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Abstract. The correspondences between dynamics of q-Toda and
q-Volterra equations for the coefficients of the Jacobi operator and
its resolvent function are established. The main ingredient are
orthogonal polynomials which satisfy an Appell condition, with
respect to the q-difference operator Dq, and a Lax type theorem
for the point spectrum of the Jacobi operator associated with these
equations. Examples related with the big q-Legendre, discrete q-
Hermite I, and little q-Laguerre orthogonal polynomials and q-
Toda and q-Volterra equations are given.

1. Introduction

The Toda lattice equations describe the oscillations of an infinite sys-
tem of points joined by spring masses, where the interaction is exponen-
tial in the distance between two spring masses [31]. The semi-infinite
Toda lattice equations in one time variable are [22, 21]

a−1 ≡ 0 , a0 ≡ 1 ,


dan(t)

dt
= an(t)

(
bn−1(t)− bn(t)

)
,

dbn(t)

dt
= an(t)− an+1(t),

n ∈ N .(1)
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Let t0 ∈ R and µ(x; t0) be a measure such that all the moments

un =

∫
R
xndµ(x; t0), n ∈ N ,

exist and are finite, and {Pn}n∈N be the sequence of monic orthogonal
polynomials with respect to µ(x; t0),∫

R
Pn(x)Pm(x)dµ(x; t0) = h2nδn,m ,

where δi,j denotes the Kronecker delta. As it is very well-known [4, 11,
30], the sequence {Pn(x; t0) ≡ Pn(x)}n∈N satisfies a three-term recur-
rence relation

Pn+1(x) = (x− bn)Pn(x)− anPn−1(x) ,(2)

with initial conditions P0(x) = 1 and P1(x) = x− b0.
The spectral measure of an operator J(t) is the Stieltjes function

S(z; t) = e>0 Rz(t) e0 ,

for the resolvent operator, Rz(t) = [J(t)− z I]−1 , associated with the
operator J(t) (cf. [1]). In the case that J(t) is a Jacobi operator

J(t) =
(
Ji,j(t)

)
=

b0(t) 1 0
a1(t) b1(t) 1 0

. . . . . . . . . . . .

 ,(3)

with {an(t)}n∈N and {bn(t)}n∈N uniformly bounded, then

S(z; t) =
∞∑
n=0

Jn11(t)

zn+1
, |z| > ‖J(t)‖,(4)

where ‖ · ‖ denotes the operator norm. Let P be the column vector of
monic polynomials Pn(x; t) defined by

J(t)P = xP .(5)

By using the Stone-Favard theorem [4], there exists a linear func-
tional u(t) such that un(t) = 〈u(t), xn〉 = Jn11(t) , and so

S(z; t) =
∞∑
n=0

un(t)

zn+1
=
〈
u(t),

1

z − x
〉
, |z| > ‖J(t)‖.(6)

By definition, the diagonal Padé aproximants of index n, Πn, for S(z; t)
is a rational function

Πn(z) = Qn(z)
/
Pn(z),(7)

with degPn ≤ n and degQn ≤ n, such that Pn(z)S(z; t) − Qn(z) =
c
/
zn+1 + · · · . An important property of the Padé aproximants for the
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Stieltjes function (6) of the operator (3) is that their numerators and
denominators satisfy a three term recurrence relation as (2) with initial
conditions P0 = 1, P−1 = 0 and Q0 = 0, Q−1 = 1, where an(t) and
bn(t) are the coefficients of the matrix J(t) in (3). The sequence of
monic polynomials {Pn}n∈N is orthogonal with respect to the linear
functional u(t).

We shall consider linear functionals normalized to have their first
moment equal to one, i.e.

u0(t) = 〈u(t), 1〉 = 1.(8)

If bn(t) ∈ R and an(t) > 0, there exists a positive Borel measure dµ(x; t)
supported on I ⊂ R such that

S(z; t) =

∫
I

dµ(x; t)

z − x
, |z| > ‖J(t)‖,

where

un(t) = 〈u(t), xn〉 =

∫
I

xndµ(x; t) = e>0 J
n(t) e0 = Jn1,1(t) ,(9)

with e0 = (1, 0, 0, . . . )>.
Let {Pn(x; t)}n∈N be the sequence of orthogonal with respect to

µ(x; t). As it is well known (5) can be written as [4]

Pn+1(x; t) =
(
x− bn(t)

)
Pn(x; t)− an(t)Pn−1(x; t) , n = 1, 2, . . . ,(10)

with initial conditions P0(x; t) = 1 and P1(x; t) = x− b0(t).
The dynamic of the solutions of the Toda equations (1) corresponds

to the simple evolution of the measure [22, 21, 23],

dµ(x; t) =
exp(−xt)dµ(x, t0)∫
exp(−xt)dµ(x, t0)

,(11)

of the operator J(t) .
A difference analogue of a Korteweg-de Vries equation,

d

dt
γn+1(t) = γn+1(t)

(
γn+2(t)− γn(t)

)
, n ∈ N ,

is called Langmuir lattice or finite difference KDV equation, whose
dynamic is given by

dµ(x; t) =
exp(−x2t)dµ(x, t0)∫
exp(−x2t)dµ(x, t0)

.(12)
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In [10, 26] it was studied the construction of a solution of the Toda
lattice 

dan(t)

dt
= an(t)

(
bn−1(t)− bn(t)

)
,

dbn(t)

dt
= an(t)− an+1(t) ,

n ∈ Z ,(13)

from another given solution, considering sequences {an(t) , bn(t)}n∈Z,
of real functions. Both solutions of (13) were linked to each other by a
Bäcklund or Miura transformation

an(t) = γ2n(t)γ2n−1(t) , bn(t) = γ2n+1(t) + γ2n(t) + C , n ∈ Z ,(14a)

ãn(t) = γ2n+1(t)γ2n(t), b̃n(t) = γ2n+2(t) + γ2n+1(t) + C, n ∈ Z ,(14b)

with C = 0, where {γn(t)} is a solution of the Volterra lattice

γ̇n+1(t) = γn+1(t)
(
γn+2(t)− γn(t)

)
, n ∈ Z .(15)

In [3], this kind of analysis has been generalized to the full hierarchy
of Toda and Volterra lattices studied in [2] and [1] (see also [5, 6]).

P. D. Lax in [15] put the inverse scattering method for solving the
KdV equation into a more general framework which subsequently paved
the way to generalizations of the technique as a method for solving
other partial differential equations. He considered two time-dependent
operators L and M, where L is the operator of the spectral problem
and M is the operator governing the associated time evolution of the
eigenfunctions

L v = λ v ,
dv(t)

dt
=M v ;

and hence we get

dL
dt

= LM−ML

if, and only if,
dλ(t)

dt
= 0 . Magnus [18] showed that Toda type inte-

grable systems of the form

∂

∂t
A =

∂

∂x
H +HA− AH

is imbedded in the theory of semiclassical orthogonal polynomials (see
e.g. [19]). Moreover, from this partial differential equation he derived
Painlevé equations for the coefficients of the three term recurrence rela-
tion satisfied by these semiclassical orthogonal polynomials. Recently,
Ormerod et. al. [24] presented a framework for the study of q-difference
equations satisfied by q-semi-classical orthogonal systems, to derive as
an example, the q-difference equation satisfied by a deformed version
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of the little q-Jacobi polynomials as a gauge transformation of a special
case of the associated linear problem for q-Painlevé VI.

Naturally arises the problem of characterizing, in terms of their spec-
tral points, the Jacobi operators L such that

Dq L = L(qt)M−ML(t),

where the q-difference operator

Dq L =
L(qt)− L(t)

(q − 1)t
.

The history of q-calculus (and q-hypergeometric functions) dates back
to the eighteenth century. In fact it can be taken as far back as Leon-
hard Euler (1707–1783), who first introduced the q in his Introductio [8]
in the tracks of Newton’s infinite series.

In q-calculus we are looking for q-analogues of mathematical objects
that have the original object as limits when q tends to 1. For in-
stance, there are two types of q-addition [7], the Nalli-Ward-Al-Salam
q-additionand the Jackson-Hahn-Cigler q-addition. The first one is
commutative and associative, while the second one is neither. This is
one of the reasons why sometimes more than one q-analogue exists.

Recently, it has been presented the q-analogue of Toda lattice system
of difference equations by discussing the q-discretization in three as-
pects: differential q-difference, q-difference-q-difference and q-differential-
q-difference Toda equation [29]. Moreover, a new integrable equation
which is a generalization of q-Toda equation has been constructed
in [20], presenting its soliton solutions. But the first studies to con-
struct Lax pairs for the q-Painlevé equations were those of Jimbo and
Sakai [12] and Sakai [27, 28] using the Birkhoff theory of linear differ-
ence and q-difference equations.

In this work we analyze the correspondence between dynamics of
q-Toda and q-Volterra equations for the coefficients of the Jacobi op-
erator. For a given solution of a q-Toda lattice we construct a solution
of the q-Volterra lattice, and from the latter by using Bäcklund or
Miura transformations we derive another solution of the initial q-Toda
equation. Equivalent conditions in terms of q-difference equation for
the Jacobi matrix, the linear functional, the moments and the Stieltjes
function are proved. The main ingredient are orthogonal polynomials
which satisfy an Appell condition with respect to the q-difference op-
erator Dq as well as a Lax type theorem for the point spectrum of the
Jacobi operator associated with these equations. By limit as q ↑ 1 we
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recover known results of the continuous case. An explicit example re-
lated with the big q-Laguerre orthogonal polynomials and q-Toda and
q-Volterra equations is given.

2. q-Toda equations

Let µ ∈ R be fixed. A set A ⊆ R is called a µ-geometric set if for
t ∈ A, µt ∈ A. Unless we say otherwise we shall always assume that
0 < q < 1. Let f be a function defined on a q-geometric set A ⊆ R.
The q-difference operator, acting on the variable t, is defined by

Dqf(t) =
f(qt)− f(t)

(q − 1) t
, t ∈ A \ {0} .

If 0 ∈ A, we say that f has the q-derivative at zero if the limit

lim
n→∞

f(tqn)− f(0)

tqn
, t ∈ A ,

exists and does not depend on t. We then denote this limit by Dqf(0).
The main aim of this paper is to analyze the following system of

difference equations (q-Toda equations):{
Dqan(t; q) = αn1 (t; q)

(
bn−1(t; q)− bn(qt; q)

)
,

Dqbn(t; q) = αn1 (t; q)− αn+1
1 (t; q) ,

n ∈ N ,(16)

where

αn1 (t; q) =
gn(t; q)

1 + (q − 1) t b0(qt; q)
,(17)

gn(t; q) =
n∏
k=1

ak(qt; q)

ak−1(t; q)
,(18)

assuming that 1 + (q − 1) t b0(qt; q) 6= 0 and a0(t; q) = 1.
Next, we present the central theorem of this work.

Theorem 1. Let us assume that the sequences {an(t) ≡ an(t; q)}n∈N
and {bn(t) ≡ bn(t; q)}n∈N are uniformly bounded. The following condi-
tions are equivalent:

(1) The Jacobi matrix J(t) defined in (3) satisfies the matrix q-
difference equation

DqJ(t) = A(t)J(t)− J(qt)A(t) ,(19)
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where

A(t) =


b0(qt) 0
g1(t) b0(qt) 0

0 g2(t) b0(qt)
. . .

. . . . . . . . .

 .(20)

(2) The moments un(t), defined by (9), satisfy

Dqun(t) = −un+1(qt) + u1(qt)un(t) , n ∈ N .(21)

(3) The Stieltjes function associated with J(t) satisfies

DqS(z; t) = −zS(z; qt) + u1(qt)S(z, t) + 1.(22)

(4) The linear functional u(t) associated with J(t) satisfies

Dqu(t) = −xu(qt) + u1(qt)u(t) .(23)

(5) The monic polynomials {Pn(x, t; q) ≡ Pn(x; t)}n∈N defined by
the three term recurrence relation

Pn+1(x; t) = (x− bn(t))Pn(x; t)− an(t)Pn−1(x; t) , n = 1, 2, . . . ,

with P−1(x; t) = 0 and P0(x; t) = 1, satisfy an Appell condition

DqPn(x; t) = αn1 (t)Pn−1(x; t) ,(24)

where

αn1 (t) ≡ αn1 (t; q) =
gn(t)

1 + (q − 1) t u1(qt)
, n = 1, 2, . . . ,(25)

and gn(t) ≡ gn(t; q) is given in (18).

Proof. (1) ⇒ (2). By induction it can be proved that

DqJ
n(t) = A(t)Jn(t)− Jn(qt)A(t) ,(26)

where A(t) is defined in (20). By using (9)

e>0 DqJ
n(t)e0 = Dq

(
e>0 J

n(t)e0
)

= Dqun(t) ,

where e>0 = (1, 0, . . . ). Moreover, from (26) we have

e>0 DqJ
n(t)e0 = u1(qt)J

n
1,1(t)−

(
Jn1,1(qt)u1(qt) + Jn1,2(qt)a1(qt)

)
= u1(qt)un(t)− Jn+1

1,1 (qt) ,

since b0(qt) = u1(qt), which completes the proof.
(2) ⇒ (3). From (6), then

DqS(z; t) =
∞∑
n=0

Dqun(t)

zn+1
= −

∞∑
n=0

un+1(qt)

zn+1
+ u1(qt)

∞∑
n=0

un(t)

zn+1

= −zS(z; qt) + u1(qt)S(z; t) + 1 ,
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where we have used that u0(t) = 1.
(3) ⇒ (4). By using (6) and (8), if we apply the Dq operator, we

have that the equation (22) reads as

DqS(z; t) :=
〈
Dqu(t),

1

z − x
〉

=
〈
u(qt),

−z
z − x

+ 1
〉

+
〈
u(t),

u1(qt)

z − x
〉

=
〈
u(qt),

−x
z − x

〉
+
〈
u(t),

u1(qt)

z − x
〉
,

which implies〈
Dqu(t) + xu(qt)− u1(qt)u(t),

1

z − x
〉

= 0 ,

and so, all the moments for the linear functional Dqu(t) + xu(qt) −
u1(qt)u(t) are zero, and (23) is obtained.

(4) ⇒ (5). First of all, let us show that a regular linear functional
u(t) satisfying (21), is such that 1 + (q− 1) t u1(qt) 6= 0. Let us assume
that u1(qt) = 1/((1 − q)t). Then, from (21) we obtain that u2(qt) =
1/((1− q)2 t2) which yields

detH1(qt) =

∣∣∣∣u0(qt) u1(qt)
u1(qt) u2(qt)

∣∣∣∣ =

∣∣∣∣ 1 1/((1− q)t)
1/((1− q)t) 1/((1− q)2 t2)

∣∣∣∣ = 0 ,

in contradiction with being u(t) a regular linear functional (cf. for
instance [4]).

Let {Pn(x; t)}n∈N be the sequence of monic orthogonal polynomials
with respect to the linear functional u(t). Since {Pn(x; t)}n∈N is a basis
in the space of polynomials of degree n, we have

Dq−1 Pn(x; qt) =
n∑
k=1

αnk(t)Pn−k(x; t) .(27)

By convention we shall assume that α0
1(t) = 0. We shall prove for n > 1

that αnk(t) = 0 for k = 2, . . . , n and αn1 (t) 6= 0. By applying the linear
functional u(t) to (27) and using the orthogonality of Pn(x; t) it holds

αnn(t)
〈
u(t), P0(x; t)

〉
=
〈
u(t),Dq−1 Pn(x; qt)

〉
= −

〈
Dqu(t), Pn(x; qt)

〉
,

where we have used that [17]〈
Dqu, p(x; t)

〉
= −1

q

〈
u,Dq−1 p(x; t)

〉
, and Dq Dq−1 f(t) =

1

q
Dq−1 Dqf(t) .

From (23) we obtain

αnn(t)
〈
u(t), P0(x; t)

〉
=

〈
xu(qt), Pn(x; qt)

〉
− u1(qt)

〈
u(t), Pn(x; qt)

〉
= −u1(qt)

〈
u(t), Pn(x; qt)

〉
,
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for n > 1, by using the orthogonality. From (27) the above expression
can be written as

αnn(t)
〈
u(t), P0(x; t)

〉
= −u1(qt)

〈
u(t), Pn(x; t)+(q−1) t

n∑
k=1

αnk(t)Pn−k(x; t)
〉

= −u1(qt)(q − 1) t αnn(t)〈u(t), P0(x; t)〉 ,

for n > 1, by using again the orthogonality. Since
〈
u(t), P0(x; t)

〉
= 1 ,

(1 + (q − 1) t u1(qt))α
n
n(t) = 0 ,

and we obtain αnn(t) = 0. Similar arguments recursively can be used
to prove that αnk(t) = 0, for k = 2, . . . , n. Therefore,

Dq−1 Pn(x; qt) = αn1 (t)Pn−1(x; t) .

Finally, we will determine αn1 (t) by using the orthogonality of Pn(x; t):

αn1
〈
u(t), xn−1Pn−1(x; t)

〉
=

〈
u(t),Dq−1(xn−1Pn(x; qt))

〉
= −

〈
Dqu(t), xn−1Pn(x; qt)

〉
.

In order to compute the last inner product we shall use

Pn(x; qt) = Pn(x; t) + αn1 (t)(q − 1) t Pn−1(x; t) ,

as well as the orthogonality:〈
Dqu(t), xn−1Pn(x; qt)

〉
=
〈
u(qt), xnPn(x; qt)

〉
−u1(qt)

〈
u(t), xn−1Pn(x; qt)

〉
=
〈
u(qt), xnPn(x; qt)

〉
−u1(qt)

〈
u(t), xn−1

(
Pn(x; t)+αn1 (t)(q−1) t Pn−1(x; t)

)〉
=
〈
u(qt), xnPn(x; qt)

〉
− u1(qt)αn1 (q − 1) t

〈
u(t), xn−1Pn−1(x; t)

〉
,

which gives the value of αn1 (t) given in (25).
(5) ⇒ (1) If we apply Dq−1 to the recurrence relation

xPn(x; qt) = Pn+1(x; qt) + bn(qt)Pn(x; qt) + an(qt)Pn−1(x; qt),

we get

αn1 (t)xPn−1(x; t) = αn+1
1 (t)Pn(x; t) + bn(qt)αn1 (t)Pn−1(x; t)

+ Dqbn(t)Pn(x; t) + an(qt)αn−11 (t)Pn−2(x; t) + Dqan(t)Pn−1(x; t).

If we use again the recurrence relation to expand

xPn−1(x; t) = Pn(x; t) + bn−1(t)Pn−1(x; t) + an−1(t)Pn−2(x; t),

by equating the coefficients in Pn(x, t), Pn−1(x; t) and Pn−2(x; t), we
get the q-Toda equations

αn1 (t) = αn+1
1 (t) + Dqbn(t) , αn1 (t)

(
bn−1(t)− bn(qt)

)
= Dqan(t) ,(28)

with αn1 (t)an−1(t) = αn−11 (t)an(qt) , n ∈ N. �
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Remark 1. As a consequence, if we consider the limit as q ↑ 1 in the
above Theorem we recover a number of results in relation with the
dynamic solutions of the Toda equations (1) that are dispersed in the
literature (see [1, 18, 25, 26] and references therein).

The modification of a orthogonality measure by multiplying it by
the q-exponential of a polynomial is studied in the next theorem. The
notation to be used is that of [9, Chapter 1]. In particular

(x; q)∞ =
∞∏
j=0

(1− aqj).

Theorem 2. In the hypothesis of Theorem 1, assume that the normal-
ized functional u(t) verifies

u(t) = κ((1− q)xt; q)∞ v ,(29)

where κ is the normalizing constant and v is a positive definite linear
functional. Then, the coefficients {an(t)}n∈N, {bn(t)}n∈N of the Jacobi
matrix J(t) associated to u(t) are solution of the q-Toda equations (16).

Proof. Let

f(x, t; q) = ((1− q)xt; q)∞ ,(30)

and the moments 〈v, xn〉 =

∫
xnd%(x) , n = 0, 1, . . . . Let un(t) be the

moments of the linear functional u(t),

un(t) =
(∫

f(x, t; q)xnd%(x)
)/(∫

f(x, t; q)d%(x)
)
.

Since

Dq(f(t)/g(t)) =
(
Dqf(t)g(t)− f(t)Dqg(t)

)/(
g(t)g(qt)

)
,

then

Dqun(t) =

∫
Dqf(x, t; q)xnd%(x)∫
f(x, qt; q)d%(x)

−

( ∫
f(x, t; q)xnd%(x)

)( ∫
Dqf(x, t; q)d%(x)

)
( ∫

f(x, t; q)d%(x)
)( ∫

f(x, qt; q)d%(x)
) .

By using Dqf(x, t) = −xf(x, qt), we obtain Dqun(t) = −un+1(qt) +
u1(qt)un(t), which completes the proof. �
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Remark 2. Notice that [14] from (30)

lim
q→1

f(x, t; q) = lim
q→1

Eq((q − 1)x t) = exp(−xt) ,

which is the evolution (11) associated to the continuous case [13, 22],
where

Eq(z) = (−z; q)∞ =
∞∏
k=0

(1 + zqk) =
∞∑
n=0

qn(n−1)/2zn

(q; q)n
,(31)

denotes a q-exponential function [11, p. 306], where the q-shifted fac-
torial is

(a; q)n =
n−1∏
j=0

(1− aqj) .

Next, we prove a Lax-type theorem [16, Theorem 3, p. 270].

Theorem 3. Let P be the column vector of monic polynomials Pn(x; t)
and Let λ be a spectral point of the Jacobi matrix J(t), i.e.

J P(λ(t)) = λ(t)P(λ(t));

then, J(t) satisfies (19) with the matrix A(t) defined by (20) if, and
only if, Dqλ(t) = 0 .

Proof. If we apply the Dq operator to

J(t)P(λ(t)) = λ(t)P(λ(t))

we obtain

DqJ(t)P(λ(t)) + J(qt)DqP(λ(t)) = Dqλ(t)P(λ) + λ(qt)DqP(λ(t)) .

Then,

A(t)λ(t)P(λ(t))− J(qt)A(t)P(λ(t)) +
(
J(qt)− λ(qt) I

)
DqP(λ(t))

=
(
Dqλ(t)

)
P(λ(t)) .

and so

(J(qt)− λ(qt) I)
(
DqP(λ(t))− A(t)P(λ(t))

)
=
(
Dqλ(t) I +

(
λ(qt)− λ(t)

)
A(t)

)
P(λ(t)) .

Taking into account that the condition

(J(qt)− λ(qt) I)
(
DqP(λ(t))− A(t)P(λ(t))

)
= 0 ,

implies the existence of a real parameter s (we can show that s = b0(qt))
such that

DqP(λ(t))− A(t)P(λ(t)) = sP(λ(qt)) ,
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and that this equation is the vector representation of (24) (which is
equivalent to (19) by Theorem 1), we get that, as 1+(q−1) t b0(qt) 6= 0,
Dqλ(t) = 0 , and this completes the proof. �

3. q-Volterra lattices

Let us now consider the q-Volterra lattice (or q-Langmuir lattice):

DqΓ(t) = B(t)Γ(t)− Γ(qt)B(t) ,(32)

where

Γ(t) = (Γi,j(t)) =


0 1 0

γ1(t) 0 1 0
0 γ2(t) 0 1 0

. . . . . . . . .

 ,(33)

B(t) =


γ1(qt) 0 0

0 γ1(qt) 0

η1(t) 0 γ1(qt)
. . .

0 η2(t) 0 γ1(qt)
. . . . . . . . .

 ,(34)

ηn(t) =
γ1(qt) · · · γn+1(qt)

γ1(t) · · · γn−1(t)
, n = 2, 3, . . . , η1(t) = γ1(qt)γ2(qt) .(35)

The following equations constitute another formulation of q-Volterra
lattice equivalent to (32):

Dqγ1(t) = − γ1(qt)γ2(qt)

1 + (q − 1) t γ1(qt)
,

Dqγn(t) =
γn(qt) · · · γ1(qt)(γn−1(t)− γn+1(qt))

(1 + (q − 1) t γ1(qt))γn−1(t) · · · γ1(t)
, n ≥ 2,

(36)

assuming that 1 + (q − 1)tγ1(qt) 6= 0 and γn(t) 6= 0.
In a similar way as Theorem 1 for the q-Toda lattices, it can be

proved the following result.

Theorem 4. Let us assume that the sequence {γn(t)}n∈N is uniformly
bounded. The following conditions are equivalent:

(1) The Jacobi matrix Γ(t) defined in (33) satisfies the matrix dif-
ference equation (32).

(2) The moments un(t) associated to a symmetric functional u(t),
defined by (9), satisfy

Dqun(t) = −un+2(qt) + u2(qt)un(t) , when n is even,(37)

since u2n+1(t) = 0.
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(3) The Stieltjes function associated with Γ(t) satisfies

DqS(z; t) = −z2S(z; qt) + u2(qt)S(z, t) + z .(38)

(4) The linear functional u(t) associated with Γ(t) satisfies

Dqu(t) = −x2u(qt) + u2(qt)u(t) .(39)

(5) The monic symmetric polynomials {Rn(x; t)}n∈N,

Rn(−x; t) = (−1)nRn(x; t),

defined by the three term recurrence relation

Rn+1(x; t) = xRn(x; t)− γn(t)Rn−1(x; t) ,(40)

with R−1(x; t) = 0 and R0(x; t) = 1, satisfy an Appell condition

DqRn(x; t) = σn2 (t)Rn−2(x; t) ,(41)

where for n = 2, 3, . . .

σn2 (t) =
〈u(qt), xnRn(x; qt)〉

(1 + (q − 1)tu2(qt))〈u(t), xn−2Rn−2(x; t)〉

=
ηn−1(t)

1 + (q − 1) t γ1(qt)
,(42)

and ηn(t) is defined in (35).

Proof. (1) ⇒ (2) Since the moments un can be expressed as un =
e>0 Γn(t)e0, from (32) we obtain

e>0 DqΓ
n(t)e0 = γ1(qt)Γ

n
1,1(t)−

(
Γn1,1(qt)γ1(qt) + Γn1,3(qt)η1(t)

)
= u2(qt)un(t)− Γn+2

1,1 (qt) = −un+2(qt) + u2(qt)un(t) .

(2) ⇒ (3) It follows from the definition of the Stieltjes function S(z)
in terms of moments (6).
(3) ⇒ (4) It is a consequence of (6) and (8).
(4) ⇒ (5) Let us prove that if u(t) is a regular linear functional satis-
fying (37) then 1 + (q − 1)tu2(qt) 6= 0. If u2(t) = q

(1−q)t then from (37)

we obtain u4(t) = q2

(q−1)2t2 and therefore∣∣∣∣∣∣
u0(qt) u1(qt) u2(qt)
u1(qt) u2(qt) u3(qt)
u2(qt) u3(qt) u4(qt)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 0 1

t(1−q)
0 1

t(1−q) 0
1

t(1−q) 0 1
(1−q)2t2

∣∣∣∣∣∣∣ = 0,

in contradiction with being u(t) a regular linear functional [4]. The
proof follows by using similar arguments as in Theorem 1.
(5) ⇒ (1) It follows from (40) by applying the q-difference operator
and using (41). �
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Next, we state the evolution theorem for q-Volterra lattices.

Theorem 5. Assume that the normalized symmetric functional u(t)
verifies

u(t) = κ((1− q)x2t; q)∞v ,(43)

where κ is the normalizing constant and v is a positive definite linear
functional. Then, the coefficients {γn(t)}n∈N of the Jacobi matrix Γ(t)
associated to u(t) are solution of the q-Volterra lattice (36).

Proof. It follows from the fact that the moments of the linear functional
u(t) satisfy (37). �

Remark 3. Introducing g(x, t; q) = ((1− q)x2t; q)∞ , we have that [14],

lim
q→1

g(x, t; q) = lim
q→1

Eq((q − 1)x2 t) = exp(−x2t) ,

which is the evolution (12) associated to the continuous case [13, 22],
and the q-exponential function Eq is defined in (31).

Next, we state a Lax-type theorem [16, Theorem 3, p. 270] for q-
Volterra lattices.

Theorem 6. Let R be the column vector of monic polynomials Rn(x; t)
and let λ be a spectral point of the Jacobi matrix Γ(t), i.e.

Γ(t)R(λ(t)) = λ(t)R(λ(t));

then, Γ(t) satisfies (32) with the matrix B(t) defined by (33) if, and
only if, Dqλ(t) = 0 .

Proof. Following the same ideas of the proof of Theorem 3 we deduce
the equivalence between the existence of a real parameter s (we can
show that s = γ1(qt)) such that

DqR(λ(t))−B(t)R(λ(t)) = sR(λ(qt)) ,(44)

and, as 1 + (q − 1) t γ1(qt) 6= 0, that Dqλ(t) = 0 , which completes the
proof, since (44) coincides (41) in vector notation. �

4. Bäcklund or Miura transformations and sequences of
orthogonal polynomials

Given a family of tridiagonal matrices {J(t), t ∈ R}, as in (3), we
consider the sequence of polynomials {Pn(x; t)}n∈N defined in (10). It
is well-known [4] that, if an(t) 6= 0 for n = 1, 2, . . . , then the sequence
{Pn(x; t)}n∈N is orthogonal with respect to some quasi-definite moment
functional.
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Lemma 1. Let {γn(t)}n∈N be a solution of the q-Volterra lattice (36).
Then {an(t)}n∈N and {bn(t)}n∈N defined by a0(t) = 1 and

an(t) = γ2n(t)γ2n−1(t) , bn(t) = γ2n+1(t) + γ2n(t) + C ,(45)

n = 1, . . . , are solution of the q-Toda lattice (16). Moreover, the se-

quences {ãn(t)}n∈N and {b̃n(t)}n∈N defined by ã0(t) = 1 and

ãn(t) = γ2n+1(t)γ2n(t) , b̃n(t) = γ2n+2(t) + γ2n+1(t) + C ,(46)

n = 1, . . . , are also solution of the q-Toda lattice (16), assuming that
γ0(t) = 1.

Proof. If we apply the Dq operator to the first equation of (45) we ob-
tain

Dqan(t) = Dqγ2n(t)γ2n−1(t) + γ2n(qt)Dqγ2n−1(t) .

From (36) it yields

Dqan(t) =
γ2n(qt) · · · γ1(qt)

(
γ2n−1(t)− γ2n+1(qt)

)
γ2n−1(t)

(1 + (q − 1) t γ1(qt))γ2n−1(t) · · · γ1(t)

+ γ2n(qt)
γ2n−1(qt) · · · γ1(qt)

(
γ2n−2(t)− γ2n(qt)

)
(1 + (q − 1) t γ1(qt))γ2n−2(t) · · · γ1(t)

=
γ2n(qt) · · · γ1(qt)

(
γ2n−1(t) + γ2n−2(t)− γ2n+1(qt)− γ2n(qt)

)
(1 + (q − 1) t γ1(qt))γ2n−2(t) · · · γ1(t)

where by using (45) we finally obtain

Dqan(t) =
an(qt) · · · a1(qt)

(1 + (q − 1) t γ1(qt))an−1(t) · · · a1(t)
(
bn−1(t)− bn(qt)

)
.

Moreover, if we apply the Dq operator to the second equation of (45)
we obtain

Dqbn(t) = Dqγ2n+1(t) + Dqγ2n(t) ,

where by using (45) the result follows.

The results for {ãn(t)} and {b̃n(t)} follow in a similar way. �

Lemma 2. Let {an(t)}n∈N and {bn(t)}n∈N be solution of the q-Toda
lattice (16), and {Pn(x; t)}n∈N be the sequence of orthogonal polynomi-
als with Jacobi matrix (3). Let c ∈ R such that Pn(c; t) 6= 0, for each
n ∈ N and for all t ∈ R. Then the sequence {γn(t)}n∈N defined in (45)
are solution of the q-Volterra lattice (36), assuming that γ0(t) = 1.
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Proof. From [4, Exercise 9.6, page 49] we have that the coefficients
γn(t) have the following representation

γ2n+1(t) = −Pn+1(c; t)

Pn(c; t)
, γ2n+2(t) = −an+1(t)

Pn(c; t)

Pn+1(c; t)
, n ∈ N ,(47)

for the odd and even cases.
In Section 2 we have proved that a necessary and sufficient condition

for {an(t)}n∈N and {bn(t)}n∈N be a solution of a q-Toda lattice is that
{Pn(x; t)}n∈N satisfy the Appell condition (24). The result follows by
applying the Dq operator to both equations. �

As a consequence, if {an(t)}n∈N and {bn(t)}n∈N are solution of the
q-Toda lattice defined in (16), then from Lemma 2 we construct a
solution of the q-Volterra lattice (36) denoted by {γn(t)}n∈N. Now,
from Lemma 1 and these coefficients {γn(t)}n∈N we construct another

solution {ãn(t)}n∈N and {b̃n(t)}n∈N of the q-Toda lattice defined in (16).
Let us denote by Jn(t) the finite submatrix formed by the first n rows

and columns of J(t). We may summarize these result as follows, which
is a q-analogue of [3, Theorem 1.3], where the full Toda and Volterra
hierarchy has been considered.

Theorem 7. Let us consider the family {J(t)}, t ∈ R, of tridiagonal
infinite matrices defined in (33) and let c ∈ C be such that det

(
Jn(t)−

c In
)
6= 0, for each n ∈ N and for all t ∈ R. Then there exists a

sequence {γn(t)}n∈N, t ∈ R, solution of (36) and there exists a pair of

two sequences {an(t)}n∈N, {bn(t)}n∈N, and {ãn(t)}n∈N, {b̃n(t)}n∈N, t ∈
R, solutions of (16) such that (45) and (46) hold.
Moreover, for each c in the above conditions, the sequences {γn(t)}n∈N,

{an(t)}n∈N, {bn(t)}n∈N, and {ãn(t)}n∈N, {b̃n(t)} are the unique sequen-
ces verifying (45) and (46).

Notice that the condition det
(
Jn(t) − c In

)
6= 0, is equivalent to

Pn(c; t) 6= 0 for the monic polynomials {Pn(x; t)}n∈N defined by (10)
[4, 23, 30].

5. Examples

We shall show how orthogonal polynomials can be used to provide an
explicit solution of q-Volterra equations (16) and q-Toda equations (36).

Let v(c) be the normalized linear functional corresponding to the big
q-Legendre polynomials [14, p. 443] defined in terms of a Jackson’s
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q-integral [7, 9, 14]〈
v(c), p(x)

〉
=

1

q(1− c)

∫ q

cq

p(x) Dqx ,(48)

where c < 0.
We have the moments,

(v(c))0 =
〈
v(c), 1

〉
= 1 , (v(c))1 =

〈
v(c), x

〉
= −(c2 − 1)q2

q + 1
.(49)

5.1. q-Toda lattices. Let us consider a q-exponential modification of
the linear functional v(c) —see (29)—

u(t) = κ((1− q)xt; q)∞ v(c),(50)

where κ is a normalizing constant for u(t). This linear functional u(t)
is a particular case of the big q-Laguerre linear functional [14, p. 479]
defined by

〈u(a,b), p(x)〉 =

∫ aq

bq

(a−1x, b−1x; q)∞
(x; q)∞

p(x) Dqx ,

which is positive-definite for 0 < aq < 1 and b < 0, for the specific
values a = 1 and b−1 = (1− q)t.

We have that the sequence of monic polynomials {Pn(x, t; q)}n∈N
orthogonal with respect to u(t) defined in (50) satisfy a three term
recurrence relation with coefficients [14, Eq. (14.11.4)]

bn(t) =
qn+1

(
(q + 1)qn + qt− t− 2

)
(q − 1) t

,

an(t) =
qn+1

(
qn − 1

)2(
qn + (q − 1) t

)
(q − 1)2t2

.

From (18), we have gn(t; q) = q
(
qn − 1

)2
((q − 1) t+ 1)/((q − 1)2t2) ,

and therefore, using (17), we get αn1 (t; q) = (qn − 1)2/((q − 1)2t2) .
Thus, we have that {bn(t)}n∈N, {an(t)}n∈N and {αn1 (t; q)}n∈N are so-
lution of the q-Toda equations (16), assuming that 1 + (q− 1)tb0(qt) =
q + (q − 1)qt 6= 0.

Moreover, the limit as q ↑ 1 of bn(t; q) and an(t; q) are

lim
q↑1

bn(t; q) =
2n+ t+ 1

t
= bn(t) , lim

q↑1
an(t; q) =

n2

t2
= an(t) ,

which are explicit solutions of the Toda equations (1). Thus, we have
the following limit relation

lim
q↑1

Pn(x, t; q) = t−nL(0)
n

(
t(x− 1)

)
,
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in terms of monic Laguerre polynomials L
(α)
n (x), which satisfy a three-

term recurrence relation as (10) with coefficients an(t) and bn(t). Notice

that {L(0)
n

(
t(x−1)

)
}n∈N is the sequence of polynomials orthogonal with

respect to exp(−xt) (see [14]).

5.2. q-Volterra lattices. Let us now consider the following modifica-
tion of the big q-Legendre linear functional v(c) already defined in (48),

u(t) = κ((1− q)x2t; q)∞ v(c),(51)

where κ is a normalizing constant for u(t).
Let us recall the linear functional uH of discrete q-Hermite I polyno-

mials defined in terms of a Jackson’s q-integral [7, 9]〈
uH , p(x)

〉
=

∫ 1

−1
(qx,−qx; q)∞ p(x) Dqx ,

and the discrete q-Hermite I polynomials [14, (14.28.1)]

hn(x; q) = qn(n−1)/2 2φ1

(
q−n, x−1

0

∣∣∣ q;−qx) .

In this case, we can identify the linear functional u(t) and the sequence
of symmetric orthogonal polynomials {Rn(x; t)}n∈N by doing the substi-

tutions q → √q and x→ q−1/2 x
√

(1− q)t in the definition of uH and

hn(x; q), respectively, i.e. Rn(x; t) = hn
(
q−1/2 x

√
(1− q)t;√q

)
. There-

fore, the sequence of symmetric orthogonal polynomials {Rn(x; t)}n∈N
with respect to u(t) satisfy a three term recurrence relation as (40) with

γn(t) =
q(n+1)/2[n/2]q

t
, [z]q :=

qz − 1

q − 1
.(52)

Observe that the difference equation (41) can be written as

DqRn(x; t) = σn2 (t; q)Rn−2(x; t) , σn2 (t; q) =
[n/2]q [(n− 1)/2]q

t2
,

n = 2, 3, . . .. It is easy to check that the coefficients γn(t) defined
in (52) are solution of the q-Volterra equations (36). Moreover, if we
consider the limit as q → 1 of γn(t) we obtain

lim
q↑1

γn(t) = lim
q↑1

q(n+1)/2[n/2]q
t

=
n

2t
,

which are exactly the coefficients of the three term recurrence relation

satisfied by the sequence of monic polynomials {
(
2
√
t
)−n

Hn

(
x
√
t
)
}n∈N,
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associated to exp(−x2t) which is the limit of the weight function.
Therefore, for the sequence of monic polynomials {Rn(x, t)}n∈N, we have

lim
q↑1

Rn(x, t) =
(
2
√
t
)−n

Hn

(
x
√
t
)
,

where Hn(x) are the Hermite polynomials.
Using the Miura transformations (45) and relations (52) we obtain

explicitly the sequences
an(t) =

q2n+1/2 [n]q [n− 1/2]q
t2

,

bn(t) =
qn+

1
2

(
(q + 1)qn −√q − 1

)
(q − 1) t

,
(53)

which are solutions of the q-Toda equations (16) and different as com-
pared with the solution given in the previous subsection. Therefore,
we can identify the sequence of monic polynomials {Pn(x, t)}n∈N gen-
erated from the recurrence relation (10) in terms of the sequence of
monic little q-Laguerre polynomials {Pn(x; a|q)}n∈N [14, (14.20.1)] as

Pn(x, t) =
((1

q
− 1
)
t
)−n

Pn

((1

q
− 1
)
tx;

1
√
q

∣∣∣q) .
Moreover, the limit of the coefficients given in (53) as q ↑ 1 are

lim
q↑1

an(t) =
n(2n− 1)

2t2
= aHn (t) , lim

q↑1
bn(t) =

4n+ 1

2t
= bHn (t) .

Notice that the latter coefficients are solution of the Toda equations (1)

d

dt
aHn (t) = aHn (t)

(
bHn−1(t)− bHn (t)

)
,

d

dt
bHn (t) = aHn (t)− aHn+1(t) ,

and generate monic Laguerre polynomials t−nL
(−1/2)
n (xt). Moreover,

lim
q↑1

Pn(x, t) = t−nL(−1/2)
n (xt) .

Furthermore, from (52) the coefficients ãn(t) and b̃n(t) defined in (46)
are given by 

ãn(t) =
q2n+3/2 [n]q [n+ 1/2]q

t2
,

b̃n(t) =
qn+1

(
qn+

1
2 + qn+

3
2 −√q − 1

)
(q − 1) t

,
(54)

and they are new solutions of the q-Toda lattice (16) as compared
with the previous subsection. We can identify again the sequence of
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monic polynomials {P̃n(x, t)}n∈N generated from the recurrence rela-
tion (10) in terms of the sequence of monic little q-Laguerre polynomi-
als {Pn(x; a|q)}n∈N [14, (14.20.1)] as

P̃n(x, t) =
((1

q
− 1
)
t
)−n

Pn

((1

q
− 1
)
tx;
√
q
∣∣∣q) .

Moreover, the limit of the coefficients given in (54) as q ↑ 1 are

lim
q↑1

ãn(t) =
n(2n+ 1)

2t2
= ãHn (t) , lim

q↑1
b̃n(t) =

4n+ 3

2t
= b̃Hn (t) .

Notice that the latter coefficients are solution of the Toda equations

d

dt
ãHn (t) = ãHn (t)

(
b̃Hn−1(t)− b̃Hn (t)

)
,

d

dt
b̃Hn (t) = ãHn (t)− ãHn+1(t) ,

and generate monic Laguerre polynomials t−nL
(1/2)
n (xt). As a conse-

quence,

lim
q↑1

P̃n(x, t) = t−nL(1/2)
n (xt) .
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