
Skellam distribution for both univariate and bivariate distributions defined on the whole set
of integers is also provided.

In extending the model proposed by Chesneau and Kachour (2012) to the periodic case, we
introduce a univariate signed periodic INAR(1) process (S-PINAR(1) for short) with period s,
by considering a parametric assumption on the common distribution of the periodic counting
sequence of the model. The properties of the S-PINAR(1) model with period s are discussed.
We focus on a specific parametric case which arises under the assumption of periodic Skellam-
distributed innovation. Regarding parameter estimation, two methods are considered: condi-
tional least squares and conditional maximum likelihood. The performance of the proposed
estimation methods for the S-PINAR(1) model is accomplished through a simulation study.
Within the bivariate setting, the work of Bulla et al! (2016) has motivated a new periodic
bivariate model. The generalization of the previous signed model with period s to the bi-
variate case is denoted by BS-PINAR(1). Several statistical properties of this periodic model
are derived. The assumption of a diagonal autoregressive matrix is made, thus the correla-
tion is achieved through their innovation processes, where the distribution of the innovation
processes is set a priori which consequently determines the distribution of the underlying
time series. Hence, the discrete bivariate distribution on Z? assigned to the distribution of
the innovations is the periodic bivariate Skellam distribution. Parameter estimation of the
unknown parameters of the BS-PINAR(1) model with period s is provided through conditional

maximum likelihood method.

3.1 The periodic signed thinning operator

Basic notations and definitions concerning the periodic signed thinning operator for both

univariate and bivariate cases are established.
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3.1.1 Univariate case

The definition of the signed thinning operator introduced by Kachour and Truquet (2011) is
given in ([l.12) and its properties in Lemma E In the periodic case, the signed thinning

operator is defined by

|X]

sign(X) ;Uivt(gbt) , X #£0

0 , otherwise

with sign(X) as in () and where F; represents the common distribution of the periodic
sequence of i.i.d. counting sequences (U;+(¢¢))ien. All counting sequences associated to the
operator F;(® are mutually independent.

We consider that F;, the distribution of the periodic sequence of i.i.d. random variables

(Uit(é4t))ien, has probability mass function given by

(1—¢)?, a=-1
PUii(¢) =a) =4 26:(1—¢y), a=0 (3.2)
¢%, a=1

with ¢y = o, € (0,1) fort =v+ns; v=1,...,sand n € Ny. Without the periodic structure,
Chesneau and Kachour (2012) have also made use of this common distribution. Note that,

for a fixed v, the random variable

Use(r) = Up(9) < Re(¢) =1, Re(¢r) ~ Bin(2, ) (3.3)
and
k
P <2 Ui(r) = l) =P (RP(00) =k+1),  le{k,... .k}
=1
where i
R(60) = Ris(dr), R (61) ~ Bin(2k, 1), k € N. (3.4)
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Then, for z € Z\{0} and y € Z, the conditional probability function of the periodic signed

thinning operator F;® defined in (@) is

||

P(F,0 X =y|X =z) =P | sign(z) Z Ui(pr) =y | =
=1

= P (R(60) ~ |o| = sign(@) -y) = P (R (¢1) = [o] + sign(a) - y) =

2|z x|+sign(x)- x|—sign(x)-
= Ol gy @MV — @0 @ -y e (o, e} (3.5)

with mean value

E[F, 0 X|X] = (2w, — 1)X (3.6)
and variance
Var(F; © X|X] = 20, (1 — ay)|X]| (3.7)
fort=v+ns,v=1,...,sand n € Ny.

Probability generating function

For sake of simplicity, let U; 1(¢¢) = Ur(¢r) = U and R, 1(¢r) = Ri(¢pt) = Ry then Uy 4 R —1
where R; ~ Bin(2, ¢;) for ¢y = any, t =v+ns; v=1,...,sand n € Ny. We denote by Gg, ()
the probability generating function (p.g.f.) of the well known Binomial-distributed random
variable

Ggr,(r)=(1—ay+ avr)Q,

thus
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Let Wi = F; ©® X. From (@), the p.g.f. takes the form

Gw,(r) = E [f™] = E [r""O*] = E [E [r"O%|X]] =
X -X
> Ui - > Uit

=E|r=t Lixsop| + £ |r =0 Lix<op| =

= E [1{x>01(Gu, () ¥] + E [11x<0}(G_v,(r)~¥] =
= Gx(Gu,(r)1lixs0) + G-x(G-v,(1)1{x <0} =

= Gx(Gu,(r)lixs0 + Gx (Gy, (1Y) Lix<o)
with Gy, (r) defined above in equation (@)
Let Wy = F, © W1 = F; © (F; ® X), the probability generating function is

Gw,(r)=E [TWQ] =F [rFt@Wl] =E|[E [rFt®W1|W1H =

= Gw, (G, (1)L gwy >0y + Gwy (G (1)) Lowy <oy

and from equation (@), it follows that

Gw,(r) = [Gx(Gu,(Gu, (M) Lx=0r + Gx (Gy (Gl (1)) Lix<oy] w03+

+[Gx (Gu, (Gy! (7)) Lixsoy + Gx Gy, (Gu (1)) Lix<oy] Liwy<oy-

(3.9)

The generalization to p consecutive signed operators depends on whether p is odd or even.

However, the correspondent p.g.f. of W), will have 2P (p € N) terms, where

Wy=F oW, 1=F0(F,oW,2)=Fo((o(..(FioX)).

Remark: The periodic signed thinning operator F;® lacks the distributive property, i.e.,

d
Fo (X +Xo) #F,0X1+ F,0 Xo.

(3.10)
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3.1.2 Bivariate case

Bulla et al| (2016) introduced the so-called signed matrix thinning operator as an extension
of the signed thinning operator in () for the bivariate case. For the periodic bivariate

case, the signed matrix thinning operator is defined by

Fi11: © X1+ Fia: © Xo
FoX = , (3.11)

Fr16 © X1+ Fogp © Xo

where X = [X; X5] is an integer-valued random vector and Fj;; represents the common
distribution of the periodic sequence of i.i.d. counting sequences for (i,7) € (1,2) x (1,2). It

is assumed that all counting sequences associated with F};;©® are mutually independent.

In this work, the particular case F12:® = F»1;® = 0 (assumption of diagonal matrix) will be
of interest. Similarly to the univariate case in (@), we consider that F};, the distribution of

the periodic sequence of i.i.d. r.vs (Ug(¢)t)) has probability mass function given by

keN?

(1_¢j7t)2 ) a=-1
PUii(¢jt) = a) = 2¢;4(1 —bjs), a=0 (3.12)

2

j,t’ CL:1

with ¢;¢ = a;, € (0,1) for j =1,2; t =v+mns; v=1,...,s and n € Ny. Note that, for a

fixed v (v=1,...,s), the random variables

Uit(die) = Un(dj0) £ Re(dje) — 1, Ri(dje) ~ Bin(2,¢;4), j = 1,2

and
k
P <Z Uii(is) = l) =P (RP(950) =k +1),  le{~k,... .k}
i=1
where i
R (6;0) = 3" Ria(dja), R (6j4) ~ Bin(2k, 6;4), k € N. (3.13)

=1
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Let z; € Z\{0} and y; € Z for j = 1,2, the conditional probability function takes the form

|1

P(F;; @ X; = y;|X; = ;) = P | sign(a;) Y Uie(je) =v; | =
i=1
= P (R (00) = || + sign(a;) - ;) =
2 . . + y s ). - | — e ). .
= Ol sty T (U g )y € o).
Moreover, for t =v+mns, v =1,...,s and n € Ny, mean value and variance are, respectively,
ElFj: © X;|X;] = (205, — 1)X; (3.14)
and
Var[Fj; © Xj|X5] = 2050 (1 = aj0)[ X, 5 =1,2. (3.15)

3.2 The periodic Skellam distribution

The Skellam distribution is traditionally linked to Skellam (1946). A brief description of the
Skellam distribution and the bivariate Skellam distribution adapted to the periodic case is
presented. Basic properties of these periodic distributions are also given, namely, finite first

and second-order moments as well as the probability generating function (p.g.f.).

3.2.1 Univariate case

The univariate Skellam distribution, without periodic structure, was given in Definition @

For the periodic case, the definition follows.
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Definition 3.1. (Periodic univariate Skellam distribution)
Let {Z;}, t =v+mns; v=1,...,s and n € Ny be a periodic sequence of random variables.
Fora fitedv (v=1,...,s), let \, > 0 and 7, > 0. The periodic s-dimensional r.v. Z; follows

a periodic Skellam distribution, denoted by Skellam(\,, 1), if and only if

d
Zv+ns = Toyt+ns — Wao+tns,

where Yyins and Wy yns are two independent random variables such that Yyipns ~ Poisson(\,)

and Wyipns ~ Poisson(r,).
Thus, the probability mass function is given by

> )\U v :
P(Zyins = 2z) = e~ Pot) 32 Z i'((i—::;)" z € Z. (3.16)

i=maz(0,—z)

The random vector Z; has finite first and second-order moments. The mean of Z;, t = v+ ns

for a fixedv (v=1,...,s), is

fv = E[ZU_A,_nS] = E[YU+7LS — WUJ’_nS} = )\v — Ty- (317)

Due to the independence of the r.vs Y, s and Wy,1 s, the variance of Z; for t = v+ ns with

a fixed v is

03 = Var[Zyins) = Var[Yoins — Wopns) = Ao + 70 (3.18)

The p.g.f. of Zyjns is Gz,,,,(r) = exp{—(Ao + 7)) + X7 + 7 /r}, v =1,...,5.

3.2.2 Bivariate case

The bivariate Skellam distribution, without periodic structure, has been proposed by Bulla
et al. (2015) and is given in Definition @ For the periodic case, the definition of the bivariate

distribution follows.
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Definition 3.2. (Periodic bivariate Skellam distribution)
LetZ: = [Z14 Zg,t}T, t=v+ns;v=1,...,s8 andn € Ny be a periodic 2s-dimensional random

vector. For a fitedv (v=1,...,s), let

Zl,v+ns = Yl,v+ns - Berns
Z2,v+ns = Y2,U+ns - Bv-{—ns
where Yjpins (7 = 1,2) and Byyns are three independent Poisson-distributed variables with

parameters Xj, > 0 (j = 1,2) and 7, > 0, respectively. The random vector Z; follows a

periodic bivariate Skellam distribution, denoted BiSkellam(Ty,, A1 v, A2w), if and only if

21 p4ns ~ Skellam(A1 4, Ty) and Zayins ~ Skellam(Agy, 7).

Thus, the joint probability mass function is given by

P(Zl,v—f—ns = 21, Z2,U+ns = 32) =
00

PYRI ORI AL
B P T (A1pA2,0To c 2 319
e 1,020 Z l'(l‘i‘Zl)'(’L—'—ZQ)', (21722) ( )

i=maz(0,—z1,—22)

The mean vector of Z; is

EZ)=E| " |=| " |=6. (3.20)

Each s-vector 6;; (j =1,2) witht =v+mns; v=1,...,s and n € Ny is given by

T
BlZj] =00 =1| &1 &2 o0 &s | - (3.21)
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For a fixed v, each element of vector () is

The variance-covariance matrix of Z; is given by

Var|Zy, Cov(Z1t, 2o, Y1 YPi,
>, =Varlz] = 4l R I I N (3.23)
' Cov(Zat, Z1t) Var(Za,] Vo1 Yooy
where ;4 for j =1,2; t=v+ns; v=1,...,s and n € Ny are (s x s) diagonal matrices
o5, 0 0
0 0]2-2 ... 0
wjj,t = Var[Zt] = ) .’ ) ) (3.24)
0 0 o3

and for j # k (j,k = 1,2), the matrix v, takes the form

Ujk,l 0 e 0
0 Ujk,2 e 0
Yk = Cov(Zjy, Ziy) = ' o ' . (3.25)
0 0 -o+ Ojks

For a fixed v, each element of the diagonal in matrix () is given by
02y = Var(Zjvins| = Ajo + To. (3.26)
and for matrix () by

Ok = Cov(Zjvinss Zkwins) = Cov(Bysns, Boins) = VarByjns| = To. (3.27)
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3.3 The univariate periodic model: S-PINAR(1)

The integer-valued autoregressive models with binomial thinning operators have non-negative
coefficients. Thus modeling of series with possible negative autocorrelations are excluded.
Moreover, those models defined on N cannot fit a time series with negative observations. Mo-
tivated by the work of Chesneau and Kachour (2012), we extend their univariate model with
signed thinning operator to the periodic case, introducing the signed periodic INAR(1) process
(S-PINAR(1) for short) with period s. A parametric assumption on the common distribution
of the periodic counting sequence of the model is made. Emphasis is placed upon a specific
parametric case that arises under the assumption of periodic Skellam-distributed innovation.
In contrast to traditional INAR(1) models, these models are defined in Z allowing for negative
integer values and negative correlation. The properties of the S-PINAR(1) model with period
s are discussed. Regarding parameter estimation, two methods are considered: conditional
least squares and conditional maximum likelihood. The performance of the proposed estima-
tion methods for the S-PINAR(1) model with period s is accomplished and compared through

a simulation study.

3.3.1 Definition and basic properties

Let {X;} be a periodic integer-valued autoregressive process of first-order defined by the

recursion

Xi=F,oXy 1+ 2, teZ, (3.28)
where X, X;_1 and Z; are random s-vectors for t = v +ns; v = 1,...,s and n € Ng. The
random vector Z; = [Z14ns Zoins --- Zsins). represents a periodic sequence of independent

random variables. The model defined in equation (B.2§) will be referred to as S-PINAR(1)
for Signed Periodic INteger-valued AutoRegressive model of order one with period s € N. For

each ¢, the innovation term Z; in recursion (B.2§) is assumed to be independent of X;_; and
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F; ® X;_1. Writing the periodic signed thinning operator in (@) as

10, t=1+ns

f2®, t=2+ns
Fo = ' , (3.29)

\ fs®, t=s+ns

the periodic model in () can have the form

Xv+ns — fv ®© Xv71+ns + Zv+n57 (330)
) |Xv—1+ns‘ . .
where f, © Xy—14ns = sign(Xp—14ns) >,  Uit(¢pe) with U;(¢¢) as defined in (@)
i=1

We assume the innovation term Z; in the S-PINAR(1) model proposed in () follows the
periodic Skellam distribution with parameters A, and 7, established in Definition @ with

p.m.f. given by equation () Therefore, for a fixed v (v =1,...,s) the first and second-
order moments of Z,,s are defined in () and (), respectively.

Some distributional properties of the S-PINAR(1) process in recursion (B.2§) with Skellam-

distributed innovation are derived, namely the conditional moments of first and second-order

of the model. Hence, from (@) and ()

E[Xv+ns|Xv—1+ns] = E[fv ®© Xv—l—i—ns + Zv—l—ns’Xv—l—l—ns] =

= (20 — D Xp—14ns + Ay — Ty (3.31)

and from equations (@) and (),

Var[Xv+ns|Xv—1+ns] - Var[fv © Xv—1+ns + Zv+ns|Xv—1+ns] -

=20, (1 — )| Xp—14ns| + Ao + To. (3.32)
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Recall the periodic signed thinning operator given in (@) lacks the distributive property in
() which limits the development of other properties concerning the S-PINAR(1) process
with period s. For a fixed value of v = 1,..., s, the process {X;} with t = v+ ns is a Markov

chain with transition probability function

pu(bla) = P(Xyins = b| Xy 14ns = a) =
lal lal

= > P|sign(a)> Ui =1| x P(Zyns =b—1) =
=1

I=—|a|

|al

= > P(BIV(¢) = lal + sign(a) - 1) x P(Zysns =b—1) =

l=—al

|al

_ 2|al al+sign(a)-l al—sian(a)-l
B Z {C‘a|+sign(a)-lal) [+sign(a) (1—av)| |—sign(a) %

I=—|a|

—(Ao+7y) \b—1 S (A7)’
e Ao 2 A+ b—0 [ (3:33)
i=max(0,—(b—1))

where the fm.p. of RE‘“D and Z,4ns can be found in (@) and (), respectively.

3.3.2 Parameter estimation of the S-PINAR(1) model

This subsection is devoted to parameter estimation of the S-PINAR(1) process with pe-
riod s under the parametric assumption previously mentioned. Lets us assume we have
(X0, X1,...,Xns) observations from the S-PINAR(1) process with Skellam-distributed inno-
vations. Two estimation methods are proposed to estimate the parameters of the model:

conditional least squares and conditional maximum likelihood. For the S-PINAR(1) model



114 Chapter 3. Periodic INAR (1) models based on the signed thinning operator

with period s, the vector of unknown parameters 8 has 3s parameters, i.e.,
0:=(a,\ 1) (3.34)

with a = (ag,...,a5), A= (A1,...,As) and 7 = (71,...,7s).

3.3.2.1 Conditional least squares estimation

The conditional least squares (CLS) estimator of the vector of the unknown parameters in
() is §CL5 = (atLs, \CLS ,7¢L9). The estimation procedure that follows was proposed
by Klimko and Nelson (1978). The CLS estimators of @ are obtained by minimizing the

criterion function S1(0) given by

N-1 s
— v+ns - E[Xv+ns|Xv71+ns])2 —
n=0 'u:l
N—-1 s
= Z v+ns — 2041; - ]-)valJrns — A+ Tv)2 .
n=0 v=1

It is clear that differentiating S1(€) with respect to A\, and 7, and equating the resulting
expressions to zero, the same equation is obtained. For these parameters, direct CLS esti-
mators are not available. The conditional least squares method was adapted by Alzaid and
Omair (2014) with some modifications in order to be able to estimate all parameters integrat-
ing the model. Hence, in order to estimate A\, and 7, using the CLS method, the following
reparametrization is needed

=X — T
= Yu=1,...,s (3.35)

2 _
05 =My + Ty

Estimators for all parameters of the S-PINAR(1) process, i.e., ay, &, and o2 are obtained in a

two step procedure as described below.
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First step - estimates for o, and &, (v=1,...,s):
Consider the conditional mean prediction error
€1,v+ns = XU+nS - E[Xv-l—ns‘Xv—l-‘rns] -
= Xv+ns - (2av - 1)Xv—1+ns - gva (3'36)

where conditional first-order moment E[X,ns|Xy—1+4ns] is defined in () The CLS esti-

mators of «,, and &, are derived by minimizing the criterion function

N—-1 s N-1 s
52(0) = Z Ze%,v+ns = Z Z (Xvtns — (200 = 1) Xy—14ns — 5@)2 :
n=0 v=1 n=0 v=1

After differentiating S3(@) with respect to parameters «, and &, the following system of

equations arises

055(0 N1
82( ) = Z (Xv+ns - (QCVU - 1)Xv—1+ns - fv) Xv—1+ns =0
Qy n=0
055(0 N1
82( ) = Z (Xv-i-ns - (2av - 1)Xv—l+ns - gv) =0
\ g'U n=0
and consequently, for v =1,...,s, the CLS estimators are
N-—1 N—-1 N—-1
1 N Z Xv—i-nsXv—l-‘rns - Z Xv-‘,—ns Z Xv—1+ns
~CLS _ n=0 n=>0 n=0
Ctv = 5 + 1

cors _ 1
v N

N—-1 5
N Z Xv—1+ns -
n=0

N-1
Z Xv—i—ns

n=0

— (2a%S —

(JZZS X”H"S) 2 (3.37)

N-—1
1) Xv—1+ns

5 o)
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Second step - estimate for 02 (v=1,...,5):
The conditional variance prediction error has been used by |Alzaid and Omair (2014) to obtain
the CLS estimator for the variance parameter. Thus in the periodic case, the conditional

variance prediction error is defined by

€2, v+ns = (Xv+ns - E[Xv+ns|Xv71+ns])2 - Var[Xv+ns|Xv71+ns] =

= e%,v—i—ns - 2041)(1 - O‘v)|Xv71+ns| - 0'3 (3.38)

with conditional moments E[Xyns|Xy—14ns] and Var[Xyins|Xv—14ns] in equations ()

and (), respectively. The conditional mean prediction error (eqy4ns) is derived in the

N-1
first step of the estimation procedure from (B.3¢). The equation ) es,ins = 0 yields a
n=0
direct estimator for o2 by solving the nonlinear equation
N-1
9 ~CLS ~CLS 2
Z (81,v+ns - 2av (1 — Qy )’Xv—l—f—ns’ - UU) = 07
n=0
i.e.,
| V-1
~2 ~2 ~CLS ~CLS
Oy = N Z (61,v+ns - 2av (1 — )‘XW—H‘HS‘) ) (339)
n=0
where €71 y4ns = Xoptns — (2055 — 1) Xy 14ns —gfLS with CLS estimators @5 and ngLS in

() After estimating o2 through (), the CLS estimators of A, and 7, from reparametriza-

tion () take the form

- 1/ -
R )
,v=1,...,s. (3.40)
1 /. ~
FOLS 5 (Ug,CLS _ UCLS)

Alzaid and Omair (2014) have also considered an alternative method for estimating the vari-

ance in the second step and compared both estimators.
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3.3.2.2 Conditional maximum likelihood estimation

The conditional maximum likelihood (CML) estimator of the vector of the unknown param-
eters in () is Ocarr = (Q@CML XCML zOML)  The conditional log-likelihood function is

given by
N-1 s

C(0) = In(L(0]x)) = Z Z I (po(Totns|To—14ns)) » (3.41)

n=0 v=1
where p,(bla) has the expression given in () by replacing a = Zy_14ns and b = Tyqns.
Differentiating the conditional log-likelihood function in equation () with respect to the

parameters oy, A\, and 7, (v =1,...,s) in (), the system of first-order partial derivatives

follows
0
N—1 apv(xv—&-ns‘xv—l—i—ns)
oC(0 v =0
( ) =0 n=0 pv(xv—&—ns‘xv—l—&-ns)
O,
0
80(0) —0 N N-—1 anv(xv—i-ns’xv—l-i-ns) v 1 s
- UV — 0 b - ) ) b
O n=0 Dv (xv+ns|xv—1+ns)
oc) _,
ory B N—-1 ?pv($v+ns|$vfl+ns)
v
=0
n=0 pv(varns’l‘v*lJrns)
ie.,
( Nil 2|xv71+ns| (pv(xv+ns - 1‘$v71+ns - 1) B 1) -0
n=0 1—ay pv(l'v+ns‘l"ufl+ns)
Nz_l pv(ﬂfv—ﬁ—ns - 1|xv—l+ns) - N u= 17 s

n=0 Dv (xv—i-ns’xv—l-‘rns)

N

NXEI pv(xv—‘rns + 1’3311—1-‘,-718)
\ n=0 pv($v+ns’xv—1+ns)

First-order partial derivatives of transition probability function p,(Zyins|Tv—1+ns) are avail-
able in Appendix @ Numerical maximization can be obtained with standard statistical

packages in R.
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3.3.3 Simulation study

In order to provide an idea about the relative merits of each method (CLS and CML) used
in parameter estimation of the S-PINAR(1) model with period s and Skellam-distributed in-
novation term, a simulation study is conducted. To generate count data from the periodic
univariate model proposed in (), we have set period s = 4, thus the vector of unknown
parameters in () is @ = (a,\,7) = (a1, a9, a3, g, A1, A2, A3, Ag, 1, T2, T374 ). Several com-
binations of values for parameters a, A and 7 are available in Table @ Three sets: Set 1,
Set 2 and Set 3 are displayed. Each set has been subdivided into settings A and B, where
parameter a = (1, a9, a3, y) is fixed. Hence in Table El!, the different scenarios will be
referred to as Set 1A, Set 1B, Set 2A, Set 2B, Set 3A and Set 3B. For Set 1, values for «,
(v =1,2,3,4) are above and below 0.5. For both settings (A and B), different values for A
are considered while parameter T remains the same. Regarding Set 2, values for «,, are all
below 0.5 and both parameters A and 7 take different values. For Set 3, values for «, are
all above 0.5, parameter A is fixed but parameter T assumes different values. The choice for

certain values of parameters A and 7 arise from the fact that A\, — 7, represents the mean of

Zyins given in ()

Table 3.1: Parameters: a = (a1, a2, a3, aq), A = (A1, A2, A3, \q) and T = (71, 72, T3, T4).

A: a=(0.60,0.40,0.75,0.30) ; A=(2,1,6,5); T=(4,5,3,1)
Set 1

B: a=1(0.60,0.40,0.75,0.30) ; A=(5,2,1,6); T=1(4,5,3,1)

A: a=(0.20,0.45,0.10,0.30) ; A=(2,1,6,5); T =(4,5,3,1)
Set 2

B: a=1(0.20,0.45,0.10,0.30) ; A=(5,2,1,6); T=1(2,1,4,3)

A: a=(0.75,0.62,0.51,0.86) ; A= (4,5,3,1); 7=(1,3,2,4)
Set 3

B: a=1(0.75,0.62,0.51,0.86) ; A=(4,5,3,1); 7T=1(2,1,4,3)
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Three sample sizes are contemplated in this simulation study: n = 4N = 200, 800, 2000, i.e.,
N = 50,200,500 cycles. For a fixed set of parameters in Table @, 1000 independent replica-
tions of the S-PINAR(1) process have been generated. The results from the simulation study
for three scenarios, Set 1A, Set 2A and Set 3A, are summarized through Tables @—@ and
Figures @—@ The results (tables and figures) for the remaining scenarios (Set 1B, Set 2B
and Set 3B) are displayed in Appendix @ All simulation and estimation procedures were
realized through functions written in R and available in Appendix @

Tables @—@ report the average parameter estimates for the three mentioned sets. To facil-
itate comparison between the CLS and CML methods and the aforementioned sample sizes,
the mean square error (MSE) was computed and included in parenthesis below each estimate.
According to Tables @—@, parameter estimates in both cases are very close, because both
methods give consistent estimates of the parameters. Nevertheless, the autoregressive pa-
rameters a appear to be less biased. For smaller samples, the CLS method seems to have a
better performance in estimating the parameters. Computationally, there is extra work with
the CML method. The accuracy of all estimation improves as the length of the time series
increases. When length increases from N = 50 to N = 200, the improvement of accuracy is
more obvious than when length increases from N = 200 to N = 500.

The bias of the produced estimates were used to quantify their quality. The boxplots of the
bias for different combinations of parameters in Set 1A, Set 2A and Set 3A are in Figures
@—@. These figures also show the effect of sample size on the behavior of CLS and CML
estimators. No matter the sample size, the difference between CLS and CML is small and
becomes even smaller when the length of time series increases. The estimates for parameter
A seem slightly worse when parameter a has all values above 0.5 (Set 3A). The estimates for
parameter T seem slightly worse when parameter o has all values below 0.5 (Set 2A). Fur-
thermore, Figures @—@ reveal that estimates of A and 7 componentwise tend to be biased
to the left which implies that both estimation methods have a tendency to underestimate
A and 7, mainly in the case of small sample sizes. Regarding parameter o, where «a, are
below 0.5 (Set 2A), it can also be observed that both methods produce slightly overestimated

estimates, componentwise. As expected, both bias and skewness approach zero as sample size
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increases. Overall, the difference between the two approaches will vanish when the length of

time series increases.

Table 3.2: CLS and CML estimates for @ = (a, A, 7) in Set 1A. MSE in parenthesis.

N =50 N =200 N =500
CLS CML CLS CML CLS CML
a = (0.60, 0.40,0.75, 0.30)

é 0.599  0.600 0.601  0.600 0.600  0.601
(0.0003)  (0.0006) (0.0002)  (0.0015) (0.0006)  (0.0004)

G 0.407  0.406 0.399  0.402 0.401  0.402
(0.0113)  (0.0001) (0.0007)  (0.0036) (0.0002)  (0.0001)

éis 0.749  0.750 0.747  0.751 0.751  0.750
(0.0160)  (0.0116) (0.0001)  (0.0028) (0.0007)  (0.0001)

éu 0.302  0.297 0.301  0.300 0.300  0.299
(0.0003)  (0.0095) (0.0010)  (0.0002) (0.0001)  (0.0002)

A= (2,1,6,5)

M 1.915 1.880 1.963  1.982 1.994  2.000
(0.1013) (0.8744) (0.0048) (0.0774) (0.0001) (0.0319)

Ao 1.001 0.895 0.963  0.975 0.989  0.998
(0.6518) (0.5694) (0.0099) (0.0357) (0.0358) (0.0542)

A3 5.806  5.810 5910  5.987 5.985  5.999
(0.0948)  (0.1168) (0.1250)  (0.0944) (0.1330)  (0.1804)

M 4964  4.936 4.952  4.960 4.975  4.977
(0.4467)  (0.3806) (0.0203)  (0.2504) (0.0012)  (0.0220)

T=(4,5,3,1)

# 3.803  3.880 3.965  3.970 3.991  3.998
(1.0386)  (0.9610) (0.0930)  (0.0106) (0.1715)  (0.0027)

% 4977  4.868 4.967  4.968 4.987  4.995
(0.7353) (1 1.2057) (0.0203)  (0.1526) (0.0397)  (0.0037)

5 2812  2.834 2.937  2.970 2.984  2.987
(1.0748) (1 0.3680) (0.0517)  (0.0001) (0.0200)  (0.0295)

# 1.002  0.915 0.959  0.961 0.981  0.977
(0.4951)  (0.6673) (0.0111)  (0.2119) (0.0225)  (0.0019)
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Table 3.3: CLS and CML estimates for @ = (a, A, 7) in Set 2A. MSE in parenthesis.

N =50 N = 200 N = 500
CLS CML CLS CML CLS CML
o = (0.20,0.45,0.10, 0.30)

é1 0.199  0.201 0.201  0.200 0.199  0.200
(0.0047)  (0.0031) (0.0020)  (0.0003) (0.0014)  (0.0001)

Qo 0.455  0.453 0.451  0.451 0.449  0.450
(0.0002)  (0.0014) (0.0035)  (0.0021) (0.0011)  (0.0004)

Qs 0.115  0.108 0.100  0.101 0.099  0.101
(0.0054)  (0.0004) (0.0040)  (0.0002) (0.0017)  (0.0006)

b 0.305  0.304 0.300  0.300 0.300  0.300
(0.0121)  (0.0001) (0.0001)  (0.0013) (0.0007)  (0.0001)

A=(2,1,6,5)

M 1.883  1.855 1.973  1.959 1.987  1.985
(0.2336)  (0.0185) (0.0705)  (0.0135) (0.1523)  (0.0421)

Ao 1.047  0.886 0.970  0.964 0.989  0.983
(0.6237)  (1.0923) (0.0235)  (0.2988) (0.0252)  (0.0511)

A3 5.814  5.909 5.936  5.959 5964  5.992
(0.0004)  (0.0588) (0.0523)  (0.5441) (0.0001)  (0.0281)

A 4.981  4.803 4.962  4.934 4.974  4.963
(1.7878)  (1.6886) (0.1190)  (0.5135) (0.0652)  (0.1936)

T=(4,5,3,1)

1 3.800  3.853 3.976  3.961 3.986  3.987
(0.6893)  (0.5806) (0.0014)  (0.0439) (0.1394)  (0.0361)

T4 4984  4.854 4971  4.955 5.000  4.978
(0.9576)  (2.0269) (0.2442)  (0.0650) (0.1503)  (0.0064)

o 2.708  2.841 2.933  2.948 2.973  2.984
(0.2179)  (0.0098) (0.5292)  (0.4945) (0.0160)  (0.0002)

1 1.054  0.832 0.978  0.930 0.975  0.961
(0.0616)  (0.4011) (0.2080)  (0.0057) (0.2973)  (0.0700)
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Table 3.4: CLS and CML estimates for @ = (a, A, 7) in Set 3A. MSE in parenthesis.

N =50 N =200 N =500
CLS CML CLS CML CLS CML
a = (0.75,0.62, 0.51, 0.86)

a1 0.749 0.752 0.750 0.750 0.750 0.750
(0.0005)  (0.0023) (0.0003)  (0.0015) (0.0003)  (0.0001)

Qo 0.620 0.620 0.620 0.621 0.619 0.620
(0.0008)  (0.0146) (0.0017)  (0.0024) (0.0013)  (0.0002)

Qs 0.507 0.510 0.510 0.511 0.511 0.511
(0.0011)  (0.0126) (0.0003)  (0.0001) (0.0019)  (0.0001)

Ay 0.857 0.858 0.860 0.860 0.861 0.859
(0.0003)  (0.0058) (0.0002)  (0.0003) (0.0002)  (0.0004)

X=(45,31)

5\1 3.990 3.922 3.993 3.980 3.996 3.990
(0.0367)  (0.0687) (0.0102)  (0.0042) (0.0201)  (0.0585)

5\2 4.801 4.840 4.963 4.949 4.983 4.971
(1.3727)  (0.5495) (0.0098)  (0.0311) (0.0340)  (0.0925)

5\3 2.852 2.932 2.972 2.982 2.982 2.994
(0.4910)  (0.0041) (0.0086)  (0.0026) (0.0223)  (0.0521)

5\4 0.956 0.907 0.969 0.963 0.984 0.981
(0.0891)  (0.0723) (0.0019)  (0.0982) (0.0002)  (0.0867)

T=(1,3,2,4)

T1 1.000 0.896 1.001 0.969 0.997 0.986
(0.2271)  (0.0954) (0.0128)  (0.0003) (0.1242)  (0.0113)

Ty 2.803 2.845 2.957 2.956 2.979 2.975
(0.5236)  (0.4166) (0.0197)  (0.0427) (0.0248)  (0.2250)

T3 1.843 1.925 1.958 1.989 1.979 2.005
(0.2197)  (0.0357) (0.0213)  (0.0062) (0.1071)  (0.0328)

T4 3.938 3.904 3.964 3.960 3.988 3.980
(0.0365)  (0.0559) (0.0017)  (0.0193) (0.0156)  (0.0165)
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Figure 3.1: Boxplots for the biases of the CLS and CML estimates of parameter o in Set 1A

for n = 4N = 200, 800, 2000.
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Figure 3.2: Boxplots for the biases of the CLS and CML estimates of parameters A and 7 in

)\’1)

) R

i 8 -

a | i + +

fffff e == e
H - -
CLS CML CLS CcML CLS CcML
N=50 N=200 N=500
F &
- g

? 2 i

: i i S !
1] | — e — — —
e B

T : H ! e !

CcLs CML CLS CML CLS CML
N=50 =200 N=500

e .

e g

a8 o

8 g

i 2
[ ﬁ
- ‘ o
; | B -
+ =
i o
CLsS CML CLS CML CLS CML
N=50 N=200 N=500
-
R
g o
e
S 4?;

% a S
O e D e e Y e e SN AN
1 O /= Y=/ = =

=

CLS CML S CML CLS CML
N=50 N=200 N=500

Set 1A for n = 4N = 200, 800, 2000.

Ty
o o
° g
: "
-+ 8
§ i ° °
1 s - %
1 1 s i - -
[ — — — —
: ; ! : - -
; | - =
. . . . . .
CLS CML cLsS CcML cLs CML
=50 N=200
N
g 5
H
4 i
i ; -
: : ' j; -8 8
1| — — P —
; ‘ 1 i B +
. . . . . .
CcLS CML CLS CML CLS CML
N=50 N=200 N=500
. -
8 -
B
N &
e B BRI
— -+
. . . . T .
CLS CML CLS cML
N-50 N-200 N—500
R N
H
0 i ° R
| | -
1 f + ! . .
H H = = = =
s ; s | + -
i n 4 i
| | | | : |
CLS CML CcLS CcML CL3 CML
N=50 =200




125

Gl

Ol

CmML

CLS CmML CLS
200 500

CML

CLS

CML

500

CLS

CmML

200

N

N

=50

N

Oy

CcML

500

CLS

O3

CML

200

CML CML CLS
200

CLS

CML

500

CLS

N=

M=

N=50

M=

M=

g
+

.
H

T T
CmML CLS

N
]

=50

B
—_
!

i
1
|
o
o
T
CLS

I
]
o
o
8
£
i
4

3.3 The univariate periodic model: S-PINAR(1)

CLS

CML
N=50

CLS

Figure 3.3: Boxplots for the biases of the CLS and CML estimates of parameter o in Set 2A

for n = 4N = 200, 800, 2000.
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Figure 3.4: Boxplots for the biases of the CLS and CML estimates of parameters A and 7 in
Set 2A for n = 4N = 200, 800, 2000.
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3.4 The bivariate periodic model: BS-PINAR(1)

Bulla et al) (2016) introduced the class of bivariate signed INAR(1) processes, which is an
extension of the SINAR(1) process of Kachour and Truquet| (2011) to the bivariate case, based
on the signed matrix thinning operator in () Therefore, motivated by Bulla et al) (2016),
we generalize the S-PINAR(1) model with period s to the bivariate case. The definition
and matrix representation of the bivariate model, denoted by BS-PINAR(1) with period s,
is presented and some statistical properties of the model are derived. The assumption of a
diagonal autoregressive matrix is made, which can be seen as a Z2-extension of the model
presented in Pedeli and Karlis (2011), here with periodic structure. The correlation is achieved
through their innovation processes. The discrete bivariate distribution on Z? considered for
the distribution of the innovations is the periodic bivariate Skellam distribution established
previously in Definition @ Parameter estimation of the unknown parameters is provided

through the conditional maximum likelihood method.

3.4.1 Definition and basic properties

Let {X;} be a periodic bivariate integer-valued autoregressive process of first-order defined
by the recursion

Xt = Ft ® thl + Zt; t e Z, (342)

where Xy, X;_1 and Z; are random 2s-vectors. The vector X = [X7 ¢ ngt]T for t = v + ns,
v=1,...,s and n € Ny has components X;; = [Xj14ns Xjo4ns --. Xj75+n5]T for j = 1,2.
The vector Z; = [Z1, Z27t]T represents a periodic sequence of independent random vectors.
The model defined by recursion () will be referred to as BS-PINAR(1) for Bivariate Signed
Periodic INteger-valued AutoRegressive model of order one with period s € N and is based on

the periodic signed matrix thinning operator in () The BS-PINAR(1) model admits the
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following matricial representation

X1y Fi; 0 Xi4-1 AR
= ® + , t€Z, (3.43)
Xoyt 0 Foy Xoi1 Lot

)

where t =v+mns; v=1,...,s and n € Ny. Each component of the bivariate model in ()

admits the representation of a periodic univariate S-PINAR(1) process as in equation (),

i.e.,
Xit=Fj1 X1+ Zjt, j=1,2 (3.44)
with
. 1X5,e—1]
Fjt © X1 = sign(Xji—1) Z Uit(®jz),
i=1

where Fj; represents the common distribution of the periodic sequence of i.i.d. counting
sequences defined in () for any j € {1,2}. All counting sequences associated to the
operators F);® are mutually independent. Furthermore, for each ¢, Z;; is assumed to be
independent of X;; 1 and Fj; ® Xj; 1, j = 1,2.

We assume the innovations series of the BS-PINAR(1) model in () jointly follow the periodic
bivariate Skellam distribution established in Definition @ with p.m.f. given by equation
() For a fixed v (v =1,...,s) the first and second-order moments of Z; ,ins (j = 1,2)
are defined in (@) and (M), respectively. The covariance between Z;,ins and Zj yins
(j # k) is given in (B.27).

Expressions for conditional mean and variance of the BS-PINAR(1) model with period s are

derived. From equations (M) and (M)

E[Xj,v+ns|X',v—l+ns] = (20@'71, — 1)Xj,v—1+n8 + )\j,v — Ty (345)

and from (bﬂ) and (@),

Var[Xjvins| Xjo—14ns] = 2050 (1 — )| Xjv—14ns| + Njw + To- (3.46)
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3.4.2 Parameter estimation of the BS-PINAR(1) model

Consider a finite time series (Xi,...,Xys) from the BS-PINAR(1) process with periodic bi-
variate Skellam-distributed innovations, where N represents the number of complete cycles.
Without loss of generality it is assumed Xy = x¢. The conditional maximum likelihood
method is proposed to estimate the parameters of this bivariate model. The vector of un-

known parameters 0 has 5s parameters, i.e.,
0 := (a13a27A17A2aT) (347)

with aj = (o1, .., 55), Aj = (N\j1,...,Ajs) and T = (71,...,7s), j = 1,2. Hence, the con-
ditional maximum likelihood (CML) estimator of the vector of the (5s) unknown parameters
in () is Ocnrr = (&?ML,agML,XfML,XgML,?CML). The conditional log-likelihood

function is given by

N-1 s

C(0) = In(L(O1) = 3 D10 (o (Kusnslxo1n5) (3.48)

n=0 v=1

with conditional density

pv(xv+ns’XU71+ns) = P(Xerns = XU+TLS|X’U71+TLS = vaH»ns) =

= P(Xl,erns = T1,v+ns X2,v+ns = x2,v+ns|X1,v71+ns = T1,9—1+ns> XQ,vflJrns = $2,v71+ns)-

(3.49)

For simplicity, let (21,y—14ns, Z2,0—14ns) = (a,b) and (1 y4ns, L204ns) = (¢,d). Then the

transition probability function in () takes the form

Dv (Xv+ns ’Xv— 1+ns) =

= P(Xl,erns =, XQ,erns = d|X1,v71+ns = a, X2,v71+ns = b) =

|al |b] |al o]

= Z Z P sign(a)Z;Ui,t(@,t):kl P sz‘gn(b)ZUi,t(@,t):kg X

k1 =—|a| ka=—|b| i=1
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X P(Zl,v+ns =C— kb Z2,v+ns =d-— k2) =

|al o]

= > Y P(R610) = lal + sign(a) -k ) P (B (620) = bl + sign(v) - k2

ki=—la| ka=—1b|

X P(Zl,v—I—ns =c— ki, ZZ,v-I—ns =d— k2) =

|al 0]

_ E 2lal la|+sign(a)ki 4 la|—sign(a)-k1
B Z {C|a|+5i9n(a)-k1a1,v (1—-a1,) X
k1=—|a| ka=—b]

2/b| |b]+sign(b)-k2 |b|—sign(b)-ko
X C|b\+sign(b)~k2a2,v (1 - a2ﬂ)) x
o0 %
% 6—()\1}1,—}-/\2’1)—{-71,))\?—”]{:1 )\g;k’g 2 ()‘1,1])\2,’07—’0)

v — T — ‘
i=max(0,—(c—k1),—(d—k2) Z'(Z +c kl).(l +d kiz)

(3.50)

Differentiating the conditional log-likelihood function in () with respect to the 5s param-

eters, the system of first-order partial derivatives follows

ac(0) .
= =1,2
aajﬂ) 07 .] )
ac(8)
= =1,2; v=1
8Aj,,v 07 .7 ) ) U ) ) 87
90(0) _,
oty

i.e.,
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NI—_Il 2|$1,v—1+ns| <pv(xv+ns - (170)|Xv71+n5 - (17 0)) . 1) —0
n=o 1— a0 Doy (Xv+ns|xv—l+ns)
Nl—_Il 2|$2,v—1+ns’ (pv(xv—l—ns - (07 1)‘Xv—1+ns - (07 1)) N 1> -0
n=0 1-— gy DPv (xv+ns‘xv—1+ns)
Nﬁl pv(xv+ns - (L O)|Xv—1+ns) N
n=0 Dv (Xerns |Xv71+ns)
Nl—_Il pv(XU+ns - (Oa 1>|Xv—1+ns) N
n=0 Dv (Xv—i-ns |Xv— l+ns)
Nl—_Il pv(xv+ns + (L 1)|Xv—1+ns) - N

\ n=0 pv(Xv—i-ns’XU—l—i-ns)

for v =1,...,s. First-order partial derivatives are omitted, however they are calculated in

the similar way as in the univariate case (see Appendix @) Numerical maximization is

straightforward with standard statistical packages in R.






Chapter 4

Conclusions and future challenges

The aim of this thesis is to provide contributions to the analysis of count time series with
periodic structure. The main focus is on the definition and study of time series for count
data with periodic time-varying parameters and periodic sequences of innovations. For this
purpose, we focused on a particular type of processes for count time series, namely the inte-

ger—valued autoregressive (INAR) process of order one.

In Chapter 2, we introduced the periodic multivariate integer-valued process of order one
(PMINAR(1) for short) with period s based on the matrix-binomial thinning operator. Apart
from the general specification of the periodic multivariate process, the probabilistic and also
the statistical properties of the model were studied in detail. Furthermore, the constraint of
diagonality of the matrix of autocorrelation parameters was considered. Thus, the correla-
tion between the innovation series of the periodic multivariate process was the only source
of cross—correlation. A specific parametric case that arises under the assumption of a multi-
variate negative binomial distribution for the innovations of the process was assumed. The
former specification of the PMINAR(1) process has the useful property that it can effectively ac-
count for overdispersion (variance exceeds mean). Deviations from the equidispersed settings
often occur in real-life events. Concerning parameter estimation of the PMINAR(1) process,

three methods were proposed, namely, Yule-Walker, conditional maximum likelihood and
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composite likelihood. The computational complexity of the maximum likelihood approach
augments with dimensional increase. To overcome the computational difficulties arising from
that method, composite likelihood-based approach was suggested. The loss of efficiency due
to the replacement of the full likelihood with a pseudo-likelihood was investigated. Hence,
the performance of the proposed method and other competitors methods of estimation was
compared through a simulation study. Although very demanding computationally, the con-
ditional maximum likelihood method proved to outperform the other methods, thus the dif-
ferences to the composite likelihood method were small. The composite likelihood method
revealed to be computationally more convenient and impressively less time—consuming than
the maximum likelihood method. After addressing one-step ahead forecasts, the proposed
multivariate model with periodic structure and multivariate negative binomial distribution
for the innovations series was applied to a real data set related with the analysis of fire activ-
ity. This application was made to a particular trivariate real data series regarding the number
of monthly fires (period s = 12) in three counties in Portugal, namely Aveiro, Coimbra and
Faro, during 30 years (1981 —2010). Additionally, the composite likelihood approach seemed
satisfactory although some loss of efficiency was noticed but considered acceptable.

One topic for future work regarding the specification of a PMINAR(1) process could be removing
the constraint of diagonality of the matrix of autocorrelation parameters. However, similar
to what happens with conventional PAR models, PMINAR models can have an extremely large
number of parameters increased with period s. The development of procedures for dimen-
sionality reduction continues to be an interesting subject to be studied in this context. A
common feature in real data applications is times series exhibiting overdispersion, therefore

other distributions for the innovations series might also be of interest.

In Chapter 3, our attention was turned to periodic INAR(1) models based on a different
type of thinning operator, the signed thinning operator, adapted accordingly to the periodic
case. These models can handle integer-valued time series which allow for negative integer-
valued and negative correlated count data unlike the integer-valued time series models in

Chapter 2. Those models were only appropriate for non-negative integer-valued time series
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and could only deal with positive autocorrelations. Pursing our goal, two first-order INAR
(univariate and bivariate) models with periodic structure were introduced, allowing for posi-
tive and negative counts, S-PINAR(1) and BS-PINAR(1), respectively. Basic probabilistic and
also statistical properties of the periodic models were provided. A drawback of the signed
thinning operator was the fact that the distributive property did not hold. This enabled us
from writing the periodic process recursively as in Chapter 2 and therefore, obtaining the
cycle-stationary distribution. This issue, however, is worth further exploration.

Particular emphasis was given to innovations modeled by univariate and bivariate Skellam
distributions defined on the set of integers, respectively. The interest in the Skellam distri-
bution or Poisson difference distribution has been recast. There are few discrete distributions
defined in Z. On the other hand, bivariate Skellam distribution is quite recent and appealing
for models with innovations series defined in the Z? context. To study the performance of the
conditional least squares and conditional maximum likelihood estimators, a simulation study
was conducted for the S-PINAR(1) model with period s. A modification of the traditional
conditional least squares method was made through a two step procedure in order to provide
estimators for all parameters involved in the periodic univariate model. The proposed estima-
tion methods were compared through an extended simulation experiment contemplating six
different combinations of the parameters. For each set of parameters and for each sample size,
1000 independent replicates were simulated from the S-PINAR(1) model. Numerical results
from the simulation study suggested that the proposed model is suitable for practical use.
However, this is an issue we would like to explore in future work considering the application
of the univariate model to real data time series exhibiting periodic structure.

Regarding periodic models based on the signed thinning operator, an important subject to

investigate in further research, is the forecasting distribution of these models.






Appendix A

Auxiliary results of Chapter 1

Univariate Skellam distribution

In Definition , if Z ~ Skellam(6,,02) then the probability mass function (p.m.f.) is

B 9 2/2
PZ=z=e (61+62) <9;> I|z\ <2\/(91(92> , 2 €L,

where I,.(x) is the modified Bessel function of the first kind of order r defined by

22\’
I(z) = (;)i ur(<4> (A1)

~ r+i+1)

The mean and the variance are, respectively, F[Z] = 01 — 03 and Var[Z] = 61 + 6,. Clearly,
the variance exceeds the mean, i.e., Var[Z] > |E[Z]|. The distribution is symmetric only
when 6, = 02 (case discussed by [rwin (1937)).

The probability generating function is given by

GZ(S) =F [SZ] = e_(91+92)+918+92/s'
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A new representation of the Skellam (Poisson difference) distribution by replacing the Bessel
function in (@) was established in Alzaid and Omain (2010). Hence, an alternative formula

for the p.m.f. of the Skellam distribution is

P(Z =z)=e 0110207 )" '((91_%))' z € L. (A.2)
1.\ Z):

For large values of the sum 6; + 05, the distribution can be sufficiently approximated by the
normal distribution. If 85 = 0, the distribution tends to a Poisson distribution and if §; = 0,
tends to the negative of a Poisson distribution. The Skellam distribution is unimodal. The

sum and the difference of two Skellam r.v’s also follow the same distribution.

Note that Skellam distribution is not necessarily the distribution of the difference of two
uncorrelated Poisson r.v’s (Karlis and Ntzoufras, 2006). This implies that we can derive the
Skellam distribution as the difference of other distributions as well. Further details in |Alzaid

and Omair (2010).



Appendix B

Auxiliary results of Chapter 2

B.1 Proof of equation (2.32)

Let t =14 ns, then

E[Xj,l-i-m] =

dq

=Aj1+

s—2 s—3

-1

d b <Aj,1 I cs—i+ Aj2 TT s+ + Njsmrajs + Am) =
k=0 k=0

s—2 s—3
51
75 _
=Nt (Aj’l I s+ X2 [T s+ + Njsres + Aj,s> =
1— 1 ajsr k=0 k=0
k=0

s—1 s—2 s—3
Aj1 (1 - ]I aj,sk> + a1 (/\j,l [T ajs—k+ X2 IT s+ + Ajsmras + Ms)
k=0 k=0 k=0

-1

s
1-— H aj,s—k
k=0

s—1 s—1 s—3
A=A IT ags—k + 250 T ek + (/\j,z [T sk + -+ Ajs—10s + /\j,s>
k=0 k=0 k=0

s—1
1-— H aj,s,k
k=0

s—3
Aj1+ i (/\m [T s+ + Ajs—10ys + /\j,s>
k=0

s—1
1 - ]._[ ajas_k
k=0
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Attending to relation (), it follows that

s—3 s—2 1—1 s—2
1
Ns-10s o+ Nz [T ejsmn =D (Aj,s—i II O%k) = > Aol

k=0 =1 k=0 =1

thus
s—3
Aj1+aga (/\j,s + Ajs—1a5s + 0+ Ajo kH Oéj,s—k>
E[Xj,lJrns] = =0 =

s—1
1 - H aj75_k
k=0
=2 G)
Ajatagi (Ajs + D0 @gi Njs—i
=1

s—1
]' - H aj75_k
k=0

v ) Z0)
kZO <P1,k;)‘j,1—k t 11 2} Ps,i Ajys—i
= 1=

1-—- sogj,g

Let t = 2 4 ns, then
E[Xj,Q-i-nS] =
d( ) 2—-1 s—2 s—3
—J
=Xjaaj2+ Aja + == ;H)%Qk (/\j,l k:l_I[)aj’Sk + A2 kHO%,sk T Ajsm1as + /\ays>

s—1 s—2 s—3
(Nj1aj2 + Aj2) (1 - kl:[O Oéj,sk> + aj2051 (Aj,l kl:IO Qjs—k T Aji2 ka R I /\a;s)

s—1
1- H Ajs—k
k=0
s—1 s—1
Ajacg2 + Aj2 — Ajiaj2 kHO js—k — Aj,2 kl_lo Qjs—k

= +

s—1
1- H Qjs—k
k=0

s—2 s—3
20,1 <)\j,1 kl_[ Qjs—k + Aj2 kH Qjs—k++ Aj 1055 + /\j,s>
=0 =0

+ s—1 =

1 - H aj78_k
k=0
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s—1 s—1 s—1 s—1
Ao+ N2 = Ajiaja [T ajs—k — A2 TT ajs—k + Aoy [T as—i +Aj2 T a5k
k=0 k=0 k=0 k=0
= +
s—1
- H Qjs—k
k=0

s—4
@201 (/\j,s [T ajs—k+- + Ajs—10s + /\j,s>
+ k=0 _

s—1
1 - H aj7s_k
k=0

s—4
A2 + Aja + o201 (/\j,3 kl_lo Qjs—k+ o+ Ajs—105s + >\j,5>

)

s—1
1- H js—k
k=0

yielding
ZG)
Aj2 + ot + ajaage Y g Ns—
=0
E[ng—i—ns] = s—1 : =
- H Ajs—k
k=0

=) ()= 0)
kzo P31 \j2—k + P39 Z‘b Pari Njys—i
= 1=

1— sogfg

Let t = 3 4+ ns, then

dr .\ 3—1
(dj) 11 Q53— X
k=0

E[Xj34ns] = Ajaagsagz + Aoz + Ajs +
s—2 s—3

) (Aj,l [T s+ N2 IT ajs—i+ -+ Njsm1055 + /\J‘78> =
k=0 k=0

=G) @)= 0)
kz ‘P3,k)‘j,3—k +¥33 Zo Pgi Njys—i
=0 i=

1— o)

and likewise until ¢ = s + ns:
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di_: s—2 s—3
E[Xjatns] = — d]) (/\j,l kl:IO sk + Aj2 1}:[0 Qjs—k o Ajs—105,s + Ag;s) =

s—2 s—3
i I s+ X2 T sk + -+ Njsm1s + Ajs
k=0 k=0

1-— H aj,s—k
k=0

s—3 s—2

Ajs T Njs—10s + -+ No [T ajsn +Aja [T sk
k=0 k=0
(4)

1_st,s
- () Y )
Z sk ]5 k+(1058 Z 90 Ajsz
1—¢@
Hence, for j=1,..., mandv=1,...,s:
) G & G
ngv]k)\JU k+(Pv]v Z L,DJ)\]',S_Z‘
E[Xjﬂ}-i-ns]: -
1—@9,2

s—(s+1) )
with convention Z P Z)\] s—i = 0.

1=0
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B.2 First-order partial derivatives of the transition probability

function

For convenience, let xj,—14ns = aj and x;y4ns = bj for j =1,...,m, hence a = (a1,...,an)

and b = (by,...,by). The binomial distribution in () can be written as
fj(T’j) = nga;#(l — ij,v)aj_rj (U = 1, ey S).
Moreover, the transition probability function p,(Xy4ns|Xy—1+4ns) i () takes the form

pv(Xv—f-ns‘Xv—l—}-ns) = pv(b|a) =

g1 g2 gm

= Z Z Z Hfj(?"j) h(bl —Tl,bQ—TQ,...,bm—Tm). (Bl)

r1=0172=0 rm=0 \j=1

Recall the vector of unknown parameters in (), ie,ny = (1, s mp, Aus s Amuw, Bo)-
For a fixed v (v =1,...,s), the first-order partial derivative of function p,(b|a) in (Ell) with

respect to parameter o, is

0
bla) =
oy P(0l2)
g1 g2 gm
=30 D0 X O (el A ) T (e =L an) ) x
r1=07r2=0 rm=0

X fg('r‘Q) . fm(T'm) h(bl — Tl,bg —T2,.. .,bm — Tm) =

g1 g2 gm m
- Z Z Z <7’1 _‘”‘”)Hfj(rj) h(by —11,bs — 19, ..., by — ) =

Qg 1—aiy

r1=017r2=0 Tm=0 ’ ’ j=1
g1 g2 9m r a m
1 1
=22 2 (a f—or) 1—a )Hfm-)h(bl—n,bQ—m,...,bm_rm>:
F1=179=0  Tpm=0 N LY Ly v/ 55
g1 g2 gm m

"1
:ZZZ— fj(rj)h(bl—Tl,bg—’l“g,...,bm—rm)_
r1=1ro=0 rm=>0 06171)(1 - al,v) j=1

-~

I

ai

— ——— pu(bla),
1_alvp( |a)

)
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where

g1 g2 gm

I= Z Z Z rCH (L= a1,)™ " fa(ra) - fon () X

T'1=1 T2:0 'I’mZO

X h(bl —Tl,bQ—Tg,...,bm—Tm) =
g1 g2 gm al! . )
B Zl z:0 Zo (r1 — 1)l ar —r)! a%v_ (1 —a1)" 77 far2) oo frn(1m) ¥
ri=1ro= =
X h(bl —Tl,bg—rg,...,bm—rm) =
g1 g2 gm
ai(ar —1)! ( ri—1 a1—1—(r1—1)
= 1 — a,)™ 1
Zl ZO ZO (= Dlar — 1= (r — 1)) 1w (17 a10) +
ri=1re= Tm=

-+ Oé%v(l — al’v)al—m—l) f2(7“2) ... fm(?”m) h(b1 —ri,bg—1r9, ... by — T’m).
Notice that

ol (1= ) =l (1 ) (ag) + (1 - ar) ) =

= a1 = o) Y ol (1 - ag )T

because

041_711](1 —ay,) =

Then
g1 92 gm
a;—1 r1—1 —1—(r1—1
I= E Z Z a1 Cl 7y <a1?v (1 — )17l 4
ri1=1ro=0 rm=0

a1 = g )OI fy(ra) () X

><h(bl—1—(Tl—l),bg—rg,...,bm—Tm):

g1 g2 gm

- Z Z e Z aC (ai,v(l )T 4 0/;;1(1 — al,v)miliiil) X

=0 ro=0 rm=0

XfQ(?“Q)...fm(Tm) h(bl—l—i,bQ—Tg,...,bm—Tm):
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g1 g2

S 3% X el (s e et

r1=07r2=0 rm=0

X fa(r2) ... frn(rm) h(by =1 —71,b2 =12, ... by — ) =
g1 g2

= Z Z Z 1_ alvcal Lall (1= ane) ™7 fora) . fon(rm) X

T1= 07"2 0 Tm—O

><h(bl—1—T1,b2—7‘2,...,bm—’l”m):

a1
=T o py(b—(1,0,...,0)la— (1,0,...,0))

— Q1

leading to
0 aq

—Z pe(bla) = —2— [po(b —(1,0,...,0)]a— (1,0,...,0)) — p,(bla)].

G Pe(bla) = =% b = (10, 0)fa— (10....0)) = po(bla)
Replacing a = (a1, ...,am) with aj = jy—14ns and b = (b1,...,by,) With b; = xj44ns for
7 =1,...,m, we obtain

O Ky )
(% i —
aal,vpv 7,04+ns |8 j,v—14ns
T1v—1
= 41 i O;"ﬂs [Pu(xj,v-i-ns - (17 07 . ,O)|Xj7v_1+ns — (1, 0, . 70)) — pv(xj,v+ns|xj,v—1+ns)] s
U
and in a similar way regarding the other partial derivatives with respect to ag ., ..., am:

@pv (Xj,v+ns ‘Xj,v—l—s—ns) =

,U

[Po(Xj04ns — (0,1, .., 0)[Xj0—14ns — (0,1,...,0)) = Pu(Xj,v+ns/Xjo—14ns)] »

mpv (Xj,erns |Xj,v71+ns) =

Tmv—1
= 1m v s [pv (Xj,v+ns - (07 0,..., 1)|Xj,v71+ns - (O, 0,..., 1)) - pv(xj,v+ns|xj,v71+ns)]
— Ompy
forv=1,...,s. The first-order partial derivatives of function p,(b|a) concerning the remain-

ing parameters (A1 y,..., Amv, By) integrating vector () follow shortly. Those parameters
are from the MVNB distribution h(z1, 22, ..., 2, ) established in () Taking advantage of
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the well-known property e™(z1:222m)] the log-function Infh(z1, za, . . ., zm)] takes the form

In[h(z1, 22, ..., 2m)] =

=InTl 51)_14—5:2’3' lnF +ZZ] ZTL j'U zmz

j=1

— B8N n(B,) — | By +sz In| By +ZAJ, . (B.2)

Therefore, the first-order partial derivatives of function h(z1, 22, ..., z;,) with respect to the

parameters (A1, ..., Amp, By) can be obtained through

0 o 0 In[h(z1,22,....,2m)] _
Wmh(zl,zz,...,zm)— 3)\]‘,@6 =
— eln[h(21722,...,zm)]a)\ivln[h(z17 22y ey Z’I’)’L)] =

0

= h(z1,22,..., zm)a)\' Inlh(z1,22,...,2m)]
7,V

with v = 1,...,s and j = 1,...,m, and likewise for the dispersion parameter, 3,. On

differentiating the function In[h(z1, 22, . .., 2m)] in (@), the partial derivatives are

and

8/2 ln[h(zlaZQa s 7Zm)] = _5;21/} (/81;1 f: ) +ﬁ 2¢ (6 )

m 2
+ B,2%n(By) — B, % + B %I (6;1 + X Aj,v> 6
j=1

= 8% (B71) — ﬁ%( g )
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+ 8,2 |In(By) —1+1In (

1 +ﬁ'u Z;nzl )\j,v i 1

=582 v (By1) —¢(5;1+ fm) +in <1+ﬂv iAJﬂ) +;m_1
=1

ie.,
-1
a P B m B m
oM am) = [ B Dy | | B D A | | R zm) (B3
7,0 J,v j=1 7=1
and
8 3 B 3 m m
35 Wz, om) = B2 |0 (B, = [ B+ Dz | +In [ 148> Ao | +
v j=1 j=1
1
+— — — 1| h(z1,. -, 2m)- (B.4)
ﬁv ! + Zj:l )\j,v
Furthermore,
8 g1 92 gm m a
va(xj,v—l-ns Xj,v—l—l—ns) = Z Z ce Z H fj(rj> Wh(zla 22y .- ,Zm)
750 r1=072=0  r,=0 \j=1 J5v
and
o g1 92 gm m P
%pv(xj,v+ns|xj,v—l+ns) = Z Z cee Z H fj(rj) %h(zh 225y Z’m),
v r1=07r2=0 rm=0 \j=1 v
where z; = Zjqns — 75 (j = 1,...,m) and the first-order partial derivatives of function

h(z1, z2,...,2m) are expressed in (@) and (@), respectively.

Remark: The digamma function, 1, is defined as the logarithmic derivative of the gamma
_ (=)
- ()

function ¢ (z) = % In[I'(z)]



150 Appendix B. Auxiliary results of Chapter 2

B.3 Assumptions of Billingsley’s theorem

For a fixed v (v=1,...,5s), let the vector of parameters from the innovation process be

év = ()‘l,va )‘2,1)7 ceey )\m,m /Bv) = (51,1)7 62,1}7 cee 7£m,v7 §m+1,v) € B.

(C1) The set {a: P(Zytns = a) = f(a,&)} does not depend on &;
(Cz) E[Zz—i-ns] < Q3
(C3) f(a,&,) is three times continuously differentiable on the set of parameters B;

(C4) For any &, € B, there exists a neighbourhood U of &, such that

[e.°]

> sup f(a, &) < oo,
a=0&,eU
0 0

Z sup 7f(a7€v)

<oo, u=1,...,m+1,
a=0&,eU a‘fu,v

o0 2
> sup 0

— <oo, u,w=1,...,m+1;
a=0¢&,eU 8€u,v8£w,v

fla, &)

(C5) For any &, € B there exists a neighbourhood U of £, and increasing sequences 1, (n),

Yuw(n), Yuwy(n),n > 0 such that for all { € B and all ¢ < n with nonvanishing

f(a, &)

0
<
agu,vf(a,gv) — ¢u(n) f(a‘aév)7
32
A <
agu’vagw’vf(a7 SU) — '(Z}u,w(n) f(a’ 51])7
83

< =1,... 1;

8€u7v8§w7v8§y,vf(a,§v) — wu,w,y(n) f(aaé’u)v anay 17 7m+ )
and also concerning the cyclostationary distribution of X;, with ¢t = v + ns:
E[¢2(Xv)] < 00, E[Xv¢u,w(Xv+1)] < 00,

E[wu(xv)wu,w(xv-&-l)] < 00, E[wu,w,y(xv” < 0Q;

(C6) The Fisher information matrix, 1(8), is nonsingular.
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Auxiliary results of Chapter 3

C.1 First-order partial derivatives of the transition probability

function

The transition probability function in () has the expression

|al

pola) = > P (RIV(&1) = lal + sign(a) 1) P(Zyns =b—1) =

l=—|a|

|al 00

(Ao+70) b1 AbTy

l=—|a| k=maz(0,—(b-1))

|al

= > K e M) Qny,b—1), (C.1)
l=—|a|
where @ = Ty_14ns, 0 = Tyins and K = c2lal a‘a|+8ign(a)'l(1 - av)|a‘_3i~‘7"(a)‘l. For any

lal+sign(a)-l—Y

c € Z and n, = (A, 7y) € [0,00[x[0, 00[, the auxiliary function @ is defined as

S
Qnw,c) = Y. CETR (C.2)
k=maxz(0,—c)

151
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First-order partial derivatives of auxiliary function Q(1n,,c) in (@)

8 o )\kJrc 1 oo k)\k«kcfl
’U’ — FRYZ2 ) 'U? ]'
Q0 kgok'k—i-c Jhte—Dl & k(k+c—1)! = Qe = 1)
and
k 1/\k+c > it

= Q(mu,c+1).

8 [e.9]
oty Qs e ;k N(k +o)! _Zz'(z—i-c—i-l)

First-order partial derivatives of transition probability function p,(bla) in (@) with respect

to parameters A, and 7,:

|al

0 atn) 0
Fa Po(tla) = —pu(bla) + Z;Ke %Q(m,b )
al

= —po(bla)+ > K e *F) Q(yy,b—1-1)

I=—|a|

= —py(bla) + py(b—1la), v=1,...,s;

0
—pp(bla) =0, w#v,o=1,...,s

0w
and
|a]
a — 8@(”113 _l)
- — _ ()\v+7'u
5opla) = —pufbla) + > K e

I=—|a|
|al

= —po(bla) + D K e Qb —141) =

I=—]a|

= —py(bla) + pp(b+ 1]a), v=1,...,s;

o pula) =0, wE v v =1,
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First-order partial derivatives of transition probability function p,(bla) in (@) with respect

to parameter ay,:

|al

9 2|a al+sign(a)-1— al—sign(a)-
g, P (010) ZZ| O iyt ((lal + sign(a) - Dalesiom@1=1(1 — g, lal-sionta)_
i (’a‘ _ sign(a) . l)(l _ av)\a|fsign(a)-lflaLaHsign(a)-l) P(Zv—f—ns —b— l) _
|al . .
_ Z K <|a] + sign(a) -1 |a| — sign(a) l) P(Zyine = b—1) =
o QU 1—ay
|al .
-1 2
- Y K <|“| *sign(a) -1 __2lal > P(Zpins =b—1) =
ot ay(1 — ay) 1-—a,
lal |al
la| + sign(a) -1 2[a|
= ZK P(Zyins=b—1) — > KP(Zysns=b—1)=
I=—]al ol —aw) 1=, =
|al
|a] + szgn a)-l 2|al
= K P(Zyins=b—1)— v (bla),
A
where

|a|

la| + sign(a) - 1
A= K P(Zyyns =b—1) =
Z ozv(l—av) ( + )

I=—|a|
lal
= D Ol aign(aaol T T (1 — ) O (o] - sign(a) 1) P(Zugns = b 1) =
I=—|a|

lal (2]a])! aLaIJrsz’gn(a)-lfl(l B av)‘a|_5i9"(a)'l_1

- l:Z_|:(Z| (la| + sign(a) - I — D)!(|a| — sign(a) - 1)! P(Zyins=b—1) =

|al

2|a|(2la] - 1)!

- l§a| (la| + sign(a) -1 — 1)!(2]a] — 1 — (|a] + sign(a) - 1 — 1))!

X

« (aLa\—l-sign(a)-l—l(l o av)2|a|—1—(|a\+sz’gn(a)-l—1) + aLa|+sign(a).l(1 o av)2\a|—|a|+sign(a).l—1> «

X P(Zv+n3:b—l):
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|al

_ 2Ja|-1 al+sign(a)-1—1 2|a|—1—(|a|+sign(a)-1—1
- Z 2|a|qa|+szgn(a)l 1( i stonta) (1— o) lal =1~(lal+sign(a)1=1) 4

I=—|a|

+ O[La|+sign(a)-l71+1(1 - av)2|a\717(\a|+sign(a)-lfl)fl) P(Zv+ns —bh—1— (l - 1)) _

ja
2|a|—1 ; . 1 . )
= > 2alC o (“La‘“’g"(“”(l—av)m“' 1-lal+sign(a)d

I=—|al

+ Q|a|+sign(a)~l+1(1 o av)2|a|—1—\a|+s7ﬁgn(a)~l—1) P(Zerns —b—1— l) _

_ Z 2|CL| 2|a|7‘1 a|a\+sign(a)-l(1 B Oév)2\a|—1—|a|—&—sign(a)~lf)(Zerns —b—1— l) _

Nt 1— a, |a|+szgn(a)~l v
2|al
= (b — 1la — 1).
o P (b—1la—1)
Hence,
2
() = 2 (6~ tla— 1) = pufblal), v =1,

S pula) =0, wE vu =1, s
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C.2 Simulation study - Tables and Figures for Set 1B, Set 2B

and Set 3B

Table C.1: CLS and CML estimates for 8 = (a, A, 7) in Set 1B. MSE in parenthesis.

N =50 N =200 N =500
CLS CML CLS CML CLS CML
o = (0.60,0.40,0.75, 0.30)

é1 0.596 0.599 0.602  0.600 0.598  0.600
(0.0221)  (0.0278) (0.0010)  (0.0001) (0.0002)  (0.0002)

Qo 0.402 0.404 0.400  0.401 0.400  0.401
(0.0045)  (0.0020) (0.0022)  (0.0010) (0.0001)  (0.0002)

s 0.752 0.752 0.748  0.750 0.751  0.750
(0.0055)  (0.0002) (0.0003)  (0.0011) (0.0003)  (0.0002)

Quy 0.291 0.302 0.300  0.300 0.300  0.300
(0.0133) (0.0010) (0.0009) (0.0002) (0.0026) (0.0001)

A= (52,1,6)

A 4.890 4.851 4.961  4.960 5013  4.999
(1.2441)  (0.0203) (0.0015)  (0.4656) (0.1746)  (0.0104)

Ao 1.879 1.827 1.969  1.961 1.993  1.978
(0.2489)  (0.4645) (0.1178)  (0.1671) (0.2582)  (0.0618)

A3 0.969 0.944 0.953  0.970 0.994  0.989
(0.0504)  (0.2910) (0.0344)  (0.2480) (0.0006)  (0.0005)

M 6.062 5.972 5.994  5.967 5971 5.983
(0.7703)  (0.2740) (0.3578)  (0.2704) (0.0002)  (0.0006)

T=(4,5,3,1)

#1 3.849 3.822 3.989  3.956 3.996  4.006
(0.1385)  (1.7209) (0.0965) (1.1438) (0.3113)  (0.0099)

o 4.882 4.878 4972 4.972 4.990  4.983
(0.1419)  (0.0579) (0.0426)  (0.1829) (0.1108)  (0.0084)

73 2.944 2.930 2.968  2.970 2.995  2.987
(0.1213)  (1.0097) (0.0001)  (0.0152) (0.0050)  (0.0053)

1 1.134 0.922 0.980  0.958 0.970  0.981
(0.1173)  (0.0522) (0.0209)  (0.0380) (0.0535)  (0.0184)
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Table C.2: CLS and CML estimates for 8 = (a, A, 7) in Set 2B. MSE in parenthesis.

N =50 N =200 N =500
CLS CML CLS CML CLS CML
a = (0.20,0.45, 0.10, 0.30)

a1 0.201 0.198 0.200 0.199 0.200 0.200
(0.0010)  (0.0007) (0.0044)  (0.0001) (0.0002)  (0.0004)

Qo 0.451 0.451 0.450 0.449 0.451 0.449
(0.0064)  (0.0040) (0.0007)  (0.0009) (0.0001)  (0.0005)

Qs 0.110 0.105 0.100 0.099 0.100 0.100
(0.0022)  (0.0011) (0.0017)  (0.0003) (0.0001)  (0.0002)

Ay 0.302 0.301 0.301 0.300 0.302 0.301
(0.0202)  (0.0028) (0.0014)  (0.0014) (0.0003)  (0.0006)

X=(521,6)

5\1 4.966 4.868 4.976 5.001 5.003 5.012
(1.4272)  (0.4976) (0.4260)  (0.0528) (0.0095)  (0.4522)

5\2 1.917 1.937 1.979 1.974 1.981 1.981
(0.2015)  (0.2534) (0.0710)  (0.2369) (0.0834)  (0.0286)

5\3 0.942 0.894 0.978 0.974 0.994 0.992
(0.0393)  (0.3031) (0.0604)  (0.1032) (0.0512)  (0.0034)

5\4 5.799 5.828 5.965 5.944 5.979 5.978
(0.9201)  (0.1717) (0.3392)  (0.0079) (0.1061)  (0.0019)

T=(2,1,4,3)

T1 1.966 1.849 1.985 1.988 2.007 2.002
(1.4475)  (0.3664) (0.0453)  (0.0042) (0.0261)  (0.1342)

Ty 0.932 0.929 0.976 0.970 0.985 0.983
(0.0052)  (0.3645) (0.0008)  (0.1674) (0.1286)  (0.0728)

T3 3.945 3.896 3.988 3.981 3.997 3.996
(0.1780)  (0.6659) (0.1507)  (0.1789) (0.0033)  (0.0031)

T4 2.796 2.826 2.953 2.945 2.957 2.970
(0.0266)  (0.8391) (0.1803)  (0.1891) (0.1254)  (0.0103)
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Table C.3: CLS and CML estimates for 8 = (a, A, 7) in Set 3B. MSE in parenthesis.

N =50 N =200 N =500
CLS CML CLS CML CLS CML
a = (0.75,0.62,0.51,0.86)

a1 0.747 0.750 0.750 0.751 0.750 0.751
(0.0059)  (0.0025) (0.0047 ) (0.0007) (0.0001)  (0.0009)

Qo 0.620 0.619 0.618 0.620 0.620 0.620
(0.0005)  (0.0064) (0.0004)  (0.0021) (0.0002)  (0.0006)

Q3 0.502 0.505 0.508 0.508 0.510 0.508
(0.0109)  (0.0037) (0.0001)  (0.0008) (0.0005)  (0.0009)

Gy 0.860 0.858 0.859 0.860 0.860 0.860
(0.0003)  (0.0015) (0.0027)  (0.0001) (0.0003)  (0.0002)

A=(4,5,3,1)

5\1 3.908 3.874 3.963 3.980 3.986 3.999
(0.0877)  (0.7006) (0.0417)  (0.0002) (0.0072)  (0.0012)

5\2 4.991 4.898 4.953 4.950 4.981 4.967
(0.8363)  (0.0014) (0.0622)  (0.0181) (0.0303)  (0.0780)

5\3 2.893 2.858 2.985 2.959 2.983 2.974
(0.3084)  (1.9967) (0.0191)  (0.6133) (0.0214)  (0.0066)

5\4 0.932 0.941 0.976 0.987 0.996 0.999
(0.2119)  (0.9387) (0.0636)  (0.0019) (0.0030)  (0.0009)

T=(2,1,4,3)

1 1.922 1.879 1.961 1.982 1.981 1.997
(0.0288)  (0.0695) (0.4861)  (0.0074) (0.0216)  (0.1217)

T 0.967 0.912 0.952 0.953 0.985 0.973
(0.2418)  (0.3462) (0.2008)  (0.0015) (0.0299)  (0.1177)

T3 3.819 3.838 3.978 3.943 3.988 3.958
(0.2147)  (1.0893) (0.1076)  (0.1036) (0.0808)  (0.0905)

T4 2.923 2.947 2.980 2.993 2.998 3.003
(0.4280)  (0.3441) (0.0246)  (0.0018) (0.0001)  (0.0109)
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Figure C.1: Boxplots for the biases of the CLS and CML estimates of parameter « in Set 1B

for n = 4N = 200, 800, 2000.
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Figure C.3: Boxplots for the biases of the CLS and CML estimates of parameter « in Set 2B

for n = 4N = 200, 800, 2000.



C.2 Simulation study - Tables and Figures for Set 1B, Set 2B and Set 3B 161

v To
< <«
=] o
8 g é °
~ . ~ - 8
i : o
R i - -5 ES o
; o e : 2 B
S — - e e — — = - e —— o ——
L] = ! - 1 - : : T BE
T ! | - —o | H i e
i 4 - 5 ; -+ s
H <] H
o 4 i o i L
i+
2
T T T T T T T T T T T T
CLS CML CLS CML CLS CML CLS CML CLS CML CLS CML
N=50 N=200 N=500 N=50 N=200 N=500
< <
~ ~ R
i § g
i A& i - —_
! ° !
: i o ! ‘% Es S a8
o o S —_ - o Jo = I S
= — = es e —
] ! - ; B BY
£ "
a o a o
T T T T T T T T T T T T
CLS CML CLS CML CLS CML CLS CML CLS CML CLS CML
N=50 N=200 N=500 N=50 N=200 N=500
< < 4
o
] ; [ B -
8 i : - °
+ o ha Ex i i 1 + -+ -
e e S e e
s B ; o . — e T
T o+ = | ; v -
5 -
a4 a o
T T T T T T T T T T T T
CLS CML CLS CML CLS CML CLS CML CLS CML CLS CML
N=50 N=200 N=500 N=50 N=200 N=500
8
o
3
<« ] < g
g -
3 3
1 fl “ .
: o - =
' = R : 8 ]
N s AN S O o N s I =T ] N S s N e O B
- -] . == - ==
E ! : ; T . !
i i i -+ - i i - -
wl . . -
T T T T T T T T T T T T
CLS CML CLS CML CLS CML CLS CML CLS CML CLS CML
N=50 N=200 N=500 N=50 N=200 N=500

Figure C.4: Boxplots for the biases of the CLS and CML estimates of parameters A and 7 in
Set 2B for n = 4N = 200, 800, 2000.



Appendix C. Auxiliary results of Chapter 3

162

Gl

Ol

o_vu |._nu -

s-{f}-+ -

S -

S, I
Tt |
e [t -
m_o Njo F_D Djo _,._D. N._D. m._o.
ofu_ -] -

o} - | -4 -

B -

mod- - “ e ] -

€0

CmML

CLS CmML CLS
200 500

CML

CLS

CML

CLS CmML CLS
200 500

CmML

CLS

N

N

=50

N

N

N=50

Oy

O3

OL_TO L
-] |- 4 -
oot |- .
4[]+ :
S
el Ha U
T T T m T T
€0 zo b0 00 Vo ZO  EO
| -
-]+ :
vob--d [ -4 L
b -+ :
Y T ﬁm_u ........ o
B D_u ......... Jom |
T T T m T T
€0 z0 V0 00 VO g0 £0

CcML

CLS CML CLS
200 500

CML

CLS

CML

CLS CML CLS
200 500

CML

CLS

N=

M=

N=50

M=

M=

N=50

Figure C.5: Boxplots for the biases of the CLS and CML estimates of parameter « in Set 3B

for n = 4N = 200, 800, 2000.
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Figure C.6: Boxplots for the biases of the CLS and CML estimates of parameters A and 7 in
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R codes

D.1 R functions related to Chapter 2

77777 7777 7777 7777 7777 7)

## Generate trivariate megative binomial innovations ##

gera_binomNeg <— function (num, bet, laml, lam2, lam3){
niu <— rgamma(num, shape=1/bet, rate=1/bet);

L1 <~ niu*laml;

L2 <— niu*lam?2;

L3 <— niu*lam3;

z1l <— rpois(num, L1);

z2 <— rpois(num, L2);

z3 <— rpois(num, L3);

return (array (cbind(z1, z2, z3), dim=c(num,3)))

} ## end function
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## Generate PMINAR(1) — trivariate ##

gera_inarTri <— function(n, s, N, alfa, lamb, betta){
# s — n? periods

# N — n? cycles

#n — n? observ total, n=sN

# alfa, lamb — matriz s by 8 ; betta — vector

nobs <— 3*(n+1);

x <— array(rep (0, nobs), dim=c(n+1,3));

x[1,1] <= 3; ## initial observ.: z0=c( , , )
x[1,2] <— 6; ## 1% v (season v=1,...,s)
x[1,3] <= 4; ## 2° j (component)

alfa_matx <— array (0, dim=c((N)*s,3));
lamb_matx <— array (0, dim=c((N)*s,3));
for(j in 1:3) {

alfa_matx|[,j] <— rep(alfa[,j],N);

lamb_matx[,j] < rep(lamb[,j],N)
} ## end for
alfa_aux <— array (0, dim=c(s*N+1,3));
alfa_aux[2:(s*™N+1),] <— alfa_matx;
lamb_aux <— array (0, dim=c(s*N+1,3));
lamb_aux[2:(N*s+1),] <— lamb_ matx;
betaa_vec <— rep(betta, N);
betaa_aux <— array (0, dim=c(s*N+1,1));
betaa_aux[2:(N*¥s+1)] <— betaa_vec;
for(v in 2:(n+1)){

inov_NBtri <— gera_binomNeg (1, betaa_aux[v],

lamb_aux[v,1], lamb_aux[v,2], lamb_aux[v,3]);
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for(j in 1:3){
binom <— rbinom (1, x[v—1,j], alfa_aux[v,j]);
x[v,j] <= binom + inov_NBtri[l,j]

} ## end for

} ## end for
return(x[(2:(n+1)),])

} ## end function

## Function for admissible values ##

fun_alfa <— function (alfaC){
all ((alfaC > 0) & (alfaC < 1))
} ## end function

fun_lamb <— function (lambC){
all (lambC > 0)
} ## end function

## Product — alphas ##

7777, 7 7, 7 7)

mult_alfa <— function(alfas, m, i){

if (i==0){ ## i — n? factors
phi <— 1
} else {

alf <— alfas[(mi+1)m];
phi <— prod(alf)
} ## end if
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return (phi)
} ## end function

## Estimation: Yule—Walker ##

estim_YW <— function(n, s, N, X){
s mu0 <— array (0, dim=c(s,3));
s_var0) <— array (0, dim=c(s,3));
for (j in 1:3){
for (v in 1:s){
s mu0[v,j] <— mean(X[v+s*(0:(N-1)),j]);
s var0[v,j] <= var(X[v+s*(0:(N=1)),i])
} ## end for
} #4 end for
s_gamal <— array (0, dim=c(s,3));
for (j in 1:3){
for (v in 1:(s—1)){
s_gama0[v,j] <— cov(X[v+s*(0:(N=1)),j],X[vH+1l+s*(0:(N=1)),j])

} ## end for
s_gamal[s,j] <— cov(X[s+s*(0:(N—-2)),j],X[1+s+s*(0:(N-2)),j])
} ## end for

alfaYW0 <— array (0, dim=c(s,3));
for(j in 1:3){
alfaYWO[1,j] <— s_gamaO[s,j]/s_varO[s,j];
for (v in 2:s){
alfaYWO[v,j] <— s_gamaO[(v—1),j]/s_var0[(v—1),j]
} ## end for
} ## end for
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lambdaYW0 <— array (0, dim=c(s,3));
for(j in 1:3){
lambdaYWO[1,j] <— s _muO[1l,j]— alfaYWO[1,j]*s_muO[s,j];
for(v in 2:s){
lambdaYWO[v,j] <— s mu0[v,j]— alfaYWO([v,j]*s mu0[(v—1),j]
} ## end for
} ## end for
phil <— mult_alfa (alfaYWO[,1],s,s);
phi2 <— mult_alfa (alfaYWO0[,2],s,s);
phi3 <— mult_alfa (alfaYWO0[,3],s,s);
betaYW0 <— rep(0,s);
numerl <— (1-phil*phi2)*cov(X[14+s*(0:(N—-1)),1] ,X[14+s*(0:(N—-1)),2]);
dla <— mult_alfa (alfaYWO0[,1],1,0)*mult_alfa (alfaYWO0[,2],1,0)*
lambdaYWO0[1 ,1]*lambdaYWO0[1 ,2];
constl <— mult_alfa (alfaYWO0[,1],1,1)*mult_alfa (alfaYWO[,2],1,1);
somall <— 0;
for (i in 0:2){
dlb <— mult_alfa (alfaYWO[,1],4,i)*mult_alfa (alfaYWO0[,2],4,1)*
lambdaYWO0[4—1i , 1] *lambdaYWO0[4—i ,2];
somall <— somall+4dlb
} ## end for
betaYWO0[1] <— numerl/(dla+(constl*somall));
numer2 <— (1—phil*phi2)*cov(X[2+s*(0:(N—-1)),1],X[24+s*(0:(N—-1)),2]);
soma2l <— 0;
for (i in 0:1){
d2a<—mult_alfa (alfaYWO0[,1],2,1i)*mult_alfa (alfaYWO0[,2],2,i)*
lambdaYWO0[2—1i , 1] *lambdaYWO0[2—1i ,2];
soma2l<—soma2l+d2a
} ## end for
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const2 <— mult_alfa (alfaYWO0[,1],2,2)*mult_alfa (alfaYWO0[,2],2,2);
soma22 <— 0;
for (i in 0:1){
d2b <— mult_alfa (alfaYWO0[,1],4,i)*mult_alfa (alfaYWO0[,2],4,1)*
lambdaYWO0[4—1 ,1] *lambdaYWO0[4—1 ,2];
soma22 <— somaZ22+4d2b
} ## end for
betaYWO0 [2] <— numer2/(soma2l+(const2*soma22));
numer3d <— (1—phil*phi2)*cov(X[3+s*(0:(N—-1)),1] ,X[3+s*(0:(N—-1)),2]);
somadl <— 0;
for (i in 0:2){
d3a <— mult_alfa (alfaYWO0[,1],3,i)*mult_alfa (alfaYWO0[,2],3,1)*
lambdaYWO0[3—1i , 1] *lambdaYWO0[3—1i ,2];
somaldl <— somadl+4d3a
} ## end for
const3 <— mult_alfa (alfaYWO0[,1],3,3)*mult_alfa (alfaYWO0[,2],3,3);
d3b <— mult_alfa (alfaYWO[,1],4,0)*mult_alfa (alfaYWO0[,2],4,0)*
lambdaYWO0[4 , 1] *lambdaYWO0[4 ,2];
betaYWO0 [3] <— numer3/(soma31l+(const3*d3b));
numer4 <— (1—phil*phi2)*cov(X[4+s*(0:(N—-1)),1],X[4+s*(0:(N—-1)),2]);
somad <— 0;
for (i in 0:3){
d4 <— mult_alfa (alfaYWO[,1],4,i)*mult_alfa (alfaYWO0[,2],4,1)*
lambdaYWO0[4—1i , 1] *lambdaYWO0[4—i ,2];
somad <— somad+d4
} ## end for
betaYWO0 [4] <— numer4/somad;
if (fun_alfa (alfaYWO0)& fun_lamb (lambdaYWO0)){
alfaYW0 <— alfaYWO0;
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lambdaYW0 <— lambdaYWO;
betaYW0 <— betaY WO
telse {
alfaYW0 <— array (NA, dim=c(s,3));
lambdaYW0 <— array (NA, dim=c(s,3));
betaYW0 <— rep(NA, s)
} ## end if
param_est <— array (cbind (alfaYWO0, lambdaYWO0, betaYWO0), dim=c(s,7))
return (param_est)

} ## end function

## Functions for conditional mazimum likelihood (CML) ##

[/, A [/, [/,
v s 7 s 7

## Trivariate NB distribution ##

ptri_NB <— function(Z, L1, L2, L3, bb){
b <— 1/(bb); 44 b=1/beta
zl <— Z[1];
22 <— 7Z[2];
23 <— Z[3];
n <— length(zl);
loghivNB <— vector (length=n);
for(k in 1:n){
sumpar <— LI1+L2+4+L3+b;
parc_tau <— lgamma(zl [k|+22 [k]+2z3 [k]+b)—]lgamma(b)—

lgamma (z1 [k|+1)—lgamma(z2 [k|+1) —lgamma(z3 [k]|+1);
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loghivNB [k] <— parc_tautzl [k]*log(L1)+22[k]*log (L2)+23 [k]*
log (L3)+b*log (b)—(z1 [k]+22 [k]+2z3 [k]+b) *log (sumpar)
} #4 fim do for
return (exp (loghivNB))
} #4 end function

## Transition prob. ##

prob_trans <— function(xt_1, xt, pars_v){
# xt_1, xt matrices with 8 columns each
# pars_v =(alfl, alf2, alf8, laml, lam2, lam2, bet) one season
dimen <— dim(xt);
dl <~ dimen [1];
prob <— rep(0, dl);
if (fun_alfa (pars_v[1:3])& fun_lamb(pars_v[4:7])){
for (v in 1:d1){
soma <— 0;
for (rl in Ormin(xt_1[v,1], xt[v,1])){
binl <— dbinom(rl, xt_1[v,1], pars_v[1l]);
for(r2 in O:min(xt_1[v,2], xt[v,2])){
bin2 <— dbinom(r2, xt_1[v,2], pars v[2]);
for(r3 in O:min(xt_1[v,3], xt[v,3])) {
bin3 <— dbinom(r3, xt_1[v,3], pars_v][3]);
t1 <— xt[v,1]—rl;
2 < xt[v,2]—12;
t3 <— xt[v,3]—r3;
negbin <— ptri_NB(c(tl,t2,t3), pars_v[4],

pars_v[5], pars_v[6], pars_v[7]);
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soma <— soma + binl*bin2*bin3*negbin

} A4 end for
} 44 end for
} 44 end for
prob[v] <— soma;
} 44 end for
} ## end if

return (prob)

} ## end function

## CM Log—likelihood for v=1,...,s ##

[/, [ /] 1L/ [/, A
s 7 ys y e . 7

loglik_v <~ function(pars_v, v, s, N, X){
# pars_v =(alfl, alf2, alf8, laml, lam2, lam2, bet)
logk <— 0;
if (v==1){
xt_1 <— X[v—1+s*(1:(N-1)),];
xt <— X[v+s*(1:(N-1)),]
} else{
xt_1 <— X[v—=1+s*(0:(N-1)),];
xt <— X[v+s*(0:(N-1)),]
} ## end if
logk <~ logk + sum(log(prob_trans(xt_1, xt, pars_v)));
logk <— —logk
return(logk)
} ## end function
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## Estimation : CML ##

estimCML_N1 <— function (X, param?7){
pars_CML N1 <— array (0,dim=c(4,7));
for (v in 1:s){
resN1 <— optim (par=param7[v,], f=loglik_v, v=v, X=X,
method="BFGS” ) ;
pars_CML N1[v,] <— resNl1$par

} ## end for
return (pars_CML NI1)
} ## end function

## Functions for composite likelihood (CL) ##

L LA LL AL L AL
.0 e i

## Bivariate NB distribution ##

v’ [ [/, /L /, [/,

pbiv_NB <— function(Z, L1, L2, bb){

b <~ 1/(bb); ## b=1/beta
zl <— Z],1];
722 <— 7],2];

n <— length(z1);
loghivNB <— vector (length=n);
for(k in 1:n){
sumpar <— L1+L2+b;
parc_tau <— lgamma(z1 [k]+22 [k]+b)—lgamma (b)—

lgamma (z1 [k|+1)—lgamma(z2 [k]|+1);
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logbivNB [k] <— parc_tau+zl [k]|*log(L1)+2z2[k]*log(L2)+
b*log (b)—(z1[k]+2z2[k]+b)*log (sumpar)
} ## fim do for
return (exp(logbivNB))
} ## end function

## Composite Log—likelihood for v=1,...,s ##

cloglik_v <— function (theta, v, X, s, N){
if (v==1){
xtminusl <— X[v—14s*(1:(N—-1)),];
xt <— X[v+s*(1:(N-1)),]
telse{
xtminusl <— X[v—14s*(0:(N—-1)),];
xt <— X[v+s*(0:(N-1)),]
} ## end if
xtminusl_1 <— xtminusl [ ,1];
xtminusl_2 <— xtminusl[,2];
xtminusl_3 <— xtminusl[,3];
xtl<— xt[,1];
dl <— length(xtl);
xt2 <— xt[,2];
xt3 <— xt[,3];
alpl <— theta[1];
alp2 <— theta [2];
alp3 <— theta [3];
Iml <— theta [4];
Im2 <— theta [5];
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Im3 <— theta [6];

betaa <— theta [7];

pl <— NULL; p2 <— NULL; p3 <— NULL;

for (v in 2:d1){

}

soma <— sum(log(pl)+log(p2)+log(p3),

k12 <— rep (0:xtl1[v], each=xt2[v]|+1);
s12 <— rep(0:xt2[v], xtl[v]+1);
k13 <— rep(0:xtl1[v], each=xt3[v]+1);
s13 <— rep(0:xt3[v], xtl[v]+1);
k23 <— rep (0:xt2[v], each=xt3[v]+1);
$23 <— rep(0:xt3[v], xt2[v]+1);

f1 <— dbinom(xtl[v]—kl12, xtminusl_ 1[v],

f2 <— dbinom(xt2[v]—s12, xtminusl_2[v],

z12 <— matrix(c(k12,s12), ncol=2);

f12 <— pbiv_NB(z12, lml, Im2, betaa);
f3 <— dbinom(xtl[v]—k13, xtminusl_1[v],

f4 <— dbinom(xt3[v]—s13, xtminusl_3[v],

z13 <— matrix(c(k13,s13), ncol=2);

f13 <— pbiv_NB(z13, Iml, Im3, betaa);
f5 <— dbinom(xt2[v]—k23, xtminusl_ 2[v],

f6 <— dbinom(xt3 [v]—s23, xtminusl_3[v],

z23 <— matrix(c(k23,s23), ncol=2);

f23 <— pbiv_NB(z23, lm2, lm3, betaa);

(
pl <— c(pl,sum(f1*f2%f12));
p2 <— c(p2,sum(f3*f4*£13));
p3 <— c(p3,sum(f5*f6*£23))

## end for

return(—soma)

}

## end function

na.rm=T);

alpl);

alp2);

alpl);

alp3);

alp2);

alp3);
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## Parameters: unconst to const ##

param_cl <— function(parvect){

Al <— exp(parvect[1])/(1+exp(parvect [1]));
A2 <— exp(parvect [2]) /(14+exp(parvect [2]));
A3 <— exp(parvect [3]) /(1+exp(parvect [3]));

L2 <— exp(parvect [5]

I

(
)
( )
( )
L1 <~ exp(parvect [4]);
( );
L3 <— exp(parvect [6]);
7

beti <— exp(parvect [7]);
params <— c(Al1,A2,A3,L1,L2,1L3, beti);
return (params)

} ## end function

/) [/, [/,
s s s s

## Parameters: const to unconst ##

param_cl_inv <— function (params){
Ali <= log(params[1] /(1-params [1]));
A2i < log(params[2] /(1-params [2]));
A3i <— log(params[3] /(1—params[3]));
L1i <~ log(params[4]);
L2i <— log(params|[5]);
L3i <— log(params|[6]);

betii <— log(params|[7]);

parvect <— c(Ali,A2i,A3i,L1i,L2i,L3i,betii);

return(parvect)

} ## end function
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## Auziliary function for composite logL ##

cloglik_unconst <— function(parvect, v, X, N){
pars <— param_cl(parvect);

resi <— cloglik_v(pars, v, X, s, N);
return(resi)

} ## end function

[ /] L A [ /] 1
i =1~ i

## Estimation: CL ##

estimComp_N1 <— function (X, par7){
pars_Comp N1 <— array (0,dim=c(4,7));
parvect <— array (0,dim=c(4,7));
for (v in 1:s){

parvect [v,] <— param_cl_inv(par7[v,]);

resC_N1 <— optim(par=parvect [v,]|, f=cloglik_unconst, v=v,

X=X, method = "BFGS”);
paramvect <— resC_NlS$par;
pars_Comp N1[v,] <— param_cl(paramvect)
} ## end for
return (pars_Comp NI1)
} ## end function
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[/, [ L] 1L/ [/, 4
va e 7 s

## Generate S—PINAR(1) (univariate) ##

gera_inarSign <— function(n, s, N, alfaS, lambS, tauS){

# s — n? periods
# N — n? cycles
#n — n? observ total ; n=sN
# alfaS, lambS, tauS — wvectors
nobs <— n+1;
x <— rep(0,nobs);
partl_thin <— rep(0,nobs);
part2_inov <— rep(0,nobs);
alfa_matx <— array (0,dim=c(n,1));
lamb_matx <— array (0,dim=c(n,1));
for(j in 1:1) {
alfa_matx|[,j] <— rep(alfaS[,j],N);
lamb_matx[,j] <— rep(lambS[,j],N)
} ## end for
alfa_aux <— array(0,dim=c(n+1,1));
lamb_aux <— array (0,dim=c(n+1,1));
alfa_aux[2:(n+1),] <— alfa_matx;
lamb_aux[2:(n+1),] <— lamb_ matx;
tau_vec <— rep(tauS, N);
tau_aux <— array (0,dim=c(n+1,1));
tau_aux[2:(n+1),1] <— tau_vec;

x[1] <= —=3;



180 Appendix D. R codes

for(v in 2:(n+1)){

partl_thin[v] <— sign(x[v—1])*(rbinom (1, 2*abs(x[v—1]),
alfa_aux|[v,1])—abs(x[v—1]));

part2_inov[v] <— rskellam (1, lamb aux[v,1], tau_aux[v,1]);
x[v] <— partl_thin[v] + part2_inov[v]

} ## end for

return(x[2:(n+1)])

} ## end function

[/, [ /] 1]/ [/, [/,
y s y e s

## Function for admissible values ##

fun_alfa <— function(alfaC){
all ((alfaC > 0) & (alfaC < 1))
} ## end function

fun_lamb <— function (lambC){
all (lambC > 0)
} ## end function

## Estimation: conditional least squares (CLS) ##

estimCLS_ Skellam <— function (X, s, N){
d <— length(X);

aux <— rep(0,d+1);

aux [2:(d+1)] <— X;

auxl <— rep(0,d);

auxl[2:d] <— X[2:d];
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Ni <— rep(N,s);
Ni[l] <— N—1;

## Step 1: parameters alfa_LS and ksi_ LS

alfa_LS <— rep(0,s);
ksi_LS <— rep(0,s);
part <— array (0,dim=c(s,4));
for(v in 1:s){
part [v,2] <— sum(auxl [v+s*(0:(N—1))]);
part [v,4] <— sum(aux|[v+s*(0:(N—1))]);
part [v,3] <— sum(aux[v+s*(0:(N—=1))]"2);
part [v,1] <— sum(aux [v+1+s*(0:(N—-1))]*aux[v+s*(0:(N—-1))])
} ## end for
for(v in 1:s){
num <— Ni[v]*part[v,1]—part[v,2]*part|[v,4];
den <— Ni[v]*part[v,3] —(part[v,4])"2;
alfa LS[v] <— (num/den-+1)/2;
ksi_LS[v] <— (part[v,2]—(2*alfa_LS[v]—1)*part[v,4])/Ni[v]
} ## end for
44 Step 2: parameters sigma2 LS, lamb LS and taw LS

sigma2 LS <— rep(0,s);
lamh_LS <- rep(0,s);
tau_LS <— rep(0,s);
meanpred_error <— rep(0,d); ## mean prediction error
aux_ksi <— rep(ksi_LS,N);
for(v in 1:s){
meanpred__error [v+s*(0:(N—1))] <— auxl|[v+s*(0:(N—-1))]—(2*alfa_LS[v]-1)*
aux [v+s*(0:(N—1))] — aux_ksi[v+s*(0:(N—-1))];
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sigma2 LS[v] <~ (sum((meanpred_error [v+s*(0:(N—1))]"2))—2*alfa_LS[v]*
(I—alfa_LS[v])*sum(abs(aux [v+s*(0:(N—1))])))/Ni[v];
lamb_LS[v] <— (sigma2_LS[v]+ksi LS[v])/2;
tau_LS[v] <— (sigma2 LS[v]—ksi_ LS[v])/2
} ## end for
if (fun_alfa (alfa_LS) & fun_lamb(lamb LS) & fun_lamb(tau_LS)){
alfa_LS <— alfa_LS;
lamb_LS <— lamb_LS;
tau_LS <— tau_LS
telse(
alfa_LS <— rep(NA,s);
lamb_LS <— rep(NA,s);
tau_LS <— rep(NA,s)
} ## end if
parvect <— cbind (alfa_LS, lamb_ LS, tau LS);
return (parvect)

} ## end function

A 1L 1L 1L 1L Y/ 1L 1L Y/
7)

## Functions for conditional maximum likelihood (CML) ##

## Transition prob. ##

777 7 7
prob_trans<—function(xt_1, xt, pars_v){

# xt_1, xt — vectors ; pars_v =(alfaS, lambS, tauS) one season
dl <— length(xt);

prob <— rep(0,dl);
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a <— 0;
b < 0;
if (fun_alfa (pars_v[1])& fun_lamb(pars v[2:3])){
for (v in 1:d1){
soma <— 0;
a <— xt_1[v];
b <— xt[v];
for(r in (—abs(a)):abs(a)){
binMod <— dbinom (abs(a)+sign(a)*r, 2*abs(a), pars_v([1l]);
skel <— dskellam (b—r, pars_v[2], pars_v[3]);

soma <— soma -+ binMod*skel

} 44 end for
prob[v] <— soma

} 44 end for

} ## end if

return (prob)

} ## end function

[/, A [/, L /] 1L L A

## CM Log—likelihood for v=1,...,s ##

loglik_S <~ function(pars_v, v, s, N, X){
# pars_v =(alfaS, lambS, tausS)
logk <— 0;
if (v==1){
xt_1 <— X[v—14s*(1:(N-1))];
xt <— X[v+s*(1:(N-1))]
} else{
xt_1<X[v—14s*(0:(N—-1))];
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xt<X[v+s*(0: (N—-1))]
} ## end if
logk <~ logk + sum(log(prob_trans(xt_1, xt, pars_v)));
logk <— —logk;
return (logk)
} ## end function

## Estimation: CML ##

A A
i i

estimCML_S1 <— function (X, parvec){
pars_CML_S1 <— array (0,dim=c(4,3));
for (v in 1:s){
result_S1 <— optim(par=parvec[v,], f=loglik_S, v=v,
X=X, method = ”"BFGS”);
pars_CML S1[v,] <— result_Sl18$par
} ## end for
return (pars_CML _S1)

} ## end function
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